Merge remote-tracking branches 'asoc/topic/mc13783', 'asoc/topic/msm8916', 'asoc...
[linux-2.6-block.git] / drivers / md / dm-verity-target.c
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22
23 #define DM_MSG_PREFIX                   "verity"
24
25 #define DM_VERITY_ENV_LENGTH            42
26 #define DM_VERITY_ENV_VAR_NAME          "DM_VERITY_ERR_BLOCK_NR"
27
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
29
30 #define DM_VERITY_MAX_CORRUPTED_ERRS    100
31
32 #define DM_VERITY_OPT_LOGGING           "ignore_corruption"
33 #define DM_VERITY_OPT_RESTART           "restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES        "ignore_zero_blocks"
35
36 #define DM_VERITY_OPTS_MAX              (2 + DM_VERITY_OPTS_FEC)
37
38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
39
40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
41
42 struct dm_verity_prefetch_work {
43         struct work_struct work;
44         struct dm_verity *v;
45         sector_t block;
46         unsigned n_blocks;
47 };
48
49 /*
50  * Auxiliary structure appended to each dm-bufio buffer. If the value
51  * hash_verified is nonzero, hash of the block has been verified.
52  *
53  * The variable hash_verified is set to 0 when allocating the buffer, then
54  * it can be changed to 1 and it is never reset to 0 again.
55  *
56  * There is no lock around this value, a race condition can at worst cause
57  * that multiple processes verify the hash of the same buffer simultaneously
58  * and write 1 to hash_verified simultaneously.
59  * This condition is harmless, so we don't need locking.
60  */
61 struct buffer_aux {
62         int hash_verified;
63 };
64
65 /*
66  * Initialize struct buffer_aux for a freshly created buffer.
67  */
68 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
69 {
70         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
71
72         aux->hash_verified = 0;
73 }
74
75 /*
76  * Translate input sector number to the sector number on the target device.
77  */
78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
79 {
80         return v->data_start + dm_target_offset(v->ti, bi_sector);
81 }
82
83 /*
84  * Return hash position of a specified block at a specified tree level
85  * (0 is the lowest level).
86  * The lowest "hash_per_block_bits"-bits of the result denote hash position
87  * inside a hash block. The remaining bits denote location of the hash block.
88  */
89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
90                                          int level)
91 {
92         return block >> (level * v->hash_per_block_bits);
93 }
94
95 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
96                                 const u8 *data, size_t len,
97                                 struct crypto_wait *wait)
98 {
99         struct scatterlist sg;
100
101         sg_init_one(&sg, data, len);
102         ahash_request_set_crypt(req, &sg, NULL, len);
103
104         return crypto_wait_req(crypto_ahash_update(req), wait);
105 }
106
107 /*
108  * Wrapper for crypto_ahash_init, which handles verity salting.
109  */
110 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
111                                 struct crypto_wait *wait)
112 {
113         int r;
114
115         ahash_request_set_tfm(req, v->tfm);
116         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
117                                         CRYPTO_TFM_REQ_MAY_BACKLOG,
118                                         crypto_req_done, (void *)wait);
119         crypto_init_wait(wait);
120
121         r = crypto_wait_req(crypto_ahash_init(req), wait);
122
123         if (unlikely(r < 0)) {
124                 DMERR("crypto_ahash_init failed: %d", r);
125                 return r;
126         }
127
128         if (likely(v->salt_size && (v->version >= 1)))
129                 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
130
131         return r;
132 }
133
134 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
135                              u8 *digest, struct crypto_wait *wait)
136 {
137         int r;
138
139         if (unlikely(v->salt_size && (!v->version))) {
140                 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
141
142                 if (r < 0) {
143                         DMERR("verity_hash_final failed updating salt: %d", r);
144                         goto out;
145                 }
146         }
147
148         ahash_request_set_crypt(req, NULL, digest, 0);
149         r = crypto_wait_req(crypto_ahash_final(req), wait);
150 out:
151         return r;
152 }
153
154 int verity_hash(struct dm_verity *v, struct ahash_request *req,
155                 const u8 *data, size_t len, u8 *digest)
156 {
157         int r;
158         struct crypto_wait wait;
159
160         r = verity_hash_init(v, req, &wait);
161         if (unlikely(r < 0))
162                 goto out;
163
164         r = verity_hash_update(v, req, data, len, &wait);
165         if (unlikely(r < 0))
166                 goto out;
167
168         r = verity_hash_final(v, req, digest, &wait);
169
170 out:
171         return r;
172 }
173
174 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
175                                  sector_t *hash_block, unsigned *offset)
176 {
177         sector_t position = verity_position_at_level(v, block, level);
178         unsigned idx;
179
180         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
181
182         if (!offset)
183                 return;
184
185         idx = position & ((1 << v->hash_per_block_bits) - 1);
186         if (!v->version)
187                 *offset = idx * v->digest_size;
188         else
189                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
190 }
191
192 /*
193  * Handle verification errors.
194  */
195 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
196                              unsigned long long block)
197 {
198         char verity_env[DM_VERITY_ENV_LENGTH];
199         char *envp[] = { verity_env, NULL };
200         const char *type_str = "";
201         struct mapped_device *md = dm_table_get_md(v->ti->table);
202
203         /* Corruption should be visible in device status in all modes */
204         v->hash_failed = 1;
205
206         if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
207                 goto out;
208
209         v->corrupted_errs++;
210
211         switch (type) {
212         case DM_VERITY_BLOCK_TYPE_DATA:
213                 type_str = "data";
214                 break;
215         case DM_VERITY_BLOCK_TYPE_METADATA:
216                 type_str = "metadata";
217                 break;
218         default:
219                 BUG();
220         }
221
222         DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
223                 block);
224
225         if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
226                 DMERR("%s: reached maximum errors", v->data_dev->name);
227
228         snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
229                 DM_VERITY_ENV_VAR_NAME, type, block);
230
231         kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
232
233 out:
234         if (v->mode == DM_VERITY_MODE_LOGGING)
235                 return 0;
236
237         if (v->mode == DM_VERITY_MODE_RESTART)
238                 kernel_restart("dm-verity device corrupted");
239
240         return 1;
241 }
242
243 /*
244  * Verify hash of a metadata block pertaining to the specified data block
245  * ("block" argument) at a specified level ("level" argument).
246  *
247  * On successful return, verity_io_want_digest(v, io) contains the hash value
248  * for a lower tree level or for the data block (if we're at the lowest level).
249  *
250  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
251  * If "skip_unverified" is false, unverified buffer is hashed and verified
252  * against current value of verity_io_want_digest(v, io).
253  */
254 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
255                                sector_t block, int level, bool skip_unverified,
256                                u8 *want_digest)
257 {
258         struct dm_buffer *buf;
259         struct buffer_aux *aux;
260         u8 *data;
261         int r;
262         sector_t hash_block;
263         unsigned offset;
264
265         verity_hash_at_level(v, block, level, &hash_block, &offset);
266
267         data = dm_bufio_read(v->bufio, hash_block, &buf);
268         if (IS_ERR(data))
269                 return PTR_ERR(data);
270
271         aux = dm_bufio_get_aux_data(buf);
272
273         if (!aux->hash_verified) {
274                 if (skip_unverified) {
275                         r = 1;
276                         goto release_ret_r;
277                 }
278
279                 r = verity_hash(v, verity_io_hash_req(v, io),
280                                 data, 1 << v->hash_dev_block_bits,
281                                 verity_io_real_digest(v, io));
282                 if (unlikely(r < 0))
283                         goto release_ret_r;
284
285                 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
286                                   v->digest_size) == 0))
287                         aux->hash_verified = 1;
288                 else if (verity_fec_decode(v, io,
289                                            DM_VERITY_BLOCK_TYPE_METADATA,
290                                            hash_block, data, NULL) == 0)
291                         aux->hash_verified = 1;
292                 else if (verity_handle_err(v,
293                                            DM_VERITY_BLOCK_TYPE_METADATA,
294                                            hash_block)) {
295                         r = -EIO;
296                         goto release_ret_r;
297                 }
298         }
299
300         data += offset;
301         memcpy(want_digest, data, v->digest_size);
302         r = 0;
303
304 release_ret_r:
305         dm_bufio_release(buf);
306         return r;
307 }
308
309 /*
310  * Find a hash for a given block, write it to digest and verify the integrity
311  * of the hash tree if necessary.
312  */
313 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
314                           sector_t block, u8 *digest, bool *is_zero)
315 {
316         int r = 0, i;
317
318         if (likely(v->levels)) {
319                 /*
320                  * First, we try to get the requested hash for
321                  * the current block. If the hash block itself is
322                  * verified, zero is returned. If it isn't, this
323                  * function returns 1 and we fall back to whole
324                  * chain verification.
325                  */
326                 r = verity_verify_level(v, io, block, 0, true, digest);
327                 if (likely(r <= 0))
328                         goto out;
329         }
330
331         memcpy(digest, v->root_digest, v->digest_size);
332
333         for (i = v->levels - 1; i >= 0; i--) {
334                 r = verity_verify_level(v, io, block, i, false, digest);
335                 if (unlikely(r))
336                         goto out;
337         }
338 out:
339         if (!r && v->zero_digest)
340                 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
341         else
342                 *is_zero = false;
343
344         return r;
345 }
346
347 /*
348  * Calculates the digest for the given bio
349  */
350 int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
351                         struct bvec_iter *iter, struct crypto_wait *wait)
352 {
353         unsigned int todo = 1 << v->data_dev_block_bits;
354         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
355         struct scatterlist sg;
356         struct ahash_request *req = verity_io_hash_req(v, io);
357
358         do {
359                 int r;
360                 unsigned int len;
361                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
362
363                 sg_init_table(&sg, 1);
364
365                 len = bv.bv_len;
366
367                 if (likely(len >= todo))
368                         len = todo;
369                 /*
370                  * Operating on a single page at a time looks suboptimal
371                  * until you consider the typical block size is 4,096B.
372                  * Going through this loops twice should be very rare.
373                  */
374                 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
375                 ahash_request_set_crypt(req, &sg, NULL, len);
376                 r = crypto_wait_req(crypto_ahash_update(req), wait);
377
378                 if (unlikely(r < 0)) {
379                         DMERR("verity_for_io_block crypto op failed: %d", r);
380                         return r;
381                 }
382
383                 bio_advance_iter(bio, iter, len);
384                 todo -= len;
385         } while (todo);
386
387         return 0;
388 }
389
390 /*
391  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
392  * starting from iter.
393  */
394 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
395                         struct bvec_iter *iter,
396                         int (*process)(struct dm_verity *v,
397                                        struct dm_verity_io *io, u8 *data,
398                                        size_t len))
399 {
400         unsigned todo = 1 << v->data_dev_block_bits;
401         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
402
403         do {
404                 int r;
405                 u8 *page;
406                 unsigned len;
407                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
408
409                 page = kmap_atomic(bv.bv_page);
410                 len = bv.bv_len;
411
412                 if (likely(len >= todo))
413                         len = todo;
414
415                 r = process(v, io, page + bv.bv_offset, len);
416                 kunmap_atomic(page);
417
418                 if (r < 0)
419                         return r;
420
421                 bio_advance_iter(bio, iter, len);
422                 todo -= len;
423         } while (todo);
424
425         return 0;
426 }
427
428 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
429                           u8 *data, size_t len)
430 {
431         memset(data, 0, len);
432         return 0;
433 }
434
435 /*
436  * Verify one "dm_verity_io" structure.
437  */
438 static int verity_verify_io(struct dm_verity_io *io)
439 {
440         bool is_zero;
441         struct dm_verity *v = io->v;
442         struct bvec_iter start;
443         unsigned b;
444         struct crypto_wait wait;
445
446         for (b = 0; b < io->n_blocks; b++) {
447                 int r;
448                 struct ahash_request *req = verity_io_hash_req(v, io);
449
450                 r = verity_hash_for_block(v, io, io->block + b,
451                                           verity_io_want_digest(v, io),
452                                           &is_zero);
453                 if (unlikely(r < 0))
454                         return r;
455
456                 if (is_zero) {
457                         /*
458                          * If we expect a zero block, don't validate, just
459                          * return zeros.
460                          */
461                         r = verity_for_bv_block(v, io, &io->iter,
462                                                 verity_bv_zero);
463                         if (unlikely(r < 0))
464                                 return r;
465
466                         continue;
467                 }
468
469                 r = verity_hash_init(v, req, &wait);
470                 if (unlikely(r < 0))
471                         return r;
472
473                 start = io->iter;
474                 r = verity_for_io_block(v, io, &io->iter, &wait);
475                 if (unlikely(r < 0))
476                         return r;
477
478                 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
479                                         &wait);
480                 if (unlikely(r < 0))
481                         return r;
482
483                 if (likely(memcmp(verity_io_real_digest(v, io),
484                                   verity_io_want_digest(v, io), v->digest_size) == 0))
485                         continue;
486                 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
487                                            io->block + b, NULL, &start) == 0)
488                         continue;
489                 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
490                                            io->block + b))
491                         return -EIO;
492         }
493
494         return 0;
495 }
496
497 /*
498  * End one "io" structure with a given error.
499  */
500 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
501 {
502         struct dm_verity *v = io->v;
503         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
504
505         bio->bi_end_io = io->orig_bi_end_io;
506         bio->bi_status = status;
507
508         verity_fec_finish_io(io);
509
510         bio_endio(bio);
511 }
512
513 static void verity_work(struct work_struct *w)
514 {
515         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
516
517         verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
518 }
519
520 static void verity_end_io(struct bio *bio)
521 {
522         struct dm_verity_io *io = bio->bi_private;
523
524         if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
525                 verity_finish_io(io, bio->bi_status);
526                 return;
527         }
528
529         INIT_WORK(&io->work, verity_work);
530         queue_work(io->v->verify_wq, &io->work);
531 }
532
533 /*
534  * Prefetch buffers for the specified io.
535  * The root buffer is not prefetched, it is assumed that it will be cached
536  * all the time.
537  */
538 static void verity_prefetch_io(struct work_struct *work)
539 {
540         struct dm_verity_prefetch_work *pw =
541                 container_of(work, struct dm_verity_prefetch_work, work);
542         struct dm_verity *v = pw->v;
543         int i;
544
545         for (i = v->levels - 2; i >= 0; i--) {
546                 sector_t hash_block_start;
547                 sector_t hash_block_end;
548                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
549                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
550                 if (!i) {
551                         unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
552
553                         cluster >>= v->data_dev_block_bits;
554                         if (unlikely(!cluster))
555                                 goto no_prefetch_cluster;
556
557                         if (unlikely(cluster & (cluster - 1)))
558                                 cluster = 1 << __fls(cluster);
559
560                         hash_block_start &= ~(sector_t)(cluster - 1);
561                         hash_block_end |= cluster - 1;
562                         if (unlikely(hash_block_end >= v->hash_blocks))
563                                 hash_block_end = v->hash_blocks - 1;
564                 }
565 no_prefetch_cluster:
566                 dm_bufio_prefetch(v->bufio, hash_block_start,
567                                   hash_block_end - hash_block_start + 1);
568         }
569
570         kfree(pw);
571 }
572
573 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
574 {
575         struct dm_verity_prefetch_work *pw;
576
577         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
578                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
579
580         if (!pw)
581                 return;
582
583         INIT_WORK(&pw->work, verity_prefetch_io);
584         pw->v = v;
585         pw->block = io->block;
586         pw->n_blocks = io->n_blocks;
587         queue_work(v->verify_wq, &pw->work);
588 }
589
590 /*
591  * Bio map function. It allocates dm_verity_io structure and bio vector and
592  * fills them. Then it issues prefetches and the I/O.
593  */
594 static int verity_map(struct dm_target *ti, struct bio *bio)
595 {
596         struct dm_verity *v = ti->private;
597         struct dm_verity_io *io;
598
599         bio_set_dev(bio, v->data_dev->bdev);
600         bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
601
602         if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
603             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
604                 DMERR_LIMIT("unaligned io");
605                 return DM_MAPIO_KILL;
606         }
607
608         if (bio_end_sector(bio) >>
609             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
610                 DMERR_LIMIT("io out of range");
611                 return DM_MAPIO_KILL;
612         }
613
614         if (bio_data_dir(bio) == WRITE)
615                 return DM_MAPIO_KILL;
616
617         io = dm_per_bio_data(bio, ti->per_io_data_size);
618         io->v = v;
619         io->orig_bi_end_io = bio->bi_end_io;
620         io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
621         io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
622
623         bio->bi_end_io = verity_end_io;
624         bio->bi_private = io;
625         io->iter = bio->bi_iter;
626
627         verity_fec_init_io(io);
628
629         verity_submit_prefetch(v, io);
630
631         generic_make_request(bio);
632
633         return DM_MAPIO_SUBMITTED;
634 }
635
636 /*
637  * Status: V (valid) or C (corruption found)
638  */
639 static void verity_status(struct dm_target *ti, status_type_t type,
640                           unsigned status_flags, char *result, unsigned maxlen)
641 {
642         struct dm_verity *v = ti->private;
643         unsigned args = 0;
644         unsigned sz = 0;
645         unsigned x;
646
647         switch (type) {
648         case STATUSTYPE_INFO:
649                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
650                 break;
651         case STATUSTYPE_TABLE:
652                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
653                         v->version,
654                         v->data_dev->name,
655                         v->hash_dev->name,
656                         1 << v->data_dev_block_bits,
657                         1 << v->hash_dev_block_bits,
658                         (unsigned long long)v->data_blocks,
659                         (unsigned long long)v->hash_start,
660                         v->alg_name
661                         );
662                 for (x = 0; x < v->digest_size; x++)
663                         DMEMIT("%02x", v->root_digest[x]);
664                 DMEMIT(" ");
665                 if (!v->salt_size)
666                         DMEMIT("-");
667                 else
668                         for (x = 0; x < v->salt_size; x++)
669                                 DMEMIT("%02x", v->salt[x]);
670                 if (v->mode != DM_VERITY_MODE_EIO)
671                         args++;
672                 if (verity_fec_is_enabled(v))
673                         args += DM_VERITY_OPTS_FEC;
674                 if (v->zero_digest)
675                         args++;
676                 if (!args)
677                         return;
678                 DMEMIT(" %u", args);
679                 if (v->mode != DM_VERITY_MODE_EIO) {
680                         DMEMIT(" ");
681                         switch (v->mode) {
682                         case DM_VERITY_MODE_LOGGING:
683                                 DMEMIT(DM_VERITY_OPT_LOGGING);
684                                 break;
685                         case DM_VERITY_MODE_RESTART:
686                                 DMEMIT(DM_VERITY_OPT_RESTART);
687                                 break;
688                         default:
689                                 BUG();
690                         }
691                 }
692                 if (v->zero_digest)
693                         DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
694                 sz = verity_fec_status_table(v, sz, result, maxlen);
695                 break;
696         }
697 }
698
699 static int verity_prepare_ioctl(struct dm_target *ti,
700                 struct block_device **bdev, fmode_t *mode)
701 {
702         struct dm_verity *v = ti->private;
703
704         *bdev = v->data_dev->bdev;
705
706         if (v->data_start ||
707             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
708                 return 1;
709         return 0;
710 }
711
712 static int verity_iterate_devices(struct dm_target *ti,
713                                   iterate_devices_callout_fn fn, void *data)
714 {
715         struct dm_verity *v = ti->private;
716
717         return fn(ti, v->data_dev, v->data_start, ti->len, data);
718 }
719
720 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
721 {
722         struct dm_verity *v = ti->private;
723
724         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
725                 limits->logical_block_size = 1 << v->data_dev_block_bits;
726
727         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
728                 limits->physical_block_size = 1 << v->data_dev_block_bits;
729
730         blk_limits_io_min(limits, limits->logical_block_size);
731 }
732
733 static void verity_dtr(struct dm_target *ti)
734 {
735         struct dm_verity *v = ti->private;
736
737         if (v->verify_wq)
738                 destroy_workqueue(v->verify_wq);
739
740         if (v->bufio)
741                 dm_bufio_client_destroy(v->bufio);
742
743         kfree(v->salt);
744         kfree(v->root_digest);
745         kfree(v->zero_digest);
746
747         if (v->tfm)
748                 crypto_free_ahash(v->tfm);
749
750         kfree(v->alg_name);
751
752         if (v->hash_dev)
753                 dm_put_device(ti, v->hash_dev);
754
755         if (v->data_dev)
756                 dm_put_device(ti, v->data_dev);
757
758         verity_fec_dtr(v);
759
760         kfree(v);
761 }
762
763 static int verity_alloc_zero_digest(struct dm_verity *v)
764 {
765         int r = -ENOMEM;
766         struct ahash_request *req;
767         u8 *zero_data;
768
769         v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
770
771         if (!v->zero_digest)
772                 return r;
773
774         req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
775
776         if (!req)
777                 return r; /* verity_dtr will free zero_digest */
778
779         zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
780
781         if (!zero_data)
782                 goto out;
783
784         r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
785                         v->zero_digest);
786
787 out:
788         kfree(req);
789         kfree(zero_data);
790
791         return r;
792 }
793
794 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
795 {
796         int r;
797         unsigned argc;
798         struct dm_target *ti = v->ti;
799         const char *arg_name;
800
801         static const struct dm_arg _args[] = {
802                 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
803         };
804
805         r = dm_read_arg_group(_args, as, &argc, &ti->error);
806         if (r)
807                 return -EINVAL;
808
809         if (!argc)
810                 return 0;
811
812         do {
813                 arg_name = dm_shift_arg(as);
814                 argc--;
815
816                 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
817                         v->mode = DM_VERITY_MODE_LOGGING;
818                         continue;
819
820                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
821                         v->mode = DM_VERITY_MODE_RESTART;
822                         continue;
823
824                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
825                         r = verity_alloc_zero_digest(v);
826                         if (r) {
827                                 ti->error = "Cannot allocate zero digest";
828                                 return r;
829                         }
830                         continue;
831
832                 } else if (verity_is_fec_opt_arg(arg_name)) {
833                         r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
834                         if (r)
835                                 return r;
836                         continue;
837                 }
838
839                 ti->error = "Unrecognized verity feature request";
840                 return -EINVAL;
841         } while (argc && !r);
842
843         return r;
844 }
845
846 /*
847  * Target parameters:
848  *      <version>       The current format is version 1.
849  *                      Vsn 0 is compatible with original Chromium OS releases.
850  *      <data device>
851  *      <hash device>
852  *      <data block size>
853  *      <hash block size>
854  *      <the number of data blocks>
855  *      <hash start block>
856  *      <algorithm>
857  *      <digest>
858  *      <salt>          Hex string or "-" if no salt.
859  */
860 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
861 {
862         struct dm_verity *v;
863         struct dm_arg_set as;
864         unsigned int num;
865         unsigned long long num_ll;
866         int r;
867         int i;
868         sector_t hash_position;
869         char dummy;
870
871         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
872         if (!v) {
873                 ti->error = "Cannot allocate verity structure";
874                 return -ENOMEM;
875         }
876         ti->private = v;
877         v->ti = ti;
878
879         r = verity_fec_ctr_alloc(v);
880         if (r)
881                 goto bad;
882
883         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
884                 ti->error = "Device must be readonly";
885                 r = -EINVAL;
886                 goto bad;
887         }
888
889         if (argc < 10) {
890                 ti->error = "Not enough arguments";
891                 r = -EINVAL;
892                 goto bad;
893         }
894
895         if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
896             num > 1) {
897                 ti->error = "Invalid version";
898                 r = -EINVAL;
899                 goto bad;
900         }
901         v->version = num;
902
903         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
904         if (r) {
905                 ti->error = "Data device lookup failed";
906                 goto bad;
907         }
908
909         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
910         if (r) {
911                 ti->error = "Hash device lookup failed";
912                 goto bad;
913         }
914
915         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
916             !num || (num & (num - 1)) ||
917             num < bdev_logical_block_size(v->data_dev->bdev) ||
918             num > PAGE_SIZE) {
919                 ti->error = "Invalid data device block size";
920                 r = -EINVAL;
921                 goto bad;
922         }
923         v->data_dev_block_bits = __ffs(num);
924
925         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
926             !num || (num & (num - 1)) ||
927             num < bdev_logical_block_size(v->hash_dev->bdev) ||
928             num > INT_MAX) {
929                 ti->error = "Invalid hash device block size";
930                 r = -EINVAL;
931                 goto bad;
932         }
933         v->hash_dev_block_bits = __ffs(num);
934
935         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
936             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
937             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
938                 ti->error = "Invalid data blocks";
939                 r = -EINVAL;
940                 goto bad;
941         }
942         v->data_blocks = num_ll;
943
944         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
945                 ti->error = "Data device is too small";
946                 r = -EINVAL;
947                 goto bad;
948         }
949
950         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
951             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
952             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
953                 ti->error = "Invalid hash start";
954                 r = -EINVAL;
955                 goto bad;
956         }
957         v->hash_start = num_ll;
958
959         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
960         if (!v->alg_name) {
961                 ti->error = "Cannot allocate algorithm name";
962                 r = -ENOMEM;
963                 goto bad;
964         }
965
966         v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
967         if (IS_ERR(v->tfm)) {
968                 ti->error = "Cannot initialize hash function";
969                 r = PTR_ERR(v->tfm);
970                 v->tfm = NULL;
971                 goto bad;
972         }
973         v->digest_size = crypto_ahash_digestsize(v->tfm);
974         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
975                 ti->error = "Digest size too big";
976                 r = -EINVAL;
977                 goto bad;
978         }
979         v->ahash_reqsize = sizeof(struct ahash_request) +
980                 crypto_ahash_reqsize(v->tfm);
981
982         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
983         if (!v->root_digest) {
984                 ti->error = "Cannot allocate root digest";
985                 r = -ENOMEM;
986                 goto bad;
987         }
988         if (strlen(argv[8]) != v->digest_size * 2 ||
989             hex2bin(v->root_digest, argv[8], v->digest_size)) {
990                 ti->error = "Invalid root digest";
991                 r = -EINVAL;
992                 goto bad;
993         }
994
995         if (strcmp(argv[9], "-")) {
996                 v->salt_size = strlen(argv[9]) / 2;
997                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
998                 if (!v->salt) {
999                         ti->error = "Cannot allocate salt";
1000                         r = -ENOMEM;
1001                         goto bad;
1002                 }
1003                 if (strlen(argv[9]) != v->salt_size * 2 ||
1004                     hex2bin(v->salt, argv[9], v->salt_size)) {
1005                         ti->error = "Invalid salt";
1006                         r = -EINVAL;
1007                         goto bad;
1008                 }
1009         }
1010
1011         argv += 10;
1012         argc -= 10;
1013
1014         /* Optional parameters */
1015         if (argc) {
1016                 as.argc = argc;
1017                 as.argv = argv;
1018
1019                 r = verity_parse_opt_args(&as, v);
1020                 if (r < 0)
1021                         goto bad;
1022         }
1023
1024         v->hash_per_block_bits =
1025                 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1026
1027         v->levels = 0;
1028         if (v->data_blocks)
1029                 while (v->hash_per_block_bits * v->levels < 64 &&
1030                        (unsigned long long)(v->data_blocks - 1) >>
1031                        (v->hash_per_block_bits * v->levels))
1032                         v->levels++;
1033
1034         if (v->levels > DM_VERITY_MAX_LEVELS) {
1035                 ti->error = "Too many tree levels";
1036                 r = -E2BIG;
1037                 goto bad;
1038         }
1039
1040         hash_position = v->hash_start;
1041         for (i = v->levels - 1; i >= 0; i--) {
1042                 sector_t s;
1043                 v->hash_level_block[i] = hash_position;
1044                 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1045                                         >> ((i + 1) * v->hash_per_block_bits);
1046                 if (hash_position + s < hash_position) {
1047                         ti->error = "Hash device offset overflow";
1048                         r = -E2BIG;
1049                         goto bad;
1050                 }
1051                 hash_position += s;
1052         }
1053         v->hash_blocks = hash_position;
1054
1055         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1056                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1057                 dm_bufio_alloc_callback, NULL);
1058         if (IS_ERR(v->bufio)) {
1059                 ti->error = "Cannot initialize dm-bufio";
1060                 r = PTR_ERR(v->bufio);
1061                 v->bufio = NULL;
1062                 goto bad;
1063         }
1064
1065         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1066                 ti->error = "Hash device is too small";
1067                 r = -E2BIG;
1068                 goto bad;
1069         }
1070
1071         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1072         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1073         if (!v->verify_wq) {
1074                 ti->error = "Cannot allocate workqueue";
1075                 r = -ENOMEM;
1076                 goto bad;
1077         }
1078
1079         ti->per_io_data_size = sizeof(struct dm_verity_io) +
1080                                 v->ahash_reqsize + v->digest_size * 2;
1081
1082         r = verity_fec_ctr(v);
1083         if (r)
1084                 goto bad;
1085
1086         ti->per_io_data_size = roundup(ti->per_io_data_size,
1087                                        __alignof__(struct dm_verity_io));
1088
1089         return 0;
1090
1091 bad:
1092         verity_dtr(ti);
1093
1094         return r;
1095 }
1096
1097 static struct target_type verity_target = {
1098         .name           = "verity",
1099         .version        = {1, 3, 0},
1100         .module         = THIS_MODULE,
1101         .ctr            = verity_ctr,
1102         .dtr            = verity_dtr,
1103         .map            = verity_map,
1104         .status         = verity_status,
1105         .prepare_ioctl  = verity_prepare_ioctl,
1106         .iterate_devices = verity_iterate_devices,
1107         .io_hints       = verity_io_hints,
1108 };
1109
1110 static int __init dm_verity_init(void)
1111 {
1112         int r;
1113
1114         r = dm_register_target(&verity_target);
1115         if (r < 0)
1116                 DMERR("register failed %d", r);
1117
1118         return r;
1119 }
1120
1121 static void __exit dm_verity_exit(void)
1122 {
1123         dm_unregister_target(&verity_target);
1124 }
1125
1126 module_init(dm_verity_init);
1127 module_exit(dm_verity_exit);
1128
1129 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1130 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1131 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1132 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1133 MODULE_LICENSE("GPL");