dm: add missing SPDX-License-Indentifiers
[linux-2.6-block.git] / drivers / md / dm-thin.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25
26 #define DM_MSG_PREFIX   "thin"
27
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35
36 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39                 "A percentage of time allocated for copy on write");
40
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110
111 /*----------------------------------------------------------------*/
112
113 /*
114  * Key building.
115  */
116 enum lock_space {
117         VIRTUAL,
118         PHYSICAL
119 };
120
121 static void build_key(struct dm_thin_device *td, enum lock_space ls,
122                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124         key->virtual = (ls == VIRTUAL);
125         key->dev = dm_thin_dev_id(td);
126         key->block_begin = b;
127         key->block_end = e;
128 }
129
130 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
131                            struct dm_cell_key *key)
132 {
133         build_key(td, PHYSICAL, b, b + 1llu, key);
134 }
135
136 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
137                               struct dm_cell_key *key)
138 {
139         build_key(td, VIRTUAL, b, b + 1llu, key);
140 }
141
142 /*----------------------------------------------------------------*/
143
144 #define THROTTLE_THRESHOLD (1 * HZ)
145
146 struct throttle {
147         struct rw_semaphore lock;
148         unsigned long threshold;
149         bool throttle_applied;
150 };
151
152 static void throttle_init(struct throttle *t)
153 {
154         init_rwsem(&t->lock);
155         t->throttle_applied = false;
156 }
157
158 static void throttle_work_start(struct throttle *t)
159 {
160         t->threshold = jiffies + THROTTLE_THRESHOLD;
161 }
162
163 static void throttle_work_update(struct throttle *t)
164 {
165         if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
166                 down_write(&t->lock);
167                 t->throttle_applied = true;
168         }
169 }
170
171 static void throttle_work_complete(struct throttle *t)
172 {
173         if (t->throttle_applied) {
174                 t->throttle_applied = false;
175                 up_write(&t->lock);
176         }
177 }
178
179 static void throttle_lock(struct throttle *t)
180 {
181         down_read(&t->lock);
182 }
183
184 static void throttle_unlock(struct throttle *t)
185 {
186         up_read(&t->lock);
187 }
188
189 /*----------------------------------------------------------------*/
190
191 /*
192  * A pool device ties together a metadata device and a data device.  It
193  * also provides the interface for creating and destroying internal
194  * devices.
195  */
196 struct dm_thin_new_mapping;
197
198 /*
199  * The pool runs in various modes.  Ordered in degraded order for comparisons.
200  */
201 enum pool_mode {
202         PM_WRITE,               /* metadata may be changed */
203         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
204
205         /*
206          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207          */
208         PM_OUT_OF_METADATA_SPACE,
209         PM_READ_ONLY,           /* metadata may not be changed */
210
211         PM_FAIL,                /* all I/O fails */
212 };
213
214 struct pool_features {
215         enum pool_mode mode;
216
217         bool zero_new_blocks:1;
218         bool discard_enabled:1;
219         bool discard_passdown:1;
220         bool error_if_no_space:1;
221 };
222
223 struct thin_c;
224 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
225 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
226 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
227
228 #define CELL_SORT_ARRAY_SIZE 8192
229
230 struct pool {
231         struct list_head list;
232         struct dm_target *ti;   /* Only set if a pool target is bound */
233
234         struct mapped_device *pool_md;
235         struct block_device *data_dev;
236         struct block_device *md_dev;
237         struct dm_pool_metadata *pmd;
238
239         dm_block_t low_water_blocks;
240         uint32_t sectors_per_block;
241         int sectors_per_block_shift;
242
243         struct pool_features pf;
244         bool low_water_triggered:1;     /* A dm event has been sent */
245         bool suspended:1;
246         bool out_of_data_space:1;
247
248         struct dm_bio_prison *prison;
249         struct dm_kcopyd_client *copier;
250
251         struct work_struct worker;
252         struct workqueue_struct *wq;
253         struct throttle throttle;
254         struct delayed_work waker;
255         struct delayed_work no_space_timeout;
256
257         unsigned long last_commit_jiffies;
258         unsigned ref_count;
259
260         spinlock_t lock;
261         struct bio_list deferred_flush_bios;
262         struct bio_list deferred_flush_completions;
263         struct list_head prepared_mappings;
264         struct list_head prepared_discards;
265         struct list_head prepared_discards_pt2;
266         struct list_head active_thins;
267
268         struct dm_deferred_set *shared_read_ds;
269         struct dm_deferred_set *all_io_ds;
270
271         struct dm_thin_new_mapping *next_mapping;
272
273         process_bio_fn process_bio;
274         process_bio_fn process_discard;
275
276         process_cell_fn process_cell;
277         process_cell_fn process_discard_cell;
278
279         process_mapping_fn process_prepared_mapping;
280         process_mapping_fn process_prepared_discard;
281         process_mapping_fn process_prepared_discard_pt2;
282
283         struct dm_bio_prison_cell **cell_sort_array;
284
285         mempool_t mapping_pool;
286 };
287
288 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
289
290 static enum pool_mode get_pool_mode(struct pool *pool)
291 {
292         return pool->pf.mode;
293 }
294
295 static void notify_of_pool_mode_change(struct pool *pool)
296 {
297         const char *descs[] = {
298                 "write",
299                 "out-of-data-space",
300                 "read-only",
301                 "read-only",
302                 "fail"
303         };
304         const char *extra_desc = NULL;
305         enum pool_mode mode = get_pool_mode(pool);
306
307         if (mode == PM_OUT_OF_DATA_SPACE) {
308                 if (!pool->pf.error_if_no_space)
309                         extra_desc = " (queue IO)";
310                 else
311                         extra_desc = " (error IO)";
312         }
313
314         dm_table_event(pool->ti->table);
315         DMINFO("%s: switching pool to %s%s mode",
316                dm_device_name(pool->pool_md),
317                descs[(int)mode], extra_desc ? : "");
318 }
319
320 /*
321  * Target context for a pool.
322  */
323 struct pool_c {
324         struct dm_target *ti;
325         struct pool *pool;
326         struct dm_dev *data_dev;
327         struct dm_dev *metadata_dev;
328
329         dm_block_t low_water_blocks;
330         struct pool_features requested_pf; /* Features requested during table load */
331         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
332 };
333
334 /*
335  * Target context for a thin.
336  */
337 struct thin_c {
338         struct list_head list;
339         struct dm_dev *pool_dev;
340         struct dm_dev *origin_dev;
341         sector_t origin_size;
342         dm_thin_id dev_id;
343
344         struct pool *pool;
345         struct dm_thin_device *td;
346         struct mapped_device *thin_md;
347
348         bool requeue_mode:1;
349         spinlock_t lock;
350         struct list_head deferred_cells;
351         struct bio_list deferred_bio_list;
352         struct bio_list retry_on_resume_list;
353         struct rb_root sort_bio_list; /* sorted list of deferred bios */
354
355         /*
356          * Ensures the thin is not destroyed until the worker has finished
357          * iterating the active_thins list.
358          */
359         refcount_t refcount;
360         struct completion can_destroy;
361 };
362
363 /*----------------------------------------------------------------*/
364
365 static bool block_size_is_power_of_two(struct pool *pool)
366 {
367         return pool->sectors_per_block_shift >= 0;
368 }
369
370 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
371 {
372         return block_size_is_power_of_two(pool) ?
373                 (b << pool->sectors_per_block_shift) :
374                 (b * pool->sectors_per_block);
375 }
376
377 /*----------------------------------------------------------------*/
378
379 struct discard_op {
380         struct thin_c *tc;
381         struct blk_plug plug;
382         struct bio *parent_bio;
383         struct bio *bio;
384 };
385
386 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
387 {
388         BUG_ON(!parent);
389
390         op->tc = tc;
391         blk_start_plug(&op->plug);
392         op->parent_bio = parent;
393         op->bio = NULL;
394 }
395
396 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
397 {
398         struct thin_c *tc = op->tc;
399         sector_t s = block_to_sectors(tc->pool, data_b);
400         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
401
402         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
403                                       &op->bio);
404 }
405
406 static void end_discard(struct discard_op *op, int r)
407 {
408         if (op->bio) {
409                 /*
410                  * Even if one of the calls to issue_discard failed, we
411                  * need to wait for the chain to complete.
412                  */
413                 bio_chain(op->bio, op->parent_bio);
414                 op->bio->bi_opf = REQ_OP_DISCARD;
415                 submit_bio(op->bio);
416         }
417
418         blk_finish_plug(&op->plug);
419
420         /*
421          * Even if r is set, there could be sub discards in flight that we
422          * need to wait for.
423          */
424         if (r && !op->parent_bio->bi_status)
425                 op->parent_bio->bi_status = errno_to_blk_status(r);
426         bio_endio(op->parent_bio);
427 }
428
429 /*----------------------------------------------------------------*/
430
431 /*
432  * wake_worker() is used when new work is queued and when pool_resume is
433  * ready to continue deferred IO processing.
434  */
435 static void wake_worker(struct pool *pool)
436 {
437         queue_work(pool->wq, &pool->worker);
438 }
439
440 /*----------------------------------------------------------------*/
441
442 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
443                       struct dm_bio_prison_cell **cell_result)
444 {
445         int r;
446         struct dm_bio_prison_cell *cell_prealloc;
447
448         /*
449          * Allocate a cell from the prison's mempool.
450          * This might block but it can't fail.
451          */
452         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
453
454         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
455         if (r)
456                 /*
457                  * We reused an old cell; we can get rid of
458                  * the new one.
459                  */
460                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
461
462         return r;
463 }
464
465 static void cell_release(struct pool *pool,
466                          struct dm_bio_prison_cell *cell,
467                          struct bio_list *bios)
468 {
469         dm_cell_release(pool->prison, cell, bios);
470         dm_bio_prison_free_cell(pool->prison, cell);
471 }
472
473 static void cell_visit_release(struct pool *pool,
474                                void (*fn)(void *, struct dm_bio_prison_cell *),
475                                void *context,
476                                struct dm_bio_prison_cell *cell)
477 {
478         dm_cell_visit_release(pool->prison, fn, context, cell);
479         dm_bio_prison_free_cell(pool->prison, cell);
480 }
481
482 static void cell_release_no_holder(struct pool *pool,
483                                    struct dm_bio_prison_cell *cell,
484                                    struct bio_list *bios)
485 {
486         dm_cell_release_no_holder(pool->prison, cell, bios);
487         dm_bio_prison_free_cell(pool->prison, cell);
488 }
489
490 static void cell_error_with_code(struct pool *pool,
491                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
492 {
493         dm_cell_error(pool->prison, cell, error_code);
494         dm_bio_prison_free_cell(pool->prison, cell);
495 }
496
497 static blk_status_t get_pool_io_error_code(struct pool *pool)
498 {
499         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
500 }
501
502 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
503 {
504         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
505 }
506
507 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
508 {
509         cell_error_with_code(pool, cell, 0);
510 }
511
512 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
513 {
514         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
515 }
516
517 /*----------------------------------------------------------------*/
518
519 /*
520  * A global list of pools that uses a struct mapped_device as a key.
521  */
522 static struct dm_thin_pool_table {
523         struct mutex mutex;
524         struct list_head pools;
525 } dm_thin_pool_table;
526
527 static void pool_table_init(void)
528 {
529         mutex_init(&dm_thin_pool_table.mutex);
530         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
531 }
532
533 static void pool_table_exit(void)
534 {
535         mutex_destroy(&dm_thin_pool_table.mutex);
536 }
537
538 static void __pool_table_insert(struct pool *pool)
539 {
540         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
541         list_add(&pool->list, &dm_thin_pool_table.pools);
542 }
543
544 static void __pool_table_remove(struct pool *pool)
545 {
546         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
547         list_del(&pool->list);
548 }
549
550 static struct pool *__pool_table_lookup(struct mapped_device *md)
551 {
552         struct pool *pool = NULL, *tmp;
553
554         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
555
556         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
557                 if (tmp->pool_md == md) {
558                         pool = tmp;
559                         break;
560                 }
561         }
562
563         return pool;
564 }
565
566 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
567 {
568         struct pool *pool = NULL, *tmp;
569
570         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
571
572         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
573                 if (tmp->md_dev == md_dev) {
574                         pool = tmp;
575                         break;
576                 }
577         }
578
579         return pool;
580 }
581
582 /*----------------------------------------------------------------*/
583
584 struct dm_thin_endio_hook {
585         struct thin_c *tc;
586         struct dm_deferred_entry *shared_read_entry;
587         struct dm_deferred_entry *all_io_entry;
588         struct dm_thin_new_mapping *overwrite_mapping;
589         struct rb_node rb_node;
590         struct dm_bio_prison_cell *cell;
591 };
592
593 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
594 {
595         bio_list_merge(bios, master);
596         bio_list_init(master);
597 }
598
599 static void error_bio_list(struct bio_list *bios, blk_status_t error)
600 {
601         struct bio *bio;
602
603         while ((bio = bio_list_pop(bios))) {
604                 bio->bi_status = error;
605                 bio_endio(bio);
606         }
607 }
608
609 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
610                 blk_status_t error)
611 {
612         struct bio_list bios;
613
614         bio_list_init(&bios);
615
616         spin_lock_irq(&tc->lock);
617         __merge_bio_list(&bios, master);
618         spin_unlock_irq(&tc->lock);
619
620         error_bio_list(&bios, error);
621 }
622
623 static void requeue_deferred_cells(struct thin_c *tc)
624 {
625         struct pool *pool = tc->pool;
626         struct list_head cells;
627         struct dm_bio_prison_cell *cell, *tmp;
628
629         INIT_LIST_HEAD(&cells);
630
631         spin_lock_irq(&tc->lock);
632         list_splice_init(&tc->deferred_cells, &cells);
633         spin_unlock_irq(&tc->lock);
634
635         list_for_each_entry_safe(cell, tmp, &cells, user_list)
636                 cell_requeue(pool, cell);
637 }
638
639 static void requeue_io(struct thin_c *tc)
640 {
641         struct bio_list bios;
642
643         bio_list_init(&bios);
644
645         spin_lock_irq(&tc->lock);
646         __merge_bio_list(&bios, &tc->deferred_bio_list);
647         __merge_bio_list(&bios, &tc->retry_on_resume_list);
648         spin_unlock_irq(&tc->lock);
649
650         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
651         requeue_deferred_cells(tc);
652 }
653
654 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
655 {
656         struct thin_c *tc;
657
658         rcu_read_lock();
659         list_for_each_entry_rcu(tc, &pool->active_thins, list)
660                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
661         rcu_read_unlock();
662 }
663
664 static void error_retry_list(struct pool *pool)
665 {
666         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
667 }
668
669 /*
670  * This section of code contains the logic for processing a thin device's IO.
671  * Much of the code depends on pool object resources (lists, workqueues, etc)
672  * but most is exclusively called from the thin target rather than the thin-pool
673  * target.
674  */
675
676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
677 {
678         struct pool *pool = tc->pool;
679         sector_t block_nr = bio->bi_iter.bi_sector;
680
681         if (block_size_is_power_of_two(pool))
682                 block_nr >>= pool->sectors_per_block_shift;
683         else
684                 (void) sector_div(block_nr, pool->sectors_per_block);
685
686         return block_nr;
687 }
688
689 /*
690  * Returns the _complete_ blocks that this bio covers.
691  */
692 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
693                                 dm_block_t *begin, dm_block_t *end)
694 {
695         struct pool *pool = tc->pool;
696         sector_t b = bio->bi_iter.bi_sector;
697         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
698
699         b += pool->sectors_per_block - 1ull; /* so we round up */
700
701         if (block_size_is_power_of_two(pool)) {
702                 b >>= pool->sectors_per_block_shift;
703                 e >>= pool->sectors_per_block_shift;
704         } else {
705                 (void) sector_div(b, pool->sectors_per_block);
706                 (void) sector_div(e, pool->sectors_per_block);
707         }
708
709         if (e < b)
710                 /* Can happen if the bio is within a single block. */
711                 e = b;
712
713         *begin = b;
714         *end = e;
715 }
716
717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
718 {
719         struct pool *pool = tc->pool;
720         sector_t bi_sector = bio->bi_iter.bi_sector;
721
722         bio_set_dev(bio, tc->pool_dev->bdev);
723         if (block_size_is_power_of_two(pool))
724                 bio->bi_iter.bi_sector =
725                         (block << pool->sectors_per_block_shift) |
726                         (bi_sector & (pool->sectors_per_block - 1));
727         else
728                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
729                                  sector_div(bi_sector, pool->sectors_per_block);
730 }
731
732 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
733 {
734         bio_set_dev(bio, tc->origin_dev->bdev);
735 }
736
737 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
738 {
739         return op_is_flush(bio->bi_opf) &&
740                 dm_thin_changed_this_transaction(tc->td);
741 }
742
743 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
744 {
745         struct dm_thin_endio_hook *h;
746
747         if (bio_op(bio) == REQ_OP_DISCARD)
748                 return;
749
750         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
751         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
752 }
753
754 static void issue(struct thin_c *tc, struct bio *bio)
755 {
756         struct pool *pool = tc->pool;
757
758         if (!bio_triggers_commit(tc, bio)) {
759                 dm_submit_bio_remap(bio, NULL);
760                 return;
761         }
762
763         /*
764          * Complete bio with an error if earlier I/O caused changes to
765          * the metadata that can't be committed e.g, due to I/O errors
766          * on the metadata device.
767          */
768         if (dm_thin_aborted_changes(tc->td)) {
769                 bio_io_error(bio);
770                 return;
771         }
772
773         /*
774          * Batch together any bios that trigger commits and then issue a
775          * single commit for them in process_deferred_bios().
776          */
777         spin_lock_irq(&pool->lock);
778         bio_list_add(&pool->deferred_flush_bios, bio);
779         spin_unlock_irq(&pool->lock);
780 }
781
782 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
783 {
784         remap_to_origin(tc, bio);
785         issue(tc, bio);
786 }
787
788 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
789                             dm_block_t block)
790 {
791         remap(tc, bio, block);
792         issue(tc, bio);
793 }
794
795 /*----------------------------------------------------------------*/
796
797 /*
798  * Bio endio functions.
799  */
800 struct dm_thin_new_mapping {
801         struct list_head list;
802
803         bool pass_discard:1;
804         bool maybe_shared:1;
805
806         /*
807          * Track quiescing, copying and zeroing preparation actions.  When this
808          * counter hits zero the block is prepared and can be inserted into the
809          * btree.
810          */
811         atomic_t prepare_actions;
812
813         blk_status_t status;
814         struct thin_c *tc;
815         dm_block_t virt_begin, virt_end;
816         dm_block_t data_block;
817         struct dm_bio_prison_cell *cell;
818
819         /*
820          * If the bio covers the whole area of a block then we can avoid
821          * zeroing or copying.  Instead this bio is hooked.  The bio will
822          * still be in the cell, so care has to be taken to avoid issuing
823          * the bio twice.
824          */
825         struct bio *bio;
826         bio_end_io_t *saved_bi_end_io;
827 };
828
829 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
830 {
831         struct pool *pool = m->tc->pool;
832
833         if (atomic_dec_and_test(&m->prepare_actions)) {
834                 list_add_tail(&m->list, &pool->prepared_mappings);
835                 wake_worker(pool);
836         }
837 }
838
839 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
840 {
841         unsigned long flags;
842         struct pool *pool = m->tc->pool;
843
844         spin_lock_irqsave(&pool->lock, flags);
845         __complete_mapping_preparation(m);
846         spin_unlock_irqrestore(&pool->lock, flags);
847 }
848
849 static void copy_complete(int read_err, unsigned long write_err, void *context)
850 {
851         struct dm_thin_new_mapping *m = context;
852
853         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
854         complete_mapping_preparation(m);
855 }
856
857 static void overwrite_endio(struct bio *bio)
858 {
859         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
860         struct dm_thin_new_mapping *m = h->overwrite_mapping;
861
862         bio->bi_end_io = m->saved_bi_end_io;
863
864         m->status = bio->bi_status;
865         complete_mapping_preparation(m);
866 }
867
868 /*----------------------------------------------------------------*/
869
870 /*
871  * Workqueue.
872  */
873
874 /*
875  * Prepared mapping jobs.
876  */
877
878 /*
879  * This sends the bios in the cell, except the original holder, back
880  * to the deferred_bios list.
881  */
882 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
883 {
884         struct pool *pool = tc->pool;
885         unsigned long flags;
886         int has_work;
887
888         spin_lock_irqsave(&tc->lock, flags);
889         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
890         has_work = !bio_list_empty(&tc->deferred_bio_list);
891         spin_unlock_irqrestore(&tc->lock, flags);
892
893         if (has_work)
894                 wake_worker(pool);
895 }
896
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898
899 struct remap_info {
900         struct thin_c *tc;
901         struct bio_list defer_bios;
902         struct bio_list issue_bios;
903 };
904
905 static void __inc_remap_and_issue_cell(void *context,
906                                        struct dm_bio_prison_cell *cell)
907 {
908         struct remap_info *info = context;
909         struct bio *bio;
910
911         while ((bio = bio_list_pop(&cell->bios))) {
912                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913                         bio_list_add(&info->defer_bios, bio);
914                 else {
915                         inc_all_io_entry(info->tc->pool, bio);
916
917                         /*
918                          * We can't issue the bios with the bio prison lock
919                          * held, so we add them to a list to issue on
920                          * return from this function.
921                          */
922                         bio_list_add(&info->issue_bios, bio);
923                 }
924         }
925 }
926
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928                                      struct dm_bio_prison_cell *cell,
929                                      dm_block_t block)
930 {
931         struct bio *bio;
932         struct remap_info info;
933
934         info.tc = tc;
935         bio_list_init(&info.defer_bios);
936         bio_list_init(&info.issue_bios);
937
938         /*
939          * We have to be careful to inc any bios we're about to issue
940          * before the cell is released, and avoid a race with new bios
941          * being added to the cell.
942          */
943         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944                            &info, cell);
945
946         while ((bio = bio_list_pop(&info.defer_bios)))
947                 thin_defer_bio(tc, bio);
948
949         while ((bio = bio_list_pop(&info.issue_bios)))
950                 remap_and_issue(info.tc, bio, block);
951 }
952
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955         cell_error(m->tc->pool, m->cell);
956         list_del(&m->list);
957         mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962         struct pool *pool = tc->pool;
963
964         /*
965          * If the bio has the REQ_FUA flag set we must commit the metadata
966          * before signaling its completion.
967          */
968         if (!bio_triggers_commit(tc, bio)) {
969                 bio_endio(bio);
970                 return;
971         }
972
973         /*
974          * Complete bio with an error if earlier I/O caused changes to the
975          * metadata that can't be committed, e.g, due to I/O errors on the
976          * metadata device.
977          */
978         if (dm_thin_aborted_changes(tc->td)) {
979                 bio_io_error(bio);
980                 return;
981         }
982
983         /*
984          * Batch together any bios that trigger commits and then issue a
985          * single commit for them in process_deferred_bios().
986          */
987         spin_lock_irq(&pool->lock);
988         bio_list_add(&pool->deferred_flush_completions, bio);
989         spin_unlock_irq(&pool->lock);
990 }
991
992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
993 {
994         struct thin_c *tc = m->tc;
995         struct pool *pool = tc->pool;
996         struct bio *bio = m->bio;
997         int r;
998
999         if (m->status) {
1000                 cell_error(pool, m->cell);
1001                 goto out;
1002         }
1003
1004         /*
1005          * Commit the prepared block into the mapping btree.
1006          * Any I/O for this block arriving after this point will get
1007          * remapped to it directly.
1008          */
1009         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010         if (r) {
1011                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012                 cell_error(pool, m->cell);
1013                 goto out;
1014         }
1015
1016         /*
1017          * Release any bios held while the block was being provisioned.
1018          * If we are processing a write bio that completely covers the block,
1019          * we already processed it so can ignore it now when processing
1020          * the bios in the cell.
1021          */
1022         if (bio) {
1023                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024                 complete_overwrite_bio(tc, bio);
1025         } else {
1026                 inc_all_io_entry(tc->pool, m->cell->holder);
1027                 remap_and_issue(tc, m->cell->holder, m->data_block);
1028                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029         }
1030
1031 out:
1032         list_del(&m->list);
1033         mempool_free(m, &pool->mapping_pool);
1034 }
1035
1036 /*----------------------------------------------------------------*/
1037
1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039 {
1040         struct thin_c *tc = m->tc;
1041         if (m->cell)
1042                 cell_defer_no_holder(tc, m->cell);
1043         mempool_free(m, &tc->pool->mapping_pool);
1044 }
1045
1046 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1047 {
1048         bio_io_error(m->bio);
1049         free_discard_mapping(m);
1050 }
1051
1052 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1053 {
1054         bio_endio(m->bio);
1055         free_discard_mapping(m);
1056 }
1057
1058 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1059 {
1060         int r;
1061         struct thin_c *tc = m->tc;
1062
1063         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1064         if (r) {
1065                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1066                 bio_io_error(m->bio);
1067         } else
1068                 bio_endio(m->bio);
1069
1070         cell_defer_no_holder(tc, m->cell);
1071         mempool_free(m, &tc->pool->mapping_pool);
1072 }
1073
1074 /*----------------------------------------------------------------*/
1075
1076 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1077                                                    struct bio *discard_parent)
1078 {
1079         /*
1080          * We've already unmapped this range of blocks, but before we
1081          * passdown we have to check that these blocks are now unused.
1082          */
1083         int r = 0;
1084         bool shared = true;
1085         struct thin_c *tc = m->tc;
1086         struct pool *pool = tc->pool;
1087         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1088         struct discard_op op;
1089
1090         begin_discard(&op, tc, discard_parent);
1091         while (b != end) {
1092                 /* find start of unmapped run */
1093                 for (; b < end; b++) {
1094                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1095                         if (r)
1096                                 goto out;
1097
1098                         if (!shared)
1099                                 break;
1100                 }
1101
1102                 if (b == end)
1103                         break;
1104
1105                 /* find end of run */
1106                 for (e = b + 1; e != end; e++) {
1107                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1108                         if (r)
1109                                 goto out;
1110
1111                         if (shared)
1112                                 break;
1113                 }
1114
1115                 r = issue_discard(&op, b, e);
1116                 if (r)
1117                         goto out;
1118
1119                 b = e;
1120         }
1121 out:
1122         end_discard(&op, r);
1123 }
1124
1125 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1126 {
1127         unsigned long flags;
1128         struct pool *pool = m->tc->pool;
1129
1130         spin_lock_irqsave(&pool->lock, flags);
1131         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1132         spin_unlock_irqrestore(&pool->lock, flags);
1133         wake_worker(pool);
1134 }
1135
1136 static void passdown_endio(struct bio *bio)
1137 {
1138         /*
1139          * It doesn't matter if the passdown discard failed, we still want
1140          * to unmap (we ignore err).
1141          */
1142         queue_passdown_pt2(bio->bi_private);
1143         bio_put(bio);
1144 }
1145
1146 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1147 {
1148         int r;
1149         struct thin_c *tc = m->tc;
1150         struct pool *pool = tc->pool;
1151         struct bio *discard_parent;
1152         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1153
1154         /*
1155          * Only this thread allocates blocks, so we can be sure that the
1156          * newly unmapped blocks will not be allocated before the end of
1157          * the function.
1158          */
1159         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1160         if (r) {
1161                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1162                 bio_io_error(m->bio);
1163                 cell_defer_no_holder(tc, m->cell);
1164                 mempool_free(m, &pool->mapping_pool);
1165                 return;
1166         }
1167
1168         /*
1169          * Increment the unmapped blocks.  This prevents a race between the
1170          * passdown io and reallocation of freed blocks.
1171          */
1172         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1173         if (r) {
1174                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1175                 bio_io_error(m->bio);
1176                 cell_defer_no_holder(tc, m->cell);
1177                 mempool_free(m, &pool->mapping_pool);
1178                 return;
1179         }
1180
1181         discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1182         discard_parent->bi_end_io = passdown_endio;
1183         discard_parent->bi_private = m;
1184         if (m->maybe_shared)
1185                 passdown_double_checking_shared_status(m, discard_parent);
1186         else {
1187                 struct discard_op op;
1188
1189                 begin_discard(&op, tc, discard_parent);
1190                 r = issue_discard(&op, m->data_block, data_end);
1191                 end_discard(&op, r);
1192         }
1193 }
1194
1195 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1196 {
1197         int r;
1198         struct thin_c *tc = m->tc;
1199         struct pool *pool = tc->pool;
1200
1201         /*
1202          * The passdown has completed, so now we can decrement all those
1203          * unmapped blocks.
1204          */
1205         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1206                                    m->data_block + (m->virt_end - m->virt_begin));
1207         if (r) {
1208                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1209                 bio_io_error(m->bio);
1210         } else
1211                 bio_endio(m->bio);
1212
1213         cell_defer_no_holder(tc, m->cell);
1214         mempool_free(m, &pool->mapping_pool);
1215 }
1216
1217 static void process_prepared(struct pool *pool, struct list_head *head,
1218                              process_mapping_fn *fn)
1219 {
1220         struct list_head maps;
1221         struct dm_thin_new_mapping *m, *tmp;
1222
1223         INIT_LIST_HEAD(&maps);
1224         spin_lock_irq(&pool->lock);
1225         list_splice_init(head, &maps);
1226         spin_unlock_irq(&pool->lock);
1227
1228         list_for_each_entry_safe(m, tmp, &maps, list)
1229                 (*fn)(m);
1230 }
1231
1232 /*
1233  * Deferred bio jobs.
1234  */
1235 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1236 {
1237         return bio->bi_iter.bi_size ==
1238                 (pool->sectors_per_block << SECTOR_SHIFT);
1239 }
1240
1241 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1242 {
1243         return (bio_data_dir(bio) == WRITE) &&
1244                 io_overlaps_block(pool, bio);
1245 }
1246
1247 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1248                                bio_end_io_t *fn)
1249 {
1250         *save = bio->bi_end_io;
1251         bio->bi_end_io = fn;
1252 }
1253
1254 static int ensure_next_mapping(struct pool *pool)
1255 {
1256         if (pool->next_mapping)
1257                 return 0;
1258
1259         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1260
1261         return pool->next_mapping ? 0 : -ENOMEM;
1262 }
1263
1264 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1265 {
1266         struct dm_thin_new_mapping *m = pool->next_mapping;
1267
1268         BUG_ON(!pool->next_mapping);
1269
1270         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1271         INIT_LIST_HEAD(&m->list);
1272         m->bio = NULL;
1273
1274         pool->next_mapping = NULL;
1275
1276         return m;
1277 }
1278
1279 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1280                     sector_t begin, sector_t end)
1281 {
1282         struct dm_io_region to;
1283
1284         to.bdev = tc->pool_dev->bdev;
1285         to.sector = begin;
1286         to.count = end - begin;
1287
1288         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1289 }
1290
1291 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1292                                       dm_block_t data_begin,
1293                                       struct dm_thin_new_mapping *m)
1294 {
1295         struct pool *pool = tc->pool;
1296         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1297
1298         h->overwrite_mapping = m;
1299         m->bio = bio;
1300         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1301         inc_all_io_entry(pool, bio);
1302         remap_and_issue(tc, bio, data_begin);
1303 }
1304
1305 /*
1306  * A partial copy also needs to zero the uncopied region.
1307  */
1308 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1309                           struct dm_dev *origin, dm_block_t data_origin,
1310                           dm_block_t data_dest,
1311                           struct dm_bio_prison_cell *cell, struct bio *bio,
1312                           sector_t len)
1313 {
1314         struct pool *pool = tc->pool;
1315         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1316
1317         m->tc = tc;
1318         m->virt_begin = virt_block;
1319         m->virt_end = virt_block + 1u;
1320         m->data_block = data_dest;
1321         m->cell = cell;
1322
1323         /*
1324          * quiesce action + copy action + an extra reference held for the
1325          * duration of this function (we may need to inc later for a
1326          * partial zero).
1327          */
1328         atomic_set(&m->prepare_actions, 3);
1329
1330         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1331                 complete_mapping_preparation(m); /* already quiesced */
1332
1333         /*
1334          * IO to pool_dev remaps to the pool target's data_dev.
1335          *
1336          * If the whole block of data is being overwritten, we can issue the
1337          * bio immediately. Otherwise we use kcopyd to clone the data first.
1338          */
1339         if (io_overwrites_block(pool, bio))
1340                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1341         else {
1342                 struct dm_io_region from, to;
1343
1344                 from.bdev = origin->bdev;
1345                 from.sector = data_origin * pool->sectors_per_block;
1346                 from.count = len;
1347
1348                 to.bdev = tc->pool_dev->bdev;
1349                 to.sector = data_dest * pool->sectors_per_block;
1350                 to.count = len;
1351
1352                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1353                                0, copy_complete, m);
1354
1355                 /*
1356                  * Do we need to zero a tail region?
1357                  */
1358                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1359                         atomic_inc(&m->prepare_actions);
1360                         ll_zero(tc, m,
1361                                 data_dest * pool->sectors_per_block + len,
1362                                 (data_dest + 1) * pool->sectors_per_block);
1363                 }
1364         }
1365
1366         complete_mapping_preparation(m); /* drop our ref */
1367 }
1368
1369 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1370                                    dm_block_t data_origin, dm_block_t data_dest,
1371                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1372 {
1373         schedule_copy(tc, virt_block, tc->pool_dev,
1374                       data_origin, data_dest, cell, bio,
1375                       tc->pool->sectors_per_block);
1376 }
1377
1378 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1379                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1380                           struct bio *bio)
1381 {
1382         struct pool *pool = tc->pool;
1383         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1384
1385         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1386         m->tc = tc;
1387         m->virt_begin = virt_block;
1388         m->virt_end = virt_block + 1u;
1389         m->data_block = data_block;
1390         m->cell = cell;
1391
1392         /*
1393          * If the whole block of data is being overwritten or we are not
1394          * zeroing pre-existing data, we can issue the bio immediately.
1395          * Otherwise we use kcopyd to zero the data first.
1396          */
1397         if (pool->pf.zero_new_blocks) {
1398                 if (io_overwrites_block(pool, bio))
1399                         remap_and_issue_overwrite(tc, bio, data_block, m);
1400                 else
1401                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1402                                 (data_block + 1) * pool->sectors_per_block);
1403         } else
1404                 process_prepared_mapping(m);
1405 }
1406
1407 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1408                                    dm_block_t data_dest,
1409                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1410 {
1411         struct pool *pool = tc->pool;
1412         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1413         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1414
1415         if (virt_block_end <= tc->origin_size)
1416                 schedule_copy(tc, virt_block, tc->origin_dev,
1417                               virt_block, data_dest, cell, bio,
1418                               pool->sectors_per_block);
1419
1420         else if (virt_block_begin < tc->origin_size)
1421                 schedule_copy(tc, virt_block, tc->origin_dev,
1422                               virt_block, data_dest, cell, bio,
1423                               tc->origin_size - virt_block_begin);
1424
1425         else
1426                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1427 }
1428
1429 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1430
1431 static void requeue_bios(struct pool *pool);
1432
1433 static bool is_read_only_pool_mode(enum pool_mode mode)
1434 {
1435         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1436 }
1437
1438 static bool is_read_only(struct pool *pool)
1439 {
1440         return is_read_only_pool_mode(get_pool_mode(pool));
1441 }
1442
1443 static void check_for_metadata_space(struct pool *pool)
1444 {
1445         int r;
1446         const char *ooms_reason = NULL;
1447         dm_block_t nr_free;
1448
1449         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1450         if (r)
1451                 ooms_reason = "Could not get free metadata blocks";
1452         else if (!nr_free)
1453                 ooms_reason = "No free metadata blocks";
1454
1455         if (ooms_reason && !is_read_only(pool)) {
1456                 DMERR("%s", ooms_reason);
1457                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1458         }
1459 }
1460
1461 static void check_for_data_space(struct pool *pool)
1462 {
1463         int r;
1464         dm_block_t nr_free;
1465
1466         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1467                 return;
1468
1469         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1470         if (r)
1471                 return;
1472
1473         if (nr_free) {
1474                 set_pool_mode(pool, PM_WRITE);
1475                 requeue_bios(pool);
1476         }
1477 }
1478
1479 /*
1480  * A non-zero return indicates read_only or fail_io mode.
1481  * Many callers don't care about the return value.
1482  */
1483 static int commit(struct pool *pool)
1484 {
1485         int r;
1486
1487         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1488                 return -EINVAL;
1489
1490         r = dm_pool_commit_metadata(pool->pmd);
1491         if (r)
1492                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1493         else {
1494                 check_for_metadata_space(pool);
1495                 check_for_data_space(pool);
1496         }
1497
1498         return r;
1499 }
1500
1501 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1502 {
1503         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1504                 DMWARN("%s: reached low water mark for data device: sending event.",
1505                        dm_device_name(pool->pool_md));
1506                 spin_lock_irq(&pool->lock);
1507                 pool->low_water_triggered = true;
1508                 spin_unlock_irq(&pool->lock);
1509                 dm_table_event(pool->ti->table);
1510         }
1511 }
1512
1513 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1514 {
1515         int r;
1516         dm_block_t free_blocks;
1517         struct pool *pool = tc->pool;
1518
1519         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1520                 return -EINVAL;
1521
1522         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1523         if (r) {
1524                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1525                 return r;
1526         }
1527
1528         check_low_water_mark(pool, free_blocks);
1529
1530         if (!free_blocks) {
1531                 /*
1532                  * Try to commit to see if that will free up some
1533                  * more space.
1534                  */
1535                 r = commit(pool);
1536                 if (r)
1537                         return r;
1538
1539                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1540                 if (r) {
1541                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1542                         return r;
1543                 }
1544
1545                 if (!free_blocks) {
1546                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1547                         return -ENOSPC;
1548                 }
1549         }
1550
1551         r = dm_pool_alloc_data_block(pool->pmd, result);
1552         if (r) {
1553                 if (r == -ENOSPC)
1554                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1555                 else
1556                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1557                 return r;
1558         }
1559
1560         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1561         if (r) {
1562                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1563                 return r;
1564         }
1565
1566         if (!free_blocks) {
1567                 /* Let's commit before we use up the metadata reserve. */
1568                 r = commit(pool);
1569                 if (r)
1570                         return r;
1571         }
1572
1573         return 0;
1574 }
1575
1576 /*
1577  * If we have run out of space, queue bios until the device is
1578  * resumed, presumably after having been reloaded with more space.
1579  */
1580 static void retry_on_resume(struct bio *bio)
1581 {
1582         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1583         struct thin_c *tc = h->tc;
1584
1585         spin_lock_irq(&tc->lock);
1586         bio_list_add(&tc->retry_on_resume_list, bio);
1587         spin_unlock_irq(&tc->lock);
1588 }
1589
1590 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1591 {
1592         enum pool_mode m = get_pool_mode(pool);
1593
1594         switch (m) {
1595         case PM_WRITE:
1596                 /* Shouldn't get here */
1597                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1598                 return BLK_STS_IOERR;
1599
1600         case PM_OUT_OF_DATA_SPACE:
1601                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1602
1603         case PM_OUT_OF_METADATA_SPACE:
1604         case PM_READ_ONLY:
1605         case PM_FAIL:
1606                 return BLK_STS_IOERR;
1607         default:
1608                 /* Shouldn't get here */
1609                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1610                 return BLK_STS_IOERR;
1611         }
1612 }
1613
1614 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1615 {
1616         blk_status_t error = should_error_unserviceable_bio(pool);
1617
1618         if (error) {
1619                 bio->bi_status = error;
1620                 bio_endio(bio);
1621         } else
1622                 retry_on_resume(bio);
1623 }
1624
1625 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1626 {
1627         struct bio *bio;
1628         struct bio_list bios;
1629         blk_status_t error;
1630
1631         error = should_error_unserviceable_bio(pool);
1632         if (error) {
1633                 cell_error_with_code(pool, cell, error);
1634                 return;
1635         }
1636
1637         bio_list_init(&bios);
1638         cell_release(pool, cell, &bios);
1639
1640         while ((bio = bio_list_pop(&bios)))
1641                 retry_on_resume(bio);
1642 }
1643
1644 static void process_discard_cell_no_passdown(struct thin_c *tc,
1645                                              struct dm_bio_prison_cell *virt_cell)
1646 {
1647         struct pool *pool = tc->pool;
1648         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1649
1650         /*
1651          * We don't need to lock the data blocks, since there's no
1652          * passdown.  We only lock data blocks for allocation and breaking sharing.
1653          */
1654         m->tc = tc;
1655         m->virt_begin = virt_cell->key.block_begin;
1656         m->virt_end = virt_cell->key.block_end;
1657         m->cell = virt_cell;
1658         m->bio = virt_cell->holder;
1659
1660         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1661                 pool->process_prepared_discard(m);
1662 }
1663
1664 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1665                                  struct bio *bio)
1666 {
1667         struct pool *pool = tc->pool;
1668
1669         int r;
1670         bool maybe_shared;
1671         struct dm_cell_key data_key;
1672         struct dm_bio_prison_cell *data_cell;
1673         struct dm_thin_new_mapping *m;
1674         dm_block_t virt_begin, virt_end, data_begin;
1675
1676         while (begin != end) {
1677                 r = ensure_next_mapping(pool);
1678                 if (r)
1679                         /* we did our best */
1680                         return;
1681
1682                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1683                                               &data_begin, &maybe_shared);
1684                 if (r)
1685                         /*
1686                          * Silently fail, letting any mappings we've
1687                          * created complete.
1688                          */
1689                         break;
1690
1691                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1692                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1693                         /* contention, we'll give up with this range */
1694                         begin = virt_end;
1695                         continue;
1696                 }
1697
1698                 /*
1699                  * IO may still be going to the destination block.  We must
1700                  * quiesce before we can do the removal.
1701                  */
1702                 m = get_next_mapping(pool);
1703                 m->tc = tc;
1704                 m->maybe_shared = maybe_shared;
1705                 m->virt_begin = virt_begin;
1706                 m->virt_end = virt_end;
1707                 m->data_block = data_begin;
1708                 m->cell = data_cell;
1709                 m->bio = bio;
1710
1711                 /*
1712                  * The parent bio must not complete before sub discard bios are
1713                  * chained to it (see end_discard's bio_chain)!
1714                  *
1715                  * This per-mapping bi_remaining increment is paired with
1716                  * the implicit decrement that occurs via bio_endio() in
1717                  * end_discard().
1718                  */
1719                 bio_inc_remaining(bio);
1720                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1721                         pool->process_prepared_discard(m);
1722
1723                 begin = virt_end;
1724         }
1725 }
1726
1727 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1728 {
1729         struct bio *bio = virt_cell->holder;
1730         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1731
1732         /*
1733          * The virt_cell will only get freed once the origin bio completes.
1734          * This means it will remain locked while all the individual
1735          * passdown bios are in flight.
1736          */
1737         h->cell = virt_cell;
1738         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1739
1740         /*
1741          * We complete the bio now, knowing that the bi_remaining field
1742          * will prevent completion until the sub range discards have
1743          * completed.
1744          */
1745         bio_endio(bio);
1746 }
1747
1748 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1749 {
1750         dm_block_t begin, end;
1751         struct dm_cell_key virt_key;
1752         struct dm_bio_prison_cell *virt_cell;
1753
1754         get_bio_block_range(tc, bio, &begin, &end);
1755         if (begin == end) {
1756                 /*
1757                  * The discard covers less than a block.
1758                  */
1759                 bio_endio(bio);
1760                 return;
1761         }
1762
1763         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1764         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1765                 /*
1766                  * Potential starvation issue: We're relying on the
1767                  * fs/application being well behaved, and not trying to
1768                  * send IO to a region at the same time as discarding it.
1769                  * If they do this persistently then it's possible this
1770                  * cell will never be granted.
1771                  */
1772                 return;
1773
1774         tc->pool->process_discard_cell(tc, virt_cell);
1775 }
1776
1777 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1778                           struct dm_cell_key *key,
1779                           struct dm_thin_lookup_result *lookup_result,
1780                           struct dm_bio_prison_cell *cell)
1781 {
1782         int r;
1783         dm_block_t data_block;
1784         struct pool *pool = tc->pool;
1785
1786         r = alloc_data_block(tc, &data_block);
1787         switch (r) {
1788         case 0:
1789                 schedule_internal_copy(tc, block, lookup_result->block,
1790                                        data_block, cell, bio);
1791                 break;
1792
1793         case -ENOSPC:
1794                 retry_bios_on_resume(pool, cell);
1795                 break;
1796
1797         default:
1798                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1799                             __func__, r);
1800                 cell_error(pool, cell);
1801                 break;
1802         }
1803 }
1804
1805 static void __remap_and_issue_shared_cell(void *context,
1806                                           struct dm_bio_prison_cell *cell)
1807 {
1808         struct remap_info *info = context;
1809         struct bio *bio;
1810
1811         while ((bio = bio_list_pop(&cell->bios))) {
1812                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1813                     bio_op(bio) == REQ_OP_DISCARD)
1814                         bio_list_add(&info->defer_bios, bio);
1815                 else {
1816                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1817
1818                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1819                         inc_all_io_entry(info->tc->pool, bio);
1820                         bio_list_add(&info->issue_bios, bio);
1821                 }
1822         }
1823 }
1824
1825 static void remap_and_issue_shared_cell(struct thin_c *tc,
1826                                         struct dm_bio_prison_cell *cell,
1827                                         dm_block_t block)
1828 {
1829         struct bio *bio;
1830         struct remap_info info;
1831
1832         info.tc = tc;
1833         bio_list_init(&info.defer_bios);
1834         bio_list_init(&info.issue_bios);
1835
1836         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1837                            &info, cell);
1838
1839         while ((bio = bio_list_pop(&info.defer_bios)))
1840                 thin_defer_bio(tc, bio);
1841
1842         while ((bio = bio_list_pop(&info.issue_bios)))
1843                 remap_and_issue(tc, bio, block);
1844 }
1845
1846 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1847                                dm_block_t block,
1848                                struct dm_thin_lookup_result *lookup_result,
1849                                struct dm_bio_prison_cell *virt_cell)
1850 {
1851         struct dm_bio_prison_cell *data_cell;
1852         struct pool *pool = tc->pool;
1853         struct dm_cell_key key;
1854
1855         /*
1856          * If cell is already occupied, then sharing is already in the process
1857          * of being broken so we have nothing further to do here.
1858          */
1859         build_data_key(tc->td, lookup_result->block, &key);
1860         if (bio_detain(pool, &key, bio, &data_cell)) {
1861                 cell_defer_no_holder(tc, virt_cell);
1862                 return;
1863         }
1864
1865         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1866                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1867                 cell_defer_no_holder(tc, virt_cell);
1868         } else {
1869                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1870
1871                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1872                 inc_all_io_entry(pool, bio);
1873                 remap_and_issue(tc, bio, lookup_result->block);
1874
1875                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1876                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1877         }
1878 }
1879
1880 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1881                             struct dm_bio_prison_cell *cell)
1882 {
1883         int r;
1884         dm_block_t data_block;
1885         struct pool *pool = tc->pool;
1886
1887         /*
1888          * Remap empty bios (flushes) immediately, without provisioning.
1889          */
1890         if (!bio->bi_iter.bi_size) {
1891                 inc_all_io_entry(pool, bio);
1892                 cell_defer_no_holder(tc, cell);
1893
1894                 remap_and_issue(tc, bio, 0);
1895                 return;
1896         }
1897
1898         /*
1899          * Fill read bios with zeroes and complete them immediately.
1900          */
1901         if (bio_data_dir(bio) == READ) {
1902                 zero_fill_bio(bio);
1903                 cell_defer_no_holder(tc, cell);
1904                 bio_endio(bio);
1905                 return;
1906         }
1907
1908         r = alloc_data_block(tc, &data_block);
1909         switch (r) {
1910         case 0:
1911                 if (tc->origin_dev)
1912                         schedule_external_copy(tc, block, data_block, cell, bio);
1913                 else
1914                         schedule_zero(tc, block, data_block, cell, bio);
1915                 break;
1916
1917         case -ENOSPC:
1918                 retry_bios_on_resume(pool, cell);
1919                 break;
1920
1921         default:
1922                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1923                             __func__, r);
1924                 cell_error(pool, cell);
1925                 break;
1926         }
1927 }
1928
1929 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1930 {
1931         int r;
1932         struct pool *pool = tc->pool;
1933         struct bio *bio = cell->holder;
1934         dm_block_t block = get_bio_block(tc, bio);
1935         struct dm_thin_lookup_result lookup_result;
1936
1937         if (tc->requeue_mode) {
1938                 cell_requeue(pool, cell);
1939                 return;
1940         }
1941
1942         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1943         switch (r) {
1944         case 0:
1945                 if (lookup_result.shared)
1946                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1947                 else {
1948                         inc_all_io_entry(pool, bio);
1949                         remap_and_issue(tc, bio, lookup_result.block);
1950                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1951                 }
1952                 break;
1953
1954         case -ENODATA:
1955                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1956                         inc_all_io_entry(pool, bio);
1957                         cell_defer_no_holder(tc, cell);
1958
1959                         if (bio_end_sector(bio) <= tc->origin_size)
1960                                 remap_to_origin_and_issue(tc, bio);
1961
1962                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1963                                 zero_fill_bio(bio);
1964                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1965                                 remap_to_origin_and_issue(tc, bio);
1966
1967                         } else {
1968                                 zero_fill_bio(bio);
1969                                 bio_endio(bio);
1970                         }
1971                 } else
1972                         provision_block(tc, bio, block, cell);
1973                 break;
1974
1975         default:
1976                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1977                             __func__, r);
1978                 cell_defer_no_holder(tc, cell);
1979                 bio_io_error(bio);
1980                 break;
1981         }
1982 }
1983
1984 static void process_bio(struct thin_c *tc, struct bio *bio)
1985 {
1986         struct pool *pool = tc->pool;
1987         dm_block_t block = get_bio_block(tc, bio);
1988         struct dm_bio_prison_cell *cell;
1989         struct dm_cell_key key;
1990
1991         /*
1992          * If cell is already occupied, then the block is already
1993          * being provisioned so we have nothing further to do here.
1994          */
1995         build_virtual_key(tc->td, block, &key);
1996         if (bio_detain(pool, &key, bio, &cell))
1997                 return;
1998
1999         process_cell(tc, cell);
2000 }
2001
2002 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2003                                     struct dm_bio_prison_cell *cell)
2004 {
2005         int r;
2006         int rw = bio_data_dir(bio);
2007         dm_block_t block = get_bio_block(tc, bio);
2008         struct dm_thin_lookup_result lookup_result;
2009
2010         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2011         switch (r) {
2012         case 0:
2013                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2014                         handle_unserviceable_bio(tc->pool, bio);
2015                         if (cell)
2016                                 cell_defer_no_holder(tc, cell);
2017                 } else {
2018                         inc_all_io_entry(tc->pool, bio);
2019                         remap_and_issue(tc, bio, lookup_result.block);
2020                         if (cell)
2021                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2022                 }
2023                 break;
2024
2025         case -ENODATA:
2026                 if (cell)
2027                         cell_defer_no_holder(tc, cell);
2028                 if (rw != READ) {
2029                         handle_unserviceable_bio(tc->pool, bio);
2030                         break;
2031                 }
2032
2033                 if (tc->origin_dev) {
2034                         inc_all_io_entry(tc->pool, bio);
2035                         remap_to_origin_and_issue(tc, bio);
2036                         break;
2037                 }
2038
2039                 zero_fill_bio(bio);
2040                 bio_endio(bio);
2041                 break;
2042
2043         default:
2044                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2045                             __func__, r);
2046                 if (cell)
2047                         cell_defer_no_holder(tc, cell);
2048                 bio_io_error(bio);
2049                 break;
2050         }
2051 }
2052
2053 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2054 {
2055         __process_bio_read_only(tc, bio, NULL);
2056 }
2057
2058 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2059 {
2060         __process_bio_read_only(tc, cell->holder, cell);
2061 }
2062
2063 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2064 {
2065         bio_endio(bio);
2066 }
2067
2068 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2069 {
2070         bio_io_error(bio);
2071 }
2072
2073 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2074 {
2075         cell_success(tc->pool, cell);
2076 }
2077
2078 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2079 {
2080         cell_error(tc->pool, cell);
2081 }
2082
2083 /*
2084  * FIXME: should we also commit due to size of transaction, measured in
2085  * metadata blocks?
2086  */
2087 static int need_commit_due_to_time(struct pool *pool)
2088 {
2089         return !time_in_range(jiffies, pool->last_commit_jiffies,
2090                               pool->last_commit_jiffies + COMMIT_PERIOD);
2091 }
2092
2093 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2094 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2095
2096 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2097 {
2098         struct rb_node **rbp, *parent;
2099         struct dm_thin_endio_hook *pbd;
2100         sector_t bi_sector = bio->bi_iter.bi_sector;
2101
2102         rbp = &tc->sort_bio_list.rb_node;
2103         parent = NULL;
2104         while (*rbp) {
2105                 parent = *rbp;
2106                 pbd = thin_pbd(parent);
2107
2108                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2109                         rbp = &(*rbp)->rb_left;
2110                 else
2111                         rbp = &(*rbp)->rb_right;
2112         }
2113
2114         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2115         rb_link_node(&pbd->rb_node, parent, rbp);
2116         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2117 }
2118
2119 static void __extract_sorted_bios(struct thin_c *tc)
2120 {
2121         struct rb_node *node;
2122         struct dm_thin_endio_hook *pbd;
2123         struct bio *bio;
2124
2125         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2126                 pbd = thin_pbd(node);
2127                 bio = thin_bio(pbd);
2128
2129                 bio_list_add(&tc->deferred_bio_list, bio);
2130                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2131         }
2132
2133         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2134 }
2135
2136 static void __sort_thin_deferred_bios(struct thin_c *tc)
2137 {
2138         struct bio *bio;
2139         struct bio_list bios;
2140
2141         bio_list_init(&bios);
2142         bio_list_merge(&bios, &tc->deferred_bio_list);
2143         bio_list_init(&tc->deferred_bio_list);
2144
2145         /* Sort deferred_bio_list using rb-tree */
2146         while ((bio = bio_list_pop(&bios)))
2147                 __thin_bio_rb_add(tc, bio);
2148
2149         /*
2150          * Transfer the sorted bios in sort_bio_list back to
2151          * deferred_bio_list to allow lockless submission of
2152          * all bios.
2153          */
2154         __extract_sorted_bios(tc);
2155 }
2156
2157 static void process_thin_deferred_bios(struct thin_c *tc)
2158 {
2159         struct pool *pool = tc->pool;
2160         struct bio *bio;
2161         struct bio_list bios;
2162         struct blk_plug plug;
2163         unsigned count = 0;
2164
2165         if (tc->requeue_mode) {
2166                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2167                                 BLK_STS_DM_REQUEUE);
2168                 return;
2169         }
2170
2171         bio_list_init(&bios);
2172
2173         spin_lock_irq(&tc->lock);
2174
2175         if (bio_list_empty(&tc->deferred_bio_list)) {
2176                 spin_unlock_irq(&tc->lock);
2177                 return;
2178         }
2179
2180         __sort_thin_deferred_bios(tc);
2181
2182         bio_list_merge(&bios, &tc->deferred_bio_list);
2183         bio_list_init(&tc->deferred_bio_list);
2184
2185         spin_unlock_irq(&tc->lock);
2186
2187         blk_start_plug(&plug);
2188         while ((bio = bio_list_pop(&bios))) {
2189                 /*
2190                  * If we've got no free new_mapping structs, and processing
2191                  * this bio might require one, we pause until there are some
2192                  * prepared mappings to process.
2193                  */
2194                 if (ensure_next_mapping(pool)) {
2195                         spin_lock_irq(&tc->lock);
2196                         bio_list_add(&tc->deferred_bio_list, bio);
2197                         bio_list_merge(&tc->deferred_bio_list, &bios);
2198                         spin_unlock_irq(&tc->lock);
2199                         break;
2200                 }
2201
2202                 if (bio_op(bio) == REQ_OP_DISCARD)
2203                         pool->process_discard(tc, bio);
2204                 else
2205                         pool->process_bio(tc, bio);
2206
2207                 if ((count++ & 127) == 0) {
2208                         throttle_work_update(&pool->throttle);
2209                         dm_pool_issue_prefetches(pool->pmd);
2210                 }
2211         }
2212         blk_finish_plug(&plug);
2213 }
2214
2215 static int cmp_cells(const void *lhs, const void *rhs)
2216 {
2217         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2218         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2219
2220         BUG_ON(!lhs_cell->holder);
2221         BUG_ON(!rhs_cell->holder);
2222
2223         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2224                 return -1;
2225
2226         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2227                 return 1;
2228
2229         return 0;
2230 }
2231
2232 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2233 {
2234         unsigned count = 0;
2235         struct dm_bio_prison_cell *cell, *tmp;
2236
2237         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2238                 if (count >= CELL_SORT_ARRAY_SIZE)
2239                         break;
2240
2241                 pool->cell_sort_array[count++] = cell;
2242                 list_del(&cell->user_list);
2243         }
2244
2245         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2246
2247         return count;
2248 }
2249
2250 static void process_thin_deferred_cells(struct thin_c *tc)
2251 {
2252         struct pool *pool = tc->pool;
2253         struct list_head cells;
2254         struct dm_bio_prison_cell *cell;
2255         unsigned i, j, count;
2256
2257         INIT_LIST_HEAD(&cells);
2258
2259         spin_lock_irq(&tc->lock);
2260         list_splice_init(&tc->deferred_cells, &cells);
2261         spin_unlock_irq(&tc->lock);
2262
2263         if (list_empty(&cells))
2264                 return;
2265
2266         do {
2267                 count = sort_cells(tc->pool, &cells);
2268
2269                 for (i = 0; i < count; i++) {
2270                         cell = pool->cell_sort_array[i];
2271                         BUG_ON(!cell->holder);
2272
2273                         /*
2274                          * If we've got no free new_mapping structs, and processing
2275                          * this bio might require one, we pause until there are some
2276                          * prepared mappings to process.
2277                          */
2278                         if (ensure_next_mapping(pool)) {
2279                                 for (j = i; j < count; j++)
2280                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2281
2282                                 spin_lock_irq(&tc->lock);
2283                                 list_splice(&cells, &tc->deferred_cells);
2284                                 spin_unlock_irq(&tc->lock);
2285                                 return;
2286                         }
2287
2288                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2289                                 pool->process_discard_cell(tc, cell);
2290                         else
2291                                 pool->process_cell(tc, cell);
2292                 }
2293         } while (!list_empty(&cells));
2294 }
2295
2296 static void thin_get(struct thin_c *tc);
2297 static void thin_put(struct thin_c *tc);
2298
2299 /*
2300  * We can't hold rcu_read_lock() around code that can block.  So we
2301  * find a thin with the rcu lock held; bump a refcount; then drop
2302  * the lock.
2303  */
2304 static struct thin_c *get_first_thin(struct pool *pool)
2305 {
2306         struct thin_c *tc = NULL;
2307
2308         rcu_read_lock();
2309         if (!list_empty(&pool->active_thins)) {
2310                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2311                 thin_get(tc);
2312         }
2313         rcu_read_unlock();
2314
2315         return tc;
2316 }
2317
2318 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2319 {
2320         struct thin_c *old_tc = tc;
2321
2322         rcu_read_lock();
2323         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2324                 thin_get(tc);
2325                 thin_put(old_tc);
2326                 rcu_read_unlock();
2327                 return tc;
2328         }
2329         thin_put(old_tc);
2330         rcu_read_unlock();
2331
2332         return NULL;
2333 }
2334
2335 static void process_deferred_bios(struct pool *pool)
2336 {
2337         struct bio *bio;
2338         struct bio_list bios, bio_completions;
2339         struct thin_c *tc;
2340
2341         tc = get_first_thin(pool);
2342         while (tc) {
2343                 process_thin_deferred_cells(tc);
2344                 process_thin_deferred_bios(tc);
2345                 tc = get_next_thin(pool, tc);
2346         }
2347
2348         /*
2349          * If there are any deferred flush bios, we must commit the metadata
2350          * before issuing them or signaling their completion.
2351          */
2352         bio_list_init(&bios);
2353         bio_list_init(&bio_completions);
2354
2355         spin_lock_irq(&pool->lock);
2356         bio_list_merge(&bios, &pool->deferred_flush_bios);
2357         bio_list_init(&pool->deferred_flush_bios);
2358
2359         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2360         bio_list_init(&pool->deferred_flush_completions);
2361         spin_unlock_irq(&pool->lock);
2362
2363         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2364             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2365                 return;
2366
2367         if (commit(pool)) {
2368                 bio_list_merge(&bios, &bio_completions);
2369
2370                 while ((bio = bio_list_pop(&bios)))
2371                         bio_io_error(bio);
2372                 return;
2373         }
2374         pool->last_commit_jiffies = jiffies;
2375
2376         while ((bio = bio_list_pop(&bio_completions)))
2377                 bio_endio(bio);
2378
2379         while ((bio = bio_list_pop(&bios))) {
2380                 /*
2381                  * The data device was flushed as part of metadata commit,
2382                  * so complete redundant flushes immediately.
2383                  */
2384                 if (bio->bi_opf & REQ_PREFLUSH)
2385                         bio_endio(bio);
2386                 else
2387                         dm_submit_bio_remap(bio, NULL);
2388         }
2389 }
2390
2391 static void do_worker(struct work_struct *ws)
2392 {
2393         struct pool *pool = container_of(ws, struct pool, worker);
2394
2395         throttle_work_start(&pool->throttle);
2396         dm_pool_issue_prefetches(pool->pmd);
2397         throttle_work_update(&pool->throttle);
2398         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2399         throttle_work_update(&pool->throttle);
2400         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2401         throttle_work_update(&pool->throttle);
2402         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2403         throttle_work_update(&pool->throttle);
2404         process_deferred_bios(pool);
2405         throttle_work_complete(&pool->throttle);
2406 }
2407
2408 /*
2409  * We want to commit periodically so that not too much
2410  * unwritten data builds up.
2411  */
2412 static void do_waker(struct work_struct *ws)
2413 {
2414         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2415         wake_worker(pool);
2416         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2417 }
2418
2419 /*
2420  * We're holding onto IO to allow userland time to react.  After the
2421  * timeout either the pool will have been resized (and thus back in
2422  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2423  */
2424 static void do_no_space_timeout(struct work_struct *ws)
2425 {
2426         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2427                                          no_space_timeout);
2428
2429         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2430                 pool->pf.error_if_no_space = true;
2431                 notify_of_pool_mode_change(pool);
2432                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2433         }
2434 }
2435
2436 /*----------------------------------------------------------------*/
2437
2438 struct pool_work {
2439         struct work_struct worker;
2440         struct completion complete;
2441 };
2442
2443 static struct pool_work *to_pool_work(struct work_struct *ws)
2444 {
2445         return container_of(ws, struct pool_work, worker);
2446 }
2447
2448 static void pool_work_complete(struct pool_work *pw)
2449 {
2450         complete(&pw->complete);
2451 }
2452
2453 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2454                            void (*fn)(struct work_struct *))
2455 {
2456         INIT_WORK_ONSTACK(&pw->worker, fn);
2457         init_completion(&pw->complete);
2458         queue_work(pool->wq, &pw->worker);
2459         wait_for_completion(&pw->complete);
2460 }
2461
2462 /*----------------------------------------------------------------*/
2463
2464 struct noflush_work {
2465         struct pool_work pw;
2466         struct thin_c *tc;
2467 };
2468
2469 static struct noflush_work *to_noflush(struct work_struct *ws)
2470 {
2471         return container_of(to_pool_work(ws), struct noflush_work, pw);
2472 }
2473
2474 static void do_noflush_start(struct work_struct *ws)
2475 {
2476         struct noflush_work *w = to_noflush(ws);
2477         w->tc->requeue_mode = true;
2478         requeue_io(w->tc);
2479         pool_work_complete(&w->pw);
2480 }
2481
2482 static void do_noflush_stop(struct work_struct *ws)
2483 {
2484         struct noflush_work *w = to_noflush(ws);
2485         w->tc->requeue_mode = false;
2486         pool_work_complete(&w->pw);
2487 }
2488
2489 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2490 {
2491         struct noflush_work w;
2492
2493         w.tc = tc;
2494         pool_work_wait(&w.pw, tc->pool, fn);
2495 }
2496
2497 /*----------------------------------------------------------------*/
2498
2499 static bool passdown_enabled(struct pool_c *pt)
2500 {
2501         return pt->adjusted_pf.discard_passdown;
2502 }
2503
2504 static void set_discard_callbacks(struct pool *pool)
2505 {
2506         struct pool_c *pt = pool->ti->private;
2507
2508         if (passdown_enabled(pt)) {
2509                 pool->process_discard_cell = process_discard_cell_passdown;
2510                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2511                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2512         } else {
2513                 pool->process_discard_cell = process_discard_cell_no_passdown;
2514                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2515         }
2516 }
2517
2518 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2519 {
2520         struct pool_c *pt = pool->ti->private;
2521         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2522         enum pool_mode old_mode = get_pool_mode(pool);
2523         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2524
2525         /*
2526          * Never allow the pool to transition to PM_WRITE mode if user
2527          * intervention is required to verify metadata and data consistency.
2528          */
2529         if (new_mode == PM_WRITE && needs_check) {
2530                 DMERR("%s: unable to switch pool to write mode until repaired.",
2531                       dm_device_name(pool->pool_md));
2532                 if (old_mode != new_mode)
2533                         new_mode = old_mode;
2534                 else
2535                         new_mode = PM_READ_ONLY;
2536         }
2537         /*
2538          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2539          * not going to recover without a thin_repair.  So we never let the
2540          * pool move out of the old mode.
2541          */
2542         if (old_mode == PM_FAIL)
2543                 new_mode = old_mode;
2544
2545         switch (new_mode) {
2546         case PM_FAIL:
2547                 dm_pool_metadata_read_only(pool->pmd);
2548                 pool->process_bio = process_bio_fail;
2549                 pool->process_discard = process_bio_fail;
2550                 pool->process_cell = process_cell_fail;
2551                 pool->process_discard_cell = process_cell_fail;
2552                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2553                 pool->process_prepared_discard = process_prepared_discard_fail;
2554
2555                 error_retry_list(pool);
2556                 break;
2557
2558         case PM_OUT_OF_METADATA_SPACE:
2559         case PM_READ_ONLY:
2560                 dm_pool_metadata_read_only(pool->pmd);
2561                 pool->process_bio = process_bio_read_only;
2562                 pool->process_discard = process_bio_success;
2563                 pool->process_cell = process_cell_read_only;
2564                 pool->process_discard_cell = process_cell_success;
2565                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2566                 pool->process_prepared_discard = process_prepared_discard_success;
2567
2568                 error_retry_list(pool);
2569                 break;
2570
2571         case PM_OUT_OF_DATA_SPACE:
2572                 /*
2573                  * Ideally we'd never hit this state; the low water mark
2574                  * would trigger userland to extend the pool before we
2575                  * completely run out of data space.  However, many small
2576                  * IOs to unprovisioned space can consume data space at an
2577                  * alarming rate.  Adjust your low water mark if you're
2578                  * frequently seeing this mode.
2579                  */
2580                 pool->out_of_data_space = true;
2581                 pool->process_bio = process_bio_read_only;
2582                 pool->process_discard = process_discard_bio;
2583                 pool->process_cell = process_cell_read_only;
2584                 pool->process_prepared_mapping = process_prepared_mapping;
2585                 set_discard_callbacks(pool);
2586
2587                 if (!pool->pf.error_if_no_space && no_space_timeout)
2588                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2589                 break;
2590
2591         case PM_WRITE:
2592                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2593                         cancel_delayed_work_sync(&pool->no_space_timeout);
2594                 pool->out_of_data_space = false;
2595                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2596                 dm_pool_metadata_read_write(pool->pmd);
2597                 pool->process_bio = process_bio;
2598                 pool->process_discard = process_discard_bio;
2599                 pool->process_cell = process_cell;
2600                 pool->process_prepared_mapping = process_prepared_mapping;
2601                 set_discard_callbacks(pool);
2602                 break;
2603         }
2604
2605         pool->pf.mode = new_mode;
2606         /*
2607          * The pool mode may have changed, sync it so bind_control_target()
2608          * doesn't cause an unexpected mode transition on resume.
2609          */
2610         pt->adjusted_pf.mode = new_mode;
2611
2612         if (old_mode != new_mode)
2613                 notify_of_pool_mode_change(pool);
2614 }
2615
2616 static void abort_transaction(struct pool *pool)
2617 {
2618         const char *dev_name = dm_device_name(pool->pool_md);
2619
2620         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2621         if (dm_pool_abort_metadata(pool->pmd)) {
2622                 DMERR("%s: failed to abort metadata transaction", dev_name);
2623                 set_pool_mode(pool, PM_FAIL);
2624         }
2625
2626         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2627                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2628                 set_pool_mode(pool, PM_FAIL);
2629         }
2630 }
2631
2632 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2633 {
2634         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2635                     dm_device_name(pool->pool_md), op, r);
2636
2637         abort_transaction(pool);
2638         set_pool_mode(pool, PM_READ_ONLY);
2639 }
2640
2641 /*----------------------------------------------------------------*/
2642
2643 /*
2644  * Mapping functions.
2645  */
2646
2647 /*
2648  * Called only while mapping a thin bio to hand it over to the workqueue.
2649  */
2650 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2651 {
2652         struct pool *pool = tc->pool;
2653
2654         spin_lock_irq(&tc->lock);
2655         bio_list_add(&tc->deferred_bio_list, bio);
2656         spin_unlock_irq(&tc->lock);
2657
2658         wake_worker(pool);
2659 }
2660
2661 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2662 {
2663         struct pool *pool = tc->pool;
2664
2665         throttle_lock(&pool->throttle);
2666         thin_defer_bio(tc, bio);
2667         throttle_unlock(&pool->throttle);
2668 }
2669
2670 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2671 {
2672         struct pool *pool = tc->pool;
2673
2674         throttle_lock(&pool->throttle);
2675         spin_lock_irq(&tc->lock);
2676         list_add_tail(&cell->user_list, &tc->deferred_cells);
2677         spin_unlock_irq(&tc->lock);
2678         throttle_unlock(&pool->throttle);
2679
2680         wake_worker(pool);
2681 }
2682
2683 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2684 {
2685         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2686
2687         h->tc = tc;
2688         h->shared_read_entry = NULL;
2689         h->all_io_entry = NULL;
2690         h->overwrite_mapping = NULL;
2691         h->cell = NULL;
2692 }
2693
2694 /*
2695  * Non-blocking function called from the thin target's map function.
2696  */
2697 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2698 {
2699         int r;
2700         struct thin_c *tc = ti->private;
2701         dm_block_t block = get_bio_block(tc, bio);
2702         struct dm_thin_device *td = tc->td;
2703         struct dm_thin_lookup_result result;
2704         struct dm_bio_prison_cell *virt_cell, *data_cell;
2705         struct dm_cell_key key;
2706
2707         thin_hook_bio(tc, bio);
2708
2709         if (tc->requeue_mode) {
2710                 bio->bi_status = BLK_STS_DM_REQUEUE;
2711                 bio_endio(bio);
2712                 return DM_MAPIO_SUBMITTED;
2713         }
2714
2715         if (get_pool_mode(tc->pool) == PM_FAIL) {
2716                 bio_io_error(bio);
2717                 return DM_MAPIO_SUBMITTED;
2718         }
2719
2720         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2721                 thin_defer_bio_with_throttle(tc, bio);
2722                 return DM_MAPIO_SUBMITTED;
2723         }
2724
2725         /*
2726          * We must hold the virtual cell before doing the lookup, otherwise
2727          * there's a race with discard.
2728          */
2729         build_virtual_key(tc->td, block, &key);
2730         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2731                 return DM_MAPIO_SUBMITTED;
2732
2733         r = dm_thin_find_block(td, block, 0, &result);
2734
2735         /*
2736          * Note that we defer readahead too.
2737          */
2738         switch (r) {
2739         case 0:
2740                 if (unlikely(result.shared)) {
2741                         /*
2742                          * We have a race condition here between the
2743                          * result.shared value returned by the lookup and
2744                          * snapshot creation, which may cause new
2745                          * sharing.
2746                          *
2747                          * To avoid this always quiesce the origin before
2748                          * taking the snap.  You want to do this anyway to
2749                          * ensure a consistent application view
2750                          * (i.e. lockfs).
2751                          *
2752                          * More distant ancestors are irrelevant. The
2753                          * shared flag will be set in their case.
2754                          */
2755                         thin_defer_cell(tc, virt_cell);
2756                         return DM_MAPIO_SUBMITTED;
2757                 }
2758
2759                 build_data_key(tc->td, result.block, &key);
2760                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2761                         cell_defer_no_holder(tc, virt_cell);
2762                         return DM_MAPIO_SUBMITTED;
2763                 }
2764
2765                 inc_all_io_entry(tc->pool, bio);
2766                 cell_defer_no_holder(tc, data_cell);
2767                 cell_defer_no_holder(tc, virt_cell);
2768
2769                 remap(tc, bio, result.block);
2770                 return DM_MAPIO_REMAPPED;
2771
2772         case -ENODATA:
2773         case -EWOULDBLOCK:
2774                 thin_defer_cell(tc, virt_cell);
2775                 return DM_MAPIO_SUBMITTED;
2776
2777         default:
2778                 /*
2779                  * Must always call bio_io_error on failure.
2780                  * dm_thin_find_block can fail with -EINVAL if the
2781                  * pool is switched to fail-io mode.
2782                  */
2783                 bio_io_error(bio);
2784                 cell_defer_no_holder(tc, virt_cell);
2785                 return DM_MAPIO_SUBMITTED;
2786         }
2787 }
2788
2789 static void requeue_bios(struct pool *pool)
2790 {
2791         struct thin_c *tc;
2792
2793         rcu_read_lock();
2794         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2795                 spin_lock_irq(&tc->lock);
2796                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2797                 bio_list_init(&tc->retry_on_resume_list);
2798                 spin_unlock_irq(&tc->lock);
2799         }
2800         rcu_read_unlock();
2801 }
2802
2803 /*----------------------------------------------------------------
2804  * Binding of control targets to a pool object
2805  *--------------------------------------------------------------*/
2806 static bool is_factor(sector_t block_size, uint32_t n)
2807 {
2808         return !sector_div(block_size, n);
2809 }
2810
2811 /*
2812  * If discard_passdown was enabled verify that the data device
2813  * supports discards.  Disable discard_passdown if not.
2814  */
2815 static void disable_passdown_if_not_supported(struct pool_c *pt)
2816 {
2817         struct pool *pool = pt->pool;
2818         struct block_device *data_bdev = pt->data_dev->bdev;
2819         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2820         const char *reason = NULL;
2821
2822         if (!pt->adjusted_pf.discard_passdown)
2823                 return;
2824
2825         if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2826                 reason = "discard unsupported";
2827
2828         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2829                 reason = "max discard sectors smaller than a block";
2830
2831         if (reason) {
2832                 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2833                 pt->adjusted_pf.discard_passdown = false;
2834         }
2835 }
2836
2837 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2838 {
2839         struct pool_c *pt = ti->private;
2840
2841         /*
2842          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2843          */
2844         enum pool_mode old_mode = get_pool_mode(pool);
2845         enum pool_mode new_mode = pt->adjusted_pf.mode;
2846
2847         /*
2848          * Don't change the pool's mode until set_pool_mode() below.
2849          * Otherwise the pool's process_* function pointers may
2850          * not match the desired pool mode.
2851          */
2852         pt->adjusted_pf.mode = old_mode;
2853
2854         pool->ti = ti;
2855         pool->pf = pt->adjusted_pf;
2856         pool->low_water_blocks = pt->low_water_blocks;
2857
2858         set_pool_mode(pool, new_mode);
2859
2860         return 0;
2861 }
2862
2863 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2864 {
2865         if (pool->ti == ti)
2866                 pool->ti = NULL;
2867 }
2868
2869 /*----------------------------------------------------------------
2870  * Pool creation
2871  *--------------------------------------------------------------*/
2872 /* Initialize pool features. */
2873 static void pool_features_init(struct pool_features *pf)
2874 {
2875         pf->mode = PM_WRITE;
2876         pf->zero_new_blocks = true;
2877         pf->discard_enabled = true;
2878         pf->discard_passdown = true;
2879         pf->error_if_no_space = false;
2880 }
2881
2882 static void __pool_destroy(struct pool *pool)
2883 {
2884         __pool_table_remove(pool);
2885
2886         vfree(pool->cell_sort_array);
2887         if (dm_pool_metadata_close(pool->pmd) < 0)
2888                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2889
2890         dm_bio_prison_destroy(pool->prison);
2891         dm_kcopyd_client_destroy(pool->copier);
2892
2893         cancel_delayed_work_sync(&pool->waker);
2894         cancel_delayed_work_sync(&pool->no_space_timeout);
2895         if (pool->wq)
2896                 destroy_workqueue(pool->wq);
2897
2898         if (pool->next_mapping)
2899                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2900         mempool_exit(&pool->mapping_pool);
2901         dm_deferred_set_destroy(pool->shared_read_ds);
2902         dm_deferred_set_destroy(pool->all_io_ds);
2903         kfree(pool);
2904 }
2905
2906 static struct kmem_cache *_new_mapping_cache;
2907
2908 static struct pool *pool_create(struct mapped_device *pool_md,
2909                                 struct block_device *metadata_dev,
2910                                 struct block_device *data_dev,
2911                                 unsigned long block_size,
2912                                 int read_only, char **error)
2913 {
2914         int r;
2915         void *err_p;
2916         struct pool *pool;
2917         struct dm_pool_metadata *pmd;
2918         bool format_device = read_only ? false : true;
2919
2920         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2921         if (IS_ERR(pmd)) {
2922                 *error = "Error creating metadata object";
2923                 return (struct pool *)pmd;
2924         }
2925
2926         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2927         if (!pool) {
2928                 *error = "Error allocating memory for pool";
2929                 err_p = ERR_PTR(-ENOMEM);
2930                 goto bad_pool;
2931         }
2932
2933         pool->pmd = pmd;
2934         pool->sectors_per_block = block_size;
2935         if (block_size & (block_size - 1))
2936                 pool->sectors_per_block_shift = -1;
2937         else
2938                 pool->sectors_per_block_shift = __ffs(block_size);
2939         pool->low_water_blocks = 0;
2940         pool_features_init(&pool->pf);
2941         pool->prison = dm_bio_prison_create();
2942         if (!pool->prison) {
2943                 *error = "Error creating pool's bio prison";
2944                 err_p = ERR_PTR(-ENOMEM);
2945                 goto bad_prison;
2946         }
2947
2948         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2949         if (IS_ERR(pool->copier)) {
2950                 r = PTR_ERR(pool->copier);
2951                 *error = "Error creating pool's kcopyd client";
2952                 err_p = ERR_PTR(r);
2953                 goto bad_kcopyd_client;
2954         }
2955
2956         /*
2957          * Create singlethreaded workqueue that will service all devices
2958          * that use this metadata.
2959          */
2960         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2961         if (!pool->wq) {
2962                 *error = "Error creating pool's workqueue";
2963                 err_p = ERR_PTR(-ENOMEM);
2964                 goto bad_wq;
2965         }
2966
2967         throttle_init(&pool->throttle);
2968         INIT_WORK(&pool->worker, do_worker);
2969         INIT_DELAYED_WORK(&pool->waker, do_waker);
2970         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2971         spin_lock_init(&pool->lock);
2972         bio_list_init(&pool->deferred_flush_bios);
2973         bio_list_init(&pool->deferred_flush_completions);
2974         INIT_LIST_HEAD(&pool->prepared_mappings);
2975         INIT_LIST_HEAD(&pool->prepared_discards);
2976         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2977         INIT_LIST_HEAD(&pool->active_thins);
2978         pool->low_water_triggered = false;
2979         pool->suspended = true;
2980         pool->out_of_data_space = false;
2981
2982         pool->shared_read_ds = dm_deferred_set_create();
2983         if (!pool->shared_read_ds) {
2984                 *error = "Error creating pool's shared read deferred set";
2985                 err_p = ERR_PTR(-ENOMEM);
2986                 goto bad_shared_read_ds;
2987         }
2988
2989         pool->all_io_ds = dm_deferred_set_create();
2990         if (!pool->all_io_ds) {
2991                 *error = "Error creating pool's all io deferred set";
2992                 err_p = ERR_PTR(-ENOMEM);
2993                 goto bad_all_io_ds;
2994         }
2995
2996         pool->next_mapping = NULL;
2997         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2998                                    _new_mapping_cache);
2999         if (r) {
3000                 *error = "Error creating pool's mapping mempool";
3001                 err_p = ERR_PTR(r);
3002                 goto bad_mapping_pool;
3003         }
3004
3005         pool->cell_sort_array =
3006                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3007                                    sizeof(*pool->cell_sort_array)));
3008         if (!pool->cell_sort_array) {
3009                 *error = "Error allocating cell sort array";
3010                 err_p = ERR_PTR(-ENOMEM);
3011                 goto bad_sort_array;
3012         }
3013
3014         pool->ref_count = 1;
3015         pool->last_commit_jiffies = jiffies;
3016         pool->pool_md = pool_md;
3017         pool->md_dev = metadata_dev;
3018         pool->data_dev = data_dev;
3019         __pool_table_insert(pool);
3020
3021         return pool;
3022
3023 bad_sort_array:
3024         mempool_exit(&pool->mapping_pool);
3025 bad_mapping_pool:
3026         dm_deferred_set_destroy(pool->all_io_ds);
3027 bad_all_io_ds:
3028         dm_deferred_set_destroy(pool->shared_read_ds);
3029 bad_shared_read_ds:
3030         destroy_workqueue(pool->wq);
3031 bad_wq:
3032         dm_kcopyd_client_destroy(pool->copier);
3033 bad_kcopyd_client:
3034         dm_bio_prison_destroy(pool->prison);
3035 bad_prison:
3036         kfree(pool);
3037 bad_pool:
3038         if (dm_pool_metadata_close(pmd))
3039                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3040
3041         return err_p;
3042 }
3043
3044 static void __pool_inc(struct pool *pool)
3045 {
3046         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3047         pool->ref_count++;
3048 }
3049
3050 static void __pool_dec(struct pool *pool)
3051 {
3052         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3053         BUG_ON(!pool->ref_count);
3054         if (!--pool->ref_count)
3055                 __pool_destroy(pool);
3056 }
3057
3058 static struct pool *__pool_find(struct mapped_device *pool_md,
3059                                 struct block_device *metadata_dev,
3060                                 struct block_device *data_dev,
3061                                 unsigned long block_size, int read_only,
3062                                 char **error, int *created)
3063 {
3064         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3065
3066         if (pool) {
3067                 if (pool->pool_md != pool_md) {
3068                         *error = "metadata device already in use by a pool";
3069                         return ERR_PTR(-EBUSY);
3070                 }
3071                 if (pool->data_dev != data_dev) {
3072                         *error = "data device already in use by a pool";
3073                         return ERR_PTR(-EBUSY);
3074                 }
3075                 __pool_inc(pool);
3076
3077         } else {
3078                 pool = __pool_table_lookup(pool_md);
3079                 if (pool) {
3080                         if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3081                                 *error = "different pool cannot replace a pool";
3082                                 return ERR_PTR(-EINVAL);
3083                         }
3084                         __pool_inc(pool);
3085
3086                 } else {
3087                         pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3088                         *created = 1;
3089                 }
3090         }
3091
3092         return pool;
3093 }
3094
3095 /*----------------------------------------------------------------
3096  * Pool target methods
3097  *--------------------------------------------------------------*/
3098 static void pool_dtr(struct dm_target *ti)
3099 {
3100         struct pool_c *pt = ti->private;
3101
3102         mutex_lock(&dm_thin_pool_table.mutex);
3103
3104         unbind_control_target(pt->pool, ti);
3105         __pool_dec(pt->pool);
3106         dm_put_device(ti, pt->metadata_dev);
3107         dm_put_device(ti, pt->data_dev);
3108         kfree(pt);
3109
3110         mutex_unlock(&dm_thin_pool_table.mutex);
3111 }
3112
3113 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3114                                struct dm_target *ti)
3115 {
3116         int r;
3117         unsigned argc;
3118         const char *arg_name;
3119
3120         static const struct dm_arg _args[] = {
3121                 {0, 4, "Invalid number of pool feature arguments"},
3122         };
3123
3124         /*
3125          * No feature arguments supplied.
3126          */
3127         if (!as->argc)
3128                 return 0;
3129
3130         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3131         if (r)
3132                 return -EINVAL;
3133
3134         while (argc && !r) {
3135                 arg_name = dm_shift_arg(as);
3136                 argc--;
3137
3138                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3139                         pf->zero_new_blocks = false;
3140
3141                 else if (!strcasecmp(arg_name, "ignore_discard"))
3142                         pf->discard_enabled = false;
3143
3144                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3145                         pf->discard_passdown = false;
3146
3147                 else if (!strcasecmp(arg_name, "read_only"))
3148                         pf->mode = PM_READ_ONLY;
3149
3150                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3151                         pf->error_if_no_space = true;
3152
3153                 else {
3154                         ti->error = "Unrecognised pool feature requested";
3155                         r = -EINVAL;
3156                         break;
3157                 }
3158         }
3159
3160         return r;
3161 }
3162
3163 static void metadata_low_callback(void *context)
3164 {
3165         struct pool *pool = context;
3166
3167         DMWARN("%s: reached low water mark for metadata device: sending event.",
3168                dm_device_name(pool->pool_md));
3169
3170         dm_table_event(pool->ti->table);
3171 }
3172
3173 /*
3174  * We need to flush the data device **before** committing the metadata.
3175  *
3176  * This ensures that the data blocks of any newly inserted mappings are
3177  * properly written to non-volatile storage and won't be lost in case of a
3178  * crash.
3179  *
3180  * Failure to do so can result in data corruption in the case of internal or
3181  * external snapshots and in the case of newly provisioned blocks, when block
3182  * zeroing is enabled.
3183  */
3184 static int metadata_pre_commit_callback(void *context)
3185 {
3186         struct pool *pool = context;
3187
3188         return blkdev_issue_flush(pool->data_dev);
3189 }
3190
3191 static sector_t get_dev_size(struct block_device *bdev)
3192 {
3193         return bdev_nr_sectors(bdev);
3194 }
3195
3196 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3197 {
3198         sector_t metadata_dev_size = get_dev_size(bdev);
3199
3200         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3201                 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3202                        bdev, THIN_METADATA_MAX_SECTORS);
3203 }
3204
3205 static sector_t get_metadata_dev_size(struct block_device *bdev)
3206 {
3207         sector_t metadata_dev_size = get_dev_size(bdev);
3208
3209         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3210                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3211
3212         return metadata_dev_size;
3213 }
3214
3215 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3216 {
3217         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3218
3219         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3220
3221         return metadata_dev_size;
3222 }
3223
3224 /*
3225  * When a metadata threshold is crossed a dm event is triggered, and
3226  * userland should respond by growing the metadata device.  We could let
3227  * userland set the threshold, like we do with the data threshold, but I'm
3228  * not sure they know enough to do this well.
3229  */
3230 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3231 {
3232         /*
3233          * 4M is ample for all ops with the possible exception of thin
3234          * device deletion which is harmless if it fails (just retry the
3235          * delete after you've grown the device).
3236          */
3237         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3238         return min((dm_block_t)1024ULL /* 4M */, quarter);
3239 }
3240
3241 /*
3242  * thin-pool <metadata dev> <data dev>
3243  *           <data block size (sectors)>
3244  *           <low water mark (blocks)>
3245  *           [<#feature args> [<arg>]*]
3246  *
3247  * Optional feature arguments are:
3248  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3249  *           ignore_discard: disable discard
3250  *           no_discard_passdown: don't pass discards down to the data device
3251  *           read_only: Don't allow any changes to be made to the pool metadata.
3252  *           error_if_no_space: error IOs, instead of queueing, if no space.
3253  */
3254 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3255 {
3256         int r, pool_created = 0;
3257         struct pool_c *pt;
3258         struct pool *pool;
3259         struct pool_features pf;
3260         struct dm_arg_set as;
3261         struct dm_dev *data_dev;
3262         unsigned long block_size;
3263         dm_block_t low_water_blocks;
3264         struct dm_dev *metadata_dev;
3265         fmode_t metadata_mode;
3266
3267         /*
3268          * FIXME Remove validation from scope of lock.
3269          */
3270         mutex_lock(&dm_thin_pool_table.mutex);
3271
3272         if (argc < 4) {
3273                 ti->error = "Invalid argument count";
3274                 r = -EINVAL;
3275                 goto out_unlock;
3276         }
3277
3278         as.argc = argc;
3279         as.argv = argv;
3280
3281         /* make sure metadata and data are different devices */
3282         if (!strcmp(argv[0], argv[1])) {
3283                 ti->error = "Error setting metadata or data device";
3284                 r = -EINVAL;
3285                 goto out_unlock;
3286         }
3287
3288         /*
3289          * Set default pool features.
3290          */
3291         pool_features_init(&pf);
3292
3293         dm_consume_args(&as, 4);
3294         r = parse_pool_features(&as, &pf, ti);
3295         if (r)
3296                 goto out_unlock;
3297
3298         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3299         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3300         if (r) {
3301                 ti->error = "Error opening metadata block device";
3302                 goto out_unlock;
3303         }
3304         warn_if_metadata_device_too_big(metadata_dev->bdev);
3305
3306         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3307         if (r) {
3308                 ti->error = "Error getting data device";
3309                 goto out_metadata;
3310         }
3311
3312         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3313             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3314             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3315             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3316                 ti->error = "Invalid block size";
3317                 r = -EINVAL;
3318                 goto out;
3319         }
3320
3321         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3322                 ti->error = "Invalid low water mark";
3323                 r = -EINVAL;
3324                 goto out;
3325         }
3326
3327         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3328         if (!pt) {
3329                 r = -ENOMEM;
3330                 goto out;
3331         }
3332
3333         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3334                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3335         if (IS_ERR(pool)) {
3336                 r = PTR_ERR(pool);
3337                 goto out_free_pt;
3338         }
3339
3340         /*
3341          * 'pool_created' reflects whether this is the first table load.
3342          * Top level discard support is not allowed to be changed after
3343          * initial load.  This would require a pool reload to trigger thin
3344          * device changes.
3345          */
3346         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3347                 ti->error = "Discard support cannot be disabled once enabled";
3348                 r = -EINVAL;
3349                 goto out_flags_changed;
3350         }
3351
3352         pt->pool = pool;
3353         pt->ti = ti;
3354         pt->metadata_dev = metadata_dev;
3355         pt->data_dev = data_dev;
3356         pt->low_water_blocks = low_water_blocks;
3357         pt->adjusted_pf = pt->requested_pf = pf;
3358         ti->num_flush_bios = 1;
3359
3360         /*
3361          * Only need to enable discards if the pool should pass
3362          * them down to the data device.  The thin device's discard
3363          * processing will cause mappings to be removed from the btree.
3364          */
3365         if (pf.discard_enabled && pf.discard_passdown) {
3366                 ti->num_discard_bios = 1;
3367
3368                 /*
3369                  * Setting 'discards_supported' circumvents the normal
3370                  * stacking of discard limits (this keeps the pool and
3371                  * thin devices' discard limits consistent).
3372                  */
3373                 ti->discards_supported = true;
3374         }
3375         ti->private = pt;
3376
3377         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3378                                                 calc_metadata_threshold(pt),
3379                                                 metadata_low_callback,
3380                                                 pool);
3381         if (r) {
3382                 ti->error = "Error registering metadata threshold";
3383                 goto out_flags_changed;
3384         }
3385
3386         dm_pool_register_pre_commit_callback(pool->pmd,
3387                                              metadata_pre_commit_callback, pool);
3388
3389         mutex_unlock(&dm_thin_pool_table.mutex);
3390
3391         return 0;
3392
3393 out_flags_changed:
3394         __pool_dec(pool);
3395 out_free_pt:
3396         kfree(pt);
3397 out:
3398         dm_put_device(ti, data_dev);
3399 out_metadata:
3400         dm_put_device(ti, metadata_dev);
3401 out_unlock:
3402         mutex_unlock(&dm_thin_pool_table.mutex);
3403
3404         return r;
3405 }
3406
3407 static int pool_map(struct dm_target *ti, struct bio *bio)
3408 {
3409         int r;
3410         struct pool_c *pt = ti->private;
3411         struct pool *pool = pt->pool;
3412
3413         /*
3414          * As this is a singleton target, ti->begin is always zero.
3415          */
3416         spin_lock_irq(&pool->lock);
3417         bio_set_dev(bio, pt->data_dev->bdev);
3418         r = DM_MAPIO_REMAPPED;
3419         spin_unlock_irq(&pool->lock);
3420
3421         return r;
3422 }
3423
3424 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3425 {
3426         int r;
3427         struct pool_c *pt = ti->private;
3428         struct pool *pool = pt->pool;
3429         sector_t data_size = ti->len;
3430         dm_block_t sb_data_size;
3431
3432         *need_commit = false;
3433
3434         (void) sector_div(data_size, pool->sectors_per_block);
3435
3436         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3437         if (r) {
3438                 DMERR("%s: failed to retrieve data device size",
3439                       dm_device_name(pool->pool_md));
3440                 return r;
3441         }
3442
3443         if (data_size < sb_data_size) {
3444                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3445                       dm_device_name(pool->pool_md),
3446                       (unsigned long long)data_size, sb_data_size);
3447                 return -EINVAL;
3448
3449         } else if (data_size > sb_data_size) {
3450                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3451                         DMERR("%s: unable to grow the data device until repaired.",
3452                               dm_device_name(pool->pool_md));
3453                         return 0;
3454                 }
3455
3456                 if (sb_data_size)
3457                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3458                                dm_device_name(pool->pool_md),
3459                                sb_data_size, (unsigned long long)data_size);
3460                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3461                 if (r) {
3462                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3463                         return r;
3464                 }
3465
3466                 *need_commit = true;
3467         }
3468
3469         return 0;
3470 }
3471
3472 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3473 {
3474         int r;
3475         struct pool_c *pt = ti->private;
3476         struct pool *pool = pt->pool;
3477         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3478
3479         *need_commit = false;
3480
3481         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3482
3483         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3484         if (r) {
3485                 DMERR("%s: failed to retrieve metadata device size",
3486                       dm_device_name(pool->pool_md));
3487                 return r;
3488         }
3489
3490         if (metadata_dev_size < sb_metadata_dev_size) {
3491                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3492                       dm_device_name(pool->pool_md),
3493                       metadata_dev_size, sb_metadata_dev_size);
3494                 return -EINVAL;
3495
3496         } else if (metadata_dev_size > sb_metadata_dev_size) {
3497                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3498                         DMERR("%s: unable to grow the metadata device until repaired.",
3499                               dm_device_name(pool->pool_md));
3500                         return 0;
3501                 }
3502
3503                 warn_if_metadata_device_too_big(pool->md_dev);
3504                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3505                        dm_device_name(pool->pool_md),
3506                        sb_metadata_dev_size, metadata_dev_size);
3507
3508                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3509                         set_pool_mode(pool, PM_WRITE);
3510
3511                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3512                 if (r) {
3513                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3514                         return r;
3515                 }
3516
3517                 *need_commit = true;
3518         }
3519
3520         return 0;
3521 }
3522
3523 /*
3524  * Retrieves the number of blocks of the data device from
3525  * the superblock and compares it to the actual device size,
3526  * thus resizing the data device in case it has grown.
3527  *
3528  * This both copes with opening preallocated data devices in the ctr
3529  * being followed by a resume
3530  * -and-
3531  * calling the resume method individually after userspace has
3532  * grown the data device in reaction to a table event.
3533  */
3534 static int pool_preresume(struct dm_target *ti)
3535 {
3536         int r;
3537         bool need_commit1, need_commit2;
3538         struct pool_c *pt = ti->private;
3539         struct pool *pool = pt->pool;
3540
3541         /*
3542          * Take control of the pool object.
3543          */
3544         r = bind_control_target(pool, ti);
3545         if (r)
3546                 goto out;
3547
3548         r = maybe_resize_data_dev(ti, &need_commit1);
3549         if (r)
3550                 goto out;
3551
3552         r = maybe_resize_metadata_dev(ti, &need_commit2);
3553         if (r)
3554                 goto out;
3555
3556         if (need_commit1 || need_commit2)
3557                 (void) commit(pool);
3558 out:
3559         /*
3560          * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3561          * bio is in deferred list. Therefore need to return 0
3562          * to allow pool_resume() to flush IO.
3563          */
3564         if (r && get_pool_mode(pool) == PM_FAIL)
3565                 r = 0;
3566
3567         return r;
3568 }
3569
3570 static void pool_suspend_active_thins(struct pool *pool)
3571 {
3572         struct thin_c *tc;
3573
3574         /* Suspend all active thin devices */
3575         tc = get_first_thin(pool);
3576         while (tc) {
3577                 dm_internal_suspend_noflush(tc->thin_md);
3578                 tc = get_next_thin(pool, tc);
3579         }
3580 }
3581
3582 static void pool_resume_active_thins(struct pool *pool)
3583 {
3584         struct thin_c *tc;
3585
3586         /* Resume all active thin devices */
3587         tc = get_first_thin(pool);
3588         while (tc) {
3589                 dm_internal_resume(tc->thin_md);
3590                 tc = get_next_thin(pool, tc);
3591         }
3592 }
3593
3594 static void pool_resume(struct dm_target *ti)
3595 {
3596         struct pool_c *pt = ti->private;
3597         struct pool *pool = pt->pool;
3598
3599         /*
3600          * Must requeue active_thins' bios and then resume
3601          * active_thins _before_ clearing 'suspend' flag.
3602          */
3603         requeue_bios(pool);
3604         pool_resume_active_thins(pool);
3605
3606         spin_lock_irq(&pool->lock);
3607         pool->low_water_triggered = false;
3608         pool->suspended = false;
3609         spin_unlock_irq(&pool->lock);
3610
3611         do_waker(&pool->waker.work);
3612 }
3613
3614 static void pool_presuspend(struct dm_target *ti)
3615 {
3616         struct pool_c *pt = ti->private;
3617         struct pool *pool = pt->pool;
3618
3619         spin_lock_irq(&pool->lock);
3620         pool->suspended = true;
3621         spin_unlock_irq(&pool->lock);
3622
3623         pool_suspend_active_thins(pool);
3624 }
3625
3626 static void pool_presuspend_undo(struct dm_target *ti)
3627 {
3628         struct pool_c *pt = ti->private;
3629         struct pool *pool = pt->pool;
3630
3631         pool_resume_active_thins(pool);
3632
3633         spin_lock_irq(&pool->lock);
3634         pool->suspended = false;
3635         spin_unlock_irq(&pool->lock);
3636 }
3637
3638 static void pool_postsuspend(struct dm_target *ti)
3639 {
3640         struct pool_c *pt = ti->private;
3641         struct pool *pool = pt->pool;
3642
3643         cancel_delayed_work_sync(&pool->waker);
3644         cancel_delayed_work_sync(&pool->no_space_timeout);
3645         flush_workqueue(pool->wq);
3646         (void) commit(pool);
3647 }
3648
3649 static int check_arg_count(unsigned argc, unsigned args_required)
3650 {
3651         if (argc != args_required) {
3652                 DMWARN("Message received with %u arguments instead of %u.",
3653                        argc, args_required);
3654                 return -EINVAL;
3655         }
3656
3657         return 0;
3658 }
3659
3660 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3661 {
3662         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3663             *dev_id <= MAX_DEV_ID)
3664                 return 0;
3665
3666         if (warning)
3667                 DMWARN("Message received with invalid device id: %s", arg);
3668
3669         return -EINVAL;
3670 }
3671
3672 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3673 {
3674         dm_thin_id dev_id;
3675         int r;
3676
3677         r = check_arg_count(argc, 2);
3678         if (r)
3679                 return r;
3680
3681         r = read_dev_id(argv[1], &dev_id, 1);
3682         if (r)
3683                 return r;
3684
3685         r = dm_pool_create_thin(pool->pmd, dev_id);
3686         if (r) {
3687                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3688                        argv[1]);
3689                 return r;
3690         }
3691
3692         return 0;
3693 }
3694
3695 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3696 {
3697         dm_thin_id dev_id;
3698         dm_thin_id origin_dev_id;
3699         int r;
3700
3701         r = check_arg_count(argc, 3);
3702         if (r)
3703                 return r;
3704
3705         r = read_dev_id(argv[1], &dev_id, 1);
3706         if (r)
3707                 return r;
3708
3709         r = read_dev_id(argv[2], &origin_dev_id, 1);
3710         if (r)
3711                 return r;
3712
3713         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3714         if (r) {
3715                 DMWARN("Creation of new snapshot %s of device %s failed.",
3716                        argv[1], argv[2]);
3717                 return r;
3718         }
3719
3720         return 0;
3721 }
3722
3723 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3724 {
3725         dm_thin_id dev_id;
3726         int r;
3727
3728         r = check_arg_count(argc, 2);
3729         if (r)
3730                 return r;
3731
3732         r = read_dev_id(argv[1], &dev_id, 1);
3733         if (r)
3734                 return r;
3735
3736         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3737         if (r)
3738                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3739
3740         return r;
3741 }
3742
3743 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3744 {
3745         dm_thin_id old_id, new_id;
3746         int r;
3747
3748         r = check_arg_count(argc, 3);
3749         if (r)
3750                 return r;
3751
3752         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3753                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3754                 return -EINVAL;
3755         }
3756
3757         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3758                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3759                 return -EINVAL;
3760         }
3761
3762         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3763         if (r) {
3764                 DMWARN("Failed to change transaction id from %s to %s.",
3765                        argv[1], argv[2]);
3766                 return r;
3767         }
3768
3769         return 0;
3770 }
3771
3772 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3773 {
3774         int r;
3775
3776         r = check_arg_count(argc, 1);
3777         if (r)
3778                 return r;
3779
3780         (void) commit(pool);
3781
3782         r = dm_pool_reserve_metadata_snap(pool->pmd);
3783         if (r)
3784                 DMWARN("reserve_metadata_snap message failed.");
3785
3786         return r;
3787 }
3788
3789 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3790 {
3791         int r;
3792
3793         r = check_arg_count(argc, 1);
3794         if (r)
3795                 return r;
3796
3797         r = dm_pool_release_metadata_snap(pool->pmd);
3798         if (r)
3799                 DMWARN("release_metadata_snap message failed.");
3800
3801         return r;
3802 }
3803
3804 /*
3805  * Messages supported:
3806  *   create_thin        <dev_id>
3807  *   create_snap        <dev_id> <origin_id>
3808  *   delete             <dev_id>
3809  *   set_transaction_id <current_trans_id> <new_trans_id>
3810  *   reserve_metadata_snap
3811  *   release_metadata_snap
3812  */
3813 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3814                         char *result, unsigned maxlen)
3815 {
3816         int r = -EINVAL;
3817         struct pool_c *pt = ti->private;
3818         struct pool *pool = pt->pool;
3819
3820         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3821                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3822                       dm_device_name(pool->pool_md));
3823                 return -EOPNOTSUPP;
3824         }
3825
3826         if (!strcasecmp(argv[0], "create_thin"))
3827                 r = process_create_thin_mesg(argc, argv, pool);
3828
3829         else if (!strcasecmp(argv[0], "create_snap"))
3830                 r = process_create_snap_mesg(argc, argv, pool);
3831
3832         else if (!strcasecmp(argv[0], "delete"))
3833                 r = process_delete_mesg(argc, argv, pool);
3834
3835         else if (!strcasecmp(argv[0], "set_transaction_id"))
3836                 r = process_set_transaction_id_mesg(argc, argv, pool);
3837
3838         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3839                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3840
3841         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3842                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3843
3844         else
3845                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3846
3847         if (!r)
3848                 (void) commit(pool);
3849
3850         return r;
3851 }
3852
3853 static void emit_flags(struct pool_features *pf, char *result,
3854                        unsigned sz, unsigned maxlen)
3855 {
3856         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3857                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3858                 pf->error_if_no_space;
3859         DMEMIT("%u ", count);
3860
3861         if (!pf->zero_new_blocks)
3862                 DMEMIT("skip_block_zeroing ");
3863
3864         if (!pf->discard_enabled)
3865                 DMEMIT("ignore_discard ");
3866
3867         if (!pf->discard_passdown)
3868                 DMEMIT("no_discard_passdown ");
3869
3870         if (pf->mode == PM_READ_ONLY)
3871                 DMEMIT("read_only ");
3872
3873         if (pf->error_if_no_space)
3874                 DMEMIT("error_if_no_space ");
3875 }
3876
3877 /*
3878  * Status line is:
3879  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3880  *    <used data sectors>/<total data sectors> <held metadata root>
3881  *    <pool mode> <discard config> <no space config> <needs_check>
3882  */
3883 static void pool_status(struct dm_target *ti, status_type_t type,
3884                         unsigned status_flags, char *result, unsigned maxlen)
3885 {
3886         int r;
3887         unsigned sz = 0;
3888         uint64_t transaction_id;
3889         dm_block_t nr_free_blocks_data;
3890         dm_block_t nr_free_blocks_metadata;
3891         dm_block_t nr_blocks_data;
3892         dm_block_t nr_blocks_metadata;
3893         dm_block_t held_root;
3894         enum pool_mode mode;
3895         char buf[BDEVNAME_SIZE];
3896         char buf2[BDEVNAME_SIZE];
3897         struct pool_c *pt = ti->private;
3898         struct pool *pool = pt->pool;
3899
3900         switch (type) {
3901         case STATUSTYPE_INFO:
3902                 if (get_pool_mode(pool) == PM_FAIL) {
3903                         DMEMIT("Fail");
3904                         break;
3905                 }
3906
3907                 /* Commit to ensure statistics aren't out-of-date */
3908                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3909                         (void) commit(pool);
3910
3911                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3912                 if (r) {
3913                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3914                               dm_device_name(pool->pool_md), r);
3915                         goto err;
3916                 }
3917
3918                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3919                 if (r) {
3920                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3921                               dm_device_name(pool->pool_md), r);
3922                         goto err;
3923                 }
3924
3925                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3926                 if (r) {
3927                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3928                               dm_device_name(pool->pool_md), r);
3929                         goto err;
3930                 }
3931
3932                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3933                 if (r) {
3934                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3935                               dm_device_name(pool->pool_md), r);
3936                         goto err;
3937                 }
3938
3939                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3940                 if (r) {
3941                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3942                               dm_device_name(pool->pool_md), r);
3943                         goto err;
3944                 }
3945
3946                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3947                 if (r) {
3948                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3949                               dm_device_name(pool->pool_md), r);
3950                         goto err;
3951                 }
3952
3953                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3954                        (unsigned long long)transaction_id,
3955                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3956                        (unsigned long long)nr_blocks_metadata,
3957                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3958                        (unsigned long long)nr_blocks_data);
3959
3960                 if (held_root)
3961                         DMEMIT("%llu ", held_root);
3962                 else
3963                         DMEMIT("- ");
3964
3965                 mode = get_pool_mode(pool);
3966                 if (mode == PM_OUT_OF_DATA_SPACE)
3967                         DMEMIT("out_of_data_space ");
3968                 else if (is_read_only_pool_mode(mode))
3969                         DMEMIT("ro ");
3970                 else
3971                         DMEMIT("rw ");
3972
3973                 if (!pool->pf.discard_enabled)
3974                         DMEMIT("ignore_discard ");
3975                 else if (pool->pf.discard_passdown)
3976                         DMEMIT("discard_passdown ");
3977                 else
3978                         DMEMIT("no_discard_passdown ");
3979
3980                 if (pool->pf.error_if_no_space)
3981                         DMEMIT("error_if_no_space ");
3982                 else
3983                         DMEMIT("queue_if_no_space ");
3984
3985                 if (dm_pool_metadata_needs_check(pool->pmd))
3986                         DMEMIT("needs_check ");
3987                 else
3988                         DMEMIT("- ");
3989
3990                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3991
3992                 break;
3993
3994         case STATUSTYPE_TABLE:
3995                 DMEMIT("%s %s %lu %llu ",
3996                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3997                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3998                        (unsigned long)pool->sectors_per_block,
3999                        (unsigned long long)pt->low_water_blocks);
4000                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4001                 break;
4002
4003         case STATUSTYPE_IMA:
4004                 *result = '\0';
4005                 break;
4006         }
4007         return;
4008
4009 err:
4010         DMEMIT("Error");
4011 }
4012
4013 static int pool_iterate_devices(struct dm_target *ti,
4014                                 iterate_devices_callout_fn fn, void *data)
4015 {
4016         struct pool_c *pt = ti->private;
4017
4018         return fn(ti, pt->data_dev, 0, ti->len, data);
4019 }
4020
4021 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4022 {
4023         struct pool_c *pt = ti->private;
4024         struct pool *pool = pt->pool;
4025         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4026
4027         /*
4028          * If max_sectors is smaller than pool->sectors_per_block adjust it
4029          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4030          * This is especially beneficial when the pool's data device is a RAID
4031          * device that has a full stripe width that matches pool->sectors_per_block
4032          * -- because even though partial RAID stripe-sized IOs will be issued to a
4033          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4034          *    boundary.. which avoids additional partial RAID stripe writes cascading
4035          */
4036         if (limits->max_sectors < pool->sectors_per_block) {
4037                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4038                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4039                                 limits->max_sectors--;
4040                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4041                 }
4042         }
4043
4044         /*
4045          * If the system-determined stacked limits are compatible with the
4046          * pool's blocksize (io_opt is a factor) do not override them.
4047          */
4048         if (io_opt_sectors < pool->sectors_per_block ||
4049             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4050                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4051                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4052                 else
4053                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4054                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4055         }
4056
4057         /*
4058          * pt->adjusted_pf is a staging area for the actual features to use.
4059          * They get transferred to the live pool in bind_control_target()
4060          * called from pool_preresume().
4061          */
4062         if (!pt->adjusted_pf.discard_enabled) {
4063                 /*
4064                  * Must explicitly disallow stacking discard limits otherwise the
4065                  * block layer will stack them if pool's data device has support.
4066                  */
4067                 limits->discard_granularity = 0;
4068                 return;
4069         }
4070
4071         disable_passdown_if_not_supported(pt);
4072
4073         /*
4074          * The pool uses the same discard limits as the underlying data
4075          * device.  DM core has already set this up.
4076          */
4077 }
4078
4079 static struct target_type pool_target = {
4080         .name = "thin-pool",
4081         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4082                     DM_TARGET_IMMUTABLE,
4083         .version = {1, 22, 0},
4084         .module = THIS_MODULE,
4085         .ctr = pool_ctr,
4086         .dtr = pool_dtr,
4087         .map = pool_map,
4088         .presuspend = pool_presuspend,
4089         .presuspend_undo = pool_presuspend_undo,
4090         .postsuspend = pool_postsuspend,
4091         .preresume = pool_preresume,
4092         .resume = pool_resume,
4093         .message = pool_message,
4094         .status = pool_status,
4095         .iterate_devices = pool_iterate_devices,
4096         .io_hints = pool_io_hints,
4097 };
4098
4099 /*----------------------------------------------------------------
4100  * Thin target methods
4101  *--------------------------------------------------------------*/
4102 static void thin_get(struct thin_c *tc)
4103 {
4104         refcount_inc(&tc->refcount);
4105 }
4106
4107 static void thin_put(struct thin_c *tc)
4108 {
4109         if (refcount_dec_and_test(&tc->refcount))
4110                 complete(&tc->can_destroy);
4111 }
4112
4113 static void thin_dtr(struct dm_target *ti)
4114 {
4115         struct thin_c *tc = ti->private;
4116
4117         spin_lock_irq(&tc->pool->lock);
4118         list_del_rcu(&tc->list);
4119         spin_unlock_irq(&tc->pool->lock);
4120         synchronize_rcu();
4121
4122         thin_put(tc);
4123         wait_for_completion(&tc->can_destroy);
4124
4125         mutex_lock(&dm_thin_pool_table.mutex);
4126
4127         __pool_dec(tc->pool);
4128         dm_pool_close_thin_device(tc->td);
4129         dm_put_device(ti, tc->pool_dev);
4130         if (tc->origin_dev)
4131                 dm_put_device(ti, tc->origin_dev);
4132         kfree(tc);
4133
4134         mutex_unlock(&dm_thin_pool_table.mutex);
4135 }
4136
4137 /*
4138  * Thin target parameters:
4139  *
4140  * <pool_dev> <dev_id> [origin_dev]
4141  *
4142  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4143  * dev_id: the internal device identifier
4144  * origin_dev: a device external to the pool that should act as the origin
4145  *
4146  * If the pool device has discards disabled, they get disabled for the thin
4147  * device as well.
4148  */
4149 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4150 {
4151         int r;
4152         struct thin_c *tc;
4153         struct dm_dev *pool_dev, *origin_dev;
4154         struct mapped_device *pool_md;
4155
4156         mutex_lock(&dm_thin_pool_table.mutex);
4157
4158         if (argc != 2 && argc != 3) {
4159                 ti->error = "Invalid argument count";
4160                 r = -EINVAL;
4161                 goto out_unlock;
4162         }
4163
4164         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4165         if (!tc) {
4166                 ti->error = "Out of memory";
4167                 r = -ENOMEM;
4168                 goto out_unlock;
4169         }
4170         tc->thin_md = dm_table_get_md(ti->table);
4171         spin_lock_init(&tc->lock);
4172         INIT_LIST_HEAD(&tc->deferred_cells);
4173         bio_list_init(&tc->deferred_bio_list);
4174         bio_list_init(&tc->retry_on_resume_list);
4175         tc->sort_bio_list = RB_ROOT;
4176
4177         if (argc == 3) {
4178                 if (!strcmp(argv[0], argv[2])) {
4179                         ti->error = "Error setting origin device";
4180                         r = -EINVAL;
4181                         goto bad_origin_dev;
4182                 }
4183
4184                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4185                 if (r) {
4186                         ti->error = "Error opening origin device";
4187                         goto bad_origin_dev;
4188                 }
4189                 tc->origin_dev = origin_dev;
4190         }
4191
4192         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4193         if (r) {
4194                 ti->error = "Error opening pool device";
4195                 goto bad_pool_dev;
4196         }
4197         tc->pool_dev = pool_dev;
4198
4199         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4200                 ti->error = "Invalid device id";
4201                 r = -EINVAL;
4202                 goto bad_common;
4203         }
4204
4205         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4206         if (!pool_md) {
4207                 ti->error = "Couldn't get pool mapped device";
4208                 r = -EINVAL;
4209                 goto bad_common;
4210         }
4211
4212         tc->pool = __pool_table_lookup(pool_md);
4213         if (!tc->pool) {
4214                 ti->error = "Couldn't find pool object";
4215                 r = -EINVAL;
4216                 goto bad_pool_lookup;
4217         }
4218         __pool_inc(tc->pool);
4219
4220         if (get_pool_mode(tc->pool) == PM_FAIL) {
4221                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4222                 r = -EINVAL;
4223                 goto bad_pool;
4224         }
4225
4226         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4227         if (r) {
4228                 ti->error = "Couldn't open thin internal device";
4229                 goto bad_pool;
4230         }
4231
4232         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4233         if (r)
4234                 goto bad;
4235
4236         ti->num_flush_bios = 1;
4237         ti->flush_supported = true;
4238         ti->accounts_remapped_io = true;
4239         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4240
4241         /* In case the pool supports discards, pass them on. */
4242         if (tc->pool->pf.discard_enabled) {
4243                 ti->discards_supported = true;
4244                 ti->num_discard_bios = 1;
4245         }
4246
4247         mutex_unlock(&dm_thin_pool_table.mutex);
4248
4249         spin_lock_irq(&tc->pool->lock);
4250         if (tc->pool->suspended) {
4251                 spin_unlock_irq(&tc->pool->lock);
4252                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4253                 ti->error = "Unable to activate thin device while pool is suspended";
4254                 r = -EINVAL;
4255                 goto bad;
4256         }
4257         refcount_set(&tc->refcount, 1);
4258         init_completion(&tc->can_destroy);
4259         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4260         spin_unlock_irq(&tc->pool->lock);
4261         /*
4262          * This synchronize_rcu() call is needed here otherwise we risk a
4263          * wake_worker() call finding no bios to process (because the newly
4264          * added tc isn't yet visible).  So this reduces latency since we
4265          * aren't then dependent on the periodic commit to wake_worker().
4266          */
4267         synchronize_rcu();
4268
4269         dm_put(pool_md);
4270
4271         return 0;
4272
4273 bad:
4274         dm_pool_close_thin_device(tc->td);
4275 bad_pool:
4276         __pool_dec(tc->pool);
4277 bad_pool_lookup:
4278         dm_put(pool_md);
4279 bad_common:
4280         dm_put_device(ti, tc->pool_dev);
4281 bad_pool_dev:
4282         if (tc->origin_dev)
4283                 dm_put_device(ti, tc->origin_dev);
4284 bad_origin_dev:
4285         kfree(tc);
4286 out_unlock:
4287         mutex_unlock(&dm_thin_pool_table.mutex);
4288
4289         return r;
4290 }
4291
4292 static int thin_map(struct dm_target *ti, struct bio *bio)
4293 {
4294         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4295
4296         return thin_bio_map(ti, bio);
4297 }
4298
4299 static int thin_endio(struct dm_target *ti, struct bio *bio,
4300                 blk_status_t *err)
4301 {
4302         unsigned long flags;
4303         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4304         struct list_head work;
4305         struct dm_thin_new_mapping *m, *tmp;
4306         struct pool *pool = h->tc->pool;
4307
4308         if (h->shared_read_entry) {
4309                 INIT_LIST_HEAD(&work);
4310                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4311
4312                 spin_lock_irqsave(&pool->lock, flags);
4313                 list_for_each_entry_safe(m, tmp, &work, list) {
4314                         list_del(&m->list);
4315                         __complete_mapping_preparation(m);
4316                 }
4317                 spin_unlock_irqrestore(&pool->lock, flags);
4318         }
4319
4320         if (h->all_io_entry) {
4321                 INIT_LIST_HEAD(&work);
4322                 dm_deferred_entry_dec(h->all_io_entry, &work);
4323                 if (!list_empty(&work)) {
4324                         spin_lock_irqsave(&pool->lock, flags);
4325                         list_for_each_entry_safe(m, tmp, &work, list)
4326                                 list_add_tail(&m->list, &pool->prepared_discards);
4327                         spin_unlock_irqrestore(&pool->lock, flags);
4328                         wake_worker(pool);
4329                 }
4330         }
4331
4332         if (h->cell)
4333                 cell_defer_no_holder(h->tc, h->cell);
4334
4335         return DM_ENDIO_DONE;
4336 }
4337
4338 static void thin_presuspend(struct dm_target *ti)
4339 {
4340         struct thin_c *tc = ti->private;
4341
4342         if (dm_noflush_suspending(ti))
4343                 noflush_work(tc, do_noflush_start);
4344 }
4345
4346 static void thin_postsuspend(struct dm_target *ti)
4347 {
4348         struct thin_c *tc = ti->private;
4349
4350         /*
4351          * The dm_noflush_suspending flag has been cleared by now, so
4352          * unfortunately we must always run this.
4353          */
4354         noflush_work(tc, do_noflush_stop);
4355 }
4356
4357 static int thin_preresume(struct dm_target *ti)
4358 {
4359         struct thin_c *tc = ti->private;
4360
4361         if (tc->origin_dev)
4362                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4363
4364         return 0;
4365 }
4366
4367 /*
4368  * <nr mapped sectors> <highest mapped sector>
4369  */
4370 static void thin_status(struct dm_target *ti, status_type_t type,
4371                         unsigned status_flags, char *result, unsigned maxlen)
4372 {
4373         int r;
4374         ssize_t sz = 0;
4375         dm_block_t mapped, highest;
4376         char buf[BDEVNAME_SIZE];
4377         struct thin_c *tc = ti->private;
4378
4379         if (get_pool_mode(tc->pool) == PM_FAIL) {
4380                 DMEMIT("Fail");
4381                 return;
4382         }
4383
4384         if (!tc->td)
4385                 DMEMIT("-");
4386         else {
4387                 switch (type) {
4388                 case STATUSTYPE_INFO:
4389                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4390                         if (r) {
4391                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4392                                 goto err;
4393                         }
4394
4395                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4396                         if (r < 0) {
4397                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4398                                 goto err;
4399                         }
4400
4401                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4402                         if (r)
4403                                 DMEMIT("%llu", ((highest + 1) *
4404                                                 tc->pool->sectors_per_block) - 1);
4405                         else
4406                                 DMEMIT("-");
4407                         break;
4408
4409                 case STATUSTYPE_TABLE:
4410                         DMEMIT("%s %lu",
4411                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4412                                (unsigned long) tc->dev_id);
4413                         if (tc->origin_dev)
4414                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4415                         break;
4416
4417                 case STATUSTYPE_IMA:
4418                         *result = '\0';
4419                         break;
4420                 }
4421         }
4422
4423         return;
4424
4425 err:
4426         DMEMIT("Error");
4427 }
4428
4429 static int thin_iterate_devices(struct dm_target *ti,
4430                                 iterate_devices_callout_fn fn, void *data)
4431 {
4432         sector_t blocks;
4433         struct thin_c *tc = ti->private;
4434         struct pool *pool = tc->pool;
4435
4436         /*
4437          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4438          * we follow a more convoluted path through to the pool's target.
4439          */
4440         if (!pool->ti)
4441                 return 0;       /* nothing is bound */
4442
4443         blocks = pool->ti->len;
4444         (void) sector_div(blocks, pool->sectors_per_block);
4445         if (blocks)
4446                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4447
4448         return 0;
4449 }
4450
4451 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4452 {
4453         struct thin_c *tc = ti->private;
4454         struct pool *pool = tc->pool;
4455
4456         if (!pool->pf.discard_enabled)
4457                 return;
4458
4459         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4460         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4461 }
4462
4463 static struct target_type thin_target = {
4464         .name = "thin",
4465         .version = {1, 22, 0},
4466         .module = THIS_MODULE,
4467         .ctr = thin_ctr,
4468         .dtr = thin_dtr,
4469         .map = thin_map,
4470         .end_io = thin_endio,
4471         .preresume = thin_preresume,
4472         .presuspend = thin_presuspend,
4473         .postsuspend = thin_postsuspend,
4474         .status = thin_status,
4475         .iterate_devices = thin_iterate_devices,
4476         .io_hints = thin_io_hints,
4477 };
4478
4479 /*----------------------------------------------------------------*/
4480
4481 static int __init dm_thin_init(void)
4482 {
4483         int r = -ENOMEM;
4484
4485         pool_table_init();
4486
4487         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4488         if (!_new_mapping_cache)
4489                 return r;
4490
4491         r = dm_register_target(&thin_target);
4492         if (r)
4493                 goto bad_new_mapping_cache;
4494
4495         r = dm_register_target(&pool_target);
4496         if (r)
4497                 goto bad_thin_target;
4498
4499         return 0;
4500
4501 bad_thin_target:
4502         dm_unregister_target(&thin_target);
4503 bad_new_mapping_cache:
4504         kmem_cache_destroy(_new_mapping_cache);
4505
4506         return r;
4507 }
4508
4509 static void dm_thin_exit(void)
4510 {
4511         dm_unregister_target(&thin_target);
4512         dm_unregister_target(&pool_target);
4513
4514         kmem_cache_destroy(_new_mapping_cache);
4515
4516         pool_table_exit();
4517 }
4518
4519 module_init(dm_thin_init);
4520 module_exit(dm_thin_exit);
4521
4522 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4523 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4524
4525 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4526 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4527 MODULE_LICENSE("GPL");