Merge tag 'soc-dt-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-block.git] / drivers / md / dm-thin.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25
26 #define DM_MSG_PREFIX   "thin"
27
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39                 "A percentage of time allocated for copy on write");
40
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110
111 /*----------------------------------------------------------------*/
112
113 /*
114  * Key building.
115  */
116 enum lock_space {
117         VIRTUAL,
118         PHYSICAL
119 };
120
121 static void build_key(struct dm_thin_device *td, enum lock_space ls,
122                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124         key->virtual = (ls == VIRTUAL);
125         key->dev = dm_thin_dev_id(td);
126         key->block_begin = b;
127         key->block_end = e;
128 }
129
130 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
131                            struct dm_cell_key *key)
132 {
133         build_key(td, PHYSICAL, b, b + 1llu, key);
134 }
135
136 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
137                               struct dm_cell_key *key)
138 {
139         build_key(td, VIRTUAL, b, b + 1llu, key);
140 }
141
142 /*----------------------------------------------------------------*/
143
144 #define THROTTLE_THRESHOLD (1 * HZ)
145
146 struct throttle {
147         struct rw_semaphore lock;
148         unsigned long threshold;
149         bool throttle_applied;
150 };
151
152 static void throttle_init(struct throttle *t)
153 {
154         init_rwsem(&t->lock);
155         t->throttle_applied = false;
156 }
157
158 static void throttle_work_start(struct throttle *t)
159 {
160         t->threshold = jiffies + THROTTLE_THRESHOLD;
161 }
162
163 static void throttle_work_update(struct throttle *t)
164 {
165         if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
166                 down_write(&t->lock);
167                 t->throttle_applied = true;
168         }
169 }
170
171 static void throttle_work_complete(struct throttle *t)
172 {
173         if (t->throttle_applied) {
174                 t->throttle_applied = false;
175                 up_write(&t->lock);
176         }
177 }
178
179 static void throttle_lock(struct throttle *t)
180 {
181         down_read(&t->lock);
182 }
183
184 static void throttle_unlock(struct throttle *t)
185 {
186         up_read(&t->lock);
187 }
188
189 /*----------------------------------------------------------------*/
190
191 /*
192  * A pool device ties together a metadata device and a data device.  It
193  * also provides the interface for creating and destroying internal
194  * devices.
195  */
196 struct dm_thin_new_mapping;
197
198 /*
199  * The pool runs in various modes.  Ordered in degraded order for comparisons.
200  */
201 enum pool_mode {
202         PM_WRITE,               /* metadata may be changed */
203         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
204
205         /*
206          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
207          */
208         PM_OUT_OF_METADATA_SPACE,
209         PM_READ_ONLY,           /* metadata may not be changed */
210
211         PM_FAIL,                /* all I/O fails */
212 };
213
214 struct pool_features {
215         enum pool_mode mode;
216
217         bool zero_new_blocks:1;
218         bool discard_enabled:1;
219         bool discard_passdown:1;
220         bool error_if_no_space:1;
221 };
222
223 struct thin_c;
224 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
225 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
226 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
227
228 #define CELL_SORT_ARRAY_SIZE 8192
229
230 struct pool {
231         struct list_head list;
232         struct dm_target *ti;   /* Only set if a pool target is bound */
233
234         struct mapped_device *pool_md;
235         struct block_device *data_dev;
236         struct block_device *md_dev;
237         struct dm_pool_metadata *pmd;
238
239         dm_block_t low_water_blocks;
240         uint32_t sectors_per_block;
241         int sectors_per_block_shift;
242
243         struct pool_features pf;
244         bool low_water_triggered:1;     /* A dm event has been sent */
245         bool suspended:1;
246         bool out_of_data_space:1;
247
248         struct dm_bio_prison *prison;
249         struct dm_kcopyd_client *copier;
250
251         struct work_struct worker;
252         struct workqueue_struct *wq;
253         struct throttle throttle;
254         struct delayed_work waker;
255         struct delayed_work no_space_timeout;
256
257         unsigned long last_commit_jiffies;
258         unsigned int ref_count;
259
260         spinlock_t lock;
261         struct bio_list deferred_flush_bios;
262         struct bio_list deferred_flush_completions;
263         struct list_head prepared_mappings;
264         struct list_head prepared_discards;
265         struct list_head prepared_discards_pt2;
266         struct list_head active_thins;
267
268         struct dm_deferred_set *shared_read_ds;
269         struct dm_deferred_set *all_io_ds;
270
271         struct dm_thin_new_mapping *next_mapping;
272
273         process_bio_fn process_bio;
274         process_bio_fn process_discard;
275
276         process_cell_fn process_cell;
277         process_cell_fn process_discard_cell;
278
279         process_mapping_fn process_prepared_mapping;
280         process_mapping_fn process_prepared_discard;
281         process_mapping_fn process_prepared_discard_pt2;
282
283         struct dm_bio_prison_cell **cell_sort_array;
284
285         mempool_t mapping_pool;
286 };
287
288 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
289
290 static enum pool_mode get_pool_mode(struct pool *pool)
291 {
292         return pool->pf.mode;
293 }
294
295 static void notify_of_pool_mode_change(struct pool *pool)
296 {
297         static const char *descs[] = {
298                 "write",
299                 "out-of-data-space",
300                 "read-only",
301                 "read-only",
302                 "fail"
303         };
304         const char *extra_desc = NULL;
305         enum pool_mode mode = get_pool_mode(pool);
306
307         if (mode == PM_OUT_OF_DATA_SPACE) {
308                 if (!pool->pf.error_if_no_space)
309                         extra_desc = " (queue IO)";
310                 else
311                         extra_desc = " (error IO)";
312         }
313
314         dm_table_event(pool->ti->table);
315         DMINFO("%s: switching pool to %s%s mode",
316                dm_device_name(pool->pool_md),
317                descs[(int)mode], extra_desc ? : "");
318 }
319
320 /*
321  * Target context for a pool.
322  */
323 struct pool_c {
324         struct dm_target *ti;
325         struct pool *pool;
326         struct dm_dev *data_dev;
327         struct dm_dev *metadata_dev;
328
329         dm_block_t low_water_blocks;
330         struct pool_features requested_pf; /* Features requested during table load */
331         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
332 };
333
334 /*
335  * Target context for a thin.
336  */
337 struct thin_c {
338         struct list_head list;
339         struct dm_dev *pool_dev;
340         struct dm_dev *origin_dev;
341         sector_t origin_size;
342         dm_thin_id dev_id;
343
344         struct pool *pool;
345         struct dm_thin_device *td;
346         struct mapped_device *thin_md;
347
348         bool requeue_mode:1;
349         spinlock_t lock;
350         struct list_head deferred_cells;
351         struct bio_list deferred_bio_list;
352         struct bio_list retry_on_resume_list;
353         struct rb_root sort_bio_list; /* sorted list of deferred bios */
354
355         /*
356          * Ensures the thin is not destroyed until the worker has finished
357          * iterating the active_thins list.
358          */
359         refcount_t refcount;
360         struct completion can_destroy;
361 };
362
363 /*----------------------------------------------------------------*/
364
365 static bool block_size_is_power_of_two(struct pool *pool)
366 {
367         return pool->sectors_per_block_shift >= 0;
368 }
369
370 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
371 {
372         return block_size_is_power_of_two(pool) ?
373                 (b << pool->sectors_per_block_shift) :
374                 (b * pool->sectors_per_block);
375 }
376
377 /*----------------------------------------------------------------*/
378
379 struct discard_op {
380         struct thin_c *tc;
381         struct blk_plug plug;
382         struct bio *parent_bio;
383         struct bio *bio;
384 };
385
386 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
387 {
388         BUG_ON(!parent);
389
390         op->tc = tc;
391         blk_start_plug(&op->plug);
392         op->parent_bio = parent;
393         op->bio = NULL;
394 }
395
396 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
397 {
398         struct thin_c *tc = op->tc;
399         sector_t s = block_to_sectors(tc->pool, data_b);
400         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
401
402         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
403                                       &op->bio);
404 }
405
406 static void end_discard(struct discard_op *op, int r)
407 {
408         if (op->bio) {
409                 /*
410                  * Even if one of the calls to issue_discard failed, we
411                  * need to wait for the chain to complete.
412                  */
413                 bio_chain(op->bio, op->parent_bio);
414                 op->bio->bi_opf = REQ_OP_DISCARD;
415                 submit_bio(op->bio);
416         }
417
418         blk_finish_plug(&op->plug);
419
420         /*
421          * Even if r is set, there could be sub discards in flight that we
422          * need to wait for.
423          */
424         if (r && !op->parent_bio->bi_status)
425                 op->parent_bio->bi_status = errno_to_blk_status(r);
426         bio_endio(op->parent_bio);
427 }
428
429 /*----------------------------------------------------------------*/
430
431 /*
432  * wake_worker() is used when new work is queued and when pool_resume is
433  * ready to continue deferred IO processing.
434  */
435 static void wake_worker(struct pool *pool)
436 {
437         queue_work(pool->wq, &pool->worker);
438 }
439
440 /*----------------------------------------------------------------*/
441
442 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
443                       struct dm_bio_prison_cell **cell_result)
444 {
445         int r;
446         struct dm_bio_prison_cell *cell_prealloc;
447
448         /*
449          * Allocate a cell from the prison's mempool.
450          * This might block but it can't fail.
451          */
452         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
453
454         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
455         if (r)
456                 /*
457                  * We reused an old cell; we can get rid of
458                  * the new one.
459                  */
460                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
461
462         return r;
463 }
464
465 static void cell_release(struct pool *pool,
466                          struct dm_bio_prison_cell *cell,
467                          struct bio_list *bios)
468 {
469         dm_cell_release(pool->prison, cell, bios);
470         dm_bio_prison_free_cell(pool->prison, cell);
471 }
472
473 static void cell_visit_release(struct pool *pool,
474                                void (*fn)(void *, struct dm_bio_prison_cell *),
475                                void *context,
476                                struct dm_bio_prison_cell *cell)
477 {
478         dm_cell_visit_release(pool->prison, fn, context, cell);
479         dm_bio_prison_free_cell(pool->prison, cell);
480 }
481
482 static void cell_release_no_holder(struct pool *pool,
483                                    struct dm_bio_prison_cell *cell,
484                                    struct bio_list *bios)
485 {
486         dm_cell_release_no_holder(pool->prison, cell, bios);
487         dm_bio_prison_free_cell(pool->prison, cell);
488 }
489
490 static void cell_error_with_code(struct pool *pool,
491                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
492 {
493         dm_cell_error(pool->prison, cell, error_code);
494         dm_bio_prison_free_cell(pool->prison, cell);
495 }
496
497 static blk_status_t get_pool_io_error_code(struct pool *pool)
498 {
499         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
500 }
501
502 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
503 {
504         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
505 }
506
507 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
508 {
509         cell_error_with_code(pool, cell, 0);
510 }
511
512 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
513 {
514         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
515 }
516
517 /*----------------------------------------------------------------*/
518
519 /*
520  * A global list of pools that uses a struct mapped_device as a key.
521  */
522 static struct dm_thin_pool_table {
523         struct mutex mutex;
524         struct list_head pools;
525 } dm_thin_pool_table;
526
527 static void pool_table_init(void)
528 {
529         mutex_init(&dm_thin_pool_table.mutex);
530         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
531 }
532
533 static void pool_table_exit(void)
534 {
535         mutex_destroy(&dm_thin_pool_table.mutex);
536 }
537
538 static void __pool_table_insert(struct pool *pool)
539 {
540         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
541         list_add(&pool->list, &dm_thin_pool_table.pools);
542 }
543
544 static void __pool_table_remove(struct pool *pool)
545 {
546         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
547         list_del(&pool->list);
548 }
549
550 static struct pool *__pool_table_lookup(struct mapped_device *md)
551 {
552         struct pool *pool = NULL, *tmp;
553
554         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
555
556         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
557                 if (tmp->pool_md == md) {
558                         pool = tmp;
559                         break;
560                 }
561         }
562
563         return pool;
564 }
565
566 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
567 {
568         struct pool *pool = NULL, *tmp;
569
570         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
571
572         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
573                 if (tmp->md_dev == md_dev) {
574                         pool = tmp;
575                         break;
576                 }
577         }
578
579         return pool;
580 }
581
582 /*----------------------------------------------------------------*/
583
584 struct dm_thin_endio_hook {
585         struct thin_c *tc;
586         struct dm_deferred_entry *shared_read_entry;
587         struct dm_deferred_entry *all_io_entry;
588         struct dm_thin_new_mapping *overwrite_mapping;
589         struct rb_node rb_node;
590         struct dm_bio_prison_cell *cell;
591 };
592
593 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
594 {
595         bio_list_merge(bios, master);
596         bio_list_init(master);
597 }
598
599 static void error_bio_list(struct bio_list *bios, blk_status_t error)
600 {
601         struct bio *bio;
602
603         while ((bio = bio_list_pop(bios))) {
604                 bio->bi_status = error;
605                 bio_endio(bio);
606         }
607 }
608
609 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
610                 blk_status_t error)
611 {
612         struct bio_list bios;
613
614         bio_list_init(&bios);
615
616         spin_lock_irq(&tc->lock);
617         __merge_bio_list(&bios, master);
618         spin_unlock_irq(&tc->lock);
619
620         error_bio_list(&bios, error);
621 }
622
623 static void requeue_deferred_cells(struct thin_c *tc)
624 {
625         struct pool *pool = tc->pool;
626         struct list_head cells;
627         struct dm_bio_prison_cell *cell, *tmp;
628
629         INIT_LIST_HEAD(&cells);
630
631         spin_lock_irq(&tc->lock);
632         list_splice_init(&tc->deferred_cells, &cells);
633         spin_unlock_irq(&tc->lock);
634
635         list_for_each_entry_safe(cell, tmp, &cells, user_list)
636                 cell_requeue(pool, cell);
637 }
638
639 static void requeue_io(struct thin_c *tc)
640 {
641         struct bio_list bios;
642
643         bio_list_init(&bios);
644
645         spin_lock_irq(&tc->lock);
646         __merge_bio_list(&bios, &tc->deferred_bio_list);
647         __merge_bio_list(&bios, &tc->retry_on_resume_list);
648         spin_unlock_irq(&tc->lock);
649
650         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
651         requeue_deferred_cells(tc);
652 }
653
654 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
655 {
656         struct thin_c *tc;
657
658         rcu_read_lock();
659         list_for_each_entry_rcu(tc, &pool->active_thins, list)
660                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
661         rcu_read_unlock();
662 }
663
664 static void error_retry_list(struct pool *pool)
665 {
666         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
667 }
668
669 /*
670  * This section of code contains the logic for processing a thin device's IO.
671  * Much of the code depends on pool object resources (lists, workqueues, etc)
672  * but most is exclusively called from the thin target rather than the thin-pool
673  * target.
674  */
675
676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
677 {
678         struct pool *pool = tc->pool;
679         sector_t block_nr = bio->bi_iter.bi_sector;
680
681         if (block_size_is_power_of_two(pool))
682                 block_nr >>= pool->sectors_per_block_shift;
683         else
684                 (void) sector_div(block_nr, pool->sectors_per_block);
685
686         return block_nr;
687 }
688
689 /*
690  * Returns the _complete_ blocks that this bio covers.
691  */
692 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
693                                 dm_block_t *begin, dm_block_t *end)
694 {
695         struct pool *pool = tc->pool;
696         sector_t b = bio->bi_iter.bi_sector;
697         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
698
699         b += pool->sectors_per_block - 1ull; /* so we round up */
700
701         if (block_size_is_power_of_two(pool)) {
702                 b >>= pool->sectors_per_block_shift;
703                 e >>= pool->sectors_per_block_shift;
704         } else {
705                 (void) sector_div(b, pool->sectors_per_block);
706                 (void) sector_div(e, pool->sectors_per_block);
707         }
708
709         if (e < b)
710                 /* Can happen if the bio is within a single block. */
711                 e = b;
712
713         *begin = b;
714         *end = e;
715 }
716
717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
718 {
719         struct pool *pool = tc->pool;
720         sector_t bi_sector = bio->bi_iter.bi_sector;
721
722         bio_set_dev(bio, tc->pool_dev->bdev);
723         if (block_size_is_power_of_two(pool))
724                 bio->bi_iter.bi_sector =
725                         (block << pool->sectors_per_block_shift) |
726                         (bi_sector & (pool->sectors_per_block - 1));
727         else
728                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
729                                  sector_div(bi_sector, pool->sectors_per_block);
730 }
731
732 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
733 {
734         bio_set_dev(bio, tc->origin_dev->bdev);
735 }
736
737 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
738 {
739         return op_is_flush(bio->bi_opf) &&
740                 dm_thin_changed_this_transaction(tc->td);
741 }
742
743 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
744 {
745         struct dm_thin_endio_hook *h;
746
747         if (bio_op(bio) == REQ_OP_DISCARD)
748                 return;
749
750         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
751         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
752 }
753
754 static void issue(struct thin_c *tc, struct bio *bio)
755 {
756         struct pool *pool = tc->pool;
757
758         if (!bio_triggers_commit(tc, bio)) {
759                 dm_submit_bio_remap(bio, NULL);
760                 return;
761         }
762
763         /*
764          * Complete bio with an error if earlier I/O caused changes to
765          * the metadata that can't be committed e.g, due to I/O errors
766          * on the metadata device.
767          */
768         if (dm_thin_aborted_changes(tc->td)) {
769                 bio_io_error(bio);
770                 return;
771         }
772
773         /*
774          * Batch together any bios that trigger commits and then issue a
775          * single commit for them in process_deferred_bios().
776          */
777         spin_lock_irq(&pool->lock);
778         bio_list_add(&pool->deferred_flush_bios, bio);
779         spin_unlock_irq(&pool->lock);
780 }
781
782 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
783 {
784         remap_to_origin(tc, bio);
785         issue(tc, bio);
786 }
787
788 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
789                             dm_block_t block)
790 {
791         remap(tc, bio, block);
792         issue(tc, bio);
793 }
794
795 /*----------------------------------------------------------------*/
796
797 /*
798  * Bio endio functions.
799  */
800 struct dm_thin_new_mapping {
801         struct list_head list;
802
803         bool pass_discard:1;
804         bool maybe_shared:1;
805
806         /*
807          * Track quiescing, copying and zeroing preparation actions.  When this
808          * counter hits zero the block is prepared and can be inserted into the
809          * btree.
810          */
811         atomic_t prepare_actions;
812
813         blk_status_t status;
814         struct thin_c *tc;
815         dm_block_t virt_begin, virt_end;
816         dm_block_t data_block;
817         struct dm_bio_prison_cell *cell;
818
819         /*
820          * If the bio covers the whole area of a block then we can avoid
821          * zeroing or copying.  Instead this bio is hooked.  The bio will
822          * still be in the cell, so care has to be taken to avoid issuing
823          * the bio twice.
824          */
825         struct bio *bio;
826         bio_end_io_t *saved_bi_end_io;
827 };
828
829 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
830 {
831         struct pool *pool = m->tc->pool;
832
833         if (atomic_dec_and_test(&m->prepare_actions)) {
834                 list_add_tail(&m->list, &pool->prepared_mappings);
835                 wake_worker(pool);
836         }
837 }
838
839 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
840 {
841         unsigned long flags;
842         struct pool *pool = m->tc->pool;
843
844         spin_lock_irqsave(&pool->lock, flags);
845         __complete_mapping_preparation(m);
846         spin_unlock_irqrestore(&pool->lock, flags);
847 }
848
849 static void copy_complete(int read_err, unsigned long write_err, void *context)
850 {
851         struct dm_thin_new_mapping *m = context;
852
853         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
854         complete_mapping_preparation(m);
855 }
856
857 static void overwrite_endio(struct bio *bio)
858 {
859         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
860         struct dm_thin_new_mapping *m = h->overwrite_mapping;
861
862         bio->bi_end_io = m->saved_bi_end_io;
863
864         m->status = bio->bi_status;
865         complete_mapping_preparation(m);
866 }
867
868 /*----------------------------------------------------------------*/
869
870 /*
871  * Workqueue.
872  */
873
874 /*
875  * Prepared mapping jobs.
876  */
877
878 /*
879  * This sends the bios in the cell, except the original holder, back
880  * to the deferred_bios list.
881  */
882 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
883 {
884         struct pool *pool = tc->pool;
885         unsigned long flags;
886         int has_work;
887
888         spin_lock_irqsave(&tc->lock, flags);
889         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
890         has_work = !bio_list_empty(&tc->deferred_bio_list);
891         spin_unlock_irqrestore(&tc->lock, flags);
892
893         if (has_work)
894                 wake_worker(pool);
895 }
896
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898
899 struct remap_info {
900         struct thin_c *tc;
901         struct bio_list defer_bios;
902         struct bio_list issue_bios;
903 };
904
905 static void __inc_remap_and_issue_cell(void *context,
906                                        struct dm_bio_prison_cell *cell)
907 {
908         struct remap_info *info = context;
909         struct bio *bio;
910
911         while ((bio = bio_list_pop(&cell->bios))) {
912                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913                         bio_list_add(&info->defer_bios, bio);
914                 else {
915                         inc_all_io_entry(info->tc->pool, bio);
916
917                         /*
918                          * We can't issue the bios with the bio prison lock
919                          * held, so we add them to a list to issue on
920                          * return from this function.
921                          */
922                         bio_list_add(&info->issue_bios, bio);
923                 }
924         }
925 }
926
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928                                      struct dm_bio_prison_cell *cell,
929                                      dm_block_t block)
930 {
931         struct bio *bio;
932         struct remap_info info;
933
934         info.tc = tc;
935         bio_list_init(&info.defer_bios);
936         bio_list_init(&info.issue_bios);
937
938         /*
939          * We have to be careful to inc any bios we're about to issue
940          * before the cell is released, and avoid a race with new bios
941          * being added to the cell.
942          */
943         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944                            &info, cell);
945
946         while ((bio = bio_list_pop(&info.defer_bios)))
947                 thin_defer_bio(tc, bio);
948
949         while ((bio = bio_list_pop(&info.issue_bios)))
950                 remap_and_issue(info.tc, bio, block);
951 }
952
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955         cell_error(m->tc->pool, m->cell);
956         list_del(&m->list);
957         mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962         struct pool *pool = tc->pool;
963
964         /*
965          * If the bio has the REQ_FUA flag set we must commit the metadata
966          * before signaling its completion.
967          */
968         if (!bio_triggers_commit(tc, bio)) {
969                 bio_endio(bio);
970                 return;
971         }
972
973         /*
974          * Complete bio with an error if earlier I/O caused changes to the
975          * metadata that can't be committed, e.g, due to I/O errors on the
976          * metadata device.
977          */
978         if (dm_thin_aborted_changes(tc->td)) {
979                 bio_io_error(bio);
980                 return;
981         }
982
983         /*
984          * Batch together any bios that trigger commits and then issue a
985          * single commit for them in process_deferred_bios().
986          */
987         spin_lock_irq(&pool->lock);
988         bio_list_add(&pool->deferred_flush_completions, bio);
989         spin_unlock_irq(&pool->lock);
990 }
991
992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
993 {
994         struct thin_c *tc = m->tc;
995         struct pool *pool = tc->pool;
996         struct bio *bio = m->bio;
997         int r;
998
999         if (m->status) {
1000                 cell_error(pool, m->cell);
1001                 goto out;
1002         }
1003
1004         /*
1005          * Commit the prepared block into the mapping btree.
1006          * Any I/O for this block arriving after this point will get
1007          * remapped to it directly.
1008          */
1009         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010         if (r) {
1011                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012                 cell_error(pool, m->cell);
1013                 goto out;
1014         }
1015
1016         /*
1017          * Release any bios held while the block was being provisioned.
1018          * If we are processing a write bio that completely covers the block,
1019          * we already processed it so can ignore it now when processing
1020          * the bios in the cell.
1021          */
1022         if (bio) {
1023                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024                 complete_overwrite_bio(tc, bio);
1025         } else {
1026                 inc_all_io_entry(tc->pool, m->cell->holder);
1027                 remap_and_issue(tc, m->cell->holder, m->data_block);
1028                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029         }
1030
1031 out:
1032         list_del(&m->list);
1033         mempool_free(m, &pool->mapping_pool);
1034 }
1035
1036 /*----------------------------------------------------------------*/
1037
1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039 {
1040         struct thin_c *tc = m->tc;
1041
1042         if (m->cell)
1043                 cell_defer_no_holder(tc, m->cell);
1044         mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049         bio_io_error(m->bio);
1050         free_discard_mapping(m);
1051 }
1052
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055         bio_endio(m->bio);
1056         free_discard_mapping(m);
1057 }
1058
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061         int r;
1062         struct thin_c *tc = m->tc;
1063
1064         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065         if (r) {
1066                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067                 bio_io_error(m->bio);
1068         } else
1069                 bio_endio(m->bio);
1070
1071         cell_defer_no_holder(tc, m->cell);
1072         mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074
1075 /*----------------------------------------------------------------*/
1076
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078                                                    struct bio *discard_parent)
1079 {
1080         /*
1081          * We've already unmapped this range of blocks, but before we
1082          * passdown we have to check that these blocks are now unused.
1083          */
1084         int r = 0;
1085         bool shared = true;
1086         struct thin_c *tc = m->tc;
1087         struct pool *pool = tc->pool;
1088         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089         struct discard_op op;
1090
1091         begin_discard(&op, tc, discard_parent);
1092         while (b != end) {
1093                 /* find start of unmapped run */
1094                 for (; b < end; b++) {
1095                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096                         if (r)
1097                                 goto out;
1098
1099                         if (!shared)
1100                                 break;
1101                 }
1102
1103                 if (b == end)
1104                         break;
1105
1106                 /* find end of run */
1107                 for (e = b + 1; e != end; e++) {
1108                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109                         if (r)
1110                                 goto out;
1111
1112                         if (shared)
1113                                 break;
1114                 }
1115
1116                 r = issue_discard(&op, b, e);
1117                 if (r)
1118                         goto out;
1119
1120                 b = e;
1121         }
1122 out:
1123         end_discard(&op, r);
1124 }
1125
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128         unsigned long flags;
1129         struct pool *pool = m->tc->pool;
1130
1131         spin_lock_irqsave(&pool->lock, flags);
1132         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133         spin_unlock_irqrestore(&pool->lock, flags);
1134         wake_worker(pool);
1135 }
1136
1137 static void passdown_endio(struct bio *bio)
1138 {
1139         /*
1140          * It doesn't matter if the passdown discard failed, we still want
1141          * to unmap (we ignore err).
1142          */
1143         queue_passdown_pt2(bio->bi_private);
1144         bio_put(bio);
1145 }
1146
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149         int r;
1150         struct thin_c *tc = m->tc;
1151         struct pool *pool = tc->pool;
1152         struct bio *discard_parent;
1153         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155         /*
1156          * Only this thread allocates blocks, so we can be sure that the
1157          * newly unmapped blocks will not be allocated before the end of
1158          * the function.
1159          */
1160         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161         if (r) {
1162                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163                 bio_io_error(m->bio);
1164                 cell_defer_no_holder(tc, m->cell);
1165                 mempool_free(m, &pool->mapping_pool);
1166                 return;
1167         }
1168
1169         /*
1170          * Increment the unmapped blocks.  This prevents a race between the
1171          * passdown io and reallocation of freed blocks.
1172          */
1173         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174         if (r) {
1175                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176                 bio_io_error(m->bio);
1177                 cell_defer_no_holder(tc, m->cell);
1178                 mempool_free(m, &pool->mapping_pool);
1179                 return;
1180         }
1181
1182         discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1183         discard_parent->bi_end_io = passdown_endio;
1184         discard_parent->bi_private = m;
1185         if (m->maybe_shared)
1186                 passdown_double_checking_shared_status(m, discard_parent);
1187         else {
1188                 struct discard_op op;
1189
1190                 begin_discard(&op, tc, discard_parent);
1191                 r = issue_discard(&op, m->data_block, data_end);
1192                 end_discard(&op, r);
1193         }
1194 }
1195
1196 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1197 {
1198         int r;
1199         struct thin_c *tc = m->tc;
1200         struct pool *pool = tc->pool;
1201
1202         /*
1203          * The passdown has completed, so now we can decrement all those
1204          * unmapped blocks.
1205          */
1206         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1207                                    m->data_block + (m->virt_end - m->virt_begin));
1208         if (r) {
1209                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1210                 bio_io_error(m->bio);
1211         } else
1212                 bio_endio(m->bio);
1213
1214         cell_defer_no_holder(tc, m->cell);
1215         mempool_free(m, &pool->mapping_pool);
1216 }
1217
1218 static void process_prepared(struct pool *pool, struct list_head *head,
1219                              process_mapping_fn *fn)
1220 {
1221         struct list_head maps;
1222         struct dm_thin_new_mapping *m, *tmp;
1223
1224         INIT_LIST_HEAD(&maps);
1225         spin_lock_irq(&pool->lock);
1226         list_splice_init(head, &maps);
1227         spin_unlock_irq(&pool->lock);
1228
1229         list_for_each_entry_safe(m, tmp, &maps, list)
1230                 (*fn)(m);
1231 }
1232
1233 /*
1234  * Deferred bio jobs.
1235  */
1236 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1237 {
1238         return bio->bi_iter.bi_size ==
1239                 (pool->sectors_per_block << SECTOR_SHIFT);
1240 }
1241
1242 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1243 {
1244         return (bio_data_dir(bio) == WRITE) &&
1245                 io_overlaps_block(pool, bio);
1246 }
1247
1248 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1249                                bio_end_io_t *fn)
1250 {
1251         *save = bio->bi_end_io;
1252         bio->bi_end_io = fn;
1253 }
1254
1255 static int ensure_next_mapping(struct pool *pool)
1256 {
1257         if (pool->next_mapping)
1258                 return 0;
1259
1260         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1261
1262         return pool->next_mapping ? 0 : -ENOMEM;
1263 }
1264
1265 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1266 {
1267         struct dm_thin_new_mapping *m = pool->next_mapping;
1268
1269         BUG_ON(!pool->next_mapping);
1270
1271         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1272         INIT_LIST_HEAD(&m->list);
1273         m->bio = NULL;
1274
1275         pool->next_mapping = NULL;
1276
1277         return m;
1278 }
1279
1280 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1281                     sector_t begin, sector_t end)
1282 {
1283         struct dm_io_region to;
1284
1285         to.bdev = tc->pool_dev->bdev;
1286         to.sector = begin;
1287         to.count = end - begin;
1288
1289         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1290 }
1291
1292 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1293                                       dm_block_t data_begin,
1294                                       struct dm_thin_new_mapping *m)
1295 {
1296         struct pool *pool = tc->pool;
1297         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1298
1299         h->overwrite_mapping = m;
1300         m->bio = bio;
1301         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1302         inc_all_io_entry(pool, bio);
1303         remap_and_issue(tc, bio, data_begin);
1304 }
1305
1306 /*
1307  * A partial copy also needs to zero the uncopied region.
1308  */
1309 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1310                           struct dm_dev *origin, dm_block_t data_origin,
1311                           dm_block_t data_dest,
1312                           struct dm_bio_prison_cell *cell, struct bio *bio,
1313                           sector_t len)
1314 {
1315         struct pool *pool = tc->pool;
1316         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1317
1318         m->tc = tc;
1319         m->virt_begin = virt_block;
1320         m->virt_end = virt_block + 1u;
1321         m->data_block = data_dest;
1322         m->cell = cell;
1323
1324         /*
1325          * quiesce action + copy action + an extra reference held for the
1326          * duration of this function (we may need to inc later for a
1327          * partial zero).
1328          */
1329         atomic_set(&m->prepare_actions, 3);
1330
1331         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1332                 complete_mapping_preparation(m); /* already quiesced */
1333
1334         /*
1335          * IO to pool_dev remaps to the pool target's data_dev.
1336          *
1337          * If the whole block of data is being overwritten, we can issue the
1338          * bio immediately. Otherwise we use kcopyd to clone the data first.
1339          */
1340         if (io_overwrites_block(pool, bio))
1341                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1342         else {
1343                 struct dm_io_region from, to;
1344
1345                 from.bdev = origin->bdev;
1346                 from.sector = data_origin * pool->sectors_per_block;
1347                 from.count = len;
1348
1349                 to.bdev = tc->pool_dev->bdev;
1350                 to.sector = data_dest * pool->sectors_per_block;
1351                 to.count = len;
1352
1353                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1354                                0, copy_complete, m);
1355
1356                 /*
1357                  * Do we need to zero a tail region?
1358                  */
1359                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1360                         atomic_inc(&m->prepare_actions);
1361                         ll_zero(tc, m,
1362                                 data_dest * pool->sectors_per_block + len,
1363                                 (data_dest + 1) * pool->sectors_per_block);
1364                 }
1365         }
1366
1367         complete_mapping_preparation(m); /* drop our ref */
1368 }
1369
1370 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1371                                    dm_block_t data_origin, dm_block_t data_dest,
1372                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1373 {
1374         schedule_copy(tc, virt_block, tc->pool_dev,
1375                       data_origin, data_dest, cell, bio,
1376                       tc->pool->sectors_per_block);
1377 }
1378
1379 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1380                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1381                           struct bio *bio)
1382 {
1383         struct pool *pool = tc->pool;
1384         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1385
1386         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1387         m->tc = tc;
1388         m->virt_begin = virt_block;
1389         m->virt_end = virt_block + 1u;
1390         m->data_block = data_block;
1391         m->cell = cell;
1392
1393         /*
1394          * If the whole block of data is being overwritten or we are not
1395          * zeroing pre-existing data, we can issue the bio immediately.
1396          * Otherwise we use kcopyd to zero the data first.
1397          */
1398         if (pool->pf.zero_new_blocks) {
1399                 if (io_overwrites_block(pool, bio))
1400                         remap_and_issue_overwrite(tc, bio, data_block, m);
1401                 else
1402                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1403                                 (data_block + 1) * pool->sectors_per_block);
1404         } else
1405                 process_prepared_mapping(m);
1406 }
1407
1408 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1409                                    dm_block_t data_dest,
1410                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1411 {
1412         struct pool *pool = tc->pool;
1413         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1414         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1415
1416         if (virt_block_end <= tc->origin_size)
1417                 schedule_copy(tc, virt_block, tc->origin_dev,
1418                               virt_block, data_dest, cell, bio,
1419                               pool->sectors_per_block);
1420
1421         else if (virt_block_begin < tc->origin_size)
1422                 schedule_copy(tc, virt_block, tc->origin_dev,
1423                               virt_block, data_dest, cell, bio,
1424                               tc->origin_size - virt_block_begin);
1425
1426         else
1427                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1428 }
1429
1430 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1431
1432 static void requeue_bios(struct pool *pool);
1433
1434 static bool is_read_only_pool_mode(enum pool_mode mode)
1435 {
1436         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1437 }
1438
1439 static bool is_read_only(struct pool *pool)
1440 {
1441         return is_read_only_pool_mode(get_pool_mode(pool));
1442 }
1443
1444 static void check_for_metadata_space(struct pool *pool)
1445 {
1446         int r;
1447         const char *ooms_reason = NULL;
1448         dm_block_t nr_free;
1449
1450         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1451         if (r)
1452                 ooms_reason = "Could not get free metadata blocks";
1453         else if (!nr_free)
1454                 ooms_reason = "No free metadata blocks";
1455
1456         if (ooms_reason && !is_read_only(pool)) {
1457                 DMERR("%s", ooms_reason);
1458                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1459         }
1460 }
1461
1462 static void check_for_data_space(struct pool *pool)
1463 {
1464         int r;
1465         dm_block_t nr_free;
1466
1467         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1468                 return;
1469
1470         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1471         if (r)
1472                 return;
1473
1474         if (nr_free) {
1475                 set_pool_mode(pool, PM_WRITE);
1476                 requeue_bios(pool);
1477         }
1478 }
1479
1480 /*
1481  * A non-zero return indicates read_only or fail_io mode.
1482  * Many callers don't care about the return value.
1483  */
1484 static int commit(struct pool *pool)
1485 {
1486         int r;
1487
1488         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1489                 return -EINVAL;
1490
1491         r = dm_pool_commit_metadata(pool->pmd);
1492         if (r)
1493                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1494         else {
1495                 check_for_metadata_space(pool);
1496                 check_for_data_space(pool);
1497         }
1498
1499         return r;
1500 }
1501
1502 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1503 {
1504         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1505                 DMWARN("%s: reached low water mark for data device: sending event.",
1506                        dm_device_name(pool->pool_md));
1507                 spin_lock_irq(&pool->lock);
1508                 pool->low_water_triggered = true;
1509                 spin_unlock_irq(&pool->lock);
1510                 dm_table_event(pool->ti->table);
1511         }
1512 }
1513
1514 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1515 {
1516         int r;
1517         dm_block_t free_blocks;
1518         struct pool *pool = tc->pool;
1519
1520         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1521                 return -EINVAL;
1522
1523         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1524         if (r) {
1525                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1526                 return r;
1527         }
1528
1529         check_low_water_mark(pool, free_blocks);
1530
1531         if (!free_blocks) {
1532                 /*
1533                  * Try to commit to see if that will free up some
1534                  * more space.
1535                  */
1536                 r = commit(pool);
1537                 if (r)
1538                         return r;
1539
1540                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1541                 if (r) {
1542                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1543                         return r;
1544                 }
1545
1546                 if (!free_blocks) {
1547                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1548                         return -ENOSPC;
1549                 }
1550         }
1551
1552         r = dm_pool_alloc_data_block(pool->pmd, result);
1553         if (r) {
1554                 if (r == -ENOSPC)
1555                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1556                 else
1557                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1558                 return r;
1559         }
1560
1561         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1562         if (r) {
1563                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1564                 return r;
1565         }
1566
1567         if (!free_blocks) {
1568                 /* Let's commit before we use up the metadata reserve. */
1569                 r = commit(pool);
1570                 if (r)
1571                         return r;
1572         }
1573
1574         return 0;
1575 }
1576
1577 /*
1578  * If we have run out of space, queue bios until the device is
1579  * resumed, presumably after having been reloaded with more space.
1580  */
1581 static void retry_on_resume(struct bio *bio)
1582 {
1583         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1584         struct thin_c *tc = h->tc;
1585
1586         spin_lock_irq(&tc->lock);
1587         bio_list_add(&tc->retry_on_resume_list, bio);
1588         spin_unlock_irq(&tc->lock);
1589 }
1590
1591 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1592 {
1593         enum pool_mode m = get_pool_mode(pool);
1594
1595         switch (m) {
1596         case PM_WRITE:
1597                 /* Shouldn't get here */
1598                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1599                 return BLK_STS_IOERR;
1600
1601         case PM_OUT_OF_DATA_SPACE:
1602                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1603
1604         case PM_OUT_OF_METADATA_SPACE:
1605         case PM_READ_ONLY:
1606         case PM_FAIL:
1607                 return BLK_STS_IOERR;
1608         default:
1609                 /* Shouldn't get here */
1610                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1611                 return BLK_STS_IOERR;
1612         }
1613 }
1614
1615 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1616 {
1617         blk_status_t error = should_error_unserviceable_bio(pool);
1618
1619         if (error) {
1620                 bio->bi_status = error;
1621                 bio_endio(bio);
1622         } else
1623                 retry_on_resume(bio);
1624 }
1625
1626 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1627 {
1628         struct bio *bio;
1629         struct bio_list bios;
1630         blk_status_t error;
1631
1632         error = should_error_unserviceable_bio(pool);
1633         if (error) {
1634                 cell_error_with_code(pool, cell, error);
1635                 return;
1636         }
1637
1638         bio_list_init(&bios);
1639         cell_release(pool, cell, &bios);
1640
1641         while ((bio = bio_list_pop(&bios)))
1642                 retry_on_resume(bio);
1643 }
1644
1645 static void process_discard_cell_no_passdown(struct thin_c *tc,
1646                                              struct dm_bio_prison_cell *virt_cell)
1647 {
1648         struct pool *pool = tc->pool;
1649         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1650
1651         /*
1652          * We don't need to lock the data blocks, since there's no
1653          * passdown.  We only lock data blocks for allocation and breaking sharing.
1654          */
1655         m->tc = tc;
1656         m->virt_begin = virt_cell->key.block_begin;
1657         m->virt_end = virt_cell->key.block_end;
1658         m->cell = virt_cell;
1659         m->bio = virt_cell->holder;
1660
1661         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1662                 pool->process_prepared_discard(m);
1663 }
1664
1665 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1666                                  struct bio *bio)
1667 {
1668         struct pool *pool = tc->pool;
1669
1670         int r;
1671         bool maybe_shared;
1672         struct dm_cell_key data_key;
1673         struct dm_bio_prison_cell *data_cell;
1674         struct dm_thin_new_mapping *m;
1675         dm_block_t virt_begin, virt_end, data_begin;
1676
1677         while (begin != end) {
1678                 r = ensure_next_mapping(pool);
1679                 if (r)
1680                         /* we did our best */
1681                         return;
1682
1683                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1684                                               &data_begin, &maybe_shared);
1685                 if (r)
1686                         /*
1687                          * Silently fail, letting any mappings we've
1688                          * created complete.
1689                          */
1690                         break;
1691
1692                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1693                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1694                         /* contention, we'll give up with this range */
1695                         begin = virt_end;
1696                         continue;
1697                 }
1698
1699                 /*
1700                  * IO may still be going to the destination block.  We must
1701                  * quiesce before we can do the removal.
1702                  */
1703                 m = get_next_mapping(pool);
1704                 m->tc = tc;
1705                 m->maybe_shared = maybe_shared;
1706                 m->virt_begin = virt_begin;
1707                 m->virt_end = virt_end;
1708                 m->data_block = data_begin;
1709                 m->cell = data_cell;
1710                 m->bio = bio;
1711
1712                 /*
1713                  * The parent bio must not complete before sub discard bios are
1714                  * chained to it (see end_discard's bio_chain)!
1715                  *
1716                  * This per-mapping bi_remaining increment is paired with
1717                  * the implicit decrement that occurs via bio_endio() in
1718                  * end_discard().
1719                  */
1720                 bio_inc_remaining(bio);
1721                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1722                         pool->process_prepared_discard(m);
1723
1724                 begin = virt_end;
1725         }
1726 }
1727
1728 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1729 {
1730         struct bio *bio = virt_cell->holder;
1731         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1732
1733         /*
1734          * The virt_cell will only get freed once the origin bio completes.
1735          * This means it will remain locked while all the individual
1736          * passdown bios are in flight.
1737          */
1738         h->cell = virt_cell;
1739         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1740
1741         /*
1742          * We complete the bio now, knowing that the bi_remaining field
1743          * will prevent completion until the sub range discards have
1744          * completed.
1745          */
1746         bio_endio(bio);
1747 }
1748
1749 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1750 {
1751         dm_block_t begin, end;
1752         struct dm_cell_key virt_key;
1753         struct dm_bio_prison_cell *virt_cell;
1754
1755         get_bio_block_range(tc, bio, &begin, &end);
1756         if (begin == end) {
1757                 /*
1758                  * The discard covers less than a block.
1759                  */
1760                 bio_endio(bio);
1761                 return;
1762         }
1763
1764         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1765         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1766                 /*
1767                  * Potential starvation issue: We're relying on the
1768                  * fs/application being well behaved, and not trying to
1769                  * send IO to a region at the same time as discarding it.
1770                  * If they do this persistently then it's possible this
1771                  * cell will never be granted.
1772                  */
1773                 return;
1774
1775         tc->pool->process_discard_cell(tc, virt_cell);
1776 }
1777
1778 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1779                           struct dm_cell_key *key,
1780                           struct dm_thin_lookup_result *lookup_result,
1781                           struct dm_bio_prison_cell *cell)
1782 {
1783         int r;
1784         dm_block_t data_block;
1785         struct pool *pool = tc->pool;
1786
1787         r = alloc_data_block(tc, &data_block);
1788         switch (r) {
1789         case 0:
1790                 schedule_internal_copy(tc, block, lookup_result->block,
1791                                        data_block, cell, bio);
1792                 break;
1793
1794         case -ENOSPC:
1795                 retry_bios_on_resume(pool, cell);
1796                 break;
1797
1798         default:
1799                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1800                             __func__, r);
1801                 cell_error(pool, cell);
1802                 break;
1803         }
1804 }
1805
1806 static void __remap_and_issue_shared_cell(void *context,
1807                                           struct dm_bio_prison_cell *cell)
1808 {
1809         struct remap_info *info = context;
1810         struct bio *bio;
1811
1812         while ((bio = bio_list_pop(&cell->bios))) {
1813                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1814                     bio_op(bio) == REQ_OP_DISCARD)
1815                         bio_list_add(&info->defer_bios, bio);
1816                 else {
1817                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1818
1819                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1820                         inc_all_io_entry(info->tc->pool, bio);
1821                         bio_list_add(&info->issue_bios, bio);
1822                 }
1823         }
1824 }
1825
1826 static void remap_and_issue_shared_cell(struct thin_c *tc,
1827                                         struct dm_bio_prison_cell *cell,
1828                                         dm_block_t block)
1829 {
1830         struct bio *bio;
1831         struct remap_info info;
1832
1833         info.tc = tc;
1834         bio_list_init(&info.defer_bios);
1835         bio_list_init(&info.issue_bios);
1836
1837         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1838                            &info, cell);
1839
1840         while ((bio = bio_list_pop(&info.defer_bios)))
1841                 thin_defer_bio(tc, bio);
1842
1843         while ((bio = bio_list_pop(&info.issue_bios)))
1844                 remap_and_issue(tc, bio, block);
1845 }
1846
1847 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1848                                dm_block_t block,
1849                                struct dm_thin_lookup_result *lookup_result,
1850                                struct dm_bio_prison_cell *virt_cell)
1851 {
1852         struct dm_bio_prison_cell *data_cell;
1853         struct pool *pool = tc->pool;
1854         struct dm_cell_key key;
1855
1856         /*
1857          * If cell is already occupied, then sharing is already in the process
1858          * of being broken so we have nothing further to do here.
1859          */
1860         build_data_key(tc->td, lookup_result->block, &key);
1861         if (bio_detain(pool, &key, bio, &data_cell)) {
1862                 cell_defer_no_holder(tc, virt_cell);
1863                 return;
1864         }
1865
1866         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1867                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1868                 cell_defer_no_holder(tc, virt_cell);
1869         } else {
1870                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1871
1872                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1873                 inc_all_io_entry(pool, bio);
1874                 remap_and_issue(tc, bio, lookup_result->block);
1875
1876                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1877                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1878         }
1879 }
1880
1881 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1882                             struct dm_bio_prison_cell *cell)
1883 {
1884         int r;
1885         dm_block_t data_block;
1886         struct pool *pool = tc->pool;
1887
1888         /*
1889          * Remap empty bios (flushes) immediately, without provisioning.
1890          */
1891         if (!bio->bi_iter.bi_size) {
1892                 inc_all_io_entry(pool, bio);
1893                 cell_defer_no_holder(tc, cell);
1894
1895                 remap_and_issue(tc, bio, 0);
1896                 return;
1897         }
1898
1899         /*
1900          * Fill read bios with zeroes and complete them immediately.
1901          */
1902         if (bio_data_dir(bio) == READ) {
1903                 zero_fill_bio(bio);
1904                 cell_defer_no_holder(tc, cell);
1905                 bio_endio(bio);
1906                 return;
1907         }
1908
1909         r = alloc_data_block(tc, &data_block);
1910         switch (r) {
1911         case 0:
1912                 if (tc->origin_dev)
1913                         schedule_external_copy(tc, block, data_block, cell, bio);
1914                 else
1915                         schedule_zero(tc, block, data_block, cell, bio);
1916                 break;
1917
1918         case -ENOSPC:
1919                 retry_bios_on_resume(pool, cell);
1920                 break;
1921
1922         default:
1923                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1924                             __func__, r);
1925                 cell_error(pool, cell);
1926                 break;
1927         }
1928 }
1929
1930 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1931 {
1932         int r;
1933         struct pool *pool = tc->pool;
1934         struct bio *bio = cell->holder;
1935         dm_block_t block = get_bio_block(tc, bio);
1936         struct dm_thin_lookup_result lookup_result;
1937
1938         if (tc->requeue_mode) {
1939                 cell_requeue(pool, cell);
1940                 return;
1941         }
1942
1943         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1944         switch (r) {
1945         case 0:
1946                 if (lookup_result.shared)
1947                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1948                 else {
1949                         inc_all_io_entry(pool, bio);
1950                         remap_and_issue(tc, bio, lookup_result.block);
1951                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1952                 }
1953                 break;
1954
1955         case -ENODATA:
1956                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1957                         inc_all_io_entry(pool, bio);
1958                         cell_defer_no_holder(tc, cell);
1959
1960                         if (bio_end_sector(bio) <= tc->origin_size)
1961                                 remap_to_origin_and_issue(tc, bio);
1962
1963                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1964                                 zero_fill_bio(bio);
1965                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1966                                 remap_to_origin_and_issue(tc, bio);
1967
1968                         } else {
1969                                 zero_fill_bio(bio);
1970                                 bio_endio(bio);
1971                         }
1972                 } else
1973                         provision_block(tc, bio, block, cell);
1974                 break;
1975
1976         default:
1977                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1978                             __func__, r);
1979                 cell_defer_no_holder(tc, cell);
1980                 bio_io_error(bio);
1981                 break;
1982         }
1983 }
1984
1985 static void process_bio(struct thin_c *tc, struct bio *bio)
1986 {
1987         struct pool *pool = tc->pool;
1988         dm_block_t block = get_bio_block(tc, bio);
1989         struct dm_bio_prison_cell *cell;
1990         struct dm_cell_key key;
1991
1992         /*
1993          * If cell is already occupied, then the block is already
1994          * being provisioned so we have nothing further to do here.
1995          */
1996         build_virtual_key(tc->td, block, &key);
1997         if (bio_detain(pool, &key, bio, &cell))
1998                 return;
1999
2000         process_cell(tc, cell);
2001 }
2002
2003 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2004                                     struct dm_bio_prison_cell *cell)
2005 {
2006         int r;
2007         int rw = bio_data_dir(bio);
2008         dm_block_t block = get_bio_block(tc, bio);
2009         struct dm_thin_lookup_result lookup_result;
2010
2011         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2012         switch (r) {
2013         case 0:
2014                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2015                         handle_unserviceable_bio(tc->pool, bio);
2016                         if (cell)
2017                                 cell_defer_no_holder(tc, cell);
2018                 } else {
2019                         inc_all_io_entry(tc->pool, bio);
2020                         remap_and_issue(tc, bio, lookup_result.block);
2021                         if (cell)
2022                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2023                 }
2024                 break;
2025
2026         case -ENODATA:
2027                 if (cell)
2028                         cell_defer_no_holder(tc, cell);
2029                 if (rw != READ) {
2030                         handle_unserviceable_bio(tc->pool, bio);
2031                         break;
2032                 }
2033
2034                 if (tc->origin_dev) {
2035                         inc_all_io_entry(tc->pool, bio);
2036                         remap_to_origin_and_issue(tc, bio);
2037                         break;
2038                 }
2039
2040                 zero_fill_bio(bio);
2041                 bio_endio(bio);
2042                 break;
2043
2044         default:
2045                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2046                             __func__, r);
2047                 if (cell)
2048                         cell_defer_no_holder(tc, cell);
2049                 bio_io_error(bio);
2050                 break;
2051         }
2052 }
2053
2054 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2055 {
2056         __process_bio_read_only(tc, bio, NULL);
2057 }
2058
2059 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2060 {
2061         __process_bio_read_only(tc, cell->holder, cell);
2062 }
2063
2064 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2065 {
2066         bio_endio(bio);
2067 }
2068
2069 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2070 {
2071         bio_io_error(bio);
2072 }
2073
2074 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2075 {
2076         cell_success(tc->pool, cell);
2077 }
2078
2079 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2080 {
2081         cell_error(tc->pool, cell);
2082 }
2083
2084 /*
2085  * FIXME: should we also commit due to size of transaction, measured in
2086  * metadata blocks?
2087  */
2088 static int need_commit_due_to_time(struct pool *pool)
2089 {
2090         return !time_in_range(jiffies, pool->last_commit_jiffies,
2091                               pool->last_commit_jiffies + COMMIT_PERIOD);
2092 }
2093
2094 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2095 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2096
2097 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2098 {
2099         struct rb_node **rbp, *parent;
2100         struct dm_thin_endio_hook *pbd;
2101         sector_t bi_sector = bio->bi_iter.bi_sector;
2102
2103         rbp = &tc->sort_bio_list.rb_node;
2104         parent = NULL;
2105         while (*rbp) {
2106                 parent = *rbp;
2107                 pbd = thin_pbd(parent);
2108
2109                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2110                         rbp = &(*rbp)->rb_left;
2111                 else
2112                         rbp = &(*rbp)->rb_right;
2113         }
2114
2115         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2116         rb_link_node(&pbd->rb_node, parent, rbp);
2117         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2118 }
2119
2120 static void __extract_sorted_bios(struct thin_c *tc)
2121 {
2122         struct rb_node *node;
2123         struct dm_thin_endio_hook *pbd;
2124         struct bio *bio;
2125
2126         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2127                 pbd = thin_pbd(node);
2128                 bio = thin_bio(pbd);
2129
2130                 bio_list_add(&tc->deferred_bio_list, bio);
2131                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2132         }
2133
2134         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2135 }
2136
2137 static void __sort_thin_deferred_bios(struct thin_c *tc)
2138 {
2139         struct bio *bio;
2140         struct bio_list bios;
2141
2142         bio_list_init(&bios);
2143         bio_list_merge(&bios, &tc->deferred_bio_list);
2144         bio_list_init(&tc->deferred_bio_list);
2145
2146         /* Sort deferred_bio_list using rb-tree */
2147         while ((bio = bio_list_pop(&bios)))
2148                 __thin_bio_rb_add(tc, bio);
2149
2150         /*
2151          * Transfer the sorted bios in sort_bio_list back to
2152          * deferred_bio_list to allow lockless submission of
2153          * all bios.
2154          */
2155         __extract_sorted_bios(tc);
2156 }
2157
2158 static void process_thin_deferred_bios(struct thin_c *tc)
2159 {
2160         struct pool *pool = tc->pool;
2161         struct bio *bio;
2162         struct bio_list bios;
2163         struct blk_plug plug;
2164         unsigned int count = 0;
2165
2166         if (tc->requeue_mode) {
2167                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2168                                 BLK_STS_DM_REQUEUE);
2169                 return;
2170         }
2171
2172         bio_list_init(&bios);
2173
2174         spin_lock_irq(&tc->lock);
2175
2176         if (bio_list_empty(&tc->deferred_bio_list)) {
2177                 spin_unlock_irq(&tc->lock);
2178                 return;
2179         }
2180
2181         __sort_thin_deferred_bios(tc);
2182
2183         bio_list_merge(&bios, &tc->deferred_bio_list);
2184         bio_list_init(&tc->deferred_bio_list);
2185
2186         spin_unlock_irq(&tc->lock);
2187
2188         blk_start_plug(&plug);
2189         while ((bio = bio_list_pop(&bios))) {
2190                 /*
2191                  * If we've got no free new_mapping structs, and processing
2192                  * this bio might require one, we pause until there are some
2193                  * prepared mappings to process.
2194                  */
2195                 if (ensure_next_mapping(pool)) {
2196                         spin_lock_irq(&tc->lock);
2197                         bio_list_add(&tc->deferred_bio_list, bio);
2198                         bio_list_merge(&tc->deferred_bio_list, &bios);
2199                         spin_unlock_irq(&tc->lock);
2200                         break;
2201                 }
2202
2203                 if (bio_op(bio) == REQ_OP_DISCARD)
2204                         pool->process_discard(tc, bio);
2205                 else
2206                         pool->process_bio(tc, bio);
2207
2208                 if ((count++ & 127) == 0) {
2209                         throttle_work_update(&pool->throttle);
2210                         dm_pool_issue_prefetches(pool->pmd);
2211                 }
2212                 cond_resched();
2213         }
2214         blk_finish_plug(&plug);
2215 }
2216
2217 static int cmp_cells(const void *lhs, const void *rhs)
2218 {
2219         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2220         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2221
2222         BUG_ON(!lhs_cell->holder);
2223         BUG_ON(!rhs_cell->holder);
2224
2225         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2226                 return -1;
2227
2228         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2229                 return 1;
2230
2231         return 0;
2232 }
2233
2234 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2235 {
2236         unsigned int count = 0;
2237         struct dm_bio_prison_cell *cell, *tmp;
2238
2239         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2240                 if (count >= CELL_SORT_ARRAY_SIZE)
2241                         break;
2242
2243                 pool->cell_sort_array[count++] = cell;
2244                 list_del(&cell->user_list);
2245         }
2246
2247         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2248
2249         return count;
2250 }
2251
2252 static void process_thin_deferred_cells(struct thin_c *tc)
2253 {
2254         struct pool *pool = tc->pool;
2255         struct list_head cells;
2256         struct dm_bio_prison_cell *cell;
2257         unsigned int i, j, count;
2258
2259         INIT_LIST_HEAD(&cells);
2260
2261         spin_lock_irq(&tc->lock);
2262         list_splice_init(&tc->deferred_cells, &cells);
2263         spin_unlock_irq(&tc->lock);
2264
2265         if (list_empty(&cells))
2266                 return;
2267
2268         do {
2269                 count = sort_cells(tc->pool, &cells);
2270
2271                 for (i = 0; i < count; i++) {
2272                         cell = pool->cell_sort_array[i];
2273                         BUG_ON(!cell->holder);
2274
2275                         /*
2276                          * If we've got no free new_mapping structs, and processing
2277                          * this bio might require one, we pause until there are some
2278                          * prepared mappings to process.
2279                          */
2280                         if (ensure_next_mapping(pool)) {
2281                                 for (j = i; j < count; j++)
2282                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2283
2284                                 spin_lock_irq(&tc->lock);
2285                                 list_splice(&cells, &tc->deferred_cells);
2286                                 spin_unlock_irq(&tc->lock);
2287                                 return;
2288                         }
2289
2290                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2291                                 pool->process_discard_cell(tc, cell);
2292                         else
2293                                 pool->process_cell(tc, cell);
2294                 }
2295                 cond_resched();
2296         } while (!list_empty(&cells));
2297 }
2298
2299 static void thin_get(struct thin_c *tc);
2300 static void thin_put(struct thin_c *tc);
2301
2302 /*
2303  * We can't hold rcu_read_lock() around code that can block.  So we
2304  * find a thin with the rcu lock held; bump a refcount; then drop
2305  * the lock.
2306  */
2307 static struct thin_c *get_first_thin(struct pool *pool)
2308 {
2309         struct thin_c *tc = NULL;
2310
2311         rcu_read_lock();
2312         if (!list_empty(&pool->active_thins)) {
2313                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2314                 thin_get(tc);
2315         }
2316         rcu_read_unlock();
2317
2318         return tc;
2319 }
2320
2321 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2322 {
2323         struct thin_c *old_tc = tc;
2324
2325         rcu_read_lock();
2326         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2327                 thin_get(tc);
2328                 thin_put(old_tc);
2329                 rcu_read_unlock();
2330                 return tc;
2331         }
2332         thin_put(old_tc);
2333         rcu_read_unlock();
2334
2335         return NULL;
2336 }
2337
2338 static void process_deferred_bios(struct pool *pool)
2339 {
2340         struct bio *bio;
2341         struct bio_list bios, bio_completions;
2342         struct thin_c *tc;
2343
2344         tc = get_first_thin(pool);
2345         while (tc) {
2346                 process_thin_deferred_cells(tc);
2347                 process_thin_deferred_bios(tc);
2348                 tc = get_next_thin(pool, tc);
2349         }
2350
2351         /*
2352          * If there are any deferred flush bios, we must commit the metadata
2353          * before issuing them or signaling their completion.
2354          */
2355         bio_list_init(&bios);
2356         bio_list_init(&bio_completions);
2357
2358         spin_lock_irq(&pool->lock);
2359         bio_list_merge(&bios, &pool->deferred_flush_bios);
2360         bio_list_init(&pool->deferred_flush_bios);
2361
2362         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2363         bio_list_init(&pool->deferred_flush_completions);
2364         spin_unlock_irq(&pool->lock);
2365
2366         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2367             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2368                 return;
2369
2370         if (commit(pool)) {
2371                 bio_list_merge(&bios, &bio_completions);
2372
2373                 while ((bio = bio_list_pop(&bios)))
2374                         bio_io_error(bio);
2375                 return;
2376         }
2377         pool->last_commit_jiffies = jiffies;
2378
2379         while ((bio = bio_list_pop(&bio_completions)))
2380                 bio_endio(bio);
2381
2382         while ((bio = bio_list_pop(&bios))) {
2383                 /*
2384                  * The data device was flushed as part of metadata commit,
2385                  * so complete redundant flushes immediately.
2386                  */
2387                 if (bio->bi_opf & REQ_PREFLUSH)
2388                         bio_endio(bio);
2389                 else
2390                         dm_submit_bio_remap(bio, NULL);
2391         }
2392 }
2393
2394 static void do_worker(struct work_struct *ws)
2395 {
2396         struct pool *pool = container_of(ws, struct pool, worker);
2397
2398         throttle_work_start(&pool->throttle);
2399         dm_pool_issue_prefetches(pool->pmd);
2400         throttle_work_update(&pool->throttle);
2401         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2402         throttle_work_update(&pool->throttle);
2403         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2404         throttle_work_update(&pool->throttle);
2405         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2406         throttle_work_update(&pool->throttle);
2407         process_deferred_bios(pool);
2408         throttle_work_complete(&pool->throttle);
2409 }
2410
2411 /*
2412  * We want to commit periodically so that not too much
2413  * unwritten data builds up.
2414  */
2415 static void do_waker(struct work_struct *ws)
2416 {
2417         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2418
2419         wake_worker(pool);
2420         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2421 }
2422
2423 /*
2424  * We're holding onto IO to allow userland time to react.  After the
2425  * timeout either the pool will have been resized (and thus back in
2426  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2427  */
2428 static void do_no_space_timeout(struct work_struct *ws)
2429 {
2430         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2431                                          no_space_timeout);
2432
2433         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2434                 pool->pf.error_if_no_space = true;
2435                 notify_of_pool_mode_change(pool);
2436                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2437         }
2438 }
2439
2440 /*----------------------------------------------------------------*/
2441
2442 struct pool_work {
2443         struct work_struct worker;
2444         struct completion complete;
2445 };
2446
2447 static struct pool_work *to_pool_work(struct work_struct *ws)
2448 {
2449         return container_of(ws, struct pool_work, worker);
2450 }
2451
2452 static void pool_work_complete(struct pool_work *pw)
2453 {
2454         complete(&pw->complete);
2455 }
2456
2457 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2458                            void (*fn)(struct work_struct *))
2459 {
2460         INIT_WORK_ONSTACK(&pw->worker, fn);
2461         init_completion(&pw->complete);
2462         queue_work(pool->wq, &pw->worker);
2463         wait_for_completion(&pw->complete);
2464 }
2465
2466 /*----------------------------------------------------------------*/
2467
2468 struct noflush_work {
2469         struct pool_work pw;
2470         struct thin_c *tc;
2471 };
2472
2473 static struct noflush_work *to_noflush(struct work_struct *ws)
2474 {
2475         return container_of(to_pool_work(ws), struct noflush_work, pw);
2476 }
2477
2478 static void do_noflush_start(struct work_struct *ws)
2479 {
2480         struct noflush_work *w = to_noflush(ws);
2481
2482         w->tc->requeue_mode = true;
2483         requeue_io(w->tc);
2484         pool_work_complete(&w->pw);
2485 }
2486
2487 static void do_noflush_stop(struct work_struct *ws)
2488 {
2489         struct noflush_work *w = to_noflush(ws);
2490
2491         w->tc->requeue_mode = false;
2492         pool_work_complete(&w->pw);
2493 }
2494
2495 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2496 {
2497         struct noflush_work w;
2498
2499         w.tc = tc;
2500         pool_work_wait(&w.pw, tc->pool, fn);
2501 }
2502
2503 /*----------------------------------------------------------------*/
2504
2505 static bool passdown_enabled(struct pool_c *pt)
2506 {
2507         return pt->adjusted_pf.discard_passdown;
2508 }
2509
2510 static void set_discard_callbacks(struct pool *pool)
2511 {
2512         struct pool_c *pt = pool->ti->private;
2513
2514         if (passdown_enabled(pt)) {
2515                 pool->process_discard_cell = process_discard_cell_passdown;
2516                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2517                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2518         } else {
2519                 pool->process_discard_cell = process_discard_cell_no_passdown;
2520                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2521         }
2522 }
2523
2524 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2525 {
2526         struct pool_c *pt = pool->ti->private;
2527         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2528         enum pool_mode old_mode = get_pool_mode(pool);
2529         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2530
2531         /*
2532          * Never allow the pool to transition to PM_WRITE mode if user
2533          * intervention is required to verify metadata and data consistency.
2534          */
2535         if (new_mode == PM_WRITE && needs_check) {
2536                 DMERR("%s: unable to switch pool to write mode until repaired.",
2537                       dm_device_name(pool->pool_md));
2538                 if (old_mode != new_mode)
2539                         new_mode = old_mode;
2540                 else
2541                         new_mode = PM_READ_ONLY;
2542         }
2543         /*
2544          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2545          * not going to recover without a thin_repair.  So we never let the
2546          * pool move out of the old mode.
2547          */
2548         if (old_mode == PM_FAIL)
2549                 new_mode = old_mode;
2550
2551         switch (new_mode) {
2552         case PM_FAIL:
2553                 dm_pool_metadata_read_only(pool->pmd);
2554                 pool->process_bio = process_bio_fail;
2555                 pool->process_discard = process_bio_fail;
2556                 pool->process_cell = process_cell_fail;
2557                 pool->process_discard_cell = process_cell_fail;
2558                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2559                 pool->process_prepared_discard = process_prepared_discard_fail;
2560
2561                 error_retry_list(pool);
2562                 break;
2563
2564         case PM_OUT_OF_METADATA_SPACE:
2565         case PM_READ_ONLY:
2566                 dm_pool_metadata_read_only(pool->pmd);
2567                 pool->process_bio = process_bio_read_only;
2568                 pool->process_discard = process_bio_success;
2569                 pool->process_cell = process_cell_read_only;
2570                 pool->process_discard_cell = process_cell_success;
2571                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2572                 pool->process_prepared_discard = process_prepared_discard_success;
2573
2574                 error_retry_list(pool);
2575                 break;
2576
2577         case PM_OUT_OF_DATA_SPACE:
2578                 /*
2579                  * Ideally we'd never hit this state; the low water mark
2580                  * would trigger userland to extend the pool before we
2581                  * completely run out of data space.  However, many small
2582                  * IOs to unprovisioned space can consume data space at an
2583                  * alarming rate.  Adjust your low water mark if you're
2584                  * frequently seeing this mode.
2585                  */
2586                 pool->out_of_data_space = true;
2587                 pool->process_bio = process_bio_read_only;
2588                 pool->process_discard = process_discard_bio;
2589                 pool->process_cell = process_cell_read_only;
2590                 pool->process_prepared_mapping = process_prepared_mapping;
2591                 set_discard_callbacks(pool);
2592
2593                 if (!pool->pf.error_if_no_space && no_space_timeout)
2594                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2595                 break;
2596
2597         case PM_WRITE:
2598                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2599                         cancel_delayed_work_sync(&pool->no_space_timeout);
2600                 pool->out_of_data_space = false;
2601                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2602                 dm_pool_metadata_read_write(pool->pmd);
2603                 pool->process_bio = process_bio;
2604                 pool->process_discard = process_discard_bio;
2605                 pool->process_cell = process_cell;
2606                 pool->process_prepared_mapping = process_prepared_mapping;
2607                 set_discard_callbacks(pool);
2608                 break;
2609         }
2610
2611         pool->pf.mode = new_mode;
2612         /*
2613          * The pool mode may have changed, sync it so bind_control_target()
2614          * doesn't cause an unexpected mode transition on resume.
2615          */
2616         pt->adjusted_pf.mode = new_mode;
2617
2618         if (old_mode != new_mode)
2619                 notify_of_pool_mode_change(pool);
2620 }
2621
2622 static void abort_transaction(struct pool *pool)
2623 {
2624         const char *dev_name = dm_device_name(pool->pool_md);
2625
2626         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2627         if (dm_pool_abort_metadata(pool->pmd)) {
2628                 DMERR("%s: failed to abort metadata transaction", dev_name);
2629                 set_pool_mode(pool, PM_FAIL);
2630         }
2631
2632         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2633                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2634                 set_pool_mode(pool, PM_FAIL);
2635         }
2636 }
2637
2638 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2639 {
2640         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2641                     dm_device_name(pool->pool_md), op, r);
2642
2643         abort_transaction(pool);
2644         set_pool_mode(pool, PM_READ_ONLY);
2645 }
2646
2647 /*----------------------------------------------------------------*/
2648
2649 /*
2650  * Mapping functions.
2651  */
2652
2653 /*
2654  * Called only while mapping a thin bio to hand it over to the workqueue.
2655  */
2656 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2657 {
2658         struct pool *pool = tc->pool;
2659
2660         spin_lock_irq(&tc->lock);
2661         bio_list_add(&tc->deferred_bio_list, bio);
2662         spin_unlock_irq(&tc->lock);
2663
2664         wake_worker(pool);
2665 }
2666
2667 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2668 {
2669         struct pool *pool = tc->pool;
2670
2671         throttle_lock(&pool->throttle);
2672         thin_defer_bio(tc, bio);
2673         throttle_unlock(&pool->throttle);
2674 }
2675
2676 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2677 {
2678         struct pool *pool = tc->pool;
2679
2680         throttle_lock(&pool->throttle);
2681         spin_lock_irq(&tc->lock);
2682         list_add_tail(&cell->user_list, &tc->deferred_cells);
2683         spin_unlock_irq(&tc->lock);
2684         throttle_unlock(&pool->throttle);
2685
2686         wake_worker(pool);
2687 }
2688
2689 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2690 {
2691         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2692
2693         h->tc = tc;
2694         h->shared_read_entry = NULL;
2695         h->all_io_entry = NULL;
2696         h->overwrite_mapping = NULL;
2697         h->cell = NULL;
2698 }
2699
2700 /*
2701  * Non-blocking function called from the thin target's map function.
2702  */
2703 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2704 {
2705         int r;
2706         struct thin_c *tc = ti->private;
2707         dm_block_t block = get_bio_block(tc, bio);
2708         struct dm_thin_device *td = tc->td;
2709         struct dm_thin_lookup_result result;
2710         struct dm_bio_prison_cell *virt_cell, *data_cell;
2711         struct dm_cell_key key;
2712
2713         thin_hook_bio(tc, bio);
2714
2715         if (tc->requeue_mode) {
2716                 bio->bi_status = BLK_STS_DM_REQUEUE;
2717                 bio_endio(bio);
2718                 return DM_MAPIO_SUBMITTED;
2719         }
2720
2721         if (get_pool_mode(tc->pool) == PM_FAIL) {
2722                 bio_io_error(bio);
2723                 return DM_MAPIO_SUBMITTED;
2724         }
2725
2726         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2727                 thin_defer_bio_with_throttle(tc, bio);
2728                 return DM_MAPIO_SUBMITTED;
2729         }
2730
2731         /*
2732          * We must hold the virtual cell before doing the lookup, otherwise
2733          * there's a race with discard.
2734          */
2735         build_virtual_key(tc->td, block, &key);
2736         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2737                 return DM_MAPIO_SUBMITTED;
2738
2739         r = dm_thin_find_block(td, block, 0, &result);
2740
2741         /*
2742          * Note that we defer readahead too.
2743          */
2744         switch (r) {
2745         case 0:
2746                 if (unlikely(result.shared)) {
2747                         /*
2748                          * We have a race condition here between the
2749                          * result.shared value returned by the lookup and
2750                          * snapshot creation, which may cause new
2751                          * sharing.
2752                          *
2753                          * To avoid this always quiesce the origin before
2754                          * taking the snap.  You want to do this anyway to
2755                          * ensure a consistent application view
2756                          * (i.e. lockfs).
2757                          *
2758                          * More distant ancestors are irrelevant. The
2759                          * shared flag will be set in their case.
2760                          */
2761                         thin_defer_cell(tc, virt_cell);
2762                         return DM_MAPIO_SUBMITTED;
2763                 }
2764
2765                 build_data_key(tc->td, result.block, &key);
2766                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2767                         cell_defer_no_holder(tc, virt_cell);
2768                         return DM_MAPIO_SUBMITTED;
2769                 }
2770
2771                 inc_all_io_entry(tc->pool, bio);
2772                 cell_defer_no_holder(tc, data_cell);
2773                 cell_defer_no_holder(tc, virt_cell);
2774
2775                 remap(tc, bio, result.block);
2776                 return DM_MAPIO_REMAPPED;
2777
2778         case -ENODATA:
2779         case -EWOULDBLOCK:
2780                 thin_defer_cell(tc, virt_cell);
2781                 return DM_MAPIO_SUBMITTED;
2782
2783         default:
2784                 /*
2785                  * Must always call bio_io_error on failure.
2786                  * dm_thin_find_block can fail with -EINVAL if the
2787                  * pool is switched to fail-io mode.
2788                  */
2789                 bio_io_error(bio);
2790                 cell_defer_no_holder(tc, virt_cell);
2791                 return DM_MAPIO_SUBMITTED;
2792         }
2793 }
2794
2795 static void requeue_bios(struct pool *pool)
2796 {
2797         struct thin_c *tc;
2798
2799         rcu_read_lock();
2800         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2801                 spin_lock_irq(&tc->lock);
2802                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2803                 bio_list_init(&tc->retry_on_resume_list);
2804                 spin_unlock_irq(&tc->lock);
2805         }
2806         rcu_read_unlock();
2807 }
2808
2809 /*
2810  *--------------------------------------------------------------
2811  * Binding of control targets to a pool object
2812  *--------------------------------------------------------------
2813  */
2814 static bool is_factor(sector_t block_size, uint32_t n)
2815 {
2816         return !sector_div(block_size, n);
2817 }
2818
2819 /*
2820  * If discard_passdown was enabled verify that the data device
2821  * supports discards.  Disable discard_passdown if not.
2822  */
2823 static void disable_passdown_if_not_supported(struct pool_c *pt)
2824 {
2825         struct pool *pool = pt->pool;
2826         struct block_device *data_bdev = pt->data_dev->bdev;
2827         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2828         const char *reason = NULL;
2829
2830         if (!pt->adjusted_pf.discard_passdown)
2831                 return;
2832
2833         if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2834                 reason = "discard unsupported";
2835
2836         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2837                 reason = "max discard sectors smaller than a block";
2838
2839         if (reason) {
2840                 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2841                 pt->adjusted_pf.discard_passdown = false;
2842         }
2843 }
2844
2845 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2846 {
2847         struct pool_c *pt = ti->private;
2848
2849         /*
2850          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2851          */
2852         enum pool_mode old_mode = get_pool_mode(pool);
2853         enum pool_mode new_mode = pt->adjusted_pf.mode;
2854
2855         /*
2856          * Don't change the pool's mode until set_pool_mode() below.
2857          * Otherwise the pool's process_* function pointers may
2858          * not match the desired pool mode.
2859          */
2860         pt->adjusted_pf.mode = old_mode;
2861
2862         pool->ti = ti;
2863         pool->pf = pt->adjusted_pf;
2864         pool->low_water_blocks = pt->low_water_blocks;
2865
2866         set_pool_mode(pool, new_mode);
2867
2868         return 0;
2869 }
2870
2871 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2872 {
2873         if (pool->ti == ti)
2874                 pool->ti = NULL;
2875 }
2876
2877 /*
2878  *--------------------------------------------------------------
2879  * Pool creation
2880  *--------------------------------------------------------------
2881  */
2882 /* Initialize pool features. */
2883 static void pool_features_init(struct pool_features *pf)
2884 {
2885         pf->mode = PM_WRITE;
2886         pf->zero_new_blocks = true;
2887         pf->discard_enabled = true;
2888         pf->discard_passdown = true;
2889         pf->error_if_no_space = false;
2890 }
2891
2892 static void __pool_destroy(struct pool *pool)
2893 {
2894         __pool_table_remove(pool);
2895
2896         vfree(pool->cell_sort_array);
2897         if (dm_pool_metadata_close(pool->pmd) < 0)
2898                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2899
2900         dm_bio_prison_destroy(pool->prison);
2901         dm_kcopyd_client_destroy(pool->copier);
2902
2903         cancel_delayed_work_sync(&pool->waker);
2904         cancel_delayed_work_sync(&pool->no_space_timeout);
2905         if (pool->wq)
2906                 destroy_workqueue(pool->wq);
2907
2908         if (pool->next_mapping)
2909                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2910         mempool_exit(&pool->mapping_pool);
2911         dm_deferred_set_destroy(pool->shared_read_ds);
2912         dm_deferred_set_destroy(pool->all_io_ds);
2913         kfree(pool);
2914 }
2915
2916 static struct kmem_cache *_new_mapping_cache;
2917
2918 static struct pool *pool_create(struct mapped_device *pool_md,
2919                                 struct block_device *metadata_dev,
2920                                 struct block_device *data_dev,
2921                                 unsigned long block_size,
2922                                 int read_only, char **error)
2923 {
2924         int r;
2925         void *err_p;
2926         struct pool *pool;
2927         struct dm_pool_metadata *pmd;
2928         bool format_device = read_only ? false : true;
2929
2930         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2931         if (IS_ERR(pmd)) {
2932                 *error = "Error creating metadata object";
2933                 return (struct pool *)pmd;
2934         }
2935
2936         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2937         if (!pool) {
2938                 *error = "Error allocating memory for pool";
2939                 err_p = ERR_PTR(-ENOMEM);
2940                 goto bad_pool;
2941         }
2942
2943         pool->pmd = pmd;
2944         pool->sectors_per_block = block_size;
2945         if (block_size & (block_size - 1))
2946                 pool->sectors_per_block_shift = -1;
2947         else
2948                 pool->sectors_per_block_shift = __ffs(block_size);
2949         pool->low_water_blocks = 0;
2950         pool_features_init(&pool->pf);
2951         pool->prison = dm_bio_prison_create();
2952         if (!pool->prison) {
2953                 *error = "Error creating pool's bio prison";
2954                 err_p = ERR_PTR(-ENOMEM);
2955                 goto bad_prison;
2956         }
2957
2958         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2959         if (IS_ERR(pool->copier)) {
2960                 r = PTR_ERR(pool->copier);
2961                 *error = "Error creating pool's kcopyd client";
2962                 err_p = ERR_PTR(r);
2963                 goto bad_kcopyd_client;
2964         }
2965
2966         /*
2967          * Create singlethreaded workqueue that will service all devices
2968          * that use this metadata.
2969          */
2970         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2971         if (!pool->wq) {
2972                 *error = "Error creating pool's workqueue";
2973                 err_p = ERR_PTR(-ENOMEM);
2974                 goto bad_wq;
2975         }
2976
2977         throttle_init(&pool->throttle);
2978         INIT_WORK(&pool->worker, do_worker);
2979         INIT_DELAYED_WORK(&pool->waker, do_waker);
2980         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2981         spin_lock_init(&pool->lock);
2982         bio_list_init(&pool->deferred_flush_bios);
2983         bio_list_init(&pool->deferred_flush_completions);
2984         INIT_LIST_HEAD(&pool->prepared_mappings);
2985         INIT_LIST_HEAD(&pool->prepared_discards);
2986         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2987         INIT_LIST_HEAD(&pool->active_thins);
2988         pool->low_water_triggered = false;
2989         pool->suspended = true;
2990         pool->out_of_data_space = false;
2991
2992         pool->shared_read_ds = dm_deferred_set_create();
2993         if (!pool->shared_read_ds) {
2994                 *error = "Error creating pool's shared read deferred set";
2995                 err_p = ERR_PTR(-ENOMEM);
2996                 goto bad_shared_read_ds;
2997         }
2998
2999         pool->all_io_ds = dm_deferred_set_create();
3000         if (!pool->all_io_ds) {
3001                 *error = "Error creating pool's all io deferred set";
3002                 err_p = ERR_PTR(-ENOMEM);
3003                 goto bad_all_io_ds;
3004         }
3005
3006         pool->next_mapping = NULL;
3007         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3008                                    _new_mapping_cache);
3009         if (r) {
3010                 *error = "Error creating pool's mapping mempool";
3011                 err_p = ERR_PTR(r);
3012                 goto bad_mapping_pool;
3013         }
3014
3015         pool->cell_sort_array =
3016                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3017                                    sizeof(*pool->cell_sort_array)));
3018         if (!pool->cell_sort_array) {
3019                 *error = "Error allocating cell sort array";
3020                 err_p = ERR_PTR(-ENOMEM);
3021                 goto bad_sort_array;
3022         }
3023
3024         pool->ref_count = 1;
3025         pool->last_commit_jiffies = jiffies;
3026         pool->pool_md = pool_md;
3027         pool->md_dev = metadata_dev;
3028         pool->data_dev = data_dev;
3029         __pool_table_insert(pool);
3030
3031         return pool;
3032
3033 bad_sort_array:
3034         mempool_exit(&pool->mapping_pool);
3035 bad_mapping_pool:
3036         dm_deferred_set_destroy(pool->all_io_ds);
3037 bad_all_io_ds:
3038         dm_deferred_set_destroy(pool->shared_read_ds);
3039 bad_shared_read_ds:
3040         destroy_workqueue(pool->wq);
3041 bad_wq:
3042         dm_kcopyd_client_destroy(pool->copier);
3043 bad_kcopyd_client:
3044         dm_bio_prison_destroy(pool->prison);
3045 bad_prison:
3046         kfree(pool);
3047 bad_pool:
3048         if (dm_pool_metadata_close(pmd))
3049                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3050
3051         return err_p;
3052 }
3053
3054 static void __pool_inc(struct pool *pool)
3055 {
3056         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3057         pool->ref_count++;
3058 }
3059
3060 static void __pool_dec(struct pool *pool)
3061 {
3062         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3063         BUG_ON(!pool->ref_count);
3064         if (!--pool->ref_count)
3065                 __pool_destroy(pool);
3066 }
3067
3068 static struct pool *__pool_find(struct mapped_device *pool_md,
3069                                 struct block_device *metadata_dev,
3070                                 struct block_device *data_dev,
3071                                 unsigned long block_size, int read_only,
3072                                 char **error, int *created)
3073 {
3074         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3075
3076         if (pool) {
3077                 if (pool->pool_md != pool_md) {
3078                         *error = "metadata device already in use by a pool";
3079                         return ERR_PTR(-EBUSY);
3080                 }
3081                 if (pool->data_dev != data_dev) {
3082                         *error = "data device already in use by a pool";
3083                         return ERR_PTR(-EBUSY);
3084                 }
3085                 __pool_inc(pool);
3086
3087         } else {
3088                 pool = __pool_table_lookup(pool_md);
3089                 if (pool) {
3090                         if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3091                                 *error = "different pool cannot replace a pool";
3092                                 return ERR_PTR(-EINVAL);
3093                         }
3094                         __pool_inc(pool);
3095
3096                 } else {
3097                         pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3098                         *created = 1;
3099                 }
3100         }
3101
3102         return pool;
3103 }
3104
3105 /*
3106  *--------------------------------------------------------------
3107  * Pool target methods
3108  *--------------------------------------------------------------
3109  */
3110 static void pool_dtr(struct dm_target *ti)
3111 {
3112         struct pool_c *pt = ti->private;
3113
3114         mutex_lock(&dm_thin_pool_table.mutex);
3115
3116         unbind_control_target(pt->pool, ti);
3117         __pool_dec(pt->pool);
3118         dm_put_device(ti, pt->metadata_dev);
3119         dm_put_device(ti, pt->data_dev);
3120         kfree(pt);
3121
3122         mutex_unlock(&dm_thin_pool_table.mutex);
3123 }
3124
3125 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3126                                struct dm_target *ti)
3127 {
3128         int r;
3129         unsigned int argc;
3130         const char *arg_name;
3131
3132         static const struct dm_arg _args[] = {
3133                 {0, 4, "Invalid number of pool feature arguments"},
3134         };
3135
3136         /*
3137          * No feature arguments supplied.
3138          */
3139         if (!as->argc)
3140                 return 0;
3141
3142         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3143         if (r)
3144                 return -EINVAL;
3145
3146         while (argc && !r) {
3147                 arg_name = dm_shift_arg(as);
3148                 argc--;
3149
3150                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3151                         pf->zero_new_blocks = false;
3152
3153                 else if (!strcasecmp(arg_name, "ignore_discard"))
3154                         pf->discard_enabled = false;
3155
3156                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3157                         pf->discard_passdown = false;
3158
3159                 else if (!strcasecmp(arg_name, "read_only"))
3160                         pf->mode = PM_READ_ONLY;
3161
3162                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3163                         pf->error_if_no_space = true;
3164
3165                 else {
3166                         ti->error = "Unrecognised pool feature requested";
3167                         r = -EINVAL;
3168                         break;
3169                 }
3170         }
3171
3172         return r;
3173 }
3174
3175 static void metadata_low_callback(void *context)
3176 {
3177         struct pool *pool = context;
3178
3179         DMWARN("%s: reached low water mark for metadata device: sending event.",
3180                dm_device_name(pool->pool_md));
3181
3182         dm_table_event(pool->ti->table);
3183 }
3184
3185 /*
3186  * We need to flush the data device **before** committing the metadata.
3187  *
3188  * This ensures that the data blocks of any newly inserted mappings are
3189  * properly written to non-volatile storage and won't be lost in case of a
3190  * crash.
3191  *
3192  * Failure to do so can result in data corruption in the case of internal or
3193  * external snapshots and in the case of newly provisioned blocks, when block
3194  * zeroing is enabled.
3195  */
3196 static int metadata_pre_commit_callback(void *context)
3197 {
3198         struct pool *pool = context;
3199
3200         return blkdev_issue_flush(pool->data_dev);
3201 }
3202
3203 static sector_t get_dev_size(struct block_device *bdev)
3204 {
3205         return bdev_nr_sectors(bdev);
3206 }
3207
3208 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3209 {
3210         sector_t metadata_dev_size = get_dev_size(bdev);
3211
3212         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3213                 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3214                        bdev, THIN_METADATA_MAX_SECTORS);
3215 }
3216
3217 static sector_t get_metadata_dev_size(struct block_device *bdev)
3218 {
3219         sector_t metadata_dev_size = get_dev_size(bdev);
3220
3221         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3222                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3223
3224         return metadata_dev_size;
3225 }
3226
3227 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3228 {
3229         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3230
3231         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3232
3233         return metadata_dev_size;
3234 }
3235
3236 /*
3237  * When a metadata threshold is crossed a dm event is triggered, and
3238  * userland should respond by growing the metadata device.  We could let
3239  * userland set the threshold, like we do with the data threshold, but I'm
3240  * not sure they know enough to do this well.
3241  */
3242 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3243 {
3244         /*
3245          * 4M is ample for all ops with the possible exception of thin
3246          * device deletion which is harmless if it fails (just retry the
3247          * delete after you've grown the device).
3248          */
3249         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3250
3251         return min((dm_block_t)1024ULL /* 4M */, quarter);
3252 }
3253
3254 /*
3255  * thin-pool <metadata dev> <data dev>
3256  *           <data block size (sectors)>
3257  *           <low water mark (blocks)>
3258  *           [<#feature args> [<arg>]*]
3259  *
3260  * Optional feature arguments are:
3261  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3262  *           ignore_discard: disable discard
3263  *           no_discard_passdown: don't pass discards down to the data device
3264  *           read_only: Don't allow any changes to be made to the pool metadata.
3265  *           error_if_no_space: error IOs, instead of queueing, if no space.
3266  */
3267 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3268 {
3269         int r, pool_created = 0;
3270         struct pool_c *pt;
3271         struct pool *pool;
3272         struct pool_features pf;
3273         struct dm_arg_set as;
3274         struct dm_dev *data_dev;
3275         unsigned long block_size;
3276         dm_block_t low_water_blocks;
3277         struct dm_dev *metadata_dev;
3278         fmode_t metadata_mode;
3279
3280         /*
3281          * FIXME Remove validation from scope of lock.
3282          */
3283         mutex_lock(&dm_thin_pool_table.mutex);
3284
3285         if (argc < 4) {
3286                 ti->error = "Invalid argument count";
3287                 r = -EINVAL;
3288                 goto out_unlock;
3289         }
3290
3291         as.argc = argc;
3292         as.argv = argv;
3293
3294         /* make sure metadata and data are different devices */
3295         if (!strcmp(argv[0], argv[1])) {
3296                 ti->error = "Error setting metadata or data device";
3297                 r = -EINVAL;
3298                 goto out_unlock;
3299         }
3300
3301         /*
3302          * Set default pool features.
3303          */
3304         pool_features_init(&pf);
3305
3306         dm_consume_args(&as, 4);
3307         r = parse_pool_features(&as, &pf, ti);
3308         if (r)
3309                 goto out_unlock;
3310
3311         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3312         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3313         if (r) {
3314                 ti->error = "Error opening metadata block device";
3315                 goto out_unlock;
3316         }
3317         warn_if_metadata_device_too_big(metadata_dev->bdev);
3318
3319         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3320         if (r) {
3321                 ti->error = "Error getting data device";
3322                 goto out_metadata;
3323         }
3324
3325         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3326             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3327             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3328             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3329                 ti->error = "Invalid block size";
3330                 r = -EINVAL;
3331                 goto out;
3332         }
3333
3334         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3335                 ti->error = "Invalid low water mark";
3336                 r = -EINVAL;
3337                 goto out;
3338         }
3339
3340         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3341         if (!pt) {
3342                 r = -ENOMEM;
3343                 goto out;
3344         }
3345
3346         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3347                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3348         if (IS_ERR(pool)) {
3349                 r = PTR_ERR(pool);
3350                 goto out_free_pt;
3351         }
3352
3353         /*
3354          * 'pool_created' reflects whether this is the first table load.
3355          * Top level discard support is not allowed to be changed after
3356          * initial load.  This would require a pool reload to trigger thin
3357          * device changes.
3358          */
3359         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3360                 ti->error = "Discard support cannot be disabled once enabled";
3361                 r = -EINVAL;
3362                 goto out_flags_changed;
3363         }
3364
3365         pt->pool = pool;
3366         pt->ti = ti;
3367         pt->metadata_dev = metadata_dev;
3368         pt->data_dev = data_dev;
3369         pt->low_water_blocks = low_water_blocks;
3370         pt->adjusted_pf = pt->requested_pf = pf;
3371         ti->num_flush_bios = 1;
3372         ti->limit_swap_bios = true;
3373
3374         /*
3375          * Only need to enable discards if the pool should pass
3376          * them down to the data device.  The thin device's discard
3377          * processing will cause mappings to be removed from the btree.
3378          */
3379         if (pf.discard_enabled && pf.discard_passdown) {
3380                 ti->num_discard_bios = 1;
3381
3382                 /*
3383                  * Setting 'discards_supported' circumvents the normal
3384                  * stacking of discard limits (this keeps the pool and
3385                  * thin devices' discard limits consistent).
3386                  */
3387                 ti->discards_supported = true;
3388         }
3389         ti->private = pt;
3390
3391         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3392                                                 calc_metadata_threshold(pt),
3393                                                 metadata_low_callback,
3394                                                 pool);
3395         if (r) {
3396                 ti->error = "Error registering metadata threshold";
3397                 goto out_flags_changed;
3398         }
3399
3400         dm_pool_register_pre_commit_callback(pool->pmd,
3401                                              metadata_pre_commit_callback, pool);
3402
3403         mutex_unlock(&dm_thin_pool_table.mutex);
3404
3405         return 0;
3406
3407 out_flags_changed:
3408         __pool_dec(pool);
3409 out_free_pt:
3410         kfree(pt);
3411 out:
3412         dm_put_device(ti, data_dev);
3413 out_metadata:
3414         dm_put_device(ti, metadata_dev);
3415 out_unlock:
3416         mutex_unlock(&dm_thin_pool_table.mutex);
3417
3418         return r;
3419 }
3420
3421 static int pool_map(struct dm_target *ti, struct bio *bio)
3422 {
3423         int r;
3424         struct pool_c *pt = ti->private;
3425         struct pool *pool = pt->pool;
3426
3427         /*
3428          * As this is a singleton target, ti->begin is always zero.
3429          */
3430         spin_lock_irq(&pool->lock);
3431         bio_set_dev(bio, pt->data_dev->bdev);
3432         r = DM_MAPIO_REMAPPED;
3433         spin_unlock_irq(&pool->lock);
3434
3435         return r;
3436 }
3437
3438 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3439 {
3440         int r;
3441         struct pool_c *pt = ti->private;
3442         struct pool *pool = pt->pool;
3443         sector_t data_size = ti->len;
3444         dm_block_t sb_data_size;
3445
3446         *need_commit = false;
3447
3448         (void) sector_div(data_size, pool->sectors_per_block);
3449
3450         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3451         if (r) {
3452                 DMERR("%s: failed to retrieve data device size",
3453                       dm_device_name(pool->pool_md));
3454                 return r;
3455         }
3456
3457         if (data_size < sb_data_size) {
3458                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3459                       dm_device_name(pool->pool_md),
3460                       (unsigned long long)data_size, sb_data_size);
3461                 return -EINVAL;
3462
3463         } else if (data_size > sb_data_size) {
3464                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3465                         DMERR("%s: unable to grow the data device until repaired.",
3466                               dm_device_name(pool->pool_md));
3467                         return 0;
3468                 }
3469
3470                 if (sb_data_size)
3471                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3472                                dm_device_name(pool->pool_md),
3473                                sb_data_size, (unsigned long long)data_size);
3474                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3475                 if (r) {
3476                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3477                         return r;
3478                 }
3479
3480                 *need_commit = true;
3481         }
3482
3483         return 0;
3484 }
3485
3486 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3487 {
3488         int r;
3489         struct pool_c *pt = ti->private;
3490         struct pool *pool = pt->pool;
3491         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3492
3493         *need_commit = false;
3494
3495         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3496
3497         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3498         if (r) {
3499                 DMERR("%s: failed to retrieve metadata device size",
3500                       dm_device_name(pool->pool_md));
3501                 return r;
3502         }
3503
3504         if (metadata_dev_size < sb_metadata_dev_size) {
3505                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3506                       dm_device_name(pool->pool_md),
3507                       metadata_dev_size, sb_metadata_dev_size);
3508                 return -EINVAL;
3509
3510         } else if (metadata_dev_size > sb_metadata_dev_size) {
3511                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3512                         DMERR("%s: unable to grow the metadata device until repaired.",
3513                               dm_device_name(pool->pool_md));
3514                         return 0;
3515                 }
3516
3517                 warn_if_metadata_device_too_big(pool->md_dev);
3518                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3519                        dm_device_name(pool->pool_md),
3520                        sb_metadata_dev_size, metadata_dev_size);
3521
3522                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3523                         set_pool_mode(pool, PM_WRITE);
3524
3525                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3526                 if (r) {
3527                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3528                         return r;
3529                 }
3530
3531                 *need_commit = true;
3532         }
3533
3534         return 0;
3535 }
3536
3537 /*
3538  * Retrieves the number of blocks of the data device from
3539  * the superblock and compares it to the actual device size,
3540  * thus resizing the data device in case it has grown.
3541  *
3542  * This both copes with opening preallocated data devices in the ctr
3543  * being followed by a resume
3544  * -and-
3545  * calling the resume method individually after userspace has
3546  * grown the data device in reaction to a table event.
3547  */
3548 static int pool_preresume(struct dm_target *ti)
3549 {
3550         int r;
3551         bool need_commit1, need_commit2;
3552         struct pool_c *pt = ti->private;
3553         struct pool *pool = pt->pool;
3554
3555         /*
3556          * Take control of the pool object.
3557          */
3558         r = bind_control_target(pool, ti);
3559         if (r)
3560                 goto out;
3561
3562         r = maybe_resize_data_dev(ti, &need_commit1);
3563         if (r)
3564                 goto out;
3565
3566         r = maybe_resize_metadata_dev(ti, &need_commit2);
3567         if (r)
3568                 goto out;
3569
3570         if (need_commit1 || need_commit2)
3571                 (void) commit(pool);
3572 out:
3573         /*
3574          * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3575          * bio is in deferred list. Therefore need to return 0
3576          * to allow pool_resume() to flush IO.
3577          */
3578         if (r && get_pool_mode(pool) == PM_FAIL)
3579                 r = 0;
3580
3581         return r;
3582 }
3583
3584 static void pool_suspend_active_thins(struct pool *pool)
3585 {
3586         struct thin_c *tc;
3587
3588         /* Suspend all active thin devices */
3589         tc = get_first_thin(pool);
3590         while (tc) {
3591                 dm_internal_suspend_noflush(tc->thin_md);
3592                 tc = get_next_thin(pool, tc);
3593         }
3594 }
3595
3596 static void pool_resume_active_thins(struct pool *pool)
3597 {
3598         struct thin_c *tc;
3599
3600         /* Resume all active thin devices */
3601         tc = get_first_thin(pool);
3602         while (tc) {
3603                 dm_internal_resume(tc->thin_md);
3604                 tc = get_next_thin(pool, tc);
3605         }
3606 }
3607
3608 static void pool_resume(struct dm_target *ti)
3609 {
3610         struct pool_c *pt = ti->private;
3611         struct pool *pool = pt->pool;
3612
3613         /*
3614          * Must requeue active_thins' bios and then resume
3615          * active_thins _before_ clearing 'suspend' flag.
3616          */
3617         requeue_bios(pool);
3618         pool_resume_active_thins(pool);
3619
3620         spin_lock_irq(&pool->lock);
3621         pool->low_water_triggered = false;
3622         pool->suspended = false;
3623         spin_unlock_irq(&pool->lock);
3624
3625         do_waker(&pool->waker.work);
3626 }
3627
3628 static void pool_presuspend(struct dm_target *ti)
3629 {
3630         struct pool_c *pt = ti->private;
3631         struct pool *pool = pt->pool;
3632
3633         spin_lock_irq(&pool->lock);
3634         pool->suspended = true;
3635         spin_unlock_irq(&pool->lock);
3636
3637         pool_suspend_active_thins(pool);
3638 }
3639
3640 static void pool_presuspend_undo(struct dm_target *ti)
3641 {
3642         struct pool_c *pt = ti->private;
3643         struct pool *pool = pt->pool;
3644
3645         pool_resume_active_thins(pool);
3646
3647         spin_lock_irq(&pool->lock);
3648         pool->suspended = false;
3649         spin_unlock_irq(&pool->lock);
3650 }
3651
3652 static void pool_postsuspend(struct dm_target *ti)
3653 {
3654         struct pool_c *pt = ti->private;
3655         struct pool *pool = pt->pool;
3656
3657         cancel_delayed_work_sync(&pool->waker);
3658         cancel_delayed_work_sync(&pool->no_space_timeout);
3659         flush_workqueue(pool->wq);
3660         (void) commit(pool);
3661 }
3662
3663 static int check_arg_count(unsigned int argc, unsigned int args_required)
3664 {
3665         if (argc != args_required) {
3666                 DMWARN("Message received with %u arguments instead of %u.",
3667                        argc, args_required);
3668                 return -EINVAL;
3669         }
3670
3671         return 0;
3672 }
3673
3674 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3675 {
3676         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3677             *dev_id <= MAX_DEV_ID)
3678                 return 0;
3679
3680         if (warning)
3681                 DMWARN("Message received with invalid device id: %s", arg);
3682
3683         return -EINVAL;
3684 }
3685
3686 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3687 {
3688         dm_thin_id dev_id;
3689         int r;
3690
3691         r = check_arg_count(argc, 2);
3692         if (r)
3693                 return r;
3694
3695         r = read_dev_id(argv[1], &dev_id, 1);
3696         if (r)
3697                 return r;
3698
3699         r = dm_pool_create_thin(pool->pmd, dev_id);
3700         if (r) {
3701                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3702                        argv[1]);
3703                 return r;
3704         }
3705
3706         return 0;
3707 }
3708
3709 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3710 {
3711         dm_thin_id dev_id;
3712         dm_thin_id origin_dev_id;
3713         int r;
3714
3715         r = check_arg_count(argc, 3);
3716         if (r)
3717                 return r;
3718
3719         r = read_dev_id(argv[1], &dev_id, 1);
3720         if (r)
3721                 return r;
3722
3723         r = read_dev_id(argv[2], &origin_dev_id, 1);
3724         if (r)
3725                 return r;
3726
3727         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3728         if (r) {
3729                 DMWARN("Creation of new snapshot %s of device %s failed.",
3730                        argv[1], argv[2]);
3731                 return r;
3732         }
3733
3734         return 0;
3735 }
3736
3737 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3738 {
3739         dm_thin_id dev_id;
3740         int r;
3741
3742         r = check_arg_count(argc, 2);
3743         if (r)
3744                 return r;
3745
3746         r = read_dev_id(argv[1], &dev_id, 1);
3747         if (r)
3748                 return r;
3749
3750         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3751         if (r)
3752                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3753
3754         return r;
3755 }
3756
3757 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3758 {
3759         dm_thin_id old_id, new_id;
3760         int r;
3761
3762         r = check_arg_count(argc, 3);
3763         if (r)
3764                 return r;
3765
3766         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3767                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3768                 return -EINVAL;
3769         }
3770
3771         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3772                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3773                 return -EINVAL;
3774         }
3775
3776         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3777         if (r) {
3778                 DMWARN("Failed to change transaction id from %s to %s.",
3779                        argv[1], argv[2]);
3780                 return r;
3781         }
3782
3783         return 0;
3784 }
3785
3786 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3787 {
3788         int r;
3789
3790         r = check_arg_count(argc, 1);
3791         if (r)
3792                 return r;
3793
3794         (void) commit(pool);
3795
3796         r = dm_pool_reserve_metadata_snap(pool->pmd);
3797         if (r)
3798                 DMWARN("reserve_metadata_snap message failed.");
3799
3800         return r;
3801 }
3802
3803 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3804 {
3805         int r;
3806
3807         r = check_arg_count(argc, 1);
3808         if (r)
3809                 return r;
3810
3811         r = dm_pool_release_metadata_snap(pool->pmd);
3812         if (r)
3813                 DMWARN("release_metadata_snap message failed.");
3814
3815         return r;
3816 }
3817
3818 /*
3819  * Messages supported:
3820  *   create_thin        <dev_id>
3821  *   create_snap        <dev_id> <origin_id>
3822  *   delete             <dev_id>
3823  *   set_transaction_id <current_trans_id> <new_trans_id>
3824  *   reserve_metadata_snap
3825  *   release_metadata_snap
3826  */
3827 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3828                         char *result, unsigned int maxlen)
3829 {
3830         int r = -EINVAL;
3831         struct pool_c *pt = ti->private;
3832         struct pool *pool = pt->pool;
3833
3834         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3835                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3836                       dm_device_name(pool->pool_md));
3837                 return -EOPNOTSUPP;
3838         }
3839
3840         if (!strcasecmp(argv[0], "create_thin"))
3841                 r = process_create_thin_mesg(argc, argv, pool);
3842
3843         else if (!strcasecmp(argv[0], "create_snap"))
3844                 r = process_create_snap_mesg(argc, argv, pool);
3845
3846         else if (!strcasecmp(argv[0], "delete"))
3847                 r = process_delete_mesg(argc, argv, pool);
3848
3849         else if (!strcasecmp(argv[0], "set_transaction_id"))
3850                 r = process_set_transaction_id_mesg(argc, argv, pool);
3851
3852         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3853                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3854
3855         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3856                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3857
3858         else
3859                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3860
3861         if (!r)
3862                 (void) commit(pool);
3863
3864         return r;
3865 }
3866
3867 static void emit_flags(struct pool_features *pf, char *result,
3868                        unsigned int sz, unsigned int maxlen)
3869 {
3870         unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3871                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3872                 pf->error_if_no_space;
3873         DMEMIT("%u ", count);
3874
3875         if (!pf->zero_new_blocks)
3876                 DMEMIT("skip_block_zeroing ");
3877
3878         if (!pf->discard_enabled)
3879                 DMEMIT("ignore_discard ");
3880
3881         if (!pf->discard_passdown)
3882                 DMEMIT("no_discard_passdown ");
3883
3884         if (pf->mode == PM_READ_ONLY)
3885                 DMEMIT("read_only ");
3886
3887         if (pf->error_if_no_space)
3888                 DMEMIT("error_if_no_space ");
3889 }
3890
3891 /*
3892  * Status line is:
3893  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3894  *    <used data sectors>/<total data sectors> <held metadata root>
3895  *    <pool mode> <discard config> <no space config> <needs_check>
3896  */
3897 static void pool_status(struct dm_target *ti, status_type_t type,
3898                         unsigned int status_flags, char *result, unsigned int maxlen)
3899 {
3900         int r;
3901         unsigned int sz = 0;
3902         uint64_t transaction_id;
3903         dm_block_t nr_free_blocks_data;
3904         dm_block_t nr_free_blocks_metadata;
3905         dm_block_t nr_blocks_data;
3906         dm_block_t nr_blocks_metadata;
3907         dm_block_t held_root;
3908         enum pool_mode mode;
3909         char buf[BDEVNAME_SIZE];
3910         char buf2[BDEVNAME_SIZE];
3911         struct pool_c *pt = ti->private;
3912         struct pool *pool = pt->pool;
3913
3914         switch (type) {
3915         case STATUSTYPE_INFO:
3916                 if (get_pool_mode(pool) == PM_FAIL) {
3917                         DMEMIT("Fail");
3918                         break;
3919                 }
3920
3921                 /* Commit to ensure statistics aren't out-of-date */
3922                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3923                         (void) commit(pool);
3924
3925                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3926                 if (r) {
3927                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3928                               dm_device_name(pool->pool_md), r);
3929                         goto err;
3930                 }
3931
3932                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3933                 if (r) {
3934                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3935                               dm_device_name(pool->pool_md), r);
3936                         goto err;
3937                 }
3938
3939                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3940                 if (r) {
3941                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3942                               dm_device_name(pool->pool_md), r);
3943                         goto err;
3944                 }
3945
3946                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3947                 if (r) {
3948                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3949                               dm_device_name(pool->pool_md), r);
3950                         goto err;
3951                 }
3952
3953                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3954                 if (r) {
3955                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3956                               dm_device_name(pool->pool_md), r);
3957                         goto err;
3958                 }
3959
3960                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3961                 if (r) {
3962                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3963                               dm_device_name(pool->pool_md), r);
3964                         goto err;
3965                 }
3966
3967                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3968                        (unsigned long long)transaction_id,
3969                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3970                        (unsigned long long)nr_blocks_metadata,
3971                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3972                        (unsigned long long)nr_blocks_data);
3973
3974                 if (held_root)
3975                         DMEMIT("%llu ", held_root);
3976                 else
3977                         DMEMIT("- ");
3978
3979                 mode = get_pool_mode(pool);
3980                 if (mode == PM_OUT_OF_DATA_SPACE)
3981                         DMEMIT("out_of_data_space ");
3982                 else if (is_read_only_pool_mode(mode))
3983                         DMEMIT("ro ");
3984                 else
3985                         DMEMIT("rw ");
3986
3987                 if (!pool->pf.discard_enabled)
3988                         DMEMIT("ignore_discard ");
3989                 else if (pool->pf.discard_passdown)
3990                         DMEMIT("discard_passdown ");
3991                 else
3992                         DMEMIT("no_discard_passdown ");
3993
3994                 if (pool->pf.error_if_no_space)
3995                         DMEMIT("error_if_no_space ");
3996                 else
3997                         DMEMIT("queue_if_no_space ");
3998
3999                 if (dm_pool_metadata_needs_check(pool->pmd))
4000                         DMEMIT("needs_check ");
4001                 else
4002                         DMEMIT("- ");
4003
4004                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4005
4006                 break;
4007
4008         case STATUSTYPE_TABLE:
4009                 DMEMIT("%s %s %lu %llu ",
4010                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4011                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4012                        (unsigned long)pool->sectors_per_block,
4013                        (unsigned long long)pt->low_water_blocks);
4014                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4015                 break;
4016
4017         case STATUSTYPE_IMA:
4018                 *result = '\0';
4019                 break;
4020         }
4021         return;
4022
4023 err:
4024         DMEMIT("Error");
4025 }
4026
4027 static int pool_iterate_devices(struct dm_target *ti,
4028                                 iterate_devices_callout_fn fn, void *data)
4029 {
4030         struct pool_c *pt = ti->private;
4031
4032         return fn(ti, pt->data_dev, 0, ti->len, data);
4033 }
4034
4035 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4036 {
4037         struct pool_c *pt = ti->private;
4038         struct pool *pool = pt->pool;
4039         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4040
4041         /*
4042          * If max_sectors is smaller than pool->sectors_per_block adjust it
4043          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4044          * This is especially beneficial when the pool's data device is a RAID
4045          * device that has a full stripe width that matches pool->sectors_per_block
4046          * -- because even though partial RAID stripe-sized IOs will be issued to a
4047          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4048          *    boundary.. which avoids additional partial RAID stripe writes cascading
4049          */
4050         if (limits->max_sectors < pool->sectors_per_block) {
4051                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4052                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4053                                 limits->max_sectors--;
4054                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4055                 }
4056         }
4057
4058         /*
4059          * If the system-determined stacked limits are compatible with the
4060          * pool's blocksize (io_opt is a factor) do not override them.
4061          */
4062         if (io_opt_sectors < pool->sectors_per_block ||
4063             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4064                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4065                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4066                 else
4067                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4068                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4069         }
4070
4071         /*
4072          * pt->adjusted_pf is a staging area for the actual features to use.
4073          * They get transferred to the live pool in bind_control_target()
4074          * called from pool_preresume().
4075          */
4076         if (!pt->adjusted_pf.discard_enabled) {
4077                 /*
4078                  * Must explicitly disallow stacking discard limits otherwise the
4079                  * block layer will stack them if pool's data device has support.
4080                  */
4081                 limits->discard_granularity = 0;
4082                 return;
4083         }
4084
4085         disable_passdown_if_not_supported(pt);
4086
4087         /*
4088          * The pool uses the same discard limits as the underlying data
4089          * device.  DM core has already set this up.
4090          */
4091 }
4092
4093 static struct target_type pool_target = {
4094         .name = "thin-pool",
4095         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4096                     DM_TARGET_IMMUTABLE,
4097         .version = {1, 22, 0},
4098         .module = THIS_MODULE,
4099         .ctr = pool_ctr,
4100         .dtr = pool_dtr,
4101         .map = pool_map,
4102         .presuspend = pool_presuspend,
4103         .presuspend_undo = pool_presuspend_undo,
4104         .postsuspend = pool_postsuspend,
4105         .preresume = pool_preresume,
4106         .resume = pool_resume,
4107         .message = pool_message,
4108         .status = pool_status,
4109         .iterate_devices = pool_iterate_devices,
4110         .io_hints = pool_io_hints,
4111 };
4112
4113 /*
4114  *--------------------------------------------------------------
4115  * Thin target methods
4116  *--------------------------------------------------------------
4117  */
4118 static void thin_get(struct thin_c *tc)
4119 {
4120         refcount_inc(&tc->refcount);
4121 }
4122
4123 static void thin_put(struct thin_c *tc)
4124 {
4125         if (refcount_dec_and_test(&tc->refcount))
4126                 complete(&tc->can_destroy);
4127 }
4128
4129 static void thin_dtr(struct dm_target *ti)
4130 {
4131         struct thin_c *tc = ti->private;
4132
4133         spin_lock_irq(&tc->pool->lock);
4134         list_del_rcu(&tc->list);
4135         spin_unlock_irq(&tc->pool->lock);
4136         synchronize_rcu();
4137
4138         thin_put(tc);
4139         wait_for_completion(&tc->can_destroy);
4140
4141         mutex_lock(&dm_thin_pool_table.mutex);
4142
4143         __pool_dec(tc->pool);
4144         dm_pool_close_thin_device(tc->td);
4145         dm_put_device(ti, tc->pool_dev);
4146         if (tc->origin_dev)
4147                 dm_put_device(ti, tc->origin_dev);
4148         kfree(tc);
4149
4150         mutex_unlock(&dm_thin_pool_table.mutex);
4151 }
4152
4153 /*
4154  * Thin target parameters:
4155  *
4156  * <pool_dev> <dev_id> [origin_dev]
4157  *
4158  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4159  * dev_id: the internal device identifier
4160  * origin_dev: a device external to the pool that should act as the origin
4161  *
4162  * If the pool device has discards disabled, they get disabled for the thin
4163  * device as well.
4164  */
4165 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4166 {
4167         int r;
4168         struct thin_c *tc;
4169         struct dm_dev *pool_dev, *origin_dev;
4170         struct mapped_device *pool_md;
4171
4172         mutex_lock(&dm_thin_pool_table.mutex);
4173
4174         if (argc != 2 && argc != 3) {
4175                 ti->error = "Invalid argument count";
4176                 r = -EINVAL;
4177                 goto out_unlock;
4178         }
4179
4180         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4181         if (!tc) {
4182                 ti->error = "Out of memory";
4183                 r = -ENOMEM;
4184                 goto out_unlock;
4185         }
4186         tc->thin_md = dm_table_get_md(ti->table);
4187         spin_lock_init(&tc->lock);
4188         INIT_LIST_HEAD(&tc->deferred_cells);
4189         bio_list_init(&tc->deferred_bio_list);
4190         bio_list_init(&tc->retry_on_resume_list);
4191         tc->sort_bio_list = RB_ROOT;
4192
4193         if (argc == 3) {
4194                 if (!strcmp(argv[0], argv[2])) {
4195                         ti->error = "Error setting origin device";
4196                         r = -EINVAL;
4197                         goto bad_origin_dev;
4198                 }
4199
4200                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4201                 if (r) {
4202                         ti->error = "Error opening origin device";
4203                         goto bad_origin_dev;
4204                 }
4205                 tc->origin_dev = origin_dev;
4206         }
4207
4208         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4209         if (r) {
4210                 ti->error = "Error opening pool device";
4211                 goto bad_pool_dev;
4212         }
4213         tc->pool_dev = pool_dev;
4214
4215         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4216                 ti->error = "Invalid device id";
4217                 r = -EINVAL;
4218                 goto bad_common;
4219         }
4220
4221         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4222         if (!pool_md) {
4223                 ti->error = "Couldn't get pool mapped device";
4224                 r = -EINVAL;
4225                 goto bad_common;
4226         }
4227
4228         tc->pool = __pool_table_lookup(pool_md);
4229         if (!tc->pool) {
4230                 ti->error = "Couldn't find pool object";
4231                 r = -EINVAL;
4232                 goto bad_pool_lookup;
4233         }
4234         __pool_inc(tc->pool);
4235
4236         if (get_pool_mode(tc->pool) == PM_FAIL) {
4237                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4238                 r = -EINVAL;
4239                 goto bad_pool;
4240         }
4241
4242         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4243         if (r) {
4244                 ti->error = "Couldn't open thin internal device";
4245                 goto bad_pool;
4246         }
4247
4248         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4249         if (r)
4250                 goto bad;
4251
4252         ti->num_flush_bios = 1;
4253         ti->limit_swap_bios = true;
4254         ti->flush_supported = true;
4255         ti->accounts_remapped_io = true;
4256         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4257
4258         /* In case the pool supports discards, pass them on. */
4259         if (tc->pool->pf.discard_enabled) {
4260                 ti->discards_supported = true;
4261                 ti->num_discard_bios = 1;
4262         }
4263
4264         mutex_unlock(&dm_thin_pool_table.mutex);
4265
4266         spin_lock_irq(&tc->pool->lock);
4267         if (tc->pool->suspended) {
4268                 spin_unlock_irq(&tc->pool->lock);
4269                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4270                 ti->error = "Unable to activate thin device while pool is suspended";
4271                 r = -EINVAL;
4272                 goto bad;
4273         }
4274         refcount_set(&tc->refcount, 1);
4275         init_completion(&tc->can_destroy);
4276         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4277         spin_unlock_irq(&tc->pool->lock);
4278         /*
4279          * This synchronize_rcu() call is needed here otherwise we risk a
4280          * wake_worker() call finding no bios to process (because the newly
4281          * added tc isn't yet visible).  So this reduces latency since we
4282          * aren't then dependent on the periodic commit to wake_worker().
4283          */
4284         synchronize_rcu();
4285
4286         dm_put(pool_md);
4287
4288         return 0;
4289
4290 bad:
4291         dm_pool_close_thin_device(tc->td);
4292 bad_pool:
4293         __pool_dec(tc->pool);
4294 bad_pool_lookup:
4295         dm_put(pool_md);
4296 bad_common:
4297         dm_put_device(ti, tc->pool_dev);
4298 bad_pool_dev:
4299         if (tc->origin_dev)
4300                 dm_put_device(ti, tc->origin_dev);
4301 bad_origin_dev:
4302         kfree(tc);
4303 out_unlock:
4304         mutex_unlock(&dm_thin_pool_table.mutex);
4305
4306         return r;
4307 }
4308
4309 static int thin_map(struct dm_target *ti, struct bio *bio)
4310 {
4311         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4312
4313         return thin_bio_map(ti, bio);
4314 }
4315
4316 static int thin_endio(struct dm_target *ti, struct bio *bio,
4317                 blk_status_t *err)
4318 {
4319         unsigned long flags;
4320         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4321         struct list_head work;
4322         struct dm_thin_new_mapping *m, *tmp;
4323         struct pool *pool = h->tc->pool;
4324
4325         if (h->shared_read_entry) {
4326                 INIT_LIST_HEAD(&work);
4327                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4328
4329                 spin_lock_irqsave(&pool->lock, flags);
4330                 list_for_each_entry_safe(m, tmp, &work, list) {
4331                         list_del(&m->list);
4332                         __complete_mapping_preparation(m);
4333                 }
4334                 spin_unlock_irqrestore(&pool->lock, flags);
4335         }
4336
4337         if (h->all_io_entry) {
4338                 INIT_LIST_HEAD(&work);
4339                 dm_deferred_entry_dec(h->all_io_entry, &work);
4340                 if (!list_empty(&work)) {
4341                         spin_lock_irqsave(&pool->lock, flags);
4342                         list_for_each_entry_safe(m, tmp, &work, list)
4343                                 list_add_tail(&m->list, &pool->prepared_discards);
4344                         spin_unlock_irqrestore(&pool->lock, flags);
4345                         wake_worker(pool);
4346                 }
4347         }
4348
4349         if (h->cell)
4350                 cell_defer_no_holder(h->tc, h->cell);
4351
4352         return DM_ENDIO_DONE;
4353 }
4354
4355 static void thin_presuspend(struct dm_target *ti)
4356 {
4357         struct thin_c *tc = ti->private;
4358
4359         if (dm_noflush_suspending(ti))
4360                 noflush_work(tc, do_noflush_start);
4361 }
4362
4363 static void thin_postsuspend(struct dm_target *ti)
4364 {
4365         struct thin_c *tc = ti->private;
4366
4367         /*
4368          * The dm_noflush_suspending flag has been cleared by now, so
4369          * unfortunately we must always run this.
4370          */
4371         noflush_work(tc, do_noflush_stop);
4372 }
4373
4374 static int thin_preresume(struct dm_target *ti)
4375 {
4376         struct thin_c *tc = ti->private;
4377
4378         if (tc->origin_dev)
4379                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4380
4381         return 0;
4382 }
4383
4384 /*
4385  * <nr mapped sectors> <highest mapped sector>
4386  */
4387 static void thin_status(struct dm_target *ti, status_type_t type,
4388                         unsigned int status_flags, char *result, unsigned int maxlen)
4389 {
4390         int r;
4391         ssize_t sz = 0;
4392         dm_block_t mapped, highest;
4393         char buf[BDEVNAME_SIZE];
4394         struct thin_c *tc = ti->private;
4395
4396         if (get_pool_mode(tc->pool) == PM_FAIL) {
4397                 DMEMIT("Fail");
4398                 return;
4399         }
4400
4401         if (!tc->td)
4402                 DMEMIT("-");
4403         else {
4404                 switch (type) {
4405                 case STATUSTYPE_INFO:
4406                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4407                         if (r) {
4408                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4409                                 goto err;
4410                         }
4411
4412                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4413                         if (r < 0) {
4414                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4415                                 goto err;
4416                         }
4417
4418                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4419                         if (r)
4420                                 DMEMIT("%llu", ((highest + 1) *
4421                                                 tc->pool->sectors_per_block) - 1);
4422                         else
4423                                 DMEMIT("-");
4424                         break;
4425
4426                 case STATUSTYPE_TABLE:
4427                         DMEMIT("%s %lu",
4428                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4429                                (unsigned long) tc->dev_id);
4430                         if (tc->origin_dev)
4431                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4432                         break;
4433
4434                 case STATUSTYPE_IMA:
4435                         *result = '\0';
4436                         break;
4437                 }
4438         }
4439
4440         return;
4441
4442 err:
4443         DMEMIT("Error");
4444 }
4445
4446 static int thin_iterate_devices(struct dm_target *ti,
4447                                 iterate_devices_callout_fn fn, void *data)
4448 {
4449         sector_t blocks;
4450         struct thin_c *tc = ti->private;
4451         struct pool *pool = tc->pool;
4452
4453         /*
4454          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4455          * we follow a more convoluted path through to the pool's target.
4456          */
4457         if (!pool->ti)
4458                 return 0;       /* nothing is bound */
4459
4460         blocks = pool->ti->len;
4461         (void) sector_div(blocks, pool->sectors_per_block);
4462         if (blocks)
4463                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4464
4465         return 0;
4466 }
4467
4468 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4469 {
4470         struct thin_c *tc = ti->private;
4471         struct pool *pool = tc->pool;
4472
4473         if (!pool->pf.discard_enabled)
4474                 return;
4475
4476         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4477         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4478 }
4479
4480 static struct target_type thin_target = {
4481         .name = "thin",
4482         .version = {1, 22, 0},
4483         .module = THIS_MODULE,
4484         .ctr = thin_ctr,
4485         .dtr = thin_dtr,
4486         .map = thin_map,
4487         .end_io = thin_endio,
4488         .preresume = thin_preresume,
4489         .presuspend = thin_presuspend,
4490         .postsuspend = thin_postsuspend,
4491         .status = thin_status,
4492         .iterate_devices = thin_iterate_devices,
4493         .io_hints = thin_io_hints,
4494 };
4495
4496 /*----------------------------------------------------------------*/
4497
4498 static int __init dm_thin_init(void)
4499 {
4500         int r = -ENOMEM;
4501
4502         pool_table_init();
4503
4504         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4505         if (!_new_mapping_cache)
4506                 return r;
4507
4508         r = dm_register_target(&thin_target);
4509         if (r)
4510                 goto bad_new_mapping_cache;
4511
4512         r = dm_register_target(&pool_target);
4513         if (r)
4514                 goto bad_thin_target;
4515
4516         return 0;
4517
4518 bad_thin_target:
4519         dm_unregister_target(&thin_target);
4520 bad_new_mapping_cache:
4521         kmem_cache_destroy(_new_mapping_cache);
4522
4523         return r;
4524 }
4525
4526 static void dm_thin_exit(void)
4527 {
4528         dm_unregister_target(&thin_target);
4529         dm_unregister_target(&pool_target);
4530
4531         kmem_cache_destroy(_new_mapping_cache);
4532
4533         pool_table_exit();
4534 }
4535
4536 module_init(dm_thin_init);
4537 module_exit(dm_thin_exit);
4538
4539 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4540 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4541
4542 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4543 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4544 MODULE_LICENSE("GPL");