locking: export contention tracepoints for bcachefs six locks
[linux-2.6-block.git] / drivers / md / dm-table.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35  * Similar to ceiling(log_size(n))
36  */
37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39         int result = 0;
40
41         while (n > 1) {
42                 n = dm_div_up(n, base);
43                 result++;
44         }
45
46         return result;
47 }
48
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54         return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58  * Return the n'th node of level l from table t.
59  */
60 static inline sector_t *get_node(struct dm_table *t,
61                                  unsigned int l, unsigned int n)
62 {
63         return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72         for (; l < t->depth - 1; l++)
73                 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75         if (n >= t->counts[l])
76                 return (sector_t) -1;
77
78         return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87         unsigned int n, k;
88         sector_t *node;
89
90         for (n = 0U; n < t->counts[l]; n++) {
91                 node = get_node(t, l, n);
92
93                 for (k = 0U; k < KEYS_PER_NODE; k++)
94                         node[k] = high(t, l + 1, get_child(n, k));
95         }
96
97         return 0;
98 }
99
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106         sector_t *n_highs;
107         struct dm_target *n_targets;
108
109         /*
110          * Allocate both the target array and offset array at once.
111          */
112         n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113                            GFP_KERNEL);
114         if (!n_highs)
115                 return -ENOMEM;
116
117         n_targets = (struct dm_target *) (n_highs + num);
118
119         memset(n_highs, -1, sizeof(*n_highs) * num);
120         kvfree(t->highs);
121
122         t->num_allocated = num;
123         t->highs = n_highs;
124         t->targets = n_targets;
125
126         return 0;
127 }
128
129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130                     unsigned int num_targets, struct mapped_device *md)
131 {
132         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
133
134         if (!t)
135                 return -ENOMEM;
136
137         INIT_LIST_HEAD(&t->devices);
138
139         if (!num_targets)
140                 num_targets = KEYS_PER_NODE;
141
142         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
143
144         if (!num_targets) {
145                 kfree(t);
146                 return -ENOMEM;
147         }
148
149         if (alloc_targets(t, num_targets)) {
150                 kfree(t);
151                 return -ENOMEM;
152         }
153
154         t->type = DM_TYPE_NONE;
155         t->mode = mode;
156         t->md = md;
157         *result = t;
158         return 0;
159 }
160
161 static void free_devices(struct list_head *devices, struct mapped_device *md)
162 {
163         struct list_head *tmp, *next;
164
165         list_for_each_safe(tmp, next, devices) {
166                 struct dm_dev_internal *dd =
167                     list_entry(tmp, struct dm_dev_internal, list);
168                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
169                        dm_device_name(md), dd->dm_dev->name);
170                 dm_put_table_device(md, dd->dm_dev);
171                 kfree(dd);
172         }
173 }
174
175 static void dm_table_destroy_crypto_profile(struct dm_table *t);
176
177 void dm_table_destroy(struct dm_table *t)
178 {
179         if (!t)
180                 return;
181
182         /* free the indexes */
183         if (t->depth >= 2)
184                 kvfree(t->index[t->depth - 2]);
185
186         /* free the targets */
187         for (unsigned int i = 0; i < t->num_targets; i++) {
188                 struct dm_target *ti = dm_table_get_target(t, i);
189
190                 if (ti->type->dtr)
191                         ti->type->dtr(ti);
192
193                 dm_put_target_type(ti->type);
194         }
195
196         kvfree(t->highs);
197
198         /* free the device list */
199         free_devices(&t->devices, t->md);
200
201         dm_free_md_mempools(t->mempools);
202
203         dm_table_destroy_crypto_profile(t);
204
205         kfree(t);
206 }
207
208 /*
209  * See if we've already got a device in the list.
210  */
211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 {
213         struct dm_dev_internal *dd;
214
215         list_for_each_entry(dd, l, list)
216                 if (dd->dm_dev->bdev->bd_dev == dev)
217                         return dd;
218
219         return NULL;
220 }
221
222 /*
223  * If possible, this checks an area of a destination device is invalid.
224  */
225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
226                                   sector_t start, sector_t len, void *data)
227 {
228         struct queue_limits *limits = data;
229         struct block_device *bdev = dev->bdev;
230         sector_t dev_size = bdev_nr_sectors(bdev);
231         unsigned short logical_block_size_sectors =
232                 limits->logical_block_size >> SECTOR_SHIFT;
233
234         if (!dev_size)
235                 return 0;
236
237         if ((start >= dev_size) || (start + len > dev_size)) {
238                 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
239                       dm_device_name(ti->table->md), bdev,
240                       (unsigned long long)start,
241                       (unsigned long long)len,
242                       (unsigned long long)dev_size);
243                 return 1;
244         }
245
246         /*
247          * If the target is mapped to zoned block device(s), check
248          * that the zones are not partially mapped.
249          */
250         if (bdev_is_zoned(bdev)) {
251                 unsigned int zone_sectors = bdev_zone_sectors(bdev);
252
253                 if (start & (zone_sectors - 1)) {
254                         DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
255                               dm_device_name(ti->table->md),
256                               (unsigned long long)start,
257                               zone_sectors, bdev);
258                         return 1;
259                 }
260
261                 /*
262                  * Note: The last zone of a zoned block device may be smaller
263                  * than other zones. So for a target mapping the end of a
264                  * zoned block device with such a zone, len would not be zone
265                  * aligned. We do not allow such last smaller zone to be part
266                  * of the mapping here to ensure that mappings with multiple
267                  * devices do not end up with a smaller zone in the middle of
268                  * the sector range.
269                  */
270                 if (len & (zone_sectors - 1)) {
271                         DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
272                               dm_device_name(ti->table->md),
273                               (unsigned long long)len,
274                               zone_sectors, bdev);
275                         return 1;
276                 }
277         }
278
279         if (logical_block_size_sectors <= 1)
280                 return 0;
281
282         if (start & (logical_block_size_sectors - 1)) {
283                 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
284                       dm_device_name(ti->table->md),
285                       (unsigned long long)start,
286                       limits->logical_block_size, bdev);
287                 return 1;
288         }
289
290         if (len & (logical_block_size_sectors - 1)) {
291                 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
292                       dm_device_name(ti->table->md),
293                       (unsigned long long)len,
294                       limits->logical_block_size, bdev);
295                 return 1;
296         }
297
298         return 0;
299 }
300
301 /*
302  * This upgrades the mode on an already open dm_dev, being
303  * careful to leave things as they were if we fail to reopen the
304  * device and not to touch the existing bdev field in case
305  * it is accessed concurrently.
306  */
307 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
308                         struct mapped_device *md)
309 {
310         int r;
311         struct dm_dev *old_dev, *new_dev;
312
313         old_dev = dd->dm_dev;
314
315         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
316                                 dd->dm_dev->mode | new_mode, &new_dev);
317         if (r)
318                 return r;
319
320         dd->dm_dev = new_dev;
321         dm_put_table_device(md, old_dev);
322
323         return 0;
324 }
325
326 /*
327  * Add a device to the list, or just increment the usage count if
328  * it's already present.
329  *
330  * Note: the __ref annotation is because this function can call the __init
331  * marked early_lookup_bdev when called during early boot code from dm-init.c.
332  */
333 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
334                   struct dm_dev **result)
335 {
336         int r;
337         dev_t dev;
338         unsigned int major, minor;
339         char dummy;
340         struct dm_dev_internal *dd;
341         struct dm_table *t = ti->table;
342
343         BUG_ON(!t);
344
345         if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
346                 /* Extract the major/minor numbers */
347                 dev = MKDEV(major, minor);
348                 if (MAJOR(dev) != major || MINOR(dev) != minor)
349                         return -EOVERFLOW;
350         } else {
351                 r = lookup_bdev(path, &dev);
352 #ifndef MODULE
353                 if (r && system_state < SYSTEM_RUNNING)
354                         r = early_lookup_bdev(path, &dev);
355 #endif
356                 if (r)
357                         return r;
358         }
359         if (dev == disk_devt(t->md->disk))
360                 return -EINVAL;
361
362         dd = find_device(&t->devices, dev);
363         if (!dd) {
364                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
365                 if (!dd)
366                         return -ENOMEM;
367
368                 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
369                 if (r) {
370                         kfree(dd);
371                         return r;
372                 }
373
374                 refcount_set(&dd->count, 1);
375                 list_add(&dd->list, &t->devices);
376                 goto out;
377
378         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
379                 r = upgrade_mode(dd, mode, t->md);
380                 if (r)
381                         return r;
382         }
383         refcount_inc(&dd->count);
384 out:
385         *result = dd->dm_dev;
386         return 0;
387 }
388 EXPORT_SYMBOL(dm_get_device);
389
390 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
391                                 sector_t start, sector_t len, void *data)
392 {
393         struct queue_limits *limits = data;
394         struct block_device *bdev = dev->bdev;
395         struct request_queue *q = bdev_get_queue(bdev);
396
397         if (unlikely(!q)) {
398                 DMWARN("%s: Cannot set limits for nonexistent device %pg",
399                        dm_device_name(ti->table->md), bdev);
400                 return 0;
401         }
402
403         if (blk_stack_limits(limits, &q->limits,
404                         get_start_sect(bdev) + start) < 0)
405                 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
406                        "physical_block_size=%u, logical_block_size=%u, "
407                        "alignment_offset=%u, start=%llu",
408                        dm_device_name(ti->table->md), bdev,
409                        q->limits.physical_block_size,
410                        q->limits.logical_block_size,
411                        q->limits.alignment_offset,
412                        (unsigned long long) start << SECTOR_SHIFT);
413         return 0;
414 }
415
416 /*
417  * Decrement a device's use count and remove it if necessary.
418  */
419 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
420 {
421         int found = 0;
422         struct list_head *devices = &ti->table->devices;
423         struct dm_dev_internal *dd;
424
425         list_for_each_entry(dd, devices, list) {
426                 if (dd->dm_dev == d) {
427                         found = 1;
428                         break;
429                 }
430         }
431         if (!found) {
432                 DMERR("%s: device %s not in table devices list",
433                       dm_device_name(ti->table->md), d->name);
434                 return;
435         }
436         if (refcount_dec_and_test(&dd->count)) {
437                 dm_put_table_device(ti->table->md, d);
438                 list_del(&dd->list);
439                 kfree(dd);
440         }
441 }
442 EXPORT_SYMBOL(dm_put_device);
443
444 /*
445  * Checks to see if the target joins onto the end of the table.
446  */
447 static int adjoin(struct dm_table *t, struct dm_target *ti)
448 {
449         struct dm_target *prev;
450
451         if (!t->num_targets)
452                 return !ti->begin;
453
454         prev = &t->targets[t->num_targets - 1];
455         return (ti->begin == (prev->begin + prev->len));
456 }
457
458 /*
459  * Used to dynamically allocate the arg array.
460  *
461  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
462  * process messages even if some device is suspended. These messages have a
463  * small fixed number of arguments.
464  *
465  * On the other hand, dm-switch needs to process bulk data using messages and
466  * excessive use of GFP_NOIO could cause trouble.
467  */
468 static char **realloc_argv(unsigned int *size, char **old_argv)
469 {
470         char **argv;
471         unsigned int new_size;
472         gfp_t gfp;
473
474         if (*size) {
475                 new_size = *size * 2;
476                 gfp = GFP_KERNEL;
477         } else {
478                 new_size = 8;
479                 gfp = GFP_NOIO;
480         }
481         argv = kmalloc_array(new_size, sizeof(*argv), gfp);
482         if (argv && old_argv) {
483                 memcpy(argv, old_argv, *size * sizeof(*argv));
484                 *size = new_size;
485         }
486
487         kfree(old_argv);
488         return argv;
489 }
490
491 /*
492  * Destructively splits up the argument list to pass to ctr.
493  */
494 int dm_split_args(int *argc, char ***argvp, char *input)
495 {
496         char *start, *end = input, *out, **argv = NULL;
497         unsigned int array_size = 0;
498
499         *argc = 0;
500
501         if (!input) {
502                 *argvp = NULL;
503                 return 0;
504         }
505
506         argv = realloc_argv(&array_size, argv);
507         if (!argv)
508                 return -ENOMEM;
509
510         while (1) {
511                 /* Skip whitespace */
512                 start = skip_spaces(end);
513
514                 if (!*start)
515                         break;  /* success, we hit the end */
516
517                 /* 'out' is used to remove any back-quotes */
518                 end = out = start;
519                 while (*end) {
520                         /* Everything apart from '\0' can be quoted */
521                         if (*end == '\\' && *(end + 1)) {
522                                 *out++ = *(end + 1);
523                                 end += 2;
524                                 continue;
525                         }
526
527                         if (isspace(*end))
528                                 break;  /* end of token */
529
530                         *out++ = *end++;
531                 }
532
533                 /* have we already filled the array ? */
534                 if ((*argc + 1) > array_size) {
535                         argv = realloc_argv(&array_size, argv);
536                         if (!argv)
537                                 return -ENOMEM;
538                 }
539
540                 /* we know this is whitespace */
541                 if (*end)
542                         end++;
543
544                 /* terminate the string and put it in the array */
545                 *out = '\0';
546                 argv[*argc] = start;
547                 (*argc)++;
548         }
549
550         *argvp = argv;
551         return 0;
552 }
553
554 /*
555  * Impose necessary and sufficient conditions on a devices's table such
556  * that any incoming bio which respects its logical_block_size can be
557  * processed successfully.  If it falls across the boundary between
558  * two or more targets, the size of each piece it gets split into must
559  * be compatible with the logical_block_size of the target processing it.
560  */
561 static int validate_hardware_logical_block_alignment(struct dm_table *t,
562                                                      struct queue_limits *limits)
563 {
564         /*
565          * This function uses arithmetic modulo the logical_block_size
566          * (in units of 512-byte sectors).
567          */
568         unsigned short device_logical_block_size_sects =
569                 limits->logical_block_size >> SECTOR_SHIFT;
570
571         /*
572          * Offset of the start of the next table entry, mod logical_block_size.
573          */
574         unsigned short next_target_start = 0;
575
576         /*
577          * Given an aligned bio that extends beyond the end of a
578          * target, how many sectors must the next target handle?
579          */
580         unsigned short remaining = 0;
581
582         struct dm_target *ti;
583         struct queue_limits ti_limits;
584         unsigned int i;
585
586         /*
587          * Check each entry in the table in turn.
588          */
589         for (i = 0; i < t->num_targets; i++) {
590                 ti = dm_table_get_target(t, i);
591
592                 blk_set_stacking_limits(&ti_limits);
593
594                 /* combine all target devices' limits */
595                 if (ti->type->iterate_devices)
596                         ti->type->iterate_devices(ti, dm_set_device_limits,
597                                                   &ti_limits);
598
599                 /*
600                  * If the remaining sectors fall entirely within this
601                  * table entry are they compatible with its logical_block_size?
602                  */
603                 if (remaining < ti->len &&
604                     remaining & ((ti_limits.logical_block_size >>
605                                   SECTOR_SHIFT) - 1))
606                         break;  /* Error */
607
608                 next_target_start =
609                     (unsigned short) ((next_target_start + ti->len) &
610                                       (device_logical_block_size_sects - 1));
611                 remaining = next_target_start ?
612                     device_logical_block_size_sects - next_target_start : 0;
613         }
614
615         if (remaining) {
616                 DMERR("%s: table line %u (start sect %llu len %llu) "
617                       "not aligned to h/w logical block size %u",
618                       dm_device_name(t->md), i,
619                       (unsigned long long) ti->begin,
620                       (unsigned long long) ti->len,
621                       limits->logical_block_size);
622                 return -EINVAL;
623         }
624
625         return 0;
626 }
627
628 int dm_table_add_target(struct dm_table *t, const char *type,
629                         sector_t start, sector_t len, char *params)
630 {
631         int r = -EINVAL, argc;
632         char **argv;
633         struct dm_target *ti;
634
635         if (t->singleton) {
636                 DMERR("%s: target type %s must appear alone in table",
637                       dm_device_name(t->md), t->targets->type->name);
638                 return -EINVAL;
639         }
640
641         BUG_ON(t->num_targets >= t->num_allocated);
642
643         ti = t->targets + t->num_targets;
644         memset(ti, 0, sizeof(*ti));
645
646         if (!len) {
647                 DMERR("%s: zero-length target", dm_device_name(t->md));
648                 return -EINVAL;
649         }
650
651         ti->type = dm_get_target_type(type);
652         if (!ti->type) {
653                 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
654                 return -EINVAL;
655         }
656
657         if (dm_target_needs_singleton(ti->type)) {
658                 if (t->num_targets) {
659                         ti->error = "singleton target type must appear alone in table";
660                         goto bad;
661                 }
662                 t->singleton = true;
663         }
664
665         if (dm_target_always_writeable(ti->type) &&
666             !(t->mode & BLK_OPEN_WRITE)) {
667                 ti->error = "target type may not be included in a read-only table";
668                 goto bad;
669         }
670
671         if (t->immutable_target_type) {
672                 if (t->immutable_target_type != ti->type) {
673                         ti->error = "immutable target type cannot be mixed with other target types";
674                         goto bad;
675                 }
676         } else if (dm_target_is_immutable(ti->type)) {
677                 if (t->num_targets) {
678                         ti->error = "immutable target type cannot be mixed with other target types";
679                         goto bad;
680                 }
681                 t->immutable_target_type = ti->type;
682         }
683
684         if (dm_target_has_integrity(ti->type))
685                 t->integrity_added = 1;
686
687         ti->table = t;
688         ti->begin = start;
689         ti->len = len;
690         ti->error = "Unknown error";
691
692         /*
693          * Does this target adjoin the previous one ?
694          */
695         if (!adjoin(t, ti)) {
696                 ti->error = "Gap in table";
697                 goto bad;
698         }
699
700         r = dm_split_args(&argc, &argv, params);
701         if (r) {
702                 ti->error = "couldn't split parameters";
703                 goto bad;
704         }
705
706         r = ti->type->ctr(ti, argc, argv);
707         kfree(argv);
708         if (r)
709                 goto bad;
710
711         t->highs[t->num_targets++] = ti->begin + ti->len - 1;
712
713         if (!ti->num_discard_bios && ti->discards_supported)
714                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
715                        dm_device_name(t->md), type);
716
717         if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
718                 static_branch_enable(&swap_bios_enabled);
719
720         return 0;
721
722  bad:
723         DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
724         dm_put_target_type(ti->type);
725         return r;
726 }
727
728 /*
729  * Target argument parsing helpers.
730  */
731 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
732                              unsigned int *value, char **error, unsigned int grouped)
733 {
734         const char *arg_str = dm_shift_arg(arg_set);
735         char dummy;
736
737         if (!arg_str ||
738             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
739             (*value < arg->min) ||
740             (*value > arg->max) ||
741             (grouped && arg_set->argc < *value)) {
742                 *error = arg->error;
743                 return -EINVAL;
744         }
745
746         return 0;
747 }
748
749 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
750                 unsigned int *value, char **error)
751 {
752         return validate_next_arg(arg, arg_set, value, error, 0);
753 }
754 EXPORT_SYMBOL(dm_read_arg);
755
756 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
757                       unsigned int *value, char **error)
758 {
759         return validate_next_arg(arg, arg_set, value, error, 1);
760 }
761 EXPORT_SYMBOL(dm_read_arg_group);
762
763 const char *dm_shift_arg(struct dm_arg_set *as)
764 {
765         char *r;
766
767         if (as->argc) {
768                 as->argc--;
769                 r = *as->argv;
770                 as->argv++;
771                 return r;
772         }
773
774         return NULL;
775 }
776 EXPORT_SYMBOL(dm_shift_arg);
777
778 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
779 {
780         BUG_ON(as->argc < num_args);
781         as->argc -= num_args;
782         as->argv += num_args;
783 }
784 EXPORT_SYMBOL(dm_consume_args);
785
786 static bool __table_type_bio_based(enum dm_queue_mode table_type)
787 {
788         return (table_type == DM_TYPE_BIO_BASED ||
789                 table_type == DM_TYPE_DAX_BIO_BASED);
790 }
791
792 static bool __table_type_request_based(enum dm_queue_mode table_type)
793 {
794         return table_type == DM_TYPE_REQUEST_BASED;
795 }
796
797 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
798 {
799         t->type = type;
800 }
801 EXPORT_SYMBOL_GPL(dm_table_set_type);
802
803 /* validate the dax capability of the target device span */
804 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
805                         sector_t start, sector_t len, void *data)
806 {
807         if (dev->dax_dev)
808                 return false;
809
810         DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
811         return true;
812 }
813
814 /* Check devices support synchronous DAX */
815 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
816                                               sector_t start, sector_t len, void *data)
817 {
818         return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
819 }
820
821 static bool dm_table_supports_dax(struct dm_table *t,
822                                   iterate_devices_callout_fn iterate_fn)
823 {
824         /* Ensure that all targets support DAX. */
825         for (unsigned int i = 0; i < t->num_targets; i++) {
826                 struct dm_target *ti = dm_table_get_target(t, i);
827
828                 if (!ti->type->direct_access)
829                         return false;
830
831                 if (!ti->type->iterate_devices ||
832                     ti->type->iterate_devices(ti, iterate_fn, NULL))
833                         return false;
834         }
835
836         return true;
837 }
838
839 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
840                                   sector_t start, sector_t len, void *data)
841 {
842         struct block_device *bdev = dev->bdev;
843         struct request_queue *q = bdev_get_queue(bdev);
844
845         /* request-based cannot stack on partitions! */
846         if (bdev_is_partition(bdev))
847                 return false;
848
849         return queue_is_mq(q);
850 }
851
852 static int dm_table_determine_type(struct dm_table *t)
853 {
854         unsigned int bio_based = 0, request_based = 0, hybrid = 0;
855         struct dm_target *ti;
856         struct list_head *devices = dm_table_get_devices(t);
857         enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
858
859         if (t->type != DM_TYPE_NONE) {
860                 /* target already set the table's type */
861                 if (t->type == DM_TYPE_BIO_BASED) {
862                         /* possibly upgrade to a variant of bio-based */
863                         goto verify_bio_based;
864                 }
865                 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
866                 goto verify_rq_based;
867         }
868
869         for (unsigned int i = 0; i < t->num_targets; i++) {
870                 ti = dm_table_get_target(t, i);
871                 if (dm_target_hybrid(ti))
872                         hybrid = 1;
873                 else if (dm_target_request_based(ti))
874                         request_based = 1;
875                 else
876                         bio_based = 1;
877
878                 if (bio_based && request_based) {
879                         DMERR("Inconsistent table: different target types can't be mixed up");
880                         return -EINVAL;
881                 }
882         }
883
884         if (hybrid && !bio_based && !request_based) {
885                 /*
886                  * The targets can work either way.
887                  * Determine the type from the live device.
888                  * Default to bio-based if device is new.
889                  */
890                 if (__table_type_request_based(live_md_type))
891                         request_based = 1;
892                 else
893                         bio_based = 1;
894         }
895
896         if (bio_based) {
897 verify_bio_based:
898                 /* We must use this table as bio-based */
899                 t->type = DM_TYPE_BIO_BASED;
900                 if (dm_table_supports_dax(t, device_not_dax_capable) ||
901                     (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
902                         t->type = DM_TYPE_DAX_BIO_BASED;
903                 }
904                 return 0;
905         }
906
907         BUG_ON(!request_based); /* No targets in this table */
908
909         t->type = DM_TYPE_REQUEST_BASED;
910
911 verify_rq_based:
912         /*
913          * Request-based dm supports only tables that have a single target now.
914          * To support multiple targets, request splitting support is needed,
915          * and that needs lots of changes in the block-layer.
916          * (e.g. request completion process for partial completion.)
917          */
918         if (t->num_targets > 1) {
919                 DMERR("request-based DM doesn't support multiple targets");
920                 return -EINVAL;
921         }
922
923         if (list_empty(devices)) {
924                 int srcu_idx;
925                 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
926
927                 /* inherit live table's type */
928                 if (live_table)
929                         t->type = live_table->type;
930                 dm_put_live_table(t->md, srcu_idx);
931                 return 0;
932         }
933
934         ti = dm_table_get_immutable_target(t);
935         if (!ti) {
936                 DMERR("table load rejected: immutable target is required");
937                 return -EINVAL;
938         } else if (ti->max_io_len) {
939                 DMERR("table load rejected: immutable target that splits IO is not supported");
940                 return -EINVAL;
941         }
942
943         /* Non-request-stackable devices can't be used for request-based dm */
944         if (!ti->type->iterate_devices ||
945             !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
946                 DMERR("table load rejected: including non-request-stackable devices");
947                 return -EINVAL;
948         }
949
950         return 0;
951 }
952
953 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
954 {
955         return t->type;
956 }
957
958 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
959 {
960         return t->immutable_target_type;
961 }
962
963 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
964 {
965         /* Immutable target is implicitly a singleton */
966         if (t->num_targets > 1 ||
967             !dm_target_is_immutable(t->targets[0].type))
968                 return NULL;
969
970         return t->targets;
971 }
972
973 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
974 {
975         for (unsigned int i = 0; i < t->num_targets; i++) {
976                 struct dm_target *ti = dm_table_get_target(t, i);
977
978                 if (dm_target_is_wildcard(ti->type))
979                         return ti;
980         }
981
982         return NULL;
983 }
984
985 bool dm_table_bio_based(struct dm_table *t)
986 {
987         return __table_type_bio_based(dm_table_get_type(t));
988 }
989
990 bool dm_table_request_based(struct dm_table *t)
991 {
992         return __table_type_request_based(dm_table_get_type(t));
993 }
994
995 static bool dm_table_supports_poll(struct dm_table *t);
996
997 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
998 {
999         enum dm_queue_mode type = dm_table_get_type(t);
1000         unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1001         unsigned int min_pool_size = 0, pool_size;
1002         struct dm_md_mempools *pools;
1003
1004         if (unlikely(type == DM_TYPE_NONE)) {
1005                 DMERR("no table type is set, can't allocate mempools");
1006                 return -EINVAL;
1007         }
1008
1009         pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1010         if (!pools)
1011                 return -ENOMEM;
1012
1013         if (type == DM_TYPE_REQUEST_BASED) {
1014                 pool_size = dm_get_reserved_rq_based_ios();
1015                 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1016                 goto init_bs;
1017         }
1018
1019         for (unsigned int i = 0; i < t->num_targets; i++) {
1020                 struct dm_target *ti = dm_table_get_target(t, i);
1021
1022                 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1023                 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1024         }
1025         pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1026         front_pad = roundup(per_io_data_size,
1027                 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1028
1029         io_front_pad = roundup(per_io_data_size,
1030                 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1031         if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1032                         dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1033                 goto out_free_pools;
1034         if (t->integrity_supported &&
1035             bioset_integrity_create(&pools->io_bs, pool_size))
1036                 goto out_free_pools;
1037 init_bs:
1038         if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1039                 goto out_free_pools;
1040         if (t->integrity_supported &&
1041             bioset_integrity_create(&pools->bs, pool_size))
1042                 goto out_free_pools;
1043
1044         t->mempools = pools;
1045         return 0;
1046
1047 out_free_pools:
1048         dm_free_md_mempools(pools);
1049         return -ENOMEM;
1050 }
1051
1052 static int setup_indexes(struct dm_table *t)
1053 {
1054         int i;
1055         unsigned int total = 0;
1056         sector_t *indexes;
1057
1058         /* allocate the space for *all* the indexes */
1059         for (i = t->depth - 2; i >= 0; i--) {
1060                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1061                 total += t->counts[i];
1062         }
1063
1064         indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1065         if (!indexes)
1066                 return -ENOMEM;
1067
1068         /* set up internal nodes, bottom-up */
1069         for (i = t->depth - 2; i >= 0; i--) {
1070                 t->index[i] = indexes;
1071                 indexes += (KEYS_PER_NODE * t->counts[i]);
1072                 setup_btree_index(i, t);
1073         }
1074
1075         return 0;
1076 }
1077
1078 /*
1079  * Builds the btree to index the map.
1080  */
1081 static int dm_table_build_index(struct dm_table *t)
1082 {
1083         int r = 0;
1084         unsigned int leaf_nodes;
1085
1086         /* how many indexes will the btree have ? */
1087         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1088         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1089
1090         /* leaf layer has already been set up */
1091         t->counts[t->depth - 1] = leaf_nodes;
1092         t->index[t->depth - 1] = t->highs;
1093
1094         if (t->depth >= 2)
1095                 r = setup_indexes(t);
1096
1097         return r;
1098 }
1099
1100 static bool integrity_profile_exists(struct gendisk *disk)
1101 {
1102         return !!blk_get_integrity(disk);
1103 }
1104
1105 /*
1106  * Get a disk whose integrity profile reflects the table's profile.
1107  * Returns NULL if integrity support was inconsistent or unavailable.
1108  */
1109 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1110 {
1111         struct list_head *devices = dm_table_get_devices(t);
1112         struct dm_dev_internal *dd = NULL;
1113         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1114
1115         for (unsigned int i = 0; i < t->num_targets; i++) {
1116                 struct dm_target *ti = dm_table_get_target(t, i);
1117
1118                 if (!dm_target_passes_integrity(ti->type))
1119                         goto no_integrity;
1120         }
1121
1122         list_for_each_entry(dd, devices, list) {
1123                 template_disk = dd->dm_dev->bdev->bd_disk;
1124                 if (!integrity_profile_exists(template_disk))
1125                         goto no_integrity;
1126                 else if (prev_disk &&
1127                          blk_integrity_compare(prev_disk, template_disk) < 0)
1128                         goto no_integrity;
1129                 prev_disk = template_disk;
1130         }
1131
1132         return template_disk;
1133
1134 no_integrity:
1135         if (prev_disk)
1136                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1137                        dm_device_name(t->md),
1138                        prev_disk->disk_name,
1139                        template_disk->disk_name);
1140         return NULL;
1141 }
1142
1143 /*
1144  * Register the mapped device for blk_integrity support if the
1145  * underlying devices have an integrity profile.  But all devices may
1146  * not have matching profiles (checking all devices isn't reliable
1147  * during table load because this table may use other DM device(s) which
1148  * must be resumed before they will have an initialized integity
1149  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1150  * profile validation: First pass during table load, final pass during
1151  * resume.
1152  */
1153 static int dm_table_register_integrity(struct dm_table *t)
1154 {
1155         struct mapped_device *md = t->md;
1156         struct gendisk *template_disk = NULL;
1157
1158         /* If target handles integrity itself do not register it here. */
1159         if (t->integrity_added)
1160                 return 0;
1161
1162         template_disk = dm_table_get_integrity_disk(t);
1163         if (!template_disk)
1164                 return 0;
1165
1166         if (!integrity_profile_exists(dm_disk(md))) {
1167                 t->integrity_supported = true;
1168                 /*
1169                  * Register integrity profile during table load; we can do
1170                  * this because the final profile must match during resume.
1171                  */
1172                 blk_integrity_register(dm_disk(md),
1173                                        blk_get_integrity(template_disk));
1174                 return 0;
1175         }
1176
1177         /*
1178          * If DM device already has an initialized integrity
1179          * profile the new profile should not conflict.
1180          */
1181         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1182                 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1183                       dm_device_name(t->md),
1184                       template_disk->disk_name);
1185                 return 1;
1186         }
1187
1188         /* Preserve existing integrity profile */
1189         t->integrity_supported = true;
1190         return 0;
1191 }
1192
1193 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1194
1195 struct dm_crypto_profile {
1196         struct blk_crypto_profile profile;
1197         struct mapped_device *md;
1198 };
1199
1200 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1201                                      sector_t start, sector_t len, void *data)
1202 {
1203         const struct blk_crypto_key *key = data;
1204
1205         blk_crypto_evict_key(dev->bdev, key);
1206         return 0;
1207 }
1208
1209 /*
1210  * When an inline encryption key is evicted from a device-mapper device, evict
1211  * it from all the underlying devices.
1212  */
1213 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1214                             const struct blk_crypto_key *key, unsigned int slot)
1215 {
1216         struct mapped_device *md =
1217                 container_of(profile, struct dm_crypto_profile, profile)->md;
1218         struct dm_table *t;
1219         int srcu_idx;
1220
1221         t = dm_get_live_table(md, &srcu_idx);
1222         if (!t)
1223                 return 0;
1224
1225         for (unsigned int i = 0; i < t->num_targets; i++) {
1226                 struct dm_target *ti = dm_table_get_target(t, i);
1227
1228                 if (!ti->type->iterate_devices)
1229                         continue;
1230                 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1231                                           (void *)key);
1232         }
1233
1234         dm_put_live_table(md, srcu_idx);
1235         return 0;
1236 }
1237
1238 static int
1239 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1240                                      sector_t start, sector_t len, void *data)
1241 {
1242         struct blk_crypto_profile *parent = data;
1243         struct blk_crypto_profile *child =
1244                 bdev_get_queue(dev->bdev)->crypto_profile;
1245
1246         blk_crypto_intersect_capabilities(parent, child);
1247         return 0;
1248 }
1249
1250 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1251 {
1252         struct dm_crypto_profile *dmcp = container_of(profile,
1253                                                       struct dm_crypto_profile,
1254                                                       profile);
1255
1256         if (!profile)
1257                 return;
1258
1259         blk_crypto_profile_destroy(profile);
1260         kfree(dmcp);
1261 }
1262
1263 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1264 {
1265         dm_destroy_crypto_profile(t->crypto_profile);
1266         t->crypto_profile = NULL;
1267 }
1268
1269 /*
1270  * Constructs and initializes t->crypto_profile with a crypto profile that
1271  * represents the common set of crypto capabilities of the devices described by
1272  * the dm_table.  However, if the constructed crypto profile doesn't support all
1273  * crypto capabilities that are supported by the current mapped_device, it
1274  * returns an error instead, since we don't support removing crypto capabilities
1275  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1276  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1277  */
1278 static int dm_table_construct_crypto_profile(struct dm_table *t)
1279 {
1280         struct dm_crypto_profile *dmcp;
1281         struct blk_crypto_profile *profile;
1282         unsigned int i;
1283         bool empty_profile = true;
1284
1285         dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1286         if (!dmcp)
1287                 return -ENOMEM;
1288         dmcp->md = t->md;
1289
1290         profile = &dmcp->profile;
1291         blk_crypto_profile_init(profile, 0);
1292         profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1293         profile->max_dun_bytes_supported = UINT_MAX;
1294         memset(profile->modes_supported, 0xFF,
1295                sizeof(profile->modes_supported));
1296
1297         for (i = 0; i < t->num_targets; i++) {
1298                 struct dm_target *ti = dm_table_get_target(t, i);
1299
1300                 if (!dm_target_passes_crypto(ti->type)) {
1301                         blk_crypto_intersect_capabilities(profile, NULL);
1302                         break;
1303                 }
1304                 if (!ti->type->iterate_devices)
1305                         continue;
1306                 ti->type->iterate_devices(ti,
1307                                           device_intersect_crypto_capabilities,
1308                                           profile);
1309         }
1310
1311         if (t->md->queue &&
1312             !blk_crypto_has_capabilities(profile,
1313                                          t->md->queue->crypto_profile)) {
1314                 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1315                 dm_destroy_crypto_profile(profile);
1316                 return -EINVAL;
1317         }
1318
1319         /*
1320          * If the new profile doesn't actually support any crypto capabilities,
1321          * we may as well represent it with a NULL profile.
1322          */
1323         for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1324                 if (profile->modes_supported[i]) {
1325                         empty_profile = false;
1326                         break;
1327                 }
1328         }
1329
1330         if (empty_profile) {
1331                 dm_destroy_crypto_profile(profile);
1332                 profile = NULL;
1333         }
1334
1335         /*
1336          * t->crypto_profile is only set temporarily while the table is being
1337          * set up, and it gets set to NULL after the profile has been
1338          * transferred to the request_queue.
1339          */
1340         t->crypto_profile = profile;
1341
1342         return 0;
1343 }
1344
1345 static void dm_update_crypto_profile(struct request_queue *q,
1346                                      struct dm_table *t)
1347 {
1348         if (!t->crypto_profile)
1349                 return;
1350
1351         /* Make the crypto profile less restrictive. */
1352         if (!q->crypto_profile) {
1353                 blk_crypto_register(t->crypto_profile, q);
1354         } else {
1355                 blk_crypto_update_capabilities(q->crypto_profile,
1356                                                t->crypto_profile);
1357                 dm_destroy_crypto_profile(t->crypto_profile);
1358         }
1359         t->crypto_profile = NULL;
1360 }
1361
1362 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1363
1364 static int dm_table_construct_crypto_profile(struct dm_table *t)
1365 {
1366         return 0;
1367 }
1368
1369 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1370 {
1371 }
1372
1373 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1374 {
1375 }
1376
1377 static void dm_update_crypto_profile(struct request_queue *q,
1378                                      struct dm_table *t)
1379 {
1380 }
1381
1382 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1383
1384 /*
1385  * Prepares the table for use by building the indices,
1386  * setting the type, and allocating mempools.
1387  */
1388 int dm_table_complete(struct dm_table *t)
1389 {
1390         int r;
1391
1392         r = dm_table_determine_type(t);
1393         if (r) {
1394                 DMERR("unable to determine table type");
1395                 return r;
1396         }
1397
1398         r = dm_table_build_index(t);
1399         if (r) {
1400                 DMERR("unable to build btrees");
1401                 return r;
1402         }
1403
1404         r = dm_table_register_integrity(t);
1405         if (r) {
1406                 DMERR("could not register integrity profile.");
1407                 return r;
1408         }
1409
1410         r = dm_table_construct_crypto_profile(t);
1411         if (r) {
1412                 DMERR("could not construct crypto profile.");
1413                 return r;
1414         }
1415
1416         r = dm_table_alloc_md_mempools(t, t->md);
1417         if (r)
1418                 DMERR("unable to allocate mempools");
1419
1420         return r;
1421 }
1422
1423 static DEFINE_MUTEX(_event_lock);
1424 void dm_table_event_callback(struct dm_table *t,
1425                              void (*fn)(void *), void *context)
1426 {
1427         mutex_lock(&_event_lock);
1428         t->event_fn = fn;
1429         t->event_context = context;
1430         mutex_unlock(&_event_lock);
1431 }
1432
1433 void dm_table_event(struct dm_table *t)
1434 {
1435         mutex_lock(&_event_lock);
1436         if (t->event_fn)
1437                 t->event_fn(t->event_context);
1438         mutex_unlock(&_event_lock);
1439 }
1440 EXPORT_SYMBOL(dm_table_event);
1441
1442 inline sector_t dm_table_get_size(struct dm_table *t)
1443 {
1444         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1445 }
1446 EXPORT_SYMBOL(dm_table_get_size);
1447
1448 /*
1449  * Search the btree for the correct target.
1450  *
1451  * Caller should check returned pointer for NULL
1452  * to trap I/O beyond end of device.
1453  */
1454 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1455 {
1456         unsigned int l, n = 0, k = 0;
1457         sector_t *node;
1458
1459         if (unlikely(sector >= dm_table_get_size(t)))
1460                 return NULL;
1461
1462         for (l = 0; l < t->depth; l++) {
1463                 n = get_child(n, k);
1464                 node = get_node(t, l, n);
1465
1466                 for (k = 0; k < KEYS_PER_NODE; k++)
1467                         if (node[k] >= sector)
1468                                 break;
1469         }
1470
1471         return &t->targets[(KEYS_PER_NODE * n) + k];
1472 }
1473
1474 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1475                                    sector_t start, sector_t len, void *data)
1476 {
1477         struct request_queue *q = bdev_get_queue(dev->bdev);
1478
1479         return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1480 }
1481
1482 /*
1483  * type->iterate_devices() should be called when the sanity check needs to
1484  * iterate and check all underlying data devices. iterate_devices() will
1485  * iterate all underlying data devices until it encounters a non-zero return
1486  * code, returned by whether the input iterate_devices_callout_fn, or
1487  * iterate_devices() itself internally.
1488  *
1489  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1490  * iterate multiple underlying devices internally, in which case a non-zero
1491  * return code returned by iterate_devices_callout_fn will stop the iteration
1492  * in advance.
1493  *
1494  * Cases requiring _any_ underlying device supporting some kind of attribute,
1495  * should use the iteration structure like dm_table_any_dev_attr(), or call
1496  * it directly. @func should handle semantics of positive examples, e.g.
1497  * capable of something.
1498  *
1499  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1500  * should use the iteration structure like dm_table_supports_nowait() or
1501  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1502  * uses an @anti_func that handle semantics of counter examples, e.g. not
1503  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1504  */
1505 static bool dm_table_any_dev_attr(struct dm_table *t,
1506                                   iterate_devices_callout_fn func, void *data)
1507 {
1508         for (unsigned int i = 0; i < t->num_targets; i++) {
1509                 struct dm_target *ti = dm_table_get_target(t, i);
1510
1511                 if (ti->type->iterate_devices &&
1512                     ti->type->iterate_devices(ti, func, data))
1513                         return true;
1514         }
1515
1516         return false;
1517 }
1518
1519 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1520                         sector_t start, sector_t len, void *data)
1521 {
1522         unsigned int *num_devices = data;
1523
1524         (*num_devices)++;
1525
1526         return 0;
1527 }
1528
1529 static bool dm_table_supports_poll(struct dm_table *t)
1530 {
1531         for (unsigned int i = 0; i < t->num_targets; i++) {
1532                 struct dm_target *ti = dm_table_get_target(t, i);
1533
1534                 if (!ti->type->iterate_devices ||
1535                     ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1536                         return false;
1537         }
1538
1539         return true;
1540 }
1541
1542 /*
1543  * Check whether a table has no data devices attached using each
1544  * target's iterate_devices method.
1545  * Returns false if the result is unknown because a target doesn't
1546  * support iterate_devices.
1547  */
1548 bool dm_table_has_no_data_devices(struct dm_table *t)
1549 {
1550         for (unsigned int i = 0; i < t->num_targets; i++) {
1551                 struct dm_target *ti = dm_table_get_target(t, i);
1552                 unsigned int num_devices = 0;
1553
1554                 if (!ti->type->iterate_devices)
1555                         return false;
1556
1557                 ti->type->iterate_devices(ti, count_device, &num_devices);
1558                 if (num_devices)
1559                         return false;
1560         }
1561
1562         return true;
1563 }
1564
1565 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1566                                   sector_t start, sector_t len, void *data)
1567 {
1568         struct request_queue *q = bdev_get_queue(dev->bdev);
1569         enum blk_zoned_model *zoned_model = data;
1570
1571         return blk_queue_zoned_model(q) != *zoned_model;
1572 }
1573
1574 /*
1575  * Check the device zoned model based on the target feature flag. If the target
1576  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1577  * also accepted but all devices must have the same zoned model. If the target
1578  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1579  * zoned model with all zoned devices having the same zone size.
1580  */
1581 static bool dm_table_supports_zoned_model(struct dm_table *t,
1582                                           enum blk_zoned_model zoned_model)
1583 {
1584         for (unsigned int i = 0; i < t->num_targets; i++) {
1585                 struct dm_target *ti = dm_table_get_target(t, i);
1586
1587                 if (dm_target_supports_zoned_hm(ti->type)) {
1588                         if (!ti->type->iterate_devices ||
1589                             ti->type->iterate_devices(ti, device_not_zoned_model,
1590                                                       &zoned_model))
1591                                 return false;
1592                 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1593                         if (zoned_model == BLK_ZONED_HM)
1594                                 return false;
1595                 }
1596         }
1597
1598         return true;
1599 }
1600
1601 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1602                                            sector_t start, sector_t len, void *data)
1603 {
1604         unsigned int *zone_sectors = data;
1605
1606         if (!bdev_is_zoned(dev->bdev))
1607                 return 0;
1608         return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1609 }
1610
1611 /*
1612  * Check consistency of zoned model and zone sectors across all targets. For
1613  * zone sectors, if the destination device is a zoned block device, it shall
1614  * have the specified zone_sectors.
1615  */
1616 static int validate_hardware_zoned_model(struct dm_table *t,
1617                                          enum blk_zoned_model zoned_model,
1618                                          unsigned int zone_sectors)
1619 {
1620         if (zoned_model == BLK_ZONED_NONE)
1621                 return 0;
1622
1623         if (!dm_table_supports_zoned_model(t, zoned_model)) {
1624                 DMERR("%s: zoned model is not consistent across all devices",
1625                       dm_device_name(t->md));
1626                 return -EINVAL;
1627         }
1628
1629         /* Check zone size validity and compatibility */
1630         if (!zone_sectors || !is_power_of_2(zone_sectors))
1631                 return -EINVAL;
1632
1633         if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1634                 DMERR("%s: zone sectors is not consistent across all zoned devices",
1635                       dm_device_name(t->md));
1636                 return -EINVAL;
1637         }
1638
1639         return 0;
1640 }
1641
1642 /*
1643  * Establish the new table's queue_limits and validate them.
1644  */
1645 int dm_calculate_queue_limits(struct dm_table *t,
1646                               struct queue_limits *limits)
1647 {
1648         struct queue_limits ti_limits;
1649         enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1650         unsigned int zone_sectors = 0;
1651
1652         blk_set_stacking_limits(limits);
1653
1654         for (unsigned int i = 0; i < t->num_targets; i++) {
1655                 struct dm_target *ti = dm_table_get_target(t, i);
1656
1657                 blk_set_stacking_limits(&ti_limits);
1658
1659                 if (!ti->type->iterate_devices) {
1660                         /* Set I/O hints portion of queue limits */
1661                         if (ti->type->io_hints)
1662                                 ti->type->io_hints(ti, &ti_limits);
1663                         goto combine_limits;
1664                 }
1665
1666                 /*
1667                  * Combine queue limits of all the devices this target uses.
1668                  */
1669                 ti->type->iterate_devices(ti, dm_set_device_limits,
1670                                           &ti_limits);
1671
1672                 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1673                         /*
1674                          * After stacking all limits, validate all devices
1675                          * in table support this zoned model and zone sectors.
1676                          */
1677                         zoned_model = ti_limits.zoned;
1678                         zone_sectors = ti_limits.chunk_sectors;
1679                 }
1680
1681                 /* Set I/O hints portion of queue limits */
1682                 if (ti->type->io_hints)
1683                         ti->type->io_hints(ti, &ti_limits);
1684
1685                 /*
1686                  * Check each device area is consistent with the target's
1687                  * overall queue limits.
1688                  */
1689                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1690                                               &ti_limits))
1691                         return -EINVAL;
1692
1693 combine_limits:
1694                 /*
1695                  * Merge this target's queue limits into the overall limits
1696                  * for the table.
1697                  */
1698                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1699                         DMWARN("%s: adding target device (start sect %llu len %llu) "
1700                                "caused an alignment inconsistency",
1701                                dm_device_name(t->md),
1702                                (unsigned long long) ti->begin,
1703                                (unsigned long long) ti->len);
1704         }
1705
1706         /*
1707          * Verify that the zoned model and zone sectors, as determined before
1708          * any .io_hints override, are the same across all devices in the table.
1709          * - this is especially relevant if .io_hints is emulating a disk-managed
1710          *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1711          * BUT...
1712          */
1713         if (limits->zoned != BLK_ZONED_NONE) {
1714                 /*
1715                  * ...IF the above limits stacking determined a zoned model
1716                  * validate that all of the table's devices conform to it.
1717                  */
1718                 zoned_model = limits->zoned;
1719                 zone_sectors = limits->chunk_sectors;
1720         }
1721         if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1722                 return -EINVAL;
1723
1724         return validate_hardware_logical_block_alignment(t, limits);
1725 }
1726
1727 /*
1728  * Verify that all devices have an integrity profile that matches the
1729  * DM device's registered integrity profile.  If the profiles don't
1730  * match then unregister the DM device's integrity profile.
1731  */
1732 static void dm_table_verify_integrity(struct dm_table *t)
1733 {
1734         struct gendisk *template_disk = NULL;
1735
1736         if (t->integrity_added)
1737                 return;
1738
1739         if (t->integrity_supported) {
1740                 /*
1741                  * Verify that the original integrity profile
1742                  * matches all the devices in this table.
1743                  */
1744                 template_disk = dm_table_get_integrity_disk(t);
1745                 if (template_disk &&
1746                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1747                         return;
1748         }
1749
1750         if (integrity_profile_exists(dm_disk(t->md))) {
1751                 DMWARN("%s: unable to establish an integrity profile",
1752                        dm_device_name(t->md));
1753                 blk_integrity_unregister(dm_disk(t->md));
1754         }
1755 }
1756
1757 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1758                                 sector_t start, sector_t len, void *data)
1759 {
1760         unsigned long flush = (unsigned long) data;
1761         struct request_queue *q = bdev_get_queue(dev->bdev);
1762
1763         return (q->queue_flags & flush);
1764 }
1765
1766 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1767 {
1768         /*
1769          * Require at least one underlying device to support flushes.
1770          * t->devices includes internal dm devices such as mirror logs
1771          * so we need to use iterate_devices here, which targets
1772          * supporting flushes must provide.
1773          */
1774         for (unsigned int i = 0; i < t->num_targets; i++) {
1775                 struct dm_target *ti = dm_table_get_target(t, i);
1776
1777                 if (!ti->num_flush_bios)
1778                         continue;
1779
1780                 if (ti->flush_supported)
1781                         return true;
1782
1783                 if (ti->type->iterate_devices &&
1784                     ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1785                         return true;
1786         }
1787
1788         return false;
1789 }
1790
1791 static int device_dax_write_cache_enabled(struct dm_target *ti,
1792                                           struct dm_dev *dev, sector_t start,
1793                                           sector_t len, void *data)
1794 {
1795         struct dax_device *dax_dev = dev->dax_dev;
1796
1797         if (!dax_dev)
1798                 return false;
1799
1800         if (dax_write_cache_enabled(dax_dev))
1801                 return true;
1802         return false;
1803 }
1804
1805 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1806                                 sector_t start, sector_t len, void *data)
1807 {
1808         return !bdev_nonrot(dev->bdev);
1809 }
1810
1811 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1812                              sector_t start, sector_t len, void *data)
1813 {
1814         struct request_queue *q = bdev_get_queue(dev->bdev);
1815
1816         return !blk_queue_add_random(q);
1817 }
1818
1819 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1820                                            sector_t start, sector_t len, void *data)
1821 {
1822         struct request_queue *q = bdev_get_queue(dev->bdev);
1823
1824         return !q->limits.max_write_zeroes_sectors;
1825 }
1826
1827 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1828 {
1829         for (unsigned int i = 0; i < t->num_targets; i++) {
1830                 struct dm_target *ti = dm_table_get_target(t, i);
1831
1832                 if (!ti->num_write_zeroes_bios)
1833                         return false;
1834
1835                 if (!ti->type->iterate_devices ||
1836                     ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1837                         return false;
1838         }
1839
1840         return true;
1841 }
1842
1843 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1844                                      sector_t start, sector_t len, void *data)
1845 {
1846         return !bdev_nowait(dev->bdev);
1847 }
1848
1849 static bool dm_table_supports_nowait(struct dm_table *t)
1850 {
1851         for (unsigned int i = 0; i < t->num_targets; i++) {
1852                 struct dm_target *ti = dm_table_get_target(t, i);
1853
1854                 if (!dm_target_supports_nowait(ti->type))
1855                         return false;
1856
1857                 if (!ti->type->iterate_devices ||
1858                     ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1859                         return false;
1860         }
1861
1862         return true;
1863 }
1864
1865 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1866                                       sector_t start, sector_t len, void *data)
1867 {
1868         return !bdev_max_discard_sectors(dev->bdev);
1869 }
1870
1871 static bool dm_table_supports_discards(struct dm_table *t)
1872 {
1873         for (unsigned int i = 0; i < t->num_targets; i++) {
1874                 struct dm_target *ti = dm_table_get_target(t, i);
1875
1876                 if (!ti->num_discard_bios)
1877                         return false;
1878
1879                 /*
1880                  * Either the target provides discard support (as implied by setting
1881                  * 'discards_supported') or it relies on _all_ data devices having
1882                  * discard support.
1883                  */
1884                 if (!ti->discards_supported &&
1885                     (!ti->type->iterate_devices ||
1886                      ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1887                         return false;
1888         }
1889
1890         return true;
1891 }
1892
1893 static int device_not_secure_erase_capable(struct dm_target *ti,
1894                                            struct dm_dev *dev, sector_t start,
1895                                            sector_t len, void *data)
1896 {
1897         return !bdev_max_secure_erase_sectors(dev->bdev);
1898 }
1899
1900 static bool dm_table_supports_secure_erase(struct dm_table *t)
1901 {
1902         for (unsigned int i = 0; i < t->num_targets; i++) {
1903                 struct dm_target *ti = dm_table_get_target(t, i);
1904
1905                 if (!ti->num_secure_erase_bios)
1906                         return false;
1907
1908                 if (!ti->type->iterate_devices ||
1909                     ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1910                         return false;
1911         }
1912
1913         return true;
1914 }
1915
1916 static int device_requires_stable_pages(struct dm_target *ti,
1917                                         struct dm_dev *dev, sector_t start,
1918                                         sector_t len, void *data)
1919 {
1920         return bdev_stable_writes(dev->bdev);
1921 }
1922
1923 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1924                               struct queue_limits *limits)
1925 {
1926         bool wc = false, fua = false;
1927         int r;
1928
1929         /*
1930          * Copy table's limits to the DM device's request_queue
1931          */
1932         q->limits = *limits;
1933
1934         if (dm_table_supports_nowait(t))
1935                 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1936         else
1937                 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1938
1939         if (!dm_table_supports_discards(t)) {
1940                 q->limits.max_discard_sectors = 0;
1941                 q->limits.max_hw_discard_sectors = 0;
1942                 q->limits.discard_granularity = 0;
1943                 q->limits.discard_alignment = 0;
1944                 q->limits.discard_misaligned = 0;
1945         }
1946
1947         if (!dm_table_supports_secure_erase(t))
1948                 q->limits.max_secure_erase_sectors = 0;
1949
1950         if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1951                 wc = true;
1952                 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1953                         fua = true;
1954         }
1955         blk_queue_write_cache(q, wc, fua);
1956
1957         if (dm_table_supports_dax(t, device_not_dax_capable)) {
1958                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1959                 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1960                         set_dax_synchronous(t->md->dax_dev);
1961         } else
1962                 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1963
1964         if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1965                 dax_write_cache(t->md->dax_dev, true);
1966
1967         /* Ensure that all underlying devices are non-rotational. */
1968         if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1969                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1970         else
1971                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1972
1973         if (!dm_table_supports_write_zeroes(t))
1974                 q->limits.max_write_zeroes_sectors = 0;
1975
1976         dm_table_verify_integrity(t);
1977
1978         /*
1979          * Some devices don't use blk_integrity but still want stable pages
1980          * because they do their own checksumming.
1981          * If any underlying device requires stable pages, a table must require
1982          * them as well.  Only targets that support iterate_devices are considered:
1983          * don't want error, zero, etc to require stable pages.
1984          */
1985         if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
1986                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1987         else
1988                 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1989
1990         /*
1991          * Determine whether or not this queue's I/O timings contribute
1992          * to the entropy pool, Only request-based targets use this.
1993          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1994          * have it set.
1995          */
1996         if (blk_queue_add_random(q) &&
1997             dm_table_any_dev_attr(t, device_is_not_random, NULL))
1998                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1999
2000         /*
2001          * For a zoned target, setup the zones related queue attributes
2002          * and resources necessary for zone append emulation if necessary.
2003          */
2004         if (blk_queue_is_zoned(q)) {
2005                 r = dm_set_zones_restrictions(t, q);
2006                 if (r)
2007                         return r;
2008                 if (!static_key_enabled(&zoned_enabled.key))
2009                         static_branch_enable(&zoned_enabled);
2010         }
2011
2012         dm_update_crypto_profile(q, t);
2013         disk_update_readahead(t->md->disk);
2014
2015         /*
2016          * Check for request-based device is left to
2017          * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2018          *
2019          * For bio-based device, only set QUEUE_FLAG_POLL when all
2020          * underlying devices supporting polling.
2021          */
2022         if (__table_type_bio_based(t->type)) {
2023                 if (dm_table_supports_poll(t))
2024                         blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2025                 else
2026                         blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2027         }
2028
2029         return 0;
2030 }
2031
2032 struct list_head *dm_table_get_devices(struct dm_table *t)
2033 {
2034         return &t->devices;
2035 }
2036
2037 blk_mode_t dm_table_get_mode(struct dm_table *t)
2038 {
2039         return t->mode;
2040 }
2041 EXPORT_SYMBOL(dm_table_get_mode);
2042
2043 enum suspend_mode {
2044         PRESUSPEND,
2045         PRESUSPEND_UNDO,
2046         POSTSUSPEND,
2047 };
2048
2049 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2050 {
2051         lockdep_assert_held(&t->md->suspend_lock);
2052
2053         for (unsigned int i = 0; i < t->num_targets; i++) {
2054                 struct dm_target *ti = dm_table_get_target(t, i);
2055
2056                 switch (mode) {
2057                 case PRESUSPEND:
2058                         if (ti->type->presuspend)
2059                                 ti->type->presuspend(ti);
2060                         break;
2061                 case PRESUSPEND_UNDO:
2062                         if (ti->type->presuspend_undo)
2063                                 ti->type->presuspend_undo(ti);
2064                         break;
2065                 case POSTSUSPEND:
2066                         if (ti->type->postsuspend)
2067                                 ti->type->postsuspend(ti);
2068                         break;
2069                 }
2070         }
2071 }
2072
2073 void dm_table_presuspend_targets(struct dm_table *t)
2074 {
2075         if (!t)
2076                 return;
2077
2078         suspend_targets(t, PRESUSPEND);
2079 }
2080
2081 void dm_table_presuspend_undo_targets(struct dm_table *t)
2082 {
2083         if (!t)
2084                 return;
2085
2086         suspend_targets(t, PRESUSPEND_UNDO);
2087 }
2088
2089 void dm_table_postsuspend_targets(struct dm_table *t)
2090 {
2091         if (!t)
2092                 return;
2093
2094         suspend_targets(t, POSTSUSPEND);
2095 }
2096
2097 int dm_table_resume_targets(struct dm_table *t)
2098 {
2099         unsigned int i;
2100         int r = 0;
2101
2102         lockdep_assert_held(&t->md->suspend_lock);
2103
2104         for (i = 0; i < t->num_targets; i++) {
2105                 struct dm_target *ti = dm_table_get_target(t, i);
2106
2107                 if (!ti->type->preresume)
2108                         continue;
2109
2110                 r = ti->type->preresume(ti);
2111                 if (r) {
2112                         DMERR("%s: %s: preresume failed, error = %d",
2113                               dm_device_name(t->md), ti->type->name, r);
2114                         return r;
2115                 }
2116         }
2117
2118         for (i = 0; i < t->num_targets; i++) {
2119                 struct dm_target *ti = dm_table_get_target(t, i);
2120
2121                 if (ti->type->resume)
2122                         ti->type->resume(ti);
2123         }
2124
2125         return 0;
2126 }
2127
2128 struct mapped_device *dm_table_get_md(struct dm_table *t)
2129 {
2130         return t->md;
2131 }
2132 EXPORT_SYMBOL(dm_table_get_md);
2133
2134 const char *dm_table_device_name(struct dm_table *t)
2135 {
2136         return dm_device_name(t->md);
2137 }
2138 EXPORT_SYMBOL_GPL(dm_table_device_name);
2139
2140 void dm_table_run_md_queue_async(struct dm_table *t)
2141 {
2142         if (!dm_table_request_based(t))
2143                 return;
2144
2145         if (t->md->queue)
2146                 blk_mq_run_hw_queues(t->md->queue, true);
2147 }
2148 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2149