Merge patch series "riscv: Introduce compat-mode helpers & improve arch_get_mmap_end()"
[linux-2.6-block.git] / drivers / md / dm-raid.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010-2011 Neil Brown
4  * Copyright (C) 2010-2018 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/slab.h>
10 #include <linux/module.h>
11
12 #include "md.h"
13 #include "raid1.h"
14 #include "raid5.h"
15 #include "raid10.h"
16 #include "md-bitmap.h"
17
18 #include <linux/device-mapper.h>
19
20 #define DM_MSG_PREFIX "raid"
21 #define MAX_RAID_DEVICES        253 /* md-raid kernel limit */
22
23 /*
24  * Minimum sectors of free reshape space per raid device
25  */
26 #define MIN_FREE_RESHAPE_SPACE to_sector(4*4096)
27
28 /*
29  * Minimum journal space 4 MiB in sectors.
30  */
31 #define MIN_RAID456_JOURNAL_SPACE (4*2048)
32
33 static bool devices_handle_discard_safely;
34
35 /*
36  * The following flags are used by dm-raid to set up the array state.
37  * They must be cleared before md_run is called.
38  */
39 #define FirstUse 10             /* rdev flag */
40
41 struct raid_dev {
42         /*
43          * Two DM devices, one to hold metadata and one to hold the
44          * actual data/parity.  The reason for this is to not confuse
45          * ti->len and give more flexibility in altering size and
46          * characteristics.
47          *
48          * While it is possible for this device to be associated
49          * with a different physical device than the data_dev, it
50          * is intended for it to be the same.
51          *    |--------- Physical Device ---------|
52          *    |- meta_dev -|------ data_dev ------|
53          */
54         struct dm_dev *meta_dev;
55         struct dm_dev *data_dev;
56         struct md_rdev rdev;
57 };
58
59 /*
60  * Bits for establishing rs->ctr_flags
61  *
62  * 1 = no flag value
63  * 2 = flag with value
64  */
65 #define __CTR_FLAG_SYNC                 0  /* 1 */ /* Not with raid0! */
66 #define __CTR_FLAG_NOSYNC               1  /* 1 */ /* Not with raid0! */
67 #define __CTR_FLAG_REBUILD              2  /* 2 */ /* Not with raid0! */
68 #define __CTR_FLAG_DAEMON_SLEEP         3  /* 2 */ /* Not with raid0! */
69 #define __CTR_FLAG_MIN_RECOVERY_RATE    4  /* 2 */ /* Not with raid0! */
70 #define __CTR_FLAG_MAX_RECOVERY_RATE    5  /* 2 */ /* Not with raid0! */
71 #define __CTR_FLAG_MAX_WRITE_BEHIND     6  /* 2 */ /* Only with raid1! */
72 #define __CTR_FLAG_WRITE_MOSTLY         7  /* 2 */ /* Only with raid1! */
73 #define __CTR_FLAG_STRIPE_CACHE         8  /* 2 */ /* Only with raid4/5/6! */
74 #define __CTR_FLAG_REGION_SIZE          9  /* 2 */ /* Not with raid0! */
75 #define __CTR_FLAG_RAID10_COPIES        10 /* 2 */ /* Only with raid10 */
76 #define __CTR_FLAG_RAID10_FORMAT        11 /* 2 */ /* Only with raid10 */
77 /* New for v1.9.0 */
78 #define __CTR_FLAG_DELTA_DISKS          12 /* 2 */ /* Only with reshapable raid1/4/5/6/10! */
79 #define __CTR_FLAG_DATA_OFFSET          13 /* 2 */ /* Only with reshapable raid4/5/6/10! */
80 #define __CTR_FLAG_RAID10_USE_NEAR_SETS 14 /* 2 */ /* Only with raid10! */
81
82 /* New for v1.10.0 */
83 #define __CTR_FLAG_JOURNAL_DEV          15 /* 2 */ /* Only with raid4/5/6 (journal device)! */
84
85 /* New for v1.11.1 */
86 #define __CTR_FLAG_JOURNAL_MODE         16 /* 2 */ /* Only with raid4/5/6 (journal mode)! */
87
88 /*
89  * Flags for rs->ctr_flags field.
90  */
91 #define CTR_FLAG_SYNC                   (1 << __CTR_FLAG_SYNC)
92 #define CTR_FLAG_NOSYNC                 (1 << __CTR_FLAG_NOSYNC)
93 #define CTR_FLAG_REBUILD                (1 << __CTR_FLAG_REBUILD)
94 #define CTR_FLAG_DAEMON_SLEEP           (1 << __CTR_FLAG_DAEMON_SLEEP)
95 #define CTR_FLAG_MIN_RECOVERY_RATE      (1 << __CTR_FLAG_MIN_RECOVERY_RATE)
96 #define CTR_FLAG_MAX_RECOVERY_RATE      (1 << __CTR_FLAG_MAX_RECOVERY_RATE)
97 #define CTR_FLAG_MAX_WRITE_BEHIND       (1 << __CTR_FLAG_MAX_WRITE_BEHIND)
98 #define CTR_FLAG_WRITE_MOSTLY           (1 << __CTR_FLAG_WRITE_MOSTLY)
99 #define CTR_FLAG_STRIPE_CACHE           (1 << __CTR_FLAG_STRIPE_CACHE)
100 #define CTR_FLAG_REGION_SIZE            (1 << __CTR_FLAG_REGION_SIZE)
101 #define CTR_FLAG_RAID10_COPIES          (1 << __CTR_FLAG_RAID10_COPIES)
102 #define CTR_FLAG_RAID10_FORMAT          (1 << __CTR_FLAG_RAID10_FORMAT)
103 #define CTR_FLAG_DELTA_DISKS            (1 << __CTR_FLAG_DELTA_DISKS)
104 #define CTR_FLAG_DATA_OFFSET            (1 << __CTR_FLAG_DATA_OFFSET)
105 #define CTR_FLAG_RAID10_USE_NEAR_SETS   (1 << __CTR_FLAG_RAID10_USE_NEAR_SETS)
106 #define CTR_FLAG_JOURNAL_DEV            (1 << __CTR_FLAG_JOURNAL_DEV)
107 #define CTR_FLAG_JOURNAL_MODE           (1 << __CTR_FLAG_JOURNAL_MODE)
108
109 /*
110  * Definitions of various constructor flags to
111  * be used in checks of valid / invalid flags
112  * per raid level.
113  */
114 /* Define all any sync flags */
115 #define CTR_FLAGS_ANY_SYNC              (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC)
116
117 /* Define flags for options without argument (e.g. 'nosync') */
118 #define CTR_FLAG_OPTIONS_NO_ARGS        (CTR_FLAGS_ANY_SYNC | \
119                                          CTR_FLAG_RAID10_USE_NEAR_SETS)
120
121 /* Define flags for options with one argument (e.g. 'delta_disks +2') */
122 #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \
123                                   CTR_FLAG_WRITE_MOSTLY | \
124                                   CTR_FLAG_DAEMON_SLEEP | \
125                                   CTR_FLAG_MIN_RECOVERY_RATE | \
126                                   CTR_FLAG_MAX_RECOVERY_RATE | \
127                                   CTR_FLAG_MAX_WRITE_BEHIND | \
128                                   CTR_FLAG_STRIPE_CACHE | \
129                                   CTR_FLAG_REGION_SIZE | \
130                                   CTR_FLAG_RAID10_COPIES | \
131                                   CTR_FLAG_RAID10_FORMAT | \
132                                   CTR_FLAG_DELTA_DISKS | \
133                                   CTR_FLAG_DATA_OFFSET | \
134                                   CTR_FLAG_JOURNAL_DEV | \
135                                   CTR_FLAG_JOURNAL_MODE)
136
137 /* Valid options definitions per raid level... */
138
139 /* "raid0" does only accept data offset */
140 #define RAID0_VALID_FLAGS       (CTR_FLAG_DATA_OFFSET)
141
142 /* "raid1" does not accept stripe cache, data offset, delta_disks or any raid10 options */
143 #define RAID1_VALID_FLAGS       (CTR_FLAGS_ANY_SYNC | \
144                                  CTR_FLAG_REBUILD | \
145                                  CTR_FLAG_WRITE_MOSTLY | \
146                                  CTR_FLAG_DAEMON_SLEEP | \
147                                  CTR_FLAG_MIN_RECOVERY_RATE | \
148                                  CTR_FLAG_MAX_RECOVERY_RATE | \
149                                  CTR_FLAG_MAX_WRITE_BEHIND | \
150                                  CTR_FLAG_REGION_SIZE | \
151                                  CTR_FLAG_DELTA_DISKS | \
152                                  CTR_FLAG_DATA_OFFSET)
153
154 /* "raid10" does not accept any raid1 or stripe cache options */
155 #define RAID10_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
156                                  CTR_FLAG_REBUILD | \
157                                  CTR_FLAG_DAEMON_SLEEP | \
158                                  CTR_FLAG_MIN_RECOVERY_RATE | \
159                                  CTR_FLAG_MAX_RECOVERY_RATE | \
160                                  CTR_FLAG_REGION_SIZE | \
161                                  CTR_FLAG_RAID10_COPIES | \
162                                  CTR_FLAG_RAID10_FORMAT | \
163                                  CTR_FLAG_DELTA_DISKS | \
164                                  CTR_FLAG_DATA_OFFSET | \
165                                  CTR_FLAG_RAID10_USE_NEAR_SETS)
166
167 /*
168  * "raid4/5/6" do not accept any raid1 or raid10 specific options
169  *
170  * "raid6" does not accept "nosync", because it is not guaranteed
171  * that both parity and q-syndrome are being written properly with
172  * any writes
173  */
174 #define RAID45_VALID_FLAGS      (CTR_FLAGS_ANY_SYNC | \
175                                  CTR_FLAG_REBUILD | \
176                                  CTR_FLAG_DAEMON_SLEEP | \
177                                  CTR_FLAG_MIN_RECOVERY_RATE | \
178                                  CTR_FLAG_MAX_RECOVERY_RATE | \
179                                  CTR_FLAG_STRIPE_CACHE | \
180                                  CTR_FLAG_REGION_SIZE | \
181                                  CTR_FLAG_DELTA_DISKS | \
182                                  CTR_FLAG_DATA_OFFSET | \
183                                  CTR_FLAG_JOURNAL_DEV | \
184                                  CTR_FLAG_JOURNAL_MODE)
185
186 #define RAID6_VALID_FLAGS       (CTR_FLAG_SYNC | \
187                                  CTR_FLAG_REBUILD | \
188                                  CTR_FLAG_DAEMON_SLEEP | \
189                                  CTR_FLAG_MIN_RECOVERY_RATE | \
190                                  CTR_FLAG_MAX_RECOVERY_RATE | \
191                                  CTR_FLAG_STRIPE_CACHE | \
192                                  CTR_FLAG_REGION_SIZE | \
193                                  CTR_FLAG_DELTA_DISKS | \
194                                  CTR_FLAG_DATA_OFFSET | \
195                                  CTR_FLAG_JOURNAL_DEV | \
196                                  CTR_FLAG_JOURNAL_MODE)
197 /* ...valid options definitions per raid level */
198
199 /*
200  * Flags for rs->runtime_flags field
201  * (RT_FLAG prefix meaning "runtime flag")
202  *
203  * These are all internal and used to define runtime state,
204  * e.g. to prevent another resume from preresume processing
205  * the raid set all over again.
206  */
207 #define RT_FLAG_RS_PRERESUMED           0
208 #define RT_FLAG_RS_RESUMED              1
209 #define RT_FLAG_RS_BITMAP_LOADED        2
210 #define RT_FLAG_UPDATE_SBS              3
211 #define RT_FLAG_RESHAPE_RS              4
212 #define RT_FLAG_RS_SUSPENDED            5
213 #define RT_FLAG_RS_IN_SYNC              6
214 #define RT_FLAG_RS_RESYNCING            7
215 #define RT_FLAG_RS_GROW                 8
216
217 /* Array elements of 64 bit needed for rebuild/failed disk bits */
218 #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8)
219
220 /*
221  * raid set level, layout and chunk sectors backup/restore
222  */
223 struct rs_layout {
224         int new_level;
225         int new_layout;
226         int new_chunk_sectors;
227 };
228
229 struct raid_set {
230         struct dm_target *ti;
231
232         uint32_t stripe_cache_entries;
233         unsigned long ctr_flags;
234         unsigned long runtime_flags;
235
236         uint64_t rebuild_disks[DISKS_ARRAY_ELEMS];
237
238         int raid_disks;
239         int delta_disks;
240         int data_offset;
241         int raid10_copies;
242         int requested_bitmap_chunk_sectors;
243
244         struct mddev md;
245         struct raid_type *raid_type;
246
247         sector_t array_sectors;
248         sector_t dev_sectors;
249
250         /* Optional raid4/5/6 journal device */
251         struct journal_dev {
252                 struct dm_dev *dev;
253                 struct md_rdev rdev;
254                 int mode;
255         } journal_dev;
256
257         struct raid_dev dev[] __counted_by(raid_disks);
258 };
259
260 static void rs_config_backup(struct raid_set *rs, struct rs_layout *l)
261 {
262         struct mddev *mddev = &rs->md;
263
264         l->new_level = mddev->new_level;
265         l->new_layout = mddev->new_layout;
266         l->new_chunk_sectors = mddev->new_chunk_sectors;
267 }
268
269 static void rs_config_restore(struct raid_set *rs, struct rs_layout *l)
270 {
271         struct mddev *mddev = &rs->md;
272
273         mddev->new_level = l->new_level;
274         mddev->new_layout = l->new_layout;
275         mddev->new_chunk_sectors = l->new_chunk_sectors;
276 }
277
278 /* raid10 algorithms (i.e. formats) */
279 #define ALGORITHM_RAID10_DEFAULT        0
280 #define ALGORITHM_RAID10_NEAR           1
281 #define ALGORITHM_RAID10_OFFSET         2
282 #define ALGORITHM_RAID10_FAR            3
283
284 /* Supported raid types and properties. */
285 static struct raid_type {
286         const char *name;               /* RAID algorithm. */
287         const char *descr;              /* Descriptor text for logging. */
288         const unsigned int parity_devs; /* # of parity devices. */
289         const unsigned int minimal_devs;/* minimal # of devices in set. */
290         const unsigned int level;       /* RAID level. */
291         const unsigned int algorithm;   /* RAID algorithm. */
292 } raid_types[] = {
293         {"raid0",         "raid0 (striping)",                       0, 2, 0,  0 /* NONE */},
294         {"raid1",         "raid1 (mirroring)",                      0, 2, 1,  0 /* NONE */},
295         {"raid10_far",    "raid10 far (striped mirrors)",           0, 2, 10, ALGORITHM_RAID10_FAR},
296         {"raid10_offset", "raid10 offset (striped mirrors)",        0, 2, 10, ALGORITHM_RAID10_OFFSET},
297         {"raid10_near",   "raid10 near (striped mirrors)",          0, 2, 10, ALGORITHM_RAID10_NEAR},
298         {"raid10",        "raid10 (striped mirrors)",               0, 2, 10, ALGORITHM_RAID10_DEFAULT},
299         {"raid4",         "raid4 (dedicated first parity disk)",    1, 2, 5,  ALGORITHM_PARITY_0}, /* raid4 layout = raid5_0 */
300         {"raid5_n",       "raid5 (dedicated last parity disk)",     1, 2, 5,  ALGORITHM_PARITY_N},
301         {"raid5_ls",      "raid5 (left symmetric)",                 1, 2, 5,  ALGORITHM_LEFT_SYMMETRIC},
302         {"raid5_rs",      "raid5 (right symmetric)",                1, 2, 5,  ALGORITHM_RIGHT_SYMMETRIC},
303         {"raid5_la",      "raid5 (left asymmetric)",                1, 2, 5,  ALGORITHM_LEFT_ASYMMETRIC},
304         {"raid5_ra",      "raid5 (right asymmetric)",               1, 2, 5,  ALGORITHM_RIGHT_ASYMMETRIC},
305         {"raid6_zr",      "raid6 (zero restart)",                   2, 4, 6,  ALGORITHM_ROTATING_ZERO_RESTART},
306         {"raid6_nr",      "raid6 (N restart)",                      2, 4, 6,  ALGORITHM_ROTATING_N_RESTART},
307         {"raid6_nc",      "raid6 (N continue)",                     2, 4, 6,  ALGORITHM_ROTATING_N_CONTINUE},
308         {"raid6_n_6",     "raid6 (dedicated parity/Q n/6)",         2, 4, 6,  ALGORITHM_PARITY_N_6},
309         {"raid6_ls_6",    "raid6 (left symmetric dedicated Q 6)",   2, 4, 6,  ALGORITHM_LEFT_SYMMETRIC_6},
310         {"raid6_rs_6",    "raid6 (right symmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_RIGHT_SYMMETRIC_6},
311         {"raid6_la_6",    "raid6 (left asymmetric dedicated Q 6)",  2, 4, 6,  ALGORITHM_LEFT_ASYMMETRIC_6},
312         {"raid6_ra_6",    "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6,  ALGORITHM_RIGHT_ASYMMETRIC_6}
313 };
314
315 /* True, if @v is in inclusive range [@min, @max] */
316 static bool __within_range(long v, long min, long max)
317 {
318         return v >= min && v <= max;
319 }
320
321 /* All table line arguments are defined here */
322 static struct arg_name_flag {
323         const unsigned long flag;
324         const char *name;
325 } __arg_name_flags[] = {
326         { CTR_FLAG_SYNC, "sync"},
327         { CTR_FLAG_NOSYNC, "nosync"},
328         { CTR_FLAG_REBUILD, "rebuild"},
329         { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"},
330         { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"},
331         { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"},
332         { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"},
333         { CTR_FLAG_WRITE_MOSTLY, "write_mostly"},
334         { CTR_FLAG_STRIPE_CACHE, "stripe_cache"},
335         { CTR_FLAG_REGION_SIZE, "region_size"},
336         { CTR_FLAG_RAID10_COPIES, "raid10_copies"},
337         { CTR_FLAG_RAID10_FORMAT, "raid10_format"},
338         { CTR_FLAG_DATA_OFFSET, "data_offset"},
339         { CTR_FLAG_DELTA_DISKS, "delta_disks"},
340         { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"},
341         { CTR_FLAG_JOURNAL_DEV, "journal_dev" },
342         { CTR_FLAG_JOURNAL_MODE, "journal_mode" },
343 };
344
345 /* Return argument name string for given @flag */
346 static const char *dm_raid_arg_name_by_flag(const uint32_t flag)
347 {
348         if (hweight32(flag) == 1) {
349                 struct arg_name_flag *anf = __arg_name_flags + ARRAY_SIZE(__arg_name_flags);
350
351                 while (anf-- > __arg_name_flags)
352                         if (flag & anf->flag)
353                                 return anf->name;
354
355         } else
356                 DMERR("%s called with more than one flag!", __func__);
357
358         return NULL;
359 }
360
361 /* Define correlation of raid456 journal cache modes and dm-raid target line parameters */
362 static struct {
363         const int mode;
364         const char *param;
365 } _raid456_journal_mode[] = {
366         { R5C_JOURNAL_MODE_WRITE_THROUGH, "writethrough" },
367         { R5C_JOURNAL_MODE_WRITE_BACK,    "writeback" }
368 };
369
370 /* Return MD raid4/5/6 journal mode for dm @journal_mode one */
371 static int dm_raid_journal_mode_to_md(const char *mode)
372 {
373         int m = ARRAY_SIZE(_raid456_journal_mode);
374
375         while (m--)
376                 if (!strcasecmp(mode, _raid456_journal_mode[m].param))
377                         return _raid456_journal_mode[m].mode;
378
379         return -EINVAL;
380 }
381
382 /* Return dm-raid raid4/5/6 journal mode string for @mode */
383 static const char *md_journal_mode_to_dm_raid(const int mode)
384 {
385         int m = ARRAY_SIZE(_raid456_journal_mode);
386
387         while (m--)
388                 if (mode == _raid456_journal_mode[m].mode)
389                         return _raid456_journal_mode[m].param;
390
391         return "unknown";
392 }
393
394 /*
395  * Bool helpers to test for various raid levels of a raid set.
396  * It's level as reported by the superblock rather than
397  * the requested raid_type passed to the constructor.
398  */
399 /* Return true, if raid set in @rs is raid0 */
400 static bool rs_is_raid0(struct raid_set *rs)
401 {
402         return !rs->md.level;
403 }
404
405 /* Return true, if raid set in @rs is raid1 */
406 static bool rs_is_raid1(struct raid_set *rs)
407 {
408         return rs->md.level == 1;
409 }
410
411 /* Return true, if raid set in @rs is raid10 */
412 static bool rs_is_raid10(struct raid_set *rs)
413 {
414         return rs->md.level == 10;
415 }
416
417 /* Return true, if raid set in @rs is level 6 */
418 static bool rs_is_raid6(struct raid_set *rs)
419 {
420         return rs->md.level == 6;
421 }
422
423 /* Return true, if raid set in @rs is level 4, 5 or 6 */
424 static bool rs_is_raid456(struct raid_set *rs)
425 {
426         return __within_range(rs->md.level, 4, 6);
427 }
428
429 /* Return true, if raid set in @rs is reshapable */
430 static bool __is_raid10_far(int layout);
431 static bool rs_is_reshapable(struct raid_set *rs)
432 {
433         return rs_is_raid456(rs) ||
434                (rs_is_raid10(rs) && !__is_raid10_far(rs->md.new_layout));
435 }
436
437 /* Return true, if raid set in @rs is recovering */
438 static bool rs_is_recovering(struct raid_set *rs)
439 {
440         return rs->md.recovery_cp < rs->md.dev_sectors;
441 }
442
443 /* Return true, if raid set in @rs is reshaping */
444 static bool rs_is_reshaping(struct raid_set *rs)
445 {
446         return rs->md.reshape_position != MaxSector;
447 }
448
449 /*
450  * bool helpers to test for various raid levels of a raid type @rt
451  */
452
453 /* Return true, if raid type in @rt is raid0 */
454 static bool rt_is_raid0(struct raid_type *rt)
455 {
456         return !rt->level;
457 }
458
459 /* Return true, if raid type in @rt is raid1 */
460 static bool rt_is_raid1(struct raid_type *rt)
461 {
462         return rt->level == 1;
463 }
464
465 /* Return true, if raid type in @rt is raid10 */
466 static bool rt_is_raid10(struct raid_type *rt)
467 {
468         return rt->level == 10;
469 }
470
471 /* Return true, if raid type in @rt is raid4/5 */
472 static bool rt_is_raid45(struct raid_type *rt)
473 {
474         return __within_range(rt->level, 4, 5);
475 }
476
477 /* Return true, if raid type in @rt is raid6 */
478 static bool rt_is_raid6(struct raid_type *rt)
479 {
480         return rt->level == 6;
481 }
482
483 /* Return true, if raid type in @rt is raid4/5/6 */
484 static bool rt_is_raid456(struct raid_type *rt)
485 {
486         return __within_range(rt->level, 4, 6);
487 }
488 /* END: raid level bools */
489
490 /* Return valid ctr flags for the raid level of @rs */
491 static unsigned long __valid_flags(struct raid_set *rs)
492 {
493         if (rt_is_raid0(rs->raid_type))
494                 return RAID0_VALID_FLAGS;
495         else if (rt_is_raid1(rs->raid_type))
496                 return RAID1_VALID_FLAGS;
497         else if (rt_is_raid10(rs->raid_type))
498                 return RAID10_VALID_FLAGS;
499         else if (rt_is_raid45(rs->raid_type))
500                 return RAID45_VALID_FLAGS;
501         else if (rt_is_raid6(rs->raid_type))
502                 return RAID6_VALID_FLAGS;
503
504         return 0;
505 }
506
507 /*
508  * Check for valid flags set on @rs
509  *
510  * Has to be called after parsing of the ctr flags!
511  */
512 static int rs_check_for_valid_flags(struct raid_set *rs)
513 {
514         if (rs->ctr_flags & ~__valid_flags(rs)) {
515                 rs->ti->error = "Invalid flags combination";
516                 return -EINVAL;
517         }
518
519         return 0;
520 }
521
522 /* MD raid10 bit definitions and helpers */
523 #define RAID10_OFFSET                   (1 << 16) /* stripes with data copies area adjacent on devices */
524 #define RAID10_BROCKEN_USE_FAR_SETS     (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */
525 #define RAID10_USE_FAR_SETS             (1 << 18) /* Use sets instead of whole stripe rotation */
526 #define RAID10_FAR_COPIES_SHIFT         8         /* raid10 # far copies shift (2nd byte of layout) */
527
528 /* Return md raid10 near copies for @layout */
529 static unsigned int __raid10_near_copies(int layout)
530 {
531         return layout & 0xFF;
532 }
533
534 /* Return md raid10 far copies for @layout */
535 static unsigned int __raid10_far_copies(int layout)
536 {
537         return __raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT);
538 }
539
540 /* Return true if md raid10 offset for @layout */
541 static bool __is_raid10_offset(int layout)
542 {
543         return !!(layout & RAID10_OFFSET);
544 }
545
546 /* Return true if md raid10 near for @layout */
547 static bool __is_raid10_near(int layout)
548 {
549         return !__is_raid10_offset(layout) && __raid10_near_copies(layout) > 1;
550 }
551
552 /* Return true if md raid10 far for @layout */
553 static bool __is_raid10_far(int layout)
554 {
555         return !__is_raid10_offset(layout) && __raid10_far_copies(layout) > 1;
556 }
557
558 /* Return md raid10 layout string for @layout */
559 static const char *raid10_md_layout_to_format(int layout)
560 {
561         /*
562          * Bit 16 stands for "offset"
563          * (i.e. adjacent stripes hold copies)
564          *
565          * Refer to MD's raid10.c for details
566          */
567         if (__is_raid10_offset(layout))
568                 return "offset";
569
570         if (__raid10_near_copies(layout) > 1)
571                 return "near";
572
573         if (__raid10_far_copies(layout) > 1)
574                 return "far";
575
576         return "unknown";
577 }
578
579 /* Return md raid10 algorithm for @name */
580 static int raid10_name_to_format(const char *name)
581 {
582         if (!strcasecmp(name, "near"))
583                 return ALGORITHM_RAID10_NEAR;
584         else if (!strcasecmp(name, "offset"))
585                 return ALGORITHM_RAID10_OFFSET;
586         else if (!strcasecmp(name, "far"))
587                 return ALGORITHM_RAID10_FAR;
588
589         return -EINVAL;
590 }
591
592 /* Return md raid10 copies for @layout */
593 static unsigned int raid10_md_layout_to_copies(int layout)
594 {
595         return max(__raid10_near_copies(layout), __raid10_far_copies(layout));
596 }
597
598 /* Return md raid10 format id for @format string */
599 static int raid10_format_to_md_layout(struct raid_set *rs,
600                                       unsigned int algorithm,
601                                       unsigned int copies)
602 {
603         unsigned int n = 1, f = 1, r = 0;
604
605         /*
606          * MD resilienece flaw:
607          *
608          * enabling use_far_sets for far/offset formats causes copies
609          * to be colocated on the same devs together with their origins!
610          *
611          * -> disable it for now in the definition above
612          */
613         if (algorithm == ALGORITHM_RAID10_DEFAULT ||
614             algorithm == ALGORITHM_RAID10_NEAR)
615                 n = copies;
616
617         else if (algorithm == ALGORITHM_RAID10_OFFSET) {
618                 f = copies;
619                 r = RAID10_OFFSET;
620                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
621                         r |= RAID10_USE_FAR_SETS;
622
623         } else if (algorithm == ALGORITHM_RAID10_FAR) {
624                 f = copies;
625                 if (!test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags))
626                         r |= RAID10_USE_FAR_SETS;
627
628         } else
629                 return -EINVAL;
630
631         return r | (f << RAID10_FAR_COPIES_SHIFT) | n;
632 }
633 /* END: MD raid10 bit definitions and helpers */
634
635 /* Check for any of the raid10 algorithms */
636 static bool __got_raid10(struct raid_type *rtp, const int layout)
637 {
638         if (rtp->level == 10) {
639                 switch (rtp->algorithm) {
640                 case ALGORITHM_RAID10_DEFAULT:
641                 case ALGORITHM_RAID10_NEAR:
642                         return __is_raid10_near(layout);
643                 case ALGORITHM_RAID10_OFFSET:
644                         return __is_raid10_offset(layout);
645                 case ALGORITHM_RAID10_FAR:
646                         return __is_raid10_far(layout);
647                 default:
648                         break;
649                 }
650         }
651
652         return false;
653 }
654
655 /* Return raid_type for @name */
656 static struct raid_type *get_raid_type(const char *name)
657 {
658         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
659
660         while (rtp-- > raid_types)
661                 if (!strcasecmp(rtp->name, name))
662                         return rtp;
663
664         return NULL;
665 }
666
667 /* Return raid_type for @name based derived from @level and @layout */
668 static struct raid_type *get_raid_type_by_ll(const int level, const int layout)
669 {
670         struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types);
671
672         while (rtp-- > raid_types) {
673                 /* RAID10 special checks based on @layout flags/properties */
674                 if (rtp->level == level &&
675                     (__got_raid10(rtp, layout) || rtp->algorithm == layout))
676                         return rtp;
677         }
678
679         return NULL;
680 }
681
682 /* Adjust rdev sectors */
683 static void rs_set_rdev_sectors(struct raid_set *rs)
684 {
685         struct mddev *mddev = &rs->md;
686         struct md_rdev *rdev;
687
688         /*
689          * raid10 sets rdev->sector to the device size, which
690          * is unintended in case of out-of-place reshaping
691          */
692         rdev_for_each(rdev, mddev)
693                 if (!test_bit(Journal, &rdev->flags))
694                         rdev->sectors = mddev->dev_sectors;
695 }
696
697 /*
698  * Change bdev capacity of @rs in case of a disk add/remove reshape
699  */
700 static void rs_set_capacity(struct raid_set *rs)
701 {
702         struct gendisk *gendisk = dm_disk(dm_table_get_md(rs->ti->table));
703
704         set_capacity_and_notify(gendisk, rs->md.array_sectors);
705 }
706
707 /*
708  * Set the mddev properties in @rs to the current
709  * ones retrieved from the freshest superblock
710  */
711 static void rs_set_cur(struct raid_set *rs)
712 {
713         struct mddev *mddev = &rs->md;
714
715         mddev->new_level = mddev->level;
716         mddev->new_layout = mddev->layout;
717         mddev->new_chunk_sectors = mddev->chunk_sectors;
718 }
719
720 /*
721  * Set the mddev properties in @rs to the new
722  * ones requested by the ctr
723  */
724 static void rs_set_new(struct raid_set *rs)
725 {
726         struct mddev *mddev = &rs->md;
727
728         mddev->level = mddev->new_level;
729         mddev->layout = mddev->new_layout;
730         mddev->chunk_sectors = mddev->new_chunk_sectors;
731         mddev->raid_disks = rs->raid_disks;
732         mddev->delta_disks = 0;
733 }
734
735 static struct raid_set *raid_set_alloc(struct dm_target *ti, struct raid_type *raid_type,
736                                        unsigned int raid_devs)
737 {
738         unsigned int i;
739         struct raid_set *rs;
740
741         if (raid_devs <= raid_type->parity_devs) {
742                 ti->error = "Insufficient number of devices";
743                 return ERR_PTR(-EINVAL);
744         }
745
746         rs = kzalloc(struct_size(rs, dev, raid_devs), GFP_KERNEL);
747         if (!rs) {
748                 ti->error = "Cannot allocate raid context";
749                 return ERR_PTR(-ENOMEM);
750         }
751
752         if (mddev_init(&rs->md)) {
753                 kfree(rs);
754                 ti->error = "Cannot initialize raid context";
755                 return ERR_PTR(-ENOMEM);
756         }
757
758         rs->raid_disks = raid_devs;
759         rs->delta_disks = 0;
760
761         rs->ti = ti;
762         rs->raid_type = raid_type;
763         rs->stripe_cache_entries = 256;
764         rs->md.raid_disks = raid_devs;
765         rs->md.level = raid_type->level;
766         rs->md.new_level = rs->md.level;
767         rs->md.layout = raid_type->algorithm;
768         rs->md.new_layout = rs->md.layout;
769         rs->md.delta_disks = 0;
770         rs->md.recovery_cp = MaxSector;
771
772         for (i = 0; i < raid_devs; i++)
773                 md_rdev_init(&rs->dev[i].rdev);
774
775         /*
776          * Remaining items to be initialized by further RAID params:
777          *  rs->md.persistent
778          *  rs->md.external
779          *  rs->md.chunk_sectors
780          *  rs->md.new_chunk_sectors
781          *  rs->md.dev_sectors
782          */
783
784         return rs;
785 }
786
787 /* Free all @rs allocations */
788 static void raid_set_free(struct raid_set *rs)
789 {
790         int i;
791
792         if (rs->journal_dev.dev) {
793                 md_rdev_clear(&rs->journal_dev.rdev);
794                 dm_put_device(rs->ti, rs->journal_dev.dev);
795         }
796
797         for (i = 0; i < rs->raid_disks; i++) {
798                 if (rs->dev[i].meta_dev)
799                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
800                 md_rdev_clear(&rs->dev[i].rdev);
801                 if (rs->dev[i].data_dev)
802                         dm_put_device(rs->ti, rs->dev[i].data_dev);
803         }
804
805         mddev_destroy(&rs->md);
806         kfree(rs);
807 }
808
809 /*
810  * For every device we have two words
811  *  <meta_dev>: meta device name or '-' if missing
812  *  <data_dev>: data device name or '-' if missing
813  *
814  * The following are permitted:
815  *    - -
816  *    - <data_dev>
817  *    <meta_dev> <data_dev>
818  *
819  * The following is not allowed:
820  *    <meta_dev> -
821  *
822  * This code parses those words.  If there is a failure,
823  * the caller must use raid_set_free() to unwind the operations.
824  */
825 static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as)
826 {
827         int i;
828         int rebuild = 0;
829         int metadata_available = 0;
830         int r = 0;
831         const char *arg;
832
833         /* Put off the number of raid devices argument to get to dev pairs */
834         arg = dm_shift_arg(as);
835         if (!arg)
836                 return -EINVAL;
837
838         for (i = 0; i < rs->raid_disks; i++) {
839                 rs->dev[i].rdev.raid_disk = i;
840
841                 rs->dev[i].meta_dev = NULL;
842                 rs->dev[i].data_dev = NULL;
843
844                 /*
845                  * There are no offsets initially.
846                  * Out of place reshape will set them accordingly.
847                  */
848                 rs->dev[i].rdev.data_offset = 0;
849                 rs->dev[i].rdev.new_data_offset = 0;
850                 rs->dev[i].rdev.mddev = &rs->md;
851
852                 arg = dm_shift_arg(as);
853                 if (!arg)
854                         return -EINVAL;
855
856                 if (strcmp(arg, "-")) {
857                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
858                                           &rs->dev[i].meta_dev);
859                         if (r) {
860                                 rs->ti->error = "RAID metadata device lookup failure";
861                                 return r;
862                         }
863
864                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
865                         if (!rs->dev[i].rdev.sb_page) {
866                                 rs->ti->error = "Failed to allocate superblock page";
867                                 return -ENOMEM;
868                         }
869                 }
870
871                 arg = dm_shift_arg(as);
872                 if (!arg)
873                         return -EINVAL;
874
875                 if (!strcmp(arg, "-")) {
876                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
877                             (!rs->dev[i].rdev.recovery_offset)) {
878                                 rs->ti->error = "Drive designated for rebuild not specified";
879                                 return -EINVAL;
880                         }
881
882                         if (rs->dev[i].meta_dev) {
883                                 rs->ti->error = "No data device supplied with metadata device";
884                                 return -EINVAL;
885                         }
886
887                         continue;
888                 }
889
890                 r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
891                                   &rs->dev[i].data_dev);
892                 if (r) {
893                         rs->ti->error = "RAID device lookup failure";
894                         return r;
895                 }
896
897                 if (rs->dev[i].meta_dev) {
898                         metadata_available = 1;
899                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
900                 }
901                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
902                 list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks);
903                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
904                         rebuild++;
905         }
906
907         if (rs->journal_dev.dev)
908                 list_add_tail(&rs->journal_dev.rdev.same_set, &rs->md.disks);
909
910         if (metadata_available) {
911                 rs->md.external = 0;
912                 rs->md.persistent = 1;
913                 rs->md.major_version = 2;
914         } else if (rebuild && !rs->md.recovery_cp) {
915                 /*
916                  * Without metadata, we will not be able to tell if the array
917                  * is in-sync or not - we must assume it is not.  Therefore,
918                  * it is impossible to rebuild a drive.
919                  *
920                  * Even if there is metadata, the on-disk information may
921                  * indicate that the array is not in-sync and it will then
922                  * fail at that time.
923                  *
924                  * User could specify 'nosync' option if desperate.
925                  */
926                 rs->ti->error = "Unable to rebuild drive while array is not in-sync";
927                 return -EINVAL;
928         }
929
930         return 0;
931 }
932
933 /*
934  * validate_region_size
935  * @rs
936  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
937  *
938  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
939  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
940  *
941  * Returns: 0 on success, -EINVAL on failure.
942  */
943 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
944 {
945         unsigned long min_region_size = rs->ti->len / (1 << 21);
946
947         if (rs_is_raid0(rs))
948                 return 0;
949
950         if (!region_size) {
951                 /*
952                  * Choose a reasonable default.  All figures in sectors.
953                  */
954                 if (min_region_size > (1 << 13)) {
955                         /* If not a power of 2, make it the next power of 2 */
956                         region_size = roundup_pow_of_two(min_region_size);
957                         DMINFO("Choosing default region size of %lu sectors",
958                                region_size);
959                 } else {
960                         DMINFO("Choosing default region size of 4MiB");
961                         region_size = 1 << 13; /* sectors */
962                 }
963         } else {
964                 /*
965                  * Validate user-supplied value.
966                  */
967                 if (region_size > rs->ti->len) {
968                         rs->ti->error = "Supplied region size is too large";
969                         return -EINVAL;
970                 }
971
972                 if (region_size < min_region_size) {
973                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
974                               region_size, min_region_size);
975                         rs->ti->error = "Supplied region size is too small";
976                         return -EINVAL;
977                 }
978
979                 if (!is_power_of_2(region_size)) {
980                         rs->ti->error = "Region size is not a power of 2";
981                         return -EINVAL;
982                 }
983
984                 if (region_size < rs->md.chunk_sectors) {
985                         rs->ti->error = "Region size is smaller than the chunk size";
986                         return -EINVAL;
987                 }
988         }
989
990         /*
991          * Convert sectors to bytes.
992          */
993         rs->md.bitmap_info.chunksize = to_bytes(region_size);
994
995         return 0;
996 }
997
998 /*
999  * validate_raid_redundancy
1000  * @rs
1001  *
1002  * Determine if there are enough devices in the array that haven't
1003  * failed (or are being rebuilt) to form a usable array.
1004  *
1005  * Returns: 0 on success, -EINVAL on failure.
1006  */
1007 static int validate_raid_redundancy(struct raid_set *rs)
1008 {
1009         unsigned int i, rebuild_cnt = 0;
1010         unsigned int rebuilds_per_group = 0, copies, raid_disks;
1011         unsigned int group_size, last_group_start;
1012
1013         for (i = 0; i < rs->raid_disks; i++)
1014                 if (!test_bit(FirstUse, &rs->dev[i].rdev.flags) &&
1015                     ((!test_bit(In_sync, &rs->dev[i].rdev.flags) ||
1016                       !rs->dev[i].rdev.sb_page)))
1017                         rebuild_cnt++;
1018
1019         switch (rs->md.level) {
1020         case 0:
1021                 break;
1022         case 1:
1023                 if (rebuild_cnt >= rs->md.raid_disks)
1024                         goto too_many;
1025                 break;
1026         case 4:
1027         case 5:
1028         case 6:
1029                 if (rebuild_cnt > rs->raid_type->parity_devs)
1030                         goto too_many;
1031                 break;
1032         case 10:
1033                 copies = raid10_md_layout_to_copies(rs->md.new_layout);
1034                 if (copies < 2) {
1035                         DMERR("Bogus raid10 data copies < 2!");
1036                         return -EINVAL;
1037                 }
1038
1039                 if (rebuild_cnt < copies)
1040                         break;
1041
1042                 /*
1043                  * It is possible to have a higher rebuild count for RAID10,
1044                  * as long as the failed devices occur in different mirror
1045                  * groups (i.e. different stripes).
1046                  *
1047                  * When checking "near" format, make sure no adjacent devices
1048                  * have failed beyond what can be handled.  In addition to the
1049                  * simple case where the number of devices is a multiple of the
1050                  * number of copies, we must also handle cases where the number
1051                  * of devices is not a multiple of the number of copies.
1052                  * E.g.    dev1 dev2 dev3 dev4 dev5
1053                  *          A    A    B    B    C
1054                  *          C    D    D    E    E
1055                  */
1056                 raid_disks = min(rs->raid_disks, rs->md.raid_disks);
1057                 if (__is_raid10_near(rs->md.new_layout)) {
1058                         for (i = 0; i < raid_disks; i++) {
1059                                 if (!(i % copies))
1060                                         rebuilds_per_group = 0;
1061                                 if ((!rs->dev[i].rdev.sb_page ||
1062                                     !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1063                                     (++rebuilds_per_group >= copies))
1064                                         goto too_many;
1065                         }
1066                         break;
1067                 }
1068
1069                 /*
1070                  * When checking "far" and "offset" formats, we need to ensure
1071                  * that the device that holds its copy is not also dead or
1072                  * being rebuilt.  (Note that "far" and "offset" formats only
1073                  * support two copies right now.  These formats also only ever
1074                  * use the 'use_far_sets' variant.)
1075                  *
1076                  * This check is somewhat complicated by the need to account
1077                  * for arrays that are not a multiple of (far) copies.  This
1078                  * results in the need to treat the last (potentially larger)
1079                  * set differently.
1080                  */
1081                 group_size = (raid_disks / copies);
1082                 last_group_start = (raid_disks / group_size) - 1;
1083                 last_group_start *= group_size;
1084                 for (i = 0; i < raid_disks; i++) {
1085                         if (!(i % copies) && !(i > last_group_start))
1086                                 rebuilds_per_group = 0;
1087                         if ((!rs->dev[i].rdev.sb_page ||
1088                              !test_bit(In_sync, &rs->dev[i].rdev.flags)) &&
1089                             (++rebuilds_per_group >= copies))
1090                                 goto too_many;
1091                 }
1092                 break;
1093         default:
1094                 if (rebuild_cnt)
1095                         return -EINVAL;
1096         }
1097
1098         return 0;
1099
1100 too_many:
1101         return -EINVAL;
1102 }
1103
1104 /*
1105  * Possible arguments are...
1106  *      <chunk_size> [optional_args]
1107  *
1108  * Argument definitions
1109  *    <chunk_size>                      The number of sectors per disk that
1110  *                                      will form the "stripe"
1111  *    [[no]sync]                        Force or prevent recovery of the
1112  *                                      entire array
1113  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
1114  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
1115  *                                      clear bits
1116  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1117  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
1118  *    [write_mostly <idx>]              Indicate a write mostly drive via index
1119  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
1120  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
1121  *    [region_size <sectors>]           Defines granularity of bitmap
1122  *    [journal_dev <dev>]               raid4/5/6 journaling deviice
1123  *                                      (i.e. write hole closing log)
1124  *
1125  * RAID10-only options:
1126  *    [raid10_copies <# copies>]        Number of copies.  (Default: 2)
1127  *    [raid10_format <near|far|offset>] Layout algorithm.  (Default: near)
1128  */
1129 static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as,
1130                              unsigned int num_raid_params)
1131 {
1132         int value, raid10_format = ALGORITHM_RAID10_DEFAULT;
1133         unsigned int raid10_copies = 2;
1134         unsigned int i, write_mostly = 0;
1135         unsigned int region_size = 0;
1136         sector_t max_io_len;
1137         const char *arg, *key;
1138         struct raid_dev *rd;
1139         struct raid_type *rt = rs->raid_type;
1140
1141         arg = dm_shift_arg(as);
1142         num_raid_params--; /* Account for chunk_size argument */
1143
1144         if (kstrtoint(arg, 10, &value) < 0) {
1145                 rs->ti->error = "Bad numerical argument given for chunk_size";
1146                 return -EINVAL;
1147         }
1148
1149         /*
1150          * First, parse the in-order required arguments
1151          * "chunk_size" is the only argument of this type.
1152          */
1153         if (rt_is_raid1(rt)) {
1154                 if (value)
1155                         DMERR("Ignoring chunk size parameter for RAID 1");
1156                 value = 0;
1157         } else if (!is_power_of_2(value)) {
1158                 rs->ti->error = "Chunk size must be a power of 2";
1159                 return -EINVAL;
1160         } else if (value < 8) {
1161                 rs->ti->error = "Chunk size value is too small";
1162                 return -EINVAL;
1163         }
1164
1165         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
1166
1167         /*
1168          * We set each individual device as In_sync with a completed
1169          * 'recovery_offset'.  If there has been a device failure or
1170          * replacement then one of the following cases applies:
1171          *
1172          *   1) User specifies 'rebuild'.
1173          *      - Device is reset when param is read.
1174          *   2) A new device is supplied.
1175          *      - No matching superblock found, resets device.
1176          *   3) Device failure was transient and returns on reload.
1177          *      - Failure noticed, resets device for bitmap replay.
1178          *   4) Device hadn't completed recovery after previous failure.
1179          *      - Superblock is read and overrides recovery_offset.
1180          *
1181          * What is found in the superblocks of the devices is always
1182          * authoritative, unless 'rebuild' or '[no]sync' was specified.
1183          */
1184         for (i = 0; i < rs->raid_disks; i++) {
1185                 set_bit(In_sync, &rs->dev[i].rdev.flags);
1186                 rs->dev[i].rdev.recovery_offset = MaxSector;
1187         }
1188
1189         /*
1190          * Second, parse the unordered optional arguments
1191          */
1192         for (i = 0; i < num_raid_params; i++) {
1193                 key = dm_shift_arg(as);
1194                 if (!key) {
1195                         rs->ti->error = "Not enough raid parameters given";
1196                         return -EINVAL;
1197                 }
1198
1199                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) {
1200                         if (test_and_set_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1201                                 rs->ti->error = "Only one 'nosync' argument allowed";
1202                                 return -EINVAL;
1203                         }
1204                         continue;
1205                 }
1206                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) {
1207                         if (test_and_set_bit(__CTR_FLAG_SYNC, &rs->ctr_flags)) {
1208                                 rs->ti->error = "Only one 'sync' argument allowed";
1209                                 return -EINVAL;
1210                         }
1211                         continue;
1212                 }
1213                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) {
1214                         if (test_and_set_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1215                                 rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed";
1216                                 return -EINVAL;
1217                         }
1218                         continue;
1219                 }
1220
1221                 arg = dm_shift_arg(as);
1222                 i++; /* Account for the argument pairs */
1223                 if (!arg) {
1224                         rs->ti->error = "Wrong number of raid parameters given";
1225                         return -EINVAL;
1226                 }
1227
1228                 /*
1229                  * Parameters that take a string value are checked here.
1230                  */
1231                 /* "raid10_format {near|offset|far} */
1232                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) {
1233                         if (test_and_set_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) {
1234                                 rs->ti->error = "Only one 'raid10_format' argument pair allowed";
1235                                 return -EINVAL;
1236                         }
1237                         if (!rt_is_raid10(rt)) {
1238                                 rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type";
1239                                 return -EINVAL;
1240                         }
1241                         raid10_format = raid10_name_to_format(arg);
1242                         if (raid10_format < 0) {
1243                                 rs->ti->error = "Invalid 'raid10_format' value given";
1244                                 return raid10_format;
1245                         }
1246                         continue;
1247                 }
1248
1249                 /* "journal_dev <dev>" */
1250                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV))) {
1251                         int r;
1252                         struct md_rdev *jdev;
1253
1254                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1255                                 rs->ti->error = "Only one raid4/5/6 set journaling device allowed";
1256                                 return -EINVAL;
1257                         }
1258                         if (!rt_is_raid456(rt)) {
1259                                 rs->ti->error = "'journal_dev' is an invalid parameter for this RAID type";
1260                                 return -EINVAL;
1261                         }
1262                         r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table),
1263                                           &rs->journal_dev.dev);
1264                         if (r) {
1265                                 rs->ti->error = "raid4/5/6 journal device lookup failure";
1266                                 return r;
1267                         }
1268                         jdev = &rs->journal_dev.rdev;
1269                         md_rdev_init(jdev);
1270                         jdev->mddev = &rs->md;
1271                         jdev->bdev = rs->journal_dev.dev->bdev;
1272                         jdev->sectors = bdev_nr_sectors(jdev->bdev);
1273                         if (jdev->sectors < MIN_RAID456_JOURNAL_SPACE) {
1274                                 rs->ti->error = "No space for raid4/5/6 journal";
1275                                 return -ENOSPC;
1276                         }
1277                         rs->journal_dev.mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
1278                         set_bit(Journal, &jdev->flags);
1279                         continue;
1280                 }
1281
1282                 /* "journal_mode <mode>" ("journal_dev" mandatory!) */
1283                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE))) {
1284                         int r;
1285
1286                         if (!test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
1287                                 rs->ti->error = "raid4/5/6 'journal_mode' is invalid without 'journal_dev'";
1288                                 return -EINVAL;
1289                         }
1290                         if (test_and_set_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
1291                                 rs->ti->error = "Only one raid4/5/6 'journal_mode' argument allowed";
1292                                 return -EINVAL;
1293                         }
1294                         r = dm_raid_journal_mode_to_md(arg);
1295                         if (r < 0) {
1296                                 rs->ti->error = "Invalid 'journal_mode' argument";
1297                                 return r;
1298                         }
1299                         rs->journal_dev.mode = r;
1300                         continue;
1301                 }
1302
1303                 /*
1304                  * Parameters with number values from here on.
1305                  */
1306                 if (kstrtoint(arg, 10, &value) < 0) {
1307                         rs->ti->error = "Bad numerical argument given in raid params";
1308                         return -EINVAL;
1309                 }
1310
1311                 if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) {
1312                         /*
1313                          * "rebuild" is being passed in by userspace to provide
1314                          * indexes of replaced devices and to set up additional
1315                          * devices on raid level takeover.
1316                          */
1317                         if (!__within_range(value, 0, rs->raid_disks - 1)) {
1318                                 rs->ti->error = "Invalid rebuild index given";
1319                                 return -EINVAL;
1320                         }
1321
1322                         if (test_and_set_bit(value, (void *) rs->rebuild_disks)) {
1323                                 rs->ti->error = "rebuild for this index already given";
1324                                 return -EINVAL;
1325                         }
1326
1327                         rd = rs->dev + value;
1328                         clear_bit(In_sync, &rd->rdev.flags);
1329                         clear_bit(Faulty, &rd->rdev.flags);
1330                         rd->rdev.recovery_offset = 0;
1331                         set_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags);
1332                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) {
1333                         if (!rt_is_raid1(rt)) {
1334                                 rs->ti->error = "write_mostly option is only valid for RAID1";
1335                                 return -EINVAL;
1336                         }
1337
1338                         if (!__within_range(value, 0, rs->md.raid_disks - 1)) {
1339                                 rs->ti->error = "Invalid write_mostly index given";
1340                                 return -EINVAL;
1341                         }
1342
1343                         write_mostly++;
1344                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
1345                         set_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags);
1346                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) {
1347                         if (!rt_is_raid1(rt)) {
1348                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
1349                                 return -EINVAL;
1350                         }
1351
1352                         if (test_and_set_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) {
1353                                 rs->ti->error = "Only one max_write_behind argument pair allowed";
1354                                 return -EINVAL;
1355                         }
1356
1357                         /*
1358                          * In device-mapper, we specify things in sectors, but
1359                          * MD records this value in kB
1360                          */
1361                         if (value < 0 || value / 2 > COUNTER_MAX) {
1362                                 rs->ti->error = "Max write-behind limit out of range";
1363                                 return -EINVAL;
1364                         }
1365
1366                         rs->md.bitmap_info.max_write_behind = value / 2;
1367                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) {
1368                         if (test_and_set_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) {
1369                                 rs->ti->error = "Only one daemon_sleep argument pair allowed";
1370                                 return -EINVAL;
1371                         }
1372                         if (value < 0) {
1373                                 rs->ti->error = "daemon sleep period out of range";
1374                                 return -EINVAL;
1375                         }
1376                         rs->md.bitmap_info.daemon_sleep = value;
1377                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) {
1378                         /* Userspace passes new data_offset after having extended the data image LV */
1379                         if (test_and_set_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
1380                                 rs->ti->error = "Only one data_offset argument pair allowed";
1381                                 return -EINVAL;
1382                         }
1383                         /* Ensure sensible data offset */
1384                         if (value < 0 ||
1385                             (value && (value < MIN_FREE_RESHAPE_SPACE || value % to_sector(PAGE_SIZE)))) {
1386                                 rs->ti->error = "Bogus data_offset value";
1387                                 return -EINVAL;
1388                         }
1389                         rs->data_offset = value;
1390                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) {
1391                         /* Define the +/-# of disks to add to/remove from the given raid set */
1392                         if (test_and_set_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
1393                                 rs->ti->error = "Only one delta_disks argument pair allowed";
1394                                 return -EINVAL;
1395                         }
1396                         /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */
1397                         if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) {
1398                                 rs->ti->error = "Too many delta_disk requested";
1399                                 return -EINVAL;
1400                         }
1401
1402                         rs->delta_disks = value;
1403                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) {
1404                         if (test_and_set_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) {
1405                                 rs->ti->error = "Only one stripe_cache argument pair allowed";
1406                                 return -EINVAL;
1407                         }
1408
1409                         if (!rt_is_raid456(rt)) {
1410                                 rs->ti->error = "Inappropriate argument: stripe_cache";
1411                                 return -EINVAL;
1412                         }
1413
1414                         if (value < 0) {
1415                                 rs->ti->error = "Bogus stripe cache entries value";
1416                                 return -EINVAL;
1417                         }
1418                         rs->stripe_cache_entries = value;
1419                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) {
1420                         if (test_and_set_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) {
1421                                 rs->ti->error = "Only one min_recovery_rate argument pair allowed";
1422                                 return -EINVAL;
1423                         }
1424
1425                         if (value < 0) {
1426                                 rs->ti->error = "min_recovery_rate out of range";
1427                                 return -EINVAL;
1428                         }
1429                         rs->md.sync_speed_min = value;
1430                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) {
1431                         if (test_and_set_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags)) {
1432                                 rs->ti->error = "Only one max_recovery_rate argument pair allowed";
1433                                 return -EINVAL;
1434                         }
1435
1436                         if (value < 0) {
1437                                 rs->ti->error = "max_recovery_rate out of range";
1438                                 return -EINVAL;
1439                         }
1440                         rs->md.sync_speed_max = value;
1441                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) {
1442                         if (test_and_set_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) {
1443                                 rs->ti->error = "Only one region_size argument pair allowed";
1444                                 return -EINVAL;
1445                         }
1446
1447                         region_size = value;
1448                         rs->requested_bitmap_chunk_sectors = value;
1449                 } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) {
1450                         if (test_and_set_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) {
1451                                 rs->ti->error = "Only one raid10_copies argument pair allowed";
1452                                 return -EINVAL;
1453                         }
1454
1455                         if (!__within_range(value, 2, rs->md.raid_disks)) {
1456                                 rs->ti->error = "Bad value for 'raid10_copies'";
1457                                 return -EINVAL;
1458                         }
1459
1460                         raid10_copies = value;
1461                 } else {
1462                         DMERR("Unable to parse RAID parameter: %s", key);
1463                         rs->ti->error = "Unable to parse RAID parameter";
1464                         return -EINVAL;
1465                 }
1466         }
1467
1468         if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) &&
1469             test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
1470                 rs->ti->error = "sync and nosync are mutually exclusive";
1471                 return -EINVAL;
1472         }
1473
1474         if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) &&
1475             (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags) ||
1476              test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))) {
1477                 rs->ti->error = "sync/nosync and rebuild are mutually exclusive";
1478                 return -EINVAL;
1479         }
1480
1481         if (write_mostly >= rs->md.raid_disks) {
1482                 rs->ti->error = "Can't set all raid1 devices to write_mostly";
1483                 return -EINVAL;
1484         }
1485
1486         if (rs->md.sync_speed_max &&
1487             rs->md.sync_speed_min > rs->md.sync_speed_max) {
1488                 rs->ti->error = "Bogus recovery rates";
1489                 return -EINVAL;
1490         }
1491
1492         if (validate_region_size(rs, region_size))
1493                 return -EINVAL;
1494
1495         if (rs->md.chunk_sectors)
1496                 max_io_len = rs->md.chunk_sectors;
1497         else
1498                 max_io_len = region_size;
1499
1500         if (dm_set_target_max_io_len(rs->ti, max_io_len))
1501                 return -EINVAL;
1502
1503         if (rt_is_raid10(rt)) {
1504                 if (raid10_copies > rs->md.raid_disks) {
1505                         rs->ti->error = "Not enough devices to satisfy specification";
1506                         return -EINVAL;
1507                 }
1508
1509                 rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies);
1510                 if (rs->md.new_layout < 0) {
1511                         rs->ti->error = "Error getting raid10 format";
1512                         return rs->md.new_layout;
1513                 }
1514
1515                 rt = get_raid_type_by_ll(10, rs->md.new_layout);
1516                 if (!rt) {
1517                         rs->ti->error = "Failed to recognize new raid10 layout";
1518                         return -EINVAL;
1519                 }
1520
1521                 if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT ||
1522                      rt->algorithm == ALGORITHM_RAID10_NEAR) &&
1523                     test_bit(__CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) {
1524                         rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible";
1525                         return -EINVAL;
1526                 }
1527         }
1528
1529         rs->raid10_copies = raid10_copies;
1530
1531         /* Assume there are no metadata devices until the drives are parsed */
1532         rs->md.persistent = 0;
1533         rs->md.external = 1;
1534
1535         /* Check, if any invalid ctr arguments have been passed in for the raid level */
1536         return rs_check_for_valid_flags(rs);
1537 }
1538
1539 /* Set raid4/5/6 cache size */
1540 static int rs_set_raid456_stripe_cache(struct raid_set *rs)
1541 {
1542         int r;
1543         struct r5conf *conf;
1544         struct mddev *mddev = &rs->md;
1545         uint32_t min_stripes = max(mddev->chunk_sectors, mddev->new_chunk_sectors) / 2;
1546         uint32_t nr_stripes = rs->stripe_cache_entries;
1547
1548         if (!rt_is_raid456(rs->raid_type)) {
1549                 rs->ti->error = "Inappropriate raid level; cannot change stripe_cache size";
1550                 return -EINVAL;
1551         }
1552
1553         if (nr_stripes < min_stripes) {
1554                 DMINFO("Adjusting requested %u stripe cache entries to %u to suit stripe size",
1555                        nr_stripes, min_stripes);
1556                 nr_stripes = min_stripes;
1557         }
1558
1559         conf = mddev->private;
1560         if (!conf) {
1561                 rs->ti->error = "Cannot change stripe_cache size on inactive RAID set";
1562                 return -EINVAL;
1563         }
1564
1565         /* Try setting number of stripes in raid456 stripe cache */
1566         if (conf->min_nr_stripes != nr_stripes) {
1567                 r = raid5_set_cache_size(mddev, nr_stripes);
1568                 if (r) {
1569                         rs->ti->error = "Failed to set raid4/5/6 stripe cache size";
1570                         return r;
1571                 }
1572
1573                 DMINFO("%u stripe cache entries", nr_stripes);
1574         }
1575
1576         return 0;
1577 }
1578
1579 /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */
1580 static unsigned int mddev_data_stripes(struct raid_set *rs)
1581 {
1582         return rs->md.raid_disks - rs->raid_type->parity_devs;
1583 }
1584
1585 /* Return # of data stripes of @rs (i.e. as of ctr) */
1586 static unsigned int rs_data_stripes(struct raid_set *rs)
1587 {
1588         return rs->raid_disks - rs->raid_type->parity_devs;
1589 }
1590
1591 /*
1592  * Retrieve rdev->sectors from any valid raid device of @rs
1593  * to allow userpace to pass in arbitray "- -" device tupples.
1594  */
1595 static sector_t __rdev_sectors(struct raid_set *rs)
1596 {
1597         int i;
1598
1599         for (i = 0; i < rs->raid_disks; i++) {
1600                 struct md_rdev *rdev = &rs->dev[i].rdev;
1601
1602                 if (!test_bit(Journal, &rdev->flags) &&
1603                     rdev->bdev && rdev->sectors)
1604                         return rdev->sectors;
1605         }
1606
1607         return 0;
1608 }
1609
1610 /* Check that calculated dev_sectors fits all component devices. */
1611 static int _check_data_dev_sectors(struct raid_set *rs)
1612 {
1613         sector_t ds = ~0;
1614         struct md_rdev *rdev;
1615
1616         rdev_for_each(rdev, &rs->md)
1617                 if (!test_bit(Journal, &rdev->flags) && rdev->bdev) {
1618                         ds = min(ds, bdev_nr_sectors(rdev->bdev));
1619                         if (ds < rs->md.dev_sectors) {
1620                                 rs->ti->error = "Component device(s) too small";
1621                                 return -EINVAL;
1622                         }
1623                 }
1624
1625         return 0;
1626 }
1627
1628 /* Calculate the sectors per device and per array used for @rs */
1629 static int rs_set_dev_and_array_sectors(struct raid_set *rs, sector_t sectors, bool use_mddev)
1630 {
1631         int delta_disks;
1632         unsigned int data_stripes;
1633         sector_t array_sectors = sectors, dev_sectors = sectors;
1634         struct mddev *mddev = &rs->md;
1635
1636         if (use_mddev) {
1637                 delta_disks = mddev->delta_disks;
1638                 data_stripes = mddev_data_stripes(rs);
1639         } else {
1640                 delta_disks = rs->delta_disks;
1641                 data_stripes = rs_data_stripes(rs);
1642         }
1643
1644         /* Special raid1 case w/o delta_disks support (yet) */
1645         if (rt_is_raid1(rs->raid_type))
1646                 ;
1647         else if (rt_is_raid10(rs->raid_type)) {
1648                 if (rs->raid10_copies < 2 ||
1649                     delta_disks < 0) {
1650                         rs->ti->error = "Bogus raid10 data copies or delta disks";
1651                         return -EINVAL;
1652                 }
1653
1654                 dev_sectors *= rs->raid10_copies;
1655                 if (sector_div(dev_sectors, data_stripes))
1656                         goto bad;
1657
1658                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1659                 if (sector_div(array_sectors, rs->raid10_copies))
1660                         goto bad;
1661
1662         } else if (sector_div(dev_sectors, data_stripes))
1663                 goto bad;
1664
1665         else
1666                 /* Striped layouts */
1667                 array_sectors = (data_stripes + delta_disks) * dev_sectors;
1668
1669         mddev->array_sectors = array_sectors;
1670         mddev->dev_sectors = dev_sectors;
1671         rs_set_rdev_sectors(rs);
1672
1673         return _check_data_dev_sectors(rs);
1674 bad:
1675         rs->ti->error = "Target length not divisible by number of data devices";
1676         return -EINVAL;
1677 }
1678
1679 /* Setup recovery on @rs */
1680 static void rs_setup_recovery(struct raid_set *rs, sector_t dev_sectors)
1681 {
1682         /* raid0 does not recover */
1683         if (rs_is_raid0(rs))
1684                 rs->md.recovery_cp = MaxSector;
1685         /*
1686          * A raid6 set has to be recovered either
1687          * completely or for the grown part to
1688          * ensure proper parity and Q-Syndrome
1689          */
1690         else if (rs_is_raid6(rs))
1691                 rs->md.recovery_cp = dev_sectors;
1692         /*
1693          * Other raid set types may skip recovery
1694          * depending on the 'nosync' flag.
1695          */
1696         else
1697                 rs->md.recovery_cp = test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)
1698                                      ? MaxSector : dev_sectors;
1699 }
1700
1701 static void do_table_event(struct work_struct *ws)
1702 {
1703         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
1704
1705         smp_rmb(); /* Make sure we access most actual mddev properties */
1706         if (!rs_is_reshaping(rs)) {
1707                 if (rs_is_raid10(rs))
1708                         rs_set_rdev_sectors(rs);
1709                 rs_set_capacity(rs);
1710         }
1711         dm_table_event(rs->ti->table);
1712 }
1713
1714 /*
1715  * Make sure a valid takover (level switch) is being requested on @rs
1716  *
1717  * Conversions of raid sets from one MD personality to another
1718  * have to conform to restrictions which are enforced here.
1719  */
1720 static int rs_check_takeover(struct raid_set *rs)
1721 {
1722         struct mddev *mddev = &rs->md;
1723         unsigned int near_copies;
1724
1725         if (rs->md.degraded) {
1726                 rs->ti->error = "Can't takeover degraded raid set";
1727                 return -EPERM;
1728         }
1729
1730         if (rs_is_reshaping(rs)) {
1731                 rs->ti->error = "Can't takeover reshaping raid set";
1732                 return -EPERM;
1733         }
1734
1735         switch (mddev->level) {
1736         case 0:
1737                 /* raid0 -> raid1/5 with one disk */
1738                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1739                     mddev->raid_disks == 1)
1740                         return 0;
1741
1742                 /* raid0 -> raid10 */
1743                 if (mddev->new_level == 10 &&
1744                     !(rs->raid_disks % mddev->raid_disks))
1745                         return 0;
1746
1747                 /* raid0 with multiple disks -> raid4/5/6 */
1748                 if (__within_range(mddev->new_level, 4, 6) &&
1749                     mddev->new_layout == ALGORITHM_PARITY_N &&
1750                     mddev->raid_disks > 1)
1751                         return 0;
1752
1753                 break;
1754
1755         case 10:
1756                 /* Can't takeover raid10_offset! */
1757                 if (__is_raid10_offset(mddev->layout))
1758                         break;
1759
1760                 near_copies = __raid10_near_copies(mddev->layout);
1761
1762                 /* raid10* -> raid0 */
1763                 if (mddev->new_level == 0) {
1764                         /* Can takeover raid10_near with raid disks divisable by data copies! */
1765                         if (near_copies > 1 &&
1766                             !(mddev->raid_disks % near_copies)) {
1767                                 mddev->raid_disks /= near_copies;
1768                                 mddev->delta_disks = mddev->raid_disks;
1769                                 return 0;
1770                         }
1771
1772                         /* Can takeover raid10_far */
1773                         if (near_copies == 1 &&
1774                             __raid10_far_copies(mddev->layout) > 1)
1775                                 return 0;
1776
1777                         break;
1778                 }
1779
1780                 /* raid10_{near,far} -> raid1 */
1781                 if (mddev->new_level == 1 &&
1782                     max(near_copies, __raid10_far_copies(mddev->layout)) == mddev->raid_disks)
1783                         return 0;
1784
1785                 /* raid10_{near,far} with 2 disks -> raid4/5 */
1786                 if (__within_range(mddev->new_level, 4, 5) &&
1787                     mddev->raid_disks == 2)
1788                         return 0;
1789                 break;
1790
1791         case 1:
1792                 /* raid1 with 2 disks -> raid4/5 */
1793                 if (__within_range(mddev->new_level, 4, 5) &&
1794                     mddev->raid_disks == 2) {
1795                         mddev->degraded = 1;
1796                         return 0;
1797                 }
1798
1799                 /* raid1 -> raid0 */
1800                 if (mddev->new_level == 0 &&
1801                     mddev->raid_disks == 1)
1802                         return 0;
1803
1804                 /* raid1 -> raid10 */
1805                 if (mddev->new_level == 10)
1806                         return 0;
1807                 break;
1808
1809         case 4:
1810                 /* raid4 -> raid0 */
1811                 if (mddev->new_level == 0)
1812                         return 0;
1813
1814                 /* raid4 -> raid1/5 with 2 disks */
1815                 if ((mddev->new_level == 1 || mddev->new_level == 5) &&
1816                     mddev->raid_disks == 2)
1817                         return 0;
1818
1819                 /* raid4 -> raid5/6 with parity N */
1820                 if (__within_range(mddev->new_level, 5, 6) &&
1821                     mddev->layout == ALGORITHM_PARITY_N)
1822                         return 0;
1823                 break;
1824
1825         case 5:
1826                 /* raid5 with parity N -> raid0 */
1827                 if (mddev->new_level == 0 &&
1828                     mddev->layout == ALGORITHM_PARITY_N)
1829                         return 0;
1830
1831                 /* raid5 with parity N -> raid4 */
1832                 if (mddev->new_level == 4 &&
1833                     mddev->layout == ALGORITHM_PARITY_N)
1834                         return 0;
1835
1836                 /* raid5 with 2 disks -> raid1/4/10 */
1837                 if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) &&
1838                     mddev->raid_disks == 2)
1839                         return 0;
1840
1841                 /* raid5_* ->  raid6_*_6 with Q-Syndrome N (e.g. raid5_ra -> raid6_ra_6 */
1842                 if (mddev->new_level == 6 &&
1843                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1844                       __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6)))
1845                         return 0;
1846                 break;
1847
1848         case 6:
1849                 /* raid6 with parity N -> raid0 */
1850                 if (mddev->new_level == 0 &&
1851                     mddev->layout == ALGORITHM_PARITY_N)
1852                         return 0;
1853
1854                 /* raid6 with parity N -> raid4 */
1855                 if (mddev->new_level == 4 &&
1856                     mddev->layout == ALGORITHM_PARITY_N)
1857                         return 0;
1858
1859                 /* raid6_*_n with Q-Syndrome N -> raid5_* */
1860                 if (mddev->new_level == 5 &&
1861                     ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) ||
1862                      __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC)))
1863                         return 0;
1864                 break;
1865
1866         default:
1867                 break;
1868         }
1869
1870         rs->ti->error = "takeover not possible";
1871         return -EINVAL;
1872 }
1873
1874 /* True if @rs requested to be taken over */
1875 static bool rs_takeover_requested(struct raid_set *rs)
1876 {
1877         return rs->md.new_level != rs->md.level;
1878 }
1879
1880 /* True if layout is set to reshape. */
1881 static bool rs_is_layout_change(struct raid_set *rs, bool use_mddev)
1882 {
1883         return (use_mddev ? rs->md.delta_disks : rs->delta_disks) ||
1884                rs->md.new_layout != rs->md.layout ||
1885                rs->md.new_chunk_sectors != rs->md.chunk_sectors;
1886 }
1887
1888 /* True if @rs is requested to reshape by ctr */
1889 static bool rs_reshape_requested(struct raid_set *rs)
1890 {
1891         bool change;
1892         struct mddev *mddev = &rs->md;
1893
1894         if (rs_takeover_requested(rs))
1895                 return false;
1896
1897         if (rs_is_raid0(rs))
1898                 return false;
1899
1900         change = rs_is_layout_change(rs, false);
1901
1902         /* Historical case to support raid1 reshape without delta disks */
1903         if (rs_is_raid1(rs)) {
1904                 if (rs->delta_disks)
1905                         return !!rs->delta_disks;
1906
1907                 return !change &&
1908                        mddev->raid_disks != rs->raid_disks;
1909         }
1910
1911         if (rs_is_raid10(rs))
1912                 return change &&
1913                        !__is_raid10_far(mddev->new_layout) &&
1914                        rs->delta_disks >= 0;
1915
1916         return change;
1917 }
1918
1919 /*  Features */
1920 #define FEATURE_FLAG_SUPPORTS_V190      0x1 /* Supports extended superblock */
1921
1922 /* State flags for sb->flags */
1923 #define SB_FLAG_RESHAPE_ACTIVE          0x1
1924 #define SB_FLAG_RESHAPE_BACKWARDS       0x2
1925
1926 /*
1927  * This structure is never routinely used by userspace, unlike md superblocks.
1928  * Devices with this superblock should only ever be accessed via device-mapper.
1929  */
1930 #define DM_RAID_MAGIC 0x64526D44
1931 struct dm_raid_superblock {
1932         __le32 magic;           /* "DmRd" */
1933         __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */
1934
1935         __le32 num_devices;     /* Number of devices in this raid set. (Max 64) */
1936         __le32 array_position;  /* The position of this drive in the raid set */
1937
1938         __le64 events;          /* Incremented by md when superblock updated */
1939         __le64 failed_devices;  /* Pre 1.9.0 part of bit field of devices to */
1940                                 /* indicate failures (see extension below) */
1941
1942         /*
1943          * This offset tracks the progress of the repair or replacement of
1944          * an individual drive.
1945          */
1946         __le64 disk_recovery_offset;
1947
1948         /*
1949          * This offset tracks the progress of the initial raid set
1950          * synchronisation/parity calculation.
1951          */
1952         __le64 array_resync_offset;
1953
1954         /*
1955          * raid characteristics
1956          */
1957         __le32 level;
1958         __le32 layout;
1959         __le32 stripe_sectors;
1960
1961         /********************************************************************
1962          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
1963          *
1964          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
1965          */
1966
1967         __le32 flags; /* Flags defining array states for reshaping */
1968
1969         /*
1970          * This offset tracks the progress of a raid
1971          * set reshape in order to be able to restart it
1972          */
1973         __le64 reshape_position;
1974
1975         /*
1976          * These define the properties of the array in case of an interrupted reshape
1977          */
1978         __le32 new_level;
1979         __le32 new_layout;
1980         __le32 new_stripe_sectors;
1981         __le32 delta_disks;
1982
1983         __le64 array_sectors; /* Array size in sectors */
1984
1985         /*
1986          * Sector offsets to data on devices (reshaping).
1987          * Needed to support out of place reshaping, thus
1988          * not writing over any stripes whilst converting
1989          * them from old to new layout
1990          */
1991         __le64 data_offset;
1992         __le64 new_data_offset;
1993
1994         __le64 sectors; /* Used device size in sectors */
1995
1996         /*
1997          * Additional Bit field of devices indicating failures to support
1998          * up to 256 devices with the 1.9.0 on-disk metadata format
1999          */
2000         __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1];
2001
2002         __le32 incompat_features;       /* Used to indicate any incompatible features */
2003
2004         /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */
2005 } __packed;
2006
2007 /*
2008  * Check for reshape constraints on raid set @rs:
2009  *
2010  * - reshape function non-existent
2011  * - degraded set
2012  * - ongoing recovery
2013  * - ongoing reshape
2014  *
2015  * Returns 0 if none or -EPERM if given constraint
2016  * and error message reference in @errmsg
2017  */
2018 static int rs_check_reshape(struct raid_set *rs)
2019 {
2020         struct mddev *mddev = &rs->md;
2021
2022         if (!mddev->pers || !mddev->pers->check_reshape)
2023                 rs->ti->error = "Reshape not supported";
2024         else if (mddev->degraded)
2025                 rs->ti->error = "Can't reshape degraded raid set";
2026         else if (rs_is_recovering(rs))
2027                 rs->ti->error = "Convert request on recovering raid set prohibited";
2028         else if (rs_is_reshaping(rs))
2029                 rs->ti->error = "raid set already reshaping!";
2030         else if (!(rs_is_raid1(rs) || rs_is_raid10(rs) || rs_is_raid456(rs)))
2031                 rs->ti->error = "Reshaping only supported for raid1/4/5/6/10";
2032         else
2033                 return 0;
2034
2035         return -EPERM;
2036 }
2037
2038 static int read_disk_sb(struct md_rdev *rdev, int size, bool force_reload)
2039 {
2040         BUG_ON(!rdev->sb_page);
2041
2042         if (rdev->sb_loaded && !force_reload)
2043                 return 0;
2044
2045         rdev->sb_loaded = 0;
2046
2047         if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) {
2048                 DMERR("Failed to read superblock of device at position %d",
2049                       rdev->raid_disk);
2050                 md_error(rdev->mddev, rdev);
2051                 set_bit(Faulty, &rdev->flags);
2052                 return -EIO;
2053         }
2054
2055         rdev->sb_loaded = 1;
2056
2057         return 0;
2058 }
2059
2060 static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2061 {
2062         failed_devices[0] = le64_to_cpu(sb->failed_devices);
2063         memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices));
2064
2065         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2066                 int i = ARRAY_SIZE(sb->extended_failed_devices);
2067
2068                 while (i--)
2069                         failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]);
2070         }
2071 }
2072
2073 static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices)
2074 {
2075         int i = ARRAY_SIZE(sb->extended_failed_devices);
2076
2077         sb->failed_devices = cpu_to_le64(failed_devices[0]);
2078         while (i--)
2079                 sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]);
2080 }
2081
2082 /*
2083  * Synchronize the superblock members with the raid set properties
2084  *
2085  * All superblock data is little endian.
2086  */
2087 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
2088 {
2089         bool update_failed_devices = false;
2090         unsigned int i;
2091         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2092         struct dm_raid_superblock *sb;
2093         struct raid_set *rs = container_of(mddev, struct raid_set, md);
2094
2095         /* No metadata device, no superblock */
2096         if (!rdev->meta_bdev)
2097                 return;
2098
2099         BUG_ON(!rdev->sb_page);
2100
2101         sb = page_address(rdev->sb_page);
2102
2103         sb_retrieve_failed_devices(sb, failed_devices);
2104
2105         for (i = 0; i < rs->raid_disks; i++)
2106                 if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) {
2107                         update_failed_devices = true;
2108                         set_bit(i, (void *) failed_devices);
2109                 }
2110
2111         if (update_failed_devices)
2112                 sb_update_failed_devices(sb, failed_devices);
2113
2114         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
2115         sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2116
2117         sb->num_devices = cpu_to_le32(mddev->raid_disks);
2118         sb->array_position = cpu_to_le32(rdev->raid_disk);
2119
2120         sb->events = cpu_to_le64(mddev->events);
2121
2122         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
2123         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
2124
2125         sb->level = cpu_to_le32(mddev->level);
2126         sb->layout = cpu_to_le32(mddev->layout);
2127         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
2128
2129         /********************************************************************
2130          * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!!
2131          *
2132          * FEATURE_FLAG_SUPPORTS_V190 in the compat_features member indicates that those exist
2133          */
2134         sb->new_level = cpu_to_le32(mddev->new_level);
2135         sb->new_layout = cpu_to_le32(mddev->new_layout);
2136         sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors);
2137
2138         sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2139
2140         smp_rmb(); /* Make sure we access most recent reshape position */
2141         sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2142         if (le64_to_cpu(sb->reshape_position) != MaxSector) {
2143                 /* Flag ongoing reshape */
2144                 sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE);
2145
2146                 if (mddev->delta_disks < 0 || mddev->reshape_backwards)
2147                         sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS);
2148         } else {
2149                 /* Clear reshape flags */
2150                 sb->flags &= ~(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS));
2151         }
2152
2153         sb->array_sectors = cpu_to_le64(mddev->array_sectors);
2154         sb->data_offset = cpu_to_le64(rdev->data_offset);
2155         sb->new_data_offset = cpu_to_le64(rdev->new_data_offset);
2156         sb->sectors = cpu_to_le64(rdev->sectors);
2157         sb->incompat_features = cpu_to_le32(0);
2158
2159         /* Zero out the rest of the payload after the size of the superblock */
2160         memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
2161 }
2162
2163 /*
2164  * super_load
2165  *
2166  * This function creates a superblock if one is not found on the device
2167  * and will decide which superblock to use if there's a choice.
2168  *
2169  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
2170  */
2171 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
2172 {
2173         int r;
2174         struct dm_raid_superblock *sb;
2175         struct dm_raid_superblock *refsb;
2176         uint64_t events_sb, events_refsb;
2177
2178         r = read_disk_sb(rdev, rdev->sb_size, false);
2179         if (r)
2180                 return r;
2181
2182         sb = page_address(rdev->sb_page);
2183
2184         /*
2185          * Two cases that we want to write new superblocks and rebuild:
2186          * 1) New device (no matching magic number)
2187          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
2188          */
2189         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
2190             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
2191                 super_sync(rdev->mddev, rdev);
2192
2193                 set_bit(FirstUse, &rdev->flags);
2194                 sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190);
2195
2196                 /* Force writing of superblocks to disk */
2197                 set_bit(MD_SB_CHANGE_DEVS, &rdev->mddev->sb_flags);
2198
2199                 /* Any superblock is better than none, choose that if given */
2200                 return refdev ? 0 : 1;
2201         }
2202
2203         if (!refdev)
2204                 return 1;
2205
2206         events_sb = le64_to_cpu(sb->events);
2207
2208         refsb = page_address(refdev->sb_page);
2209         events_refsb = le64_to_cpu(refsb->events);
2210
2211         return (events_sb > events_refsb) ? 1 : 0;
2212 }
2213
2214 static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev)
2215 {
2216         int role;
2217         struct mddev *mddev = &rs->md;
2218         uint64_t events_sb;
2219         uint64_t failed_devices[DISKS_ARRAY_ELEMS];
2220         struct dm_raid_superblock *sb;
2221         uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0;
2222         struct md_rdev *r;
2223         struct dm_raid_superblock *sb2;
2224
2225         sb = page_address(rdev->sb_page);
2226         events_sb = le64_to_cpu(sb->events);
2227
2228         /*
2229          * Initialise to 1 if this is a new superblock.
2230          */
2231         mddev->events = events_sb ? : 1;
2232
2233         mddev->reshape_position = MaxSector;
2234
2235         mddev->raid_disks = le32_to_cpu(sb->num_devices);
2236         mddev->level = le32_to_cpu(sb->level);
2237         mddev->layout = le32_to_cpu(sb->layout);
2238         mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors);
2239
2240         /*
2241          * Reshaping is supported, e.g. reshape_position is valid
2242          * in superblock and superblock content is authoritative.
2243          */
2244         if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190) {
2245                 /* Superblock is authoritative wrt given raid set layout! */
2246                 mddev->new_level = le32_to_cpu(sb->new_level);
2247                 mddev->new_layout = le32_to_cpu(sb->new_layout);
2248                 mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors);
2249                 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
2250                 mddev->array_sectors = le64_to_cpu(sb->array_sectors);
2251
2252                 /* raid was reshaping and got interrupted */
2253                 if (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_ACTIVE) {
2254                         if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) {
2255                                 DMERR("Reshape requested but raid set is still reshaping");
2256                                 return -EINVAL;
2257                         }
2258
2259                         if (mddev->delta_disks < 0 ||
2260                             (!mddev->delta_disks && (le32_to_cpu(sb->flags) & SB_FLAG_RESHAPE_BACKWARDS)))
2261                                 mddev->reshape_backwards = 1;
2262                         else
2263                                 mddev->reshape_backwards = 0;
2264
2265                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
2266                         rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout);
2267                 }
2268
2269         } else {
2270                 /*
2271                  * No takeover/reshaping, because we don't have the extended v1.9.0 metadata
2272                  */
2273                 struct raid_type *rt_cur = get_raid_type_by_ll(mddev->level, mddev->layout);
2274                 struct raid_type *rt_new = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
2275
2276                 if (rs_takeover_requested(rs)) {
2277                         if (rt_cur && rt_new)
2278                                 DMERR("Takeover raid sets from %s to %s not yet supported by metadata. (raid level change)",
2279                                       rt_cur->name, rt_new->name);
2280                         else
2281                                 DMERR("Takeover raid sets not yet supported by metadata. (raid level change)");
2282                         return -EINVAL;
2283                 } else if (rs_reshape_requested(rs)) {
2284                         DMERR("Reshaping raid sets not yet supported by metadata. (raid layout change keeping level)");
2285                         if (mddev->layout != mddev->new_layout) {
2286                                 if (rt_cur && rt_new)
2287                                         DMERR("  current layout %s vs new layout %s",
2288                                               rt_cur->name, rt_new->name);
2289                                 else
2290                                         DMERR("  current layout 0x%X vs new layout 0x%X",
2291                                               le32_to_cpu(sb->layout), mddev->new_layout);
2292                         }
2293                         if (mddev->chunk_sectors != mddev->new_chunk_sectors)
2294                                 DMERR("  current stripe sectors %u vs new stripe sectors %u",
2295                                       mddev->chunk_sectors, mddev->new_chunk_sectors);
2296                         if (rs->delta_disks)
2297                                 DMERR("  current %u disks vs new %u disks",
2298                                       mddev->raid_disks, mddev->raid_disks + rs->delta_disks);
2299                         if (rs_is_raid10(rs)) {
2300                                 DMERR("  Old layout: %s w/ %u copies",
2301                                       raid10_md_layout_to_format(mddev->layout),
2302                                       raid10_md_layout_to_copies(mddev->layout));
2303                                 DMERR("  New layout: %s w/ %u copies",
2304                                       raid10_md_layout_to_format(mddev->new_layout),
2305                                       raid10_md_layout_to_copies(mddev->new_layout));
2306                         }
2307                         return -EINVAL;
2308                 }
2309
2310                 DMINFO("Discovered old metadata format; upgrading to extended metadata format");
2311         }
2312
2313         if (!test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
2314                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
2315
2316         /*
2317          * During load, we set FirstUse if a new superblock was written.
2318          * There are two reasons we might not have a superblock:
2319          * 1) The raid set is brand new - in which case, all of the
2320          *    devices must have their In_sync bit set.  Also,
2321          *    recovery_cp must be 0, unless forced.
2322          * 2) This is a new device being added to an old raid set
2323          *    and the new device needs to be rebuilt - in which
2324          *    case the In_sync bit will /not/ be set and
2325          *    recovery_cp must be MaxSector.
2326          * 3) This is/are a new device(s) being added to an old
2327          *    raid set during takeover to a higher raid level
2328          *    to provide capacity for redundancy or during reshape
2329          *    to add capacity to grow the raid set.
2330          */
2331         rdev_for_each(r, mddev) {
2332                 if (test_bit(Journal, &rdev->flags))
2333                         continue;
2334
2335                 if (test_bit(FirstUse, &r->flags))
2336                         new_devs++;
2337
2338                 if (!test_bit(In_sync, &r->flags)) {
2339                         DMINFO("Device %d specified for rebuild; clearing superblock",
2340                                 r->raid_disk);
2341                         rebuilds++;
2342
2343                         if (test_bit(FirstUse, &r->flags))
2344                                 rebuild_and_new++;
2345                 }
2346         }
2347
2348         if (new_devs == rs->raid_disks || !rebuilds) {
2349                 /* Replace a broken device */
2350                 if (new_devs == rs->raid_disks) {
2351                         DMINFO("Superblocks created for new raid set");
2352                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2353                 } else if (new_devs != rebuilds &&
2354                            new_devs != rs->delta_disks) {
2355                         DMERR("New device injected into existing raid set without "
2356                               "'delta_disks' or 'rebuild' parameter specified");
2357                         return -EINVAL;
2358                 }
2359         } else if (new_devs && new_devs != rebuilds) {
2360                 DMERR("%u 'rebuild' devices cannot be injected into"
2361                       " a raid set with %u other first-time devices",
2362                       rebuilds, new_devs);
2363                 return -EINVAL;
2364         } else if (rebuilds) {
2365                 if (rebuild_and_new && rebuilds != rebuild_and_new) {
2366                         DMERR("new device%s provided without 'rebuild'",
2367                               new_devs > 1 ? "s" : "");
2368                         return -EINVAL;
2369                 } else if (!test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) && rs_is_recovering(rs)) {
2370                         DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)",
2371                               (unsigned long long) mddev->recovery_cp);
2372                         return -EINVAL;
2373                 } else if (rs_is_reshaping(rs)) {
2374                         DMERR("'rebuild' specified while raid set is being reshaped (reshape_position=%llu)",
2375                               (unsigned long long) mddev->reshape_position);
2376                         return -EINVAL;
2377                 }
2378         }
2379
2380         /*
2381          * Now we set the Faulty bit for those devices that are
2382          * recorded in the superblock as failed.
2383          */
2384         sb_retrieve_failed_devices(sb, failed_devices);
2385         rdev_for_each(r, mddev) {
2386                 if (test_bit(Journal, &rdev->flags) ||
2387                     !r->sb_page)
2388                         continue;
2389                 sb2 = page_address(r->sb_page);
2390                 sb2->failed_devices = 0;
2391                 memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices));
2392
2393                 /*
2394                  * Check for any device re-ordering.
2395                  */
2396                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
2397                         role = le32_to_cpu(sb2->array_position);
2398                         if (role < 0)
2399                                 continue;
2400
2401                         if (role != r->raid_disk) {
2402                                 if (rs_is_raid10(rs) && __is_raid10_near(mddev->layout)) {
2403                                         if (mddev->raid_disks % __raid10_near_copies(mddev->layout) ||
2404                                             rs->raid_disks % rs->raid10_copies) {
2405                                                 rs->ti->error =
2406                                                         "Cannot change raid10 near set to odd # of devices!";
2407                                                 return -EINVAL;
2408                                         }
2409
2410                                         sb2->array_position = cpu_to_le32(r->raid_disk);
2411
2412                                 } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) &&
2413                                            !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) &&
2414                                            !rt_is_raid1(rs->raid_type)) {
2415                                         rs->ti->error = "Cannot change device positions in raid set";
2416                                         return -EINVAL;
2417                                 }
2418
2419                                 DMINFO("raid device #%d now at position #%d", role, r->raid_disk);
2420                         }
2421
2422                         /*
2423                          * Partial recovery is performed on
2424                          * returning failed devices.
2425                          */
2426                         if (test_bit(role, (void *) failed_devices))
2427                                 set_bit(Faulty, &r->flags);
2428                 }
2429         }
2430
2431         return 0;
2432 }
2433
2434 static int super_validate(struct raid_set *rs, struct md_rdev *rdev)
2435 {
2436         struct mddev *mddev = &rs->md;
2437         struct dm_raid_superblock *sb;
2438
2439         if (rs_is_raid0(rs) || !rdev->sb_page || rdev->raid_disk < 0)
2440                 return 0;
2441
2442         sb = page_address(rdev->sb_page);
2443
2444         /*
2445          * If mddev->events is not set, we know we have not yet initialized
2446          * the array.
2447          */
2448         if (!mddev->events && super_init_validation(rs, rdev))
2449                 return -EINVAL;
2450
2451         if (le32_to_cpu(sb->compat_features) &&
2452             le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) {
2453                 rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags";
2454                 return -EINVAL;
2455         }
2456
2457         if (sb->incompat_features) {
2458                 rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet";
2459                 return -EINVAL;
2460         }
2461
2462         /* Enable bitmap creation on @rs unless no metadevs or raid0 or journaled raid4/5/6 set. */
2463         mddev->bitmap_info.offset = (rt_is_raid0(rs->raid_type) || rs->journal_dev.dev) ? 0 : to_sector(4096);
2464         mddev->bitmap_info.default_offset = mddev->bitmap_info.offset;
2465
2466         if (!test_and_clear_bit(FirstUse, &rdev->flags)) {
2467                 /*
2468                  * Retrieve rdev size stored in superblock to be prepared for shrink.
2469                  * Check extended superblock members are present otherwise the size
2470                  * will not be set!
2471                  */
2472                 if (le32_to_cpu(sb->compat_features) & FEATURE_FLAG_SUPPORTS_V190)
2473                         rdev->sectors = le64_to_cpu(sb->sectors);
2474
2475                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
2476                 if (rdev->recovery_offset == MaxSector)
2477                         set_bit(In_sync, &rdev->flags);
2478                 /*
2479                  * If no reshape in progress -> we're recovering single
2480                  * disk(s) and have to set the device(s) to out-of-sync
2481                  */
2482                 else if (!rs_is_reshaping(rs))
2483                         clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */
2484         }
2485
2486         /*
2487          * If a device comes back, set it as not In_sync and no longer faulty.
2488          */
2489         if (test_and_clear_bit(Faulty, &rdev->flags)) {
2490                 rdev->recovery_offset = 0;
2491                 clear_bit(In_sync, &rdev->flags);
2492                 rdev->saved_raid_disk = rdev->raid_disk;
2493         }
2494
2495         /* Reshape support -> restore repective data offsets */
2496         rdev->data_offset = le64_to_cpu(sb->data_offset);
2497         rdev->new_data_offset = le64_to_cpu(sb->new_data_offset);
2498
2499         return 0;
2500 }
2501
2502 /*
2503  * Analyse superblocks and select the freshest.
2504  */
2505 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
2506 {
2507         int r;
2508         struct md_rdev *rdev, *freshest;
2509         struct mddev *mddev = &rs->md;
2510
2511         freshest = NULL;
2512         rdev_for_each(rdev, mddev) {
2513                 if (test_bit(Journal, &rdev->flags))
2514                         continue;
2515
2516                 if (!rdev->meta_bdev)
2517                         continue;
2518
2519                 /* Set superblock offset/size for metadata device. */
2520                 rdev->sb_start = 0;
2521                 rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
2522                 if (rdev->sb_size < sizeof(struct dm_raid_superblock) || rdev->sb_size > PAGE_SIZE) {
2523                         DMERR("superblock size of a logical block is no longer valid");
2524                         return -EINVAL;
2525                 }
2526
2527                 /*
2528                  * Skipping super_load due to CTR_FLAG_SYNC will cause
2529                  * the array to undergo initialization again as
2530                  * though it were new.  This is the intended effect
2531                  * of the "sync" directive.
2532                  *
2533                  * With reshaping capability added, we must ensure that
2534                  * the "sync" directive is disallowed during the reshape.
2535                  */
2536                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
2537                         continue;
2538
2539                 r = super_load(rdev, freshest);
2540
2541                 switch (r) {
2542                 case 1:
2543                         freshest = rdev;
2544                         break;
2545                 case 0:
2546                         break;
2547                 default:
2548                         /* This is a failure to read the superblock from the metadata device. */
2549                         /*
2550                          * We have to keep any raid0 data/metadata device pairs or
2551                          * the MD raid0 personality will fail to start the array.
2552                          */
2553                         if (rs_is_raid0(rs))
2554                                 continue;
2555
2556                         /*
2557                          * We keep the dm_devs to be able to emit the device tuple
2558                          * properly on the table line in raid_status() (rather than
2559                          * mistakenly acting as if '- -' got passed into the constructor).
2560                          *
2561                          * The rdev has to stay on the same_set list to allow for
2562                          * the attempt to restore faulty devices on second resume.
2563                          */
2564                         rdev->raid_disk = rdev->saved_raid_disk = -1;
2565                         break;
2566                 }
2567         }
2568
2569         if (!freshest)
2570                 return 0;
2571
2572         /*
2573          * Validation of the freshest device provides the source of
2574          * validation for the remaining devices.
2575          */
2576         rs->ti->error = "Unable to assemble array: Invalid superblocks";
2577         if (super_validate(rs, freshest))
2578                 return -EINVAL;
2579
2580         if (validate_raid_redundancy(rs)) {
2581                 rs->ti->error = "Insufficient redundancy to activate array";
2582                 return -EINVAL;
2583         }
2584
2585         rdev_for_each(rdev, mddev)
2586                 if (!test_bit(Journal, &rdev->flags) &&
2587                     rdev != freshest &&
2588                     super_validate(rs, rdev))
2589                         return -EINVAL;
2590         return 0;
2591 }
2592
2593 /*
2594  * Adjust data_offset and new_data_offset on all disk members of @rs
2595  * for out of place reshaping if requested by constructor
2596  *
2597  * We need free space at the beginning of each raid disk for forward
2598  * and at the end for backward reshapes which userspace has to provide
2599  * via remapping/reordering of space.
2600  */
2601 static int rs_adjust_data_offsets(struct raid_set *rs)
2602 {
2603         sector_t data_offset = 0, new_data_offset = 0;
2604         struct md_rdev *rdev;
2605
2606         /* Constructor did not request data offset change */
2607         if (!test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) {
2608                 if (!rs_is_reshapable(rs))
2609                         goto out;
2610
2611                 return 0;
2612         }
2613
2614         /* HM FIXME: get In_Sync raid_dev? */
2615         rdev = &rs->dev[0].rdev;
2616
2617         if (rs->delta_disks < 0) {
2618                 /*
2619                  * Removing disks (reshaping backwards):
2620                  *
2621                  * - before reshape: data is at offset 0 and free space
2622                  *                   is at end of each component LV
2623                  *
2624                  * - after reshape: data is at offset rs->data_offset != 0 on each component LV
2625                  */
2626                 data_offset = 0;
2627                 new_data_offset = rs->data_offset;
2628
2629         } else if (rs->delta_disks > 0) {
2630                 /*
2631                  * Adding disks (reshaping forwards):
2632                  *
2633                  * - before reshape: data is at offset rs->data_offset != 0 and
2634                  *                   free space is at begin of each component LV
2635                  *
2636                  * - after reshape: data is at offset 0 on each component LV
2637                  */
2638                 data_offset = rs->data_offset;
2639                 new_data_offset = 0;
2640
2641         } else {
2642                 /*
2643                  * User space passes in 0 for data offset after having removed reshape space
2644                  *
2645                  * - or - (data offset != 0)
2646                  *
2647                  * Changing RAID layout or chunk size -> toggle offsets
2648                  *
2649                  * - before reshape: data is at offset rs->data_offset 0 and
2650                  *                   free space is at end of each component LV
2651                  *                   -or-
2652                  *                   data is at offset rs->data_offset != 0 and
2653                  *                   free space is at begin of each component LV
2654                  *
2655                  * - after reshape: data is at offset 0 if it was at offset != 0
2656                  *                  or at offset != 0 if it was at offset 0
2657                  *                  on each component LV
2658                  *
2659                  */
2660                 data_offset = rs->data_offset ? rdev->data_offset : 0;
2661                 new_data_offset = data_offset ? 0 : rs->data_offset;
2662                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2663         }
2664
2665         /*
2666          * Make sure we got a minimum amount of free sectors per device
2667          */
2668         if (rs->data_offset &&
2669             bdev_nr_sectors(rdev->bdev) - rs->md.dev_sectors < MIN_FREE_RESHAPE_SPACE) {
2670                 rs->ti->error = data_offset ? "No space for forward reshape" :
2671                                               "No space for backward reshape";
2672                 return -ENOSPC;
2673         }
2674 out:
2675         /*
2676          * Raise recovery_cp in case data_offset != 0 to
2677          * avoid false recovery positives in the constructor.
2678          */
2679         if (rs->md.recovery_cp < rs->md.dev_sectors)
2680                 rs->md.recovery_cp += rs->dev[0].rdev.data_offset;
2681
2682         /* Adjust data offsets on all rdevs but on any raid4/5/6 journal device */
2683         rdev_for_each(rdev, &rs->md) {
2684                 if (!test_bit(Journal, &rdev->flags)) {
2685                         rdev->data_offset = data_offset;
2686                         rdev->new_data_offset = new_data_offset;
2687                 }
2688         }
2689
2690         return 0;
2691 }
2692
2693 /* Userpace reordered disks -> adjust raid_disk indexes in @rs */
2694 static void __reorder_raid_disk_indexes(struct raid_set *rs)
2695 {
2696         int i = 0;
2697         struct md_rdev *rdev;
2698
2699         rdev_for_each(rdev, &rs->md) {
2700                 if (!test_bit(Journal, &rdev->flags)) {
2701                         rdev->raid_disk = i++;
2702                         rdev->saved_raid_disk = rdev->new_raid_disk = -1;
2703                 }
2704         }
2705 }
2706
2707 /*
2708  * Setup @rs for takeover by a different raid level
2709  */
2710 static int rs_setup_takeover(struct raid_set *rs)
2711 {
2712         struct mddev *mddev = &rs->md;
2713         struct md_rdev *rdev;
2714         unsigned int d = mddev->raid_disks = rs->raid_disks;
2715         sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset;
2716
2717         if (rt_is_raid10(rs->raid_type)) {
2718                 if (rs_is_raid0(rs)) {
2719                         /* Userpace reordered disks -> adjust raid_disk indexes */
2720                         __reorder_raid_disk_indexes(rs);
2721
2722                         /* raid0 -> raid10_far layout */
2723                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR,
2724                                                                    rs->raid10_copies);
2725                 } else if (rs_is_raid1(rs))
2726                         /* raid1 -> raid10_near layout */
2727                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2728                                                                    rs->raid_disks);
2729                 else
2730                         return -EINVAL;
2731
2732         }
2733
2734         clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2735         mddev->recovery_cp = MaxSector;
2736
2737         while (d--) {
2738                 rdev = &rs->dev[d].rdev;
2739
2740                 if (test_bit(d, (void *) rs->rebuild_disks)) {
2741                         clear_bit(In_sync, &rdev->flags);
2742                         clear_bit(Faulty, &rdev->flags);
2743                         mddev->recovery_cp = rdev->recovery_offset = 0;
2744                         /* Bitmap has to be created when we do an "up" takeover */
2745                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
2746                 }
2747
2748                 rdev->new_data_offset = new_data_offset;
2749         }
2750
2751         return 0;
2752 }
2753
2754 /* Prepare @rs for reshape */
2755 static int rs_prepare_reshape(struct raid_set *rs)
2756 {
2757         bool reshape;
2758         struct mddev *mddev = &rs->md;
2759
2760         if (rs_is_raid10(rs)) {
2761                 if (rs->raid_disks != mddev->raid_disks &&
2762                     __is_raid10_near(mddev->layout) &&
2763                     rs->raid10_copies &&
2764                     rs->raid10_copies != __raid10_near_copies(mddev->layout)) {
2765                         /*
2766                          * raid disk have to be multiple of data copies to allow this conversion,
2767                          *
2768                          * This is actually not a reshape it is a
2769                          * rebuild of any additional mirrors per group
2770                          */
2771                         if (rs->raid_disks % rs->raid10_copies) {
2772                                 rs->ti->error = "Can't reshape raid10 mirror groups";
2773                                 return -EINVAL;
2774                         }
2775
2776                         /* Userpace reordered disks to add/remove mirrors -> adjust raid_disk indexes */
2777                         __reorder_raid_disk_indexes(rs);
2778                         mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR,
2779                                                                    rs->raid10_copies);
2780                         mddev->new_layout = mddev->layout;
2781                         reshape = false;
2782                 } else
2783                         reshape = true;
2784
2785         } else if (rs_is_raid456(rs))
2786                 reshape = true;
2787
2788         else if (rs_is_raid1(rs)) {
2789                 if (rs->delta_disks) {
2790                         /* Process raid1 via delta_disks */
2791                         mddev->degraded = rs->delta_disks < 0 ? -rs->delta_disks : rs->delta_disks;
2792                         reshape = true;
2793                 } else {
2794                         /* Process raid1 without delta_disks */
2795                         mddev->raid_disks = rs->raid_disks;
2796                         reshape = false;
2797                 }
2798         } else {
2799                 rs->ti->error = "Called with bogus raid type";
2800                 return -EINVAL;
2801         }
2802
2803         if (reshape) {
2804                 set_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags);
2805                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2806         } else if (mddev->raid_disks < rs->raid_disks)
2807                 /* Create new superblocks and bitmaps, if any new disks */
2808                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
2809
2810         return 0;
2811 }
2812
2813 /* Get reshape sectors from data_offsets or raid set */
2814 static sector_t _get_reshape_sectors(struct raid_set *rs)
2815 {
2816         struct md_rdev *rdev;
2817         sector_t reshape_sectors = 0;
2818
2819         rdev_for_each(rdev, &rs->md)
2820                 if (!test_bit(Journal, &rdev->flags)) {
2821                         reshape_sectors = (rdev->data_offset > rdev->new_data_offset) ?
2822                                         rdev->data_offset - rdev->new_data_offset :
2823                                         rdev->new_data_offset - rdev->data_offset;
2824                         break;
2825                 }
2826
2827         return max(reshape_sectors, (sector_t) rs->data_offset);
2828 }
2829
2830 /*
2831  * Reshape:
2832  * - change raid layout
2833  * - change chunk size
2834  * - add disks
2835  * - remove disks
2836  */
2837 static int rs_setup_reshape(struct raid_set *rs)
2838 {
2839         int r = 0;
2840         unsigned int cur_raid_devs, d;
2841         sector_t reshape_sectors = _get_reshape_sectors(rs);
2842         struct mddev *mddev = &rs->md;
2843         struct md_rdev *rdev;
2844
2845         mddev->delta_disks = rs->delta_disks;
2846         cur_raid_devs = mddev->raid_disks;
2847
2848         /* Ignore impossible layout change whilst adding/removing disks */
2849         if (mddev->delta_disks &&
2850             mddev->layout != mddev->new_layout) {
2851                 DMINFO("Ignoring invalid layout change with delta_disks=%d", rs->delta_disks);
2852                 mddev->new_layout = mddev->layout;
2853         }
2854
2855         /*
2856          * Adjust array size:
2857          *
2858          * - in case of adding disk(s), array size has
2859          *   to grow after the disk adding reshape,
2860          *   which'll happen in the event handler;
2861          *   reshape will happen forward, so space has to
2862          *   be available at the beginning of each disk
2863          *
2864          * - in case of removing disk(s), array size
2865          *   has to shrink before starting the reshape,
2866          *   which'll happen here;
2867          *   reshape will happen backward, so space has to
2868          *   be available at the end of each disk
2869          *
2870          * - data_offset and new_data_offset are
2871          *   adjusted for aforementioned out of place
2872          *   reshaping based on userspace passing in
2873          *   the "data_offset <sectors>" key/value
2874          *   pair via the constructor
2875          */
2876
2877         /* Add disk(s) */
2878         if (rs->delta_disks > 0) {
2879                 /* Prepare disks for check in raid4/5/6/10 {check|start}_reshape */
2880                 for (d = cur_raid_devs; d < rs->raid_disks; d++) {
2881                         rdev = &rs->dev[d].rdev;
2882                         clear_bit(In_sync, &rdev->flags);
2883
2884                         /*
2885                          * save_raid_disk needs to be -1, or recovery_offset will be set to 0
2886                          * by md, which'll store that erroneously in the superblock on reshape
2887                          */
2888                         rdev->saved_raid_disk = -1;
2889                         rdev->raid_disk = d;
2890
2891                         rdev->sectors = mddev->dev_sectors;
2892                         rdev->recovery_offset = rs_is_raid1(rs) ? 0 : MaxSector;
2893                 }
2894
2895                 mddev->reshape_backwards = 0; /* adding disk(s) -> forward reshape */
2896
2897         /* Remove disk(s) */
2898         } else if (rs->delta_disks < 0) {
2899                 r = rs_set_dev_and_array_sectors(rs, rs->ti->len, true);
2900                 mddev->reshape_backwards = 1; /* removing disk(s) -> backward reshape */
2901
2902         /* Change layout and/or chunk size */
2903         } else {
2904                 /*
2905                  * Reshape layout (e.g. raid5_ls -> raid5_n) and/or chunk size:
2906                  *
2907                  * keeping number of disks and do layout change ->
2908                  *
2909                  * toggle reshape_backward depending on data_offset:
2910                  *
2911                  * - free space upfront -> reshape forward
2912                  *
2913                  * - free space at the end -> reshape backward
2914                  *
2915                  *
2916                  * This utilizes free reshape space avoiding the need
2917                  * for userspace to move (parts of) LV segments in
2918                  * case of layout/chunksize change  (for disk
2919                  * adding/removing reshape space has to be at
2920                  * the proper address (see above with delta_disks):
2921                  *
2922                  * add disk(s)   -> begin
2923                  * remove disk(s)-> end
2924                  */
2925                 mddev->reshape_backwards = rs->dev[0].rdev.data_offset ? 0 : 1;
2926         }
2927
2928         /*
2929          * Adjust device size for forward reshape
2930          * because md_finish_reshape() reduces it.
2931          */
2932         if (!mddev->reshape_backwards)
2933                 rdev_for_each(rdev, &rs->md)
2934                         if (!test_bit(Journal, &rdev->flags))
2935                                 rdev->sectors += reshape_sectors;
2936
2937         return r;
2938 }
2939
2940 /*
2941  * If the md resync thread has updated superblock with max reshape position
2942  * at the end of a reshape but not (yet) reset the layout configuration
2943  * changes -> reset the latter.
2944  */
2945 static void rs_reset_inconclusive_reshape(struct raid_set *rs)
2946 {
2947         if (!rs_is_reshaping(rs) && rs_is_layout_change(rs, true)) {
2948                 rs_set_cur(rs);
2949                 rs->md.delta_disks = 0;
2950                 rs->md.reshape_backwards = 0;
2951         }
2952 }
2953
2954 /*
2955  * Enable/disable discard support on RAID set depending on
2956  * RAID level and discard properties of underlying RAID members.
2957  */
2958 static void configure_discard_support(struct raid_set *rs)
2959 {
2960         int i;
2961         bool raid456;
2962         struct dm_target *ti = rs->ti;
2963
2964         /*
2965          * XXX: RAID level 4,5,6 require zeroing for safety.
2966          */
2967         raid456 = rs_is_raid456(rs);
2968
2969         for (i = 0; i < rs->raid_disks; i++) {
2970                 if (!rs->dev[i].rdev.bdev ||
2971                     !bdev_max_discard_sectors(rs->dev[i].rdev.bdev))
2972                         return;
2973
2974                 if (raid456) {
2975                         if (!devices_handle_discard_safely) {
2976                                 DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty.");
2977                                 DMERR("Set dm-raid.devices_handle_discard_safely=Y to override.");
2978                                 return;
2979                         }
2980                 }
2981         }
2982
2983         ti->num_discard_bios = 1;
2984 }
2985
2986 /*
2987  * Construct a RAID0/1/10/4/5/6 mapping:
2988  * Args:
2989  *      <raid_type> <#raid_params> <raid_params>{0,}    \
2990  *      <#raid_devs> [<meta_dev1> <dev1>]{1,}
2991  *
2992  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
2993  * details on possible <raid_params>.
2994  *
2995  * Userspace is free to initialize the metadata devices, hence the superblocks to
2996  * enforce recreation based on the passed in table parameters.
2997  *
2998  */
2999 static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3000 {
3001         int r;
3002         bool resize = false;
3003         struct raid_type *rt;
3004         unsigned int num_raid_params, num_raid_devs;
3005         sector_t sb_array_sectors, rdev_sectors, reshape_sectors;
3006         struct raid_set *rs = NULL;
3007         const char *arg;
3008         struct rs_layout rs_layout;
3009         struct dm_arg_set as = { argc, argv }, as_nrd;
3010         struct dm_arg _args[] = {
3011                 { 0, as.argc, "Cannot understand number of raid parameters" },
3012                 { 1, 254, "Cannot understand number of raid devices parameters" }
3013         };
3014
3015         arg = dm_shift_arg(&as);
3016         if (!arg) {
3017                 ti->error = "No arguments";
3018                 return -EINVAL;
3019         }
3020
3021         rt = get_raid_type(arg);
3022         if (!rt) {
3023                 ti->error = "Unrecognised raid_type";
3024                 return -EINVAL;
3025         }
3026
3027         /* Must have <#raid_params> */
3028         if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error))
3029                 return -EINVAL;
3030
3031         /* number of raid device tupples <meta_dev data_dev> */
3032         as_nrd = as;
3033         dm_consume_args(&as_nrd, num_raid_params);
3034         _args[1].max = (as_nrd.argc - 1) / 2;
3035         if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error))
3036                 return -EINVAL;
3037
3038         if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) {
3039                 ti->error = "Invalid number of supplied raid devices";
3040                 return -EINVAL;
3041         }
3042
3043         rs = raid_set_alloc(ti, rt, num_raid_devs);
3044         if (IS_ERR(rs))
3045                 return PTR_ERR(rs);
3046
3047         r = parse_raid_params(rs, &as, num_raid_params);
3048         if (r)
3049                 goto bad;
3050
3051         r = parse_dev_params(rs, &as);
3052         if (r)
3053                 goto bad;
3054
3055         rs->md.sync_super = super_sync;
3056
3057         /*
3058          * Calculate ctr requested array and device sizes to allow
3059          * for superblock analysis needing device sizes defined.
3060          *
3061          * Any existing superblock will overwrite the array and device sizes
3062          */
3063         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3064         if (r)
3065                 goto bad;
3066
3067         /* Memorize just calculated, potentially larger sizes to grow the raid set in preresume */
3068         rs->array_sectors = rs->md.array_sectors;
3069         rs->dev_sectors = rs->md.dev_sectors;
3070
3071         /*
3072          * Backup any new raid set level, layout, ...
3073          * requested to be able to compare to superblock
3074          * members for conversion decisions.
3075          */
3076         rs_config_backup(rs, &rs_layout);
3077
3078         r = analyse_superblocks(ti, rs);
3079         if (r)
3080                 goto bad;
3081
3082         /* All in-core metadata now as of current superblocks after calling analyse_superblocks() */
3083         sb_array_sectors = rs->md.array_sectors;
3084         rdev_sectors = __rdev_sectors(rs);
3085         if (!rdev_sectors) {
3086                 ti->error = "Invalid rdev size";
3087                 r = -EINVAL;
3088                 goto bad;
3089         }
3090
3091
3092         reshape_sectors = _get_reshape_sectors(rs);
3093         if (rs->dev_sectors != rdev_sectors) {
3094                 resize = (rs->dev_sectors != rdev_sectors - reshape_sectors);
3095                 if (rs->dev_sectors > rdev_sectors - reshape_sectors)
3096                         set_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3097         }
3098
3099         INIT_WORK(&rs->md.event_work, do_table_event);
3100         ti->private = rs;
3101         ti->num_flush_bios = 1;
3102         ti->needs_bio_set_dev = true;
3103
3104         /* Restore any requested new layout for conversion decision */
3105         rs_config_restore(rs, &rs_layout);
3106
3107         /*
3108          * Now that we have any superblock metadata available,
3109          * check for new, recovering, reshaping, to be taken over,
3110          * to be reshaped or an existing, unchanged raid set to
3111          * run in sequence.
3112          */
3113         if (test_bit(MD_ARRAY_FIRST_USE, &rs->md.flags)) {
3114                 /* A new raid6 set has to be recovered to ensure proper parity and Q-Syndrome */
3115                 if (rs_is_raid6(rs) &&
3116                     test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags)) {
3117                         ti->error = "'nosync' not allowed for new raid6 set";
3118                         r = -EINVAL;
3119                         goto bad;
3120                 }
3121                 rs_setup_recovery(rs, 0);
3122                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3123                 rs_set_new(rs);
3124         } else if (rs_is_recovering(rs)) {
3125                 /* A recovering raid set may be resized */
3126                 goto size_check;
3127         } else if (rs_is_reshaping(rs)) {
3128                 /* Have to reject size change request during reshape */
3129                 if (resize) {
3130                         ti->error = "Can't resize a reshaping raid set";
3131                         r = -EPERM;
3132                         goto bad;
3133                 }
3134                 /* skip setup rs */
3135         } else if (rs_takeover_requested(rs)) {
3136                 if (rs_is_reshaping(rs)) {
3137                         ti->error = "Can't takeover a reshaping raid set";
3138                         r = -EPERM;
3139                         goto bad;
3140                 }
3141
3142                 /* We can't takeover a journaled raid4/5/6 */
3143                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3144                         ti->error = "Can't takeover a journaled raid4/5/6 set";
3145                         r = -EPERM;
3146                         goto bad;
3147                 }
3148
3149                 /*
3150                  * If a takeover is needed, userspace sets any additional
3151                  * devices to rebuild and we can check for a valid request here.
3152                  *
3153                  * If acceptable, set the level to the new requested
3154                  * one, prohibit requesting recovery, allow the raid
3155                  * set to run and store superblocks during resume.
3156                  */
3157                 r = rs_check_takeover(rs);
3158                 if (r)
3159                         goto bad;
3160
3161                 r = rs_setup_takeover(rs);
3162                 if (r)
3163                         goto bad;
3164
3165                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3166                 /* Takeover ain't recovery, so disable recovery */
3167                 rs_setup_recovery(rs, MaxSector);
3168                 rs_set_new(rs);
3169         } else if (rs_reshape_requested(rs)) {
3170                 /* Only request grow on raid set size extensions, not on reshapes. */
3171                 clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3172
3173                 /*
3174                  * No need to check for 'ongoing' takeover here, because takeover
3175                  * is an instant operation as oposed to an ongoing reshape.
3176                  */
3177
3178                 /* We can't reshape a journaled raid4/5/6 */
3179                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags)) {
3180                         ti->error = "Can't reshape a journaled raid4/5/6 set";
3181                         r = -EPERM;
3182                         goto bad;
3183                 }
3184
3185                 /* Out-of-place space has to be available to allow for a reshape unless raid1! */
3186                 if (reshape_sectors || rs_is_raid1(rs)) {
3187                         /*
3188                          * We can only prepare for a reshape here, because the
3189                          * raid set needs to run to provide the repective reshape
3190                          * check functions via its MD personality instance.
3191                          *
3192                          * So do the reshape check after md_run() succeeded.
3193                          */
3194                         r = rs_prepare_reshape(rs);
3195                         if (r)
3196                                 goto bad;
3197
3198                         /* Reshaping ain't recovery, so disable recovery */
3199                         rs_setup_recovery(rs, MaxSector);
3200                 }
3201                 rs_set_cur(rs);
3202         } else {
3203 size_check:
3204                 /* May not set recovery when a device rebuild is requested */
3205                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags)) {
3206                         clear_bit(RT_FLAG_RS_GROW, &rs->runtime_flags);
3207                         set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3208                         rs_setup_recovery(rs, MaxSector);
3209                 } else if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3210                         /*
3211                          * Set raid set to current size, i.e. size as of
3212                          * superblocks to grow to larger size in preresume.
3213                          */
3214                         r = rs_set_dev_and_array_sectors(rs, sb_array_sectors, false);
3215                         if (r)
3216                                 goto bad;
3217
3218                         rs_setup_recovery(rs, rs->md.recovery_cp < rs->md.dev_sectors ? rs->md.recovery_cp : rs->md.dev_sectors);
3219                 } else {
3220                         /* This is no size change or it is shrinking, update size and record in superblocks */
3221                         r = rs_set_dev_and_array_sectors(rs, rs->ti->len, false);
3222                         if (r)
3223                                 goto bad;
3224
3225                         if (sb_array_sectors > rs->array_sectors)
3226                                 set_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags);
3227                 }
3228                 rs_set_cur(rs);
3229         }
3230
3231         /* If constructor requested it, change data and new_data offsets */
3232         r = rs_adjust_data_offsets(rs);
3233         if (r)
3234                 goto bad;
3235
3236         /* Catch any inconclusive reshape superblock content. */
3237         rs_reset_inconclusive_reshape(rs);
3238
3239         /* Start raid set read-only and assumed clean to change in raid_resume() */
3240         rs->md.ro = 1;
3241         rs->md.in_sync = 1;
3242
3243         /* Keep array frozen until resume. */
3244         set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
3245
3246         /* Has to be held on running the array */
3247         mddev_suspend_and_lock_nointr(&rs->md);
3248         r = md_run(&rs->md);
3249         rs->md.in_sync = 0; /* Assume already marked dirty */
3250         if (r) {
3251                 ti->error = "Failed to run raid array";
3252                 mddev_unlock(&rs->md);
3253                 goto bad;
3254         }
3255
3256         r = md_start(&rs->md);
3257         if (r) {
3258                 ti->error = "Failed to start raid array";
3259                 goto bad_unlock;
3260         }
3261
3262         /* If raid4/5/6 journal mode explicitly requested (only possible with journal dev) -> set it */
3263         if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags)) {
3264                 r = r5c_journal_mode_set(&rs->md, rs->journal_dev.mode);
3265                 if (r) {
3266                         ti->error = "Failed to set raid4/5/6 journal mode";
3267                         goto bad_unlock;
3268                 }
3269         }
3270
3271         set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags);
3272
3273         /* Try to adjust the raid4/5/6 stripe cache size to the stripe size */
3274         if (rs_is_raid456(rs)) {
3275                 r = rs_set_raid456_stripe_cache(rs);
3276                 if (r)
3277                         goto bad_unlock;
3278         }
3279
3280         /* Now do an early reshape check */
3281         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
3282                 r = rs_check_reshape(rs);
3283                 if (r)
3284                         goto bad_unlock;
3285
3286                 /* Restore new, ctr requested layout to perform check */
3287                 rs_config_restore(rs, &rs_layout);
3288
3289                 if (rs->md.pers->start_reshape) {
3290                         r = rs->md.pers->check_reshape(&rs->md);
3291                         if (r) {
3292                                 ti->error = "Reshape check failed";
3293                                 goto bad_unlock;
3294                         }
3295                 }
3296         }
3297
3298         /* Disable/enable discard support on raid set. */
3299         configure_discard_support(rs);
3300
3301         mddev_unlock(&rs->md);
3302         return 0;
3303
3304 bad_unlock:
3305         md_stop(&rs->md);
3306         mddev_unlock(&rs->md);
3307 bad:
3308         raid_set_free(rs);
3309
3310         return r;
3311 }
3312
3313 static void raid_dtr(struct dm_target *ti)
3314 {
3315         struct raid_set *rs = ti->private;
3316
3317         mddev_lock_nointr(&rs->md);
3318         md_stop(&rs->md);
3319         mddev_unlock(&rs->md);
3320
3321         if (work_pending(&rs->md.event_work))
3322                 flush_work(&rs->md.event_work);
3323         raid_set_free(rs);
3324 }
3325
3326 static int raid_map(struct dm_target *ti, struct bio *bio)
3327 {
3328         struct raid_set *rs = ti->private;
3329         struct mddev *mddev = &rs->md;
3330
3331         /*
3332          * If we're reshaping to add disk(s)), ti->len and
3333          * mddev->array_sectors will differ during the process
3334          * (ti->len > mddev->array_sectors), so we have to requeue
3335          * bios with addresses > mddev->array_sectors here or
3336          * there will occur accesses past EOD of the component
3337          * data images thus erroring the raid set.
3338          */
3339         if (unlikely(bio_end_sector(bio) > mddev->array_sectors))
3340                 return DM_MAPIO_REQUEUE;
3341
3342         md_handle_request(mddev, bio);
3343
3344         return DM_MAPIO_SUBMITTED;
3345 }
3346
3347 /* Return sync state string for @state */
3348 enum sync_state { st_frozen, st_reshape, st_resync, st_check, st_repair, st_recover, st_idle };
3349 static const char *sync_str(enum sync_state state)
3350 {
3351         /* Has to be in above sync_state order! */
3352         static const char *sync_strs[] = {
3353                 "frozen",
3354                 "reshape",
3355                 "resync",
3356                 "check",
3357                 "repair",
3358                 "recover",
3359                 "idle"
3360         };
3361
3362         return __within_range(state, 0, ARRAY_SIZE(sync_strs) - 1) ? sync_strs[state] : "undef";
3363 };
3364
3365 /* Return enum sync_state for @mddev derived from @recovery flags */
3366 static enum sync_state decipher_sync_action(struct mddev *mddev, unsigned long recovery)
3367 {
3368         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
3369                 return st_frozen;
3370
3371         /* The MD sync thread can be done with io or be interrupted but still be running */
3372         if (!test_bit(MD_RECOVERY_DONE, &recovery) &&
3373             (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
3374              (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery)))) {
3375                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
3376                         return st_reshape;
3377
3378                 if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
3379                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
3380                                 return st_resync;
3381                         if (test_bit(MD_RECOVERY_CHECK, &recovery))
3382                                 return st_check;
3383                         return st_repair;
3384                 }
3385
3386                 if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3387                         return st_recover;
3388
3389                 if (mddev->reshape_position != MaxSector)
3390                         return st_reshape;
3391         }
3392
3393         return st_idle;
3394 }
3395
3396 /*
3397  * Return status string for @rdev
3398  *
3399  * Status characters:
3400  *
3401  *  'D' = Dead/Failed raid set component or raid4/5/6 journal device
3402  *  'a' = Alive but not in-sync raid set component _or_ alive raid4/5/6 'write_back' journal device
3403  *  'A' = Alive and in-sync raid set component _or_ alive raid4/5/6 'write_through' journal device
3404  *  '-' = Non-existing device (i.e. uspace passed '- -' into the ctr)
3405  */
3406 static const char *__raid_dev_status(struct raid_set *rs, struct md_rdev *rdev)
3407 {
3408         if (!rdev->bdev)
3409                 return "-";
3410         else if (test_bit(Faulty, &rdev->flags))
3411                 return "D";
3412         else if (test_bit(Journal, &rdev->flags))
3413                 return (rs->journal_dev.mode == R5C_JOURNAL_MODE_WRITE_THROUGH) ? "A" : "a";
3414         else if (test_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags) ||
3415                  (!test_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags) &&
3416                   !test_bit(In_sync, &rdev->flags)))
3417                 return "a";
3418         else
3419                 return "A";
3420 }
3421
3422 /* Helper to return resync/reshape progress for @rs and runtime flags for raid set in sync / resynching */
3423 static sector_t rs_get_progress(struct raid_set *rs, unsigned long recovery,
3424                                 enum sync_state state, sector_t resync_max_sectors)
3425 {
3426         sector_t r;
3427         struct mddev *mddev = &rs->md;
3428
3429         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3430         clear_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3431
3432         if (rs_is_raid0(rs)) {
3433                 r = resync_max_sectors;
3434                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3435
3436         } else {
3437                 if (state == st_idle && !test_bit(MD_RECOVERY_INTR, &recovery))
3438                         r = mddev->recovery_cp;
3439                 else
3440                         r = mddev->curr_resync_completed;
3441
3442                 if (state == st_idle && r >= resync_max_sectors) {
3443                         /*
3444                          * Sync complete.
3445                          */
3446                         /* In case we have finished recovering, the array is in sync. */
3447                         if (test_bit(MD_RECOVERY_RECOVER, &recovery))
3448                                 set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3449
3450                 } else if (state == st_recover)
3451                         /*
3452                          * In case we are recovering, the array is not in sync
3453                          * and health chars should show the recovering legs.
3454                          *
3455                          * Already retrieved recovery offset from curr_resync_completed above.
3456                          */
3457                         ;
3458
3459                 else if (state == st_resync || state == st_reshape)
3460                         /*
3461                          * If "resync/reshape" is occurring, the raid set
3462                          * is or may be out of sync hence the health
3463                          * characters shall be 'a'.
3464                          */
3465                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3466
3467                 else if (state == st_check || state == st_repair)
3468                         /*
3469                          * If "check" or "repair" is occurring, the raid set has
3470                          * undergone an initial sync and the health characters
3471                          * should not be 'a' anymore.
3472                          */
3473                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3474
3475                 else if (test_bit(MD_RECOVERY_NEEDED, &recovery))
3476                         /*
3477                          * We are idle and recovery is needed, prevent 'A' chars race
3478                          * caused by components still set to in-sync by constructor.
3479                          */
3480                         set_bit(RT_FLAG_RS_RESYNCING, &rs->runtime_flags);
3481
3482                 else {
3483                         /*
3484                          * We are idle and the raid set may be doing an initial
3485                          * sync, or it may be rebuilding individual components.
3486                          * If all the devices are In_sync, then it is the raid set
3487                          * that is being initialized.
3488                          */
3489                         struct md_rdev *rdev;
3490
3491                         set_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3492                         rdev_for_each(rdev, mddev)
3493                                 if (!test_bit(Journal, &rdev->flags) &&
3494                                     !test_bit(In_sync, &rdev->flags)) {
3495                                         clear_bit(RT_FLAG_RS_IN_SYNC, &rs->runtime_flags);
3496                                         break;
3497                                 }
3498                 }
3499         }
3500
3501         return min(r, resync_max_sectors);
3502 }
3503
3504 /* Helper to return @dev name or "-" if !@dev */
3505 static const char *__get_dev_name(struct dm_dev *dev)
3506 {
3507         return dev ? dev->name : "-";
3508 }
3509
3510 static void raid_status(struct dm_target *ti, status_type_t type,
3511                         unsigned int status_flags, char *result, unsigned int maxlen)
3512 {
3513         struct raid_set *rs = ti->private;
3514         struct mddev *mddev = &rs->md;
3515         struct r5conf *conf = rs_is_raid456(rs) ? mddev->private : NULL;
3516         int i, max_nr_stripes = conf ? conf->max_nr_stripes : 0;
3517         unsigned long recovery;
3518         unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */
3519         unsigned int sz = 0;
3520         unsigned int rebuild_writemostly_count = 0;
3521         sector_t progress, resync_max_sectors, resync_mismatches;
3522         enum sync_state state;
3523         struct raid_type *rt;
3524
3525         switch (type) {
3526         case STATUSTYPE_INFO:
3527                 /* *Should* always succeed */
3528                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3529                 if (!rt)
3530                         return;
3531
3532                 DMEMIT("%s %d ", rt->name, mddev->raid_disks);
3533
3534                 /* Access most recent mddev properties for status output */
3535                 smp_rmb();
3536                 /* Get sensible max sectors even if raid set not yet started */
3537                 resync_max_sectors = test_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags) ?
3538                                       mddev->resync_max_sectors : mddev->dev_sectors;
3539                 recovery = rs->md.recovery;
3540                 state = decipher_sync_action(mddev, recovery);
3541                 progress = rs_get_progress(rs, recovery, state, resync_max_sectors);
3542                 resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ?
3543                                     atomic64_read(&mddev->resync_mismatches) : 0;
3544
3545                 /* HM FIXME: do we want another state char for raid0? It shows 'D'/'A'/'-' now */
3546                 for (i = 0; i < rs->raid_disks; i++)
3547                         DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3548
3549                 /*
3550                  * In-sync/Reshape ratio:
3551                  *  The in-sync ratio shows the progress of:
3552                  *   - Initializing the raid set
3553                  *   - Rebuilding a subset of devices of the raid set
3554                  *  The user can distinguish between the two by referring
3555                  *  to the status characters.
3556                  *
3557                  *  The reshape ratio shows the progress of
3558                  *  changing the raid layout or the number of
3559                  *  disks of a raid set
3560                  */
3561                 DMEMIT(" %llu/%llu", (unsigned long long) progress,
3562                                      (unsigned long long) resync_max_sectors);
3563
3564                 /*
3565                  * v1.5.0+:
3566                  *
3567                  * Sync action:
3568                  *   See Documentation/admin-guide/device-mapper/dm-raid.rst for
3569                  *   information on each of these states.
3570                  */
3571                 DMEMIT(" %s", sync_str(state));
3572
3573                 /*
3574                  * v1.5.0+:
3575                  *
3576                  * resync_mismatches/mismatch_cnt
3577                  *   This field shows the number of discrepancies found when
3578                  *   performing a "check" of the raid set.
3579                  */
3580                 DMEMIT(" %llu", (unsigned long long) resync_mismatches);
3581
3582                 /*
3583                  * v1.9.0+:
3584                  *
3585                  * data_offset (needed for out of space reshaping)
3586                  *   This field shows the data offset into the data
3587                  *   image LV where the first stripes data starts.
3588                  *
3589                  * We keep data_offset equal on all raid disks of the set,
3590                  * so retrieving it from the first raid disk is sufficient.
3591                  */
3592                 DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset);
3593
3594                 /*
3595                  * v1.10.0+:
3596                  */
3597                 DMEMIT(" %s", test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags) ?
3598                               __raid_dev_status(rs, &rs->journal_dev.rdev) : "-");
3599                 break;
3600
3601         case STATUSTYPE_TABLE:
3602                 /* Report the table line string you would use to construct this raid set */
3603
3604                 /*
3605                  * Count any rebuild or writemostly argument pairs and subtract the
3606                  * hweight count being added below of any rebuild and writemostly ctr flags.
3607                  */
3608                 for (i = 0; i < rs->raid_disks; i++) {
3609                         rebuild_writemostly_count += (test_bit(i, (void *) rs->rebuild_disks) ? 2 : 0) +
3610                                                      (test_bit(WriteMostly, &rs->dev[i].rdev.flags) ? 2 : 0);
3611                 }
3612                 rebuild_writemostly_count -= (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags) ? 2 : 0) +
3613                                              (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags) ? 2 : 0);
3614                 /* Calculate raid parameter count based on ^ rebuild/writemostly argument counts and ctr flags set. */
3615                 raid_param_cnt += rebuild_writemostly_count +
3616                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) +
3617                                   hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2;
3618                 /* Emit table line */
3619                 /* This has to be in the documented order for userspace! */
3620                 DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors);
3621                 if (test_bit(__CTR_FLAG_SYNC, &rs->ctr_flags))
3622                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC));
3623                 if (test_bit(__CTR_FLAG_NOSYNC, &rs->ctr_flags))
3624                         DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC));
3625                 if (test_bit(__CTR_FLAG_REBUILD, &rs->ctr_flags))
3626                         for (i = 0; i < rs->raid_disks; i++)
3627                                 if (test_bit(i, (void *) rs->rebuild_disks))
3628                                         DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), i);
3629                 if (test_bit(__CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags))
3630                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP),
3631                                           mddev->bitmap_info.daemon_sleep);
3632                 if (test_bit(__CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags))
3633                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE),
3634                                          mddev->sync_speed_min);
3635                 if (test_bit(__CTR_FLAG_MAX_RECOVERY_RATE, &rs->ctr_flags))
3636                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE),
3637                                          mddev->sync_speed_max);
3638                 if (test_bit(__CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags))
3639                         for (i = 0; i < rs->raid_disks; i++)
3640                                 if (test_bit(WriteMostly, &rs->dev[i].rdev.flags))
3641                                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY),
3642                                                rs->dev[i].rdev.raid_disk);
3643                 if (test_bit(__CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags))
3644                         DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND),
3645                                           mddev->bitmap_info.max_write_behind);
3646                 if (test_bit(__CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags))
3647                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE),
3648                                          max_nr_stripes);
3649                 if (test_bit(__CTR_FLAG_REGION_SIZE, &rs->ctr_flags))
3650                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE),
3651                                            (unsigned long long) to_sector(mddev->bitmap_info.chunksize));
3652                 if (test_bit(__CTR_FLAG_RAID10_COPIES, &rs->ctr_flags))
3653                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES),
3654                                          raid10_md_layout_to_copies(mddev->layout));
3655                 if (test_bit(__CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags))
3656                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT),
3657                                          raid10_md_layout_to_format(mddev->layout));
3658                 if (test_bit(__CTR_FLAG_DELTA_DISKS, &rs->ctr_flags))
3659                         DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS),
3660                                          max(rs->delta_disks, mddev->delta_disks));
3661                 if (test_bit(__CTR_FLAG_DATA_OFFSET, &rs->ctr_flags))
3662                         DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET),
3663                                            (unsigned long long) rs->data_offset);
3664                 if (test_bit(__CTR_FLAG_JOURNAL_DEV, &rs->ctr_flags))
3665                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_DEV),
3666                                         __get_dev_name(rs->journal_dev.dev));
3667                 if (test_bit(__CTR_FLAG_JOURNAL_MODE, &rs->ctr_flags))
3668                         DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_JOURNAL_MODE),
3669                                          md_journal_mode_to_dm_raid(rs->journal_dev.mode));
3670                 DMEMIT(" %d", rs->raid_disks);
3671                 for (i = 0; i < rs->raid_disks; i++)
3672                         DMEMIT(" %s %s", __get_dev_name(rs->dev[i].meta_dev),
3673                                          __get_dev_name(rs->dev[i].data_dev));
3674                 break;
3675
3676         case STATUSTYPE_IMA:
3677                 rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout);
3678                 if (!rt)
3679                         return;
3680
3681                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3682                 DMEMIT(",raid_type=%s,raid_disks=%d", rt->name, mddev->raid_disks);
3683
3684                 /* Access most recent mddev properties for status output */
3685                 smp_rmb();
3686                 recovery = rs->md.recovery;
3687                 state = decipher_sync_action(mddev, recovery);
3688                 DMEMIT(",raid_state=%s", sync_str(state));
3689
3690                 for (i = 0; i < rs->raid_disks; i++) {
3691                         DMEMIT(",raid_device_%d_status=", i);
3692                         DMEMIT(__raid_dev_status(rs, &rs->dev[i].rdev));
3693                 }
3694
3695                 if (rt_is_raid456(rt)) {
3696                         DMEMIT(",journal_dev_mode=");
3697                         switch (rs->journal_dev.mode) {
3698                         case R5C_JOURNAL_MODE_WRITE_THROUGH:
3699                                 DMEMIT("%s",
3700                                        _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_THROUGH].param);
3701                                 break;
3702                         case R5C_JOURNAL_MODE_WRITE_BACK:
3703                                 DMEMIT("%s",
3704                                        _raid456_journal_mode[R5C_JOURNAL_MODE_WRITE_BACK].param);
3705                                 break;
3706                         default:
3707                                 DMEMIT("invalid");
3708                                 break;
3709                         }
3710                 }
3711                 DMEMIT(";");
3712                 break;
3713         }
3714 }
3715
3716 static int raid_message(struct dm_target *ti, unsigned int argc, char **argv,
3717                         char *result, unsigned int maxlen)
3718 {
3719         struct raid_set *rs = ti->private;
3720         struct mddev *mddev = &rs->md;
3721
3722         if (!mddev->pers || !mddev->pers->sync_request)
3723                 return -EINVAL;
3724
3725         if (!strcasecmp(argv[0], "frozen"))
3726                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3727         else
3728                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3729
3730         if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) {
3731                 if (mddev->sync_thread) {
3732                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3733                         md_reap_sync_thread(mddev);
3734                 }
3735         } else if (decipher_sync_action(mddev, mddev->recovery) != st_idle)
3736                 return -EBUSY;
3737         else if (!strcasecmp(argv[0], "resync"))
3738                 ; /* MD_RECOVERY_NEEDED set below */
3739         else if (!strcasecmp(argv[0], "recover"))
3740                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3741         else {
3742                 if (!strcasecmp(argv[0], "check")) {
3743                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3744                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3745                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3746                 } else if (!strcasecmp(argv[0], "repair")) {
3747                         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3748                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3749                 } else
3750                         return -EINVAL;
3751         }
3752         if (mddev->ro == 2) {
3753                 /* A write to sync_action is enough to justify
3754                  * canceling read-auto mode
3755                  */
3756                 mddev->ro = 0;
3757                 if (!mddev->suspended)
3758                         md_wakeup_thread(mddev->sync_thread);
3759         }
3760         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3761         if (!mddev->suspended)
3762                 md_wakeup_thread(mddev->thread);
3763
3764         return 0;
3765 }
3766
3767 static int raid_iterate_devices(struct dm_target *ti,
3768                                 iterate_devices_callout_fn fn, void *data)
3769 {
3770         struct raid_set *rs = ti->private;
3771         unsigned int i;
3772         int r = 0;
3773
3774         for (i = 0; !r && i < rs->raid_disks; i++) {
3775                 if (rs->dev[i].data_dev) {
3776                         r = fn(ti, rs->dev[i].data_dev,
3777                                0, /* No offset on data devs */
3778                                rs->md.dev_sectors, data);
3779                 }
3780         }
3781
3782         return r;
3783 }
3784
3785 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
3786 {
3787         struct raid_set *rs = ti->private;
3788         unsigned int chunk_size_bytes = to_bytes(rs->md.chunk_sectors);
3789
3790         blk_limits_io_min(limits, chunk_size_bytes);
3791         blk_limits_io_opt(limits, chunk_size_bytes * mddev_data_stripes(rs));
3792 }
3793
3794 static void raid_postsuspend(struct dm_target *ti)
3795 {
3796         struct raid_set *rs = ti->private;
3797
3798         if (!test_and_set_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
3799                 /* Writes have to be stopped before suspending to avoid deadlocks. */
3800                 if (!test_bit(MD_RECOVERY_FROZEN, &rs->md.recovery))
3801                         md_stop_writes(&rs->md);
3802
3803                 mddev_suspend(&rs->md, false);
3804         }
3805 }
3806
3807 static void attempt_restore_of_faulty_devices(struct raid_set *rs)
3808 {
3809         int i;
3810         uint64_t cleared_failed_devices[DISKS_ARRAY_ELEMS];
3811         unsigned long flags;
3812         bool cleared = false;
3813         struct dm_raid_superblock *sb;
3814         struct mddev *mddev = &rs->md;
3815         struct md_rdev *r;
3816
3817         /* RAID personalities have to provide hot add/remove methods or we need to bail out. */
3818         if (!mddev->pers || !mddev->pers->hot_add_disk || !mddev->pers->hot_remove_disk)
3819                 return;
3820
3821         memset(cleared_failed_devices, 0, sizeof(cleared_failed_devices));
3822
3823         for (i = 0; i < rs->raid_disks; i++) {
3824                 r = &rs->dev[i].rdev;
3825                 /* HM FIXME: enhance journal device recovery processing */
3826                 if (test_bit(Journal, &r->flags))
3827                         continue;
3828
3829                 if (test_bit(Faulty, &r->flags) &&
3830                     r->meta_bdev && !read_disk_sb(r, r->sb_size, true)) {
3831                         DMINFO("Faulty %s device #%d has readable super block."
3832                                "  Attempting to revive it.",
3833                                rs->raid_type->name, i);
3834
3835                         /*
3836                          * Faulty bit may be set, but sometimes the array can
3837                          * be suspended before the personalities can respond
3838                          * by removing the device from the array (i.e. calling
3839                          * 'hot_remove_disk').  If they haven't yet removed
3840                          * the failed device, its 'raid_disk' number will be
3841                          * '>= 0' - meaning we must call this function
3842                          * ourselves.
3843                          */
3844                         flags = r->flags;
3845                         clear_bit(In_sync, &r->flags); /* Mandatory for hot remove. */
3846                         if (r->raid_disk >= 0) {
3847                                 if (mddev->pers->hot_remove_disk(mddev, r)) {
3848                                         /* Failed to revive this device, try next */
3849                                         r->flags = flags;
3850                                         continue;
3851                                 }
3852                         } else
3853                                 r->raid_disk = r->saved_raid_disk = i;
3854
3855                         clear_bit(Faulty, &r->flags);
3856                         clear_bit(WriteErrorSeen, &r->flags);
3857
3858                         if (mddev->pers->hot_add_disk(mddev, r)) {
3859                                 /* Failed to revive this device, try next */
3860                                 r->raid_disk = r->saved_raid_disk = -1;
3861                                 r->flags = flags;
3862                         } else {
3863                                 clear_bit(In_sync, &r->flags);
3864                                 r->recovery_offset = 0;
3865                                 set_bit(i, (void *) cleared_failed_devices);
3866                                 cleared = true;
3867                         }
3868                 }
3869         }
3870
3871         /* If any failed devices could be cleared, update all sbs failed_devices bits */
3872         if (cleared) {
3873                 uint64_t failed_devices[DISKS_ARRAY_ELEMS];
3874
3875                 rdev_for_each(r, &rs->md) {
3876                         if (test_bit(Journal, &r->flags))
3877                                 continue;
3878
3879                         sb = page_address(r->sb_page);
3880                         sb_retrieve_failed_devices(sb, failed_devices);
3881
3882                         for (i = 0; i < DISKS_ARRAY_ELEMS; i++)
3883                                 failed_devices[i] &= ~cleared_failed_devices[i];
3884
3885                         sb_update_failed_devices(sb, failed_devices);
3886                 }
3887         }
3888 }
3889
3890 static int __load_dirty_region_bitmap(struct raid_set *rs)
3891 {
3892         int r = 0;
3893
3894         /* Try loading the bitmap unless "raid0", which does not have one */
3895         if (!rs_is_raid0(rs) &&
3896             !test_and_set_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) {
3897                 r = md_bitmap_load(&rs->md);
3898                 if (r)
3899                         DMERR("Failed to load bitmap");
3900         }
3901
3902         return r;
3903 }
3904
3905 /* Enforce updating all superblocks */
3906 static void rs_update_sbs(struct raid_set *rs)
3907 {
3908         struct mddev *mddev = &rs->md;
3909         int ro = mddev->ro;
3910
3911         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3912         mddev->ro = 0;
3913         md_update_sb(mddev, 1);
3914         mddev->ro = ro;
3915 }
3916
3917 /*
3918  * Reshape changes raid algorithm of @rs to new one within personality
3919  * (e.g. raid6_zr -> raid6_nc), changes stripe size, adds/removes
3920  * disks from a raid set thus growing/shrinking it or resizes the set
3921  *
3922  * Call mddev_lock_nointr() before!
3923  */
3924 static int rs_start_reshape(struct raid_set *rs)
3925 {
3926         int r;
3927         struct mddev *mddev = &rs->md;
3928         struct md_personality *pers = mddev->pers;
3929
3930         /* Don't allow the sync thread to work until the table gets reloaded. */
3931         set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
3932
3933         r = rs_setup_reshape(rs);
3934         if (r)
3935                 return r;
3936
3937         /*
3938          * Check any reshape constraints enforced by the personalility
3939          *
3940          * May as well already kick the reshape off so that * pers->start_reshape() becomes optional.
3941          */
3942         r = pers->check_reshape(mddev);
3943         if (r) {
3944                 rs->ti->error = "pers->check_reshape() failed";
3945                 return r;
3946         }
3947
3948         /*
3949          * Personality may not provide start reshape method in which
3950          * case check_reshape above has already covered everything
3951          */
3952         if (pers->start_reshape) {
3953                 r = pers->start_reshape(mddev);
3954                 if (r) {
3955                         rs->ti->error = "pers->start_reshape() failed";
3956                         return r;
3957                 }
3958         }
3959
3960         /*
3961          * Now reshape got set up, update superblocks to
3962          * reflect the fact so that a table reload will
3963          * access proper superblock content in the ctr.
3964          */
3965         rs_update_sbs(rs);
3966
3967         return 0;
3968 }
3969
3970 static int raid_preresume(struct dm_target *ti)
3971 {
3972         int r;
3973         struct raid_set *rs = ti->private;
3974         struct mddev *mddev = &rs->md;
3975
3976         /* This is a resume after a suspend of the set -> it's already started. */
3977         if (test_and_set_bit(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags))
3978                 return 0;
3979
3980         /*
3981          * The superblocks need to be updated on disk if the
3982          * array is new or new devices got added (thus zeroed
3983          * out by userspace) or __load_dirty_region_bitmap
3984          * will overwrite them in core with old data or fail.
3985          */
3986         if (test_bit(RT_FLAG_UPDATE_SBS, &rs->runtime_flags))
3987                 rs_update_sbs(rs);
3988
3989         /* Load the bitmap from disk unless raid0 */
3990         r = __load_dirty_region_bitmap(rs);
3991         if (r)
3992                 return r;
3993
3994         /* We are extending the raid set size, adjust mddev/md_rdev sizes and set capacity. */
3995         if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags)) {
3996                 mddev->array_sectors = rs->array_sectors;
3997                 mddev->dev_sectors = rs->dev_sectors;
3998                 rs_set_rdev_sectors(rs);
3999                 rs_set_capacity(rs);
4000         }
4001
4002         /* Resize bitmap to adjust to changed region size (aka MD bitmap chunksize) or grown device size */
4003         if (test_bit(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags) && mddev->bitmap &&
4004             (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags) ||
4005              (rs->requested_bitmap_chunk_sectors &&
4006                mddev->bitmap_info.chunksize != to_bytes(rs->requested_bitmap_chunk_sectors)))) {
4007                 int chunksize = to_bytes(rs->requested_bitmap_chunk_sectors) ?: mddev->bitmap_info.chunksize;
4008
4009                 r = md_bitmap_resize(mddev->bitmap, mddev->dev_sectors, chunksize, 0);
4010                 if (r)
4011                         DMERR("Failed to resize bitmap");
4012         }
4013
4014         /* Check for any resize/reshape on @rs and adjust/initiate */
4015         /* Be prepared for mddev_resume() in raid_resume() */
4016         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4017         if (mddev->recovery_cp && mddev->recovery_cp < MaxSector) {
4018                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4019                 mddev->resync_min = mddev->recovery_cp;
4020                 if (test_bit(RT_FLAG_RS_GROW, &rs->runtime_flags))
4021                         mddev->resync_max_sectors = mddev->dev_sectors;
4022         }
4023
4024         /* Check for any reshape request unless new raid set */
4025         if (test_bit(RT_FLAG_RESHAPE_RS, &rs->runtime_flags)) {
4026                 /* Initiate a reshape. */
4027                 rs_set_rdev_sectors(rs);
4028                 mddev_lock_nointr(mddev);
4029                 r = rs_start_reshape(rs);
4030                 mddev_unlock(mddev);
4031                 if (r)
4032                         DMWARN("Failed to check/start reshape, continuing without change");
4033                 r = 0;
4034         }
4035
4036         return r;
4037 }
4038
4039 static void raid_resume(struct dm_target *ti)
4040 {
4041         struct raid_set *rs = ti->private;
4042         struct mddev *mddev = &rs->md;
4043
4044         if (test_and_set_bit(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) {
4045                 /*
4046                  * A secondary resume while the device is active.
4047                  * Take this opportunity to check whether any failed
4048                  * devices are reachable again.
4049                  */
4050                 attempt_restore_of_faulty_devices(rs);
4051         }
4052
4053         if (test_and_clear_bit(RT_FLAG_RS_SUSPENDED, &rs->runtime_flags)) {
4054                 /* Only reduce raid set size before running a disk removing reshape. */
4055                 if (mddev->delta_disks < 0)
4056                         rs_set_capacity(rs);
4057
4058                 mddev_lock_nointr(mddev);
4059                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4060                 mddev->ro = 0;
4061                 mddev->in_sync = 0;
4062                 mddev_unlock_and_resume(mddev);
4063         }
4064 }
4065
4066 static struct target_type raid_target = {
4067         .name = "raid",
4068         .version = {1, 15, 1},
4069         .module = THIS_MODULE,
4070         .ctr = raid_ctr,
4071         .dtr = raid_dtr,
4072         .map = raid_map,
4073         .status = raid_status,
4074         .message = raid_message,
4075         .iterate_devices = raid_iterate_devices,
4076         .io_hints = raid_io_hints,
4077         .postsuspend = raid_postsuspend,
4078         .preresume = raid_preresume,
4079         .resume = raid_resume,
4080 };
4081 module_dm(raid);
4082
4083 module_param(devices_handle_discard_safely, bool, 0644);
4084 MODULE_PARM_DESC(devices_handle_discard_safely,
4085                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
4086
4087 MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target");
4088 MODULE_ALIAS("dm-raid0");
4089 MODULE_ALIAS("dm-raid1");
4090 MODULE_ALIAS("dm-raid10");
4091 MODULE_ALIAS("dm-raid4");
4092 MODULE_ALIAS("dm-raid5");
4093 MODULE_ALIAS("dm-raid6");
4094 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
4095 MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>");
4096 MODULE_LICENSE("GPL");