Merge tag 'devicetree-for-6.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / drivers / md / dm-integrity.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9
10 #include "dm-bio-record.h"
11
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26
27 #include "dm-audit.h"
28
29 #define DM_MSG_PREFIX "integrity"
30
31 #define DEFAULT_INTERLEAVE_SECTORS      32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
34 #define DEFAULT_BUFFER_SECTORS          128
35 #define DEFAULT_JOURNAL_WATERMARK       50
36 #define DEFAULT_SYNC_MSEC               10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
38 #define MIN_LOG2_INTERLEAVE_SECTORS     3
39 #define MAX_LOG2_INTERLEAVE_SECTORS     31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
41 #define RECALC_SECTORS                  32768
42 #define RECALC_WRITE_SUPER              16
43 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
45 #define DISCARD_FILLER                  0xf6
46 #define SALT_SIZE                       16
47
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54
55 /*
56  * On disk structures
57  */
58
59 #define SB_MAGIC                        "integrt"
60 #define SB_VERSION_1                    1
61 #define SB_VERSION_2                    2
62 #define SB_VERSION_3                    3
63 #define SB_VERSION_4                    4
64 #define SB_VERSION_5                    5
65 #define SB_SECTORS                      8
66 #define MAX_SECTORS_PER_BLOCK           8
67
68 struct superblock {
69         __u8 magic[8];
70         __u8 version;
71         __u8 log2_interleave_sectors;
72         __le16 integrity_tag_size;
73         __le32 journal_sections;
74         __le64 provided_data_sectors;   /* userspace uses this value */
75         __le32 flags;
76         __u8 log2_sectors_per_block;
77         __u8 log2_blocks_per_bitmap_bit;
78         __u8 pad[2];
79         __le64 recalc_sector;
80         __u8 pad2[8];
81         __u8 salt[SALT_SIZE];
82 };
83
84 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
85 #define SB_FLAG_RECALCULATING           0x2
86 #define SB_FLAG_DIRTY_BITMAP            0x4
87 #define SB_FLAG_FIXED_PADDING           0x8
88 #define SB_FLAG_FIXED_HMAC              0x10
89
90 #define JOURNAL_ENTRY_ROUNDUP           8
91
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR          8
94
95 struct journal_entry {
96         union {
97                 struct {
98                         __le32 sector_lo;
99                         __le32 sector_hi;
100                 } s;
101                 __le64 sector;
102         } u;
103         commit_id_t last_bytes[];
104         /* __u8 tag[0]; */
105 };
106
107 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)            ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)        ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120 #define JOURNAL_BLOCK_SECTORS           8
121 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124 struct journal_sector {
125         struct_group(sectors,
126                 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127                 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128         );
129         commit_id_t commit_id;
130 };
131
132 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134 #define METADATA_PADDING_SECTORS        8
135
136 #define N_COMMIT_IDS                    4
137
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145         return (seq + 1) % N_COMMIT_IDS;
146 }
147
148 /*
149  * In-memory structures
150  */
151
152 struct journal_node {
153         struct rb_node node;
154         sector_t sector;
155 };
156
157 struct alg_spec {
158         char *alg_string;
159         char *key_string;
160         __u8 *key;
161         unsigned int key_size;
162 };
163
164 struct dm_integrity_c {
165         struct dm_dev *dev;
166         struct dm_dev *meta_dev;
167         unsigned int tag_size;
168         __s8 log2_tag_size;
169         sector_t start;
170         mempool_t journal_io_mempool;
171         struct dm_io_client *io;
172         struct dm_bufio_client *bufio;
173         struct workqueue_struct *metadata_wq;
174         struct superblock *sb;
175         unsigned int journal_pages;
176         unsigned int n_bitmap_blocks;
177
178         struct page_list *journal;
179         struct page_list *journal_io;
180         struct page_list *journal_xor;
181         struct page_list *recalc_bitmap;
182         struct page_list *may_write_bitmap;
183         struct bitmap_block_status *bbs;
184         unsigned int bitmap_flush_interval;
185         int synchronous_mode;
186         struct bio_list synchronous_bios;
187         struct delayed_work bitmap_flush_work;
188
189         struct crypto_skcipher *journal_crypt;
190         struct scatterlist **journal_scatterlist;
191         struct scatterlist **journal_io_scatterlist;
192         struct skcipher_request **sk_requests;
193
194         struct crypto_shash *journal_mac;
195
196         struct journal_node *journal_tree;
197         struct rb_root journal_tree_root;
198
199         sector_t provided_data_sectors;
200
201         unsigned short journal_entry_size;
202         unsigned char journal_entries_per_sector;
203         unsigned char journal_section_entries;
204         unsigned short journal_section_sectors;
205         unsigned int journal_sections;
206         unsigned int journal_entries;
207         sector_t data_device_sectors;
208         sector_t meta_device_sectors;
209         unsigned int initial_sectors;
210         unsigned int metadata_run;
211         __s8 log2_metadata_run;
212         __u8 log2_buffer_sectors;
213         __u8 sectors_per_block;
214         __u8 log2_blocks_per_bitmap_bit;
215
216         unsigned char mode;
217
218         int failed;
219
220         struct crypto_shash *internal_hash;
221
222         struct dm_target *ti;
223
224         /* these variables are locked with endio_wait.lock */
225         struct rb_root in_progress;
226         struct list_head wait_list;
227         wait_queue_head_t endio_wait;
228         struct workqueue_struct *wait_wq;
229         struct workqueue_struct *offload_wq;
230
231         unsigned char commit_seq;
232         commit_id_t commit_ids[N_COMMIT_IDS];
233
234         unsigned int committed_section;
235         unsigned int n_committed_sections;
236
237         unsigned int uncommitted_section;
238         unsigned int n_uncommitted_sections;
239
240         unsigned int free_section;
241         unsigned char free_section_entry;
242         unsigned int free_sectors;
243
244         unsigned int free_sectors_threshold;
245
246         struct workqueue_struct *commit_wq;
247         struct work_struct commit_work;
248
249         struct workqueue_struct *writer_wq;
250         struct work_struct writer_work;
251
252         struct workqueue_struct *recalc_wq;
253         struct work_struct recalc_work;
254         u8 *recalc_buffer;
255         u8 *recalc_tags;
256
257         struct bio_list flush_bio_list;
258
259         unsigned long autocommit_jiffies;
260         struct timer_list autocommit_timer;
261         unsigned int autocommit_msec;
262
263         wait_queue_head_t copy_to_journal_wait;
264
265         struct completion crypto_backoff;
266
267         bool wrote_to_journal;
268         bool journal_uptodate;
269         bool just_formatted;
270         bool recalculate_flag;
271         bool reset_recalculate_flag;
272         bool discard;
273         bool fix_padding;
274         bool fix_hmac;
275         bool legacy_recalculate;
276
277         struct alg_spec internal_hash_alg;
278         struct alg_spec journal_crypt_alg;
279         struct alg_spec journal_mac_alg;
280
281         atomic64_t number_of_mismatches;
282
283         struct notifier_block reboot_notifier;
284 };
285
286 struct dm_integrity_range {
287         sector_t logical_sector;
288         sector_t n_sectors;
289         bool waiting;
290         union {
291                 struct rb_node node;
292                 struct {
293                         struct task_struct *task;
294                         struct list_head wait_entry;
295                 };
296         };
297 };
298
299 struct dm_integrity_io {
300         struct work_struct work;
301
302         struct dm_integrity_c *ic;
303         enum req_op op;
304         bool fua;
305
306         struct dm_integrity_range range;
307
308         sector_t metadata_block;
309         unsigned int metadata_offset;
310
311         atomic_t in_flight;
312         blk_status_t bi_status;
313
314         struct completion *completion;
315
316         struct dm_bio_details bio_details;
317 };
318
319 struct journal_completion {
320         struct dm_integrity_c *ic;
321         atomic_t in_flight;
322         struct completion comp;
323 };
324
325 struct journal_io {
326         struct dm_integrity_range range;
327         struct journal_completion *comp;
328 };
329
330 struct bitmap_block_status {
331         struct work_struct work;
332         struct dm_integrity_c *ic;
333         unsigned int idx;
334         unsigned long *bitmap;
335         struct bio_list bio_queue;
336         spinlock_t bio_queue_lock;
337
338 };
339
340 static struct kmem_cache *journal_io_cache;
341
342 #define JOURNAL_IO_MEMPOOL      32
343
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
346 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
347 {
348         va_list args;
349
350         va_start(args, msg);
351         vprintk(msg, args);
352         va_end(args);
353         if (len)
354                 pr_cont(":");
355         while (len) {
356                 pr_cont(" %02x", *bytes);
357                 bytes++;
358                 len--;
359         }
360         pr_cont("\n");
361 }
362 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
363 #else
364 #define DEBUG_print(x, ...)                     do { } while (0)
365 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
366 #endif
367
368 static void dm_integrity_prepare(struct request *rq)
369 {
370 }
371
372 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
373 {
374 }
375
376 /*
377  * DM Integrity profile, protection is performed layer above (dm-crypt)
378  */
379 static const struct blk_integrity_profile dm_integrity_profile = {
380         .name                   = "DM-DIF-EXT-TAG",
381         .generate_fn            = NULL,
382         .verify_fn              = NULL,
383         .prepare_fn             = dm_integrity_prepare,
384         .complete_fn            = dm_integrity_complete,
385 };
386
387 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
388 static void integrity_bio_wait(struct work_struct *w);
389 static void dm_integrity_dtr(struct dm_target *ti);
390
391 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
392 {
393         if (err == -EILSEQ)
394                 atomic64_inc(&ic->number_of_mismatches);
395         if (!cmpxchg(&ic->failed, 0, err))
396                 DMERR("Error on %s: %d", msg, err);
397 }
398
399 static int dm_integrity_failed(struct dm_integrity_c *ic)
400 {
401         return READ_ONCE(ic->failed);
402 }
403
404 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
405 {
406         if (ic->legacy_recalculate)
407                 return false;
408         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
409             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
410             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
411                 return true;
412         return false;
413 }
414
415 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
416                                           unsigned int j, unsigned char seq)
417 {
418         /*
419          * Xor the number with section and sector, so that if a piece of
420          * journal is written at wrong place, it is detected.
421          */
422         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
423 }
424
425 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
426                                 sector_t *area, sector_t *offset)
427 {
428         if (!ic->meta_dev) {
429                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
430                 *area = data_sector >> log2_interleave_sectors;
431                 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
432         } else {
433                 *area = 0;
434                 *offset = data_sector;
435         }
436 }
437
438 #define sector_to_block(ic, n)                                          \
439 do {                                                                    \
440         BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));              \
441         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
442 } while (0)
443
444 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
445                                             sector_t offset, unsigned int *metadata_offset)
446 {
447         __u64 ms;
448         unsigned int mo;
449
450         ms = area << ic->sb->log2_interleave_sectors;
451         if (likely(ic->log2_metadata_run >= 0))
452                 ms += area << ic->log2_metadata_run;
453         else
454                 ms += area * ic->metadata_run;
455         ms >>= ic->log2_buffer_sectors;
456
457         sector_to_block(ic, offset);
458
459         if (likely(ic->log2_tag_size >= 0)) {
460                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
461                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
462         } else {
463                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
464                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
465         }
466         *metadata_offset = mo;
467         return ms;
468 }
469
470 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
471 {
472         sector_t result;
473
474         if (ic->meta_dev)
475                 return offset;
476
477         result = area << ic->sb->log2_interleave_sectors;
478         if (likely(ic->log2_metadata_run >= 0))
479                 result += (area + 1) << ic->log2_metadata_run;
480         else
481                 result += (area + 1) * ic->metadata_run;
482
483         result += (sector_t)ic->initial_sectors + offset;
484         result += ic->start;
485
486         return result;
487 }
488
489 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
490 {
491         if (unlikely(*sec_ptr >= ic->journal_sections))
492                 *sec_ptr -= ic->journal_sections;
493 }
494
495 static void sb_set_version(struct dm_integrity_c *ic)
496 {
497         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
498                 ic->sb->version = SB_VERSION_5;
499         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
500                 ic->sb->version = SB_VERSION_4;
501         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
502                 ic->sb->version = SB_VERSION_3;
503         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
504                 ic->sb->version = SB_VERSION_2;
505         else
506                 ic->sb->version = SB_VERSION_1;
507 }
508
509 static int sb_mac(struct dm_integrity_c *ic, bool wr)
510 {
511         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
512         int r;
513         unsigned int size = crypto_shash_digestsize(ic->journal_mac);
514
515         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
516                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
517                 return -EINVAL;
518         }
519
520         desc->tfm = ic->journal_mac;
521
522         r = crypto_shash_init(desc);
523         if (unlikely(r < 0)) {
524                 dm_integrity_io_error(ic, "crypto_shash_init", r);
525                 return r;
526         }
527
528         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
529         if (unlikely(r < 0)) {
530                 dm_integrity_io_error(ic, "crypto_shash_update", r);
531                 return r;
532         }
533
534         if (likely(wr)) {
535                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
536                 if (unlikely(r < 0)) {
537                         dm_integrity_io_error(ic, "crypto_shash_final", r);
538                         return r;
539                 }
540         } else {
541                 __u8 result[HASH_MAX_DIGESTSIZE];
542
543                 r = crypto_shash_final(desc, result);
544                 if (unlikely(r < 0)) {
545                         dm_integrity_io_error(ic, "crypto_shash_final", r);
546                         return r;
547                 }
548                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
549                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
550                         dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
551                         return -EILSEQ;
552                 }
553         }
554
555         return 0;
556 }
557
558 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
559 {
560         struct dm_io_request io_req;
561         struct dm_io_region io_loc;
562         const enum req_op op = opf & REQ_OP_MASK;
563         int r;
564
565         io_req.bi_opf = opf;
566         io_req.mem.type = DM_IO_KMEM;
567         io_req.mem.ptr.addr = ic->sb;
568         io_req.notify.fn = NULL;
569         io_req.client = ic->io;
570         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
571         io_loc.sector = ic->start;
572         io_loc.count = SB_SECTORS;
573
574         if (op == REQ_OP_WRITE) {
575                 sb_set_version(ic);
576                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
577                         r = sb_mac(ic, true);
578                         if (unlikely(r))
579                                 return r;
580                 }
581         }
582
583         r = dm_io(&io_req, 1, &io_loc, NULL);
584         if (unlikely(r))
585                 return r;
586
587         if (op == REQ_OP_READ) {
588                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
589                         r = sb_mac(ic, false);
590                         if (unlikely(r))
591                                 return r;
592                 }
593         }
594
595         return 0;
596 }
597
598 #define BITMAP_OP_TEST_ALL_SET          0
599 #define BITMAP_OP_TEST_ALL_CLEAR        1
600 #define BITMAP_OP_SET                   2
601 #define BITMAP_OP_CLEAR                 3
602
603 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
604                             sector_t sector, sector_t n_sectors, int mode)
605 {
606         unsigned long bit, end_bit, this_end_bit, page, end_page;
607         unsigned long *data;
608
609         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
610                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
611                         sector,
612                         n_sectors,
613                         ic->sb->log2_sectors_per_block,
614                         ic->log2_blocks_per_bitmap_bit,
615                         mode);
616                 BUG();
617         }
618
619         if (unlikely(!n_sectors))
620                 return true;
621
622         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
623         end_bit = (sector + n_sectors - 1) >>
624                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
625
626         page = bit / (PAGE_SIZE * 8);
627         bit %= PAGE_SIZE * 8;
628
629         end_page = end_bit / (PAGE_SIZE * 8);
630         end_bit %= PAGE_SIZE * 8;
631
632 repeat:
633         if (page < end_page)
634                 this_end_bit = PAGE_SIZE * 8 - 1;
635         else
636                 this_end_bit = end_bit;
637
638         data = lowmem_page_address(bitmap[page].page);
639
640         if (mode == BITMAP_OP_TEST_ALL_SET) {
641                 while (bit <= this_end_bit) {
642                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
643                                 do {
644                                         if (data[bit / BITS_PER_LONG] != -1)
645                                                 return false;
646                                         bit += BITS_PER_LONG;
647                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
648                                 continue;
649                         }
650                         if (!test_bit(bit, data))
651                                 return false;
652                         bit++;
653                 }
654         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
655                 while (bit <= this_end_bit) {
656                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
657                                 do {
658                                         if (data[bit / BITS_PER_LONG] != 0)
659                                                 return false;
660                                         bit += BITS_PER_LONG;
661                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
662                                 continue;
663                         }
664                         if (test_bit(bit, data))
665                                 return false;
666                         bit++;
667                 }
668         } else if (mode == BITMAP_OP_SET) {
669                 while (bit <= this_end_bit) {
670                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
671                                 do {
672                                         data[bit / BITS_PER_LONG] = -1;
673                                         bit += BITS_PER_LONG;
674                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
675                                 continue;
676                         }
677                         __set_bit(bit, data);
678                         bit++;
679                 }
680         } else if (mode == BITMAP_OP_CLEAR) {
681                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
682                         clear_page(data);
683                 else {
684                         while (bit <= this_end_bit) {
685                                 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
686                                         do {
687                                                 data[bit / BITS_PER_LONG] = 0;
688                                                 bit += BITS_PER_LONG;
689                                         } while (this_end_bit >= bit + BITS_PER_LONG - 1);
690                                         continue;
691                                 }
692                                 __clear_bit(bit, data);
693                                 bit++;
694                         }
695                 }
696         } else {
697                 BUG();
698         }
699
700         if (unlikely(page < end_page)) {
701                 bit = 0;
702                 page++;
703                 goto repeat;
704         }
705
706         return true;
707 }
708
709 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
710 {
711         unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
712         unsigned int i;
713
714         for (i = 0; i < n_bitmap_pages; i++) {
715                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
716                 unsigned long *src_data = lowmem_page_address(src[i].page);
717
718                 copy_page(dst_data, src_data);
719         }
720 }
721
722 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
723 {
724         unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
725         unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
726
727         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
728         return &ic->bbs[bitmap_block];
729 }
730
731 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
732                                  bool e, const char *function)
733 {
734 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
735         unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
736
737         if (unlikely(section >= ic->journal_sections) ||
738             unlikely(offset >= limit)) {
739                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
740                        function, section, offset, ic->journal_sections, limit);
741                 BUG();
742         }
743 #endif
744 }
745
746 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
747                                unsigned int *pl_index, unsigned int *pl_offset)
748 {
749         unsigned int sector;
750
751         access_journal_check(ic, section, offset, false, "page_list_location");
752
753         sector = section * ic->journal_section_sectors + offset;
754
755         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
756         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
757 }
758
759 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
760                                                unsigned int section, unsigned int offset, unsigned int *n_sectors)
761 {
762         unsigned int pl_index, pl_offset;
763         char *va;
764
765         page_list_location(ic, section, offset, &pl_index, &pl_offset);
766
767         if (n_sectors)
768                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
769
770         va = lowmem_page_address(pl[pl_index].page);
771
772         return (struct journal_sector *)(va + pl_offset);
773 }
774
775 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
776 {
777         return access_page_list(ic, ic->journal, section, offset, NULL);
778 }
779
780 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
781 {
782         unsigned int rel_sector, offset;
783         struct journal_sector *js;
784
785         access_journal_check(ic, section, n, true, "access_journal_entry");
786
787         rel_sector = n % JOURNAL_BLOCK_SECTORS;
788         offset = n / JOURNAL_BLOCK_SECTORS;
789
790         js = access_journal(ic, section, rel_sector);
791         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
792 }
793
794 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
795 {
796         n <<= ic->sb->log2_sectors_per_block;
797
798         n += JOURNAL_BLOCK_SECTORS;
799
800         access_journal_check(ic, section, n, false, "access_journal_data");
801
802         return access_journal(ic, section, n);
803 }
804
805 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
806 {
807         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
808         int r;
809         unsigned int j, size;
810
811         desc->tfm = ic->journal_mac;
812
813         r = crypto_shash_init(desc);
814         if (unlikely(r < 0)) {
815                 dm_integrity_io_error(ic, "crypto_shash_init", r);
816                 goto err;
817         }
818
819         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
820                 __le64 section_le;
821
822                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
823                 if (unlikely(r < 0)) {
824                         dm_integrity_io_error(ic, "crypto_shash_update", r);
825                         goto err;
826                 }
827
828                 section_le = cpu_to_le64(section);
829                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
830                 if (unlikely(r < 0)) {
831                         dm_integrity_io_error(ic, "crypto_shash_update", r);
832                         goto err;
833                 }
834         }
835
836         for (j = 0; j < ic->journal_section_entries; j++) {
837                 struct journal_entry *je = access_journal_entry(ic, section, j);
838
839                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
840                 if (unlikely(r < 0)) {
841                         dm_integrity_io_error(ic, "crypto_shash_update", r);
842                         goto err;
843                 }
844         }
845
846         size = crypto_shash_digestsize(ic->journal_mac);
847
848         if (likely(size <= JOURNAL_MAC_SIZE)) {
849                 r = crypto_shash_final(desc, result);
850                 if (unlikely(r < 0)) {
851                         dm_integrity_io_error(ic, "crypto_shash_final", r);
852                         goto err;
853                 }
854                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
855         } else {
856                 __u8 digest[HASH_MAX_DIGESTSIZE];
857
858                 if (WARN_ON(size > sizeof(digest))) {
859                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
860                         goto err;
861                 }
862                 r = crypto_shash_final(desc, digest);
863                 if (unlikely(r < 0)) {
864                         dm_integrity_io_error(ic, "crypto_shash_final", r);
865                         goto err;
866                 }
867                 memcpy(result, digest, JOURNAL_MAC_SIZE);
868         }
869
870         return;
871 err:
872         memset(result, 0, JOURNAL_MAC_SIZE);
873 }
874
875 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
876 {
877         __u8 result[JOURNAL_MAC_SIZE];
878         unsigned int j;
879
880         if (!ic->journal_mac)
881                 return;
882
883         section_mac(ic, section, result);
884
885         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
886                 struct journal_sector *js = access_journal(ic, section, j);
887
888                 if (likely(wr))
889                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
890                 else {
891                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
892                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
893                                 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
894                         }
895                 }
896         }
897 }
898
899 static void complete_journal_op(void *context)
900 {
901         struct journal_completion *comp = context;
902
903         BUG_ON(!atomic_read(&comp->in_flight));
904         if (likely(atomic_dec_and_test(&comp->in_flight)))
905                 complete(&comp->comp);
906 }
907
908 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
909                         unsigned int n_sections, struct journal_completion *comp)
910 {
911         struct async_submit_ctl submit;
912         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
913         unsigned int pl_index, pl_offset, section_index;
914         struct page_list *source_pl, *target_pl;
915
916         if (likely(encrypt)) {
917                 source_pl = ic->journal;
918                 target_pl = ic->journal_io;
919         } else {
920                 source_pl = ic->journal_io;
921                 target_pl = ic->journal;
922         }
923
924         page_list_location(ic, section, 0, &pl_index, &pl_offset);
925
926         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
927
928         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
929
930         section_index = pl_index;
931
932         do {
933                 size_t this_step;
934                 struct page *src_pages[2];
935                 struct page *dst_page;
936
937                 while (unlikely(pl_index == section_index)) {
938                         unsigned int dummy;
939
940                         if (likely(encrypt))
941                                 rw_section_mac(ic, section, true);
942                         section++;
943                         n_sections--;
944                         if (!n_sections)
945                                 break;
946                         page_list_location(ic, section, 0, &section_index, &dummy);
947                 }
948
949                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
950                 dst_page = target_pl[pl_index].page;
951                 src_pages[0] = source_pl[pl_index].page;
952                 src_pages[1] = ic->journal_xor[pl_index].page;
953
954                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
955
956                 pl_index++;
957                 pl_offset = 0;
958                 n_bytes -= this_step;
959         } while (n_bytes);
960
961         BUG_ON(n_sections);
962
963         async_tx_issue_pending_all();
964 }
965
966 static void complete_journal_encrypt(void *data, int err)
967 {
968         struct journal_completion *comp = data;
969
970         if (unlikely(err)) {
971                 if (likely(err == -EINPROGRESS)) {
972                         complete(&comp->ic->crypto_backoff);
973                         return;
974                 }
975                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
976         }
977         complete_journal_op(comp);
978 }
979
980 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
981 {
982         int r;
983
984         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
985                                       complete_journal_encrypt, comp);
986         if (likely(encrypt))
987                 r = crypto_skcipher_encrypt(req);
988         else
989                 r = crypto_skcipher_decrypt(req);
990         if (likely(!r))
991                 return false;
992         if (likely(r == -EINPROGRESS))
993                 return true;
994         if (likely(r == -EBUSY)) {
995                 wait_for_completion(&comp->ic->crypto_backoff);
996                 reinit_completion(&comp->ic->crypto_backoff);
997                 return true;
998         }
999         dm_integrity_io_error(comp->ic, "encrypt", r);
1000         return false;
1001 }
1002
1003 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1004                           unsigned int n_sections, struct journal_completion *comp)
1005 {
1006         struct scatterlist **source_sg;
1007         struct scatterlist **target_sg;
1008
1009         atomic_add(2, &comp->in_flight);
1010
1011         if (likely(encrypt)) {
1012                 source_sg = ic->journal_scatterlist;
1013                 target_sg = ic->journal_io_scatterlist;
1014         } else {
1015                 source_sg = ic->journal_io_scatterlist;
1016                 target_sg = ic->journal_scatterlist;
1017         }
1018
1019         do {
1020                 struct skcipher_request *req;
1021                 unsigned int ivsize;
1022                 char *iv;
1023
1024                 if (likely(encrypt))
1025                         rw_section_mac(ic, section, true);
1026
1027                 req = ic->sk_requests[section];
1028                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1029                 iv = req->iv;
1030
1031                 memcpy(iv, iv + ivsize, ivsize);
1032
1033                 req->src = source_sg[section];
1034                 req->dst = target_sg[section];
1035
1036                 if (unlikely(do_crypt(encrypt, req, comp)))
1037                         atomic_inc(&comp->in_flight);
1038
1039                 section++;
1040                 n_sections--;
1041         } while (n_sections);
1042
1043         atomic_dec(&comp->in_flight);
1044         complete_journal_op(comp);
1045 }
1046
1047 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1048                             unsigned int n_sections, struct journal_completion *comp)
1049 {
1050         if (ic->journal_xor)
1051                 return xor_journal(ic, encrypt, section, n_sections, comp);
1052         else
1053                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1054 }
1055
1056 static void complete_journal_io(unsigned long error, void *context)
1057 {
1058         struct journal_completion *comp = context;
1059
1060         if (unlikely(error != 0))
1061                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1062         complete_journal_op(comp);
1063 }
1064
1065 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1066                                unsigned int sector, unsigned int n_sectors,
1067                                struct journal_completion *comp)
1068 {
1069         struct dm_io_request io_req;
1070         struct dm_io_region io_loc;
1071         unsigned int pl_index, pl_offset;
1072         int r;
1073
1074         if (unlikely(dm_integrity_failed(ic))) {
1075                 if (comp)
1076                         complete_journal_io(-1UL, comp);
1077                 return;
1078         }
1079
1080         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1081         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1082
1083         io_req.bi_opf = opf;
1084         io_req.mem.type = DM_IO_PAGE_LIST;
1085         if (ic->journal_io)
1086                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1087         else
1088                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1089         io_req.mem.offset = pl_offset;
1090         if (likely(comp != NULL)) {
1091                 io_req.notify.fn = complete_journal_io;
1092                 io_req.notify.context = comp;
1093         } else {
1094                 io_req.notify.fn = NULL;
1095         }
1096         io_req.client = ic->io;
1097         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1098         io_loc.sector = ic->start + SB_SECTORS + sector;
1099         io_loc.count = n_sectors;
1100
1101         r = dm_io(&io_req, 1, &io_loc, NULL);
1102         if (unlikely(r)) {
1103                 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1104                                       "reading journal" : "writing journal", r);
1105                 if (comp) {
1106                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1107                         complete_journal_io(-1UL, comp);
1108                 }
1109         }
1110 }
1111
1112 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1113                        unsigned int section, unsigned int n_sections,
1114                        struct journal_completion *comp)
1115 {
1116         unsigned int sector, n_sectors;
1117
1118         sector = section * ic->journal_section_sectors;
1119         n_sectors = n_sections * ic->journal_section_sectors;
1120
1121         rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1122 }
1123
1124 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1125 {
1126         struct journal_completion io_comp;
1127         struct journal_completion crypt_comp_1;
1128         struct journal_completion crypt_comp_2;
1129         unsigned int i;
1130
1131         io_comp.ic = ic;
1132         init_completion(&io_comp.comp);
1133
1134         if (commit_start + commit_sections <= ic->journal_sections) {
1135                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1136                 if (ic->journal_io) {
1137                         crypt_comp_1.ic = ic;
1138                         init_completion(&crypt_comp_1.comp);
1139                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1140                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1141                         wait_for_completion_io(&crypt_comp_1.comp);
1142                 } else {
1143                         for (i = 0; i < commit_sections; i++)
1144                                 rw_section_mac(ic, commit_start + i, true);
1145                 }
1146                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1147                            commit_sections, &io_comp);
1148         } else {
1149                 unsigned int to_end;
1150
1151                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1152                 to_end = ic->journal_sections - commit_start;
1153                 if (ic->journal_io) {
1154                         crypt_comp_1.ic = ic;
1155                         init_completion(&crypt_comp_1.comp);
1156                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1157                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1158                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1159                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1160                                            commit_start, to_end, &io_comp);
1161                                 reinit_completion(&crypt_comp_1.comp);
1162                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1163                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1164                                 wait_for_completion_io(&crypt_comp_1.comp);
1165                         } else {
1166                                 crypt_comp_2.ic = ic;
1167                                 init_completion(&crypt_comp_2.comp);
1168                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1169                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1170                                 wait_for_completion_io(&crypt_comp_1.comp);
1171                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1172                                 wait_for_completion_io(&crypt_comp_2.comp);
1173                         }
1174                 } else {
1175                         for (i = 0; i < to_end; i++)
1176                                 rw_section_mac(ic, commit_start + i, true);
1177                         rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1178                         for (i = 0; i < commit_sections - to_end; i++)
1179                                 rw_section_mac(ic, i, true);
1180                 }
1181                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1182         }
1183
1184         wait_for_completion_io(&io_comp.comp);
1185 }
1186
1187 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1188                               unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1189 {
1190         struct dm_io_request io_req;
1191         struct dm_io_region io_loc;
1192         int r;
1193         unsigned int sector, pl_index, pl_offset;
1194
1195         BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1196
1197         if (unlikely(dm_integrity_failed(ic))) {
1198                 fn(-1UL, data);
1199                 return;
1200         }
1201
1202         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1203
1204         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1205         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1206
1207         io_req.bi_opf = REQ_OP_WRITE;
1208         io_req.mem.type = DM_IO_PAGE_LIST;
1209         io_req.mem.ptr.pl = &ic->journal[pl_index];
1210         io_req.mem.offset = pl_offset;
1211         io_req.notify.fn = fn;
1212         io_req.notify.context = data;
1213         io_req.client = ic->io;
1214         io_loc.bdev = ic->dev->bdev;
1215         io_loc.sector = target;
1216         io_loc.count = n_sectors;
1217
1218         r = dm_io(&io_req, 1, &io_loc, NULL);
1219         if (unlikely(r)) {
1220                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1221                 fn(-1UL, data);
1222         }
1223 }
1224
1225 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1226 {
1227         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1228                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1229 }
1230
1231 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1232 {
1233         struct rb_node **n = &ic->in_progress.rb_node;
1234         struct rb_node *parent;
1235
1236         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1237
1238         if (likely(check_waiting)) {
1239                 struct dm_integrity_range *range;
1240
1241                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1242                         if (unlikely(ranges_overlap(range, new_range)))
1243                                 return false;
1244                 }
1245         }
1246
1247         parent = NULL;
1248
1249         while (*n) {
1250                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1251
1252                 parent = *n;
1253                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1254                         n = &range->node.rb_left;
1255                 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1256                         n = &range->node.rb_right;
1257                 else
1258                         return false;
1259         }
1260
1261         rb_link_node(&new_range->node, parent, n);
1262         rb_insert_color(&new_range->node, &ic->in_progress);
1263
1264         return true;
1265 }
1266
1267 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1268 {
1269         rb_erase(&range->node, &ic->in_progress);
1270         while (unlikely(!list_empty(&ic->wait_list))) {
1271                 struct dm_integrity_range *last_range =
1272                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1273                 struct task_struct *last_range_task;
1274
1275                 last_range_task = last_range->task;
1276                 list_del(&last_range->wait_entry);
1277                 if (!add_new_range(ic, last_range, false)) {
1278                         last_range->task = last_range_task;
1279                         list_add(&last_range->wait_entry, &ic->wait_list);
1280                         break;
1281                 }
1282                 last_range->waiting = false;
1283                 wake_up_process(last_range_task);
1284         }
1285 }
1286
1287 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1288 {
1289         unsigned long flags;
1290
1291         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1292         remove_range_unlocked(ic, range);
1293         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1294 }
1295
1296 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1297 {
1298         new_range->waiting = true;
1299         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1300         new_range->task = current;
1301         do {
1302                 __set_current_state(TASK_UNINTERRUPTIBLE);
1303                 spin_unlock_irq(&ic->endio_wait.lock);
1304                 io_schedule();
1305                 spin_lock_irq(&ic->endio_wait.lock);
1306         } while (unlikely(new_range->waiting));
1307 }
1308
1309 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1310 {
1311         if (unlikely(!add_new_range(ic, new_range, true)))
1312                 wait_and_add_new_range(ic, new_range);
1313 }
1314
1315 static void init_journal_node(struct journal_node *node)
1316 {
1317         RB_CLEAR_NODE(&node->node);
1318         node->sector = (sector_t)-1;
1319 }
1320
1321 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1322 {
1323         struct rb_node **link;
1324         struct rb_node *parent;
1325
1326         node->sector = sector;
1327         BUG_ON(!RB_EMPTY_NODE(&node->node));
1328
1329         link = &ic->journal_tree_root.rb_node;
1330         parent = NULL;
1331
1332         while (*link) {
1333                 struct journal_node *j;
1334
1335                 parent = *link;
1336                 j = container_of(parent, struct journal_node, node);
1337                 if (sector < j->sector)
1338                         link = &j->node.rb_left;
1339                 else
1340                         link = &j->node.rb_right;
1341         }
1342
1343         rb_link_node(&node->node, parent, link);
1344         rb_insert_color(&node->node, &ic->journal_tree_root);
1345 }
1346
1347 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1348 {
1349         BUG_ON(RB_EMPTY_NODE(&node->node));
1350         rb_erase(&node->node, &ic->journal_tree_root);
1351         init_journal_node(node);
1352 }
1353
1354 #define NOT_FOUND       (-1U)
1355
1356 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1357 {
1358         struct rb_node *n = ic->journal_tree_root.rb_node;
1359         unsigned int found = NOT_FOUND;
1360
1361         *next_sector = (sector_t)-1;
1362         while (n) {
1363                 struct journal_node *j = container_of(n, struct journal_node, node);
1364
1365                 if (sector == j->sector)
1366                         found = j - ic->journal_tree;
1367
1368                 if (sector < j->sector) {
1369                         *next_sector = j->sector;
1370                         n = j->node.rb_left;
1371                 } else
1372                         n = j->node.rb_right;
1373         }
1374
1375         return found;
1376 }
1377
1378 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1379 {
1380         struct journal_node *node, *next_node;
1381         struct rb_node *next;
1382
1383         if (unlikely(pos >= ic->journal_entries))
1384                 return false;
1385         node = &ic->journal_tree[pos];
1386         if (unlikely(RB_EMPTY_NODE(&node->node)))
1387                 return false;
1388         if (unlikely(node->sector != sector))
1389                 return false;
1390
1391         next = rb_next(&node->node);
1392         if (unlikely(!next))
1393                 return true;
1394
1395         next_node = container_of(next, struct journal_node, node);
1396         return next_node->sector != sector;
1397 }
1398
1399 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1400 {
1401         struct rb_node *next;
1402         struct journal_node *next_node;
1403         unsigned int next_section;
1404
1405         BUG_ON(RB_EMPTY_NODE(&node->node));
1406
1407         next = rb_next(&node->node);
1408         if (unlikely(!next))
1409                 return false;
1410
1411         next_node = container_of(next, struct journal_node, node);
1412
1413         if (next_node->sector != node->sector)
1414                 return false;
1415
1416         next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1417         if (next_section >= ic->committed_section &&
1418             next_section < ic->committed_section + ic->n_committed_sections)
1419                 return true;
1420         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1421                 return true;
1422
1423         return false;
1424 }
1425
1426 #define TAG_READ        0
1427 #define TAG_WRITE       1
1428 #define TAG_CMP         2
1429
1430 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1431                                unsigned int *metadata_offset, unsigned int total_size, int op)
1432 {
1433 #define MAY_BE_FILLER           1
1434 #define MAY_BE_HASH             2
1435         unsigned int hash_offset = 0;
1436         unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1437
1438         do {
1439                 unsigned char *data, *dp;
1440                 struct dm_buffer *b;
1441                 unsigned int to_copy;
1442                 int r;
1443
1444                 r = dm_integrity_failed(ic);
1445                 if (unlikely(r))
1446                         return r;
1447
1448                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1449                 if (IS_ERR(data))
1450                         return PTR_ERR(data);
1451
1452                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1453                 dp = data + *metadata_offset;
1454                 if (op == TAG_READ) {
1455                         memcpy(tag, dp, to_copy);
1456                 } else if (op == TAG_WRITE) {
1457                         if (memcmp(dp, tag, to_copy)) {
1458                                 memcpy(dp, tag, to_copy);
1459                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1460                         }
1461                 } else {
1462                         /* e.g.: op == TAG_CMP */
1463
1464                         if (likely(is_power_of_2(ic->tag_size))) {
1465                                 if (unlikely(memcmp(dp, tag, to_copy)))
1466                                         if (unlikely(!ic->discard) ||
1467                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1468                                                 goto thorough_test;
1469                                 }
1470                         } else {
1471                                 unsigned int i, ts;
1472 thorough_test:
1473                                 ts = total_size;
1474
1475                                 for (i = 0; i < to_copy; i++, ts--) {
1476                                         if (unlikely(dp[i] != tag[i]))
1477                                                 may_be &= ~MAY_BE_HASH;
1478                                         if (likely(dp[i] != DISCARD_FILLER))
1479                                                 may_be &= ~MAY_BE_FILLER;
1480                                         hash_offset++;
1481                                         if (unlikely(hash_offset == ic->tag_size)) {
1482                                                 if (unlikely(!may_be)) {
1483                                                         dm_bufio_release(b);
1484                                                         return ts;
1485                                                 }
1486                                                 hash_offset = 0;
1487                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1488                                         }
1489                                 }
1490                         }
1491                 }
1492                 dm_bufio_release(b);
1493
1494                 tag += to_copy;
1495                 *metadata_offset += to_copy;
1496                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1497                         (*metadata_block)++;
1498                         *metadata_offset = 0;
1499                 }
1500
1501                 if (unlikely(!is_power_of_2(ic->tag_size)))
1502                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1503
1504                 total_size -= to_copy;
1505         } while (unlikely(total_size));
1506
1507         return 0;
1508 #undef MAY_BE_FILLER
1509 #undef MAY_BE_HASH
1510 }
1511
1512 struct flush_request {
1513         struct dm_io_request io_req;
1514         struct dm_io_region io_reg;
1515         struct dm_integrity_c *ic;
1516         struct completion comp;
1517 };
1518
1519 static void flush_notify(unsigned long error, void *fr_)
1520 {
1521         struct flush_request *fr = fr_;
1522
1523         if (unlikely(error != 0))
1524                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1525         complete(&fr->comp);
1526 }
1527
1528 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1529 {
1530         int r;
1531         struct flush_request fr;
1532
1533         if (!ic->meta_dev)
1534                 flush_data = false;
1535         if (flush_data) {
1536                 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1537                 fr.io_req.mem.type = DM_IO_KMEM,
1538                 fr.io_req.mem.ptr.addr = NULL,
1539                 fr.io_req.notify.fn = flush_notify,
1540                 fr.io_req.notify.context = &fr;
1541                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1542                 fr.io_reg.bdev = ic->dev->bdev,
1543                 fr.io_reg.sector = 0,
1544                 fr.io_reg.count = 0,
1545                 fr.ic = ic;
1546                 init_completion(&fr.comp);
1547                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1548                 BUG_ON(r);
1549         }
1550
1551         r = dm_bufio_write_dirty_buffers(ic->bufio);
1552         if (unlikely(r))
1553                 dm_integrity_io_error(ic, "writing tags", r);
1554
1555         if (flush_data)
1556                 wait_for_completion(&fr.comp);
1557 }
1558
1559 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1560 {
1561         DECLARE_WAITQUEUE(wait, current);
1562
1563         __add_wait_queue(&ic->endio_wait, &wait);
1564         __set_current_state(TASK_UNINTERRUPTIBLE);
1565         spin_unlock_irq(&ic->endio_wait.lock);
1566         io_schedule();
1567         spin_lock_irq(&ic->endio_wait.lock);
1568         __remove_wait_queue(&ic->endio_wait, &wait);
1569 }
1570
1571 static void autocommit_fn(struct timer_list *t)
1572 {
1573         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1574
1575         if (likely(!dm_integrity_failed(ic)))
1576                 queue_work(ic->commit_wq, &ic->commit_work);
1577 }
1578
1579 static void schedule_autocommit(struct dm_integrity_c *ic)
1580 {
1581         if (!timer_pending(&ic->autocommit_timer))
1582                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1583 }
1584
1585 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1586 {
1587         struct bio *bio;
1588         unsigned long flags;
1589
1590         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1591         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1592         bio_list_add(&ic->flush_bio_list, bio);
1593         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1594
1595         queue_work(ic->commit_wq, &ic->commit_work);
1596 }
1597
1598 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1599 {
1600         int r;
1601
1602         r = dm_integrity_failed(ic);
1603         if (unlikely(r) && !bio->bi_status)
1604                 bio->bi_status = errno_to_blk_status(r);
1605         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1606                 unsigned long flags;
1607
1608                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1609                 bio_list_add(&ic->synchronous_bios, bio);
1610                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1611                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1612                 return;
1613         }
1614         bio_endio(bio);
1615 }
1616
1617 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1618 {
1619         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1620
1621         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1622                 submit_flush_bio(ic, dio);
1623         else
1624                 do_endio(ic, bio);
1625 }
1626
1627 static void dec_in_flight(struct dm_integrity_io *dio)
1628 {
1629         if (atomic_dec_and_test(&dio->in_flight)) {
1630                 struct dm_integrity_c *ic = dio->ic;
1631                 struct bio *bio;
1632
1633                 remove_range(ic, &dio->range);
1634
1635                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1636                         schedule_autocommit(ic);
1637
1638                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1639                 if (unlikely(dio->bi_status) && !bio->bi_status)
1640                         bio->bi_status = dio->bi_status;
1641                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1642                         dio->range.logical_sector += dio->range.n_sectors;
1643                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1644                         INIT_WORK(&dio->work, integrity_bio_wait);
1645                         queue_work(ic->offload_wq, &dio->work);
1646                         return;
1647                 }
1648                 do_endio_flush(ic, dio);
1649         }
1650 }
1651
1652 static void integrity_end_io(struct bio *bio)
1653 {
1654         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1655
1656         dm_bio_restore(&dio->bio_details, bio);
1657         if (bio->bi_integrity)
1658                 bio->bi_opf |= REQ_INTEGRITY;
1659
1660         if (dio->completion)
1661                 complete(dio->completion);
1662
1663         dec_in_flight(dio);
1664 }
1665
1666 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1667                                       const char *data, char *result)
1668 {
1669         __le64 sector_le = cpu_to_le64(sector);
1670         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1671         int r;
1672         unsigned int digest_size;
1673
1674         req->tfm = ic->internal_hash;
1675
1676         r = crypto_shash_init(req);
1677         if (unlikely(r < 0)) {
1678                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1679                 goto failed;
1680         }
1681
1682         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1683                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1684                 if (unlikely(r < 0)) {
1685                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1686                         goto failed;
1687                 }
1688         }
1689
1690         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1691         if (unlikely(r < 0)) {
1692                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1693                 goto failed;
1694         }
1695
1696         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1697         if (unlikely(r < 0)) {
1698                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1699                 goto failed;
1700         }
1701
1702         r = crypto_shash_final(req, result);
1703         if (unlikely(r < 0)) {
1704                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1705                 goto failed;
1706         }
1707
1708         digest_size = crypto_shash_digestsize(ic->internal_hash);
1709         if (unlikely(digest_size < ic->tag_size))
1710                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1711
1712         return;
1713
1714 failed:
1715         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1716         get_random_bytes(result, ic->tag_size);
1717 }
1718
1719 static void integrity_metadata(struct work_struct *w)
1720 {
1721         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1722         struct dm_integrity_c *ic = dio->ic;
1723
1724         int r;
1725
1726         if (ic->internal_hash) {
1727                 struct bvec_iter iter;
1728                 struct bio_vec bv;
1729                 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1730                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1731                 char *checksums;
1732                 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1733                 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1734                 sector_t sector;
1735                 unsigned int sectors_to_process;
1736
1737                 if (unlikely(ic->mode == 'R'))
1738                         goto skip_io;
1739
1740                 if (likely(dio->op != REQ_OP_DISCARD))
1741                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1742                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1743                 else
1744                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1745                 if (!checksums) {
1746                         checksums = checksums_onstack;
1747                         if (WARN_ON(extra_space &&
1748                                     digest_size > sizeof(checksums_onstack))) {
1749                                 r = -EINVAL;
1750                                 goto error;
1751                         }
1752                 }
1753
1754                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1755                         unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1756                         unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1757                         unsigned int max_blocks = max_size / ic->tag_size;
1758
1759                         memset(checksums, DISCARD_FILLER, max_size);
1760
1761                         while (bi_size) {
1762                                 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1763
1764                                 this_step_blocks = min(this_step_blocks, max_blocks);
1765                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1766                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1767                                 if (unlikely(r)) {
1768                                         if (likely(checksums != checksums_onstack))
1769                                                 kfree(checksums);
1770                                         goto error;
1771                                 }
1772
1773                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1774                         }
1775
1776                         if (likely(checksums != checksums_onstack))
1777                                 kfree(checksums);
1778                         goto skip_io;
1779                 }
1780
1781                 sector = dio->range.logical_sector;
1782                 sectors_to_process = dio->range.n_sectors;
1783
1784                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1785                         unsigned int pos;
1786                         char *mem, *checksums_ptr;
1787
1788 again:
1789                         mem = bvec_kmap_local(&bv);
1790                         pos = 0;
1791                         checksums_ptr = checksums;
1792                         do {
1793                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1794                                 checksums_ptr += ic->tag_size;
1795                                 sectors_to_process -= ic->sectors_per_block;
1796                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1797                                 sector += ic->sectors_per_block;
1798                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1799                         kunmap_local(mem);
1800
1801                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1802                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1803                         if (unlikely(r)) {
1804                                 if (r > 0) {
1805                                         sector_t s;
1806
1807                                         s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1808                                         DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1809                                                     bio->bi_bdev, s);
1810                                         r = -EILSEQ;
1811                                         atomic64_inc(&ic->number_of_mismatches);
1812                                         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1813                                                          bio, s, 0);
1814                                 }
1815                                 if (likely(checksums != checksums_onstack))
1816                                         kfree(checksums);
1817                                 goto error;
1818                         }
1819
1820                         if (!sectors_to_process)
1821                                 break;
1822
1823                         if (unlikely(pos < bv.bv_len)) {
1824                                 bv.bv_offset += pos;
1825                                 bv.bv_len -= pos;
1826                                 goto again;
1827                         }
1828                 }
1829
1830                 if (likely(checksums != checksums_onstack))
1831                         kfree(checksums);
1832         } else {
1833                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1834
1835                 if (bip) {
1836                         struct bio_vec biv;
1837                         struct bvec_iter iter;
1838                         unsigned int data_to_process = dio->range.n_sectors;
1839
1840                         sector_to_block(ic, data_to_process);
1841                         data_to_process *= ic->tag_size;
1842
1843                         bip_for_each_vec(biv, bip, iter) {
1844                                 unsigned char *tag;
1845                                 unsigned int this_len;
1846
1847                                 BUG_ON(PageHighMem(biv.bv_page));
1848                                 tag = bvec_virt(&biv);
1849                                 this_len = min(biv.bv_len, data_to_process);
1850                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1851                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1852                                 if (unlikely(r))
1853                                         goto error;
1854                                 data_to_process -= this_len;
1855                                 if (!data_to_process)
1856                                         break;
1857                         }
1858                 }
1859         }
1860 skip_io:
1861         dec_in_flight(dio);
1862         return;
1863 error:
1864         dio->bi_status = errno_to_blk_status(r);
1865         dec_in_flight(dio);
1866 }
1867
1868 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1869 {
1870         struct dm_integrity_c *ic = ti->private;
1871         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1872         struct bio_integrity_payload *bip;
1873
1874         sector_t area, offset;
1875
1876         dio->ic = ic;
1877         dio->bi_status = 0;
1878         dio->op = bio_op(bio);
1879
1880         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1881                 if (ti->max_io_len) {
1882                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1883                         unsigned int log2_max_io_len = __fls(ti->max_io_len);
1884                         sector_t start_boundary = sec >> log2_max_io_len;
1885                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1886
1887                         if (start_boundary < end_boundary) {
1888                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1889
1890                                 dm_accept_partial_bio(bio, len);
1891                         }
1892                 }
1893         }
1894
1895         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1896                 submit_flush_bio(ic, dio);
1897                 return DM_MAPIO_SUBMITTED;
1898         }
1899
1900         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1901         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1902         if (unlikely(dio->fua)) {
1903                 /*
1904                  * Don't pass down the FUA flag because we have to flush
1905                  * disk cache anyway.
1906                  */
1907                 bio->bi_opf &= ~REQ_FUA;
1908         }
1909         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1910                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1911                       dio->range.logical_sector, bio_sectors(bio),
1912                       ic->provided_data_sectors);
1913                 return DM_MAPIO_KILL;
1914         }
1915         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1916                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1917                       ic->sectors_per_block,
1918                       dio->range.logical_sector, bio_sectors(bio));
1919                 return DM_MAPIO_KILL;
1920         }
1921
1922         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1923                 struct bvec_iter iter;
1924                 struct bio_vec bv;
1925
1926                 bio_for_each_segment(bv, bio, iter) {
1927                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1928                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1929                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1930                                 return DM_MAPIO_KILL;
1931                         }
1932                 }
1933         }
1934
1935         bip = bio_integrity(bio);
1936         if (!ic->internal_hash) {
1937                 if (bip) {
1938                         unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1939
1940                         if (ic->log2_tag_size >= 0)
1941                                 wanted_tag_size <<= ic->log2_tag_size;
1942                         else
1943                                 wanted_tag_size *= ic->tag_size;
1944                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1945                                 DMERR("Invalid integrity data size %u, expected %u",
1946                                       bip->bip_iter.bi_size, wanted_tag_size);
1947                                 return DM_MAPIO_KILL;
1948                         }
1949                 }
1950         } else {
1951                 if (unlikely(bip != NULL)) {
1952                         DMERR("Unexpected integrity data when using internal hash");
1953                         return DM_MAPIO_KILL;
1954                 }
1955         }
1956
1957         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1958                 return DM_MAPIO_KILL;
1959
1960         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1961         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1962         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1963
1964         dm_integrity_map_continue(dio, true);
1965         return DM_MAPIO_SUBMITTED;
1966 }
1967
1968 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1969                                  unsigned int journal_section, unsigned int journal_entry)
1970 {
1971         struct dm_integrity_c *ic = dio->ic;
1972         sector_t logical_sector;
1973         unsigned int n_sectors;
1974
1975         logical_sector = dio->range.logical_sector;
1976         n_sectors = dio->range.n_sectors;
1977         do {
1978                 struct bio_vec bv = bio_iovec(bio);
1979                 char *mem;
1980
1981                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1982                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1983                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1984                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1985 retry_kmap:
1986                 mem = kmap_local_page(bv.bv_page);
1987                 if (likely(dio->op == REQ_OP_WRITE))
1988                         flush_dcache_page(bv.bv_page);
1989
1990                 do {
1991                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1992
1993                         if (unlikely(dio->op == REQ_OP_READ)) {
1994                                 struct journal_sector *js;
1995                                 char *mem_ptr;
1996                                 unsigned int s;
1997
1998                                 if (unlikely(journal_entry_is_inprogress(je))) {
1999                                         flush_dcache_page(bv.bv_page);
2000                                         kunmap_local(mem);
2001
2002                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2003                                         goto retry_kmap;
2004                                 }
2005                                 smp_rmb();
2006                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2007                                 js = access_journal_data(ic, journal_section, journal_entry);
2008                                 mem_ptr = mem + bv.bv_offset;
2009                                 s = 0;
2010                                 do {
2011                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2012                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2013                                         js++;
2014                                         mem_ptr += 1 << SECTOR_SHIFT;
2015                                 } while (++s < ic->sectors_per_block);
2016 #ifdef INTERNAL_VERIFY
2017                                 if (ic->internal_hash) {
2018                                         char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2019
2020                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2021                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2022                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2023                                                             logical_sector);
2024                                                 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2025                                                                  bio, logical_sector, 0);
2026                                         }
2027                                 }
2028 #endif
2029                         }
2030
2031                         if (!ic->internal_hash) {
2032                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2033                                 unsigned int tag_todo = ic->tag_size;
2034                                 char *tag_ptr = journal_entry_tag(ic, je);
2035
2036                                 if (bip) {
2037                                         do {
2038                                                 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2039                                                 unsigned int tag_now = min(biv.bv_len, tag_todo);
2040                                                 char *tag_addr;
2041
2042                                                 BUG_ON(PageHighMem(biv.bv_page));
2043                                                 tag_addr = bvec_virt(&biv);
2044                                                 if (likely(dio->op == REQ_OP_WRITE))
2045                                                         memcpy(tag_ptr, tag_addr, tag_now);
2046                                                 else
2047                                                         memcpy(tag_addr, tag_ptr, tag_now);
2048                                                 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2049                                                 tag_ptr += tag_now;
2050                                                 tag_todo -= tag_now;
2051                                         } while (unlikely(tag_todo));
2052                                 } else if (likely(dio->op == REQ_OP_WRITE))
2053                                         memset(tag_ptr, 0, tag_todo);
2054                         }
2055
2056                         if (likely(dio->op == REQ_OP_WRITE)) {
2057                                 struct journal_sector *js;
2058                                 unsigned int s;
2059
2060                                 js = access_journal_data(ic, journal_section, journal_entry);
2061                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2062
2063                                 s = 0;
2064                                 do {
2065                                         je->last_bytes[s] = js[s].commit_id;
2066                                 } while (++s < ic->sectors_per_block);
2067
2068                                 if (ic->internal_hash) {
2069                                         unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2070
2071                                         if (unlikely(digest_size > ic->tag_size)) {
2072                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2073
2074                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2075                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2076                                         } else
2077                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2078                                 }
2079
2080                                 journal_entry_set_sector(je, logical_sector);
2081                         }
2082                         logical_sector += ic->sectors_per_block;
2083
2084                         journal_entry++;
2085                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2086                                 journal_entry = 0;
2087                                 journal_section++;
2088                                 wraparound_section(ic, &journal_section);
2089                         }
2090
2091                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2092                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2093
2094                 if (unlikely(dio->op == REQ_OP_READ))
2095                         flush_dcache_page(bv.bv_page);
2096                 kunmap_local(mem);
2097         } while (n_sectors);
2098
2099         if (likely(dio->op == REQ_OP_WRITE)) {
2100                 smp_mb();
2101                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2102                         wake_up(&ic->copy_to_journal_wait);
2103                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2104                         queue_work(ic->commit_wq, &ic->commit_work);
2105                 else
2106                         schedule_autocommit(ic);
2107         } else
2108                 remove_range(ic, &dio->range);
2109
2110         if (unlikely(bio->bi_iter.bi_size)) {
2111                 sector_t area, offset;
2112
2113                 dio->range.logical_sector = logical_sector;
2114                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2115                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2116                 return true;
2117         }
2118
2119         return false;
2120 }
2121
2122 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2123 {
2124         struct dm_integrity_c *ic = dio->ic;
2125         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2126         unsigned int journal_section, journal_entry;
2127         unsigned int journal_read_pos;
2128         struct completion read_comp;
2129         bool discard_retried = false;
2130         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2131
2132         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2133                 need_sync_io = true;
2134
2135         if (need_sync_io && from_map) {
2136                 INIT_WORK(&dio->work, integrity_bio_wait);
2137                 queue_work(ic->offload_wq, &dio->work);
2138                 return;
2139         }
2140
2141 lock_retry:
2142         spin_lock_irq(&ic->endio_wait.lock);
2143 retry:
2144         if (unlikely(dm_integrity_failed(ic))) {
2145                 spin_unlock_irq(&ic->endio_wait.lock);
2146                 do_endio(ic, bio);
2147                 return;
2148         }
2149         dio->range.n_sectors = bio_sectors(bio);
2150         journal_read_pos = NOT_FOUND;
2151         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2152                 if (dio->op == REQ_OP_WRITE) {
2153                         unsigned int next_entry, i, pos;
2154                         unsigned int ws, we, range_sectors;
2155
2156                         dio->range.n_sectors = min(dio->range.n_sectors,
2157                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2158                         if (unlikely(!dio->range.n_sectors)) {
2159                                 if (from_map)
2160                                         goto offload_to_thread;
2161                                 sleep_on_endio_wait(ic);
2162                                 goto retry;
2163                         }
2164                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2165                         ic->free_sectors -= range_sectors;
2166                         journal_section = ic->free_section;
2167                         journal_entry = ic->free_section_entry;
2168
2169                         next_entry = ic->free_section_entry + range_sectors;
2170                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2171                         ic->free_section += next_entry / ic->journal_section_entries;
2172                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2173                         wraparound_section(ic, &ic->free_section);
2174
2175                         pos = journal_section * ic->journal_section_entries + journal_entry;
2176                         ws = journal_section;
2177                         we = journal_entry;
2178                         i = 0;
2179                         do {
2180                                 struct journal_entry *je;
2181
2182                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2183                                 pos++;
2184                                 if (unlikely(pos >= ic->journal_entries))
2185                                         pos = 0;
2186
2187                                 je = access_journal_entry(ic, ws, we);
2188                                 BUG_ON(!journal_entry_is_unused(je));
2189                                 journal_entry_set_inprogress(je);
2190                                 we++;
2191                                 if (unlikely(we == ic->journal_section_entries)) {
2192                                         we = 0;
2193                                         ws++;
2194                                         wraparound_section(ic, &ws);
2195                                 }
2196                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2197
2198                         spin_unlock_irq(&ic->endio_wait.lock);
2199                         goto journal_read_write;
2200                 } else {
2201                         sector_t next_sector;
2202
2203                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2204                         if (likely(journal_read_pos == NOT_FOUND)) {
2205                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2206                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2207                         } else {
2208                                 unsigned int i;
2209                                 unsigned int jp = journal_read_pos + 1;
2210
2211                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2212                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2213                                                 break;
2214                                 }
2215                                 dio->range.n_sectors = i;
2216                         }
2217                 }
2218         }
2219         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2220                 /*
2221                  * We must not sleep in the request routine because it could
2222                  * stall bios on current->bio_list.
2223                  * So, we offload the bio to a workqueue if we have to sleep.
2224                  */
2225                 if (from_map) {
2226 offload_to_thread:
2227                         spin_unlock_irq(&ic->endio_wait.lock);
2228                         INIT_WORK(&dio->work, integrity_bio_wait);
2229                         queue_work(ic->wait_wq, &dio->work);
2230                         return;
2231                 }
2232                 if (journal_read_pos != NOT_FOUND)
2233                         dio->range.n_sectors = ic->sectors_per_block;
2234                 wait_and_add_new_range(ic, &dio->range);
2235                 /*
2236                  * wait_and_add_new_range drops the spinlock, so the journal
2237                  * may have been changed arbitrarily. We need to recheck.
2238                  * To simplify the code, we restrict I/O size to just one block.
2239                  */
2240                 if (journal_read_pos != NOT_FOUND) {
2241                         sector_t next_sector;
2242                         unsigned int new_pos;
2243
2244                         new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2245                         if (unlikely(new_pos != journal_read_pos)) {
2246                                 remove_range_unlocked(ic, &dio->range);
2247                                 goto retry;
2248                         }
2249                 }
2250         }
2251         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2252                 sector_t next_sector;
2253                 unsigned int new_pos;
2254
2255                 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2256                 if (unlikely(new_pos != NOT_FOUND) ||
2257                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2258                         remove_range_unlocked(ic, &dio->range);
2259                         spin_unlock_irq(&ic->endio_wait.lock);
2260                         queue_work(ic->commit_wq, &ic->commit_work);
2261                         flush_workqueue(ic->commit_wq);
2262                         queue_work(ic->writer_wq, &ic->writer_work);
2263                         flush_workqueue(ic->writer_wq);
2264                         discard_retried = true;
2265                         goto lock_retry;
2266                 }
2267         }
2268         spin_unlock_irq(&ic->endio_wait.lock);
2269
2270         if (unlikely(journal_read_pos != NOT_FOUND)) {
2271                 journal_section = journal_read_pos / ic->journal_section_entries;
2272                 journal_entry = journal_read_pos % ic->journal_section_entries;
2273                 goto journal_read_write;
2274         }
2275
2276         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2277                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2278                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2279                         struct bitmap_block_status *bbs;
2280
2281                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2282                         spin_lock(&bbs->bio_queue_lock);
2283                         bio_list_add(&bbs->bio_queue, bio);
2284                         spin_unlock(&bbs->bio_queue_lock);
2285                         queue_work(ic->writer_wq, &bbs->work);
2286                         return;
2287                 }
2288         }
2289
2290         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2291
2292         if (need_sync_io) {
2293                 init_completion(&read_comp);
2294                 dio->completion = &read_comp;
2295         } else
2296                 dio->completion = NULL;
2297
2298         dm_bio_record(&dio->bio_details, bio);
2299         bio_set_dev(bio, ic->dev->bdev);
2300         bio->bi_integrity = NULL;
2301         bio->bi_opf &= ~REQ_INTEGRITY;
2302         bio->bi_end_io = integrity_end_io;
2303         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2304
2305         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2306                 integrity_metadata(&dio->work);
2307                 dm_integrity_flush_buffers(ic, false);
2308
2309                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2310                 dio->completion = NULL;
2311
2312                 submit_bio_noacct(bio);
2313
2314                 return;
2315         }
2316
2317         submit_bio_noacct(bio);
2318
2319         if (need_sync_io) {
2320                 wait_for_completion_io(&read_comp);
2321                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2322                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2323                         goto skip_check;
2324                 if (ic->mode == 'B') {
2325                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2326                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2327                                 goto skip_check;
2328                 }
2329
2330                 if (likely(!bio->bi_status))
2331                         integrity_metadata(&dio->work);
2332                 else
2333 skip_check:
2334                         dec_in_flight(dio);
2335         } else {
2336                 INIT_WORK(&dio->work, integrity_metadata);
2337                 queue_work(ic->metadata_wq, &dio->work);
2338         }
2339
2340         return;
2341
2342 journal_read_write:
2343         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2344                 goto lock_retry;
2345
2346         do_endio_flush(ic, dio);
2347 }
2348
2349
2350 static void integrity_bio_wait(struct work_struct *w)
2351 {
2352         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2353
2354         dm_integrity_map_continue(dio, false);
2355 }
2356
2357 static void pad_uncommitted(struct dm_integrity_c *ic)
2358 {
2359         if (ic->free_section_entry) {
2360                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2361                 ic->free_section_entry = 0;
2362                 ic->free_section++;
2363                 wraparound_section(ic, &ic->free_section);
2364                 ic->n_uncommitted_sections++;
2365         }
2366         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2367                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2368                     ic->journal_section_entries + ic->free_sectors)) {
2369                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2370                        "n_uncommitted_sections %u, n_committed_sections %u, "
2371                        "journal_section_entries %u, free_sectors %u",
2372                        ic->journal_sections, ic->journal_section_entries,
2373                        ic->n_uncommitted_sections, ic->n_committed_sections,
2374                        ic->journal_section_entries, ic->free_sectors);
2375         }
2376 }
2377
2378 static void integrity_commit(struct work_struct *w)
2379 {
2380         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2381         unsigned int commit_start, commit_sections;
2382         unsigned int i, j, n;
2383         struct bio *flushes;
2384
2385         del_timer(&ic->autocommit_timer);
2386
2387         spin_lock_irq(&ic->endio_wait.lock);
2388         flushes = bio_list_get(&ic->flush_bio_list);
2389         if (unlikely(ic->mode != 'J')) {
2390                 spin_unlock_irq(&ic->endio_wait.lock);
2391                 dm_integrity_flush_buffers(ic, true);
2392                 goto release_flush_bios;
2393         }
2394
2395         pad_uncommitted(ic);
2396         commit_start = ic->uncommitted_section;
2397         commit_sections = ic->n_uncommitted_sections;
2398         spin_unlock_irq(&ic->endio_wait.lock);
2399
2400         if (!commit_sections)
2401                 goto release_flush_bios;
2402
2403         ic->wrote_to_journal = true;
2404
2405         i = commit_start;
2406         for (n = 0; n < commit_sections; n++) {
2407                 for (j = 0; j < ic->journal_section_entries; j++) {
2408                         struct journal_entry *je;
2409
2410                         je = access_journal_entry(ic, i, j);
2411                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2412                 }
2413                 for (j = 0; j < ic->journal_section_sectors; j++) {
2414                         struct journal_sector *js;
2415
2416                         js = access_journal(ic, i, j);
2417                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2418                 }
2419                 i++;
2420                 if (unlikely(i >= ic->journal_sections))
2421                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2422                 wraparound_section(ic, &i);
2423         }
2424         smp_rmb();
2425
2426         write_journal(ic, commit_start, commit_sections);
2427
2428         spin_lock_irq(&ic->endio_wait.lock);
2429         ic->uncommitted_section += commit_sections;
2430         wraparound_section(ic, &ic->uncommitted_section);
2431         ic->n_uncommitted_sections -= commit_sections;
2432         ic->n_committed_sections += commit_sections;
2433         spin_unlock_irq(&ic->endio_wait.lock);
2434
2435         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2436                 queue_work(ic->writer_wq, &ic->writer_work);
2437
2438 release_flush_bios:
2439         while (flushes) {
2440                 struct bio *next = flushes->bi_next;
2441
2442                 flushes->bi_next = NULL;
2443                 do_endio(ic, flushes);
2444                 flushes = next;
2445         }
2446 }
2447
2448 static void complete_copy_from_journal(unsigned long error, void *context)
2449 {
2450         struct journal_io *io = context;
2451         struct journal_completion *comp = io->comp;
2452         struct dm_integrity_c *ic = comp->ic;
2453
2454         remove_range(ic, &io->range);
2455         mempool_free(io, &ic->journal_io_mempool);
2456         if (unlikely(error != 0))
2457                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2458         complete_journal_op(comp);
2459 }
2460
2461 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2462                                struct journal_entry *je)
2463 {
2464         unsigned int s = 0;
2465
2466         do {
2467                 js->commit_id = je->last_bytes[s];
2468                 js++;
2469         } while (++s < ic->sectors_per_block);
2470 }
2471
2472 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2473                              unsigned int write_sections, bool from_replay)
2474 {
2475         unsigned int i, j, n;
2476         struct journal_completion comp;
2477         struct blk_plug plug;
2478
2479         blk_start_plug(&plug);
2480
2481         comp.ic = ic;
2482         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2483         init_completion(&comp.comp);
2484
2485         i = write_start;
2486         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2487 #ifndef INTERNAL_VERIFY
2488                 if (unlikely(from_replay))
2489 #endif
2490                         rw_section_mac(ic, i, false);
2491                 for (j = 0; j < ic->journal_section_entries; j++) {
2492                         struct journal_entry *je = access_journal_entry(ic, i, j);
2493                         sector_t sec, area, offset;
2494                         unsigned int k, l, next_loop;
2495                         sector_t metadata_block;
2496                         unsigned int metadata_offset;
2497                         struct journal_io *io;
2498
2499                         if (journal_entry_is_unused(je))
2500                                 continue;
2501                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2502                         sec = journal_entry_get_sector(je);
2503                         if (unlikely(from_replay)) {
2504                                 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2505                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2506                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2507                                 }
2508                                 if (unlikely(sec >= ic->provided_data_sectors)) {
2509                                         journal_entry_set_unused(je);
2510                                         continue;
2511                                 }
2512                         }
2513                         get_area_and_offset(ic, sec, &area, &offset);
2514                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2515                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2516                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2517                                 sector_t sec2, area2, offset2;
2518
2519                                 if (journal_entry_is_unused(je2))
2520                                         break;
2521                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2522                                 sec2 = journal_entry_get_sector(je2);
2523                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2524                                         break;
2525                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2526                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2527                                         break;
2528                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2529                         }
2530                         next_loop = k - 1;
2531
2532                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2533                         io->comp = &comp;
2534                         io->range.logical_sector = sec;
2535                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2536
2537                         spin_lock_irq(&ic->endio_wait.lock);
2538                         add_new_range_and_wait(ic, &io->range);
2539
2540                         if (likely(!from_replay)) {
2541                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2542
2543                                 /* don't write if there is newer committed sector */
2544                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2545                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2546
2547                                         journal_entry_set_unused(je2);
2548                                         remove_journal_node(ic, &section_node[j]);
2549                                         j++;
2550                                         sec += ic->sectors_per_block;
2551                                         offset += ic->sectors_per_block;
2552                                 }
2553                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2554                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2555
2556                                         journal_entry_set_unused(je2);
2557                                         remove_journal_node(ic, &section_node[k - 1]);
2558                                         k--;
2559                                 }
2560                                 if (j == k) {
2561                                         remove_range_unlocked(ic, &io->range);
2562                                         spin_unlock_irq(&ic->endio_wait.lock);
2563                                         mempool_free(io, &ic->journal_io_mempool);
2564                                         goto skip_io;
2565                                 }
2566                                 for (l = j; l < k; l++)
2567                                         remove_journal_node(ic, &section_node[l]);
2568                         }
2569                         spin_unlock_irq(&ic->endio_wait.lock);
2570
2571                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2572                         for (l = j; l < k; l++) {
2573                                 int r;
2574                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2575
2576                                 if (
2577 #ifndef INTERNAL_VERIFY
2578                                     unlikely(from_replay) &&
2579 #endif
2580                                     ic->internal_hash) {
2581                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2582
2583                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2584                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2585                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2586                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2587                                                 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2588                                         }
2589                                 }
2590
2591                                 journal_entry_set_unused(je2);
2592                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2593                                                         ic->tag_size, TAG_WRITE);
2594                                 if (unlikely(r))
2595                                         dm_integrity_io_error(ic, "reading tags", r);
2596                         }
2597
2598                         atomic_inc(&comp.in_flight);
2599                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2600                                           (k - j) << ic->sb->log2_sectors_per_block,
2601                                           get_data_sector(ic, area, offset),
2602                                           complete_copy_from_journal, io);
2603 skip_io:
2604                         j = next_loop;
2605                 }
2606         }
2607
2608         dm_bufio_write_dirty_buffers_async(ic->bufio);
2609
2610         blk_finish_plug(&plug);
2611
2612         complete_journal_op(&comp);
2613         wait_for_completion_io(&comp.comp);
2614
2615         dm_integrity_flush_buffers(ic, true);
2616 }
2617
2618 static void integrity_writer(struct work_struct *w)
2619 {
2620         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2621         unsigned int write_start, write_sections;
2622         unsigned int prev_free_sectors;
2623
2624         spin_lock_irq(&ic->endio_wait.lock);
2625         write_start = ic->committed_section;
2626         write_sections = ic->n_committed_sections;
2627         spin_unlock_irq(&ic->endio_wait.lock);
2628
2629         if (!write_sections)
2630                 return;
2631
2632         do_journal_write(ic, write_start, write_sections, false);
2633
2634         spin_lock_irq(&ic->endio_wait.lock);
2635
2636         ic->committed_section += write_sections;
2637         wraparound_section(ic, &ic->committed_section);
2638         ic->n_committed_sections -= write_sections;
2639
2640         prev_free_sectors = ic->free_sectors;
2641         ic->free_sectors += write_sections * ic->journal_section_entries;
2642         if (unlikely(!prev_free_sectors))
2643                 wake_up_locked(&ic->endio_wait);
2644
2645         spin_unlock_irq(&ic->endio_wait.lock);
2646 }
2647
2648 static void recalc_write_super(struct dm_integrity_c *ic)
2649 {
2650         int r;
2651
2652         dm_integrity_flush_buffers(ic, false);
2653         if (dm_integrity_failed(ic))
2654                 return;
2655
2656         r = sync_rw_sb(ic, REQ_OP_WRITE);
2657         if (unlikely(r))
2658                 dm_integrity_io_error(ic, "writing superblock", r);
2659 }
2660
2661 static void integrity_recalc(struct work_struct *w)
2662 {
2663         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2664         struct dm_integrity_range range;
2665         struct dm_io_request io_req;
2666         struct dm_io_region io_loc;
2667         sector_t area, offset;
2668         sector_t metadata_block;
2669         unsigned int metadata_offset;
2670         sector_t logical_sector, n_sectors;
2671         __u8 *t;
2672         unsigned int i;
2673         int r;
2674         unsigned int super_counter = 0;
2675
2676         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2677
2678         spin_lock_irq(&ic->endio_wait.lock);
2679
2680 next_chunk:
2681
2682         if (unlikely(dm_post_suspending(ic->ti)))
2683                 goto unlock_ret;
2684
2685         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2686         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2687                 if (ic->mode == 'B') {
2688                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2689                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2690                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2691                 }
2692                 goto unlock_ret;
2693         }
2694
2695         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2696         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2697         if (!ic->meta_dev)
2698                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2699
2700         add_new_range_and_wait(ic, &range);
2701         spin_unlock_irq(&ic->endio_wait.lock);
2702         logical_sector = range.logical_sector;
2703         n_sectors = range.n_sectors;
2704
2705         if (ic->mode == 'B') {
2706                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2707                         goto advance_and_next;
2708
2709                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2710                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2711                         logical_sector += ic->sectors_per_block;
2712                         n_sectors -= ic->sectors_per_block;
2713                         cond_resched();
2714                 }
2715                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2716                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2717                         n_sectors -= ic->sectors_per_block;
2718                         cond_resched();
2719                 }
2720                 get_area_and_offset(ic, logical_sector, &area, &offset);
2721         }
2722
2723         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2724
2725         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2726                 recalc_write_super(ic);
2727                 if (ic->mode == 'B')
2728                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2729
2730                 super_counter = 0;
2731         }
2732
2733         if (unlikely(dm_integrity_failed(ic)))
2734                 goto err;
2735
2736         io_req.bi_opf = REQ_OP_READ;
2737         io_req.mem.type = DM_IO_VMA;
2738         io_req.mem.ptr.addr = ic->recalc_buffer;
2739         io_req.notify.fn = NULL;
2740         io_req.client = ic->io;
2741         io_loc.bdev = ic->dev->bdev;
2742         io_loc.sector = get_data_sector(ic, area, offset);
2743         io_loc.count = n_sectors;
2744
2745         r = dm_io(&io_req, 1, &io_loc, NULL);
2746         if (unlikely(r)) {
2747                 dm_integrity_io_error(ic, "reading data", r);
2748                 goto err;
2749         }
2750
2751         t = ic->recalc_tags;
2752         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2753                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2754                 t += ic->tag_size;
2755         }
2756
2757         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2758
2759         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2760         if (unlikely(r)) {
2761                 dm_integrity_io_error(ic, "writing tags", r);
2762                 goto err;
2763         }
2764
2765         if (ic->mode == 'B') {
2766                 sector_t start, end;
2767
2768                 start = (range.logical_sector >>
2769                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2770                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2771                 end = ((range.logical_sector + range.n_sectors) >>
2772                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2773                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2774                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2775         }
2776
2777 advance_and_next:
2778         cond_resched();
2779
2780         spin_lock_irq(&ic->endio_wait.lock);
2781         remove_range_unlocked(ic, &range);
2782         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2783         goto next_chunk;
2784
2785 err:
2786         remove_range(ic, &range);
2787         return;
2788
2789 unlock_ret:
2790         spin_unlock_irq(&ic->endio_wait.lock);
2791
2792         recalc_write_super(ic);
2793 }
2794
2795 static void bitmap_block_work(struct work_struct *w)
2796 {
2797         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2798         struct dm_integrity_c *ic = bbs->ic;
2799         struct bio *bio;
2800         struct bio_list bio_queue;
2801         struct bio_list waiting;
2802
2803         bio_list_init(&waiting);
2804
2805         spin_lock(&bbs->bio_queue_lock);
2806         bio_queue = bbs->bio_queue;
2807         bio_list_init(&bbs->bio_queue);
2808         spin_unlock(&bbs->bio_queue_lock);
2809
2810         while ((bio = bio_list_pop(&bio_queue))) {
2811                 struct dm_integrity_io *dio;
2812
2813                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2814
2815                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2816                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2817                         remove_range(ic, &dio->range);
2818                         INIT_WORK(&dio->work, integrity_bio_wait);
2819                         queue_work(ic->offload_wq, &dio->work);
2820                 } else {
2821                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2822                                         dio->range.n_sectors, BITMAP_OP_SET);
2823                         bio_list_add(&waiting, bio);
2824                 }
2825         }
2826
2827         if (bio_list_empty(&waiting))
2828                 return;
2829
2830         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2831                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2832                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2833
2834         while ((bio = bio_list_pop(&waiting))) {
2835                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2836
2837                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2838                                 dio->range.n_sectors, BITMAP_OP_SET);
2839
2840                 remove_range(ic, &dio->range);
2841                 INIT_WORK(&dio->work, integrity_bio_wait);
2842                 queue_work(ic->offload_wq, &dio->work);
2843         }
2844
2845         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2846 }
2847
2848 static void bitmap_flush_work(struct work_struct *work)
2849 {
2850         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2851         struct dm_integrity_range range;
2852         unsigned long limit;
2853         struct bio *bio;
2854
2855         dm_integrity_flush_buffers(ic, false);
2856
2857         range.logical_sector = 0;
2858         range.n_sectors = ic->provided_data_sectors;
2859
2860         spin_lock_irq(&ic->endio_wait.lock);
2861         add_new_range_and_wait(ic, &range);
2862         spin_unlock_irq(&ic->endio_wait.lock);
2863
2864         dm_integrity_flush_buffers(ic, true);
2865
2866         limit = ic->provided_data_sectors;
2867         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2868                 limit = le64_to_cpu(ic->sb->recalc_sector)
2869                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2870                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2871         }
2872         /*DEBUG_print("zeroing journal\n");*/
2873         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2874         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2875
2876         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2877                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2878
2879         spin_lock_irq(&ic->endio_wait.lock);
2880         remove_range_unlocked(ic, &range);
2881         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2882                 bio_endio(bio);
2883                 spin_unlock_irq(&ic->endio_wait.lock);
2884                 spin_lock_irq(&ic->endio_wait.lock);
2885         }
2886         spin_unlock_irq(&ic->endio_wait.lock);
2887 }
2888
2889
2890 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2891                          unsigned int n_sections, unsigned char commit_seq)
2892 {
2893         unsigned int i, j, n;
2894
2895         if (!n_sections)
2896                 return;
2897
2898         for (n = 0; n < n_sections; n++) {
2899                 i = start_section + n;
2900                 wraparound_section(ic, &i);
2901                 for (j = 0; j < ic->journal_section_sectors; j++) {
2902                         struct journal_sector *js = access_journal(ic, i, j);
2903
2904                         BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2905                         memset(&js->sectors, 0, sizeof(js->sectors));
2906                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2907                 }
2908                 for (j = 0; j < ic->journal_section_entries; j++) {
2909                         struct journal_entry *je = access_journal_entry(ic, i, j);
2910
2911                         journal_entry_set_unused(je);
2912                 }
2913         }
2914
2915         write_journal(ic, start_section, n_sections);
2916 }
2917
2918 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2919 {
2920         unsigned char k;
2921
2922         for (k = 0; k < N_COMMIT_IDS; k++) {
2923                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2924                         return k;
2925         }
2926         dm_integrity_io_error(ic, "journal commit id", -EIO);
2927         return -EIO;
2928 }
2929
2930 static void replay_journal(struct dm_integrity_c *ic)
2931 {
2932         unsigned int i, j;
2933         bool used_commit_ids[N_COMMIT_IDS];
2934         unsigned int max_commit_id_sections[N_COMMIT_IDS];
2935         unsigned int write_start, write_sections;
2936         unsigned int continue_section;
2937         bool journal_empty;
2938         unsigned char unused, last_used, want_commit_seq;
2939
2940         if (ic->mode == 'R')
2941                 return;
2942
2943         if (ic->journal_uptodate)
2944                 return;
2945
2946         last_used = 0;
2947         write_start = 0;
2948
2949         if (!ic->just_formatted) {
2950                 DEBUG_print("reading journal\n");
2951                 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2952                 if (ic->journal_io)
2953                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2954                 if (ic->journal_io) {
2955                         struct journal_completion crypt_comp;
2956
2957                         crypt_comp.ic = ic;
2958                         init_completion(&crypt_comp.comp);
2959                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2960                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2961                         wait_for_completion(&crypt_comp.comp);
2962                 }
2963                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2964         }
2965
2966         if (dm_integrity_failed(ic))
2967                 goto clear_journal;
2968
2969         journal_empty = true;
2970         memset(used_commit_ids, 0, sizeof(used_commit_ids));
2971         memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2972         for (i = 0; i < ic->journal_sections; i++) {
2973                 for (j = 0; j < ic->journal_section_sectors; j++) {
2974                         int k;
2975                         struct journal_sector *js = access_journal(ic, i, j);
2976
2977                         k = find_commit_seq(ic, i, j, js->commit_id);
2978                         if (k < 0)
2979                                 goto clear_journal;
2980                         used_commit_ids[k] = true;
2981                         max_commit_id_sections[k] = i;
2982                 }
2983                 if (journal_empty) {
2984                         for (j = 0; j < ic->journal_section_entries; j++) {
2985                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2986
2987                                 if (!journal_entry_is_unused(je)) {
2988                                         journal_empty = false;
2989                                         break;
2990                                 }
2991                         }
2992                 }
2993         }
2994
2995         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2996                 unused = N_COMMIT_IDS - 1;
2997                 while (unused && !used_commit_ids[unused - 1])
2998                         unused--;
2999         } else {
3000                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3001                         if (!used_commit_ids[unused])
3002                                 break;
3003                 if (unused == N_COMMIT_IDS) {
3004                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
3005                         goto clear_journal;
3006                 }
3007         }
3008         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3009                     unused, used_commit_ids[0], used_commit_ids[1],
3010                     used_commit_ids[2], used_commit_ids[3]);
3011
3012         last_used = prev_commit_seq(unused);
3013         want_commit_seq = prev_commit_seq(last_used);
3014
3015         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3016                 journal_empty = true;
3017
3018         write_start = max_commit_id_sections[last_used] + 1;
3019         if (unlikely(write_start >= ic->journal_sections))
3020                 want_commit_seq = next_commit_seq(want_commit_seq);
3021         wraparound_section(ic, &write_start);
3022
3023         i = write_start;
3024         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3025                 for (j = 0; j < ic->journal_section_sectors; j++) {
3026                         struct journal_sector *js = access_journal(ic, i, j);
3027
3028                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3029                                 /*
3030                                  * This could be caused by crash during writing.
3031                                  * We won't replay the inconsistent part of the
3032                                  * journal.
3033                                  */
3034                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3035                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3036                                 goto brk;
3037                         }
3038                 }
3039                 i++;
3040                 if (unlikely(i >= ic->journal_sections))
3041                         want_commit_seq = next_commit_seq(want_commit_seq);
3042                 wraparound_section(ic, &i);
3043         }
3044 brk:
3045
3046         if (!journal_empty) {
3047                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3048                             write_sections, write_start, want_commit_seq);
3049                 do_journal_write(ic, write_start, write_sections, true);
3050         }
3051
3052         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3053                 continue_section = write_start;
3054                 ic->commit_seq = want_commit_seq;
3055                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3056         } else {
3057                 unsigned int s;
3058                 unsigned char erase_seq;
3059
3060 clear_journal:
3061                 DEBUG_print("clearing journal\n");
3062
3063                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3064                 s = write_start;
3065                 init_journal(ic, s, 1, erase_seq);
3066                 s++;
3067                 wraparound_section(ic, &s);
3068                 if (ic->journal_sections >= 2) {
3069                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3070                         s += ic->journal_sections - 2;
3071                         wraparound_section(ic, &s);
3072                         init_journal(ic, s, 1, erase_seq);
3073                 }
3074
3075                 continue_section = 0;
3076                 ic->commit_seq = next_commit_seq(erase_seq);
3077         }
3078
3079         ic->committed_section = continue_section;
3080         ic->n_committed_sections = 0;
3081
3082         ic->uncommitted_section = continue_section;
3083         ic->n_uncommitted_sections = 0;
3084
3085         ic->free_section = continue_section;
3086         ic->free_section_entry = 0;
3087         ic->free_sectors = ic->journal_entries;
3088
3089         ic->journal_tree_root = RB_ROOT;
3090         for (i = 0; i < ic->journal_entries; i++)
3091                 init_journal_node(&ic->journal_tree[i]);
3092 }
3093
3094 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3095 {
3096         DEBUG_print("%s\n", __func__);
3097
3098         if (ic->mode == 'B') {
3099                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3100                 ic->synchronous_mode = 1;
3101
3102                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3103                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3104                 flush_workqueue(ic->commit_wq);
3105         }
3106 }
3107
3108 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3109 {
3110         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3111
3112         DEBUG_print("%s\n", __func__);
3113
3114         dm_integrity_enter_synchronous_mode(ic);
3115
3116         return NOTIFY_DONE;
3117 }
3118
3119 static void dm_integrity_postsuspend(struct dm_target *ti)
3120 {
3121         struct dm_integrity_c *ic = ti->private;
3122         int r;
3123
3124         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3125
3126         del_timer_sync(&ic->autocommit_timer);
3127
3128         if (ic->recalc_wq)
3129                 drain_workqueue(ic->recalc_wq);
3130
3131         if (ic->mode == 'B')
3132                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3133
3134         queue_work(ic->commit_wq, &ic->commit_work);
3135         drain_workqueue(ic->commit_wq);
3136
3137         if (ic->mode == 'J') {
3138                 queue_work(ic->writer_wq, &ic->writer_work);
3139                 drain_workqueue(ic->writer_wq);
3140                 dm_integrity_flush_buffers(ic, true);
3141                 if (ic->wrote_to_journal) {
3142                         init_journal(ic, ic->free_section,
3143                                      ic->journal_sections - ic->free_section, ic->commit_seq);
3144                         if (ic->free_section) {
3145                                 init_journal(ic, 0, ic->free_section,
3146                                              next_commit_seq(ic->commit_seq));
3147                         }
3148                 }
3149         }
3150
3151         if (ic->mode == 'B') {
3152                 dm_integrity_flush_buffers(ic, true);
3153 #if 1
3154                 /* set to 0 to test bitmap replay code */
3155                 init_journal(ic, 0, ic->journal_sections, 0);
3156                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3157                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3158                 if (unlikely(r))
3159                         dm_integrity_io_error(ic, "writing superblock", r);
3160 #endif
3161         }
3162
3163         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3164
3165         ic->journal_uptodate = true;
3166 }
3167
3168 static void dm_integrity_resume(struct dm_target *ti)
3169 {
3170         struct dm_integrity_c *ic = ti->private;
3171         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3172         int r;
3173
3174         DEBUG_print("resume\n");
3175
3176         ic->wrote_to_journal = false;
3177
3178         if (ic->provided_data_sectors != old_provided_data_sectors) {
3179                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3180                     ic->mode == 'B' &&
3181                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3182                         rw_journal_sectors(ic, REQ_OP_READ, 0,
3183                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3184                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3185                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3186                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3187                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3188                 }
3189
3190                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3191                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3192                 if (unlikely(r))
3193                         dm_integrity_io_error(ic, "writing superblock", r);
3194         }
3195
3196         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3197                 DEBUG_print("resume dirty_bitmap\n");
3198                 rw_journal_sectors(ic, REQ_OP_READ, 0,
3199                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3200                 if (ic->mode == 'B') {
3201                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3202                             !ic->reset_recalculate_flag) {
3203                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3204                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3205                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3206                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3207                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3208                                         ic->sb->recalc_sector = cpu_to_le64(0);
3209                                 }
3210                         } else {
3211                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3212                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3213                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3214                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3215                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3216                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3217                                 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3218                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3219                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3220                                 ic->sb->recalc_sector = cpu_to_le64(0);
3221                         }
3222                 } else {
3223                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3224                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3225                             ic->reset_recalculate_flag) {
3226                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3227                                 ic->sb->recalc_sector = cpu_to_le64(0);
3228                         }
3229                         init_journal(ic, 0, ic->journal_sections, 0);
3230                         replay_journal(ic);
3231                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3232                 }
3233                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3234                 if (unlikely(r))
3235                         dm_integrity_io_error(ic, "writing superblock", r);
3236         } else {
3237                 replay_journal(ic);
3238                 if (ic->reset_recalculate_flag) {
3239                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3240                         ic->sb->recalc_sector = cpu_to_le64(0);
3241                 }
3242                 if (ic->mode == 'B') {
3243                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3244                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3245                         r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3246                         if (unlikely(r))
3247                                 dm_integrity_io_error(ic, "writing superblock", r);
3248
3249                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3250                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3251                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3252                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3253                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3254                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3255                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3256                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3257                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3258                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3259                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3260                         }
3261                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3262                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3263                 }
3264         }
3265
3266         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3267         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3268                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3269
3270                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3271                 if (recalc_pos < ic->provided_data_sectors) {
3272                         queue_work(ic->recalc_wq, &ic->recalc_work);
3273                 } else if (recalc_pos > ic->provided_data_sectors) {
3274                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3275                         recalc_write_super(ic);
3276                 }
3277         }
3278
3279         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3280         ic->reboot_notifier.next = NULL;
3281         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3282         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3283
3284 #if 0
3285         /* set to 1 to stress test synchronous mode */
3286         dm_integrity_enter_synchronous_mode(ic);
3287 #endif
3288 }
3289
3290 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3291                                 unsigned int status_flags, char *result, unsigned int maxlen)
3292 {
3293         struct dm_integrity_c *ic = ti->private;
3294         unsigned int arg_count;
3295         size_t sz = 0;
3296
3297         switch (type) {
3298         case STATUSTYPE_INFO:
3299                 DMEMIT("%llu %llu",
3300                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3301                         ic->provided_data_sectors);
3302                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3303                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3304                 else
3305                         DMEMIT(" -");
3306                 break;
3307
3308         case STATUSTYPE_TABLE: {
3309                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3310
3311                 watermark_percentage += ic->journal_entries / 2;
3312                 do_div(watermark_percentage, ic->journal_entries);
3313                 arg_count = 3;
3314                 arg_count += !!ic->meta_dev;
3315                 arg_count += ic->sectors_per_block != 1;
3316                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3317                 arg_count += ic->reset_recalculate_flag;
3318                 arg_count += ic->discard;
3319                 arg_count += ic->mode == 'J';
3320                 arg_count += ic->mode == 'J';
3321                 arg_count += ic->mode == 'B';
3322                 arg_count += ic->mode == 'B';
3323                 arg_count += !!ic->internal_hash_alg.alg_string;
3324                 arg_count += !!ic->journal_crypt_alg.alg_string;
3325                 arg_count += !!ic->journal_mac_alg.alg_string;
3326                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3327                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3328                 arg_count += ic->legacy_recalculate;
3329                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3330                        ic->tag_size, ic->mode, arg_count);
3331                 if (ic->meta_dev)
3332                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3333                 if (ic->sectors_per_block != 1)
3334                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3335                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3336                         DMEMIT(" recalculate");
3337                 if (ic->reset_recalculate_flag)
3338                         DMEMIT(" reset_recalculate");
3339                 if (ic->discard)
3340                         DMEMIT(" allow_discards");
3341                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3342                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3343                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3344                 if (ic->mode == 'J') {
3345                         DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3346                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3347                 }
3348                 if (ic->mode == 'B') {
3349                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3350                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3351                 }
3352                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3353                         DMEMIT(" fix_padding");
3354                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3355                         DMEMIT(" fix_hmac");
3356                 if (ic->legacy_recalculate)
3357                         DMEMIT(" legacy_recalculate");
3358
3359 #define EMIT_ALG(a, n)                                                  \
3360                 do {                                                    \
3361                         if (ic->a.alg_string) {                         \
3362                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3363                                 if (ic->a.key_string)                   \
3364                                         DMEMIT(":%s", ic->a.key_string);\
3365                         }                                               \
3366                 } while (0)
3367                 EMIT_ALG(internal_hash_alg, "internal_hash");
3368                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3369                 EMIT_ALG(journal_mac_alg, "journal_mac");
3370                 break;
3371         }
3372         case STATUSTYPE_IMA:
3373                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3374                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3375                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3376
3377                 if (ic->meta_dev)
3378                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3379                 if (ic->sectors_per_block != 1)
3380                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3381
3382                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3383                        'y' : 'n');
3384                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3385                 DMEMIT(",fix_padding=%c",
3386                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3387                 DMEMIT(",fix_hmac=%c",
3388                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3389                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3390
3391                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3392                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3393                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3394                 DMEMIT(";");
3395                 break;
3396         }
3397 }
3398
3399 static int dm_integrity_iterate_devices(struct dm_target *ti,
3400                                         iterate_devices_callout_fn fn, void *data)
3401 {
3402         struct dm_integrity_c *ic = ti->private;
3403
3404         if (!ic->meta_dev)
3405                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3406         else
3407                 return fn(ti, ic->dev, 0, ti->len, data);
3408 }
3409
3410 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3411 {
3412         struct dm_integrity_c *ic = ti->private;
3413
3414         if (ic->sectors_per_block > 1) {
3415                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3416                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3417                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3418                 limits->dma_alignment = limits->logical_block_size - 1;
3419         }
3420 }
3421
3422 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3423 {
3424         unsigned int sector_space = JOURNAL_SECTOR_DATA;
3425
3426         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3427         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3428                                          JOURNAL_ENTRY_ROUNDUP);
3429
3430         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3431                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3432         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3433         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3434         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3435         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3436 }
3437
3438 static int calculate_device_limits(struct dm_integrity_c *ic)
3439 {
3440         __u64 initial_sectors;
3441
3442         calculate_journal_section_size(ic);
3443         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3444         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3445                 return -EINVAL;
3446         ic->initial_sectors = initial_sectors;
3447
3448         if (!ic->meta_dev) {
3449                 sector_t last_sector, last_area, last_offset;
3450
3451                 /* we have to maintain excessive padding for compatibility with existing volumes */
3452                 __u64 metadata_run_padding =
3453                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3454                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3455                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3456
3457                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3458                                             metadata_run_padding) >> SECTOR_SHIFT;
3459                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3460                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3461                 else
3462                         ic->log2_metadata_run = -1;
3463
3464                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3465                 last_sector = get_data_sector(ic, last_area, last_offset);
3466                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3467                         return -EINVAL;
3468         } else {
3469                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3470
3471                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3472                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3473                 meta_size <<= ic->log2_buffer_sectors;
3474                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3475                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3476                         return -EINVAL;
3477                 ic->metadata_run = 1;
3478                 ic->log2_metadata_run = 0;
3479         }
3480
3481         return 0;
3482 }
3483
3484 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3485 {
3486         if (!ic->meta_dev) {
3487                 int test_bit;
3488
3489                 ic->provided_data_sectors = 0;
3490                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3491                         __u64 prev_data_sectors = ic->provided_data_sectors;
3492
3493                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3494                         if (calculate_device_limits(ic))
3495                                 ic->provided_data_sectors = prev_data_sectors;
3496                 }
3497         } else {
3498                 ic->provided_data_sectors = ic->data_device_sectors;
3499                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3500         }
3501 }
3502
3503 static int initialize_superblock(struct dm_integrity_c *ic,
3504                                  unsigned int journal_sectors, unsigned int interleave_sectors)
3505 {
3506         unsigned int journal_sections;
3507         int test_bit;
3508
3509         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3510         memcpy(ic->sb->magic, SB_MAGIC, 8);
3511         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3512         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3513         if (ic->journal_mac_alg.alg_string)
3514                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3515
3516         calculate_journal_section_size(ic);
3517         journal_sections = journal_sectors / ic->journal_section_sectors;
3518         if (!journal_sections)
3519                 journal_sections = 1;
3520
3521         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3522                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3523                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3524         }
3525
3526         if (!ic->meta_dev) {
3527                 if (ic->fix_padding)
3528                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3529                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3530                 if (!interleave_sectors)
3531                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3532                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3533                 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3534                 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3535
3536                 get_provided_data_sectors(ic);
3537                 if (!ic->provided_data_sectors)
3538                         return -EINVAL;
3539         } else {
3540                 ic->sb->log2_interleave_sectors = 0;
3541
3542                 get_provided_data_sectors(ic);
3543                 if (!ic->provided_data_sectors)
3544                         return -EINVAL;
3545
3546 try_smaller_buffer:
3547                 ic->sb->journal_sections = cpu_to_le32(0);
3548                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3549                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3550                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3551
3552                         if (test_journal_sections > journal_sections)
3553                                 continue;
3554                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3555                         if (calculate_device_limits(ic))
3556                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3557
3558                 }
3559                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3560                         if (ic->log2_buffer_sectors > 3) {
3561                                 ic->log2_buffer_sectors--;
3562                                 goto try_smaller_buffer;
3563                         }
3564                         return -EINVAL;
3565                 }
3566         }
3567
3568         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3569
3570         sb_set_version(ic);
3571
3572         return 0;
3573 }
3574
3575 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3576 {
3577         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3578         struct blk_integrity bi;
3579
3580         memset(&bi, 0, sizeof(bi));
3581         bi.profile = &dm_integrity_profile;
3582         bi.tuple_size = ic->tag_size;
3583         bi.tag_size = bi.tuple_size;
3584         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3585
3586         blk_integrity_register(disk, &bi);
3587         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3588 }
3589
3590 static void dm_integrity_free_page_list(struct page_list *pl)
3591 {
3592         unsigned int i;
3593
3594         if (!pl)
3595                 return;
3596         for (i = 0; pl[i].page; i++)
3597                 __free_page(pl[i].page);
3598         kvfree(pl);
3599 }
3600
3601 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3602 {
3603         struct page_list *pl;
3604         unsigned int i;
3605
3606         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3607         if (!pl)
3608                 return NULL;
3609
3610         for (i = 0; i < n_pages; i++) {
3611                 pl[i].page = alloc_page(GFP_KERNEL);
3612                 if (!pl[i].page) {
3613                         dm_integrity_free_page_list(pl);
3614                         return NULL;
3615                 }
3616                 if (i)
3617                         pl[i - 1].next = &pl[i];
3618         }
3619         pl[i].page = NULL;
3620         pl[i].next = NULL;
3621
3622         return pl;
3623 }
3624
3625 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3626 {
3627         unsigned int i;
3628
3629         for (i = 0; i < ic->journal_sections; i++)
3630                 kvfree(sl[i]);
3631         kvfree(sl);
3632 }
3633
3634 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3635                                                                    struct page_list *pl)
3636 {
3637         struct scatterlist **sl;
3638         unsigned int i;
3639
3640         sl = kvmalloc_array(ic->journal_sections,
3641                             sizeof(struct scatterlist *),
3642                             GFP_KERNEL | __GFP_ZERO);
3643         if (!sl)
3644                 return NULL;
3645
3646         for (i = 0; i < ic->journal_sections; i++) {
3647                 struct scatterlist *s;
3648                 unsigned int start_index, start_offset;
3649                 unsigned int end_index, end_offset;
3650                 unsigned int n_pages;
3651                 unsigned int idx;
3652
3653                 page_list_location(ic, i, 0, &start_index, &start_offset);
3654                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3655                                    &end_index, &end_offset);
3656
3657                 n_pages = (end_index - start_index + 1);
3658
3659                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3660                                    GFP_KERNEL);
3661                 if (!s) {
3662                         dm_integrity_free_journal_scatterlist(ic, sl);
3663                         return NULL;
3664                 }
3665
3666                 sg_init_table(s, n_pages);
3667                 for (idx = start_index; idx <= end_index; idx++) {
3668                         char *va = lowmem_page_address(pl[idx].page);
3669                         unsigned int start = 0, end = PAGE_SIZE;
3670
3671                         if (idx == start_index)
3672                                 start = start_offset;
3673                         if (idx == end_index)
3674                                 end = end_offset + (1 << SECTOR_SHIFT);
3675                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3676                 }
3677
3678                 sl[i] = s;
3679         }
3680
3681         return sl;
3682 }
3683
3684 static void free_alg(struct alg_spec *a)
3685 {
3686         kfree_sensitive(a->alg_string);
3687         kfree_sensitive(a->key);
3688         memset(a, 0, sizeof(*a));
3689 }
3690
3691 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3692 {
3693         char *k;
3694
3695         free_alg(a);
3696
3697         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3698         if (!a->alg_string)
3699                 goto nomem;
3700
3701         k = strchr(a->alg_string, ':');
3702         if (k) {
3703                 *k = 0;
3704                 a->key_string = k + 1;
3705                 if (strlen(a->key_string) & 1)
3706                         goto inval;
3707
3708                 a->key_size = strlen(a->key_string) / 2;
3709                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3710                 if (!a->key)
3711                         goto nomem;
3712                 if (hex2bin(a->key, a->key_string, a->key_size))
3713                         goto inval;
3714         }
3715
3716         return 0;
3717 inval:
3718         *error = error_inval;
3719         return -EINVAL;
3720 nomem:
3721         *error = "Out of memory for an argument";
3722         return -ENOMEM;
3723 }
3724
3725 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3726                    char *error_alg, char *error_key)
3727 {
3728         int r;
3729
3730         if (a->alg_string) {
3731                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3732                 if (IS_ERR(*hash)) {
3733                         *error = error_alg;
3734                         r = PTR_ERR(*hash);
3735                         *hash = NULL;
3736                         return r;
3737                 }
3738
3739                 if (a->key) {
3740                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3741                         if (r) {
3742                                 *error = error_key;
3743                                 return r;
3744                         }
3745                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3746                         *error = error_key;
3747                         return -ENOKEY;
3748                 }
3749         }
3750
3751         return 0;
3752 }
3753
3754 static int create_journal(struct dm_integrity_c *ic, char **error)
3755 {
3756         int r = 0;
3757         unsigned int i;
3758         __u64 journal_pages, journal_desc_size, journal_tree_size;
3759         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3760         struct skcipher_request *req = NULL;
3761
3762         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3763         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3764         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3765         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3766
3767         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3768                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3769         journal_desc_size = journal_pages * sizeof(struct page_list);
3770         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3771                 *error = "Journal doesn't fit into memory";
3772                 r = -ENOMEM;
3773                 goto bad;
3774         }
3775         ic->journal_pages = journal_pages;
3776
3777         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3778         if (!ic->journal) {
3779                 *error = "Could not allocate memory for journal";
3780                 r = -ENOMEM;
3781                 goto bad;
3782         }
3783         if (ic->journal_crypt_alg.alg_string) {
3784                 unsigned int ivsize, blocksize;
3785                 struct journal_completion comp;
3786
3787                 comp.ic = ic;
3788                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3789                 if (IS_ERR(ic->journal_crypt)) {
3790                         *error = "Invalid journal cipher";
3791                         r = PTR_ERR(ic->journal_crypt);
3792                         ic->journal_crypt = NULL;
3793                         goto bad;
3794                 }
3795                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3796                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3797
3798                 if (ic->journal_crypt_alg.key) {
3799                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3800                                                    ic->journal_crypt_alg.key_size);
3801                         if (r) {
3802                                 *error = "Error setting encryption key";
3803                                 goto bad;
3804                         }
3805                 }
3806                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3807                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3808
3809                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3810                 if (!ic->journal_io) {
3811                         *error = "Could not allocate memory for journal io";
3812                         r = -ENOMEM;
3813                         goto bad;
3814                 }
3815
3816                 if (blocksize == 1) {
3817                         struct scatterlist *sg;
3818
3819                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3820                         if (!req) {
3821                                 *error = "Could not allocate crypt request";
3822                                 r = -ENOMEM;
3823                                 goto bad;
3824                         }
3825
3826                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3827                         if (!crypt_iv) {
3828                                 *error = "Could not allocate iv";
3829                                 r = -ENOMEM;
3830                                 goto bad;
3831                         }
3832
3833                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3834                         if (!ic->journal_xor) {
3835                                 *error = "Could not allocate memory for journal xor";
3836                                 r = -ENOMEM;
3837                                 goto bad;
3838                         }
3839
3840                         sg = kvmalloc_array(ic->journal_pages + 1,
3841                                             sizeof(struct scatterlist),
3842                                             GFP_KERNEL);
3843                         if (!sg) {
3844                                 *error = "Unable to allocate sg list";
3845                                 r = -ENOMEM;
3846                                 goto bad;
3847                         }
3848                         sg_init_table(sg, ic->journal_pages + 1);
3849                         for (i = 0; i < ic->journal_pages; i++) {
3850                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3851
3852                                 clear_page(va);
3853                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3854                         }
3855                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3856
3857                         skcipher_request_set_crypt(req, sg, sg,
3858                                                    PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3859                         init_completion(&comp.comp);
3860                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3861                         if (do_crypt(true, req, &comp))
3862                                 wait_for_completion(&comp.comp);
3863                         kvfree(sg);
3864                         r = dm_integrity_failed(ic);
3865                         if (r) {
3866                                 *error = "Unable to encrypt journal";
3867                                 goto bad;
3868                         }
3869                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3870
3871                         crypto_free_skcipher(ic->journal_crypt);
3872                         ic->journal_crypt = NULL;
3873                 } else {
3874                         unsigned int crypt_len = roundup(ivsize, blocksize);
3875
3876                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3877                         if (!req) {
3878                                 *error = "Could not allocate crypt request";
3879                                 r = -ENOMEM;
3880                                 goto bad;
3881                         }
3882
3883                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3884                         if (!crypt_iv) {
3885                                 *error = "Could not allocate iv";
3886                                 r = -ENOMEM;
3887                                 goto bad;
3888                         }
3889
3890                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3891                         if (!crypt_data) {
3892                                 *error = "Unable to allocate crypt data";
3893                                 r = -ENOMEM;
3894                                 goto bad;
3895                         }
3896
3897                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3898                         if (!ic->journal_scatterlist) {
3899                                 *error = "Unable to allocate sg list";
3900                                 r = -ENOMEM;
3901                                 goto bad;
3902                         }
3903                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3904                         if (!ic->journal_io_scatterlist) {
3905                                 *error = "Unable to allocate sg list";
3906                                 r = -ENOMEM;
3907                                 goto bad;
3908                         }
3909                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3910                                                          sizeof(struct skcipher_request *),
3911                                                          GFP_KERNEL | __GFP_ZERO);
3912                         if (!ic->sk_requests) {
3913                                 *error = "Unable to allocate sk requests";
3914                                 r = -ENOMEM;
3915                                 goto bad;
3916                         }
3917                         for (i = 0; i < ic->journal_sections; i++) {
3918                                 struct scatterlist sg;
3919                                 struct skcipher_request *section_req;
3920                                 __le32 section_le = cpu_to_le32(i);
3921
3922                                 memset(crypt_iv, 0x00, ivsize);
3923                                 memset(crypt_data, 0x00, crypt_len);
3924                                 memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3925
3926                                 sg_init_one(&sg, crypt_data, crypt_len);
3927                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3928                                 init_completion(&comp.comp);
3929                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3930                                 if (do_crypt(true, req, &comp))
3931                                         wait_for_completion(&comp.comp);
3932
3933                                 r = dm_integrity_failed(ic);
3934                                 if (r) {
3935                                         *error = "Unable to generate iv";
3936                                         goto bad;
3937                                 }
3938
3939                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3940                                 if (!section_req) {
3941                                         *error = "Unable to allocate crypt request";
3942                                         r = -ENOMEM;
3943                                         goto bad;
3944                                 }
3945                                 section_req->iv = kmalloc_array(ivsize, 2,
3946                                                                 GFP_KERNEL);
3947                                 if (!section_req->iv) {
3948                                         skcipher_request_free(section_req);
3949                                         *error = "Unable to allocate iv";
3950                                         r = -ENOMEM;
3951                                         goto bad;
3952                                 }
3953                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3954                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3955                                 ic->sk_requests[i] = section_req;
3956                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3957                         }
3958                 }
3959         }
3960
3961         for (i = 0; i < N_COMMIT_IDS; i++) {
3962                 unsigned int j;
3963
3964 retest_commit_id:
3965                 for (j = 0; j < i; j++) {
3966                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3967                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3968                                 goto retest_commit_id;
3969                         }
3970                 }
3971                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3972         }
3973
3974         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3975         if (journal_tree_size > ULONG_MAX) {
3976                 *error = "Journal doesn't fit into memory";
3977                 r = -ENOMEM;
3978                 goto bad;
3979         }
3980         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3981         if (!ic->journal_tree) {
3982                 *error = "Could not allocate memory for journal tree";
3983                 r = -ENOMEM;
3984         }
3985 bad:
3986         kfree(crypt_data);
3987         kfree(crypt_iv);
3988         skcipher_request_free(req);
3989
3990         return r;
3991 }
3992
3993 /*
3994  * Construct a integrity mapping
3995  *
3996  * Arguments:
3997  *      device
3998  *      offset from the start of the device
3999  *      tag size
4000  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4001  *      number of optional arguments
4002  *      optional arguments:
4003  *              journal_sectors
4004  *              interleave_sectors
4005  *              buffer_sectors
4006  *              journal_watermark
4007  *              commit_time
4008  *              meta_device
4009  *              block_size
4010  *              sectors_per_bit
4011  *              bitmap_flush_interval
4012  *              internal_hash
4013  *              journal_crypt
4014  *              journal_mac
4015  *              recalculate
4016  */
4017 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4018 {
4019         struct dm_integrity_c *ic;
4020         char dummy;
4021         int r;
4022         unsigned int extra_args;
4023         struct dm_arg_set as;
4024         static const struct dm_arg _args[] = {
4025                 {0, 18, "Invalid number of feature args"},
4026         };
4027         unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4028         bool should_write_sb;
4029         __u64 threshold;
4030         unsigned long long start;
4031         __s8 log2_sectors_per_bitmap_bit = -1;
4032         __s8 log2_blocks_per_bitmap_bit;
4033         __u64 bits_in_journal;
4034         __u64 n_bitmap_bits;
4035
4036 #define DIRECT_ARGUMENTS        4
4037
4038         if (argc <= DIRECT_ARGUMENTS) {
4039                 ti->error = "Invalid argument count";
4040                 return -EINVAL;
4041         }
4042
4043         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4044         if (!ic) {
4045                 ti->error = "Cannot allocate integrity context";
4046                 return -ENOMEM;
4047         }
4048         ti->private = ic;
4049         ti->per_io_data_size = sizeof(struct dm_integrity_io);
4050         ic->ti = ti;
4051
4052         ic->in_progress = RB_ROOT;
4053         INIT_LIST_HEAD(&ic->wait_list);
4054         init_waitqueue_head(&ic->endio_wait);
4055         bio_list_init(&ic->flush_bio_list);
4056         init_waitqueue_head(&ic->copy_to_journal_wait);
4057         init_completion(&ic->crypto_backoff);
4058         atomic64_set(&ic->number_of_mismatches, 0);
4059         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4060
4061         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4062         if (r) {
4063                 ti->error = "Device lookup failed";
4064                 goto bad;
4065         }
4066
4067         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4068                 ti->error = "Invalid starting offset";
4069                 r = -EINVAL;
4070                 goto bad;
4071         }
4072         ic->start = start;
4073
4074         if (strcmp(argv[2], "-")) {
4075                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4076                         ti->error = "Invalid tag size";
4077                         r = -EINVAL;
4078                         goto bad;
4079                 }
4080         }
4081
4082         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4083             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4084                 ic->mode = argv[3][0];
4085         } else {
4086                 ti->error = "Invalid mode (expecting J, B, D, R)";
4087                 r = -EINVAL;
4088                 goto bad;
4089         }
4090
4091         journal_sectors = 0;
4092         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4093         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4094         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4095         sync_msec = DEFAULT_SYNC_MSEC;
4096         ic->sectors_per_block = 1;
4097
4098         as.argc = argc - DIRECT_ARGUMENTS;
4099         as.argv = argv + DIRECT_ARGUMENTS;
4100         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4101         if (r)
4102                 goto bad;
4103
4104         while (extra_args--) {
4105                 const char *opt_string;
4106                 unsigned int val;
4107                 unsigned long long llval;
4108
4109                 opt_string = dm_shift_arg(&as);
4110                 if (!opt_string) {
4111                         r = -EINVAL;
4112                         ti->error = "Not enough feature arguments";
4113                         goto bad;
4114                 }
4115                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4116                         journal_sectors = val ? val : 1;
4117                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4118                         interleave_sectors = val;
4119                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4120                         buffer_sectors = val;
4121                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4122                         journal_watermark = val;
4123                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4124                         sync_msec = val;
4125                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4126                         if (ic->meta_dev) {
4127                                 dm_put_device(ti, ic->meta_dev);
4128                                 ic->meta_dev = NULL;
4129                         }
4130                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4131                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4132                         if (r) {
4133                                 ti->error = "Device lookup failed";
4134                                 goto bad;
4135                         }
4136                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4137                         if (val < 1 << SECTOR_SHIFT ||
4138                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4139                             (val & (val - 1))) {
4140                                 r = -EINVAL;
4141                                 ti->error = "Invalid block_size argument";
4142                                 goto bad;
4143                         }
4144                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4145                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4146                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4147                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4148                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4149                                 r = -EINVAL;
4150                                 ti->error = "Invalid bitmap_flush_interval argument";
4151                                 goto bad;
4152                         }
4153                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4154                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4155                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4156                                             "Invalid internal_hash argument");
4157                         if (r)
4158                                 goto bad;
4159                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4160                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4161                                             "Invalid journal_crypt argument");
4162                         if (r)
4163                                 goto bad;
4164                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4165                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4166                                             "Invalid journal_mac argument");
4167                         if (r)
4168                                 goto bad;
4169                 } else if (!strcmp(opt_string, "recalculate")) {
4170                         ic->recalculate_flag = true;
4171                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4172                         ic->recalculate_flag = true;
4173                         ic->reset_recalculate_flag = true;
4174                 } else if (!strcmp(opt_string, "allow_discards")) {
4175                         ic->discard = true;
4176                 } else if (!strcmp(opt_string, "fix_padding")) {
4177                         ic->fix_padding = true;
4178                 } else if (!strcmp(opt_string, "fix_hmac")) {
4179                         ic->fix_hmac = true;
4180                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4181                         ic->legacy_recalculate = true;
4182                 } else {
4183                         r = -EINVAL;
4184                         ti->error = "Invalid argument";
4185                         goto bad;
4186                 }
4187         }
4188
4189         ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4190         if (!ic->meta_dev)
4191                 ic->meta_device_sectors = ic->data_device_sectors;
4192         else
4193                 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4194
4195         if (!journal_sectors) {
4196                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4197                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4198         }
4199
4200         if (!buffer_sectors)
4201                 buffer_sectors = 1;
4202         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4203
4204         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4205                     "Invalid internal hash", "Error setting internal hash key");
4206         if (r)
4207                 goto bad;
4208
4209         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4210                     "Invalid journal mac", "Error setting journal mac key");
4211         if (r)
4212                 goto bad;
4213
4214         if (!ic->tag_size) {
4215                 if (!ic->internal_hash) {
4216                         ti->error = "Unknown tag size";
4217                         r = -EINVAL;
4218                         goto bad;
4219                 }
4220                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4221         }
4222         if (ic->tag_size > MAX_TAG_SIZE) {
4223                 ti->error = "Too big tag size";
4224                 r = -EINVAL;
4225                 goto bad;
4226         }
4227         if (!(ic->tag_size & (ic->tag_size - 1)))
4228                 ic->log2_tag_size = __ffs(ic->tag_size);
4229         else
4230                 ic->log2_tag_size = -1;
4231
4232         if (ic->mode == 'B' && !ic->internal_hash) {
4233                 r = -EINVAL;
4234                 ti->error = "Bitmap mode can be only used with internal hash";
4235                 goto bad;
4236         }
4237
4238         if (ic->discard && !ic->internal_hash) {
4239                 r = -EINVAL;
4240                 ti->error = "Discard can be only used with internal hash";
4241                 goto bad;
4242         }
4243
4244         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4245         ic->autocommit_msec = sync_msec;
4246         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4247
4248         ic->io = dm_io_client_create();
4249         if (IS_ERR(ic->io)) {
4250                 r = PTR_ERR(ic->io);
4251                 ic->io = NULL;
4252                 ti->error = "Cannot allocate dm io";
4253                 goto bad;
4254         }
4255
4256         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4257         if (r) {
4258                 ti->error = "Cannot allocate mempool";
4259                 goto bad;
4260         }
4261
4262         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4263                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4264         if (!ic->metadata_wq) {
4265                 ti->error = "Cannot allocate workqueue";
4266                 r = -ENOMEM;
4267                 goto bad;
4268         }
4269
4270         /*
4271          * If this workqueue were percpu, it would cause bio reordering
4272          * and reduced performance.
4273          */
4274         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4275         if (!ic->wait_wq) {
4276                 ti->error = "Cannot allocate workqueue";
4277                 r = -ENOMEM;
4278                 goto bad;
4279         }
4280
4281         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4282                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4283         if (!ic->offload_wq) {
4284                 ti->error = "Cannot allocate workqueue";
4285                 r = -ENOMEM;
4286                 goto bad;
4287         }
4288
4289         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4290         if (!ic->commit_wq) {
4291                 ti->error = "Cannot allocate workqueue";
4292                 r = -ENOMEM;
4293                 goto bad;
4294         }
4295         INIT_WORK(&ic->commit_work, integrity_commit);
4296
4297         if (ic->mode == 'J' || ic->mode == 'B') {
4298                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4299                 if (!ic->writer_wq) {
4300                         ti->error = "Cannot allocate workqueue";
4301                         r = -ENOMEM;
4302                         goto bad;
4303                 }
4304                 INIT_WORK(&ic->writer_work, integrity_writer);
4305         }
4306
4307         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4308         if (!ic->sb) {
4309                 r = -ENOMEM;
4310                 ti->error = "Cannot allocate superblock area";
4311                 goto bad;
4312         }
4313
4314         r = sync_rw_sb(ic, REQ_OP_READ);
4315         if (r) {
4316                 ti->error = "Error reading superblock";
4317                 goto bad;
4318         }
4319         should_write_sb = false;
4320         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4321                 if (ic->mode != 'R') {
4322                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4323                                 r = -EINVAL;
4324                                 ti->error = "The device is not initialized";
4325                                 goto bad;
4326                         }
4327                 }
4328
4329                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4330                 if (r) {
4331                         ti->error = "Could not initialize superblock";
4332                         goto bad;
4333                 }
4334                 if (ic->mode != 'R')
4335                         should_write_sb = true;
4336         }
4337
4338         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4339                 r = -EINVAL;
4340                 ti->error = "Unknown version";
4341                 goto bad;
4342         }
4343         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4344                 r = -EINVAL;
4345                 ti->error = "Tag size doesn't match the information in superblock";
4346                 goto bad;
4347         }
4348         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4349                 r = -EINVAL;
4350                 ti->error = "Block size doesn't match the information in superblock";
4351                 goto bad;
4352         }
4353         if (!le32_to_cpu(ic->sb->journal_sections)) {
4354                 r = -EINVAL;
4355                 ti->error = "Corrupted superblock, journal_sections is 0";
4356                 goto bad;
4357         }
4358         /* make sure that ti->max_io_len doesn't overflow */
4359         if (!ic->meta_dev) {
4360                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4361                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4362                         r = -EINVAL;
4363                         ti->error = "Invalid interleave_sectors in the superblock";
4364                         goto bad;
4365                 }
4366         } else {
4367                 if (ic->sb->log2_interleave_sectors) {
4368                         r = -EINVAL;
4369                         ti->error = "Invalid interleave_sectors in the superblock";
4370                         goto bad;
4371                 }
4372         }
4373         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4374                 r = -EINVAL;
4375                 ti->error = "Journal mac mismatch";
4376                 goto bad;
4377         }
4378
4379         get_provided_data_sectors(ic);
4380         if (!ic->provided_data_sectors) {
4381                 r = -EINVAL;
4382                 ti->error = "The device is too small";
4383                 goto bad;
4384         }
4385
4386 try_smaller_buffer:
4387         r = calculate_device_limits(ic);
4388         if (r) {
4389                 if (ic->meta_dev) {
4390                         if (ic->log2_buffer_sectors > 3) {
4391                                 ic->log2_buffer_sectors--;
4392                                 goto try_smaller_buffer;
4393                         }
4394                 }
4395                 ti->error = "The device is too small";
4396                 goto bad;
4397         }
4398
4399         if (log2_sectors_per_bitmap_bit < 0)
4400                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4401         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4402                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4403
4404         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4405         if (bits_in_journal > UINT_MAX)
4406                 bits_in_journal = UINT_MAX;
4407         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4408                 log2_sectors_per_bitmap_bit++;
4409
4410         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4411         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4412         if (should_write_sb)
4413                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4414
4415         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4416                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4417         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4418
4419         if (!ic->meta_dev)
4420                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4421
4422         if (ti->len > ic->provided_data_sectors) {
4423                 r = -EINVAL;
4424                 ti->error = "Not enough provided sectors for requested mapping size";
4425                 goto bad;
4426         }
4427
4428
4429         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4430         threshold += 50;
4431         do_div(threshold, 100);
4432         ic->free_sectors_threshold = threshold;
4433
4434         DEBUG_print("initialized:\n");
4435         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4436         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4437         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4438         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4439         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4440         DEBUG_print("   journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4441         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4442         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4443         DEBUG_print("   data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4444         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4445         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4446         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4447         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4448         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4449         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4450
4451         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4452                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4453                 ic->sb->recalc_sector = cpu_to_le64(0);
4454         }
4455
4456         if (ic->internal_hash) {
4457                 size_t recalc_tags_size;
4458
4459                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4460                 if (!ic->recalc_wq) {
4461                         ti->error = "Cannot allocate workqueue";
4462                         r = -ENOMEM;
4463                         goto bad;
4464                 }
4465                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4466                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4467                 if (!ic->recalc_buffer) {
4468                         ti->error = "Cannot allocate buffer for recalculating";
4469                         r = -ENOMEM;
4470                         goto bad;
4471                 }
4472                 recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4473                 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
4474                         recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
4475                 ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL);
4476                 if (!ic->recalc_tags) {
4477                         ti->error = "Cannot allocate tags for recalculating";
4478                         r = -ENOMEM;
4479                         goto bad;
4480                 }
4481         } else {
4482                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4483                         ti->error = "Recalculate can only be specified with internal_hash";
4484                         r = -EINVAL;
4485                         goto bad;
4486                 }
4487         }
4488
4489         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4490             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4491             dm_integrity_disable_recalculate(ic)) {
4492                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4493                 r = -EOPNOTSUPP;
4494                 goto bad;
4495         }
4496
4497         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4498                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4499         if (IS_ERR(ic->bufio)) {
4500                 r = PTR_ERR(ic->bufio);
4501                 ti->error = "Cannot initialize dm-bufio";
4502                 ic->bufio = NULL;
4503                 goto bad;
4504         }
4505         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4506
4507         if (ic->mode != 'R') {
4508                 r = create_journal(ic, &ti->error);
4509                 if (r)
4510                         goto bad;
4511
4512         }
4513
4514         if (ic->mode == 'B') {
4515                 unsigned int i;
4516                 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4517
4518                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4519                 if (!ic->recalc_bitmap) {
4520                         r = -ENOMEM;
4521                         goto bad;
4522                 }
4523                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4524                 if (!ic->may_write_bitmap) {
4525                         r = -ENOMEM;
4526                         goto bad;
4527                 }
4528                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4529                 if (!ic->bbs) {
4530                         r = -ENOMEM;
4531                         goto bad;
4532                 }
4533                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4534                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4535                         struct bitmap_block_status *bbs = &ic->bbs[i];
4536                         unsigned int sector, pl_index, pl_offset;
4537
4538                         INIT_WORK(&bbs->work, bitmap_block_work);
4539                         bbs->ic = ic;
4540                         bbs->idx = i;
4541                         bio_list_init(&bbs->bio_queue);
4542                         spin_lock_init(&bbs->bio_queue_lock);
4543
4544                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4545                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4546                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4547
4548                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4549                 }
4550         }
4551
4552         if (should_write_sb) {
4553                 init_journal(ic, 0, ic->journal_sections, 0);
4554                 r = dm_integrity_failed(ic);
4555                 if (unlikely(r)) {
4556                         ti->error = "Error initializing journal";
4557                         goto bad;
4558                 }
4559                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4560                 if (r) {
4561                         ti->error = "Error initializing superblock";
4562                         goto bad;
4563                 }
4564                 ic->just_formatted = true;
4565         }
4566
4567         if (!ic->meta_dev) {
4568                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4569                 if (r)
4570                         goto bad;
4571         }
4572         if (ic->mode == 'B') {
4573                 unsigned int max_io_len;
4574
4575                 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4576                 if (!max_io_len)
4577                         max_io_len = 1U << 31;
4578                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4579                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4580                         r = dm_set_target_max_io_len(ti, max_io_len);
4581                         if (r)
4582                                 goto bad;
4583                 }
4584         }
4585
4586         if (!ic->internal_hash)
4587                 dm_integrity_set(ti, ic);
4588
4589         ti->num_flush_bios = 1;
4590         ti->flush_supported = true;
4591         if (ic->discard)
4592                 ti->num_discard_bios = 1;
4593
4594         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4595         return 0;
4596
4597 bad:
4598         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4599         dm_integrity_dtr(ti);
4600         return r;
4601 }
4602
4603 static void dm_integrity_dtr(struct dm_target *ti)
4604 {
4605         struct dm_integrity_c *ic = ti->private;
4606
4607         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4608         BUG_ON(!list_empty(&ic->wait_list));
4609
4610         if (ic->mode == 'B')
4611                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4612         if (ic->metadata_wq)
4613                 destroy_workqueue(ic->metadata_wq);
4614         if (ic->wait_wq)
4615                 destroy_workqueue(ic->wait_wq);
4616         if (ic->offload_wq)
4617                 destroy_workqueue(ic->offload_wq);
4618         if (ic->commit_wq)
4619                 destroy_workqueue(ic->commit_wq);
4620         if (ic->writer_wq)
4621                 destroy_workqueue(ic->writer_wq);
4622         if (ic->recalc_wq)
4623                 destroy_workqueue(ic->recalc_wq);
4624         vfree(ic->recalc_buffer);
4625         kvfree(ic->recalc_tags);
4626         kvfree(ic->bbs);
4627         if (ic->bufio)
4628                 dm_bufio_client_destroy(ic->bufio);
4629         mempool_exit(&ic->journal_io_mempool);
4630         if (ic->io)
4631                 dm_io_client_destroy(ic->io);
4632         if (ic->dev)
4633                 dm_put_device(ti, ic->dev);
4634         if (ic->meta_dev)
4635                 dm_put_device(ti, ic->meta_dev);
4636         dm_integrity_free_page_list(ic->journal);
4637         dm_integrity_free_page_list(ic->journal_io);
4638         dm_integrity_free_page_list(ic->journal_xor);
4639         dm_integrity_free_page_list(ic->recalc_bitmap);
4640         dm_integrity_free_page_list(ic->may_write_bitmap);
4641         if (ic->journal_scatterlist)
4642                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4643         if (ic->journal_io_scatterlist)
4644                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4645         if (ic->sk_requests) {
4646                 unsigned int i;
4647
4648                 for (i = 0; i < ic->journal_sections; i++) {
4649                         struct skcipher_request *req;
4650
4651                         req = ic->sk_requests[i];
4652                         if (req) {
4653                                 kfree_sensitive(req->iv);
4654                                 skcipher_request_free(req);
4655                         }
4656                 }
4657                 kvfree(ic->sk_requests);
4658         }
4659         kvfree(ic->journal_tree);
4660         if (ic->sb)
4661                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4662
4663         if (ic->internal_hash)
4664                 crypto_free_shash(ic->internal_hash);
4665         free_alg(&ic->internal_hash_alg);
4666
4667         if (ic->journal_crypt)
4668                 crypto_free_skcipher(ic->journal_crypt);
4669         free_alg(&ic->journal_crypt_alg);
4670
4671         if (ic->journal_mac)
4672                 crypto_free_shash(ic->journal_mac);
4673         free_alg(&ic->journal_mac_alg);
4674
4675         kfree(ic);
4676         dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4677 }
4678
4679 static struct target_type integrity_target = {
4680         .name                   = "integrity",
4681         .version                = {1, 10, 0},
4682         .module                 = THIS_MODULE,
4683         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4684         .ctr                    = dm_integrity_ctr,
4685         .dtr                    = dm_integrity_dtr,
4686         .map                    = dm_integrity_map,
4687         .postsuspend            = dm_integrity_postsuspend,
4688         .resume                 = dm_integrity_resume,
4689         .status                 = dm_integrity_status,
4690         .iterate_devices        = dm_integrity_iterate_devices,
4691         .io_hints               = dm_integrity_io_hints,
4692 };
4693
4694 static int __init dm_integrity_init(void)
4695 {
4696         int r;
4697
4698         journal_io_cache = kmem_cache_create("integrity_journal_io",
4699                                              sizeof(struct journal_io), 0, 0, NULL);
4700         if (!journal_io_cache) {
4701                 DMERR("can't allocate journal io cache");
4702                 return -ENOMEM;
4703         }
4704
4705         r = dm_register_target(&integrity_target);
4706         if (r < 0) {
4707                 kmem_cache_destroy(journal_io_cache);
4708                 return r;
4709         }
4710
4711         return 0;
4712 }
4713
4714 static void __exit dm_integrity_exit(void)
4715 {
4716         dm_unregister_target(&integrity_target);
4717         kmem_cache_destroy(journal_io_cache);
4718 }
4719
4720 module_init(dm_integrity_init);
4721 module_exit(dm_integrity_exit);
4722
4723 MODULE_AUTHOR("Milan Broz");
4724 MODULE_AUTHOR("Mikulas Patocka");
4725 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4726 MODULE_LICENSE("GPL");