Merge tag 'printk-for-6.9-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/print...
[linux-block.git] / drivers / md / dm-integrity.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9
10 #include "dm-bio-record.h"
11
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26
27 #include "dm-audit.h"
28
29 #define DM_MSG_PREFIX "integrity"
30
31 #define DEFAULT_INTERLEAVE_SECTORS      32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
34 #define DEFAULT_BUFFER_SECTORS          128
35 #define DEFAULT_JOURNAL_WATERMARK       50
36 #define DEFAULT_SYNC_MSEC               10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS     (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS     3
39 #define MAX_LOG2_INTERLEAVE_SECTORS     31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
41 #define RECALC_SECTORS                  (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER              16
43 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
45 #define DISCARD_FILLER                  0xf6
46 #define SALT_SIZE                       16
47
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54
55 /*
56  * On disk structures
57  */
58
59 #define SB_MAGIC                        "integrt"
60 #define SB_VERSION_1                    1
61 #define SB_VERSION_2                    2
62 #define SB_VERSION_3                    3
63 #define SB_VERSION_4                    4
64 #define SB_VERSION_5                    5
65 #define SB_SECTORS                      8
66 #define MAX_SECTORS_PER_BLOCK           8
67
68 struct superblock {
69         __u8 magic[8];
70         __u8 version;
71         __u8 log2_interleave_sectors;
72         __le16 integrity_tag_size;
73         __le32 journal_sections;
74         __le64 provided_data_sectors;   /* userspace uses this value */
75         __le32 flags;
76         __u8 log2_sectors_per_block;
77         __u8 log2_blocks_per_bitmap_bit;
78         __u8 pad[2];
79         __le64 recalc_sector;
80         __u8 pad2[8];
81         __u8 salt[SALT_SIZE];
82 };
83
84 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
85 #define SB_FLAG_RECALCULATING           0x2
86 #define SB_FLAG_DIRTY_BITMAP            0x4
87 #define SB_FLAG_FIXED_PADDING           0x8
88 #define SB_FLAG_FIXED_HMAC              0x10
89
90 #define JOURNAL_ENTRY_ROUNDUP           8
91
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR          8
94
95 struct journal_entry {
96         union {
97                 struct {
98                         __le32 sector_lo;
99                         __le32 sector_hi;
100                 } s;
101                 __le64 sector;
102         } u;
103         commit_id_t last_bytes[];
104         /* __u8 tag[0]; */
105 };
106
107 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)            ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)        ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120 #define JOURNAL_BLOCK_SECTORS           8
121 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124 struct journal_sector {
125         struct_group(sectors,
126                 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127                 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128         );
129         commit_id_t commit_id;
130 };
131
132 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134 #define METADATA_PADDING_SECTORS        8
135
136 #define N_COMMIT_IDS                    4
137
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145         return (seq + 1) % N_COMMIT_IDS;
146 }
147
148 /*
149  * In-memory structures
150  */
151
152 struct journal_node {
153         struct rb_node node;
154         sector_t sector;
155 };
156
157 struct alg_spec {
158         char *alg_string;
159         char *key_string;
160         __u8 *key;
161         unsigned int key_size;
162 };
163
164 struct dm_integrity_c {
165         struct dm_dev *dev;
166         struct dm_dev *meta_dev;
167         unsigned int tag_size;
168         __s8 log2_tag_size;
169         sector_t start;
170         mempool_t journal_io_mempool;
171         struct dm_io_client *io;
172         struct dm_bufio_client *bufio;
173         struct workqueue_struct *metadata_wq;
174         struct superblock *sb;
175         unsigned int journal_pages;
176         unsigned int n_bitmap_blocks;
177
178         struct page_list *journal;
179         struct page_list *journal_io;
180         struct page_list *journal_xor;
181         struct page_list *recalc_bitmap;
182         struct page_list *may_write_bitmap;
183         struct bitmap_block_status *bbs;
184         unsigned int bitmap_flush_interval;
185         int synchronous_mode;
186         struct bio_list synchronous_bios;
187         struct delayed_work bitmap_flush_work;
188
189         struct crypto_skcipher *journal_crypt;
190         struct scatterlist **journal_scatterlist;
191         struct scatterlist **journal_io_scatterlist;
192         struct skcipher_request **sk_requests;
193
194         struct crypto_shash *journal_mac;
195
196         struct journal_node *journal_tree;
197         struct rb_root journal_tree_root;
198
199         sector_t provided_data_sectors;
200
201         unsigned short journal_entry_size;
202         unsigned char journal_entries_per_sector;
203         unsigned char journal_section_entries;
204         unsigned short journal_section_sectors;
205         unsigned int journal_sections;
206         unsigned int journal_entries;
207         sector_t data_device_sectors;
208         sector_t meta_device_sectors;
209         unsigned int initial_sectors;
210         unsigned int metadata_run;
211         __s8 log2_metadata_run;
212         __u8 log2_buffer_sectors;
213         __u8 sectors_per_block;
214         __u8 log2_blocks_per_bitmap_bit;
215
216         unsigned char mode;
217
218         int failed;
219
220         struct crypto_shash *internal_hash;
221
222         struct dm_target *ti;
223
224         /* these variables are locked with endio_wait.lock */
225         struct rb_root in_progress;
226         struct list_head wait_list;
227         wait_queue_head_t endio_wait;
228         struct workqueue_struct *wait_wq;
229         struct workqueue_struct *offload_wq;
230
231         unsigned char commit_seq;
232         commit_id_t commit_ids[N_COMMIT_IDS];
233
234         unsigned int committed_section;
235         unsigned int n_committed_sections;
236
237         unsigned int uncommitted_section;
238         unsigned int n_uncommitted_sections;
239
240         unsigned int free_section;
241         unsigned char free_section_entry;
242         unsigned int free_sectors;
243
244         unsigned int free_sectors_threshold;
245
246         struct workqueue_struct *commit_wq;
247         struct work_struct commit_work;
248
249         struct workqueue_struct *writer_wq;
250         struct work_struct writer_work;
251
252         struct workqueue_struct *recalc_wq;
253         struct work_struct recalc_work;
254
255         struct bio_list flush_bio_list;
256
257         unsigned long autocommit_jiffies;
258         struct timer_list autocommit_timer;
259         unsigned int autocommit_msec;
260
261         wait_queue_head_t copy_to_journal_wait;
262
263         struct completion crypto_backoff;
264
265         bool wrote_to_journal;
266         bool journal_uptodate;
267         bool just_formatted;
268         bool recalculate_flag;
269         bool reset_recalculate_flag;
270         bool discard;
271         bool fix_padding;
272         bool fix_hmac;
273         bool legacy_recalculate;
274
275         struct alg_spec internal_hash_alg;
276         struct alg_spec journal_crypt_alg;
277         struct alg_spec journal_mac_alg;
278
279         atomic64_t number_of_mismatches;
280
281         mempool_t recheck_pool;
282
283         struct notifier_block reboot_notifier;
284 };
285
286 struct dm_integrity_range {
287         sector_t logical_sector;
288         sector_t n_sectors;
289         bool waiting;
290         union {
291                 struct rb_node node;
292                 struct {
293                         struct task_struct *task;
294                         struct list_head wait_entry;
295                 };
296         };
297 };
298
299 struct dm_integrity_io {
300         struct work_struct work;
301
302         struct dm_integrity_c *ic;
303         enum req_op op;
304         bool fua;
305
306         struct dm_integrity_range range;
307
308         sector_t metadata_block;
309         unsigned int metadata_offset;
310
311         atomic_t in_flight;
312         blk_status_t bi_status;
313
314         struct completion *completion;
315
316         struct dm_bio_details bio_details;
317 };
318
319 struct journal_completion {
320         struct dm_integrity_c *ic;
321         atomic_t in_flight;
322         struct completion comp;
323 };
324
325 struct journal_io {
326         struct dm_integrity_range range;
327         struct journal_completion *comp;
328 };
329
330 struct bitmap_block_status {
331         struct work_struct work;
332         struct dm_integrity_c *ic;
333         unsigned int idx;
334         unsigned long *bitmap;
335         struct bio_list bio_queue;
336         spinlock_t bio_queue_lock;
337
338 };
339
340 static struct kmem_cache *journal_io_cache;
341
342 #define JOURNAL_IO_MEMPOOL      32
343
344 #ifdef DEBUG_PRINT
345 #define DEBUG_print(x, ...)                     printk(KERN_DEBUG x, ##__VA_ARGS__)
346 #define DEBUG_bytes(bytes, len, msg, ...)       printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347                                                        len ? ": " : "", len, bytes)
348 #else
349 #define DEBUG_print(x, ...)                     do { } while (0)
350 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
351 #endif
352
353 static void dm_integrity_prepare(struct request *rq)
354 {
355 }
356
357 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358 {
359 }
360
361 /*
362  * DM Integrity profile, protection is performed layer above (dm-crypt)
363  */
364 static const struct blk_integrity_profile dm_integrity_profile = {
365         .name                   = "DM-DIF-EXT-TAG",
366         .generate_fn            = NULL,
367         .verify_fn              = NULL,
368         .prepare_fn             = dm_integrity_prepare,
369         .complete_fn            = dm_integrity_complete,
370 };
371
372 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373 static void integrity_bio_wait(struct work_struct *w);
374 static void dm_integrity_dtr(struct dm_target *ti);
375
376 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377 {
378         if (err == -EILSEQ)
379                 atomic64_inc(&ic->number_of_mismatches);
380         if (!cmpxchg(&ic->failed, 0, err))
381                 DMERR("Error on %s: %d", msg, err);
382 }
383
384 static int dm_integrity_failed(struct dm_integrity_c *ic)
385 {
386         return READ_ONCE(ic->failed);
387 }
388
389 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390 {
391         if (ic->legacy_recalculate)
392                 return false;
393         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396                 return true;
397         return false;
398 }
399
400 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401                                           unsigned int j, unsigned char seq)
402 {
403         /*
404          * Xor the number with section and sector, so that if a piece of
405          * journal is written at wrong place, it is detected.
406          */
407         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408 }
409
410 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411                                 sector_t *area, sector_t *offset)
412 {
413         if (!ic->meta_dev) {
414                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415                 *area = data_sector >> log2_interleave_sectors;
416                 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417         } else {
418                 *area = 0;
419                 *offset = data_sector;
420         }
421 }
422
423 #define sector_to_block(ic, n)                                          \
424 do {                                                                    \
425         BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));              \
426         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
427 } while (0)
428
429 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430                                             sector_t offset, unsigned int *metadata_offset)
431 {
432         __u64 ms;
433         unsigned int mo;
434
435         ms = area << ic->sb->log2_interleave_sectors;
436         if (likely(ic->log2_metadata_run >= 0))
437                 ms += area << ic->log2_metadata_run;
438         else
439                 ms += area * ic->metadata_run;
440         ms >>= ic->log2_buffer_sectors;
441
442         sector_to_block(ic, offset);
443
444         if (likely(ic->log2_tag_size >= 0)) {
445                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447         } else {
448                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450         }
451         *metadata_offset = mo;
452         return ms;
453 }
454
455 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456 {
457         sector_t result;
458
459         if (ic->meta_dev)
460                 return offset;
461
462         result = area << ic->sb->log2_interleave_sectors;
463         if (likely(ic->log2_metadata_run >= 0))
464                 result += (area + 1) << ic->log2_metadata_run;
465         else
466                 result += (area + 1) * ic->metadata_run;
467
468         result += (sector_t)ic->initial_sectors + offset;
469         result += ic->start;
470
471         return result;
472 }
473
474 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475 {
476         if (unlikely(*sec_ptr >= ic->journal_sections))
477                 *sec_ptr -= ic->journal_sections;
478 }
479
480 static void sb_set_version(struct dm_integrity_c *ic)
481 {
482         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483                 ic->sb->version = SB_VERSION_5;
484         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485                 ic->sb->version = SB_VERSION_4;
486         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487                 ic->sb->version = SB_VERSION_3;
488         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489                 ic->sb->version = SB_VERSION_2;
490         else
491                 ic->sb->version = SB_VERSION_1;
492 }
493
494 static int sb_mac(struct dm_integrity_c *ic, bool wr)
495 {
496         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497         int r;
498         unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
499         __u8 *sb = (__u8 *)ic->sb;
500         __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
501
502         if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
503                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
504                 return -EINVAL;
505         }
506
507         desc->tfm = ic->journal_mac;
508
509         if (likely(wr)) {
510                 r = crypto_shash_digest(desc, sb, mac - sb, mac);
511                 if (unlikely(r < 0)) {
512                         dm_integrity_io_error(ic, "crypto_shash_digest", r);
513                         return r;
514                 }
515         } else {
516                 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
517
518                 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
519                 if (unlikely(r < 0)) {
520                         dm_integrity_io_error(ic, "crypto_shash_digest", r);
521                         return r;
522                 }
523                 if (memcmp(mac, actual_mac, mac_size)) {
524                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
525                         dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
526                         return -EILSEQ;
527                 }
528         }
529
530         return 0;
531 }
532
533 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
534 {
535         struct dm_io_request io_req;
536         struct dm_io_region io_loc;
537         const enum req_op op = opf & REQ_OP_MASK;
538         int r;
539
540         io_req.bi_opf = opf;
541         io_req.mem.type = DM_IO_KMEM;
542         io_req.mem.ptr.addr = ic->sb;
543         io_req.notify.fn = NULL;
544         io_req.client = ic->io;
545         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
546         io_loc.sector = ic->start;
547         io_loc.count = SB_SECTORS;
548
549         if (op == REQ_OP_WRITE) {
550                 sb_set_version(ic);
551                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
552                         r = sb_mac(ic, true);
553                         if (unlikely(r))
554                                 return r;
555                 }
556         }
557
558         r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
559         if (unlikely(r))
560                 return r;
561
562         if (op == REQ_OP_READ) {
563                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
564                         r = sb_mac(ic, false);
565                         if (unlikely(r))
566                                 return r;
567                 }
568         }
569
570         return 0;
571 }
572
573 #define BITMAP_OP_TEST_ALL_SET          0
574 #define BITMAP_OP_TEST_ALL_CLEAR        1
575 #define BITMAP_OP_SET                   2
576 #define BITMAP_OP_CLEAR                 3
577
578 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
579                             sector_t sector, sector_t n_sectors, int mode)
580 {
581         unsigned long bit, end_bit, this_end_bit, page, end_page;
582         unsigned long *data;
583
584         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
585                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
586                         sector,
587                         n_sectors,
588                         ic->sb->log2_sectors_per_block,
589                         ic->log2_blocks_per_bitmap_bit,
590                         mode);
591                 BUG();
592         }
593
594         if (unlikely(!n_sectors))
595                 return true;
596
597         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598         end_bit = (sector + n_sectors - 1) >>
599                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
600
601         page = bit / (PAGE_SIZE * 8);
602         bit %= PAGE_SIZE * 8;
603
604         end_page = end_bit / (PAGE_SIZE * 8);
605         end_bit %= PAGE_SIZE * 8;
606
607 repeat:
608         if (page < end_page)
609                 this_end_bit = PAGE_SIZE * 8 - 1;
610         else
611                 this_end_bit = end_bit;
612
613         data = lowmem_page_address(bitmap[page].page);
614
615         if (mode == BITMAP_OP_TEST_ALL_SET) {
616                 while (bit <= this_end_bit) {
617                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
618                                 do {
619                                         if (data[bit / BITS_PER_LONG] != -1)
620                                                 return false;
621                                         bit += BITS_PER_LONG;
622                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
623                                 continue;
624                         }
625                         if (!test_bit(bit, data))
626                                 return false;
627                         bit++;
628                 }
629         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
630                 while (bit <= this_end_bit) {
631                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
632                                 do {
633                                         if (data[bit / BITS_PER_LONG] != 0)
634                                                 return false;
635                                         bit += BITS_PER_LONG;
636                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
637                                 continue;
638                         }
639                         if (test_bit(bit, data))
640                                 return false;
641                         bit++;
642                 }
643         } else if (mode == BITMAP_OP_SET) {
644                 while (bit <= this_end_bit) {
645                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
646                                 do {
647                                         data[bit / BITS_PER_LONG] = -1;
648                                         bit += BITS_PER_LONG;
649                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
650                                 continue;
651                         }
652                         __set_bit(bit, data);
653                         bit++;
654                 }
655         } else if (mode == BITMAP_OP_CLEAR) {
656                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
657                         clear_page(data);
658                 else {
659                         while (bit <= this_end_bit) {
660                                 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
661                                         do {
662                                                 data[bit / BITS_PER_LONG] = 0;
663                                                 bit += BITS_PER_LONG;
664                                         } while (this_end_bit >= bit + BITS_PER_LONG - 1);
665                                         continue;
666                                 }
667                                 __clear_bit(bit, data);
668                                 bit++;
669                         }
670                 }
671         } else {
672                 BUG();
673         }
674
675         if (unlikely(page < end_page)) {
676                 bit = 0;
677                 page++;
678                 goto repeat;
679         }
680
681         return true;
682 }
683
684 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
685 {
686         unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
687         unsigned int i;
688
689         for (i = 0; i < n_bitmap_pages; i++) {
690                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
691                 unsigned long *src_data = lowmem_page_address(src[i].page);
692
693                 copy_page(dst_data, src_data);
694         }
695 }
696
697 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
698 {
699         unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
700         unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
701
702         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
703         return &ic->bbs[bitmap_block];
704 }
705
706 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
707                                  bool e, const char *function)
708 {
709 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
710         unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
711
712         if (unlikely(section >= ic->journal_sections) ||
713             unlikely(offset >= limit)) {
714                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
715                        function, section, offset, ic->journal_sections, limit);
716                 BUG();
717         }
718 #endif
719 }
720
721 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
722                                unsigned int *pl_index, unsigned int *pl_offset)
723 {
724         unsigned int sector;
725
726         access_journal_check(ic, section, offset, false, "page_list_location");
727
728         sector = section * ic->journal_section_sectors + offset;
729
730         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
731         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
732 }
733
734 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
735                                                unsigned int section, unsigned int offset, unsigned int *n_sectors)
736 {
737         unsigned int pl_index, pl_offset;
738         char *va;
739
740         page_list_location(ic, section, offset, &pl_index, &pl_offset);
741
742         if (n_sectors)
743                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
744
745         va = lowmem_page_address(pl[pl_index].page);
746
747         return (struct journal_sector *)(va + pl_offset);
748 }
749
750 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
751 {
752         return access_page_list(ic, ic->journal, section, offset, NULL);
753 }
754
755 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
756 {
757         unsigned int rel_sector, offset;
758         struct journal_sector *js;
759
760         access_journal_check(ic, section, n, true, "access_journal_entry");
761
762         rel_sector = n % JOURNAL_BLOCK_SECTORS;
763         offset = n / JOURNAL_BLOCK_SECTORS;
764
765         js = access_journal(ic, section, rel_sector);
766         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
767 }
768
769 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
770 {
771         n <<= ic->sb->log2_sectors_per_block;
772
773         n += JOURNAL_BLOCK_SECTORS;
774
775         access_journal_check(ic, section, n, false, "access_journal_data");
776
777         return access_journal(ic, section, n);
778 }
779
780 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
781 {
782         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
783         int r;
784         unsigned int j, size;
785
786         desc->tfm = ic->journal_mac;
787
788         r = crypto_shash_init(desc);
789         if (unlikely(r < 0)) {
790                 dm_integrity_io_error(ic, "crypto_shash_init", r);
791                 goto err;
792         }
793
794         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
795                 __le64 section_le;
796
797                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
798                 if (unlikely(r < 0)) {
799                         dm_integrity_io_error(ic, "crypto_shash_update", r);
800                         goto err;
801                 }
802
803                 section_le = cpu_to_le64(section);
804                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
805                 if (unlikely(r < 0)) {
806                         dm_integrity_io_error(ic, "crypto_shash_update", r);
807                         goto err;
808                 }
809         }
810
811         for (j = 0; j < ic->journal_section_entries; j++) {
812                 struct journal_entry *je = access_journal_entry(ic, section, j);
813
814                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
815                 if (unlikely(r < 0)) {
816                         dm_integrity_io_error(ic, "crypto_shash_update", r);
817                         goto err;
818                 }
819         }
820
821         size = crypto_shash_digestsize(ic->journal_mac);
822
823         if (likely(size <= JOURNAL_MAC_SIZE)) {
824                 r = crypto_shash_final(desc, result);
825                 if (unlikely(r < 0)) {
826                         dm_integrity_io_error(ic, "crypto_shash_final", r);
827                         goto err;
828                 }
829                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
830         } else {
831                 __u8 digest[HASH_MAX_DIGESTSIZE];
832
833                 if (WARN_ON(size > sizeof(digest))) {
834                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
835                         goto err;
836                 }
837                 r = crypto_shash_final(desc, digest);
838                 if (unlikely(r < 0)) {
839                         dm_integrity_io_error(ic, "crypto_shash_final", r);
840                         goto err;
841                 }
842                 memcpy(result, digest, JOURNAL_MAC_SIZE);
843         }
844
845         return;
846 err:
847         memset(result, 0, JOURNAL_MAC_SIZE);
848 }
849
850 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
851 {
852         __u8 result[JOURNAL_MAC_SIZE];
853         unsigned int j;
854
855         if (!ic->journal_mac)
856                 return;
857
858         section_mac(ic, section, result);
859
860         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
861                 struct journal_sector *js = access_journal(ic, section, j);
862
863                 if (likely(wr))
864                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
865                 else {
866                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
867                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
868                                 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
869                         }
870                 }
871         }
872 }
873
874 static void complete_journal_op(void *context)
875 {
876         struct journal_completion *comp = context;
877
878         BUG_ON(!atomic_read(&comp->in_flight));
879         if (likely(atomic_dec_and_test(&comp->in_flight)))
880                 complete(&comp->comp);
881 }
882
883 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
884                         unsigned int n_sections, struct journal_completion *comp)
885 {
886         struct async_submit_ctl submit;
887         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
888         unsigned int pl_index, pl_offset, section_index;
889         struct page_list *source_pl, *target_pl;
890
891         if (likely(encrypt)) {
892                 source_pl = ic->journal;
893                 target_pl = ic->journal_io;
894         } else {
895                 source_pl = ic->journal_io;
896                 target_pl = ic->journal;
897         }
898
899         page_list_location(ic, section, 0, &pl_index, &pl_offset);
900
901         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
902
903         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
904
905         section_index = pl_index;
906
907         do {
908                 size_t this_step;
909                 struct page *src_pages[2];
910                 struct page *dst_page;
911
912                 while (unlikely(pl_index == section_index)) {
913                         unsigned int dummy;
914
915                         if (likely(encrypt))
916                                 rw_section_mac(ic, section, true);
917                         section++;
918                         n_sections--;
919                         if (!n_sections)
920                                 break;
921                         page_list_location(ic, section, 0, &section_index, &dummy);
922                 }
923
924                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
925                 dst_page = target_pl[pl_index].page;
926                 src_pages[0] = source_pl[pl_index].page;
927                 src_pages[1] = ic->journal_xor[pl_index].page;
928
929                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
930
931                 pl_index++;
932                 pl_offset = 0;
933                 n_bytes -= this_step;
934         } while (n_bytes);
935
936         BUG_ON(n_sections);
937
938         async_tx_issue_pending_all();
939 }
940
941 static void complete_journal_encrypt(void *data, int err)
942 {
943         struct journal_completion *comp = data;
944
945         if (unlikely(err)) {
946                 if (likely(err == -EINPROGRESS)) {
947                         complete(&comp->ic->crypto_backoff);
948                         return;
949                 }
950                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
951         }
952         complete_journal_op(comp);
953 }
954
955 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
956 {
957         int r;
958
959         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
960                                       complete_journal_encrypt, comp);
961         if (likely(encrypt))
962                 r = crypto_skcipher_encrypt(req);
963         else
964                 r = crypto_skcipher_decrypt(req);
965         if (likely(!r))
966                 return false;
967         if (likely(r == -EINPROGRESS))
968                 return true;
969         if (likely(r == -EBUSY)) {
970                 wait_for_completion(&comp->ic->crypto_backoff);
971                 reinit_completion(&comp->ic->crypto_backoff);
972                 return true;
973         }
974         dm_integrity_io_error(comp->ic, "encrypt", r);
975         return false;
976 }
977
978 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
979                           unsigned int n_sections, struct journal_completion *comp)
980 {
981         struct scatterlist **source_sg;
982         struct scatterlist **target_sg;
983
984         atomic_add(2, &comp->in_flight);
985
986         if (likely(encrypt)) {
987                 source_sg = ic->journal_scatterlist;
988                 target_sg = ic->journal_io_scatterlist;
989         } else {
990                 source_sg = ic->journal_io_scatterlist;
991                 target_sg = ic->journal_scatterlist;
992         }
993
994         do {
995                 struct skcipher_request *req;
996                 unsigned int ivsize;
997                 char *iv;
998
999                 if (likely(encrypt))
1000                         rw_section_mac(ic, section, true);
1001
1002                 req = ic->sk_requests[section];
1003                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1004                 iv = req->iv;
1005
1006                 memcpy(iv, iv + ivsize, ivsize);
1007
1008                 req->src = source_sg[section];
1009                 req->dst = target_sg[section];
1010
1011                 if (unlikely(do_crypt(encrypt, req, comp)))
1012                         atomic_inc(&comp->in_flight);
1013
1014                 section++;
1015                 n_sections--;
1016         } while (n_sections);
1017
1018         atomic_dec(&comp->in_flight);
1019         complete_journal_op(comp);
1020 }
1021
1022 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1023                             unsigned int n_sections, struct journal_completion *comp)
1024 {
1025         if (ic->journal_xor)
1026                 return xor_journal(ic, encrypt, section, n_sections, comp);
1027         else
1028                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1029 }
1030
1031 static void complete_journal_io(unsigned long error, void *context)
1032 {
1033         struct journal_completion *comp = context;
1034
1035         if (unlikely(error != 0))
1036                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1037         complete_journal_op(comp);
1038 }
1039
1040 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1041                                unsigned int sector, unsigned int n_sectors,
1042                                struct journal_completion *comp)
1043 {
1044         struct dm_io_request io_req;
1045         struct dm_io_region io_loc;
1046         unsigned int pl_index, pl_offset;
1047         int r;
1048
1049         if (unlikely(dm_integrity_failed(ic))) {
1050                 if (comp)
1051                         complete_journal_io(-1UL, comp);
1052                 return;
1053         }
1054
1055         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1056         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1057
1058         io_req.bi_opf = opf;
1059         io_req.mem.type = DM_IO_PAGE_LIST;
1060         if (ic->journal_io)
1061                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1062         else
1063                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1064         io_req.mem.offset = pl_offset;
1065         if (likely(comp != NULL)) {
1066                 io_req.notify.fn = complete_journal_io;
1067                 io_req.notify.context = comp;
1068         } else {
1069                 io_req.notify.fn = NULL;
1070         }
1071         io_req.client = ic->io;
1072         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1073         io_loc.sector = ic->start + SB_SECTORS + sector;
1074         io_loc.count = n_sectors;
1075
1076         r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1077         if (unlikely(r)) {
1078                 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1079                                       "reading journal" : "writing journal", r);
1080                 if (comp) {
1081                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1082                         complete_journal_io(-1UL, comp);
1083                 }
1084         }
1085 }
1086
1087 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1088                        unsigned int section, unsigned int n_sections,
1089                        struct journal_completion *comp)
1090 {
1091         unsigned int sector, n_sectors;
1092
1093         sector = section * ic->journal_section_sectors;
1094         n_sectors = n_sections * ic->journal_section_sectors;
1095
1096         rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097 }
1098
1099 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1100 {
1101         struct journal_completion io_comp;
1102         struct journal_completion crypt_comp_1;
1103         struct journal_completion crypt_comp_2;
1104         unsigned int i;
1105
1106         io_comp.ic = ic;
1107         init_completion(&io_comp.comp);
1108
1109         if (commit_start + commit_sections <= ic->journal_sections) {
1110                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1111                 if (ic->journal_io) {
1112                         crypt_comp_1.ic = ic;
1113                         init_completion(&crypt_comp_1.comp);
1114                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1115                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1116                         wait_for_completion_io(&crypt_comp_1.comp);
1117                 } else {
1118                         for (i = 0; i < commit_sections; i++)
1119                                 rw_section_mac(ic, commit_start + i, true);
1120                 }
1121                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1122                            commit_sections, &io_comp);
1123         } else {
1124                 unsigned int to_end;
1125
1126                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1127                 to_end = ic->journal_sections - commit_start;
1128                 if (ic->journal_io) {
1129                         crypt_comp_1.ic = ic;
1130                         init_completion(&crypt_comp_1.comp);
1131                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1132                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1133                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1134                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1135                                            commit_start, to_end, &io_comp);
1136                                 reinit_completion(&crypt_comp_1.comp);
1137                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1139                                 wait_for_completion_io(&crypt_comp_1.comp);
1140                         } else {
1141                                 crypt_comp_2.ic = ic;
1142                                 init_completion(&crypt_comp_2.comp);
1143                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1144                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1145                                 wait_for_completion_io(&crypt_comp_1.comp);
1146                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1147                                 wait_for_completion_io(&crypt_comp_2.comp);
1148                         }
1149                 } else {
1150                         for (i = 0; i < to_end; i++)
1151                                 rw_section_mac(ic, commit_start + i, true);
1152                         rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1153                         for (i = 0; i < commit_sections - to_end; i++)
1154                                 rw_section_mac(ic, i, true);
1155                 }
1156                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1157         }
1158
1159         wait_for_completion_io(&io_comp.comp);
1160 }
1161
1162 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1163                               unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1164 {
1165         struct dm_io_request io_req;
1166         struct dm_io_region io_loc;
1167         int r;
1168         unsigned int sector, pl_index, pl_offset;
1169
1170         BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1171
1172         if (unlikely(dm_integrity_failed(ic))) {
1173                 fn(-1UL, data);
1174                 return;
1175         }
1176
1177         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1178
1179         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1180         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1181
1182         io_req.bi_opf = REQ_OP_WRITE;
1183         io_req.mem.type = DM_IO_PAGE_LIST;
1184         io_req.mem.ptr.pl = &ic->journal[pl_index];
1185         io_req.mem.offset = pl_offset;
1186         io_req.notify.fn = fn;
1187         io_req.notify.context = data;
1188         io_req.client = ic->io;
1189         io_loc.bdev = ic->dev->bdev;
1190         io_loc.sector = target;
1191         io_loc.count = n_sectors;
1192
1193         r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1194         if (unlikely(r)) {
1195                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1196                 fn(-1UL, data);
1197         }
1198 }
1199
1200 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1201 {
1202         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1203                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204 }
1205
1206 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1207 {
1208         struct rb_node **n = &ic->in_progress.rb_node;
1209         struct rb_node *parent;
1210
1211         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1212
1213         if (likely(check_waiting)) {
1214                 struct dm_integrity_range *range;
1215
1216                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1217                         if (unlikely(ranges_overlap(range, new_range)))
1218                                 return false;
1219                 }
1220         }
1221
1222         parent = NULL;
1223
1224         while (*n) {
1225                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226
1227                 parent = *n;
1228                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1229                         n = &range->node.rb_left;
1230                 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1231                         n = &range->node.rb_right;
1232                 else
1233                         return false;
1234         }
1235
1236         rb_link_node(&new_range->node, parent, n);
1237         rb_insert_color(&new_range->node, &ic->in_progress);
1238
1239         return true;
1240 }
1241
1242 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1243 {
1244         rb_erase(&range->node, &ic->in_progress);
1245         while (unlikely(!list_empty(&ic->wait_list))) {
1246                 struct dm_integrity_range *last_range =
1247                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1248                 struct task_struct *last_range_task;
1249
1250                 last_range_task = last_range->task;
1251                 list_del(&last_range->wait_entry);
1252                 if (!add_new_range(ic, last_range, false)) {
1253                         last_range->task = last_range_task;
1254                         list_add(&last_range->wait_entry, &ic->wait_list);
1255                         break;
1256                 }
1257                 last_range->waiting = false;
1258                 wake_up_process(last_range_task);
1259         }
1260 }
1261
1262 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1263 {
1264         unsigned long flags;
1265
1266         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1267         remove_range_unlocked(ic, range);
1268         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1269 }
1270
1271 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1272 {
1273         new_range->waiting = true;
1274         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1275         new_range->task = current;
1276         do {
1277                 __set_current_state(TASK_UNINTERRUPTIBLE);
1278                 spin_unlock_irq(&ic->endio_wait.lock);
1279                 io_schedule();
1280                 spin_lock_irq(&ic->endio_wait.lock);
1281         } while (unlikely(new_range->waiting));
1282 }
1283
1284 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1285 {
1286         if (unlikely(!add_new_range(ic, new_range, true)))
1287                 wait_and_add_new_range(ic, new_range);
1288 }
1289
1290 static void init_journal_node(struct journal_node *node)
1291 {
1292         RB_CLEAR_NODE(&node->node);
1293         node->sector = (sector_t)-1;
1294 }
1295
1296 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1297 {
1298         struct rb_node **link;
1299         struct rb_node *parent;
1300
1301         node->sector = sector;
1302         BUG_ON(!RB_EMPTY_NODE(&node->node));
1303
1304         link = &ic->journal_tree_root.rb_node;
1305         parent = NULL;
1306
1307         while (*link) {
1308                 struct journal_node *j;
1309
1310                 parent = *link;
1311                 j = container_of(parent, struct journal_node, node);
1312                 if (sector < j->sector)
1313                         link = &j->node.rb_left;
1314                 else
1315                         link = &j->node.rb_right;
1316         }
1317
1318         rb_link_node(&node->node, parent, link);
1319         rb_insert_color(&node->node, &ic->journal_tree_root);
1320 }
1321
1322 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323 {
1324         BUG_ON(RB_EMPTY_NODE(&node->node));
1325         rb_erase(&node->node, &ic->journal_tree_root);
1326         init_journal_node(node);
1327 }
1328
1329 #define NOT_FOUND       (-1U)
1330
1331 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332 {
1333         struct rb_node *n = ic->journal_tree_root.rb_node;
1334         unsigned int found = NOT_FOUND;
1335
1336         *next_sector = (sector_t)-1;
1337         while (n) {
1338                 struct journal_node *j = container_of(n, struct journal_node, node);
1339
1340                 if (sector == j->sector)
1341                         found = j - ic->journal_tree;
1342
1343                 if (sector < j->sector) {
1344                         *next_sector = j->sector;
1345                         n = j->node.rb_left;
1346                 } else
1347                         n = j->node.rb_right;
1348         }
1349
1350         return found;
1351 }
1352
1353 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1354 {
1355         struct journal_node *node, *next_node;
1356         struct rb_node *next;
1357
1358         if (unlikely(pos >= ic->journal_entries))
1359                 return false;
1360         node = &ic->journal_tree[pos];
1361         if (unlikely(RB_EMPTY_NODE(&node->node)))
1362                 return false;
1363         if (unlikely(node->sector != sector))
1364                 return false;
1365
1366         next = rb_next(&node->node);
1367         if (unlikely(!next))
1368                 return true;
1369
1370         next_node = container_of(next, struct journal_node, node);
1371         return next_node->sector != sector;
1372 }
1373
1374 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375 {
1376         struct rb_node *next;
1377         struct journal_node *next_node;
1378         unsigned int next_section;
1379
1380         BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382         next = rb_next(&node->node);
1383         if (unlikely(!next))
1384                 return false;
1385
1386         next_node = container_of(next, struct journal_node, node);
1387
1388         if (next_node->sector != node->sector)
1389                 return false;
1390
1391         next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392         if (next_section >= ic->committed_section &&
1393             next_section < ic->committed_section + ic->n_committed_sections)
1394                 return true;
1395         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396                 return true;
1397
1398         return false;
1399 }
1400
1401 #define TAG_READ        0
1402 #define TAG_WRITE       1
1403 #define TAG_CMP         2
1404
1405 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406                                unsigned int *metadata_offset, unsigned int total_size, int op)
1407 {
1408 #define MAY_BE_FILLER           1
1409 #define MAY_BE_HASH             2
1410         unsigned int hash_offset = 0;
1411         unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413         do {
1414                 unsigned char *data, *dp;
1415                 struct dm_buffer *b;
1416                 unsigned int to_copy;
1417                 int r;
1418
1419                 r = dm_integrity_failed(ic);
1420                 if (unlikely(r))
1421                         return r;
1422
1423                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424                 if (IS_ERR(data))
1425                         return PTR_ERR(data);
1426
1427                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428                 dp = data + *metadata_offset;
1429                 if (op == TAG_READ) {
1430                         memcpy(tag, dp, to_copy);
1431                 } else if (op == TAG_WRITE) {
1432                         if (memcmp(dp, tag, to_copy)) {
1433                                 memcpy(dp, tag, to_copy);
1434                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435                         }
1436                 } else {
1437                         /* e.g.: op == TAG_CMP */
1438
1439                         if (likely(is_power_of_2(ic->tag_size))) {
1440                                 if (unlikely(memcmp(dp, tag, to_copy)))
1441                                         if (unlikely(!ic->discard) ||
1442                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443                                                 goto thorough_test;
1444                                 }
1445                         } else {
1446                                 unsigned int i, ts;
1447 thorough_test:
1448                                 ts = total_size;
1449
1450                                 for (i = 0; i < to_copy; i++, ts--) {
1451                                         if (unlikely(dp[i] != tag[i]))
1452                                                 may_be &= ~MAY_BE_HASH;
1453                                         if (likely(dp[i] != DISCARD_FILLER))
1454                                                 may_be &= ~MAY_BE_FILLER;
1455                                         hash_offset++;
1456                                         if (unlikely(hash_offset == ic->tag_size)) {
1457                                                 if (unlikely(!may_be)) {
1458                                                         dm_bufio_release(b);
1459                                                         return ts;
1460                                                 }
1461                                                 hash_offset = 0;
1462                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463                                         }
1464                                 }
1465                         }
1466                 }
1467                 dm_bufio_release(b);
1468
1469                 tag += to_copy;
1470                 *metadata_offset += to_copy;
1471                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472                         (*metadata_block)++;
1473                         *metadata_offset = 0;
1474                 }
1475
1476                 if (unlikely(!is_power_of_2(ic->tag_size)))
1477                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478
1479                 total_size -= to_copy;
1480         } while (unlikely(total_size));
1481
1482         return 0;
1483 #undef MAY_BE_FILLER
1484 #undef MAY_BE_HASH
1485 }
1486
1487 struct flush_request {
1488         struct dm_io_request io_req;
1489         struct dm_io_region io_reg;
1490         struct dm_integrity_c *ic;
1491         struct completion comp;
1492 };
1493
1494 static void flush_notify(unsigned long error, void *fr_)
1495 {
1496         struct flush_request *fr = fr_;
1497
1498         if (unlikely(error != 0))
1499                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500         complete(&fr->comp);
1501 }
1502
1503 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504 {
1505         int r;
1506         struct flush_request fr;
1507
1508         if (!ic->meta_dev)
1509                 flush_data = false;
1510         if (flush_data) {
1511                 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1512                 fr.io_req.mem.type = DM_IO_KMEM,
1513                 fr.io_req.mem.ptr.addr = NULL,
1514                 fr.io_req.notify.fn = flush_notify,
1515                 fr.io_req.notify.context = &fr;
1516                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1517                 fr.io_reg.bdev = ic->dev->bdev,
1518                 fr.io_reg.sector = 0,
1519                 fr.io_reg.count = 0,
1520                 fr.ic = ic;
1521                 init_completion(&fr.comp);
1522                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1523                 BUG_ON(r);
1524         }
1525
1526         r = dm_bufio_write_dirty_buffers(ic->bufio);
1527         if (unlikely(r))
1528                 dm_integrity_io_error(ic, "writing tags", r);
1529
1530         if (flush_data)
1531                 wait_for_completion(&fr.comp);
1532 }
1533
1534 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535 {
1536         DECLARE_WAITQUEUE(wait, current);
1537
1538         __add_wait_queue(&ic->endio_wait, &wait);
1539         __set_current_state(TASK_UNINTERRUPTIBLE);
1540         spin_unlock_irq(&ic->endio_wait.lock);
1541         io_schedule();
1542         spin_lock_irq(&ic->endio_wait.lock);
1543         __remove_wait_queue(&ic->endio_wait, &wait);
1544 }
1545
1546 static void autocommit_fn(struct timer_list *t)
1547 {
1548         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1549
1550         if (likely(!dm_integrity_failed(ic)))
1551                 queue_work(ic->commit_wq, &ic->commit_work);
1552 }
1553
1554 static void schedule_autocommit(struct dm_integrity_c *ic)
1555 {
1556         if (!timer_pending(&ic->autocommit_timer))
1557                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1558 }
1559
1560 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561 {
1562         struct bio *bio;
1563         unsigned long flags;
1564
1565         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1566         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1567         bio_list_add(&ic->flush_bio_list, bio);
1568         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1569
1570         queue_work(ic->commit_wq, &ic->commit_work);
1571 }
1572
1573 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1574 {
1575         int r;
1576
1577         r = dm_integrity_failed(ic);
1578         if (unlikely(r) && !bio->bi_status)
1579                 bio->bi_status = errno_to_blk_status(r);
1580         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581                 unsigned long flags;
1582
1583                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1584                 bio_list_add(&ic->synchronous_bios, bio);
1585                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1586                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1587                 return;
1588         }
1589         bio_endio(bio);
1590 }
1591
1592 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1593 {
1594         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1595
1596         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1597                 submit_flush_bio(ic, dio);
1598         else
1599                 do_endio(ic, bio);
1600 }
1601
1602 static void dec_in_flight(struct dm_integrity_io *dio)
1603 {
1604         if (atomic_dec_and_test(&dio->in_flight)) {
1605                 struct dm_integrity_c *ic = dio->ic;
1606                 struct bio *bio;
1607
1608                 remove_range(ic, &dio->range);
1609
1610                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1611                         schedule_autocommit(ic);
1612
1613                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1614                 if (unlikely(dio->bi_status) && !bio->bi_status)
1615                         bio->bi_status = dio->bi_status;
1616                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617                         dio->range.logical_sector += dio->range.n_sectors;
1618                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1619                         INIT_WORK(&dio->work, integrity_bio_wait);
1620                         queue_work(ic->offload_wq, &dio->work);
1621                         return;
1622                 }
1623                 do_endio_flush(ic, dio);
1624         }
1625 }
1626
1627 static void integrity_end_io(struct bio *bio)
1628 {
1629         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1630
1631         dm_bio_restore(&dio->bio_details, bio);
1632         if (bio->bi_integrity)
1633                 bio->bi_opf |= REQ_INTEGRITY;
1634
1635         if (dio->completion)
1636                 complete(dio->completion);
1637
1638         dec_in_flight(dio);
1639 }
1640
1641 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642                                       const char *data, char *result)
1643 {
1644         __le64 sector_le = cpu_to_le64(sector);
1645         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646         int r;
1647         unsigned int digest_size;
1648
1649         req->tfm = ic->internal_hash;
1650
1651         r = crypto_shash_init(req);
1652         if (unlikely(r < 0)) {
1653                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1654                 goto failed;
1655         }
1656
1657         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1659                 if (unlikely(r < 0)) {
1660                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1661                         goto failed;
1662                 }
1663         }
1664
1665         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1666         if (unlikely(r < 0)) {
1667                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1668                 goto failed;
1669         }
1670
1671         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1672         if (unlikely(r < 0)) {
1673                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1674                 goto failed;
1675         }
1676
1677         r = crypto_shash_final(req, result);
1678         if (unlikely(r < 0)) {
1679                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1680                 goto failed;
1681         }
1682
1683         digest_size = crypto_shash_digestsize(ic->internal_hash);
1684         if (unlikely(digest_size < ic->tag_size))
1685                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1686
1687         return;
1688
1689 failed:
1690         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1691         get_random_bytes(result, ic->tag_size);
1692 }
1693
1694 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1695 {
1696         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1697         struct dm_integrity_c *ic = dio->ic;
1698         struct bvec_iter iter;
1699         struct bio_vec bv;
1700         sector_t sector, logical_sector, area, offset;
1701         struct page *page;
1702
1703         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1704         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1705                                                              &dio->metadata_offset);
1706         sector = get_data_sector(ic, area, offset);
1707         logical_sector = dio->range.logical_sector;
1708
1709         page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1710
1711         __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1712                 unsigned pos = 0;
1713
1714                 do {
1715                         sector_t alignment;
1716                         char *mem;
1717                         char *buffer = page_to_virt(page);
1718                         int r;
1719                         struct dm_io_request io_req;
1720                         struct dm_io_region io_loc;
1721                         io_req.bi_opf = REQ_OP_READ;
1722                         io_req.mem.type = DM_IO_KMEM;
1723                         io_req.mem.ptr.addr = buffer;
1724                         io_req.notify.fn = NULL;
1725                         io_req.client = ic->io;
1726                         io_loc.bdev = ic->dev->bdev;
1727                         io_loc.sector = sector;
1728                         io_loc.count = ic->sectors_per_block;
1729
1730                         /* Align the bio to logical block size */
1731                         alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1732                         alignment &= -alignment;
1733                         io_loc.sector = round_down(io_loc.sector, alignment);
1734                         io_loc.count += sector - io_loc.sector;
1735                         buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1736                         io_loc.count = round_up(io_loc.count, alignment);
1737
1738                         r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1739                         if (unlikely(r)) {
1740                                 dio->bi_status = errno_to_blk_status(r);
1741                                 goto free_ret;
1742                         }
1743
1744                         integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1745                         r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1746                                                 &dio->metadata_offset, ic->tag_size, TAG_CMP);
1747                         if (r) {
1748                                 if (r > 0) {
1749                                         DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1750                                                     bio->bi_bdev, logical_sector);
1751                                         atomic64_inc(&ic->number_of_mismatches);
1752                                         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1753                                                          bio, logical_sector, 0);
1754                                         r = -EILSEQ;
1755                                 }
1756                                 dio->bi_status = errno_to_blk_status(r);
1757                                 goto free_ret;
1758                         }
1759
1760                         mem = bvec_kmap_local(&bv);
1761                         memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1762                         kunmap_local(mem);
1763
1764                         pos += ic->sectors_per_block << SECTOR_SHIFT;
1765                         sector += ic->sectors_per_block;
1766                         logical_sector += ic->sectors_per_block;
1767                 } while (pos < bv.bv_len);
1768         }
1769 free_ret:
1770         mempool_free(page, &ic->recheck_pool);
1771 }
1772
1773 static void integrity_metadata(struct work_struct *w)
1774 {
1775         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1776         struct dm_integrity_c *ic = dio->ic;
1777
1778         int r;
1779
1780         if (ic->internal_hash) {
1781                 struct bvec_iter iter;
1782                 struct bio_vec bv;
1783                 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1784                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1785                 char *checksums;
1786                 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1787                 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1788                 sector_t sector;
1789                 unsigned int sectors_to_process;
1790
1791                 if (unlikely(ic->mode == 'R'))
1792                         goto skip_io;
1793
1794                 if (likely(dio->op != REQ_OP_DISCARD))
1795                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1796                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1797                 else
1798                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1799                 if (!checksums) {
1800                         checksums = checksums_onstack;
1801                         if (WARN_ON(extra_space &&
1802                                     digest_size > sizeof(checksums_onstack))) {
1803                                 r = -EINVAL;
1804                                 goto error;
1805                         }
1806                 }
1807
1808                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1809                         unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1810                         unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1811                         unsigned int max_blocks = max_size / ic->tag_size;
1812
1813                         memset(checksums, DISCARD_FILLER, max_size);
1814
1815                         while (bi_size) {
1816                                 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1817
1818                                 this_step_blocks = min(this_step_blocks, max_blocks);
1819                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1820                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1821                                 if (unlikely(r)) {
1822                                         if (likely(checksums != checksums_onstack))
1823                                                 kfree(checksums);
1824                                         goto error;
1825                                 }
1826
1827                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1828                         }
1829
1830                         if (likely(checksums != checksums_onstack))
1831                                 kfree(checksums);
1832                         goto skip_io;
1833                 }
1834
1835                 sector = dio->range.logical_sector;
1836                 sectors_to_process = dio->range.n_sectors;
1837
1838                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1839                         struct bio_vec bv_copy = bv;
1840                         unsigned int pos;
1841                         char *mem, *checksums_ptr;
1842
1843 again:
1844                         mem = bvec_kmap_local(&bv_copy);
1845                         pos = 0;
1846                         checksums_ptr = checksums;
1847                         do {
1848                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1849                                 checksums_ptr += ic->tag_size;
1850                                 sectors_to_process -= ic->sectors_per_block;
1851                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1852                                 sector += ic->sectors_per_block;
1853                         } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1854                         kunmap_local(mem);
1855
1856                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1857                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1858                         if (unlikely(r)) {
1859                                 if (likely(checksums != checksums_onstack))
1860                                         kfree(checksums);
1861                                 if (r > 0) {
1862                                         integrity_recheck(dio, checksums_onstack);
1863                                         goto skip_io;
1864                                 }
1865                                 goto error;
1866                         }
1867
1868                         if (!sectors_to_process)
1869                                 break;
1870
1871                         if (unlikely(pos < bv_copy.bv_len)) {
1872                                 bv_copy.bv_offset += pos;
1873                                 bv_copy.bv_len -= pos;
1874                                 goto again;
1875                         }
1876                 }
1877
1878                 if (likely(checksums != checksums_onstack))
1879                         kfree(checksums);
1880         } else {
1881                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1882
1883                 if (bip) {
1884                         struct bio_vec biv;
1885                         struct bvec_iter iter;
1886                         unsigned int data_to_process = dio->range.n_sectors;
1887
1888                         sector_to_block(ic, data_to_process);
1889                         data_to_process *= ic->tag_size;
1890
1891                         bip_for_each_vec(biv, bip, iter) {
1892                                 unsigned char *tag;
1893                                 unsigned int this_len;
1894
1895                                 BUG_ON(PageHighMem(biv.bv_page));
1896                                 tag = bvec_virt(&biv);
1897                                 this_len = min(biv.bv_len, data_to_process);
1898                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1899                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1900                                 if (unlikely(r))
1901                                         goto error;
1902                                 data_to_process -= this_len;
1903                                 if (!data_to_process)
1904                                         break;
1905                         }
1906                 }
1907         }
1908 skip_io:
1909         dec_in_flight(dio);
1910         return;
1911 error:
1912         dio->bi_status = errno_to_blk_status(r);
1913         dec_in_flight(dio);
1914 }
1915
1916 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1917 {
1918         struct dm_integrity_c *ic = ti->private;
1919         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1920         struct bio_integrity_payload *bip;
1921
1922         sector_t area, offset;
1923
1924         dio->ic = ic;
1925         dio->bi_status = 0;
1926         dio->op = bio_op(bio);
1927
1928         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1929                 if (ti->max_io_len) {
1930                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1931                         unsigned int log2_max_io_len = __fls(ti->max_io_len);
1932                         sector_t start_boundary = sec >> log2_max_io_len;
1933                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1934
1935                         if (start_boundary < end_boundary) {
1936                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1937
1938                                 dm_accept_partial_bio(bio, len);
1939                         }
1940                 }
1941         }
1942
1943         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1944                 submit_flush_bio(ic, dio);
1945                 return DM_MAPIO_SUBMITTED;
1946         }
1947
1948         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1949         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1950         if (unlikely(dio->fua)) {
1951                 /*
1952                  * Don't pass down the FUA flag because we have to flush
1953                  * disk cache anyway.
1954                  */
1955                 bio->bi_opf &= ~REQ_FUA;
1956         }
1957         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1958                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1959                       dio->range.logical_sector, bio_sectors(bio),
1960                       ic->provided_data_sectors);
1961                 return DM_MAPIO_KILL;
1962         }
1963         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1964                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1965                       ic->sectors_per_block,
1966                       dio->range.logical_sector, bio_sectors(bio));
1967                 return DM_MAPIO_KILL;
1968         }
1969
1970         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1971                 struct bvec_iter iter;
1972                 struct bio_vec bv;
1973
1974                 bio_for_each_segment(bv, bio, iter) {
1975                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1976                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1977                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1978                                 return DM_MAPIO_KILL;
1979                         }
1980                 }
1981         }
1982
1983         bip = bio_integrity(bio);
1984         if (!ic->internal_hash) {
1985                 if (bip) {
1986                         unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1987
1988                         if (ic->log2_tag_size >= 0)
1989                                 wanted_tag_size <<= ic->log2_tag_size;
1990                         else
1991                                 wanted_tag_size *= ic->tag_size;
1992                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1993                                 DMERR("Invalid integrity data size %u, expected %u",
1994                                       bip->bip_iter.bi_size, wanted_tag_size);
1995                                 return DM_MAPIO_KILL;
1996                         }
1997                 }
1998         } else {
1999                 if (unlikely(bip != NULL)) {
2000                         DMERR("Unexpected integrity data when using internal hash");
2001                         return DM_MAPIO_KILL;
2002                 }
2003         }
2004
2005         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2006                 return DM_MAPIO_KILL;
2007
2008         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2009         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2010         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2011
2012         dm_integrity_map_continue(dio, true);
2013         return DM_MAPIO_SUBMITTED;
2014 }
2015
2016 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2017                                  unsigned int journal_section, unsigned int journal_entry)
2018 {
2019         struct dm_integrity_c *ic = dio->ic;
2020         sector_t logical_sector;
2021         unsigned int n_sectors;
2022
2023         logical_sector = dio->range.logical_sector;
2024         n_sectors = dio->range.n_sectors;
2025         do {
2026                 struct bio_vec bv = bio_iovec(bio);
2027                 char *mem;
2028
2029                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2030                         bv.bv_len = n_sectors << SECTOR_SHIFT;
2031                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2032                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2033 retry_kmap:
2034                 mem = kmap_local_page(bv.bv_page);
2035                 if (likely(dio->op == REQ_OP_WRITE))
2036                         flush_dcache_page(bv.bv_page);
2037
2038                 do {
2039                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2040
2041                         if (unlikely(dio->op == REQ_OP_READ)) {
2042                                 struct journal_sector *js;
2043                                 char *mem_ptr;
2044                                 unsigned int s;
2045
2046                                 if (unlikely(journal_entry_is_inprogress(je))) {
2047                                         flush_dcache_page(bv.bv_page);
2048                                         kunmap_local(mem);
2049
2050                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2051                                         goto retry_kmap;
2052                                 }
2053                                 smp_rmb();
2054                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2055                                 js = access_journal_data(ic, journal_section, journal_entry);
2056                                 mem_ptr = mem + bv.bv_offset;
2057                                 s = 0;
2058                                 do {
2059                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2060                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2061                                         js++;
2062                                         mem_ptr += 1 << SECTOR_SHIFT;
2063                                 } while (++s < ic->sectors_per_block);
2064 #ifdef INTERNAL_VERIFY
2065                                 if (ic->internal_hash) {
2066                                         char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2067
2068                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2069                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2070                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2071                                                             logical_sector);
2072                                                 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2073                                                                  bio, logical_sector, 0);
2074                                         }
2075                                 }
2076 #endif
2077                         }
2078
2079                         if (!ic->internal_hash) {
2080                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2081                                 unsigned int tag_todo = ic->tag_size;
2082                                 char *tag_ptr = journal_entry_tag(ic, je);
2083
2084                                 if (bip) {
2085                                         do {
2086                                                 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2087                                                 unsigned int tag_now = min(biv.bv_len, tag_todo);
2088                                                 char *tag_addr;
2089
2090                                                 BUG_ON(PageHighMem(biv.bv_page));
2091                                                 tag_addr = bvec_virt(&biv);
2092                                                 if (likely(dio->op == REQ_OP_WRITE))
2093                                                         memcpy(tag_ptr, tag_addr, tag_now);
2094                                                 else
2095                                                         memcpy(tag_addr, tag_ptr, tag_now);
2096                                                 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2097                                                 tag_ptr += tag_now;
2098                                                 tag_todo -= tag_now;
2099                                         } while (unlikely(tag_todo));
2100                                 } else if (likely(dio->op == REQ_OP_WRITE))
2101                                         memset(tag_ptr, 0, tag_todo);
2102                         }
2103
2104                         if (likely(dio->op == REQ_OP_WRITE)) {
2105                                 struct journal_sector *js;
2106                                 unsigned int s;
2107
2108                                 js = access_journal_data(ic, journal_section, journal_entry);
2109                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2110
2111                                 s = 0;
2112                                 do {
2113                                         je->last_bytes[s] = js[s].commit_id;
2114                                 } while (++s < ic->sectors_per_block);
2115
2116                                 if (ic->internal_hash) {
2117                                         unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2118
2119                                         if (unlikely(digest_size > ic->tag_size)) {
2120                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2121
2122                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2123                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2124                                         } else
2125                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2126                                 }
2127
2128                                 journal_entry_set_sector(je, logical_sector);
2129                         }
2130                         logical_sector += ic->sectors_per_block;
2131
2132                         journal_entry++;
2133                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2134                                 journal_entry = 0;
2135                                 journal_section++;
2136                                 wraparound_section(ic, &journal_section);
2137                         }
2138
2139                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2140                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2141
2142                 if (unlikely(dio->op == REQ_OP_READ))
2143                         flush_dcache_page(bv.bv_page);
2144                 kunmap_local(mem);
2145         } while (n_sectors);
2146
2147         if (likely(dio->op == REQ_OP_WRITE)) {
2148                 smp_mb();
2149                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2150                         wake_up(&ic->copy_to_journal_wait);
2151                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2152                         queue_work(ic->commit_wq, &ic->commit_work);
2153                 else
2154                         schedule_autocommit(ic);
2155         } else
2156                 remove_range(ic, &dio->range);
2157
2158         if (unlikely(bio->bi_iter.bi_size)) {
2159                 sector_t area, offset;
2160
2161                 dio->range.logical_sector = logical_sector;
2162                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2163                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2164                 return true;
2165         }
2166
2167         return false;
2168 }
2169
2170 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2171 {
2172         struct dm_integrity_c *ic = dio->ic;
2173         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2174         unsigned int journal_section, journal_entry;
2175         unsigned int journal_read_pos;
2176         struct completion read_comp;
2177         bool discard_retried = false;
2178         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2179
2180         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2181                 need_sync_io = true;
2182
2183         if (need_sync_io && from_map) {
2184                 INIT_WORK(&dio->work, integrity_bio_wait);
2185                 queue_work(ic->offload_wq, &dio->work);
2186                 return;
2187         }
2188
2189 lock_retry:
2190         spin_lock_irq(&ic->endio_wait.lock);
2191 retry:
2192         if (unlikely(dm_integrity_failed(ic))) {
2193                 spin_unlock_irq(&ic->endio_wait.lock);
2194                 do_endio(ic, bio);
2195                 return;
2196         }
2197         dio->range.n_sectors = bio_sectors(bio);
2198         journal_read_pos = NOT_FOUND;
2199         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2200                 if (dio->op == REQ_OP_WRITE) {
2201                         unsigned int next_entry, i, pos;
2202                         unsigned int ws, we, range_sectors;
2203
2204                         dio->range.n_sectors = min(dio->range.n_sectors,
2205                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2206                         if (unlikely(!dio->range.n_sectors)) {
2207                                 if (from_map)
2208                                         goto offload_to_thread;
2209                                 sleep_on_endio_wait(ic);
2210                                 goto retry;
2211                         }
2212                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2213                         ic->free_sectors -= range_sectors;
2214                         journal_section = ic->free_section;
2215                         journal_entry = ic->free_section_entry;
2216
2217                         next_entry = ic->free_section_entry + range_sectors;
2218                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2219                         ic->free_section += next_entry / ic->journal_section_entries;
2220                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2221                         wraparound_section(ic, &ic->free_section);
2222
2223                         pos = journal_section * ic->journal_section_entries + journal_entry;
2224                         ws = journal_section;
2225                         we = journal_entry;
2226                         i = 0;
2227                         do {
2228                                 struct journal_entry *je;
2229
2230                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2231                                 pos++;
2232                                 if (unlikely(pos >= ic->journal_entries))
2233                                         pos = 0;
2234
2235                                 je = access_journal_entry(ic, ws, we);
2236                                 BUG_ON(!journal_entry_is_unused(je));
2237                                 journal_entry_set_inprogress(je);
2238                                 we++;
2239                                 if (unlikely(we == ic->journal_section_entries)) {
2240                                         we = 0;
2241                                         ws++;
2242                                         wraparound_section(ic, &ws);
2243                                 }
2244                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2245
2246                         spin_unlock_irq(&ic->endio_wait.lock);
2247                         goto journal_read_write;
2248                 } else {
2249                         sector_t next_sector;
2250
2251                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2252                         if (likely(journal_read_pos == NOT_FOUND)) {
2253                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2254                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2255                         } else {
2256                                 unsigned int i;
2257                                 unsigned int jp = journal_read_pos + 1;
2258
2259                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2260                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2261                                                 break;
2262                                 }
2263                                 dio->range.n_sectors = i;
2264                         }
2265                 }
2266         }
2267         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2268                 /*
2269                  * We must not sleep in the request routine because it could
2270                  * stall bios on current->bio_list.
2271                  * So, we offload the bio to a workqueue if we have to sleep.
2272                  */
2273                 if (from_map) {
2274 offload_to_thread:
2275                         spin_unlock_irq(&ic->endio_wait.lock);
2276                         INIT_WORK(&dio->work, integrity_bio_wait);
2277                         queue_work(ic->wait_wq, &dio->work);
2278                         return;
2279                 }
2280                 if (journal_read_pos != NOT_FOUND)
2281                         dio->range.n_sectors = ic->sectors_per_block;
2282                 wait_and_add_new_range(ic, &dio->range);
2283                 /*
2284                  * wait_and_add_new_range drops the spinlock, so the journal
2285                  * may have been changed arbitrarily. We need to recheck.
2286                  * To simplify the code, we restrict I/O size to just one block.
2287                  */
2288                 if (journal_read_pos != NOT_FOUND) {
2289                         sector_t next_sector;
2290                         unsigned int new_pos;
2291
2292                         new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2293                         if (unlikely(new_pos != journal_read_pos)) {
2294                                 remove_range_unlocked(ic, &dio->range);
2295                                 goto retry;
2296                         }
2297                 }
2298         }
2299         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2300                 sector_t next_sector;
2301                 unsigned int new_pos;
2302
2303                 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2304                 if (unlikely(new_pos != NOT_FOUND) ||
2305                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2306                         remove_range_unlocked(ic, &dio->range);
2307                         spin_unlock_irq(&ic->endio_wait.lock);
2308                         queue_work(ic->commit_wq, &ic->commit_work);
2309                         flush_workqueue(ic->commit_wq);
2310                         queue_work(ic->writer_wq, &ic->writer_work);
2311                         flush_workqueue(ic->writer_wq);
2312                         discard_retried = true;
2313                         goto lock_retry;
2314                 }
2315         }
2316         spin_unlock_irq(&ic->endio_wait.lock);
2317
2318         if (unlikely(journal_read_pos != NOT_FOUND)) {
2319                 journal_section = journal_read_pos / ic->journal_section_entries;
2320                 journal_entry = journal_read_pos % ic->journal_section_entries;
2321                 goto journal_read_write;
2322         }
2323
2324         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2325                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2326                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2327                         struct bitmap_block_status *bbs;
2328
2329                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2330                         spin_lock(&bbs->bio_queue_lock);
2331                         bio_list_add(&bbs->bio_queue, bio);
2332                         spin_unlock(&bbs->bio_queue_lock);
2333                         queue_work(ic->writer_wq, &bbs->work);
2334                         return;
2335                 }
2336         }
2337
2338         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2339
2340         if (need_sync_io) {
2341                 init_completion(&read_comp);
2342                 dio->completion = &read_comp;
2343         } else
2344                 dio->completion = NULL;
2345
2346         dm_bio_record(&dio->bio_details, bio);
2347         bio_set_dev(bio, ic->dev->bdev);
2348         bio->bi_integrity = NULL;
2349         bio->bi_opf &= ~REQ_INTEGRITY;
2350         bio->bi_end_io = integrity_end_io;
2351         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2352
2353         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2354                 integrity_metadata(&dio->work);
2355                 dm_integrity_flush_buffers(ic, false);
2356
2357                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2358                 dio->completion = NULL;
2359
2360                 submit_bio_noacct(bio);
2361
2362                 return;
2363         }
2364
2365         submit_bio_noacct(bio);
2366
2367         if (need_sync_io) {
2368                 wait_for_completion_io(&read_comp);
2369                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2370                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2371                         goto skip_check;
2372                 if (ic->mode == 'B') {
2373                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2374                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2375                                 goto skip_check;
2376                 }
2377
2378                 if (likely(!bio->bi_status))
2379                         integrity_metadata(&dio->work);
2380                 else
2381 skip_check:
2382                         dec_in_flight(dio);
2383         } else {
2384                 INIT_WORK(&dio->work, integrity_metadata);
2385                 queue_work(ic->metadata_wq, &dio->work);
2386         }
2387
2388         return;
2389
2390 journal_read_write:
2391         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2392                 goto lock_retry;
2393
2394         do_endio_flush(ic, dio);
2395 }
2396
2397
2398 static void integrity_bio_wait(struct work_struct *w)
2399 {
2400         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2401
2402         dm_integrity_map_continue(dio, false);
2403 }
2404
2405 static void pad_uncommitted(struct dm_integrity_c *ic)
2406 {
2407         if (ic->free_section_entry) {
2408                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2409                 ic->free_section_entry = 0;
2410                 ic->free_section++;
2411                 wraparound_section(ic, &ic->free_section);
2412                 ic->n_uncommitted_sections++;
2413         }
2414         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2415                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2416                     ic->journal_section_entries + ic->free_sectors)) {
2417                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2418                        "n_uncommitted_sections %u, n_committed_sections %u, "
2419                        "journal_section_entries %u, free_sectors %u",
2420                        ic->journal_sections, ic->journal_section_entries,
2421                        ic->n_uncommitted_sections, ic->n_committed_sections,
2422                        ic->journal_section_entries, ic->free_sectors);
2423         }
2424 }
2425
2426 static void integrity_commit(struct work_struct *w)
2427 {
2428         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2429         unsigned int commit_start, commit_sections;
2430         unsigned int i, j, n;
2431         struct bio *flushes;
2432
2433         del_timer(&ic->autocommit_timer);
2434
2435         spin_lock_irq(&ic->endio_wait.lock);
2436         flushes = bio_list_get(&ic->flush_bio_list);
2437         if (unlikely(ic->mode != 'J')) {
2438                 spin_unlock_irq(&ic->endio_wait.lock);
2439                 dm_integrity_flush_buffers(ic, true);
2440                 goto release_flush_bios;
2441         }
2442
2443         pad_uncommitted(ic);
2444         commit_start = ic->uncommitted_section;
2445         commit_sections = ic->n_uncommitted_sections;
2446         spin_unlock_irq(&ic->endio_wait.lock);
2447
2448         if (!commit_sections)
2449                 goto release_flush_bios;
2450
2451         ic->wrote_to_journal = true;
2452
2453         i = commit_start;
2454         for (n = 0; n < commit_sections; n++) {
2455                 for (j = 0; j < ic->journal_section_entries; j++) {
2456                         struct journal_entry *je;
2457
2458                         je = access_journal_entry(ic, i, j);
2459                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2460                 }
2461                 for (j = 0; j < ic->journal_section_sectors; j++) {
2462                         struct journal_sector *js;
2463
2464                         js = access_journal(ic, i, j);
2465                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2466                 }
2467                 i++;
2468                 if (unlikely(i >= ic->journal_sections))
2469                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2470                 wraparound_section(ic, &i);
2471         }
2472         smp_rmb();
2473
2474         write_journal(ic, commit_start, commit_sections);
2475
2476         spin_lock_irq(&ic->endio_wait.lock);
2477         ic->uncommitted_section += commit_sections;
2478         wraparound_section(ic, &ic->uncommitted_section);
2479         ic->n_uncommitted_sections -= commit_sections;
2480         ic->n_committed_sections += commit_sections;
2481         spin_unlock_irq(&ic->endio_wait.lock);
2482
2483         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2484                 queue_work(ic->writer_wq, &ic->writer_work);
2485
2486 release_flush_bios:
2487         while (flushes) {
2488                 struct bio *next = flushes->bi_next;
2489
2490                 flushes->bi_next = NULL;
2491                 do_endio(ic, flushes);
2492                 flushes = next;
2493         }
2494 }
2495
2496 static void complete_copy_from_journal(unsigned long error, void *context)
2497 {
2498         struct journal_io *io = context;
2499         struct journal_completion *comp = io->comp;
2500         struct dm_integrity_c *ic = comp->ic;
2501
2502         remove_range(ic, &io->range);
2503         mempool_free(io, &ic->journal_io_mempool);
2504         if (unlikely(error != 0))
2505                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2506         complete_journal_op(comp);
2507 }
2508
2509 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2510                                struct journal_entry *je)
2511 {
2512         unsigned int s = 0;
2513
2514         do {
2515                 js->commit_id = je->last_bytes[s];
2516                 js++;
2517         } while (++s < ic->sectors_per_block);
2518 }
2519
2520 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2521                              unsigned int write_sections, bool from_replay)
2522 {
2523         unsigned int i, j, n;
2524         struct journal_completion comp;
2525         struct blk_plug plug;
2526
2527         blk_start_plug(&plug);
2528
2529         comp.ic = ic;
2530         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2531         init_completion(&comp.comp);
2532
2533         i = write_start;
2534         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2535 #ifndef INTERNAL_VERIFY
2536                 if (unlikely(from_replay))
2537 #endif
2538                         rw_section_mac(ic, i, false);
2539                 for (j = 0; j < ic->journal_section_entries; j++) {
2540                         struct journal_entry *je = access_journal_entry(ic, i, j);
2541                         sector_t sec, area, offset;
2542                         unsigned int k, l, next_loop;
2543                         sector_t metadata_block;
2544                         unsigned int metadata_offset;
2545                         struct journal_io *io;
2546
2547                         if (journal_entry_is_unused(je))
2548                                 continue;
2549                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2550                         sec = journal_entry_get_sector(je);
2551                         if (unlikely(from_replay)) {
2552                                 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2553                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2554                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2555                                 }
2556                                 if (unlikely(sec >= ic->provided_data_sectors)) {
2557                                         journal_entry_set_unused(je);
2558                                         continue;
2559                                 }
2560                         }
2561                         get_area_and_offset(ic, sec, &area, &offset);
2562                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2563                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2564                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2565                                 sector_t sec2, area2, offset2;
2566
2567                                 if (journal_entry_is_unused(je2))
2568                                         break;
2569                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2570                                 sec2 = journal_entry_get_sector(je2);
2571                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2572                                         break;
2573                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2574                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2575                                         break;
2576                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2577                         }
2578                         next_loop = k - 1;
2579
2580                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2581                         io->comp = &comp;
2582                         io->range.logical_sector = sec;
2583                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2584
2585                         spin_lock_irq(&ic->endio_wait.lock);
2586                         add_new_range_and_wait(ic, &io->range);
2587
2588                         if (likely(!from_replay)) {
2589                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2590
2591                                 /* don't write if there is newer committed sector */
2592                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2593                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2594
2595                                         journal_entry_set_unused(je2);
2596                                         remove_journal_node(ic, &section_node[j]);
2597                                         j++;
2598                                         sec += ic->sectors_per_block;
2599                                         offset += ic->sectors_per_block;
2600                                 }
2601                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2602                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2603
2604                                         journal_entry_set_unused(je2);
2605                                         remove_journal_node(ic, &section_node[k - 1]);
2606                                         k--;
2607                                 }
2608                                 if (j == k) {
2609                                         remove_range_unlocked(ic, &io->range);
2610                                         spin_unlock_irq(&ic->endio_wait.lock);
2611                                         mempool_free(io, &ic->journal_io_mempool);
2612                                         goto skip_io;
2613                                 }
2614                                 for (l = j; l < k; l++)
2615                                         remove_journal_node(ic, &section_node[l]);
2616                         }
2617                         spin_unlock_irq(&ic->endio_wait.lock);
2618
2619                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2620                         for (l = j; l < k; l++) {
2621                                 int r;
2622                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2623
2624                                 if (
2625 #ifndef INTERNAL_VERIFY
2626                                     unlikely(from_replay) &&
2627 #endif
2628                                     ic->internal_hash) {
2629                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2630
2631                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2632                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2633                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2634                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2635                                                 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2636                                         }
2637                                 }
2638
2639                                 journal_entry_set_unused(je2);
2640                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2641                                                         ic->tag_size, TAG_WRITE);
2642                                 if (unlikely(r))
2643                                         dm_integrity_io_error(ic, "reading tags", r);
2644                         }
2645
2646                         atomic_inc(&comp.in_flight);
2647                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2648                                           (k - j) << ic->sb->log2_sectors_per_block,
2649                                           get_data_sector(ic, area, offset),
2650                                           complete_copy_from_journal, io);
2651 skip_io:
2652                         j = next_loop;
2653                 }
2654         }
2655
2656         dm_bufio_write_dirty_buffers_async(ic->bufio);
2657
2658         blk_finish_plug(&plug);
2659
2660         complete_journal_op(&comp);
2661         wait_for_completion_io(&comp.comp);
2662
2663         dm_integrity_flush_buffers(ic, true);
2664 }
2665
2666 static void integrity_writer(struct work_struct *w)
2667 {
2668         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2669         unsigned int write_start, write_sections;
2670         unsigned int prev_free_sectors;
2671
2672         spin_lock_irq(&ic->endio_wait.lock);
2673         write_start = ic->committed_section;
2674         write_sections = ic->n_committed_sections;
2675         spin_unlock_irq(&ic->endio_wait.lock);
2676
2677         if (!write_sections)
2678                 return;
2679
2680         do_journal_write(ic, write_start, write_sections, false);
2681
2682         spin_lock_irq(&ic->endio_wait.lock);
2683
2684         ic->committed_section += write_sections;
2685         wraparound_section(ic, &ic->committed_section);
2686         ic->n_committed_sections -= write_sections;
2687
2688         prev_free_sectors = ic->free_sectors;
2689         ic->free_sectors += write_sections * ic->journal_section_entries;
2690         if (unlikely(!prev_free_sectors))
2691                 wake_up_locked(&ic->endio_wait);
2692
2693         spin_unlock_irq(&ic->endio_wait.lock);
2694 }
2695
2696 static void recalc_write_super(struct dm_integrity_c *ic)
2697 {
2698         int r;
2699
2700         dm_integrity_flush_buffers(ic, false);
2701         if (dm_integrity_failed(ic))
2702                 return;
2703
2704         r = sync_rw_sb(ic, REQ_OP_WRITE);
2705         if (unlikely(r))
2706                 dm_integrity_io_error(ic, "writing superblock", r);
2707 }
2708
2709 static void integrity_recalc(struct work_struct *w)
2710 {
2711         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2712         size_t recalc_tags_size;
2713         u8 *recalc_buffer = NULL;
2714         u8 *recalc_tags = NULL;
2715         struct dm_integrity_range range;
2716         struct dm_io_request io_req;
2717         struct dm_io_region io_loc;
2718         sector_t area, offset;
2719         sector_t metadata_block;
2720         unsigned int metadata_offset;
2721         sector_t logical_sector, n_sectors;
2722         __u8 *t;
2723         unsigned int i;
2724         int r;
2725         unsigned int super_counter = 0;
2726         unsigned recalc_sectors = RECALC_SECTORS;
2727
2728 retry:
2729         recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2730         if (!recalc_buffer) {
2731 oom:
2732                 recalc_sectors >>= 1;
2733                 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2734                         goto retry;
2735                 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2736                 goto free_ret;
2737         }
2738         recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2739         if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2740                 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2741         recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2742         if (!recalc_tags) {
2743                 vfree(recalc_buffer);
2744                 recalc_buffer = NULL;
2745                 goto oom;
2746         }
2747
2748         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2749
2750         spin_lock_irq(&ic->endio_wait.lock);
2751
2752 next_chunk:
2753
2754         if (unlikely(dm_post_suspending(ic->ti)))
2755                 goto unlock_ret;
2756
2757         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2758         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2759                 if (ic->mode == 'B') {
2760                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2761                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2762                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2763                 }
2764                 goto unlock_ret;
2765         }
2766
2767         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2768         range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2769         if (!ic->meta_dev)
2770                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2771
2772         add_new_range_and_wait(ic, &range);
2773         spin_unlock_irq(&ic->endio_wait.lock);
2774         logical_sector = range.logical_sector;
2775         n_sectors = range.n_sectors;
2776
2777         if (ic->mode == 'B') {
2778                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2779                         goto advance_and_next;
2780
2781                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2782                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2783                         logical_sector += ic->sectors_per_block;
2784                         n_sectors -= ic->sectors_per_block;
2785                         cond_resched();
2786                 }
2787                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2788                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2789                         n_sectors -= ic->sectors_per_block;
2790                         cond_resched();
2791                 }
2792                 get_area_and_offset(ic, logical_sector, &area, &offset);
2793         }
2794
2795         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2796
2797         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2798                 recalc_write_super(ic);
2799                 if (ic->mode == 'B')
2800                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2801
2802                 super_counter = 0;
2803         }
2804
2805         if (unlikely(dm_integrity_failed(ic)))
2806                 goto err;
2807
2808         io_req.bi_opf = REQ_OP_READ;
2809         io_req.mem.type = DM_IO_VMA;
2810         io_req.mem.ptr.addr = recalc_buffer;
2811         io_req.notify.fn = NULL;
2812         io_req.client = ic->io;
2813         io_loc.bdev = ic->dev->bdev;
2814         io_loc.sector = get_data_sector(ic, area, offset);
2815         io_loc.count = n_sectors;
2816
2817         r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
2818         if (unlikely(r)) {
2819                 dm_integrity_io_error(ic, "reading data", r);
2820                 goto err;
2821         }
2822
2823         t = recalc_tags;
2824         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2825                 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2826                 t += ic->tag_size;
2827         }
2828
2829         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2830
2831         r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2832         if (unlikely(r)) {
2833                 dm_integrity_io_error(ic, "writing tags", r);
2834                 goto err;
2835         }
2836
2837         if (ic->mode == 'B') {
2838                 sector_t start, end;
2839
2840                 start = (range.logical_sector >>
2841                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2842                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2843                 end = ((range.logical_sector + range.n_sectors) >>
2844                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2845                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2846                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2847         }
2848
2849 advance_and_next:
2850         cond_resched();
2851
2852         spin_lock_irq(&ic->endio_wait.lock);
2853         remove_range_unlocked(ic, &range);
2854         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2855         goto next_chunk;
2856
2857 err:
2858         remove_range(ic, &range);
2859         goto free_ret;
2860
2861 unlock_ret:
2862         spin_unlock_irq(&ic->endio_wait.lock);
2863
2864         recalc_write_super(ic);
2865
2866 free_ret:
2867         vfree(recalc_buffer);
2868         kvfree(recalc_tags);
2869 }
2870
2871 static void bitmap_block_work(struct work_struct *w)
2872 {
2873         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2874         struct dm_integrity_c *ic = bbs->ic;
2875         struct bio *bio;
2876         struct bio_list bio_queue;
2877         struct bio_list waiting;
2878
2879         bio_list_init(&waiting);
2880
2881         spin_lock(&bbs->bio_queue_lock);
2882         bio_queue = bbs->bio_queue;
2883         bio_list_init(&bbs->bio_queue);
2884         spin_unlock(&bbs->bio_queue_lock);
2885
2886         while ((bio = bio_list_pop(&bio_queue))) {
2887                 struct dm_integrity_io *dio;
2888
2889                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2890
2891                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2892                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2893                         remove_range(ic, &dio->range);
2894                         INIT_WORK(&dio->work, integrity_bio_wait);
2895                         queue_work(ic->offload_wq, &dio->work);
2896                 } else {
2897                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2898                                         dio->range.n_sectors, BITMAP_OP_SET);
2899                         bio_list_add(&waiting, bio);
2900                 }
2901         }
2902
2903         if (bio_list_empty(&waiting))
2904                 return;
2905
2906         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2907                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2908                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2909
2910         while ((bio = bio_list_pop(&waiting))) {
2911                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2912
2913                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2914                                 dio->range.n_sectors, BITMAP_OP_SET);
2915
2916                 remove_range(ic, &dio->range);
2917                 INIT_WORK(&dio->work, integrity_bio_wait);
2918                 queue_work(ic->offload_wq, &dio->work);
2919         }
2920
2921         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2922 }
2923
2924 static void bitmap_flush_work(struct work_struct *work)
2925 {
2926         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2927         struct dm_integrity_range range;
2928         unsigned long limit;
2929         struct bio *bio;
2930
2931         dm_integrity_flush_buffers(ic, false);
2932
2933         range.logical_sector = 0;
2934         range.n_sectors = ic->provided_data_sectors;
2935
2936         spin_lock_irq(&ic->endio_wait.lock);
2937         add_new_range_and_wait(ic, &range);
2938         spin_unlock_irq(&ic->endio_wait.lock);
2939
2940         dm_integrity_flush_buffers(ic, true);
2941
2942         limit = ic->provided_data_sectors;
2943         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2944                 limit = le64_to_cpu(ic->sb->recalc_sector)
2945                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2946                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2947         }
2948         /*DEBUG_print("zeroing journal\n");*/
2949         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2950         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2951
2952         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2953                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2954
2955         spin_lock_irq(&ic->endio_wait.lock);
2956         remove_range_unlocked(ic, &range);
2957         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2958                 bio_endio(bio);
2959                 spin_unlock_irq(&ic->endio_wait.lock);
2960                 spin_lock_irq(&ic->endio_wait.lock);
2961         }
2962         spin_unlock_irq(&ic->endio_wait.lock);
2963 }
2964
2965
2966 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2967                          unsigned int n_sections, unsigned char commit_seq)
2968 {
2969         unsigned int i, j, n;
2970
2971         if (!n_sections)
2972                 return;
2973
2974         for (n = 0; n < n_sections; n++) {
2975                 i = start_section + n;
2976                 wraparound_section(ic, &i);
2977                 for (j = 0; j < ic->journal_section_sectors; j++) {
2978                         struct journal_sector *js = access_journal(ic, i, j);
2979
2980                         BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2981                         memset(&js->sectors, 0, sizeof(js->sectors));
2982                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2983                 }
2984                 for (j = 0; j < ic->journal_section_entries; j++) {
2985                         struct journal_entry *je = access_journal_entry(ic, i, j);
2986
2987                         journal_entry_set_unused(je);
2988                 }
2989         }
2990
2991         write_journal(ic, start_section, n_sections);
2992 }
2993
2994 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2995 {
2996         unsigned char k;
2997
2998         for (k = 0; k < N_COMMIT_IDS; k++) {
2999                 if (dm_integrity_commit_id(ic, i, j, k) == id)
3000                         return k;
3001         }
3002         dm_integrity_io_error(ic, "journal commit id", -EIO);
3003         return -EIO;
3004 }
3005
3006 static void replay_journal(struct dm_integrity_c *ic)
3007 {
3008         unsigned int i, j;
3009         bool used_commit_ids[N_COMMIT_IDS];
3010         unsigned int max_commit_id_sections[N_COMMIT_IDS];
3011         unsigned int write_start, write_sections;
3012         unsigned int continue_section;
3013         bool journal_empty;
3014         unsigned char unused, last_used, want_commit_seq;
3015
3016         if (ic->mode == 'R')
3017                 return;
3018
3019         if (ic->journal_uptodate)
3020                 return;
3021
3022         last_used = 0;
3023         write_start = 0;
3024
3025         if (!ic->just_formatted) {
3026                 DEBUG_print("reading journal\n");
3027                 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3028                 if (ic->journal_io)
3029                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3030                 if (ic->journal_io) {
3031                         struct journal_completion crypt_comp;
3032
3033                         crypt_comp.ic = ic;
3034                         init_completion(&crypt_comp.comp);
3035                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3036                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3037                         wait_for_completion(&crypt_comp.comp);
3038                 }
3039                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3040         }
3041
3042         if (dm_integrity_failed(ic))
3043                 goto clear_journal;
3044
3045         journal_empty = true;
3046         memset(used_commit_ids, 0, sizeof(used_commit_ids));
3047         memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3048         for (i = 0; i < ic->journal_sections; i++) {
3049                 for (j = 0; j < ic->journal_section_sectors; j++) {
3050                         int k;
3051                         struct journal_sector *js = access_journal(ic, i, j);
3052
3053                         k = find_commit_seq(ic, i, j, js->commit_id);
3054                         if (k < 0)
3055                                 goto clear_journal;
3056                         used_commit_ids[k] = true;
3057                         max_commit_id_sections[k] = i;
3058                 }
3059                 if (journal_empty) {
3060                         for (j = 0; j < ic->journal_section_entries; j++) {
3061                                 struct journal_entry *je = access_journal_entry(ic, i, j);
3062
3063                                 if (!journal_entry_is_unused(je)) {
3064                                         journal_empty = false;
3065                                         break;
3066                                 }
3067                         }
3068                 }
3069         }
3070
3071         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3072                 unused = N_COMMIT_IDS - 1;
3073                 while (unused && !used_commit_ids[unused - 1])
3074                         unused--;
3075         } else {
3076                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3077                         if (!used_commit_ids[unused])
3078                                 break;
3079                 if (unused == N_COMMIT_IDS) {
3080                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
3081                         goto clear_journal;
3082                 }
3083         }
3084         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3085                     unused, used_commit_ids[0], used_commit_ids[1],
3086                     used_commit_ids[2], used_commit_ids[3]);
3087
3088         last_used = prev_commit_seq(unused);
3089         want_commit_seq = prev_commit_seq(last_used);
3090
3091         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3092                 journal_empty = true;
3093
3094         write_start = max_commit_id_sections[last_used] + 1;
3095         if (unlikely(write_start >= ic->journal_sections))
3096                 want_commit_seq = next_commit_seq(want_commit_seq);
3097         wraparound_section(ic, &write_start);
3098
3099         i = write_start;
3100         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3101                 for (j = 0; j < ic->journal_section_sectors; j++) {
3102                         struct journal_sector *js = access_journal(ic, i, j);
3103
3104                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3105                                 /*
3106                                  * This could be caused by crash during writing.
3107                                  * We won't replay the inconsistent part of the
3108                                  * journal.
3109                                  */
3110                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3111                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3112                                 goto brk;
3113                         }
3114                 }
3115                 i++;
3116                 if (unlikely(i >= ic->journal_sections))
3117                         want_commit_seq = next_commit_seq(want_commit_seq);
3118                 wraparound_section(ic, &i);
3119         }
3120 brk:
3121
3122         if (!journal_empty) {
3123                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3124                             write_sections, write_start, want_commit_seq);
3125                 do_journal_write(ic, write_start, write_sections, true);
3126         }
3127
3128         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3129                 continue_section = write_start;
3130                 ic->commit_seq = want_commit_seq;
3131                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3132         } else {
3133                 unsigned int s;
3134                 unsigned char erase_seq;
3135
3136 clear_journal:
3137                 DEBUG_print("clearing journal\n");
3138
3139                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3140                 s = write_start;
3141                 init_journal(ic, s, 1, erase_seq);
3142                 s++;
3143                 wraparound_section(ic, &s);
3144                 if (ic->journal_sections >= 2) {
3145                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3146                         s += ic->journal_sections - 2;
3147                         wraparound_section(ic, &s);
3148                         init_journal(ic, s, 1, erase_seq);
3149                 }
3150
3151                 continue_section = 0;
3152                 ic->commit_seq = next_commit_seq(erase_seq);
3153         }
3154
3155         ic->committed_section = continue_section;
3156         ic->n_committed_sections = 0;
3157
3158         ic->uncommitted_section = continue_section;
3159         ic->n_uncommitted_sections = 0;
3160
3161         ic->free_section = continue_section;
3162         ic->free_section_entry = 0;
3163         ic->free_sectors = ic->journal_entries;
3164
3165         ic->journal_tree_root = RB_ROOT;
3166         for (i = 0; i < ic->journal_entries; i++)
3167                 init_journal_node(&ic->journal_tree[i]);
3168 }
3169
3170 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3171 {
3172         DEBUG_print("%s\n", __func__);
3173
3174         if (ic->mode == 'B') {
3175                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3176                 ic->synchronous_mode = 1;
3177
3178                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3179                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3180                 flush_workqueue(ic->commit_wq);
3181         }
3182 }
3183
3184 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3185 {
3186         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3187
3188         DEBUG_print("%s\n", __func__);
3189
3190         dm_integrity_enter_synchronous_mode(ic);
3191
3192         return NOTIFY_DONE;
3193 }
3194
3195 static void dm_integrity_postsuspend(struct dm_target *ti)
3196 {
3197         struct dm_integrity_c *ic = ti->private;
3198         int r;
3199
3200         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3201
3202         del_timer_sync(&ic->autocommit_timer);
3203
3204         if (ic->recalc_wq)
3205                 drain_workqueue(ic->recalc_wq);
3206
3207         if (ic->mode == 'B')
3208                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3209
3210         queue_work(ic->commit_wq, &ic->commit_work);
3211         drain_workqueue(ic->commit_wq);
3212
3213         if (ic->mode == 'J') {
3214                 queue_work(ic->writer_wq, &ic->writer_work);
3215                 drain_workqueue(ic->writer_wq);
3216                 dm_integrity_flush_buffers(ic, true);
3217                 if (ic->wrote_to_journal) {
3218                         init_journal(ic, ic->free_section,
3219                                      ic->journal_sections - ic->free_section, ic->commit_seq);
3220                         if (ic->free_section) {
3221                                 init_journal(ic, 0, ic->free_section,
3222                                              next_commit_seq(ic->commit_seq));
3223                         }
3224                 }
3225         }
3226
3227         if (ic->mode == 'B') {
3228                 dm_integrity_flush_buffers(ic, true);
3229 #if 1
3230                 /* set to 0 to test bitmap replay code */
3231                 init_journal(ic, 0, ic->journal_sections, 0);
3232                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3233                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3234                 if (unlikely(r))
3235                         dm_integrity_io_error(ic, "writing superblock", r);
3236 #endif
3237         }
3238
3239         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3240
3241         ic->journal_uptodate = true;
3242 }
3243
3244 static void dm_integrity_resume(struct dm_target *ti)
3245 {
3246         struct dm_integrity_c *ic = ti->private;
3247         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3248         int r;
3249
3250         DEBUG_print("resume\n");
3251
3252         ic->wrote_to_journal = false;
3253
3254         if (ic->provided_data_sectors != old_provided_data_sectors) {
3255                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3256                     ic->mode == 'B' &&
3257                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3258                         rw_journal_sectors(ic, REQ_OP_READ, 0,
3259                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3260                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3261                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3262                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3263                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3264                 }
3265
3266                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3267                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3268                 if (unlikely(r))
3269                         dm_integrity_io_error(ic, "writing superblock", r);
3270         }
3271
3272         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3273                 DEBUG_print("resume dirty_bitmap\n");
3274                 rw_journal_sectors(ic, REQ_OP_READ, 0,
3275                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3276                 if (ic->mode == 'B') {
3277                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3278                             !ic->reset_recalculate_flag) {
3279                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3280                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3281                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3282                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3283                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3284                                         ic->sb->recalc_sector = cpu_to_le64(0);
3285                                 }
3286                         } else {
3287                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3288                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3289                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3290                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3291                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3292                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3293                                 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3294                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3295                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3296                                 ic->sb->recalc_sector = cpu_to_le64(0);
3297                         }
3298                 } else {
3299                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3300                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3301                             ic->reset_recalculate_flag) {
3302                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3303                                 ic->sb->recalc_sector = cpu_to_le64(0);
3304                         }
3305                         init_journal(ic, 0, ic->journal_sections, 0);
3306                         replay_journal(ic);
3307                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3308                 }
3309                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3310                 if (unlikely(r))
3311                         dm_integrity_io_error(ic, "writing superblock", r);
3312         } else {
3313                 replay_journal(ic);
3314                 if (ic->reset_recalculate_flag) {
3315                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3316                         ic->sb->recalc_sector = cpu_to_le64(0);
3317                 }
3318                 if (ic->mode == 'B') {
3319                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3320                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3321                         r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3322                         if (unlikely(r))
3323                                 dm_integrity_io_error(ic, "writing superblock", r);
3324
3325                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3326                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3327                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3328                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3329                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3330                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3331                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3332                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3333                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3334                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3335                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3336                         }
3337                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3338                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3339                 }
3340         }
3341
3342         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3343         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3344                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3345
3346                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3347                 if (recalc_pos < ic->provided_data_sectors) {
3348                         queue_work(ic->recalc_wq, &ic->recalc_work);
3349                 } else if (recalc_pos > ic->provided_data_sectors) {
3350                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3351                         recalc_write_super(ic);
3352                 }
3353         }
3354
3355         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3356         ic->reboot_notifier.next = NULL;
3357         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3358         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3359
3360 #if 0
3361         /* set to 1 to stress test synchronous mode */
3362         dm_integrity_enter_synchronous_mode(ic);
3363 #endif
3364 }
3365
3366 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3367                                 unsigned int status_flags, char *result, unsigned int maxlen)
3368 {
3369         struct dm_integrity_c *ic = ti->private;
3370         unsigned int arg_count;
3371         size_t sz = 0;
3372
3373         switch (type) {
3374         case STATUSTYPE_INFO:
3375                 DMEMIT("%llu %llu",
3376                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3377                         ic->provided_data_sectors);
3378                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3379                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3380                 else
3381                         DMEMIT(" -");
3382                 break;
3383
3384         case STATUSTYPE_TABLE: {
3385                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3386
3387                 watermark_percentage += ic->journal_entries / 2;
3388                 do_div(watermark_percentage, ic->journal_entries);
3389                 arg_count = 3;
3390                 arg_count += !!ic->meta_dev;
3391                 arg_count += ic->sectors_per_block != 1;
3392                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3393                 arg_count += ic->reset_recalculate_flag;
3394                 arg_count += ic->discard;
3395                 arg_count += ic->mode == 'J';
3396                 arg_count += ic->mode == 'J';
3397                 arg_count += ic->mode == 'B';
3398                 arg_count += ic->mode == 'B';
3399                 arg_count += !!ic->internal_hash_alg.alg_string;
3400                 arg_count += !!ic->journal_crypt_alg.alg_string;
3401                 arg_count += !!ic->journal_mac_alg.alg_string;
3402                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3403                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3404                 arg_count += ic->legacy_recalculate;
3405                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3406                        ic->tag_size, ic->mode, arg_count);
3407                 if (ic->meta_dev)
3408                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3409                 if (ic->sectors_per_block != 1)
3410                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3411                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3412                         DMEMIT(" recalculate");
3413                 if (ic->reset_recalculate_flag)
3414                         DMEMIT(" reset_recalculate");
3415                 if (ic->discard)
3416                         DMEMIT(" allow_discards");
3417                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3418                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3419                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3420                 if (ic->mode == 'J') {
3421                         DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3422                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3423                 }
3424                 if (ic->mode == 'B') {
3425                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3426                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3427                 }
3428                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3429                         DMEMIT(" fix_padding");
3430                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3431                         DMEMIT(" fix_hmac");
3432                 if (ic->legacy_recalculate)
3433                         DMEMIT(" legacy_recalculate");
3434
3435 #define EMIT_ALG(a, n)                                                  \
3436                 do {                                                    \
3437                         if (ic->a.alg_string) {                         \
3438                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3439                                 if (ic->a.key_string)                   \
3440                                         DMEMIT(":%s", ic->a.key_string);\
3441                         }                                               \
3442                 } while (0)
3443                 EMIT_ALG(internal_hash_alg, "internal_hash");
3444                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3445                 EMIT_ALG(journal_mac_alg, "journal_mac");
3446                 break;
3447         }
3448         case STATUSTYPE_IMA:
3449                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3450                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3451                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3452
3453                 if (ic->meta_dev)
3454                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3455                 if (ic->sectors_per_block != 1)
3456                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3457
3458                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3459                        'y' : 'n');
3460                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3461                 DMEMIT(",fix_padding=%c",
3462                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3463                 DMEMIT(",fix_hmac=%c",
3464                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3465                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3466
3467                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3468                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3469                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3470                 DMEMIT(";");
3471                 break;
3472         }
3473 }
3474
3475 static int dm_integrity_iterate_devices(struct dm_target *ti,
3476                                         iterate_devices_callout_fn fn, void *data)
3477 {
3478         struct dm_integrity_c *ic = ti->private;
3479
3480         if (!ic->meta_dev)
3481                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3482         else
3483                 return fn(ti, ic->dev, 0, ti->len, data);
3484 }
3485
3486 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3487 {
3488         struct dm_integrity_c *ic = ti->private;
3489
3490         if (ic->sectors_per_block > 1) {
3491                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3492                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3493                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3494                 limits->dma_alignment = limits->logical_block_size - 1;
3495         }
3496         limits->max_integrity_segments = USHRT_MAX;
3497 }
3498
3499 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3500 {
3501         unsigned int sector_space = JOURNAL_SECTOR_DATA;
3502
3503         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3504         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3505                                          JOURNAL_ENTRY_ROUNDUP);
3506
3507         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3508                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3509         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3510         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3511         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3512         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3513 }
3514
3515 static int calculate_device_limits(struct dm_integrity_c *ic)
3516 {
3517         __u64 initial_sectors;
3518
3519         calculate_journal_section_size(ic);
3520         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3521         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3522                 return -EINVAL;
3523         ic->initial_sectors = initial_sectors;
3524
3525         if (!ic->meta_dev) {
3526                 sector_t last_sector, last_area, last_offset;
3527
3528                 /* we have to maintain excessive padding for compatibility with existing volumes */
3529                 __u64 metadata_run_padding =
3530                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3531                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3532                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3533
3534                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3535                                             metadata_run_padding) >> SECTOR_SHIFT;
3536                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3537                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3538                 else
3539                         ic->log2_metadata_run = -1;
3540
3541                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3542                 last_sector = get_data_sector(ic, last_area, last_offset);
3543                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3544                         return -EINVAL;
3545         } else {
3546                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3547
3548                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3549                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3550                 meta_size <<= ic->log2_buffer_sectors;
3551                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3552                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3553                         return -EINVAL;
3554                 ic->metadata_run = 1;
3555                 ic->log2_metadata_run = 0;
3556         }
3557
3558         return 0;
3559 }
3560
3561 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3562 {
3563         if (!ic->meta_dev) {
3564                 int test_bit;
3565
3566                 ic->provided_data_sectors = 0;
3567                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3568                         __u64 prev_data_sectors = ic->provided_data_sectors;
3569
3570                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3571                         if (calculate_device_limits(ic))
3572                                 ic->provided_data_sectors = prev_data_sectors;
3573                 }
3574         } else {
3575                 ic->provided_data_sectors = ic->data_device_sectors;
3576                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3577         }
3578 }
3579
3580 static int initialize_superblock(struct dm_integrity_c *ic,
3581                                  unsigned int journal_sectors, unsigned int interleave_sectors)
3582 {
3583         unsigned int journal_sections;
3584         int test_bit;
3585
3586         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3587         memcpy(ic->sb->magic, SB_MAGIC, 8);
3588         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3589         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3590         if (ic->journal_mac_alg.alg_string)
3591                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3592
3593         calculate_journal_section_size(ic);
3594         journal_sections = journal_sectors / ic->journal_section_sectors;
3595         if (!journal_sections)
3596                 journal_sections = 1;
3597
3598         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3599                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3600                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3601         }
3602
3603         if (!ic->meta_dev) {
3604                 if (ic->fix_padding)
3605                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3606                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3607                 if (!interleave_sectors)
3608                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3609                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3610                 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3611                 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3612
3613                 get_provided_data_sectors(ic);
3614                 if (!ic->provided_data_sectors)
3615                         return -EINVAL;
3616         } else {
3617                 ic->sb->log2_interleave_sectors = 0;
3618
3619                 get_provided_data_sectors(ic);
3620                 if (!ic->provided_data_sectors)
3621                         return -EINVAL;
3622
3623 try_smaller_buffer:
3624                 ic->sb->journal_sections = cpu_to_le32(0);
3625                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3626                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3627                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3628
3629                         if (test_journal_sections > journal_sections)
3630                                 continue;
3631                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3632                         if (calculate_device_limits(ic))
3633                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3634
3635                 }
3636                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3637                         if (ic->log2_buffer_sectors > 3) {
3638                                 ic->log2_buffer_sectors--;
3639                                 goto try_smaller_buffer;
3640                         }
3641                         return -EINVAL;
3642                 }
3643         }
3644
3645         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3646
3647         sb_set_version(ic);
3648
3649         return 0;
3650 }
3651
3652 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3653 {
3654         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3655         struct blk_integrity bi;
3656
3657         memset(&bi, 0, sizeof(bi));
3658         bi.profile = &dm_integrity_profile;
3659         bi.tuple_size = ic->tag_size;
3660         bi.tag_size = bi.tuple_size;
3661         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3662
3663         blk_integrity_register(disk, &bi);
3664 }
3665
3666 static void dm_integrity_free_page_list(struct page_list *pl)
3667 {
3668         unsigned int i;
3669
3670         if (!pl)
3671                 return;
3672         for (i = 0; pl[i].page; i++)
3673                 __free_page(pl[i].page);
3674         kvfree(pl);
3675 }
3676
3677 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3678 {
3679         struct page_list *pl;
3680         unsigned int i;
3681
3682         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3683         if (!pl)
3684                 return NULL;
3685
3686         for (i = 0; i < n_pages; i++) {
3687                 pl[i].page = alloc_page(GFP_KERNEL);
3688                 if (!pl[i].page) {
3689                         dm_integrity_free_page_list(pl);
3690                         return NULL;
3691                 }
3692                 if (i)
3693                         pl[i - 1].next = &pl[i];
3694         }
3695         pl[i].page = NULL;
3696         pl[i].next = NULL;
3697
3698         return pl;
3699 }
3700
3701 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3702 {
3703         unsigned int i;
3704
3705         for (i = 0; i < ic->journal_sections; i++)
3706                 kvfree(sl[i]);
3707         kvfree(sl);
3708 }
3709
3710 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3711                                                                    struct page_list *pl)
3712 {
3713         struct scatterlist **sl;
3714         unsigned int i;
3715
3716         sl = kvmalloc_array(ic->journal_sections,
3717                             sizeof(struct scatterlist *),
3718                             GFP_KERNEL | __GFP_ZERO);
3719         if (!sl)
3720                 return NULL;
3721
3722         for (i = 0; i < ic->journal_sections; i++) {
3723                 struct scatterlist *s;
3724                 unsigned int start_index, start_offset;
3725                 unsigned int end_index, end_offset;
3726                 unsigned int n_pages;
3727                 unsigned int idx;
3728
3729                 page_list_location(ic, i, 0, &start_index, &start_offset);
3730                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3731                                    &end_index, &end_offset);
3732
3733                 n_pages = (end_index - start_index + 1);
3734
3735                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3736                                    GFP_KERNEL);
3737                 if (!s) {
3738                         dm_integrity_free_journal_scatterlist(ic, sl);
3739                         return NULL;
3740                 }
3741
3742                 sg_init_table(s, n_pages);
3743                 for (idx = start_index; idx <= end_index; idx++) {
3744                         char *va = lowmem_page_address(pl[idx].page);
3745                         unsigned int start = 0, end = PAGE_SIZE;
3746
3747                         if (idx == start_index)
3748                                 start = start_offset;
3749                         if (idx == end_index)
3750                                 end = end_offset + (1 << SECTOR_SHIFT);
3751                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3752                 }
3753
3754                 sl[i] = s;
3755         }
3756
3757         return sl;
3758 }
3759
3760 static void free_alg(struct alg_spec *a)
3761 {
3762         kfree_sensitive(a->alg_string);
3763         kfree_sensitive(a->key);
3764         memset(a, 0, sizeof(*a));
3765 }
3766
3767 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3768 {
3769         char *k;
3770
3771         free_alg(a);
3772
3773         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3774         if (!a->alg_string)
3775                 goto nomem;
3776
3777         k = strchr(a->alg_string, ':');
3778         if (k) {
3779                 *k = 0;
3780                 a->key_string = k + 1;
3781                 if (strlen(a->key_string) & 1)
3782                         goto inval;
3783
3784                 a->key_size = strlen(a->key_string) / 2;
3785                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3786                 if (!a->key)
3787                         goto nomem;
3788                 if (hex2bin(a->key, a->key_string, a->key_size))
3789                         goto inval;
3790         }
3791
3792         return 0;
3793 inval:
3794         *error = error_inval;
3795         return -EINVAL;
3796 nomem:
3797         *error = "Out of memory for an argument";
3798         return -ENOMEM;
3799 }
3800
3801 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3802                    char *error_alg, char *error_key)
3803 {
3804         int r;
3805
3806         if (a->alg_string) {
3807                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3808                 if (IS_ERR(*hash)) {
3809                         *error = error_alg;
3810                         r = PTR_ERR(*hash);
3811                         *hash = NULL;
3812                         return r;
3813                 }
3814
3815                 if (a->key) {
3816                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3817                         if (r) {
3818                                 *error = error_key;
3819                                 return r;
3820                         }
3821                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3822                         *error = error_key;
3823                         return -ENOKEY;
3824                 }
3825         }
3826
3827         return 0;
3828 }
3829
3830 static int create_journal(struct dm_integrity_c *ic, char **error)
3831 {
3832         int r = 0;
3833         unsigned int i;
3834         __u64 journal_pages, journal_desc_size, journal_tree_size;
3835         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3836         struct skcipher_request *req = NULL;
3837
3838         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3839         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3840         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3841         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3842
3843         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3844                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3845         journal_desc_size = journal_pages * sizeof(struct page_list);
3846         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3847                 *error = "Journal doesn't fit into memory";
3848                 r = -ENOMEM;
3849                 goto bad;
3850         }
3851         ic->journal_pages = journal_pages;
3852
3853         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3854         if (!ic->journal) {
3855                 *error = "Could not allocate memory for journal";
3856                 r = -ENOMEM;
3857                 goto bad;
3858         }
3859         if (ic->journal_crypt_alg.alg_string) {
3860                 unsigned int ivsize, blocksize;
3861                 struct journal_completion comp;
3862
3863                 comp.ic = ic;
3864                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3865                 if (IS_ERR(ic->journal_crypt)) {
3866                         *error = "Invalid journal cipher";
3867                         r = PTR_ERR(ic->journal_crypt);
3868                         ic->journal_crypt = NULL;
3869                         goto bad;
3870                 }
3871                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3872                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3873
3874                 if (ic->journal_crypt_alg.key) {
3875                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3876                                                    ic->journal_crypt_alg.key_size);
3877                         if (r) {
3878                                 *error = "Error setting encryption key";
3879                                 goto bad;
3880                         }
3881                 }
3882                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3883                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3884
3885                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3886                 if (!ic->journal_io) {
3887                         *error = "Could not allocate memory for journal io";
3888                         r = -ENOMEM;
3889                         goto bad;
3890                 }
3891
3892                 if (blocksize == 1) {
3893                         struct scatterlist *sg;
3894
3895                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3896                         if (!req) {
3897                                 *error = "Could not allocate crypt request";
3898                                 r = -ENOMEM;
3899                                 goto bad;
3900                         }
3901
3902                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3903                         if (!crypt_iv) {
3904                                 *error = "Could not allocate iv";
3905                                 r = -ENOMEM;
3906                                 goto bad;
3907                         }
3908
3909                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3910                         if (!ic->journal_xor) {
3911                                 *error = "Could not allocate memory for journal xor";
3912                                 r = -ENOMEM;
3913                                 goto bad;
3914                         }
3915
3916                         sg = kvmalloc_array(ic->journal_pages + 1,
3917                                             sizeof(struct scatterlist),
3918                                             GFP_KERNEL);
3919                         if (!sg) {
3920                                 *error = "Unable to allocate sg list";
3921                                 r = -ENOMEM;
3922                                 goto bad;
3923                         }
3924                         sg_init_table(sg, ic->journal_pages + 1);
3925                         for (i = 0; i < ic->journal_pages; i++) {
3926                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3927
3928                                 clear_page(va);
3929                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3930                         }
3931                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3932
3933                         skcipher_request_set_crypt(req, sg, sg,
3934                                                    PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3935                         init_completion(&comp.comp);
3936                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3937                         if (do_crypt(true, req, &comp))
3938                                 wait_for_completion(&comp.comp);
3939                         kvfree(sg);
3940                         r = dm_integrity_failed(ic);
3941                         if (r) {
3942                                 *error = "Unable to encrypt journal";
3943                                 goto bad;
3944                         }
3945                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3946
3947                         crypto_free_skcipher(ic->journal_crypt);
3948                         ic->journal_crypt = NULL;
3949                 } else {
3950                         unsigned int crypt_len = roundup(ivsize, blocksize);
3951
3952                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3953                         if (!req) {
3954                                 *error = "Could not allocate crypt request";
3955                                 r = -ENOMEM;
3956                                 goto bad;
3957                         }
3958
3959                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3960                         if (!crypt_iv) {
3961                                 *error = "Could not allocate iv";
3962                                 r = -ENOMEM;
3963                                 goto bad;
3964                         }
3965
3966                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3967                         if (!crypt_data) {
3968                                 *error = "Unable to allocate crypt data";
3969                                 r = -ENOMEM;
3970                                 goto bad;
3971                         }
3972
3973                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3974                         if (!ic->journal_scatterlist) {
3975                                 *error = "Unable to allocate sg list";
3976                                 r = -ENOMEM;
3977                                 goto bad;
3978                         }
3979                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3980                         if (!ic->journal_io_scatterlist) {
3981                                 *error = "Unable to allocate sg list";
3982                                 r = -ENOMEM;
3983                                 goto bad;
3984                         }
3985                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3986                                                          sizeof(struct skcipher_request *),
3987                                                          GFP_KERNEL | __GFP_ZERO);
3988                         if (!ic->sk_requests) {
3989                                 *error = "Unable to allocate sk requests";
3990                                 r = -ENOMEM;
3991                                 goto bad;
3992                         }
3993                         for (i = 0; i < ic->journal_sections; i++) {
3994                                 struct scatterlist sg;
3995                                 struct skcipher_request *section_req;
3996                                 __le32 section_le = cpu_to_le32(i);
3997
3998                                 memset(crypt_iv, 0x00, ivsize);
3999                                 memset(crypt_data, 0x00, crypt_len);
4000                                 memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4001
4002                                 sg_init_one(&sg, crypt_data, crypt_len);
4003                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4004                                 init_completion(&comp.comp);
4005                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4006                                 if (do_crypt(true, req, &comp))
4007                                         wait_for_completion(&comp.comp);
4008
4009                                 r = dm_integrity_failed(ic);
4010                                 if (r) {
4011                                         *error = "Unable to generate iv";
4012                                         goto bad;
4013                                 }
4014
4015                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4016                                 if (!section_req) {
4017                                         *error = "Unable to allocate crypt request";
4018                                         r = -ENOMEM;
4019                                         goto bad;
4020                                 }
4021                                 section_req->iv = kmalloc_array(ivsize, 2,
4022                                                                 GFP_KERNEL);
4023                                 if (!section_req->iv) {
4024                                         skcipher_request_free(section_req);
4025                                         *error = "Unable to allocate iv";
4026                                         r = -ENOMEM;
4027                                         goto bad;
4028                                 }
4029                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4030                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4031                                 ic->sk_requests[i] = section_req;
4032                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4033                         }
4034                 }
4035         }
4036
4037         for (i = 0; i < N_COMMIT_IDS; i++) {
4038                 unsigned int j;
4039
4040 retest_commit_id:
4041                 for (j = 0; j < i; j++) {
4042                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
4043                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4044                                 goto retest_commit_id;
4045                         }
4046                 }
4047                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4048         }
4049
4050         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4051         if (journal_tree_size > ULONG_MAX) {
4052                 *error = "Journal doesn't fit into memory";
4053                 r = -ENOMEM;
4054                 goto bad;
4055         }
4056         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4057         if (!ic->journal_tree) {
4058                 *error = "Could not allocate memory for journal tree";
4059                 r = -ENOMEM;
4060         }
4061 bad:
4062         kfree(crypt_data);
4063         kfree(crypt_iv);
4064         skcipher_request_free(req);
4065
4066         return r;
4067 }
4068
4069 /*
4070  * Construct a integrity mapping
4071  *
4072  * Arguments:
4073  *      device
4074  *      offset from the start of the device
4075  *      tag size
4076  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4077  *      number of optional arguments
4078  *      optional arguments:
4079  *              journal_sectors
4080  *              interleave_sectors
4081  *              buffer_sectors
4082  *              journal_watermark
4083  *              commit_time
4084  *              meta_device
4085  *              block_size
4086  *              sectors_per_bit
4087  *              bitmap_flush_interval
4088  *              internal_hash
4089  *              journal_crypt
4090  *              journal_mac
4091  *              recalculate
4092  */
4093 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4094 {
4095         struct dm_integrity_c *ic;
4096         char dummy;
4097         int r;
4098         unsigned int extra_args;
4099         struct dm_arg_set as;
4100         static const struct dm_arg _args[] = {
4101                 {0, 18, "Invalid number of feature args"},
4102         };
4103         unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4104         bool should_write_sb;
4105         __u64 threshold;
4106         unsigned long long start;
4107         __s8 log2_sectors_per_bitmap_bit = -1;
4108         __s8 log2_blocks_per_bitmap_bit;
4109         __u64 bits_in_journal;
4110         __u64 n_bitmap_bits;
4111
4112 #define DIRECT_ARGUMENTS        4
4113
4114         if (argc <= DIRECT_ARGUMENTS) {
4115                 ti->error = "Invalid argument count";
4116                 return -EINVAL;
4117         }
4118
4119         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4120         if (!ic) {
4121                 ti->error = "Cannot allocate integrity context";
4122                 return -ENOMEM;
4123         }
4124         ti->private = ic;
4125         ti->per_io_data_size = sizeof(struct dm_integrity_io);
4126         ic->ti = ti;
4127
4128         ic->in_progress = RB_ROOT;
4129         INIT_LIST_HEAD(&ic->wait_list);
4130         init_waitqueue_head(&ic->endio_wait);
4131         bio_list_init(&ic->flush_bio_list);
4132         init_waitqueue_head(&ic->copy_to_journal_wait);
4133         init_completion(&ic->crypto_backoff);
4134         atomic64_set(&ic->number_of_mismatches, 0);
4135         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4136
4137         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4138         if (r) {
4139                 ti->error = "Device lookup failed";
4140                 goto bad;
4141         }
4142
4143         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4144                 ti->error = "Invalid starting offset";
4145                 r = -EINVAL;
4146                 goto bad;
4147         }
4148         ic->start = start;
4149
4150         if (strcmp(argv[2], "-")) {
4151                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4152                         ti->error = "Invalid tag size";
4153                         r = -EINVAL;
4154                         goto bad;
4155                 }
4156         }
4157
4158         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4159             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4160                 ic->mode = argv[3][0];
4161         } else {
4162                 ti->error = "Invalid mode (expecting J, B, D, R)";
4163                 r = -EINVAL;
4164                 goto bad;
4165         }
4166
4167         journal_sectors = 0;
4168         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4169         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4170         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4171         sync_msec = DEFAULT_SYNC_MSEC;
4172         ic->sectors_per_block = 1;
4173
4174         as.argc = argc - DIRECT_ARGUMENTS;
4175         as.argv = argv + DIRECT_ARGUMENTS;
4176         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4177         if (r)
4178                 goto bad;
4179
4180         while (extra_args--) {
4181                 const char *opt_string;
4182                 unsigned int val;
4183                 unsigned long long llval;
4184
4185                 opt_string = dm_shift_arg(&as);
4186                 if (!opt_string) {
4187                         r = -EINVAL;
4188                         ti->error = "Not enough feature arguments";
4189                         goto bad;
4190                 }
4191                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4192                         journal_sectors = val ? val : 1;
4193                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4194                         interleave_sectors = val;
4195                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4196                         buffer_sectors = val;
4197                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4198                         journal_watermark = val;
4199                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4200                         sync_msec = val;
4201                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4202                         if (ic->meta_dev) {
4203                                 dm_put_device(ti, ic->meta_dev);
4204                                 ic->meta_dev = NULL;
4205                         }
4206                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4207                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4208                         if (r) {
4209                                 ti->error = "Device lookup failed";
4210                                 goto bad;
4211                         }
4212                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4213                         if (val < 1 << SECTOR_SHIFT ||
4214                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4215                             (val & (val - 1))) {
4216                                 r = -EINVAL;
4217                                 ti->error = "Invalid block_size argument";
4218                                 goto bad;
4219                         }
4220                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4221                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4222                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4223                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4224                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4225                                 r = -EINVAL;
4226                                 ti->error = "Invalid bitmap_flush_interval argument";
4227                                 goto bad;
4228                         }
4229                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4230                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4231                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4232                                             "Invalid internal_hash argument");
4233                         if (r)
4234                                 goto bad;
4235                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4236                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4237                                             "Invalid journal_crypt argument");
4238                         if (r)
4239                                 goto bad;
4240                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4241                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4242                                             "Invalid journal_mac argument");
4243                         if (r)
4244                                 goto bad;
4245                 } else if (!strcmp(opt_string, "recalculate")) {
4246                         ic->recalculate_flag = true;
4247                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4248                         ic->recalculate_flag = true;
4249                         ic->reset_recalculate_flag = true;
4250                 } else if (!strcmp(opt_string, "allow_discards")) {
4251                         ic->discard = true;
4252                 } else if (!strcmp(opt_string, "fix_padding")) {
4253                         ic->fix_padding = true;
4254                 } else if (!strcmp(opt_string, "fix_hmac")) {
4255                         ic->fix_hmac = true;
4256                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4257                         ic->legacy_recalculate = true;
4258                 } else {
4259                         r = -EINVAL;
4260                         ti->error = "Invalid argument";
4261                         goto bad;
4262                 }
4263         }
4264
4265         ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4266         if (!ic->meta_dev)
4267                 ic->meta_device_sectors = ic->data_device_sectors;
4268         else
4269                 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4270
4271         if (!journal_sectors) {
4272                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4273                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4274         }
4275
4276         if (!buffer_sectors)
4277                 buffer_sectors = 1;
4278         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4279
4280         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4281                     "Invalid internal hash", "Error setting internal hash key");
4282         if (r)
4283                 goto bad;
4284
4285         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4286                     "Invalid journal mac", "Error setting journal mac key");
4287         if (r)
4288                 goto bad;
4289
4290         if (!ic->tag_size) {
4291                 if (!ic->internal_hash) {
4292                         ti->error = "Unknown tag size";
4293                         r = -EINVAL;
4294                         goto bad;
4295                 }
4296                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4297         }
4298         if (ic->tag_size > MAX_TAG_SIZE) {
4299                 ti->error = "Too big tag size";
4300                 r = -EINVAL;
4301                 goto bad;
4302         }
4303         if (!(ic->tag_size & (ic->tag_size - 1)))
4304                 ic->log2_tag_size = __ffs(ic->tag_size);
4305         else
4306                 ic->log2_tag_size = -1;
4307
4308         if (ic->mode == 'B' && !ic->internal_hash) {
4309                 r = -EINVAL;
4310                 ti->error = "Bitmap mode can be only used with internal hash";
4311                 goto bad;
4312         }
4313
4314         if (ic->discard && !ic->internal_hash) {
4315                 r = -EINVAL;
4316                 ti->error = "Discard can be only used with internal hash";
4317                 goto bad;
4318         }
4319
4320         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4321         ic->autocommit_msec = sync_msec;
4322         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4323
4324         ic->io = dm_io_client_create();
4325         if (IS_ERR(ic->io)) {
4326                 r = PTR_ERR(ic->io);
4327                 ic->io = NULL;
4328                 ti->error = "Cannot allocate dm io";
4329                 goto bad;
4330         }
4331
4332         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4333         if (r) {
4334                 ti->error = "Cannot allocate mempool";
4335                 goto bad;
4336         }
4337
4338         r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4339         if (r) {
4340                 ti->error = "Cannot allocate mempool";
4341                 goto bad;
4342         }
4343
4344         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4345                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4346         if (!ic->metadata_wq) {
4347                 ti->error = "Cannot allocate workqueue";
4348                 r = -ENOMEM;
4349                 goto bad;
4350         }
4351
4352         /*
4353          * If this workqueue weren't ordered, it would cause bio reordering
4354          * and reduced performance.
4355          */
4356         ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4357         if (!ic->wait_wq) {
4358                 ti->error = "Cannot allocate workqueue";
4359                 r = -ENOMEM;
4360                 goto bad;
4361         }
4362
4363         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4364                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4365         if (!ic->offload_wq) {
4366                 ti->error = "Cannot allocate workqueue";
4367                 r = -ENOMEM;
4368                 goto bad;
4369         }
4370
4371         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4372         if (!ic->commit_wq) {
4373                 ti->error = "Cannot allocate workqueue";
4374                 r = -ENOMEM;
4375                 goto bad;
4376         }
4377         INIT_WORK(&ic->commit_work, integrity_commit);
4378
4379         if (ic->mode == 'J' || ic->mode == 'B') {
4380                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4381                 if (!ic->writer_wq) {
4382                         ti->error = "Cannot allocate workqueue";
4383                         r = -ENOMEM;
4384                         goto bad;
4385                 }
4386                 INIT_WORK(&ic->writer_work, integrity_writer);
4387         }
4388
4389         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4390         if (!ic->sb) {
4391                 r = -ENOMEM;
4392                 ti->error = "Cannot allocate superblock area";
4393                 goto bad;
4394         }
4395
4396         r = sync_rw_sb(ic, REQ_OP_READ);
4397         if (r) {
4398                 ti->error = "Error reading superblock";
4399                 goto bad;
4400         }
4401         should_write_sb = false;
4402         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4403                 if (ic->mode != 'R') {
4404                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4405                                 r = -EINVAL;
4406                                 ti->error = "The device is not initialized";
4407                                 goto bad;
4408                         }
4409                 }
4410
4411                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4412                 if (r) {
4413                         ti->error = "Could not initialize superblock";
4414                         goto bad;
4415                 }
4416                 if (ic->mode != 'R')
4417                         should_write_sb = true;
4418         }
4419
4420         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4421                 r = -EINVAL;
4422                 ti->error = "Unknown version";
4423                 goto bad;
4424         }
4425         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4426                 r = -EINVAL;
4427                 ti->error = "Tag size doesn't match the information in superblock";
4428                 goto bad;
4429         }
4430         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4431                 r = -EINVAL;
4432                 ti->error = "Block size doesn't match the information in superblock";
4433                 goto bad;
4434         }
4435         if (!le32_to_cpu(ic->sb->journal_sections)) {
4436                 r = -EINVAL;
4437                 ti->error = "Corrupted superblock, journal_sections is 0";
4438                 goto bad;
4439         }
4440         /* make sure that ti->max_io_len doesn't overflow */
4441         if (!ic->meta_dev) {
4442                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4443                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4444                         r = -EINVAL;
4445                         ti->error = "Invalid interleave_sectors in the superblock";
4446                         goto bad;
4447                 }
4448         } else {
4449                 if (ic->sb->log2_interleave_sectors) {
4450                         r = -EINVAL;
4451                         ti->error = "Invalid interleave_sectors in the superblock";
4452                         goto bad;
4453                 }
4454         }
4455         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4456                 r = -EINVAL;
4457                 ti->error = "Journal mac mismatch";
4458                 goto bad;
4459         }
4460
4461         get_provided_data_sectors(ic);
4462         if (!ic->provided_data_sectors) {
4463                 r = -EINVAL;
4464                 ti->error = "The device is too small";
4465                 goto bad;
4466         }
4467
4468 try_smaller_buffer:
4469         r = calculate_device_limits(ic);
4470         if (r) {
4471                 if (ic->meta_dev) {
4472                         if (ic->log2_buffer_sectors > 3) {
4473                                 ic->log2_buffer_sectors--;
4474                                 goto try_smaller_buffer;
4475                         }
4476                 }
4477                 ti->error = "The device is too small";
4478                 goto bad;
4479         }
4480
4481         if (log2_sectors_per_bitmap_bit < 0)
4482                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4483         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4484                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4485
4486         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4487         if (bits_in_journal > UINT_MAX)
4488                 bits_in_journal = UINT_MAX;
4489         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4490                 log2_sectors_per_bitmap_bit++;
4491
4492         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4493         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4494         if (should_write_sb)
4495                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4496
4497         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4498                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4499         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4500
4501         if (!ic->meta_dev)
4502                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4503
4504         if (ti->len > ic->provided_data_sectors) {
4505                 r = -EINVAL;
4506                 ti->error = "Not enough provided sectors for requested mapping size";
4507                 goto bad;
4508         }
4509
4510
4511         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4512         threshold += 50;
4513         do_div(threshold, 100);
4514         ic->free_sectors_threshold = threshold;
4515
4516         DEBUG_print("initialized:\n");
4517         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4518         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4519         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4520         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4521         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4522         DEBUG_print("   journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4523         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4524         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4525         DEBUG_print("   data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4526         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4527         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4528         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4529         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4530         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4531         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4532
4533         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4534                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4535                 ic->sb->recalc_sector = cpu_to_le64(0);
4536         }
4537
4538         if (ic->internal_hash) {
4539                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4540                 if (!ic->recalc_wq) {
4541                         ti->error = "Cannot allocate workqueue";
4542                         r = -ENOMEM;
4543                         goto bad;
4544                 }
4545                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4546         } else {
4547                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4548                         ti->error = "Recalculate can only be specified with internal_hash";
4549                         r = -EINVAL;
4550                         goto bad;
4551                 }
4552         }
4553
4554         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4555             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4556             dm_integrity_disable_recalculate(ic)) {
4557                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4558                 r = -EOPNOTSUPP;
4559                 goto bad;
4560         }
4561
4562         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4563                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4564         if (IS_ERR(ic->bufio)) {
4565                 r = PTR_ERR(ic->bufio);
4566                 ti->error = "Cannot initialize dm-bufio";
4567                 ic->bufio = NULL;
4568                 goto bad;
4569         }
4570         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4571
4572         if (ic->mode != 'R') {
4573                 r = create_journal(ic, &ti->error);
4574                 if (r)
4575                         goto bad;
4576
4577         }
4578
4579         if (ic->mode == 'B') {
4580                 unsigned int i;
4581                 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4582
4583                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4584                 if (!ic->recalc_bitmap) {
4585                         r = -ENOMEM;
4586                         goto bad;
4587                 }
4588                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4589                 if (!ic->may_write_bitmap) {
4590                         r = -ENOMEM;
4591                         goto bad;
4592                 }
4593                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4594                 if (!ic->bbs) {
4595                         r = -ENOMEM;
4596                         goto bad;
4597                 }
4598                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4599                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4600                         struct bitmap_block_status *bbs = &ic->bbs[i];
4601                         unsigned int sector, pl_index, pl_offset;
4602
4603                         INIT_WORK(&bbs->work, bitmap_block_work);
4604                         bbs->ic = ic;
4605                         bbs->idx = i;
4606                         bio_list_init(&bbs->bio_queue);
4607                         spin_lock_init(&bbs->bio_queue_lock);
4608
4609                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4610                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4611                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4612
4613                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4614                 }
4615         }
4616
4617         if (should_write_sb) {
4618                 init_journal(ic, 0, ic->journal_sections, 0);
4619                 r = dm_integrity_failed(ic);
4620                 if (unlikely(r)) {
4621                         ti->error = "Error initializing journal";
4622                         goto bad;
4623                 }
4624                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4625                 if (r) {
4626                         ti->error = "Error initializing superblock";
4627                         goto bad;
4628                 }
4629                 ic->just_formatted = true;
4630         }
4631
4632         if (!ic->meta_dev) {
4633                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4634                 if (r)
4635                         goto bad;
4636         }
4637         if (ic->mode == 'B') {
4638                 unsigned int max_io_len;
4639
4640                 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4641                 if (!max_io_len)
4642                         max_io_len = 1U << 31;
4643                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4644                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4645                         r = dm_set_target_max_io_len(ti, max_io_len);
4646                         if (r)
4647                                 goto bad;
4648                 }
4649         }
4650
4651         if (!ic->internal_hash)
4652                 dm_integrity_set(ti, ic);
4653
4654         ti->num_flush_bios = 1;
4655         ti->flush_supported = true;
4656         if (ic->discard)
4657                 ti->num_discard_bios = 1;
4658
4659         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4660         return 0;
4661
4662 bad:
4663         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4664         dm_integrity_dtr(ti);
4665         return r;
4666 }
4667
4668 static void dm_integrity_dtr(struct dm_target *ti)
4669 {
4670         struct dm_integrity_c *ic = ti->private;
4671
4672         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4673         BUG_ON(!list_empty(&ic->wait_list));
4674
4675         if (ic->mode == 'B')
4676                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4677         if (ic->metadata_wq)
4678                 destroy_workqueue(ic->metadata_wq);
4679         if (ic->wait_wq)
4680                 destroy_workqueue(ic->wait_wq);
4681         if (ic->offload_wq)
4682                 destroy_workqueue(ic->offload_wq);
4683         if (ic->commit_wq)
4684                 destroy_workqueue(ic->commit_wq);
4685         if (ic->writer_wq)
4686                 destroy_workqueue(ic->writer_wq);
4687         if (ic->recalc_wq)
4688                 destroy_workqueue(ic->recalc_wq);
4689         kvfree(ic->bbs);
4690         if (ic->bufio)
4691                 dm_bufio_client_destroy(ic->bufio);
4692         mempool_exit(&ic->recheck_pool);
4693         mempool_exit(&ic->journal_io_mempool);
4694         if (ic->io)
4695                 dm_io_client_destroy(ic->io);
4696         if (ic->dev)
4697                 dm_put_device(ti, ic->dev);
4698         if (ic->meta_dev)
4699                 dm_put_device(ti, ic->meta_dev);
4700         dm_integrity_free_page_list(ic->journal);
4701         dm_integrity_free_page_list(ic->journal_io);
4702         dm_integrity_free_page_list(ic->journal_xor);
4703         dm_integrity_free_page_list(ic->recalc_bitmap);
4704         dm_integrity_free_page_list(ic->may_write_bitmap);
4705         if (ic->journal_scatterlist)
4706                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4707         if (ic->journal_io_scatterlist)
4708                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4709         if (ic->sk_requests) {
4710                 unsigned int i;
4711
4712                 for (i = 0; i < ic->journal_sections; i++) {
4713                         struct skcipher_request *req;
4714
4715                         req = ic->sk_requests[i];
4716                         if (req) {
4717                                 kfree_sensitive(req->iv);
4718                                 skcipher_request_free(req);
4719                         }
4720                 }
4721                 kvfree(ic->sk_requests);
4722         }
4723         kvfree(ic->journal_tree);
4724         if (ic->sb)
4725                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4726
4727         if (ic->internal_hash)
4728                 crypto_free_shash(ic->internal_hash);
4729         free_alg(&ic->internal_hash_alg);
4730
4731         if (ic->journal_crypt)
4732                 crypto_free_skcipher(ic->journal_crypt);
4733         free_alg(&ic->journal_crypt_alg);
4734
4735         if (ic->journal_mac)
4736                 crypto_free_shash(ic->journal_mac);
4737         free_alg(&ic->journal_mac_alg);
4738
4739         kfree(ic);
4740         dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4741 }
4742
4743 static struct target_type integrity_target = {
4744         .name                   = "integrity",
4745         .version                = {1, 11, 0},
4746         .module                 = THIS_MODULE,
4747         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4748         .ctr                    = dm_integrity_ctr,
4749         .dtr                    = dm_integrity_dtr,
4750         .map                    = dm_integrity_map,
4751         .postsuspend            = dm_integrity_postsuspend,
4752         .resume                 = dm_integrity_resume,
4753         .status                 = dm_integrity_status,
4754         .iterate_devices        = dm_integrity_iterate_devices,
4755         .io_hints               = dm_integrity_io_hints,
4756 };
4757
4758 static int __init dm_integrity_init(void)
4759 {
4760         int r;
4761
4762         journal_io_cache = kmem_cache_create("integrity_journal_io",
4763                                              sizeof(struct journal_io), 0, 0, NULL);
4764         if (!journal_io_cache) {
4765                 DMERR("can't allocate journal io cache");
4766                 return -ENOMEM;
4767         }
4768
4769         r = dm_register_target(&integrity_target);
4770         if (r < 0) {
4771                 kmem_cache_destroy(journal_io_cache);
4772                 return r;
4773         }
4774
4775         return 0;
4776 }
4777
4778 static void __exit dm_integrity_exit(void)
4779 {
4780         dm_unregister_target(&integrity_target);
4781         kmem_cache_destroy(journal_io_cache);
4782 }
4783
4784 module_init(dm_integrity_init);
4785 module_exit(dm_integrity_exit);
4786
4787 MODULE_AUTHOR("Milan Broz");
4788 MODULE_AUTHOR("Mikulas Patocka");
4789 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4790 MODULE_LICENSE("GPL");