Merge tag 'ata-6.8-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/libata/linux
[linux-block.git] / drivers / md / dm-integrity.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9
10 #include "dm-bio-record.h"
11
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
26
27 #include "dm-audit.h"
28
29 #define DM_MSG_PREFIX "integrity"
30
31 #define DEFAULT_INTERLEAVE_SECTORS      32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
34 #define DEFAULT_BUFFER_SECTORS          128
35 #define DEFAULT_JOURNAL_WATERMARK       50
36 #define DEFAULT_SYNC_MSEC               10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS     (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS     3
39 #define MAX_LOG2_INTERLEAVE_SECTORS     31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
41 #define RECALC_SECTORS                  (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER              16
43 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
45 #define DISCARD_FILLER                  0xf6
46 #define SALT_SIZE                       16
47
48 /*
49  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50  * so it should not be enabled in the official kernel
51  */
52 //#define DEBUG_PRINT
53 //#define INTERNAL_VERIFY
54
55 /*
56  * On disk structures
57  */
58
59 #define SB_MAGIC                        "integrt"
60 #define SB_VERSION_1                    1
61 #define SB_VERSION_2                    2
62 #define SB_VERSION_3                    3
63 #define SB_VERSION_4                    4
64 #define SB_VERSION_5                    5
65 #define SB_SECTORS                      8
66 #define MAX_SECTORS_PER_BLOCK           8
67
68 struct superblock {
69         __u8 magic[8];
70         __u8 version;
71         __u8 log2_interleave_sectors;
72         __le16 integrity_tag_size;
73         __le32 journal_sections;
74         __le64 provided_data_sectors;   /* userspace uses this value */
75         __le32 flags;
76         __u8 log2_sectors_per_block;
77         __u8 log2_blocks_per_bitmap_bit;
78         __u8 pad[2];
79         __le64 recalc_sector;
80         __u8 pad2[8];
81         __u8 salt[SALT_SIZE];
82 };
83
84 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
85 #define SB_FLAG_RECALCULATING           0x2
86 #define SB_FLAG_DIRTY_BITMAP            0x4
87 #define SB_FLAG_FIXED_PADDING           0x8
88 #define SB_FLAG_FIXED_HMAC              0x10
89
90 #define JOURNAL_ENTRY_ROUNDUP           8
91
92 typedef __le64 commit_id_t;
93 #define JOURNAL_MAC_PER_SECTOR          8
94
95 struct journal_entry {
96         union {
97                 struct {
98                         __le32 sector_lo;
99                         __le32 sector_hi;
100                 } s;
101                 __le64 sector;
102         } u;
103         commit_id_t last_bytes[];
104         /* __u8 tag[0]; */
105 };
106
107 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109 #if BITS_PER_LONG == 64
110 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111 #else
112 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113 #endif
114 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
115 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
116 #define journal_entry_set_unused(je)            ((je)->u.s.sector_hi = cpu_to_le32(-1))
117 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
118 #define journal_entry_set_inprogress(je)        ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120 #define JOURNAL_BLOCK_SECTORS           8
121 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124 struct journal_sector {
125         struct_group(sectors,
126                 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127                 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128         );
129         commit_id_t commit_id;
130 };
131
132 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134 #define METADATA_PADDING_SECTORS        8
135
136 #define N_COMMIT_IDS                    4
137
138 static unsigned char prev_commit_seq(unsigned char seq)
139 {
140         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141 }
142
143 static unsigned char next_commit_seq(unsigned char seq)
144 {
145         return (seq + 1) % N_COMMIT_IDS;
146 }
147
148 /*
149  * In-memory structures
150  */
151
152 struct journal_node {
153         struct rb_node node;
154         sector_t sector;
155 };
156
157 struct alg_spec {
158         char *alg_string;
159         char *key_string;
160         __u8 *key;
161         unsigned int key_size;
162 };
163
164 struct dm_integrity_c {
165         struct dm_dev *dev;
166         struct dm_dev *meta_dev;
167         unsigned int tag_size;
168         __s8 log2_tag_size;
169         sector_t start;
170         mempool_t journal_io_mempool;
171         struct dm_io_client *io;
172         struct dm_bufio_client *bufio;
173         struct workqueue_struct *metadata_wq;
174         struct superblock *sb;
175         unsigned int journal_pages;
176         unsigned int n_bitmap_blocks;
177
178         struct page_list *journal;
179         struct page_list *journal_io;
180         struct page_list *journal_xor;
181         struct page_list *recalc_bitmap;
182         struct page_list *may_write_bitmap;
183         struct bitmap_block_status *bbs;
184         unsigned int bitmap_flush_interval;
185         int synchronous_mode;
186         struct bio_list synchronous_bios;
187         struct delayed_work bitmap_flush_work;
188
189         struct crypto_skcipher *journal_crypt;
190         struct scatterlist **journal_scatterlist;
191         struct scatterlist **journal_io_scatterlist;
192         struct skcipher_request **sk_requests;
193
194         struct crypto_shash *journal_mac;
195
196         struct journal_node *journal_tree;
197         struct rb_root journal_tree_root;
198
199         sector_t provided_data_sectors;
200
201         unsigned short journal_entry_size;
202         unsigned char journal_entries_per_sector;
203         unsigned char journal_section_entries;
204         unsigned short journal_section_sectors;
205         unsigned int journal_sections;
206         unsigned int journal_entries;
207         sector_t data_device_sectors;
208         sector_t meta_device_sectors;
209         unsigned int initial_sectors;
210         unsigned int metadata_run;
211         __s8 log2_metadata_run;
212         __u8 log2_buffer_sectors;
213         __u8 sectors_per_block;
214         __u8 log2_blocks_per_bitmap_bit;
215
216         unsigned char mode;
217
218         int failed;
219
220         struct crypto_shash *internal_hash;
221
222         struct dm_target *ti;
223
224         /* these variables are locked with endio_wait.lock */
225         struct rb_root in_progress;
226         struct list_head wait_list;
227         wait_queue_head_t endio_wait;
228         struct workqueue_struct *wait_wq;
229         struct workqueue_struct *offload_wq;
230
231         unsigned char commit_seq;
232         commit_id_t commit_ids[N_COMMIT_IDS];
233
234         unsigned int committed_section;
235         unsigned int n_committed_sections;
236
237         unsigned int uncommitted_section;
238         unsigned int n_uncommitted_sections;
239
240         unsigned int free_section;
241         unsigned char free_section_entry;
242         unsigned int free_sectors;
243
244         unsigned int free_sectors_threshold;
245
246         struct workqueue_struct *commit_wq;
247         struct work_struct commit_work;
248
249         struct workqueue_struct *writer_wq;
250         struct work_struct writer_work;
251
252         struct workqueue_struct *recalc_wq;
253         struct work_struct recalc_work;
254
255         struct bio_list flush_bio_list;
256
257         unsigned long autocommit_jiffies;
258         struct timer_list autocommit_timer;
259         unsigned int autocommit_msec;
260
261         wait_queue_head_t copy_to_journal_wait;
262
263         struct completion crypto_backoff;
264
265         bool wrote_to_journal;
266         bool journal_uptodate;
267         bool just_formatted;
268         bool recalculate_flag;
269         bool reset_recalculate_flag;
270         bool discard;
271         bool fix_padding;
272         bool fix_hmac;
273         bool legacy_recalculate;
274
275         struct alg_spec internal_hash_alg;
276         struct alg_spec journal_crypt_alg;
277         struct alg_spec journal_mac_alg;
278
279         atomic64_t number_of_mismatches;
280
281         struct notifier_block reboot_notifier;
282 };
283
284 struct dm_integrity_range {
285         sector_t logical_sector;
286         sector_t n_sectors;
287         bool waiting;
288         union {
289                 struct rb_node node;
290                 struct {
291                         struct task_struct *task;
292                         struct list_head wait_entry;
293                 };
294         };
295 };
296
297 struct dm_integrity_io {
298         struct work_struct work;
299
300         struct dm_integrity_c *ic;
301         enum req_op op;
302         bool fua;
303
304         struct dm_integrity_range range;
305
306         sector_t metadata_block;
307         unsigned int metadata_offset;
308
309         atomic_t in_flight;
310         blk_status_t bi_status;
311
312         struct completion *completion;
313
314         struct dm_bio_details bio_details;
315 };
316
317 struct journal_completion {
318         struct dm_integrity_c *ic;
319         atomic_t in_flight;
320         struct completion comp;
321 };
322
323 struct journal_io {
324         struct dm_integrity_range range;
325         struct journal_completion *comp;
326 };
327
328 struct bitmap_block_status {
329         struct work_struct work;
330         struct dm_integrity_c *ic;
331         unsigned int idx;
332         unsigned long *bitmap;
333         struct bio_list bio_queue;
334         spinlock_t bio_queue_lock;
335
336 };
337
338 static struct kmem_cache *journal_io_cache;
339
340 #define JOURNAL_IO_MEMPOOL      32
341
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)                     printk(KERN_DEBUG x, ##__VA_ARGS__)
344 #define DEBUG_bytes(bytes, len, msg, ...)       printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
345                                                        len ? ": " : "", len, bytes)
346 #else
347 #define DEBUG_print(x, ...)                     do { } while (0)
348 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
349 #endif
350
351 static void dm_integrity_prepare(struct request *rq)
352 {
353 }
354
355 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
356 {
357 }
358
359 /*
360  * DM Integrity profile, protection is performed layer above (dm-crypt)
361  */
362 static const struct blk_integrity_profile dm_integrity_profile = {
363         .name                   = "DM-DIF-EXT-TAG",
364         .generate_fn            = NULL,
365         .verify_fn              = NULL,
366         .prepare_fn             = dm_integrity_prepare,
367         .complete_fn            = dm_integrity_complete,
368 };
369
370 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
371 static void integrity_bio_wait(struct work_struct *w);
372 static void dm_integrity_dtr(struct dm_target *ti);
373
374 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
375 {
376         if (err == -EILSEQ)
377                 atomic64_inc(&ic->number_of_mismatches);
378         if (!cmpxchg(&ic->failed, 0, err))
379                 DMERR("Error on %s: %d", msg, err);
380 }
381
382 static int dm_integrity_failed(struct dm_integrity_c *ic)
383 {
384         return READ_ONCE(ic->failed);
385 }
386
387 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
388 {
389         if (ic->legacy_recalculate)
390                 return false;
391         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
392             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
393             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
394                 return true;
395         return false;
396 }
397
398 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
399                                           unsigned int j, unsigned char seq)
400 {
401         /*
402          * Xor the number with section and sector, so that if a piece of
403          * journal is written at wrong place, it is detected.
404          */
405         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
406 }
407
408 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
409                                 sector_t *area, sector_t *offset)
410 {
411         if (!ic->meta_dev) {
412                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
413                 *area = data_sector >> log2_interleave_sectors;
414                 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
415         } else {
416                 *area = 0;
417                 *offset = data_sector;
418         }
419 }
420
421 #define sector_to_block(ic, n)                                          \
422 do {                                                                    \
423         BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));              \
424         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
425 } while (0)
426
427 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
428                                             sector_t offset, unsigned int *metadata_offset)
429 {
430         __u64 ms;
431         unsigned int mo;
432
433         ms = area << ic->sb->log2_interleave_sectors;
434         if (likely(ic->log2_metadata_run >= 0))
435                 ms += area << ic->log2_metadata_run;
436         else
437                 ms += area * ic->metadata_run;
438         ms >>= ic->log2_buffer_sectors;
439
440         sector_to_block(ic, offset);
441
442         if (likely(ic->log2_tag_size >= 0)) {
443                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
444                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
445         } else {
446                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
447                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
448         }
449         *metadata_offset = mo;
450         return ms;
451 }
452
453 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
454 {
455         sector_t result;
456
457         if (ic->meta_dev)
458                 return offset;
459
460         result = area << ic->sb->log2_interleave_sectors;
461         if (likely(ic->log2_metadata_run >= 0))
462                 result += (area + 1) << ic->log2_metadata_run;
463         else
464                 result += (area + 1) * ic->metadata_run;
465
466         result += (sector_t)ic->initial_sectors + offset;
467         result += ic->start;
468
469         return result;
470 }
471
472 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
473 {
474         if (unlikely(*sec_ptr >= ic->journal_sections))
475                 *sec_ptr -= ic->journal_sections;
476 }
477
478 static void sb_set_version(struct dm_integrity_c *ic)
479 {
480         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
481                 ic->sb->version = SB_VERSION_5;
482         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
483                 ic->sb->version = SB_VERSION_4;
484         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
485                 ic->sb->version = SB_VERSION_3;
486         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
487                 ic->sb->version = SB_VERSION_2;
488         else
489                 ic->sb->version = SB_VERSION_1;
490 }
491
492 static int sb_mac(struct dm_integrity_c *ic, bool wr)
493 {
494         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
495         int r;
496         unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
497         __u8 *sb = (__u8 *)ic->sb;
498         __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
499
500         if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
501                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
502                 return -EINVAL;
503         }
504
505         desc->tfm = ic->journal_mac;
506
507         if (likely(wr)) {
508                 r = crypto_shash_digest(desc, sb, mac - sb, mac);
509                 if (unlikely(r < 0)) {
510                         dm_integrity_io_error(ic, "crypto_shash_digest", r);
511                         return r;
512                 }
513         } else {
514                 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
515
516                 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
517                 if (unlikely(r < 0)) {
518                         dm_integrity_io_error(ic, "crypto_shash_digest", r);
519                         return r;
520                 }
521                 if (memcmp(mac, actual_mac, mac_size)) {
522                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
523                         dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
524                         return -EILSEQ;
525                 }
526         }
527
528         return 0;
529 }
530
531 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
532 {
533         struct dm_io_request io_req;
534         struct dm_io_region io_loc;
535         const enum req_op op = opf & REQ_OP_MASK;
536         int r;
537
538         io_req.bi_opf = opf;
539         io_req.mem.type = DM_IO_KMEM;
540         io_req.mem.ptr.addr = ic->sb;
541         io_req.notify.fn = NULL;
542         io_req.client = ic->io;
543         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
544         io_loc.sector = ic->start;
545         io_loc.count = SB_SECTORS;
546
547         if (op == REQ_OP_WRITE) {
548                 sb_set_version(ic);
549                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
550                         r = sb_mac(ic, true);
551                         if (unlikely(r))
552                                 return r;
553                 }
554         }
555
556         r = dm_io(&io_req, 1, &io_loc, NULL);
557         if (unlikely(r))
558                 return r;
559
560         if (op == REQ_OP_READ) {
561                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
562                         r = sb_mac(ic, false);
563                         if (unlikely(r))
564                                 return r;
565                 }
566         }
567
568         return 0;
569 }
570
571 #define BITMAP_OP_TEST_ALL_SET          0
572 #define BITMAP_OP_TEST_ALL_CLEAR        1
573 #define BITMAP_OP_SET                   2
574 #define BITMAP_OP_CLEAR                 3
575
576 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
577                             sector_t sector, sector_t n_sectors, int mode)
578 {
579         unsigned long bit, end_bit, this_end_bit, page, end_page;
580         unsigned long *data;
581
582         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
583                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
584                         sector,
585                         n_sectors,
586                         ic->sb->log2_sectors_per_block,
587                         ic->log2_blocks_per_bitmap_bit,
588                         mode);
589                 BUG();
590         }
591
592         if (unlikely(!n_sectors))
593                 return true;
594
595         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
596         end_bit = (sector + n_sectors - 1) >>
597                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598
599         page = bit / (PAGE_SIZE * 8);
600         bit %= PAGE_SIZE * 8;
601
602         end_page = end_bit / (PAGE_SIZE * 8);
603         end_bit %= PAGE_SIZE * 8;
604
605 repeat:
606         if (page < end_page)
607                 this_end_bit = PAGE_SIZE * 8 - 1;
608         else
609                 this_end_bit = end_bit;
610
611         data = lowmem_page_address(bitmap[page].page);
612
613         if (mode == BITMAP_OP_TEST_ALL_SET) {
614                 while (bit <= this_end_bit) {
615                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
616                                 do {
617                                         if (data[bit / BITS_PER_LONG] != -1)
618                                                 return false;
619                                         bit += BITS_PER_LONG;
620                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
621                                 continue;
622                         }
623                         if (!test_bit(bit, data))
624                                 return false;
625                         bit++;
626                 }
627         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
628                 while (bit <= this_end_bit) {
629                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
630                                 do {
631                                         if (data[bit / BITS_PER_LONG] != 0)
632                                                 return false;
633                                         bit += BITS_PER_LONG;
634                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
635                                 continue;
636                         }
637                         if (test_bit(bit, data))
638                                 return false;
639                         bit++;
640                 }
641         } else if (mode == BITMAP_OP_SET) {
642                 while (bit <= this_end_bit) {
643                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
644                                 do {
645                                         data[bit / BITS_PER_LONG] = -1;
646                                         bit += BITS_PER_LONG;
647                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
648                                 continue;
649                         }
650                         __set_bit(bit, data);
651                         bit++;
652                 }
653         } else if (mode == BITMAP_OP_CLEAR) {
654                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
655                         clear_page(data);
656                 else {
657                         while (bit <= this_end_bit) {
658                                 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
659                                         do {
660                                                 data[bit / BITS_PER_LONG] = 0;
661                                                 bit += BITS_PER_LONG;
662                                         } while (this_end_bit >= bit + BITS_PER_LONG - 1);
663                                         continue;
664                                 }
665                                 __clear_bit(bit, data);
666                                 bit++;
667                         }
668                 }
669         } else {
670                 BUG();
671         }
672
673         if (unlikely(page < end_page)) {
674                 bit = 0;
675                 page++;
676                 goto repeat;
677         }
678
679         return true;
680 }
681
682 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
683 {
684         unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
685         unsigned int i;
686
687         for (i = 0; i < n_bitmap_pages; i++) {
688                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
689                 unsigned long *src_data = lowmem_page_address(src[i].page);
690
691                 copy_page(dst_data, src_data);
692         }
693 }
694
695 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
696 {
697         unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
698         unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
699
700         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
701         return &ic->bbs[bitmap_block];
702 }
703
704 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
705                                  bool e, const char *function)
706 {
707 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
708         unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
709
710         if (unlikely(section >= ic->journal_sections) ||
711             unlikely(offset >= limit)) {
712                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
713                        function, section, offset, ic->journal_sections, limit);
714                 BUG();
715         }
716 #endif
717 }
718
719 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
720                                unsigned int *pl_index, unsigned int *pl_offset)
721 {
722         unsigned int sector;
723
724         access_journal_check(ic, section, offset, false, "page_list_location");
725
726         sector = section * ic->journal_section_sectors + offset;
727
728         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
729         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
730 }
731
732 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
733                                                unsigned int section, unsigned int offset, unsigned int *n_sectors)
734 {
735         unsigned int pl_index, pl_offset;
736         char *va;
737
738         page_list_location(ic, section, offset, &pl_index, &pl_offset);
739
740         if (n_sectors)
741                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
742
743         va = lowmem_page_address(pl[pl_index].page);
744
745         return (struct journal_sector *)(va + pl_offset);
746 }
747
748 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
749 {
750         return access_page_list(ic, ic->journal, section, offset, NULL);
751 }
752
753 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
754 {
755         unsigned int rel_sector, offset;
756         struct journal_sector *js;
757
758         access_journal_check(ic, section, n, true, "access_journal_entry");
759
760         rel_sector = n % JOURNAL_BLOCK_SECTORS;
761         offset = n / JOURNAL_BLOCK_SECTORS;
762
763         js = access_journal(ic, section, rel_sector);
764         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
765 }
766
767 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
768 {
769         n <<= ic->sb->log2_sectors_per_block;
770
771         n += JOURNAL_BLOCK_SECTORS;
772
773         access_journal_check(ic, section, n, false, "access_journal_data");
774
775         return access_journal(ic, section, n);
776 }
777
778 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
779 {
780         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
781         int r;
782         unsigned int j, size;
783
784         desc->tfm = ic->journal_mac;
785
786         r = crypto_shash_init(desc);
787         if (unlikely(r < 0)) {
788                 dm_integrity_io_error(ic, "crypto_shash_init", r);
789                 goto err;
790         }
791
792         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
793                 __le64 section_le;
794
795                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
796                 if (unlikely(r < 0)) {
797                         dm_integrity_io_error(ic, "crypto_shash_update", r);
798                         goto err;
799                 }
800
801                 section_le = cpu_to_le64(section);
802                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
803                 if (unlikely(r < 0)) {
804                         dm_integrity_io_error(ic, "crypto_shash_update", r);
805                         goto err;
806                 }
807         }
808
809         for (j = 0; j < ic->journal_section_entries; j++) {
810                 struct journal_entry *je = access_journal_entry(ic, section, j);
811
812                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
813                 if (unlikely(r < 0)) {
814                         dm_integrity_io_error(ic, "crypto_shash_update", r);
815                         goto err;
816                 }
817         }
818
819         size = crypto_shash_digestsize(ic->journal_mac);
820
821         if (likely(size <= JOURNAL_MAC_SIZE)) {
822                 r = crypto_shash_final(desc, result);
823                 if (unlikely(r < 0)) {
824                         dm_integrity_io_error(ic, "crypto_shash_final", r);
825                         goto err;
826                 }
827                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
828         } else {
829                 __u8 digest[HASH_MAX_DIGESTSIZE];
830
831                 if (WARN_ON(size > sizeof(digest))) {
832                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
833                         goto err;
834                 }
835                 r = crypto_shash_final(desc, digest);
836                 if (unlikely(r < 0)) {
837                         dm_integrity_io_error(ic, "crypto_shash_final", r);
838                         goto err;
839                 }
840                 memcpy(result, digest, JOURNAL_MAC_SIZE);
841         }
842
843         return;
844 err:
845         memset(result, 0, JOURNAL_MAC_SIZE);
846 }
847
848 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
849 {
850         __u8 result[JOURNAL_MAC_SIZE];
851         unsigned int j;
852
853         if (!ic->journal_mac)
854                 return;
855
856         section_mac(ic, section, result);
857
858         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
859                 struct journal_sector *js = access_journal(ic, section, j);
860
861                 if (likely(wr))
862                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
863                 else {
864                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
865                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
866                                 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
867                         }
868                 }
869         }
870 }
871
872 static void complete_journal_op(void *context)
873 {
874         struct journal_completion *comp = context;
875
876         BUG_ON(!atomic_read(&comp->in_flight));
877         if (likely(atomic_dec_and_test(&comp->in_flight)))
878                 complete(&comp->comp);
879 }
880
881 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
882                         unsigned int n_sections, struct journal_completion *comp)
883 {
884         struct async_submit_ctl submit;
885         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
886         unsigned int pl_index, pl_offset, section_index;
887         struct page_list *source_pl, *target_pl;
888
889         if (likely(encrypt)) {
890                 source_pl = ic->journal;
891                 target_pl = ic->journal_io;
892         } else {
893                 source_pl = ic->journal_io;
894                 target_pl = ic->journal;
895         }
896
897         page_list_location(ic, section, 0, &pl_index, &pl_offset);
898
899         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
900
901         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
902
903         section_index = pl_index;
904
905         do {
906                 size_t this_step;
907                 struct page *src_pages[2];
908                 struct page *dst_page;
909
910                 while (unlikely(pl_index == section_index)) {
911                         unsigned int dummy;
912
913                         if (likely(encrypt))
914                                 rw_section_mac(ic, section, true);
915                         section++;
916                         n_sections--;
917                         if (!n_sections)
918                                 break;
919                         page_list_location(ic, section, 0, &section_index, &dummy);
920                 }
921
922                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
923                 dst_page = target_pl[pl_index].page;
924                 src_pages[0] = source_pl[pl_index].page;
925                 src_pages[1] = ic->journal_xor[pl_index].page;
926
927                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
928
929                 pl_index++;
930                 pl_offset = 0;
931                 n_bytes -= this_step;
932         } while (n_bytes);
933
934         BUG_ON(n_sections);
935
936         async_tx_issue_pending_all();
937 }
938
939 static void complete_journal_encrypt(void *data, int err)
940 {
941         struct journal_completion *comp = data;
942
943         if (unlikely(err)) {
944                 if (likely(err == -EINPROGRESS)) {
945                         complete(&comp->ic->crypto_backoff);
946                         return;
947                 }
948                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
949         }
950         complete_journal_op(comp);
951 }
952
953 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
954 {
955         int r;
956
957         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
958                                       complete_journal_encrypt, comp);
959         if (likely(encrypt))
960                 r = crypto_skcipher_encrypt(req);
961         else
962                 r = crypto_skcipher_decrypt(req);
963         if (likely(!r))
964                 return false;
965         if (likely(r == -EINPROGRESS))
966                 return true;
967         if (likely(r == -EBUSY)) {
968                 wait_for_completion(&comp->ic->crypto_backoff);
969                 reinit_completion(&comp->ic->crypto_backoff);
970                 return true;
971         }
972         dm_integrity_io_error(comp->ic, "encrypt", r);
973         return false;
974 }
975
976 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
977                           unsigned int n_sections, struct journal_completion *comp)
978 {
979         struct scatterlist **source_sg;
980         struct scatterlist **target_sg;
981
982         atomic_add(2, &comp->in_flight);
983
984         if (likely(encrypt)) {
985                 source_sg = ic->journal_scatterlist;
986                 target_sg = ic->journal_io_scatterlist;
987         } else {
988                 source_sg = ic->journal_io_scatterlist;
989                 target_sg = ic->journal_scatterlist;
990         }
991
992         do {
993                 struct skcipher_request *req;
994                 unsigned int ivsize;
995                 char *iv;
996
997                 if (likely(encrypt))
998                         rw_section_mac(ic, section, true);
999
1000                 req = ic->sk_requests[section];
1001                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1002                 iv = req->iv;
1003
1004                 memcpy(iv, iv + ivsize, ivsize);
1005
1006                 req->src = source_sg[section];
1007                 req->dst = target_sg[section];
1008
1009                 if (unlikely(do_crypt(encrypt, req, comp)))
1010                         atomic_inc(&comp->in_flight);
1011
1012                 section++;
1013                 n_sections--;
1014         } while (n_sections);
1015
1016         atomic_dec(&comp->in_flight);
1017         complete_journal_op(comp);
1018 }
1019
1020 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1021                             unsigned int n_sections, struct journal_completion *comp)
1022 {
1023         if (ic->journal_xor)
1024                 return xor_journal(ic, encrypt, section, n_sections, comp);
1025         else
1026                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1027 }
1028
1029 static void complete_journal_io(unsigned long error, void *context)
1030 {
1031         struct journal_completion *comp = context;
1032
1033         if (unlikely(error != 0))
1034                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1035         complete_journal_op(comp);
1036 }
1037
1038 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1039                                unsigned int sector, unsigned int n_sectors,
1040                                struct journal_completion *comp)
1041 {
1042         struct dm_io_request io_req;
1043         struct dm_io_region io_loc;
1044         unsigned int pl_index, pl_offset;
1045         int r;
1046
1047         if (unlikely(dm_integrity_failed(ic))) {
1048                 if (comp)
1049                         complete_journal_io(-1UL, comp);
1050                 return;
1051         }
1052
1053         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1054         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1055
1056         io_req.bi_opf = opf;
1057         io_req.mem.type = DM_IO_PAGE_LIST;
1058         if (ic->journal_io)
1059                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1060         else
1061                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1062         io_req.mem.offset = pl_offset;
1063         if (likely(comp != NULL)) {
1064                 io_req.notify.fn = complete_journal_io;
1065                 io_req.notify.context = comp;
1066         } else {
1067                 io_req.notify.fn = NULL;
1068         }
1069         io_req.client = ic->io;
1070         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1071         io_loc.sector = ic->start + SB_SECTORS + sector;
1072         io_loc.count = n_sectors;
1073
1074         r = dm_io(&io_req, 1, &io_loc, NULL);
1075         if (unlikely(r)) {
1076                 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1077                                       "reading journal" : "writing journal", r);
1078                 if (comp) {
1079                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1080                         complete_journal_io(-1UL, comp);
1081                 }
1082         }
1083 }
1084
1085 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1086                        unsigned int section, unsigned int n_sections,
1087                        struct journal_completion *comp)
1088 {
1089         unsigned int sector, n_sectors;
1090
1091         sector = section * ic->journal_section_sectors;
1092         n_sectors = n_sections * ic->journal_section_sectors;
1093
1094         rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1095 }
1096
1097 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1098 {
1099         struct journal_completion io_comp;
1100         struct journal_completion crypt_comp_1;
1101         struct journal_completion crypt_comp_2;
1102         unsigned int i;
1103
1104         io_comp.ic = ic;
1105         init_completion(&io_comp.comp);
1106
1107         if (commit_start + commit_sections <= ic->journal_sections) {
1108                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1109                 if (ic->journal_io) {
1110                         crypt_comp_1.ic = ic;
1111                         init_completion(&crypt_comp_1.comp);
1112                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1113                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1114                         wait_for_completion_io(&crypt_comp_1.comp);
1115                 } else {
1116                         for (i = 0; i < commit_sections; i++)
1117                                 rw_section_mac(ic, commit_start + i, true);
1118                 }
1119                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1120                            commit_sections, &io_comp);
1121         } else {
1122                 unsigned int to_end;
1123
1124                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1125                 to_end = ic->journal_sections - commit_start;
1126                 if (ic->journal_io) {
1127                         crypt_comp_1.ic = ic;
1128                         init_completion(&crypt_comp_1.comp);
1129                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1130                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1131                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1132                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1133                                            commit_start, to_end, &io_comp);
1134                                 reinit_completion(&crypt_comp_1.comp);
1135                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1136                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1137                                 wait_for_completion_io(&crypt_comp_1.comp);
1138                         } else {
1139                                 crypt_comp_2.ic = ic;
1140                                 init_completion(&crypt_comp_2.comp);
1141                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1142                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1143                                 wait_for_completion_io(&crypt_comp_1.comp);
1144                                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1145                                 wait_for_completion_io(&crypt_comp_2.comp);
1146                         }
1147                 } else {
1148                         for (i = 0; i < to_end; i++)
1149                                 rw_section_mac(ic, commit_start + i, true);
1150                         rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1151                         for (i = 0; i < commit_sections - to_end; i++)
1152                                 rw_section_mac(ic, i, true);
1153                 }
1154                 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1155         }
1156
1157         wait_for_completion_io(&io_comp.comp);
1158 }
1159
1160 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1161                               unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1162 {
1163         struct dm_io_request io_req;
1164         struct dm_io_region io_loc;
1165         int r;
1166         unsigned int sector, pl_index, pl_offset;
1167
1168         BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1169
1170         if (unlikely(dm_integrity_failed(ic))) {
1171                 fn(-1UL, data);
1172                 return;
1173         }
1174
1175         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1176
1177         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1178         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1179
1180         io_req.bi_opf = REQ_OP_WRITE;
1181         io_req.mem.type = DM_IO_PAGE_LIST;
1182         io_req.mem.ptr.pl = &ic->journal[pl_index];
1183         io_req.mem.offset = pl_offset;
1184         io_req.notify.fn = fn;
1185         io_req.notify.context = data;
1186         io_req.client = ic->io;
1187         io_loc.bdev = ic->dev->bdev;
1188         io_loc.sector = target;
1189         io_loc.count = n_sectors;
1190
1191         r = dm_io(&io_req, 1, &io_loc, NULL);
1192         if (unlikely(r)) {
1193                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1194                 fn(-1UL, data);
1195         }
1196 }
1197
1198 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1199 {
1200         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1201                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1202 }
1203
1204 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1205 {
1206         struct rb_node **n = &ic->in_progress.rb_node;
1207         struct rb_node *parent;
1208
1209         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1210
1211         if (likely(check_waiting)) {
1212                 struct dm_integrity_range *range;
1213
1214                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1215                         if (unlikely(ranges_overlap(range, new_range)))
1216                                 return false;
1217                 }
1218         }
1219
1220         parent = NULL;
1221
1222         while (*n) {
1223                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1224
1225                 parent = *n;
1226                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1227                         n = &range->node.rb_left;
1228                 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1229                         n = &range->node.rb_right;
1230                 else
1231                         return false;
1232         }
1233
1234         rb_link_node(&new_range->node, parent, n);
1235         rb_insert_color(&new_range->node, &ic->in_progress);
1236
1237         return true;
1238 }
1239
1240 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1241 {
1242         rb_erase(&range->node, &ic->in_progress);
1243         while (unlikely(!list_empty(&ic->wait_list))) {
1244                 struct dm_integrity_range *last_range =
1245                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1246                 struct task_struct *last_range_task;
1247
1248                 last_range_task = last_range->task;
1249                 list_del(&last_range->wait_entry);
1250                 if (!add_new_range(ic, last_range, false)) {
1251                         last_range->task = last_range_task;
1252                         list_add(&last_range->wait_entry, &ic->wait_list);
1253                         break;
1254                 }
1255                 last_range->waiting = false;
1256                 wake_up_process(last_range_task);
1257         }
1258 }
1259
1260 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1261 {
1262         unsigned long flags;
1263
1264         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1265         remove_range_unlocked(ic, range);
1266         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1267 }
1268
1269 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1270 {
1271         new_range->waiting = true;
1272         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1273         new_range->task = current;
1274         do {
1275                 __set_current_state(TASK_UNINTERRUPTIBLE);
1276                 spin_unlock_irq(&ic->endio_wait.lock);
1277                 io_schedule();
1278                 spin_lock_irq(&ic->endio_wait.lock);
1279         } while (unlikely(new_range->waiting));
1280 }
1281
1282 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1283 {
1284         if (unlikely(!add_new_range(ic, new_range, true)))
1285                 wait_and_add_new_range(ic, new_range);
1286 }
1287
1288 static void init_journal_node(struct journal_node *node)
1289 {
1290         RB_CLEAR_NODE(&node->node);
1291         node->sector = (sector_t)-1;
1292 }
1293
1294 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1295 {
1296         struct rb_node **link;
1297         struct rb_node *parent;
1298
1299         node->sector = sector;
1300         BUG_ON(!RB_EMPTY_NODE(&node->node));
1301
1302         link = &ic->journal_tree_root.rb_node;
1303         parent = NULL;
1304
1305         while (*link) {
1306                 struct journal_node *j;
1307
1308                 parent = *link;
1309                 j = container_of(parent, struct journal_node, node);
1310                 if (sector < j->sector)
1311                         link = &j->node.rb_left;
1312                 else
1313                         link = &j->node.rb_right;
1314         }
1315
1316         rb_link_node(&node->node, parent, link);
1317         rb_insert_color(&node->node, &ic->journal_tree_root);
1318 }
1319
1320 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1321 {
1322         BUG_ON(RB_EMPTY_NODE(&node->node));
1323         rb_erase(&node->node, &ic->journal_tree_root);
1324         init_journal_node(node);
1325 }
1326
1327 #define NOT_FOUND       (-1U)
1328
1329 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1330 {
1331         struct rb_node *n = ic->journal_tree_root.rb_node;
1332         unsigned int found = NOT_FOUND;
1333
1334         *next_sector = (sector_t)-1;
1335         while (n) {
1336                 struct journal_node *j = container_of(n, struct journal_node, node);
1337
1338                 if (sector == j->sector)
1339                         found = j - ic->journal_tree;
1340
1341                 if (sector < j->sector) {
1342                         *next_sector = j->sector;
1343                         n = j->node.rb_left;
1344                 } else
1345                         n = j->node.rb_right;
1346         }
1347
1348         return found;
1349 }
1350
1351 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1352 {
1353         struct journal_node *node, *next_node;
1354         struct rb_node *next;
1355
1356         if (unlikely(pos >= ic->journal_entries))
1357                 return false;
1358         node = &ic->journal_tree[pos];
1359         if (unlikely(RB_EMPTY_NODE(&node->node)))
1360                 return false;
1361         if (unlikely(node->sector != sector))
1362                 return false;
1363
1364         next = rb_next(&node->node);
1365         if (unlikely(!next))
1366                 return true;
1367
1368         next_node = container_of(next, struct journal_node, node);
1369         return next_node->sector != sector;
1370 }
1371
1372 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1373 {
1374         struct rb_node *next;
1375         struct journal_node *next_node;
1376         unsigned int next_section;
1377
1378         BUG_ON(RB_EMPTY_NODE(&node->node));
1379
1380         next = rb_next(&node->node);
1381         if (unlikely(!next))
1382                 return false;
1383
1384         next_node = container_of(next, struct journal_node, node);
1385
1386         if (next_node->sector != node->sector)
1387                 return false;
1388
1389         next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1390         if (next_section >= ic->committed_section &&
1391             next_section < ic->committed_section + ic->n_committed_sections)
1392                 return true;
1393         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1394                 return true;
1395
1396         return false;
1397 }
1398
1399 #define TAG_READ        0
1400 #define TAG_WRITE       1
1401 #define TAG_CMP         2
1402
1403 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1404                                unsigned int *metadata_offset, unsigned int total_size, int op)
1405 {
1406 #define MAY_BE_FILLER           1
1407 #define MAY_BE_HASH             2
1408         unsigned int hash_offset = 0;
1409         unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1410
1411         do {
1412                 unsigned char *data, *dp;
1413                 struct dm_buffer *b;
1414                 unsigned int to_copy;
1415                 int r;
1416
1417                 r = dm_integrity_failed(ic);
1418                 if (unlikely(r))
1419                         return r;
1420
1421                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1422                 if (IS_ERR(data))
1423                         return PTR_ERR(data);
1424
1425                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1426                 dp = data + *metadata_offset;
1427                 if (op == TAG_READ) {
1428                         memcpy(tag, dp, to_copy);
1429                 } else if (op == TAG_WRITE) {
1430                         if (memcmp(dp, tag, to_copy)) {
1431                                 memcpy(dp, tag, to_copy);
1432                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1433                         }
1434                 } else {
1435                         /* e.g.: op == TAG_CMP */
1436
1437                         if (likely(is_power_of_2(ic->tag_size))) {
1438                                 if (unlikely(memcmp(dp, tag, to_copy)))
1439                                         if (unlikely(!ic->discard) ||
1440                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1441                                                 goto thorough_test;
1442                                 }
1443                         } else {
1444                                 unsigned int i, ts;
1445 thorough_test:
1446                                 ts = total_size;
1447
1448                                 for (i = 0; i < to_copy; i++, ts--) {
1449                                         if (unlikely(dp[i] != tag[i]))
1450                                                 may_be &= ~MAY_BE_HASH;
1451                                         if (likely(dp[i] != DISCARD_FILLER))
1452                                                 may_be &= ~MAY_BE_FILLER;
1453                                         hash_offset++;
1454                                         if (unlikely(hash_offset == ic->tag_size)) {
1455                                                 if (unlikely(!may_be)) {
1456                                                         dm_bufio_release(b);
1457                                                         return ts;
1458                                                 }
1459                                                 hash_offset = 0;
1460                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1461                                         }
1462                                 }
1463                         }
1464                 }
1465                 dm_bufio_release(b);
1466
1467                 tag += to_copy;
1468                 *metadata_offset += to_copy;
1469                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1470                         (*metadata_block)++;
1471                         *metadata_offset = 0;
1472                 }
1473
1474                 if (unlikely(!is_power_of_2(ic->tag_size)))
1475                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1476
1477                 total_size -= to_copy;
1478         } while (unlikely(total_size));
1479
1480         return 0;
1481 #undef MAY_BE_FILLER
1482 #undef MAY_BE_HASH
1483 }
1484
1485 struct flush_request {
1486         struct dm_io_request io_req;
1487         struct dm_io_region io_reg;
1488         struct dm_integrity_c *ic;
1489         struct completion comp;
1490 };
1491
1492 static void flush_notify(unsigned long error, void *fr_)
1493 {
1494         struct flush_request *fr = fr_;
1495
1496         if (unlikely(error != 0))
1497                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1498         complete(&fr->comp);
1499 }
1500
1501 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1502 {
1503         int r;
1504         struct flush_request fr;
1505
1506         if (!ic->meta_dev)
1507                 flush_data = false;
1508         if (flush_data) {
1509                 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1510                 fr.io_req.mem.type = DM_IO_KMEM,
1511                 fr.io_req.mem.ptr.addr = NULL,
1512                 fr.io_req.notify.fn = flush_notify,
1513                 fr.io_req.notify.context = &fr;
1514                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1515                 fr.io_reg.bdev = ic->dev->bdev,
1516                 fr.io_reg.sector = 0,
1517                 fr.io_reg.count = 0,
1518                 fr.ic = ic;
1519                 init_completion(&fr.comp);
1520                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1521                 BUG_ON(r);
1522         }
1523
1524         r = dm_bufio_write_dirty_buffers(ic->bufio);
1525         if (unlikely(r))
1526                 dm_integrity_io_error(ic, "writing tags", r);
1527
1528         if (flush_data)
1529                 wait_for_completion(&fr.comp);
1530 }
1531
1532 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1533 {
1534         DECLARE_WAITQUEUE(wait, current);
1535
1536         __add_wait_queue(&ic->endio_wait, &wait);
1537         __set_current_state(TASK_UNINTERRUPTIBLE);
1538         spin_unlock_irq(&ic->endio_wait.lock);
1539         io_schedule();
1540         spin_lock_irq(&ic->endio_wait.lock);
1541         __remove_wait_queue(&ic->endio_wait, &wait);
1542 }
1543
1544 static void autocommit_fn(struct timer_list *t)
1545 {
1546         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1547
1548         if (likely(!dm_integrity_failed(ic)))
1549                 queue_work(ic->commit_wq, &ic->commit_work);
1550 }
1551
1552 static void schedule_autocommit(struct dm_integrity_c *ic)
1553 {
1554         if (!timer_pending(&ic->autocommit_timer))
1555                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1556 }
1557
1558 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1559 {
1560         struct bio *bio;
1561         unsigned long flags;
1562
1563         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1564         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1565         bio_list_add(&ic->flush_bio_list, bio);
1566         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1567
1568         queue_work(ic->commit_wq, &ic->commit_work);
1569 }
1570
1571 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1572 {
1573         int r;
1574
1575         r = dm_integrity_failed(ic);
1576         if (unlikely(r) && !bio->bi_status)
1577                 bio->bi_status = errno_to_blk_status(r);
1578         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1579                 unsigned long flags;
1580
1581                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1582                 bio_list_add(&ic->synchronous_bios, bio);
1583                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1584                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1585                 return;
1586         }
1587         bio_endio(bio);
1588 }
1589
1590 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1591 {
1592         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1593
1594         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1595                 submit_flush_bio(ic, dio);
1596         else
1597                 do_endio(ic, bio);
1598 }
1599
1600 static void dec_in_flight(struct dm_integrity_io *dio)
1601 {
1602         if (atomic_dec_and_test(&dio->in_flight)) {
1603                 struct dm_integrity_c *ic = dio->ic;
1604                 struct bio *bio;
1605
1606                 remove_range(ic, &dio->range);
1607
1608                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1609                         schedule_autocommit(ic);
1610
1611                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1612                 if (unlikely(dio->bi_status) && !bio->bi_status)
1613                         bio->bi_status = dio->bi_status;
1614                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1615                         dio->range.logical_sector += dio->range.n_sectors;
1616                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1617                         INIT_WORK(&dio->work, integrity_bio_wait);
1618                         queue_work(ic->offload_wq, &dio->work);
1619                         return;
1620                 }
1621                 do_endio_flush(ic, dio);
1622         }
1623 }
1624
1625 static void integrity_end_io(struct bio *bio)
1626 {
1627         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1628
1629         dm_bio_restore(&dio->bio_details, bio);
1630         if (bio->bi_integrity)
1631                 bio->bi_opf |= REQ_INTEGRITY;
1632
1633         if (dio->completion)
1634                 complete(dio->completion);
1635
1636         dec_in_flight(dio);
1637 }
1638
1639 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1640                                       const char *data, char *result)
1641 {
1642         __le64 sector_le = cpu_to_le64(sector);
1643         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1644         int r;
1645         unsigned int digest_size;
1646
1647         req->tfm = ic->internal_hash;
1648
1649         r = crypto_shash_init(req);
1650         if (unlikely(r < 0)) {
1651                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1652                 goto failed;
1653         }
1654
1655         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1656                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1657                 if (unlikely(r < 0)) {
1658                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1659                         goto failed;
1660                 }
1661         }
1662
1663         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1664         if (unlikely(r < 0)) {
1665                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1666                 goto failed;
1667         }
1668
1669         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1670         if (unlikely(r < 0)) {
1671                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1672                 goto failed;
1673         }
1674
1675         r = crypto_shash_final(req, result);
1676         if (unlikely(r < 0)) {
1677                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1678                 goto failed;
1679         }
1680
1681         digest_size = crypto_shash_digestsize(ic->internal_hash);
1682         if (unlikely(digest_size < ic->tag_size))
1683                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1684
1685         return;
1686
1687 failed:
1688         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1689         get_random_bytes(result, ic->tag_size);
1690 }
1691
1692 static void integrity_metadata(struct work_struct *w)
1693 {
1694         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1695         struct dm_integrity_c *ic = dio->ic;
1696
1697         int r;
1698
1699         if (ic->internal_hash) {
1700                 struct bvec_iter iter;
1701                 struct bio_vec bv;
1702                 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1703                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1704                 char *checksums;
1705                 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1706                 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1707                 sector_t sector;
1708                 unsigned int sectors_to_process;
1709
1710                 if (unlikely(ic->mode == 'R'))
1711                         goto skip_io;
1712
1713                 if (likely(dio->op != REQ_OP_DISCARD))
1714                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1715                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1716                 else
1717                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1718                 if (!checksums) {
1719                         checksums = checksums_onstack;
1720                         if (WARN_ON(extra_space &&
1721                                     digest_size > sizeof(checksums_onstack))) {
1722                                 r = -EINVAL;
1723                                 goto error;
1724                         }
1725                 }
1726
1727                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1728                         unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1729                         unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1730                         unsigned int max_blocks = max_size / ic->tag_size;
1731
1732                         memset(checksums, DISCARD_FILLER, max_size);
1733
1734                         while (bi_size) {
1735                                 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1736
1737                                 this_step_blocks = min(this_step_blocks, max_blocks);
1738                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1739                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1740                                 if (unlikely(r)) {
1741                                         if (likely(checksums != checksums_onstack))
1742                                                 kfree(checksums);
1743                                         goto error;
1744                                 }
1745
1746                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1747                         }
1748
1749                         if (likely(checksums != checksums_onstack))
1750                                 kfree(checksums);
1751                         goto skip_io;
1752                 }
1753
1754                 sector = dio->range.logical_sector;
1755                 sectors_to_process = dio->range.n_sectors;
1756
1757                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1758                         struct bio_vec bv_copy = bv;
1759                         unsigned int pos;
1760                         char *mem, *checksums_ptr;
1761
1762 again:
1763                         mem = bvec_kmap_local(&bv_copy);
1764                         pos = 0;
1765                         checksums_ptr = checksums;
1766                         do {
1767                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1768                                 checksums_ptr += ic->tag_size;
1769                                 sectors_to_process -= ic->sectors_per_block;
1770                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1771                                 sector += ic->sectors_per_block;
1772                         } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1773                         kunmap_local(mem);
1774
1775                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1776                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1777                         if (unlikely(r)) {
1778                                 if (r > 0) {
1779                                         sector_t s;
1780
1781                                         s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1782                                         DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1783                                                     bio->bi_bdev, s);
1784                                         r = -EILSEQ;
1785                                         atomic64_inc(&ic->number_of_mismatches);
1786                                         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1787                                                          bio, s, 0);
1788                                 }
1789                                 if (likely(checksums != checksums_onstack))
1790                                         kfree(checksums);
1791                                 goto error;
1792                         }
1793
1794                         if (!sectors_to_process)
1795                                 break;
1796
1797                         if (unlikely(pos < bv_copy.bv_len)) {
1798                                 bv_copy.bv_offset += pos;
1799                                 bv_copy.bv_len -= pos;
1800                                 goto again;
1801                         }
1802                 }
1803
1804                 if (likely(checksums != checksums_onstack))
1805                         kfree(checksums);
1806         } else {
1807                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1808
1809                 if (bip) {
1810                         struct bio_vec biv;
1811                         struct bvec_iter iter;
1812                         unsigned int data_to_process = dio->range.n_sectors;
1813
1814                         sector_to_block(ic, data_to_process);
1815                         data_to_process *= ic->tag_size;
1816
1817                         bip_for_each_vec(biv, bip, iter) {
1818                                 unsigned char *tag;
1819                                 unsigned int this_len;
1820
1821                                 BUG_ON(PageHighMem(biv.bv_page));
1822                                 tag = bvec_virt(&biv);
1823                                 this_len = min(biv.bv_len, data_to_process);
1824                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1825                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1826                                 if (unlikely(r))
1827                                         goto error;
1828                                 data_to_process -= this_len;
1829                                 if (!data_to_process)
1830                                         break;
1831                         }
1832                 }
1833         }
1834 skip_io:
1835         dec_in_flight(dio);
1836         return;
1837 error:
1838         dio->bi_status = errno_to_blk_status(r);
1839         dec_in_flight(dio);
1840 }
1841
1842 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1843 {
1844         struct dm_integrity_c *ic = ti->private;
1845         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1846         struct bio_integrity_payload *bip;
1847
1848         sector_t area, offset;
1849
1850         dio->ic = ic;
1851         dio->bi_status = 0;
1852         dio->op = bio_op(bio);
1853
1854         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1855                 if (ti->max_io_len) {
1856                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1857                         unsigned int log2_max_io_len = __fls(ti->max_io_len);
1858                         sector_t start_boundary = sec >> log2_max_io_len;
1859                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1860
1861                         if (start_boundary < end_boundary) {
1862                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1863
1864                                 dm_accept_partial_bio(bio, len);
1865                         }
1866                 }
1867         }
1868
1869         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1870                 submit_flush_bio(ic, dio);
1871                 return DM_MAPIO_SUBMITTED;
1872         }
1873
1874         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1875         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1876         if (unlikely(dio->fua)) {
1877                 /*
1878                  * Don't pass down the FUA flag because we have to flush
1879                  * disk cache anyway.
1880                  */
1881                 bio->bi_opf &= ~REQ_FUA;
1882         }
1883         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1884                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1885                       dio->range.logical_sector, bio_sectors(bio),
1886                       ic->provided_data_sectors);
1887                 return DM_MAPIO_KILL;
1888         }
1889         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1890                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1891                       ic->sectors_per_block,
1892                       dio->range.logical_sector, bio_sectors(bio));
1893                 return DM_MAPIO_KILL;
1894         }
1895
1896         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1897                 struct bvec_iter iter;
1898                 struct bio_vec bv;
1899
1900                 bio_for_each_segment(bv, bio, iter) {
1901                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1902                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1903                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1904                                 return DM_MAPIO_KILL;
1905                         }
1906                 }
1907         }
1908
1909         bip = bio_integrity(bio);
1910         if (!ic->internal_hash) {
1911                 if (bip) {
1912                         unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1913
1914                         if (ic->log2_tag_size >= 0)
1915                                 wanted_tag_size <<= ic->log2_tag_size;
1916                         else
1917                                 wanted_tag_size *= ic->tag_size;
1918                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1919                                 DMERR("Invalid integrity data size %u, expected %u",
1920                                       bip->bip_iter.bi_size, wanted_tag_size);
1921                                 return DM_MAPIO_KILL;
1922                         }
1923                 }
1924         } else {
1925                 if (unlikely(bip != NULL)) {
1926                         DMERR("Unexpected integrity data when using internal hash");
1927                         return DM_MAPIO_KILL;
1928                 }
1929         }
1930
1931         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1932                 return DM_MAPIO_KILL;
1933
1934         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1935         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1936         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1937
1938         dm_integrity_map_continue(dio, true);
1939         return DM_MAPIO_SUBMITTED;
1940 }
1941
1942 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1943                                  unsigned int journal_section, unsigned int journal_entry)
1944 {
1945         struct dm_integrity_c *ic = dio->ic;
1946         sector_t logical_sector;
1947         unsigned int n_sectors;
1948
1949         logical_sector = dio->range.logical_sector;
1950         n_sectors = dio->range.n_sectors;
1951         do {
1952                 struct bio_vec bv = bio_iovec(bio);
1953                 char *mem;
1954
1955                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1956                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1957                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1958                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1959 retry_kmap:
1960                 mem = kmap_local_page(bv.bv_page);
1961                 if (likely(dio->op == REQ_OP_WRITE))
1962                         flush_dcache_page(bv.bv_page);
1963
1964                 do {
1965                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1966
1967                         if (unlikely(dio->op == REQ_OP_READ)) {
1968                                 struct journal_sector *js;
1969                                 char *mem_ptr;
1970                                 unsigned int s;
1971
1972                                 if (unlikely(journal_entry_is_inprogress(je))) {
1973                                         flush_dcache_page(bv.bv_page);
1974                                         kunmap_local(mem);
1975
1976                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1977                                         goto retry_kmap;
1978                                 }
1979                                 smp_rmb();
1980                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1981                                 js = access_journal_data(ic, journal_section, journal_entry);
1982                                 mem_ptr = mem + bv.bv_offset;
1983                                 s = 0;
1984                                 do {
1985                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1986                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1987                                         js++;
1988                                         mem_ptr += 1 << SECTOR_SHIFT;
1989                                 } while (++s < ic->sectors_per_block);
1990 #ifdef INTERNAL_VERIFY
1991                                 if (ic->internal_hash) {
1992                                         char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1993
1994                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1995                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1996                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1997                                                             logical_sector);
1998                                                 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
1999                                                                  bio, logical_sector, 0);
2000                                         }
2001                                 }
2002 #endif
2003                         }
2004
2005                         if (!ic->internal_hash) {
2006                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2007                                 unsigned int tag_todo = ic->tag_size;
2008                                 char *tag_ptr = journal_entry_tag(ic, je);
2009
2010                                 if (bip) {
2011                                         do {
2012                                                 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2013                                                 unsigned int tag_now = min(biv.bv_len, tag_todo);
2014                                                 char *tag_addr;
2015
2016                                                 BUG_ON(PageHighMem(biv.bv_page));
2017                                                 tag_addr = bvec_virt(&biv);
2018                                                 if (likely(dio->op == REQ_OP_WRITE))
2019                                                         memcpy(tag_ptr, tag_addr, tag_now);
2020                                                 else
2021                                                         memcpy(tag_addr, tag_ptr, tag_now);
2022                                                 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2023                                                 tag_ptr += tag_now;
2024                                                 tag_todo -= tag_now;
2025                                         } while (unlikely(tag_todo));
2026                                 } else if (likely(dio->op == REQ_OP_WRITE))
2027                                         memset(tag_ptr, 0, tag_todo);
2028                         }
2029
2030                         if (likely(dio->op == REQ_OP_WRITE)) {
2031                                 struct journal_sector *js;
2032                                 unsigned int s;
2033
2034                                 js = access_journal_data(ic, journal_section, journal_entry);
2035                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2036
2037                                 s = 0;
2038                                 do {
2039                                         je->last_bytes[s] = js[s].commit_id;
2040                                 } while (++s < ic->sectors_per_block);
2041
2042                                 if (ic->internal_hash) {
2043                                         unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2044
2045                                         if (unlikely(digest_size > ic->tag_size)) {
2046                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2047
2048                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2049                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2050                                         } else
2051                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2052                                 }
2053
2054                                 journal_entry_set_sector(je, logical_sector);
2055                         }
2056                         logical_sector += ic->sectors_per_block;
2057
2058                         journal_entry++;
2059                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2060                                 journal_entry = 0;
2061                                 journal_section++;
2062                                 wraparound_section(ic, &journal_section);
2063                         }
2064
2065                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2066                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2067
2068                 if (unlikely(dio->op == REQ_OP_READ))
2069                         flush_dcache_page(bv.bv_page);
2070                 kunmap_local(mem);
2071         } while (n_sectors);
2072
2073         if (likely(dio->op == REQ_OP_WRITE)) {
2074                 smp_mb();
2075                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2076                         wake_up(&ic->copy_to_journal_wait);
2077                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2078                         queue_work(ic->commit_wq, &ic->commit_work);
2079                 else
2080                         schedule_autocommit(ic);
2081         } else
2082                 remove_range(ic, &dio->range);
2083
2084         if (unlikely(bio->bi_iter.bi_size)) {
2085                 sector_t area, offset;
2086
2087                 dio->range.logical_sector = logical_sector;
2088                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2089                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2090                 return true;
2091         }
2092
2093         return false;
2094 }
2095
2096 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2097 {
2098         struct dm_integrity_c *ic = dio->ic;
2099         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2100         unsigned int journal_section, journal_entry;
2101         unsigned int journal_read_pos;
2102         struct completion read_comp;
2103         bool discard_retried = false;
2104         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2105
2106         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2107                 need_sync_io = true;
2108
2109         if (need_sync_io && from_map) {
2110                 INIT_WORK(&dio->work, integrity_bio_wait);
2111                 queue_work(ic->offload_wq, &dio->work);
2112                 return;
2113         }
2114
2115 lock_retry:
2116         spin_lock_irq(&ic->endio_wait.lock);
2117 retry:
2118         if (unlikely(dm_integrity_failed(ic))) {
2119                 spin_unlock_irq(&ic->endio_wait.lock);
2120                 do_endio(ic, bio);
2121                 return;
2122         }
2123         dio->range.n_sectors = bio_sectors(bio);
2124         journal_read_pos = NOT_FOUND;
2125         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2126                 if (dio->op == REQ_OP_WRITE) {
2127                         unsigned int next_entry, i, pos;
2128                         unsigned int ws, we, range_sectors;
2129
2130                         dio->range.n_sectors = min(dio->range.n_sectors,
2131                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2132                         if (unlikely(!dio->range.n_sectors)) {
2133                                 if (from_map)
2134                                         goto offload_to_thread;
2135                                 sleep_on_endio_wait(ic);
2136                                 goto retry;
2137                         }
2138                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2139                         ic->free_sectors -= range_sectors;
2140                         journal_section = ic->free_section;
2141                         journal_entry = ic->free_section_entry;
2142
2143                         next_entry = ic->free_section_entry + range_sectors;
2144                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2145                         ic->free_section += next_entry / ic->journal_section_entries;
2146                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2147                         wraparound_section(ic, &ic->free_section);
2148
2149                         pos = journal_section * ic->journal_section_entries + journal_entry;
2150                         ws = journal_section;
2151                         we = journal_entry;
2152                         i = 0;
2153                         do {
2154                                 struct journal_entry *je;
2155
2156                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2157                                 pos++;
2158                                 if (unlikely(pos >= ic->journal_entries))
2159                                         pos = 0;
2160
2161                                 je = access_journal_entry(ic, ws, we);
2162                                 BUG_ON(!journal_entry_is_unused(je));
2163                                 journal_entry_set_inprogress(je);
2164                                 we++;
2165                                 if (unlikely(we == ic->journal_section_entries)) {
2166                                         we = 0;
2167                                         ws++;
2168                                         wraparound_section(ic, &ws);
2169                                 }
2170                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2171
2172                         spin_unlock_irq(&ic->endio_wait.lock);
2173                         goto journal_read_write;
2174                 } else {
2175                         sector_t next_sector;
2176
2177                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2178                         if (likely(journal_read_pos == NOT_FOUND)) {
2179                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2180                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2181                         } else {
2182                                 unsigned int i;
2183                                 unsigned int jp = journal_read_pos + 1;
2184
2185                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2186                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2187                                                 break;
2188                                 }
2189                                 dio->range.n_sectors = i;
2190                         }
2191                 }
2192         }
2193         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2194                 /*
2195                  * We must not sleep in the request routine because it could
2196                  * stall bios on current->bio_list.
2197                  * So, we offload the bio to a workqueue if we have to sleep.
2198                  */
2199                 if (from_map) {
2200 offload_to_thread:
2201                         spin_unlock_irq(&ic->endio_wait.lock);
2202                         INIT_WORK(&dio->work, integrity_bio_wait);
2203                         queue_work(ic->wait_wq, &dio->work);
2204                         return;
2205                 }
2206                 if (journal_read_pos != NOT_FOUND)
2207                         dio->range.n_sectors = ic->sectors_per_block;
2208                 wait_and_add_new_range(ic, &dio->range);
2209                 /*
2210                  * wait_and_add_new_range drops the spinlock, so the journal
2211                  * may have been changed arbitrarily. We need to recheck.
2212                  * To simplify the code, we restrict I/O size to just one block.
2213                  */
2214                 if (journal_read_pos != NOT_FOUND) {
2215                         sector_t next_sector;
2216                         unsigned int new_pos;
2217
2218                         new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2219                         if (unlikely(new_pos != journal_read_pos)) {
2220                                 remove_range_unlocked(ic, &dio->range);
2221                                 goto retry;
2222                         }
2223                 }
2224         }
2225         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2226                 sector_t next_sector;
2227                 unsigned int new_pos;
2228
2229                 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2230                 if (unlikely(new_pos != NOT_FOUND) ||
2231                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2232                         remove_range_unlocked(ic, &dio->range);
2233                         spin_unlock_irq(&ic->endio_wait.lock);
2234                         queue_work(ic->commit_wq, &ic->commit_work);
2235                         flush_workqueue(ic->commit_wq);
2236                         queue_work(ic->writer_wq, &ic->writer_work);
2237                         flush_workqueue(ic->writer_wq);
2238                         discard_retried = true;
2239                         goto lock_retry;
2240                 }
2241         }
2242         spin_unlock_irq(&ic->endio_wait.lock);
2243
2244         if (unlikely(journal_read_pos != NOT_FOUND)) {
2245                 journal_section = journal_read_pos / ic->journal_section_entries;
2246                 journal_entry = journal_read_pos % ic->journal_section_entries;
2247                 goto journal_read_write;
2248         }
2249
2250         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2251                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2252                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2253                         struct bitmap_block_status *bbs;
2254
2255                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2256                         spin_lock(&bbs->bio_queue_lock);
2257                         bio_list_add(&bbs->bio_queue, bio);
2258                         spin_unlock(&bbs->bio_queue_lock);
2259                         queue_work(ic->writer_wq, &bbs->work);
2260                         return;
2261                 }
2262         }
2263
2264         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2265
2266         if (need_sync_io) {
2267                 init_completion(&read_comp);
2268                 dio->completion = &read_comp;
2269         } else
2270                 dio->completion = NULL;
2271
2272         dm_bio_record(&dio->bio_details, bio);
2273         bio_set_dev(bio, ic->dev->bdev);
2274         bio->bi_integrity = NULL;
2275         bio->bi_opf &= ~REQ_INTEGRITY;
2276         bio->bi_end_io = integrity_end_io;
2277         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2278
2279         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2280                 integrity_metadata(&dio->work);
2281                 dm_integrity_flush_buffers(ic, false);
2282
2283                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2284                 dio->completion = NULL;
2285
2286                 submit_bio_noacct(bio);
2287
2288                 return;
2289         }
2290
2291         submit_bio_noacct(bio);
2292
2293         if (need_sync_io) {
2294                 wait_for_completion_io(&read_comp);
2295                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2296                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2297                         goto skip_check;
2298                 if (ic->mode == 'B') {
2299                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2300                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2301                                 goto skip_check;
2302                 }
2303
2304                 if (likely(!bio->bi_status))
2305                         integrity_metadata(&dio->work);
2306                 else
2307 skip_check:
2308                         dec_in_flight(dio);
2309         } else {
2310                 INIT_WORK(&dio->work, integrity_metadata);
2311                 queue_work(ic->metadata_wq, &dio->work);
2312         }
2313
2314         return;
2315
2316 journal_read_write:
2317         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2318                 goto lock_retry;
2319
2320         do_endio_flush(ic, dio);
2321 }
2322
2323
2324 static void integrity_bio_wait(struct work_struct *w)
2325 {
2326         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2327
2328         dm_integrity_map_continue(dio, false);
2329 }
2330
2331 static void pad_uncommitted(struct dm_integrity_c *ic)
2332 {
2333         if (ic->free_section_entry) {
2334                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2335                 ic->free_section_entry = 0;
2336                 ic->free_section++;
2337                 wraparound_section(ic, &ic->free_section);
2338                 ic->n_uncommitted_sections++;
2339         }
2340         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2341                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2342                     ic->journal_section_entries + ic->free_sectors)) {
2343                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2344                        "n_uncommitted_sections %u, n_committed_sections %u, "
2345                        "journal_section_entries %u, free_sectors %u",
2346                        ic->journal_sections, ic->journal_section_entries,
2347                        ic->n_uncommitted_sections, ic->n_committed_sections,
2348                        ic->journal_section_entries, ic->free_sectors);
2349         }
2350 }
2351
2352 static void integrity_commit(struct work_struct *w)
2353 {
2354         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2355         unsigned int commit_start, commit_sections;
2356         unsigned int i, j, n;
2357         struct bio *flushes;
2358
2359         del_timer(&ic->autocommit_timer);
2360
2361         spin_lock_irq(&ic->endio_wait.lock);
2362         flushes = bio_list_get(&ic->flush_bio_list);
2363         if (unlikely(ic->mode != 'J')) {
2364                 spin_unlock_irq(&ic->endio_wait.lock);
2365                 dm_integrity_flush_buffers(ic, true);
2366                 goto release_flush_bios;
2367         }
2368
2369         pad_uncommitted(ic);
2370         commit_start = ic->uncommitted_section;
2371         commit_sections = ic->n_uncommitted_sections;
2372         spin_unlock_irq(&ic->endio_wait.lock);
2373
2374         if (!commit_sections)
2375                 goto release_flush_bios;
2376
2377         ic->wrote_to_journal = true;
2378
2379         i = commit_start;
2380         for (n = 0; n < commit_sections; n++) {
2381                 for (j = 0; j < ic->journal_section_entries; j++) {
2382                         struct journal_entry *je;
2383
2384                         je = access_journal_entry(ic, i, j);
2385                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2386                 }
2387                 for (j = 0; j < ic->journal_section_sectors; j++) {
2388                         struct journal_sector *js;
2389
2390                         js = access_journal(ic, i, j);
2391                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2392                 }
2393                 i++;
2394                 if (unlikely(i >= ic->journal_sections))
2395                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2396                 wraparound_section(ic, &i);
2397         }
2398         smp_rmb();
2399
2400         write_journal(ic, commit_start, commit_sections);
2401
2402         spin_lock_irq(&ic->endio_wait.lock);
2403         ic->uncommitted_section += commit_sections;
2404         wraparound_section(ic, &ic->uncommitted_section);
2405         ic->n_uncommitted_sections -= commit_sections;
2406         ic->n_committed_sections += commit_sections;
2407         spin_unlock_irq(&ic->endio_wait.lock);
2408
2409         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2410                 queue_work(ic->writer_wq, &ic->writer_work);
2411
2412 release_flush_bios:
2413         while (flushes) {
2414                 struct bio *next = flushes->bi_next;
2415
2416                 flushes->bi_next = NULL;
2417                 do_endio(ic, flushes);
2418                 flushes = next;
2419         }
2420 }
2421
2422 static void complete_copy_from_journal(unsigned long error, void *context)
2423 {
2424         struct journal_io *io = context;
2425         struct journal_completion *comp = io->comp;
2426         struct dm_integrity_c *ic = comp->ic;
2427
2428         remove_range(ic, &io->range);
2429         mempool_free(io, &ic->journal_io_mempool);
2430         if (unlikely(error != 0))
2431                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2432         complete_journal_op(comp);
2433 }
2434
2435 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2436                                struct journal_entry *je)
2437 {
2438         unsigned int s = 0;
2439
2440         do {
2441                 js->commit_id = je->last_bytes[s];
2442                 js++;
2443         } while (++s < ic->sectors_per_block);
2444 }
2445
2446 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2447                              unsigned int write_sections, bool from_replay)
2448 {
2449         unsigned int i, j, n;
2450         struct journal_completion comp;
2451         struct blk_plug plug;
2452
2453         blk_start_plug(&plug);
2454
2455         comp.ic = ic;
2456         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2457         init_completion(&comp.comp);
2458
2459         i = write_start;
2460         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2461 #ifndef INTERNAL_VERIFY
2462                 if (unlikely(from_replay))
2463 #endif
2464                         rw_section_mac(ic, i, false);
2465                 for (j = 0; j < ic->journal_section_entries; j++) {
2466                         struct journal_entry *je = access_journal_entry(ic, i, j);
2467                         sector_t sec, area, offset;
2468                         unsigned int k, l, next_loop;
2469                         sector_t metadata_block;
2470                         unsigned int metadata_offset;
2471                         struct journal_io *io;
2472
2473                         if (journal_entry_is_unused(je))
2474                                 continue;
2475                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2476                         sec = journal_entry_get_sector(je);
2477                         if (unlikely(from_replay)) {
2478                                 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2479                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2480                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2481                                 }
2482                                 if (unlikely(sec >= ic->provided_data_sectors)) {
2483                                         journal_entry_set_unused(je);
2484                                         continue;
2485                                 }
2486                         }
2487                         get_area_and_offset(ic, sec, &area, &offset);
2488                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2489                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2490                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2491                                 sector_t sec2, area2, offset2;
2492
2493                                 if (journal_entry_is_unused(je2))
2494                                         break;
2495                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2496                                 sec2 = journal_entry_get_sector(je2);
2497                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2498                                         break;
2499                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2500                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2501                                         break;
2502                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2503                         }
2504                         next_loop = k - 1;
2505
2506                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2507                         io->comp = &comp;
2508                         io->range.logical_sector = sec;
2509                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2510
2511                         spin_lock_irq(&ic->endio_wait.lock);
2512                         add_new_range_and_wait(ic, &io->range);
2513
2514                         if (likely(!from_replay)) {
2515                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2516
2517                                 /* don't write if there is newer committed sector */
2518                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2519                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2520
2521                                         journal_entry_set_unused(je2);
2522                                         remove_journal_node(ic, &section_node[j]);
2523                                         j++;
2524                                         sec += ic->sectors_per_block;
2525                                         offset += ic->sectors_per_block;
2526                                 }
2527                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2528                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2529
2530                                         journal_entry_set_unused(je2);
2531                                         remove_journal_node(ic, &section_node[k - 1]);
2532                                         k--;
2533                                 }
2534                                 if (j == k) {
2535                                         remove_range_unlocked(ic, &io->range);
2536                                         spin_unlock_irq(&ic->endio_wait.lock);
2537                                         mempool_free(io, &ic->journal_io_mempool);
2538                                         goto skip_io;
2539                                 }
2540                                 for (l = j; l < k; l++)
2541                                         remove_journal_node(ic, &section_node[l]);
2542                         }
2543                         spin_unlock_irq(&ic->endio_wait.lock);
2544
2545                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2546                         for (l = j; l < k; l++) {
2547                                 int r;
2548                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2549
2550                                 if (
2551 #ifndef INTERNAL_VERIFY
2552                                     unlikely(from_replay) &&
2553 #endif
2554                                     ic->internal_hash) {
2555                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2556
2557                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2558                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2559                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2560                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2561                                                 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2562                                         }
2563                                 }
2564
2565                                 journal_entry_set_unused(je2);
2566                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2567                                                         ic->tag_size, TAG_WRITE);
2568                                 if (unlikely(r))
2569                                         dm_integrity_io_error(ic, "reading tags", r);
2570                         }
2571
2572                         atomic_inc(&comp.in_flight);
2573                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2574                                           (k - j) << ic->sb->log2_sectors_per_block,
2575                                           get_data_sector(ic, area, offset),
2576                                           complete_copy_from_journal, io);
2577 skip_io:
2578                         j = next_loop;
2579                 }
2580         }
2581
2582         dm_bufio_write_dirty_buffers_async(ic->bufio);
2583
2584         blk_finish_plug(&plug);
2585
2586         complete_journal_op(&comp);
2587         wait_for_completion_io(&comp.comp);
2588
2589         dm_integrity_flush_buffers(ic, true);
2590 }
2591
2592 static void integrity_writer(struct work_struct *w)
2593 {
2594         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2595         unsigned int write_start, write_sections;
2596         unsigned int prev_free_sectors;
2597
2598         spin_lock_irq(&ic->endio_wait.lock);
2599         write_start = ic->committed_section;
2600         write_sections = ic->n_committed_sections;
2601         spin_unlock_irq(&ic->endio_wait.lock);
2602
2603         if (!write_sections)
2604                 return;
2605
2606         do_journal_write(ic, write_start, write_sections, false);
2607
2608         spin_lock_irq(&ic->endio_wait.lock);
2609
2610         ic->committed_section += write_sections;
2611         wraparound_section(ic, &ic->committed_section);
2612         ic->n_committed_sections -= write_sections;
2613
2614         prev_free_sectors = ic->free_sectors;
2615         ic->free_sectors += write_sections * ic->journal_section_entries;
2616         if (unlikely(!prev_free_sectors))
2617                 wake_up_locked(&ic->endio_wait);
2618
2619         spin_unlock_irq(&ic->endio_wait.lock);
2620 }
2621
2622 static void recalc_write_super(struct dm_integrity_c *ic)
2623 {
2624         int r;
2625
2626         dm_integrity_flush_buffers(ic, false);
2627         if (dm_integrity_failed(ic))
2628                 return;
2629
2630         r = sync_rw_sb(ic, REQ_OP_WRITE);
2631         if (unlikely(r))
2632                 dm_integrity_io_error(ic, "writing superblock", r);
2633 }
2634
2635 static void integrity_recalc(struct work_struct *w)
2636 {
2637         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2638         size_t recalc_tags_size;
2639         u8 *recalc_buffer = NULL;
2640         u8 *recalc_tags = NULL;
2641         struct dm_integrity_range range;
2642         struct dm_io_request io_req;
2643         struct dm_io_region io_loc;
2644         sector_t area, offset;
2645         sector_t metadata_block;
2646         unsigned int metadata_offset;
2647         sector_t logical_sector, n_sectors;
2648         __u8 *t;
2649         unsigned int i;
2650         int r;
2651         unsigned int super_counter = 0;
2652         unsigned recalc_sectors = RECALC_SECTORS;
2653
2654 retry:
2655         recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2656         if (!recalc_buffer) {
2657 oom:
2658                 recalc_sectors >>= 1;
2659                 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2660                         goto retry;
2661                 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2662                 goto free_ret;
2663         }
2664         recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2665         if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2666                 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2667         recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2668         if (!recalc_tags) {
2669                 vfree(recalc_buffer);
2670                 recalc_buffer = NULL;
2671                 goto oom;
2672         }
2673
2674         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2675
2676         spin_lock_irq(&ic->endio_wait.lock);
2677
2678 next_chunk:
2679
2680         if (unlikely(dm_post_suspending(ic->ti)))
2681                 goto unlock_ret;
2682
2683         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2684         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2685                 if (ic->mode == 'B') {
2686                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2687                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2688                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2689                 }
2690                 goto unlock_ret;
2691         }
2692
2693         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2694         range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2695         if (!ic->meta_dev)
2696                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2697
2698         add_new_range_and_wait(ic, &range);
2699         spin_unlock_irq(&ic->endio_wait.lock);
2700         logical_sector = range.logical_sector;
2701         n_sectors = range.n_sectors;
2702
2703         if (ic->mode == 'B') {
2704                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2705                         goto advance_and_next;
2706
2707                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2708                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2709                         logical_sector += ic->sectors_per_block;
2710                         n_sectors -= ic->sectors_per_block;
2711                         cond_resched();
2712                 }
2713                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2714                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2715                         n_sectors -= ic->sectors_per_block;
2716                         cond_resched();
2717                 }
2718                 get_area_and_offset(ic, logical_sector, &area, &offset);
2719         }
2720
2721         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2722
2723         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2724                 recalc_write_super(ic);
2725                 if (ic->mode == 'B')
2726                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2727
2728                 super_counter = 0;
2729         }
2730
2731         if (unlikely(dm_integrity_failed(ic)))
2732                 goto err;
2733
2734         io_req.bi_opf = REQ_OP_READ;
2735         io_req.mem.type = DM_IO_VMA;
2736         io_req.mem.ptr.addr = recalc_buffer;
2737         io_req.notify.fn = NULL;
2738         io_req.client = ic->io;
2739         io_loc.bdev = ic->dev->bdev;
2740         io_loc.sector = get_data_sector(ic, area, offset);
2741         io_loc.count = n_sectors;
2742
2743         r = dm_io(&io_req, 1, &io_loc, NULL);
2744         if (unlikely(r)) {
2745                 dm_integrity_io_error(ic, "reading data", r);
2746                 goto err;
2747         }
2748
2749         t = recalc_tags;
2750         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2751                 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2752                 t += ic->tag_size;
2753         }
2754
2755         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2756
2757         r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2758         if (unlikely(r)) {
2759                 dm_integrity_io_error(ic, "writing tags", r);
2760                 goto err;
2761         }
2762
2763         if (ic->mode == 'B') {
2764                 sector_t start, end;
2765
2766                 start = (range.logical_sector >>
2767                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2768                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2769                 end = ((range.logical_sector + range.n_sectors) >>
2770                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2771                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2772                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2773         }
2774
2775 advance_and_next:
2776         cond_resched();
2777
2778         spin_lock_irq(&ic->endio_wait.lock);
2779         remove_range_unlocked(ic, &range);
2780         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2781         goto next_chunk;
2782
2783 err:
2784         remove_range(ic, &range);
2785         goto free_ret;
2786
2787 unlock_ret:
2788         spin_unlock_irq(&ic->endio_wait.lock);
2789
2790         recalc_write_super(ic);
2791
2792 free_ret:
2793         vfree(recalc_buffer);
2794         kvfree(recalc_tags);
2795 }
2796
2797 static void bitmap_block_work(struct work_struct *w)
2798 {
2799         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2800         struct dm_integrity_c *ic = bbs->ic;
2801         struct bio *bio;
2802         struct bio_list bio_queue;
2803         struct bio_list waiting;
2804
2805         bio_list_init(&waiting);
2806
2807         spin_lock(&bbs->bio_queue_lock);
2808         bio_queue = bbs->bio_queue;
2809         bio_list_init(&bbs->bio_queue);
2810         spin_unlock(&bbs->bio_queue_lock);
2811
2812         while ((bio = bio_list_pop(&bio_queue))) {
2813                 struct dm_integrity_io *dio;
2814
2815                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2816
2817                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2818                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2819                         remove_range(ic, &dio->range);
2820                         INIT_WORK(&dio->work, integrity_bio_wait);
2821                         queue_work(ic->offload_wq, &dio->work);
2822                 } else {
2823                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2824                                         dio->range.n_sectors, BITMAP_OP_SET);
2825                         bio_list_add(&waiting, bio);
2826                 }
2827         }
2828
2829         if (bio_list_empty(&waiting))
2830                 return;
2831
2832         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2833                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2834                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2835
2836         while ((bio = bio_list_pop(&waiting))) {
2837                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2838
2839                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2840                                 dio->range.n_sectors, BITMAP_OP_SET);
2841
2842                 remove_range(ic, &dio->range);
2843                 INIT_WORK(&dio->work, integrity_bio_wait);
2844                 queue_work(ic->offload_wq, &dio->work);
2845         }
2846
2847         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2848 }
2849
2850 static void bitmap_flush_work(struct work_struct *work)
2851 {
2852         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2853         struct dm_integrity_range range;
2854         unsigned long limit;
2855         struct bio *bio;
2856
2857         dm_integrity_flush_buffers(ic, false);
2858
2859         range.logical_sector = 0;
2860         range.n_sectors = ic->provided_data_sectors;
2861
2862         spin_lock_irq(&ic->endio_wait.lock);
2863         add_new_range_and_wait(ic, &range);
2864         spin_unlock_irq(&ic->endio_wait.lock);
2865
2866         dm_integrity_flush_buffers(ic, true);
2867
2868         limit = ic->provided_data_sectors;
2869         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2870                 limit = le64_to_cpu(ic->sb->recalc_sector)
2871                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2872                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2873         }
2874         /*DEBUG_print("zeroing journal\n");*/
2875         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2876         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2877
2878         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2879                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2880
2881         spin_lock_irq(&ic->endio_wait.lock);
2882         remove_range_unlocked(ic, &range);
2883         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2884                 bio_endio(bio);
2885                 spin_unlock_irq(&ic->endio_wait.lock);
2886                 spin_lock_irq(&ic->endio_wait.lock);
2887         }
2888         spin_unlock_irq(&ic->endio_wait.lock);
2889 }
2890
2891
2892 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2893                          unsigned int n_sections, unsigned char commit_seq)
2894 {
2895         unsigned int i, j, n;
2896
2897         if (!n_sections)
2898                 return;
2899
2900         for (n = 0; n < n_sections; n++) {
2901                 i = start_section + n;
2902                 wraparound_section(ic, &i);
2903                 for (j = 0; j < ic->journal_section_sectors; j++) {
2904                         struct journal_sector *js = access_journal(ic, i, j);
2905
2906                         BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2907                         memset(&js->sectors, 0, sizeof(js->sectors));
2908                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2909                 }
2910                 for (j = 0; j < ic->journal_section_entries; j++) {
2911                         struct journal_entry *je = access_journal_entry(ic, i, j);
2912
2913                         journal_entry_set_unused(je);
2914                 }
2915         }
2916
2917         write_journal(ic, start_section, n_sections);
2918 }
2919
2920 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2921 {
2922         unsigned char k;
2923
2924         for (k = 0; k < N_COMMIT_IDS; k++) {
2925                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2926                         return k;
2927         }
2928         dm_integrity_io_error(ic, "journal commit id", -EIO);
2929         return -EIO;
2930 }
2931
2932 static void replay_journal(struct dm_integrity_c *ic)
2933 {
2934         unsigned int i, j;
2935         bool used_commit_ids[N_COMMIT_IDS];
2936         unsigned int max_commit_id_sections[N_COMMIT_IDS];
2937         unsigned int write_start, write_sections;
2938         unsigned int continue_section;
2939         bool journal_empty;
2940         unsigned char unused, last_used, want_commit_seq;
2941
2942         if (ic->mode == 'R')
2943                 return;
2944
2945         if (ic->journal_uptodate)
2946                 return;
2947
2948         last_used = 0;
2949         write_start = 0;
2950
2951         if (!ic->just_formatted) {
2952                 DEBUG_print("reading journal\n");
2953                 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
2954                 if (ic->journal_io)
2955                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2956                 if (ic->journal_io) {
2957                         struct journal_completion crypt_comp;
2958
2959                         crypt_comp.ic = ic;
2960                         init_completion(&crypt_comp.comp);
2961                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2962                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2963                         wait_for_completion(&crypt_comp.comp);
2964                 }
2965                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2966         }
2967
2968         if (dm_integrity_failed(ic))
2969                 goto clear_journal;
2970
2971         journal_empty = true;
2972         memset(used_commit_ids, 0, sizeof(used_commit_ids));
2973         memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
2974         for (i = 0; i < ic->journal_sections; i++) {
2975                 for (j = 0; j < ic->journal_section_sectors; j++) {
2976                         int k;
2977                         struct journal_sector *js = access_journal(ic, i, j);
2978
2979                         k = find_commit_seq(ic, i, j, js->commit_id);
2980                         if (k < 0)
2981                                 goto clear_journal;
2982                         used_commit_ids[k] = true;
2983                         max_commit_id_sections[k] = i;
2984                 }
2985                 if (journal_empty) {
2986                         for (j = 0; j < ic->journal_section_entries; j++) {
2987                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2988
2989                                 if (!journal_entry_is_unused(je)) {
2990                                         journal_empty = false;
2991                                         break;
2992                                 }
2993                         }
2994                 }
2995         }
2996
2997         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2998                 unused = N_COMMIT_IDS - 1;
2999                 while (unused && !used_commit_ids[unused - 1])
3000                         unused--;
3001         } else {
3002                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3003                         if (!used_commit_ids[unused])
3004                                 break;
3005                 if (unused == N_COMMIT_IDS) {
3006                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
3007                         goto clear_journal;
3008                 }
3009         }
3010         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3011                     unused, used_commit_ids[0], used_commit_ids[1],
3012                     used_commit_ids[2], used_commit_ids[3]);
3013
3014         last_used = prev_commit_seq(unused);
3015         want_commit_seq = prev_commit_seq(last_used);
3016
3017         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3018                 journal_empty = true;
3019
3020         write_start = max_commit_id_sections[last_used] + 1;
3021         if (unlikely(write_start >= ic->journal_sections))
3022                 want_commit_seq = next_commit_seq(want_commit_seq);
3023         wraparound_section(ic, &write_start);
3024
3025         i = write_start;
3026         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3027                 for (j = 0; j < ic->journal_section_sectors; j++) {
3028                         struct journal_sector *js = access_journal(ic, i, j);
3029
3030                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3031                                 /*
3032                                  * This could be caused by crash during writing.
3033                                  * We won't replay the inconsistent part of the
3034                                  * journal.
3035                                  */
3036                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3037                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3038                                 goto brk;
3039                         }
3040                 }
3041                 i++;
3042                 if (unlikely(i >= ic->journal_sections))
3043                         want_commit_seq = next_commit_seq(want_commit_seq);
3044                 wraparound_section(ic, &i);
3045         }
3046 brk:
3047
3048         if (!journal_empty) {
3049                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3050                             write_sections, write_start, want_commit_seq);
3051                 do_journal_write(ic, write_start, write_sections, true);
3052         }
3053
3054         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3055                 continue_section = write_start;
3056                 ic->commit_seq = want_commit_seq;
3057                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3058         } else {
3059                 unsigned int s;
3060                 unsigned char erase_seq;
3061
3062 clear_journal:
3063                 DEBUG_print("clearing journal\n");
3064
3065                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3066                 s = write_start;
3067                 init_journal(ic, s, 1, erase_seq);
3068                 s++;
3069                 wraparound_section(ic, &s);
3070                 if (ic->journal_sections >= 2) {
3071                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3072                         s += ic->journal_sections - 2;
3073                         wraparound_section(ic, &s);
3074                         init_journal(ic, s, 1, erase_seq);
3075                 }
3076
3077                 continue_section = 0;
3078                 ic->commit_seq = next_commit_seq(erase_seq);
3079         }
3080
3081         ic->committed_section = continue_section;
3082         ic->n_committed_sections = 0;
3083
3084         ic->uncommitted_section = continue_section;
3085         ic->n_uncommitted_sections = 0;
3086
3087         ic->free_section = continue_section;
3088         ic->free_section_entry = 0;
3089         ic->free_sectors = ic->journal_entries;
3090
3091         ic->journal_tree_root = RB_ROOT;
3092         for (i = 0; i < ic->journal_entries; i++)
3093                 init_journal_node(&ic->journal_tree[i]);
3094 }
3095
3096 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3097 {
3098         DEBUG_print("%s\n", __func__);
3099
3100         if (ic->mode == 'B') {
3101                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3102                 ic->synchronous_mode = 1;
3103
3104                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3105                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3106                 flush_workqueue(ic->commit_wq);
3107         }
3108 }
3109
3110 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3111 {
3112         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3113
3114         DEBUG_print("%s\n", __func__);
3115
3116         dm_integrity_enter_synchronous_mode(ic);
3117
3118         return NOTIFY_DONE;
3119 }
3120
3121 static void dm_integrity_postsuspend(struct dm_target *ti)
3122 {
3123         struct dm_integrity_c *ic = ti->private;
3124         int r;
3125
3126         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3127
3128         del_timer_sync(&ic->autocommit_timer);
3129
3130         if (ic->recalc_wq)
3131                 drain_workqueue(ic->recalc_wq);
3132
3133         if (ic->mode == 'B')
3134                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3135
3136         queue_work(ic->commit_wq, &ic->commit_work);
3137         drain_workqueue(ic->commit_wq);
3138
3139         if (ic->mode == 'J') {
3140                 queue_work(ic->writer_wq, &ic->writer_work);
3141                 drain_workqueue(ic->writer_wq);
3142                 dm_integrity_flush_buffers(ic, true);
3143                 if (ic->wrote_to_journal) {
3144                         init_journal(ic, ic->free_section,
3145                                      ic->journal_sections - ic->free_section, ic->commit_seq);
3146                         if (ic->free_section) {
3147                                 init_journal(ic, 0, ic->free_section,
3148                                              next_commit_seq(ic->commit_seq));
3149                         }
3150                 }
3151         }
3152
3153         if (ic->mode == 'B') {
3154                 dm_integrity_flush_buffers(ic, true);
3155 #if 1
3156                 /* set to 0 to test bitmap replay code */
3157                 init_journal(ic, 0, ic->journal_sections, 0);
3158                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3159                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3160                 if (unlikely(r))
3161                         dm_integrity_io_error(ic, "writing superblock", r);
3162 #endif
3163         }
3164
3165         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3166
3167         ic->journal_uptodate = true;
3168 }
3169
3170 static void dm_integrity_resume(struct dm_target *ti)
3171 {
3172         struct dm_integrity_c *ic = ti->private;
3173         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3174         int r;
3175
3176         DEBUG_print("resume\n");
3177
3178         ic->wrote_to_journal = false;
3179
3180         if (ic->provided_data_sectors != old_provided_data_sectors) {
3181                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3182                     ic->mode == 'B' &&
3183                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3184                         rw_journal_sectors(ic, REQ_OP_READ, 0,
3185                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3186                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3187                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3188                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3189                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3190                 }
3191
3192                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3193                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3194                 if (unlikely(r))
3195                         dm_integrity_io_error(ic, "writing superblock", r);
3196         }
3197
3198         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3199                 DEBUG_print("resume dirty_bitmap\n");
3200                 rw_journal_sectors(ic, REQ_OP_READ, 0,
3201                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3202                 if (ic->mode == 'B') {
3203                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3204                             !ic->reset_recalculate_flag) {
3205                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3206                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3207                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3208                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3209                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3210                                         ic->sb->recalc_sector = cpu_to_le64(0);
3211                                 }
3212                         } else {
3213                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3214                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3215                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3216                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3217                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3218                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3219                                 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3220                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3221                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3222                                 ic->sb->recalc_sector = cpu_to_le64(0);
3223                         }
3224                 } else {
3225                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3226                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3227                             ic->reset_recalculate_flag) {
3228                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3229                                 ic->sb->recalc_sector = cpu_to_le64(0);
3230                         }
3231                         init_journal(ic, 0, ic->journal_sections, 0);
3232                         replay_journal(ic);
3233                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3234                 }
3235                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3236                 if (unlikely(r))
3237                         dm_integrity_io_error(ic, "writing superblock", r);
3238         } else {
3239                 replay_journal(ic);
3240                 if (ic->reset_recalculate_flag) {
3241                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3242                         ic->sb->recalc_sector = cpu_to_le64(0);
3243                 }
3244                 if (ic->mode == 'B') {
3245                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3246                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3247                         r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3248                         if (unlikely(r))
3249                                 dm_integrity_io_error(ic, "writing superblock", r);
3250
3251                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3252                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3253                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3254                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3255                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3256                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3257                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3258                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3259                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3260                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3261                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3262                         }
3263                         rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3264                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3265                 }
3266         }
3267
3268         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3269         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3270                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3271
3272                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3273                 if (recalc_pos < ic->provided_data_sectors) {
3274                         queue_work(ic->recalc_wq, &ic->recalc_work);
3275                 } else if (recalc_pos > ic->provided_data_sectors) {
3276                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3277                         recalc_write_super(ic);
3278                 }
3279         }
3280
3281         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3282         ic->reboot_notifier.next = NULL;
3283         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3284         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3285
3286 #if 0
3287         /* set to 1 to stress test synchronous mode */
3288         dm_integrity_enter_synchronous_mode(ic);
3289 #endif
3290 }
3291
3292 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3293                                 unsigned int status_flags, char *result, unsigned int maxlen)
3294 {
3295         struct dm_integrity_c *ic = ti->private;
3296         unsigned int arg_count;
3297         size_t sz = 0;
3298
3299         switch (type) {
3300         case STATUSTYPE_INFO:
3301                 DMEMIT("%llu %llu",
3302                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3303                         ic->provided_data_sectors);
3304                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3305                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3306                 else
3307                         DMEMIT(" -");
3308                 break;
3309
3310         case STATUSTYPE_TABLE: {
3311                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3312
3313                 watermark_percentage += ic->journal_entries / 2;
3314                 do_div(watermark_percentage, ic->journal_entries);
3315                 arg_count = 3;
3316                 arg_count += !!ic->meta_dev;
3317                 arg_count += ic->sectors_per_block != 1;
3318                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3319                 arg_count += ic->reset_recalculate_flag;
3320                 arg_count += ic->discard;
3321                 arg_count += ic->mode == 'J';
3322                 arg_count += ic->mode == 'J';
3323                 arg_count += ic->mode == 'B';
3324                 arg_count += ic->mode == 'B';
3325                 arg_count += !!ic->internal_hash_alg.alg_string;
3326                 arg_count += !!ic->journal_crypt_alg.alg_string;
3327                 arg_count += !!ic->journal_mac_alg.alg_string;
3328                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3329                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3330                 arg_count += ic->legacy_recalculate;
3331                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3332                        ic->tag_size, ic->mode, arg_count);
3333                 if (ic->meta_dev)
3334                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3335                 if (ic->sectors_per_block != 1)
3336                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3337                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3338                         DMEMIT(" recalculate");
3339                 if (ic->reset_recalculate_flag)
3340                         DMEMIT(" reset_recalculate");
3341                 if (ic->discard)
3342                         DMEMIT(" allow_discards");
3343                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3344                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3345                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3346                 if (ic->mode == 'J') {
3347                         DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3348                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3349                 }
3350                 if (ic->mode == 'B') {
3351                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3352                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3353                 }
3354                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3355                         DMEMIT(" fix_padding");
3356                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3357                         DMEMIT(" fix_hmac");
3358                 if (ic->legacy_recalculate)
3359                         DMEMIT(" legacy_recalculate");
3360
3361 #define EMIT_ALG(a, n)                                                  \
3362                 do {                                                    \
3363                         if (ic->a.alg_string) {                         \
3364                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3365                                 if (ic->a.key_string)                   \
3366                                         DMEMIT(":%s", ic->a.key_string);\
3367                         }                                               \
3368                 } while (0)
3369                 EMIT_ALG(internal_hash_alg, "internal_hash");
3370                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3371                 EMIT_ALG(journal_mac_alg, "journal_mac");
3372                 break;
3373         }
3374         case STATUSTYPE_IMA:
3375                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3376                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3377                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3378
3379                 if (ic->meta_dev)
3380                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3381                 if (ic->sectors_per_block != 1)
3382                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3383
3384                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3385                        'y' : 'n');
3386                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3387                 DMEMIT(",fix_padding=%c",
3388                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3389                 DMEMIT(",fix_hmac=%c",
3390                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3391                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3392
3393                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3394                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3395                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3396                 DMEMIT(";");
3397                 break;
3398         }
3399 }
3400
3401 static int dm_integrity_iterate_devices(struct dm_target *ti,
3402                                         iterate_devices_callout_fn fn, void *data)
3403 {
3404         struct dm_integrity_c *ic = ti->private;
3405
3406         if (!ic->meta_dev)
3407                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3408         else
3409                 return fn(ti, ic->dev, 0, ti->len, data);
3410 }
3411
3412 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3413 {
3414         struct dm_integrity_c *ic = ti->private;
3415
3416         if (ic->sectors_per_block > 1) {
3417                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3418                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3419                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3420                 limits->dma_alignment = limits->logical_block_size - 1;
3421         }
3422 }
3423
3424 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3425 {
3426         unsigned int sector_space = JOURNAL_SECTOR_DATA;
3427
3428         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3429         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3430                                          JOURNAL_ENTRY_ROUNDUP);
3431
3432         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3433                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3434         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3435         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3436         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3437         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3438 }
3439
3440 static int calculate_device_limits(struct dm_integrity_c *ic)
3441 {
3442         __u64 initial_sectors;
3443
3444         calculate_journal_section_size(ic);
3445         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3446         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3447                 return -EINVAL;
3448         ic->initial_sectors = initial_sectors;
3449
3450         if (!ic->meta_dev) {
3451                 sector_t last_sector, last_area, last_offset;
3452
3453                 /* we have to maintain excessive padding for compatibility with existing volumes */
3454                 __u64 metadata_run_padding =
3455                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3456                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3457                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3458
3459                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3460                                             metadata_run_padding) >> SECTOR_SHIFT;
3461                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3462                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3463                 else
3464                         ic->log2_metadata_run = -1;
3465
3466                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3467                 last_sector = get_data_sector(ic, last_area, last_offset);
3468                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3469                         return -EINVAL;
3470         } else {
3471                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3472
3473                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3474                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3475                 meta_size <<= ic->log2_buffer_sectors;
3476                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3477                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3478                         return -EINVAL;
3479                 ic->metadata_run = 1;
3480                 ic->log2_metadata_run = 0;
3481         }
3482
3483         return 0;
3484 }
3485
3486 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3487 {
3488         if (!ic->meta_dev) {
3489                 int test_bit;
3490
3491                 ic->provided_data_sectors = 0;
3492                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3493                         __u64 prev_data_sectors = ic->provided_data_sectors;
3494
3495                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3496                         if (calculate_device_limits(ic))
3497                                 ic->provided_data_sectors = prev_data_sectors;
3498                 }
3499         } else {
3500                 ic->provided_data_sectors = ic->data_device_sectors;
3501                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3502         }
3503 }
3504
3505 static int initialize_superblock(struct dm_integrity_c *ic,
3506                                  unsigned int journal_sectors, unsigned int interleave_sectors)
3507 {
3508         unsigned int journal_sections;
3509         int test_bit;
3510
3511         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3512         memcpy(ic->sb->magic, SB_MAGIC, 8);
3513         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3514         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3515         if (ic->journal_mac_alg.alg_string)
3516                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3517
3518         calculate_journal_section_size(ic);
3519         journal_sections = journal_sectors / ic->journal_section_sectors;
3520         if (!journal_sections)
3521                 journal_sections = 1;
3522
3523         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3524                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3525                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3526         }
3527
3528         if (!ic->meta_dev) {
3529                 if (ic->fix_padding)
3530                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3531                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3532                 if (!interleave_sectors)
3533                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3534                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3535                 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3536                 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3537
3538                 get_provided_data_sectors(ic);
3539                 if (!ic->provided_data_sectors)
3540                         return -EINVAL;
3541         } else {
3542                 ic->sb->log2_interleave_sectors = 0;
3543
3544                 get_provided_data_sectors(ic);
3545                 if (!ic->provided_data_sectors)
3546                         return -EINVAL;
3547
3548 try_smaller_buffer:
3549                 ic->sb->journal_sections = cpu_to_le32(0);
3550                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3551                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3552                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3553
3554                         if (test_journal_sections > journal_sections)
3555                                 continue;
3556                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3557                         if (calculate_device_limits(ic))
3558                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3559
3560                 }
3561                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3562                         if (ic->log2_buffer_sectors > 3) {
3563                                 ic->log2_buffer_sectors--;
3564                                 goto try_smaller_buffer;
3565                         }
3566                         return -EINVAL;
3567                 }
3568         }
3569
3570         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3571
3572         sb_set_version(ic);
3573
3574         return 0;
3575 }
3576
3577 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3578 {
3579         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3580         struct blk_integrity bi;
3581
3582         memset(&bi, 0, sizeof(bi));
3583         bi.profile = &dm_integrity_profile;
3584         bi.tuple_size = ic->tag_size;
3585         bi.tag_size = bi.tuple_size;
3586         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3587
3588         blk_integrity_register(disk, &bi);
3589         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3590 }
3591
3592 static void dm_integrity_free_page_list(struct page_list *pl)
3593 {
3594         unsigned int i;
3595
3596         if (!pl)
3597                 return;
3598         for (i = 0; pl[i].page; i++)
3599                 __free_page(pl[i].page);
3600         kvfree(pl);
3601 }
3602
3603 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3604 {
3605         struct page_list *pl;
3606         unsigned int i;
3607
3608         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3609         if (!pl)
3610                 return NULL;
3611
3612         for (i = 0; i < n_pages; i++) {
3613                 pl[i].page = alloc_page(GFP_KERNEL);
3614                 if (!pl[i].page) {
3615                         dm_integrity_free_page_list(pl);
3616                         return NULL;
3617                 }
3618                 if (i)
3619                         pl[i - 1].next = &pl[i];
3620         }
3621         pl[i].page = NULL;
3622         pl[i].next = NULL;
3623
3624         return pl;
3625 }
3626
3627 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3628 {
3629         unsigned int i;
3630
3631         for (i = 0; i < ic->journal_sections; i++)
3632                 kvfree(sl[i]);
3633         kvfree(sl);
3634 }
3635
3636 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3637                                                                    struct page_list *pl)
3638 {
3639         struct scatterlist **sl;
3640         unsigned int i;
3641
3642         sl = kvmalloc_array(ic->journal_sections,
3643                             sizeof(struct scatterlist *),
3644                             GFP_KERNEL | __GFP_ZERO);
3645         if (!sl)
3646                 return NULL;
3647
3648         for (i = 0; i < ic->journal_sections; i++) {
3649                 struct scatterlist *s;
3650                 unsigned int start_index, start_offset;
3651                 unsigned int end_index, end_offset;
3652                 unsigned int n_pages;
3653                 unsigned int idx;
3654
3655                 page_list_location(ic, i, 0, &start_index, &start_offset);
3656                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3657                                    &end_index, &end_offset);
3658
3659                 n_pages = (end_index - start_index + 1);
3660
3661                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3662                                    GFP_KERNEL);
3663                 if (!s) {
3664                         dm_integrity_free_journal_scatterlist(ic, sl);
3665                         return NULL;
3666                 }
3667
3668                 sg_init_table(s, n_pages);
3669                 for (idx = start_index; idx <= end_index; idx++) {
3670                         char *va = lowmem_page_address(pl[idx].page);
3671                         unsigned int start = 0, end = PAGE_SIZE;
3672
3673                         if (idx == start_index)
3674                                 start = start_offset;
3675                         if (idx == end_index)
3676                                 end = end_offset + (1 << SECTOR_SHIFT);
3677                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3678                 }
3679
3680                 sl[i] = s;
3681         }
3682
3683         return sl;
3684 }
3685
3686 static void free_alg(struct alg_spec *a)
3687 {
3688         kfree_sensitive(a->alg_string);
3689         kfree_sensitive(a->key);
3690         memset(a, 0, sizeof(*a));
3691 }
3692
3693 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3694 {
3695         char *k;
3696
3697         free_alg(a);
3698
3699         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3700         if (!a->alg_string)
3701                 goto nomem;
3702
3703         k = strchr(a->alg_string, ':');
3704         if (k) {
3705                 *k = 0;
3706                 a->key_string = k + 1;
3707                 if (strlen(a->key_string) & 1)
3708                         goto inval;
3709
3710                 a->key_size = strlen(a->key_string) / 2;
3711                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3712                 if (!a->key)
3713                         goto nomem;
3714                 if (hex2bin(a->key, a->key_string, a->key_size))
3715                         goto inval;
3716         }
3717
3718         return 0;
3719 inval:
3720         *error = error_inval;
3721         return -EINVAL;
3722 nomem:
3723         *error = "Out of memory for an argument";
3724         return -ENOMEM;
3725 }
3726
3727 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3728                    char *error_alg, char *error_key)
3729 {
3730         int r;
3731
3732         if (a->alg_string) {
3733                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3734                 if (IS_ERR(*hash)) {
3735                         *error = error_alg;
3736                         r = PTR_ERR(*hash);
3737                         *hash = NULL;
3738                         return r;
3739                 }
3740
3741                 if (a->key) {
3742                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3743                         if (r) {
3744                                 *error = error_key;
3745                                 return r;
3746                         }
3747                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3748                         *error = error_key;
3749                         return -ENOKEY;
3750                 }
3751         }
3752
3753         return 0;
3754 }
3755
3756 static int create_journal(struct dm_integrity_c *ic, char **error)
3757 {
3758         int r = 0;
3759         unsigned int i;
3760         __u64 journal_pages, journal_desc_size, journal_tree_size;
3761         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3762         struct skcipher_request *req = NULL;
3763
3764         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3765         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3766         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3767         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3768
3769         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3770                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3771         journal_desc_size = journal_pages * sizeof(struct page_list);
3772         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3773                 *error = "Journal doesn't fit into memory";
3774                 r = -ENOMEM;
3775                 goto bad;
3776         }
3777         ic->journal_pages = journal_pages;
3778
3779         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3780         if (!ic->journal) {
3781                 *error = "Could not allocate memory for journal";
3782                 r = -ENOMEM;
3783                 goto bad;
3784         }
3785         if (ic->journal_crypt_alg.alg_string) {
3786                 unsigned int ivsize, blocksize;
3787                 struct journal_completion comp;
3788
3789                 comp.ic = ic;
3790                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3791                 if (IS_ERR(ic->journal_crypt)) {
3792                         *error = "Invalid journal cipher";
3793                         r = PTR_ERR(ic->journal_crypt);
3794                         ic->journal_crypt = NULL;
3795                         goto bad;
3796                 }
3797                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3798                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3799
3800                 if (ic->journal_crypt_alg.key) {
3801                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3802                                                    ic->journal_crypt_alg.key_size);
3803                         if (r) {
3804                                 *error = "Error setting encryption key";
3805                                 goto bad;
3806                         }
3807                 }
3808                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3809                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3810
3811                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3812                 if (!ic->journal_io) {
3813                         *error = "Could not allocate memory for journal io";
3814                         r = -ENOMEM;
3815                         goto bad;
3816                 }
3817
3818                 if (blocksize == 1) {
3819                         struct scatterlist *sg;
3820
3821                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3822                         if (!req) {
3823                                 *error = "Could not allocate crypt request";
3824                                 r = -ENOMEM;
3825                                 goto bad;
3826                         }
3827
3828                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3829                         if (!crypt_iv) {
3830                                 *error = "Could not allocate iv";
3831                                 r = -ENOMEM;
3832                                 goto bad;
3833                         }
3834
3835                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3836                         if (!ic->journal_xor) {
3837                                 *error = "Could not allocate memory for journal xor";
3838                                 r = -ENOMEM;
3839                                 goto bad;
3840                         }
3841
3842                         sg = kvmalloc_array(ic->journal_pages + 1,
3843                                             sizeof(struct scatterlist),
3844                                             GFP_KERNEL);
3845                         if (!sg) {
3846                                 *error = "Unable to allocate sg list";
3847                                 r = -ENOMEM;
3848                                 goto bad;
3849                         }
3850                         sg_init_table(sg, ic->journal_pages + 1);
3851                         for (i = 0; i < ic->journal_pages; i++) {
3852                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3853
3854                                 clear_page(va);
3855                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3856                         }
3857                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3858
3859                         skcipher_request_set_crypt(req, sg, sg,
3860                                                    PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3861                         init_completion(&comp.comp);
3862                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3863                         if (do_crypt(true, req, &comp))
3864                                 wait_for_completion(&comp.comp);
3865                         kvfree(sg);
3866                         r = dm_integrity_failed(ic);
3867                         if (r) {
3868                                 *error = "Unable to encrypt journal";
3869                                 goto bad;
3870                         }
3871                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3872
3873                         crypto_free_skcipher(ic->journal_crypt);
3874                         ic->journal_crypt = NULL;
3875                 } else {
3876                         unsigned int crypt_len = roundup(ivsize, blocksize);
3877
3878                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3879                         if (!req) {
3880                                 *error = "Could not allocate crypt request";
3881                                 r = -ENOMEM;
3882                                 goto bad;
3883                         }
3884
3885                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3886                         if (!crypt_iv) {
3887                                 *error = "Could not allocate iv";
3888                                 r = -ENOMEM;
3889                                 goto bad;
3890                         }
3891
3892                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3893                         if (!crypt_data) {
3894                                 *error = "Unable to allocate crypt data";
3895                                 r = -ENOMEM;
3896                                 goto bad;
3897                         }
3898
3899                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3900                         if (!ic->journal_scatterlist) {
3901                                 *error = "Unable to allocate sg list";
3902                                 r = -ENOMEM;
3903                                 goto bad;
3904                         }
3905                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3906                         if (!ic->journal_io_scatterlist) {
3907                                 *error = "Unable to allocate sg list";
3908                                 r = -ENOMEM;
3909                                 goto bad;
3910                         }
3911                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3912                                                          sizeof(struct skcipher_request *),
3913                                                          GFP_KERNEL | __GFP_ZERO);
3914                         if (!ic->sk_requests) {
3915                                 *error = "Unable to allocate sk requests";
3916                                 r = -ENOMEM;
3917                                 goto bad;
3918                         }
3919                         for (i = 0; i < ic->journal_sections; i++) {
3920                                 struct scatterlist sg;
3921                                 struct skcipher_request *section_req;
3922                                 __le32 section_le = cpu_to_le32(i);
3923
3924                                 memset(crypt_iv, 0x00, ivsize);
3925                                 memset(crypt_data, 0x00, crypt_len);
3926                                 memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3927
3928                                 sg_init_one(&sg, crypt_data, crypt_len);
3929                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3930                                 init_completion(&comp.comp);
3931                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3932                                 if (do_crypt(true, req, &comp))
3933                                         wait_for_completion(&comp.comp);
3934
3935                                 r = dm_integrity_failed(ic);
3936                                 if (r) {
3937                                         *error = "Unable to generate iv";
3938                                         goto bad;
3939                                 }
3940
3941                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3942                                 if (!section_req) {
3943                                         *error = "Unable to allocate crypt request";
3944                                         r = -ENOMEM;
3945                                         goto bad;
3946                                 }
3947                                 section_req->iv = kmalloc_array(ivsize, 2,
3948                                                                 GFP_KERNEL);
3949                                 if (!section_req->iv) {
3950                                         skcipher_request_free(section_req);
3951                                         *error = "Unable to allocate iv";
3952                                         r = -ENOMEM;
3953                                         goto bad;
3954                                 }
3955                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3956                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3957                                 ic->sk_requests[i] = section_req;
3958                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3959                         }
3960                 }
3961         }
3962
3963         for (i = 0; i < N_COMMIT_IDS; i++) {
3964                 unsigned int j;
3965
3966 retest_commit_id:
3967                 for (j = 0; j < i; j++) {
3968                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3969                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3970                                 goto retest_commit_id;
3971                         }
3972                 }
3973                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3974         }
3975
3976         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3977         if (journal_tree_size > ULONG_MAX) {
3978                 *error = "Journal doesn't fit into memory";
3979                 r = -ENOMEM;
3980                 goto bad;
3981         }
3982         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3983         if (!ic->journal_tree) {
3984                 *error = "Could not allocate memory for journal tree";
3985                 r = -ENOMEM;
3986         }
3987 bad:
3988         kfree(crypt_data);
3989         kfree(crypt_iv);
3990         skcipher_request_free(req);
3991
3992         return r;
3993 }
3994
3995 /*
3996  * Construct a integrity mapping
3997  *
3998  * Arguments:
3999  *      device
4000  *      offset from the start of the device
4001  *      tag size
4002  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4003  *      number of optional arguments
4004  *      optional arguments:
4005  *              journal_sectors
4006  *              interleave_sectors
4007  *              buffer_sectors
4008  *              journal_watermark
4009  *              commit_time
4010  *              meta_device
4011  *              block_size
4012  *              sectors_per_bit
4013  *              bitmap_flush_interval
4014  *              internal_hash
4015  *              journal_crypt
4016  *              journal_mac
4017  *              recalculate
4018  */
4019 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4020 {
4021         struct dm_integrity_c *ic;
4022         char dummy;
4023         int r;
4024         unsigned int extra_args;
4025         struct dm_arg_set as;
4026         static const struct dm_arg _args[] = {
4027                 {0, 18, "Invalid number of feature args"},
4028         };
4029         unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4030         bool should_write_sb;
4031         __u64 threshold;
4032         unsigned long long start;
4033         __s8 log2_sectors_per_bitmap_bit = -1;
4034         __s8 log2_blocks_per_bitmap_bit;
4035         __u64 bits_in_journal;
4036         __u64 n_bitmap_bits;
4037
4038 #define DIRECT_ARGUMENTS        4
4039
4040         if (argc <= DIRECT_ARGUMENTS) {
4041                 ti->error = "Invalid argument count";
4042                 return -EINVAL;
4043         }
4044
4045         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4046         if (!ic) {
4047                 ti->error = "Cannot allocate integrity context";
4048                 return -ENOMEM;
4049         }
4050         ti->private = ic;
4051         ti->per_io_data_size = sizeof(struct dm_integrity_io);
4052         ic->ti = ti;
4053
4054         ic->in_progress = RB_ROOT;
4055         INIT_LIST_HEAD(&ic->wait_list);
4056         init_waitqueue_head(&ic->endio_wait);
4057         bio_list_init(&ic->flush_bio_list);
4058         init_waitqueue_head(&ic->copy_to_journal_wait);
4059         init_completion(&ic->crypto_backoff);
4060         atomic64_set(&ic->number_of_mismatches, 0);
4061         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4062
4063         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4064         if (r) {
4065                 ti->error = "Device lookup failed";
4066                 goto bad;
4067         }
4068
4069         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4070                 ti->error = "Invalid starting offset";
4071                 r = -EINVAL;
4072                 goto bad;
4073         }
4074         ic->start = start;
4075
4076         if (strcmp(argv[2], "-")) {
4077                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4078                         ti->error = "Invalid tag size";
4079                         r = -EINVAL;
4080                         goto bad;
4081                 }
4082         }
4083
4084         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4085             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4086                 ic->mode = argv[3][0];
4087         } else {
4088                 ti->error = "Invalid mode (expecting J, B, D, R)";
4089                 r = -EINVAL;
4090                 goto bad;
4091         }
4092
4093         journal_sectors = 0;
4094         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4095         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4096         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4097         sync_msec = DEFAULT_SYNC_MSEC;
4098         ic->sectors_per_block = 1;
4099
4100         as.argc = argc - DIRECT_ARGUMENTS;
4101         as.argv = argv + DIRECT_ARGUMENTS;
4102         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4103         if (r)
4104                 goto bad;
4105
4106         while (extra_args--) {
4107                 const char *opt_string;
4108                 unsigned int val;
4109                 unsigned long long llval;
4110
4111                 opt_string = dm_shift_arg(&as);
4112                 if (!opt_string) {
4113                         r = -EINVAL;
4114                         ti->error = "Not enough feature arguments";
4115                         goto bad;
4116                 }
4117                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4118                         journal_sectors = val ? val : 1;
4119                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4120                         interleave_sectors = val;
4121                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4122                         buffer_sectors = val;
4123                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4124                         journal_watermark = val;
4125                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4126                         sync_msec = val;
4127                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4128                         if (ic->meta_dev) {
4129                                 dm_put_device(ti, ic->meta_dev);
4130                                 ic->meta_dev = NULL;
4131                         }
4132                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4133                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4134                         if (r) {
4135                                 ti->error = "Device lookup failed";
4136                                 goto bad;
4137                         }
4138                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4139                         if (val < 1 << SECTOR_SHIFT ||
4140                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4141                             (val & (val - 1))) {
4142                                 r = -EINVAL;
4143                                 ti->error = "Invalid block_size argument";
4144                                 goto bad;
4145                         }
4146                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4147                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4148                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4149                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4150                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4151                                 r = -EINVAL;
4152                                 ti->error = "Invalid bitmap_flush_interval argument";
4153                                 goto bad;
4154                         }
4155                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4156                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4157                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4158                                             "Invalid internal_hash argument");
4159                         if (r)
4160                                 goto bad;
4161                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4162                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4163                                             "Invalid journal_crypt argument");
4164                         if (r)
4165                                 goto bad;
4166                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4167                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4168                                             "Invalid journal_mac argument");
4169                         if (r)
4170                                 goto bad;
4171                 } else if (!strcmp(opt_string, "recalculate")) {
4172                         ic->recalculate_flag = true;
4173                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4174                         ic->recalculate_flag = true;
4175                         ic->reset_recalculate_flag = true;
4176                 } else if (!strcmp(opt_string, "allow_discards")) {
4177                         ic->discard = true;
4178                 } else if (!strcmp(opt_string, "fix_padding")) {
4179                         ic->fix_padding = true;
4180                 } else if (!strcmp(opt_string, "fix_hmac")) {
4181                         ic->fix_hmac = true;
4182                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4183                         ic->legacy_recalculate = true;
4184                 } else {
4185                         r = -EINVAL;
4186                         ti->error = "Invalid argument";
4187                         goto bad;
4188                 }
4189         }
4190
4191         ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4192         if (!ic->meta_dev)
4193                 ic->meta_device_sectors = ic->data_device_sectors;
4194         else
4195                 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4196
4197         if (!journal_sectors) {
4198                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4199                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4200         }
4201
4202         if (!buffer_sectors)
4203                 buffer_sectors = 1;
4204         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4205
4206         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4207                     "Invalid internal hash", "Error setting internal hash key");
4208         if (r)
4209                 goto bad;
4210
4211         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4212                     "Invalid journal mac", "Error setting journal mac key");
4213         if (r)
4214                 goto bad;
4215
4216         if (!ic->tag_size) {
4217                 if (!ic->internal_hash) {
4218                         ti->error = "Unknown tag size";
4219                         r = -EINVAL;
4220                         goto bad;
4221                 }
4222                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4223         }
4224         if (ic->tag_size > MAX_TAG_SIZE) {
4225                 ti->error = "Too big tag size";
4226                 r = -EINVAL;
4227                 goto bad;
4228         }
4229         if (!(ic->tag_size & (ic->tag_size - 1)))
4230                 ic->log2_tag_size = __ffs(ic->tag_size);
4231         else
4232                 ic->log2_tag_size = -1;
4233
4234         if (ic->mode == 'B' && !ic->internal_hash) {
4235                 r = -EINVAL;
4236                 ti->error = "Bitmap mode can be only used with internal hash";
4237                 goto bad;
4238         }
4239
4240         if (ic->discard && !ic->internal_hash) {
4241                 r = -EINVAL;
4242                 ti->error = "Discard can be only used with internal hash";
4243                 goto bad;
4244         }
4245
4246         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4247         ic->autocommit_msec = sync_msec;
4248         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4249
4250         ic->io = dm_io_client_create();
4251         if (IS_ERR(ic->io)) {
4252                 r = PTR_ERR(ic->io);
4253                 ic->io = NULL;
4254                 ti->error = "Cannot allocate dm io";
4255                 goto bad;
4256         }
4257
4258         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4259         if (r) {
4260                 ti->error = "Cannot allocate mempool";
4261                 goto bad;
4262         }
4263
4264         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4265                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4266         if (!ic->metadata_wq) {
4267                 ti->error = "Cannot allocate workqueue";
4268                 r = -ENOMEM;
4269                 goto bad;
4270         }
4271
4272         /*
4273          * If this workqueue weren't ordered, it would cause bio reordering
4274          * and reduced performance.
4275          */
4276         ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4277         if (!ic->wait_wq) {
4278                 ti->error = "Cannot allocate workqueue";
4279                 r = -ENOMEM;
4280                 goto bad;
4281         }
4282
4283         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4284                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4285         if (!ic->offload_wq) {
4286                 ti->error = "Cannot allocate workqueue";
4287                 r = -ENOMEM;
4288                 goto bad;
4289         }
4290
4291         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4292         if (!ic->commit_wq) {
4293                 ti->error = "Cannot allocate workqueue";
4294                 r = -ENOMEM;
4295                 goto bad;
4296         }
4297         INIT_WORK(&ic->commit_work, integrity_commit);
4298
4299         if (ic->mode == 'J' || ic->mode == 'B') {
4300                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4301                 if (!ic->writer_wq) {
4302                         ti->error = "Cannot allocate workqueue";
4303                         r = -ENOMEM;
4304                         goto bad;
4305                 }
4306                 INIT_WORK(&ic->writer_work, integrity_writer);
4307         }
4308
4309         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4310         if (!ic->sb) {
4311                 r = -ENOMEM;
4312                 ti->error = "Cannot allocate superblock area";
4313                 goto bad;
4314         }
4315
4316         r = sync_rw_sb(ic, REQ_OP_READ);
4317         if (r) {
4318                 ti->error = "Error reading superblock";
4319                 goto bad;
4320         }
4321         should_write_sb = false;
4322         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4323                 if (ic->mode != 'R') {
4324                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4325                                 r = -EINVAL;
4326                                 ti->error = "The device is not initialized";
4327                                 goto bad;
4328                         }
4329                 }
4330
4331                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4332                 if (r) {
4333                         ti->error = "Could not initialize superblock";
4334                         goto bad;
4335                 }
4336                 if (ic->mode != 'R')
4337                         should_write_sb = true;
4338         }
4339
4340         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4341                 r = -EINVAL;
4342                 ti->error = "Unknown version";
4343                 goto bad;
4344         }
4345         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4346                 r = -EINVAL;
4347                 ti->error = "Tag size doesn't match the information in superblock";
4348                 goto bad;
4349         }
4350         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4351                 r = -EINVAL;
4352                 ti->error = "Block size doesn't match the information in superblock";
4353                 goto bad;
4354         }
4355         if (!le32_to_cpu(ic->sb->journal_sections)) {
4356                 r = -EINVAL;
4357                 ti->error = "Corrupted superblock, journal_sections is 0";
4358                 goto bad;
4359         }
4360         /* make sure that ti->max_io_len doesn't overflow */
4361         if (!ic->meta_dev) {
4362                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4363                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4364                         r = -EINVAL;
4365                         ti->error = "Invalid interleave_sectors in the superblock";
4366                         goto bad;
4367                 }
4368         } else {
4369                 if (ic->sb->log2_interleave_sectors) {
4370                         r = -EINVAL;
4371                         ti->error = "Invalid interleave_sectors in the superblock";
4372                         goto bad;
4373                 }
4374         }
4375         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4376                 r = -EINVAL;
4377                 ti->error = "Journal mac mismatch";
4378                 goto bad;
4379         }
4380
4381         get_provided_data_sectors(ic);
4382         if (!ic->provided_data_sectors) {
4383                 r = -EINVAL;
4384                 ti->error = "The device is too small";
4385                 goto bad;
4386         }
4387
4388 try_smaller_buffer:
4389         r = calculate_device_limits(ic);
4390         if (r) {
4391                 if (ic->meta_dev) {
4392                         if (ic->log2_buffer_sectors > 3) {
4393                                 ic->log2_buffer_sectors--;
4394                                 goto try_smaller_buffer;
4395                         }
4396                 }
4397                 ti->error = "The device is too small";
4398                 goto bad;
4399         }
4400
4401         if (log2_sectors_per_bitmap_bit < 0)
4402                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4403         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4404                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4405
4406         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4407         if (bits_in_journal > UINT_MAX)
4408                 bits_in_journal = UINT_MAX;
4409         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4410                 log2_sectors_per_bitmap_bit++;
4411
4412         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4413         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4414         if (should_write_sb)
4415                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4416
4417         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4418                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4419         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4420
4421         if (!ic->meta_dev)
4422                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4423
4424         if (ti->len > ic->provided_data_sectors) {
4425                 r = -EINVAL;
4426                 ti->error = "Not enough provided sectors for requested mapping size";
4427                 goto bad;
4428         }
4429
4430
4431         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4432         threshold += 50;
4433         do_div(threshold, 100);
4434         ic->free_sectors_threshold = threshold;
4435
4436         DEBUG_print("initialized:\n");
4437         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4438         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4439         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4440         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4441         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4442         DEBUG_print("   journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4443         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4444         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4445         DEBUG_print("   data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4446         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4447         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4448         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4449         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4450         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4451         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4452
4453         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4454                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4455                 ic->sb->recalc_sector = cpu_to_le64(0);
4456         }
4457
4458         if (ic->internal_hash) {
4459                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4460                 if (!ic->recalc_wq) {
4461                         ti->error = "Cannot allocate workqueue";
4462                         r = -ENOMEM;
4463                         goto bad;
4464                 }
4465                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4466         } else {
4467                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4468                         ti->error = "Recalculate can only be specified with internal_hash";
4469                         r = -EINVAL;
4470                         goto bad;
4471                 }
4472         }
4473
4474         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4475             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4476             dm_integrity_disable_recalculate(ic)) {
4477                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4478                 r = -EOPNOTSUPP;
4479                 goto bad;
4480         }
4481
4482         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4483                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4484         if (IS_ERR(ic->bufio)) {
4485                 r = PTR_ERR(ic->bufio);
4486                 ti->error = "Cannot initialize dm-bufio";
4487                 ic->bufio = NULL;
4488                 goto bad;
4489         }
4490         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4491
4492         if (ic->mode != 'R') {
4493                 r = create_journal(ic, &ti->error);
4494                 if (r)
4495                         goto bad;
4496
4497         }
4498
4499         if (ic->mode == 'B') {
4500                 unsigned int i;
4501                 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4502
4503                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4504                 if (!ic->recalc_bitmap) {
4505                         r = -ENOMEM;
4506                         goto bad;
4507                 }
4508                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4509                 if (!ic->may_write_bitmap) {
4510                         r = -ENOMEM;
4511                         goto bad;
4512                 }
4513                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4514                 if (!ic->bbs) {
4515                         r = -ENOMEM;
4516                         goto bad;
4517                 }
4518                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4519                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4520                         struct bitmap_block_status *bbs = &ic->bbs[i];
4521                         unsigned int sector, pl_index, pl_offset;
4522
4523                         INIT_WORK(&bbs->work, bitmap_block_work);
4524                         bbs->ic = ic;
4525                         bbs->idx = i;
4526                         bio_list_init(&bbs->bio_queue);
4527                         spin_lock_init(&bbs->bio_queue_lock);
4528
4529                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4530                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4531                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4532
4533                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4534                 }
4535         }
4536
4537         if (should_write_sb) {
4538                 init_journal(ic, 0, ic->journal_sections, 0);
4539                 r = dm_integrity_failed(ic);
4540                 if (unlikely(r)) {
4541                         ti->error = "Error initializing journal";
4542                         goto bad;
4543                 }
4544                 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4545                 if (r) {
4546                         ti->error = "Error initializing superblock";
4547                         goto bad;
4548                 }
4549                 ic->just_formatted = true;
4550         }
4551
4552         if (!ic->meta_dev) {
4553                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4554                 if (r)
4555                         goto bad;
4556         }
4557         if (ic->mode == 'B') {
4558                 unsigned int max_io_len;
4559
4560                 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4561                 if (!max_io_len)
4562                         max_io_len = 1U << 31;
4563                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4564                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4565                         r = dm_set_target_max_io_len(ti, max_io_len);
4566                         if (r)
4567                                 goto bad;
4568                 }
4569         }
4570
4571         if (!ic->internal_hash)
4572                 dm_integrity_set(ti, ic);
4573
4574         ti->num_flush_bios = 1;
4575         ti->flush_supported = true;
4576         if (ic->discard)
4577                 ti->num_discard_bios = 1;
4578
4579         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4580         return 0;
4581
4582 bad:
4583         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4584         dm_integrity_dtr(ti);
4585         return r;
4586 }
4587
4588 static void dm_integrity_dtr(struct dm_target *ti)
4589 {
4590         struct dm_integrity_c *ic = ti->private;
4591
4592         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4593         BUG_ON(!list_empty(&ic->wait_list));
4594
4595         if (ic->mode == 'B')
4596                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4597         if (ic->metadata_wq)
4598                 destroy_workqueue(ic->metadata_wq);
4599         if (ic->wait_wq)
4600                 destroy_workqueue(ic->wait_wq);
4601         if (ic->offload_wq)
4602                 destroy_workqueue(ic->offload_wq);
4603         if (ic->commit_wq)
4604                 destroy_workqueue(ic->commit_wq);
4605         if (ic->writer_wq)
4606                 destroy_workqueue(ic->writer_wq);
4607         if (ic->recalc_wq)
4608                 destroy_workqueue(ic->recalc_wq);
4609         kvfree(ic->bbs);
4610         if (ic->bufio)
4611                 dm_bufio_client_destroy(ic->bufio);
4612         mempool_exit(&ic->journal_io_mempool);
4613         if (ic->io)
4614                 dm_io_client_destroy(ic->io);
4615         if (ic->dev)
4616                 dm_put_device(ti, ic->dev);
4617         if (ic->meta_dev)
4618                 dm_put_device(ti, ic->meta_dev);
4619         dm_integrity_free_page_list(ic->journal);
4620         dm_integrity_free_page_list(ic->journal_io);
4621         dm_integrity_free_page_list(ic->journal_xor);
4622         dm_integrity_free_page_list(ic->recalc_bitmap);
4623         dm_integrity_free_page_list(ic->may_write_bitmap);
4624         if (ic->journal_scatterlist)
4625                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4626         if (ic->journal_io_scatterlist)
4627                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4628         if (ic->sk_requests) {
4629                 unsigned int i;
4630
4631                 for (i = 0; i < ic->journal_sections; i++) {
4632                         struct skcipher_request *req;
4633
4634                         req = ic->sk_requests[i];
4635                         if (req) {
4636                                 kfree_sensitive(req->iv);
4637                                 skcipher_request_free(req);
4638                         }
4639                 }
4640                 kvfree(ic->sk_requests);
4641         }
4642         kvfree(ic->journal_tree);
4643         if (ic->sb)
4644                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4645
4646         if (ic->internal_hash)
4647                 crypto_free_shash(ic->internal_hash);
4648         free_alg(&ic->internal_hash_alg);
4649
4650         if (ic->journal_crypt)
4651                 crypto_free_skcipher(ic->journal_crypt);
4652         free_alg(&ic->journal_crypt_alg);
4653
4654         if (ic->journal_mac)
4655                 crypto_free_shash(ic->journal_mac);
4656         free_alg(&ic->journal_mac_alg);
4657
4658         kfree(ic);
4659         dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4660 }
4661
4662 static struct target_type integrity_target = {
4663         .name                   = "integrity",
4664         .version                = {1, 10, 0},
4665         .module                 = THIS_MODULE,
4666         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4667         .ctr                    = dm_integrity_ctr,
4668         .dtr                    = dm_integrity_dtr,
4669         .map                    = dm_integrity_map,
4670         .postsuspend            = dm_integrity_postsuspend,
4671         .resume                 = dm_integrity_resume,
4672         .status                 = dm_integrity_status,
4673         .iterate_devices        = dm_integrity_iterate_devices,
4674         .io_hints               = dm_integrity_io_hints,
4675 };
4676
4677 static int __init dm_integrity_init(void)
4678 {
4679         int r;
4680
4681         journal_io_cache = kmem_cache_create("integrity_journal_io",
4682                                              sizeof(struct journal_io), 0, 0, NULL);
4683         if (!journal_io_cache) {
4684                 DMERR("can't allocate journal io cache");
4685                 return -ENOMEM;
4686         }
4687
4688         r = dm_register_target(&integrity_target);
4689         if (r < 0) {
4690                 kmem_cache_destroy(journal_io_cache);
4691                 return r;
4692         }
4693
4694         return 0;
4695 }
4696
4697 static void __exit dm_integrity_exit(void)
4698 {
4699         dm_unregister_target(&integrity_target);
4700         kmem_cache_destroy(journal_io_cache);
4701 }
4702
4703 module_init(dm_integrity_init);
4704 module_exit(dm_integrity_exit);
4705
4706 MODULE_AUTHOR("Milan Broz");
4707 MODULE_AUTHOR("Mikulas Patocka");
4708 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4709 MODULE_LICENSE("GPL");