Merge tag 'for-6.0/dm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[linux-block.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/dm-bufio.h>
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 #include <linux/jump_label.h>
22
23 #define DM_MSG_PREFIX "bufio"
24
25 /*
26  * Memory management policy:
27  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
28  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
29  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
30  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
31  *      dirty buffers.
32  */
33 #define DM_BUFIO_MIN_BUFFERS            8
34
35 #define DM_BUFIO_MEMORY_PERCENT         2
36 #define DM_BUFIO_VMALLOC_PERCENT        25
37 #define DM_BUFIO_WRITEBACK_RATIO        3
38 #define DM_BUFIO_LOW_WATERMARK_RATIO    16
39
40 /*
41  * Check buffer ages in this interval (seconds)
42  */
43 #define DM_BUFIO_WORK_TIMER_SECS        30
44
45 /*
46  * Free buffers when they are older than this (seconds)
47  */
48 #define DM_BUFIO_DEFAULT_AGE_SECS       300
49
50 /*
51  * The nr of bytes of cached data to keep around.
52  */
53 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
54
55 /*
56  * Align buffer writes to this boundary.
57  * Tests show that SSDs have the highest IOPS when using 4k writes.
58  */
59 #define DM_BUFIO_WRITE_ALIGN            4096
60
61 /*
62  * dm_buffer->list_mode
63  */
64 #define LIST_CLEAN      0
65 #define LIST_DIRTY      1
66 #define LIST_SIZE       2
67
68 /*
69  * Linking of buffers:
70  *      All buffers are linked to buffer_tree with their node field.
71  *
72  *      Clean buffers that are not being written (B_WRITING not set)
73  *      are linked to lru[LIST_CLEAN] with their lru_list field.
74  *
75  *      Dirty and clean buffers that are being written are linked to
76  *      lru[LIST_DIRTY] with their lru_list field. When the write
77  *      finishes, the buffer cannot be relinked immediately (because we
78  *      are in an interrupt context and relinking requires process
79  *      context), so some clean-not-writing buffers can be held on
80  *      dirty_lru too.  They are later added to lru in the process
81  *      context.
82  */
83 struct dm_bufio_client {
84         struct mutex lock;
85         spinlock_t spinlock;
86         bool no_sleep;
87
88         struct list_head lru[LIST_SIZE];
89         unsigned long n_buffers[LIST_SIZE];
90
91         struct block_device *bdev;
92         unsigned block_size;
93         s8 sectors_per_block_bits;
94         void (*alloc_callback)(struct dm_buffer *);
95         void (*write_callback)(struct dm_buffer *);
96         struct kmem_cache *slab_buffer;
97         struct kmem_cache *slab_cache;
98         struct dm_io_client *dm_io;
99
100         struct list_head reserved_buffers;
101         unsigned need_reserved_buffers;
102
103         unsigned minimum_buffers;
104
105         struct rb_root buffer_tree;
106         wait_queue_head_t free_buffer_wait;
107
108         sector_t start;
109
110         int async_write_error;
111
112         struct list_head client_list;
113
114         struct shrinker shrinker;
115         struct work_struct shrink_work;
116         atomic_long_t need_shrink;
117 };
118
119 /*
120  * Buffer state bits.
121  */
122 #define B_READING       0
123 #define B_WRITING       1
124 #define B_DIRTY         2
125
126 /*
127  * Describes how the block was allocated:
128  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
129  * See the comment at alloc_buffer_data.
130  */
131 enum data_mode {
132         DATA_MODE_SLAB = 0,
133         DATA_MODE_GET_FREE_PAGES = 1,
134         DATA_MODE_VMALLOC = 2,
135         DATA_MODE_LIMIT = 3
136 };
137
138 struct dm_buffer {
139         struct rb_node node;
140         struct list_head lru_list;
141         struct list_head global_list;
142         sector_t block;
143         void *data;
144         unsigned char data_mode;                /* DATA_MODE_* */
145         unsigned char list_mode;                /* LIST_* */
146         blk_status_t read_error;
147         blk_status_t write_error;
148         unsigned accessed;
149         unsigned hold_count;
150         unsigned long state;
151         unsigned long last_accessed;
152         unsigned dirty_start;
153         unsigned dirty_end;
154         unsigned write_start;
155         unsigned write_end;
156         struct dm_bufio_client *c;
157         struct list_head write_list;
158         void (*end_io)(struct dm_buffer *, blk_status_t);
159 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
160 #define MAX_STACK 10
161         unsigned int stack_len;
162         unsigned long stack_entries[MAX_STACK];
163 #endif
164 };
165
166 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
167
168 /*----------------------------------------------------------------*/
169
170 #define dm_bufio_in_request()   (!!current->bio_list)
171
172 static void dm_bufio_lock(struct dm_bufio_client *c)
173 {
174         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
175                 spin_lock_bh(&c->spinlock);
176         else
177                 mutex_lock_nested(&c->lock, dm_bufio_in_request());
178 }
179
180 static int dm_bufio_trylock(struct dm_bufio_client *c)
181 {
182         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
183                 return spin_trylock_bh(&c->spinlock);
184         else
185                 return mutex_trylock(&c->lock);
186 }
187
188 static void dm_bufio_unlock(struct dm_bufio_client *c)
189 {
190         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
191                 spin_unlock_bh(&c->spinlock);
192         else
193                 mutex_unlock(&c->lock);
194 }
195
196 /*----------------------------------------------------------------*/
197
198 /*
199  * Default cache size: available memory divided by the ratio.
200  */
201 static unsigned long dm_bufio_default_cache_size;
202
203 /*
204  * Total cache size set by the user.
205  */
206 static unsigned long dm_bufio_cache_size;
207
208 /*
209  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
210  * at any time.  If it disagrees, the user has changed cache size.
211  */
212 static unsigned long dm_bufio_cache_size_latch;
213
214 static DEFINE_SPINLOCK(global_spinlock);
215
216 static LIST_HEAD(global_queue);
217
218 static unsigned long global_num = 0;
219
220 /*
221  * Buffers are freed after this timeout
222  */
223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
224 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
225
226 static unsigned long dm_bufio_peak_allocated;
227 static unsigned long dm_bufio_allocated_kmem_cache;
228 static unsigned long dm_bufio_allocated_get_free_pages;
229 static unsigned long dm_bufio_allocated_vmalloc;
230 static unsigned long dm_bufio_current_allocated;
231
232 /*----------------------------------------------------------------*/
233
234 /*
235  * The current number of clients.
236  */
237 static int dm_bufio_client_count;
238
239 /*
240  * The list of all clients.
241  */
242 static LIST_HEAD(dm_bufio_all_clients);
243
244 /*
245  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
246  */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248
249 static struct workqueue_struct *dm_bufio_wq;
250 static struct delayed_work dm_bufio_cleanup_old_work;
251 static struct work_struct dm_bufio_replacement_work;
252
253
254 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
255 static void buffer_record_stack(struct dm_buffer *b)
256 {
257         b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
258 }
259 #endif
260
261 /*----------------------------------------------------------------
262  * A red/black tree acts as an index for all the buffers.
263  *--------------------------------------------------------------*/
264 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
265 {
266         struct rb_node *n = c->buffer_tree.rb_node;
267         struct dm_buffer *b;
268
269         while (n) {
270                 b = container_of(n, struct dm_buffer, node);
271
272                 if (b->block == block)
273                         return b;
274
275                 n = block < b->block ? n->rb_left : n->rb_right;
276         }
277
278         return NULL;
279 }
280
281 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
282 {
283         struct rb_node *n = c->buffer_tree.rb_node;
284         struct dm_buffer *b;
285         struct dm_buffer *best = NULL;
286
287         while (n) {
288                 b = container_of(n, struct dm_buffer, node);
289
290                 if (b->block == block)
291                         return b;
292
293                 if (block <= b->block) {
294                         n = n->rb_left;
295                         best = b;
296                 } else {
297                         n = n->rb_right;
298                 }
299         }
300
301         return best;
302 }
303
304 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
305 {
306         struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
307         struct dm_buffer *found;
308
309         while (*new) {
310                 found = container_of(*new, struct dm_buffer, node);
311
312                 if (found->block == b->block) {
313                         BUG_ON(found != b);
314                         return;
315                 }
316
317                 parent = *new;
318                 new = b->block < found->block ?
319                         &found->node.rb_left : &found->node.rb_right;
320         }
321
322         rb_link_node(&b->node, parent, new);
323         rb_insert_color(&b->node, &c->buffer_tree);
324 }
325
326 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
327 {
328         rb_erase(&b->node, &c->buffer_tree);
329 }
330
331 /*----------------------------------------------------------------*/
332
333 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
334 {
335         unsigned char data_mode;
336         long diff;
337
338         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
339                 &dm_bufio_allocated_kmem_cache,
340                 &dm_bufio_allocated_get_free_pages,
341                 &dm_bufio_allocated_vmalloc,
342         };
343
344         data_mode = b->data_mode;
345         diff = (long)b->c->block_size;
346         if (unlink)
347                 diff = -diff;
348
349         spin_lock(&global_spinlock);
350
351         *class_ptr[data_mode] += diff;
352
353         dm_bufio_current_allocated += diff;
354
355         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
356                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
357
358         b->accessed = 1;
359
360         if (!unlink) {
361                 list_add(&b->global_list, &global_queue);
362                 global_num++;
363                 if (dm_bufio_current_allocated > dm_bufio_cache_size)
364                         queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
365         } else {
366                 list_del(&b->global_list);
367                 global_num--;
368         }
369
370         spin_unlock(&global_spinlock);
371 }
372
373 /*
374  * Change the number of clients and recalculate per-client limit.
375  */
376 static void __cache_size_refresh(void)
377 {
378         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
379         BUG_ON(dm_bufio_client_count < 0);
380
381         dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
382
383         /*
384          * Use default if set to 0 and report the actual cache size used.
385          */
386         if (!dm_bufio_cache_size_latch) {
387                 (void)cmpxchg(&dm_bufio_cache_size, 0,
388                               dm_bufio_default_cache_size);
389                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
390         }
391 }
392
393 /*
394  * Allocating buffer data.
395  *
396  * Small buffers are allocated with kmem_cache, to use space optimally.
397  *
398  * For large buffers, we choose between get_free_pages and vmalloc.
399  * Each has advantages and disadvantages.
400  *
401  * __get_free_pages can randomly fail if the memory is fragmented.
402  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
403  * as low as 128M) so using it for caching is not appropriate.
404  *
405  * If the allocation may fail we use __get_free_pages. Memory fragmentation
406  * won't have a fatal effect here, but it just causes flushes of some other
407  * buffers and more I/O will be performed. Don't use __get_free_pages if it
408  * always fails (i.e. order >= MAX_ORDER).
409  *
410  * If the allocation shouldn't fail we use __vmalloc. This is only for the
411  * initial reserve allocation, so there's no risk of wasting all vmalloc
412  * space.
413  */
414 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
415                                unsigned char *data_mode)
416 {
417         if (unlikely(c->slab_cache != NULL)) {
418                 *data_mode = DATA_MODE_SLAB;
419                 return kmem_cache_alloc(c->slab_cache, gfp_mask);
420         }
421
422         if (c->block_size <= KMALLOC_MAX_SIZE &&
423             gfp_mask & __GFP_NORETRY) {
424                 *data_mode = DATA_MODE_GET_FREE_PAGES;
425                 return (void *)__get_free_pages(gfp_mask,
426                                                 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
427         }
428
429         *data_mode = DATA_MODE_VMALLOC;
430
431         /*
432          * __vmalloc allocates the data pages and auxiliary structures with
433          * gfp_flags that were specified, but pagetables are always allocated
434          * with GFP_KERNEL, no matter what was specified as gfp_mask.
435          *
436          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
437          * all allocations done by this process (including pagetables) are done
438          * as if GFP_NOIO was specified.
439          */
440         if (gfp_mask & __GFP_NORETRY) {
441                 unsigned noio_flag = memalloc_noio_save();
442                 void *ptr = __vmalloc(c->block_size, gfp_mask);
443
444                 memalloc_noio_restore(noio_flag);
445                 return ptr;
446         }
447
448         return __vmalloc(c->block_size, gfp_mask);
449 }
450
451 /*
452  * Free buffer's data.
453  */
454 static void free_buffer_data(struct dm_bufio_client *c,
455                              void *data, unsigned char data_mode)
456 {
457         switch (data_mode) {
458         case DATA_MODE_SLAB:
459                 kmem_cache_free(c->slab_cache, data);
460                 break;
461
462         case DATA_MODE_GET_FREE_PAGES:
463                 free_pages((unsigned long)data,
464                            c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
465                 break;
466
467         case DATA_MODE_VMALLOC:
468                 vfree(data);
469                 break;
470
471         default:
472                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
473                        data_mode);
474                 BUG();
475         }
476 }
477
478 /*
479  * Allocate buffer and its data.
480  */
481 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
482 {
483         struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
484
485         if (!b)
486                 return NULL;
487
488         b->c = c;
489
490         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
491         if (!b->data) {
492                 kmem_cache_free(c->slab_buffer, b);
493                 return NULL;
494         }
495
496 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
497         b->stack_len = 0;
498 #endif
499         return b;
500 }
501
502 /*
503  * Free buffer and its data.
504  */
505 static void free_buffer(struct dm_buffer *b)
506 {
507         struct dm_bufio_client *c = b->c;
508
509         free_buffer_data(c, b->data, b->data_mode);
510         kmem_cache_free(c->slab_buffer, b);
511 }
512
513 /*
514  * Link buffer to the buffer tree and clean or dirty queue.
515  */
516 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
517 {
518         struct dm_bufio_client *c = b->c;
519
520         c->n_buffers[dirty]++;
521         b->block = block;
522         b->list_mode = dirty;
523         list_add(&b->lru_list, &c->lru[dirty]);
524         __insert(b->c, b);
525         b->last_accessed = jiffies;
526
527         adjust_total_allocated(b, false);
528 }
529
530 /*
531  * Unlink buffer from the buffer tree and dirty or clean queue.
532  */
533 static void __unlink_buffer(struct dm_buffer *b)
534 {
535         struct dm_bufio_client *c = b->c;
536
537         BUG_ON(!c->n_buffers[b->list_mode]);
538
539         c->n_buffers[b->list_mode]--;
540         __remove(b->c, b);
541         list_del(&b->lru_list);
542
543         adjust_total_allocated(b, true);
544 }
545
546 /*
547  * Place the buffer to the head of dirty or clean LRU queue.
548  */
549 static void __relink_lru(struct dm_buffer *b, int dirty)
550 {
551         struct dm_bufio_client *c = b->c;
552
553         b->accessed = 1;
554
555         BUG_ON(!c->n_buffers[b->list_mode]);
556
557         c->n_buffers[b->list_mode]--;
558         c->n_buffers[dirty]++;
559         b->list_mode = dirty;
560         list_move(&b->lru_list, &c->lru[dirty]);
561         b->last_accessed = jiffies;
562 }
563
564 /*----------------------------------------------------------------
565  * Submit I/O on the buffer.
566  *
567  * Bio interface is faster but it has some problems:
568  *      the vector list is limited (increasing this limit increases
569  *      memory-consumption per buffer, so it is not viable);
570  *
571  *      the memory must be direct-mapped, not vmalloced;
572  *
573  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
574  * it is not vmalloced, try using the bio interface.
575  *
576  * If the buffer is big, if it is vmalloced or if the underlying device
577  * rejects the bio because it is too large, use dm-io layer to do the I/O.
578  * The dm-io layer splits the I/O into multiple requests, avoiding the above
579  * shortcomings.
580  *--------------------------------------------------------------*/
581
582 /*
583  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
584  * that the request was handled directly with bio interface.
585  */
586 static void dmio_complete(unsigned long error, void *context)
587 {
588         struct dm_buffer *b = context;
589
590         b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
591 }
592
593 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
594                      unsigned n_sectors, unsigned offset)
595 {
596         int r;
597         struct dm_io_request io_req = {
598                 .bi_opf = op,
599                 .notify.fn = dmio_complete,
600                 .notify.context = b,
601                 .client = b->c->dm_io,
602         };
603         struct dm_io_region region = {
604                 .bdev = b->c->bdev,
605                 .sector = sector,
606                 .count = n_sectors,
607         };
608
609         if (b->data_mode != DATA_MODE_VMALLOC) {
610                 io_req.mem.type = DM_IO_KMEM;
611                 io_req.mem.ptr.addr = (char *)b->data + offset;
612         } else {
613                 io_req.mem.type = DM_IO_VMA;
614                 io_req.mem.ptr.vma = (char *)b->data + offset;
615         }
616
617         r = dm_io(&io_req, 1, &region, NULL);
618         if (unlikely(r))
619                 b->end_io(b, errno_to_blk_status(r));
620 }
621
622 static void bio_complete(struct bio *bio)
623 {
624         struct dm_buffer *b = bio->bi_private;
625         blk_status_t status = bio->bi_status;
626         bio_uninit(bio);
627         kfree(bio);
628         b->end_io(b, status);
629 }
630
631 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
632                     unsigned n_sectors, unsigned offset)
633 {
634         struct bio *bio;
635         char *ptr;
636         unsigned vec_size, len;
637
638         vec_size = b->c->block_size >> PAGE_SHIFT;
639         if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
640                 vec_size += 2;
641
642         bio = bio_kmalloc(vec_size, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
643         if (!bio) {
644 dmio:
645                 use_dmio(b, op, sector, n_sectors, offset);
646                 return;
647         }
648         bio_init(bio, b->c->bdev, bio->bi_inline_vecs, vec_size, op);
649         bio->bi_iter.bi_sector = sector;
650         bio->bi_end_io = bio_complete;
651         bio->bi_private = b;
652
653         ptr = (char *)b->data + offset;
654         len = n_sectors << SECTOR_SHIFT;
655
656         do {
657                 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
658                 if (!bio_add_page(bio, virt_to_page(ptr), this_step,
659                                   offset_in_page(ptr))) {
660                         bio_put(bio);
661                         goto dmio;
662                 }
663
664                 len -= this_step;
665                 ptr += this_step;
666         } while (len > 0);
667
668         submit_bio(bio);
669 }
670
671 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
672 {
673         sector_t sector;
674
675         if (likely(c->sectors_per_block_bits >= 0))
676                 sector = block << c->sectors_per_block_bits;
677         else
678                 sector = block * (c->block_size >> SECTOR_SHIFT);
679         sector += c->start;
680
681         return sector;
682 }
683
684 static void submit_io(struct dm_buffer *b, enum req_op op,
685                       void (*end_io)(struct dm_buffer *, blk_status_t))
686 {
687         unsigned n_sectors;
688         sector_t sector;
689         unsigned offset, end;
690
691         b->end_io = end_io;
692
693         sector = block_to_sector(b->c, b->block);
694
695         if (op != REQ_OP_WRITE) {
696                 n_sectors = b->c->block_size >> SECTOR_SHIFT;
697                 offset = 0;
698         } else {
699                 if (b->c->write_callback)
700                         b->c->write_callback(b);
701                 offset = b->write_start;
702                 end = b->write_end;
703                 offset &= -DM_BUFIO_WRITE_ALIGN;
704                 end += DM_BUFIO_WRITE_ALIGN - 1;
705                 end &= -DM_BUFIO_WRITE_ALIGN;
706                 if (unlikely(end > b->c->block_size))
707                         end = b->c->block_size;
708
709                 sector += offset >> SECTOR_SHIFT;
710                 n_sectors = (end - offset) >> SECTOR_SHIFT;
711         }
712
713         if (b->data_mode != DATA_MODE_VMALLOC)
714                 use_bio(b, op, sector, n_sectors, offset);
715         else
716                 use_dmio(b, op, sector, n_sectors, offset);
717 }
718
719 /*----------------------------------------------------------------
720  * Writing dirty buffers
721  *--------------------------------------------------------------*/
722
723 /*
724  * The endio routine for write.
725  *
726  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
727  * it.
728  */
729 static void write_endio(struct dm_buffer *b, blk_status_t status)
730 {
731         b->write_error = status;
732         if (unlikely(status)) {
733                 struct dm_bufio_client *c = b->c;
734
735                 (void)cmpxchg(&c->async_write_error, 0,
736                                 blk_status_to_errno(status));
737         }
738
739         BUG_ON(!test_bit(B_WRITING, &b->state));
740
741         smp_mb__before_atomic();
742         clear_bit(B_WRITING, &b->state);
743         smp_mb__after_atomic();
744
745         wake_up_bit(&b->state, B_WRITING);
746 }
747
748 /*
749  * Initiate a write on a dirty buffer, but don't wait for it.
750  *
751  * - If the buffer is not dirty, exit.
752  * - If there some previous write going on, wait for it to finish (we can't
753  *   have two writes on the same buffer simultaneously).
754  * - Submit our write and don't wait on it. We set B_WRITING indicating
755  *   that there is a write in progress.
756  */
757 static void __write_dirty_buffer(struct dm_buffer *b,
758                                  struct list_head *write_list)
759 {
760         if (!test_bit(B_DIRTY, &b->state))
761                 return;
762
763         clear_bit(B_DIRTY, &b->state);
764         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
765
766         b->write_start = b->dirty_start;
767         b->write_end = b->dirty_end;
768
769         if (!write_list)
770                 submit_io(b, REQ_OP_WRITE, write_endio);
771         else
772                 list_add_tail(&b->write_list, write_list);
773 }
774
775 static void __flush_write_list(struct list_head *write_list)
776 {
777         struct blk_plug plug;
778         blk_start_plug(&plug);
779         while (!list_empty(write_list)) {
780                 struct dm_buffer *b =
781                         list_entry(write_list->next, struct dm_buffer, write_list);
782                 list_del(&b->write_list);
783                 submit_io(b, REQ_OP_WRITE, write_endio);
784                 cond_resched();
785         }
786         blk_finish_plug(&plug);
787 }
788
789 /*
790  * Wait until any activity on the buffer finishes.  Possibly write the
791  * buffer if it is dirty.  When this function finishes, there is no I/O
792  * running on the buffer and the buffer is not dirty.
793  */
794 static void __make_buffer_clean(struct dm_buffer *b)
795 {
796         BUG_ON(b->hold_count);
797
798         if (!b->state)  /* fast case */
799                 return;
800
801         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
802         __write_dirty_buffer(b, NULL);
803         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
804 }
805
806 /*
807  * Find some buffer that is not held by anybody, clean it, unlink it and
808  * return it.
809  */
810 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
811 {
812         struct dm_buffer *b;
813
814         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
815                 BUG_ON(test_bit(B_WRITING, &b->state));
816                 BUG_ON(test_bit(B_DIRTY, &b->state));
817
818                 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
819                     unlikely(test_bit(B_READING, &b->state)))
820                         continue;
821
822                 if (!b->hold_count) {
823                         __make_buffer_clean(b);
824                         __unlink_buffer(b);
825                         return b;
826                 }
827                 cond_resched();
828         }
829
830         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
831                 return NULL;
832
833         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
834                 BUG_ON(test_bit(B_READING, &b->state));
835
836                 if (!b->hold_count) {
837                         __make_buffer_clean(b);
838                         __unlink_buffer(b);
839                         return b;
840                 }
841                 cond_resched();
842         }
843
844         return NULL;
845 }
846
847 /*
848  * Wait until some other threads free some buffer or release hold count on
849  * some buffer.
850  *
851  * This function is entered with c->lock held, drops it and regains it
852  * before exiting.
853  */
854 static void __wait_for_free_buffer(struct dm_bufio_client *c)
855 {
856         DECLARE_WAITQUEUE(wait, current);
857
858         add_wait_queue(&c->free_buffer_wait, &wait);
859         set_current_state(TASK_UNINTERRUPTIBLE);
860         dm_bufio_unlock(c);
861
862         io_schedule();
863
864         remove_wait_queue(&c->free_buffer_wait, &wait);
865
866         dm_bufio_lock(c);
867 }
868
869 enum new_flag {
870         NF_FRESH = 0,
871         NF_READ = 1,
872         NF_GET = 2,
873         NF_PREFETCH = 3
874 };
875
876 /*
877  * Allocate a new buffer. If the allocation is not possible, wait until
878  * some other thread frees a buffer.
879  *
880  * May drop the lock and regain it.
881  */
882 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
883 {
884         struct dm_buffer *b;
885         bool tried_noio_alloc = false;
886
887         /*
888          * dm-bufio is resistant to allocation failures (it just keeps
889          * one buffer reserved in cases all the allocations fail).
890          * So set flags to not try too hard:
891          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
892          *                  mutex and wait ourselves.
893          *      __GFP_NORETRY: don't retry and rather return failure
894          *      __GFP_NOMEMALLOC: don't use emergency reserves
895          *      __GFP_NOWARN: don't print a warning in case of failure
896          *
897          * For debugging, if we set the cache size to 1, no new buffers will
898          * be allocated.
899          */
900         while (1) {
901                 if (dm_bufio_cache_size_latch != 1) {
902                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
903                         if (b)
904                                 return b;
905                 }
906
907                 if (nf == NF_PREFETCH)
908                         return NULL;
909
910                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
911                         dm_bufio_unlock(c);
912                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
913                         dm_bufio_lock(c);
914                         if (b)
915                                 return b;
916                         tried_noio_alloc = true;
917                 }
918
919                 if (!list_empty(&c->reserved_buffers)) {
920                         b = list_entry(c->reserved_buffers.next,
921                                        struct dm_buffer, lru_list);
922                         list_del(&b->lru_list);
923                         c->need_reserved_buffers++;
924
925                         return b;
926                 }
927
928                 b = __get_unclaimed_buffer(c);
929                 if (b)
930                         return b;
931
932                 __wait_for_free_buffer(c);
933         }
934 }
935
936 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
937 {
938         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
939
940         if (!b)
941                 return NULL;
942
943         if (c->alloc_callback)
944                 c->alloc_callback(b);
945
946         return b;
947 }
948
949 /*
950  * Free a buffer and wake other threads waiting for free buffers.
951  */
952 static void __free_buffer_wake(struct dm_buffer *b)
953 {
954         struct dm_bufio_client *c = b->c;
955
956         if (!c->need_reserved_buffers)
957                 free_buffer(b);
958         else {
959                 list_add(&b->lru_list, &c->reserved_buffers);
960                 c->need_reserved_buffers--;
961         }
962
963         wake_up(&c->free_buffer_wait);
964 }
965
966 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
967                                         struct list_head *write_list)
968 {
969         struct dm_buffer *b, *tmp;
970
971         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
972                 BUG_ON(test_bit(B_READING, &b->state));
973
974                 if (!test_bit(B_DIRTY, &b->state) &&
975                     !test_bit(B_WRITING, &b->state)) {
976                         __relink_lru(b, LIST_CLEAN);
977                         continue;
978                 }
979
980                 if (no_wait && test_bit(B_WRITING, &b->state))
981                         return;
982
983                 __write_dirty_buffer(b, write_list);
984                 cond_resched();
985         }
986 }
987
988 /*
989  * Check if we're over watermark.
990  * If we are over threshold_buffers, start freeing buffers.
991  * If we're over "limit_buffers", block until we get under the limit.
992  */
993 static void __check_watermark(struct dm_bufio_client *c,
994                               struct list_head *write_list)
995 {
996         if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
997                 __write_dirty_buffers_async(c, 1, write_list);
998 }
999
1000 /*----------------------------------------------------------------
1001  * Getting a buffer
1002  *--------------------------------------------------------------*/
1003
1004 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1005                                      enum new_flag nf, int *need_submit,
1006                                      struct list_head *write_list)
1007 {
1008         struct dm_buffer *b, *new_b = NULL;
1009
1010         *need_submit = 0;
1011
1012         b = __find(c, block);
1013         if (b)
1014                 goto found_buffer;
1015
1016         if (nf == NF_GET)
1017                 return NULL;
1018
1019         new_b = __alloc_buffer_wait(c, nf);
1020         if (!new_b)
1021                 return NULL;
1022
1023         /*
1024          * We've had a period where the mutex was unlocked, so need to
1025          * recheck the buffer tree.
1026          */
1027         b = __find(c, block);
1028         if (b) {
1029                 __free_buffer_wake(new_b);
1030                 goto found_buffer;
1031         }
1032
1033         __check_watermark(c, write_list);
1034
1035         b = new_b;
1036         b->hold_count = 1;
1037         b->read_error = 0;
1038         b->write_error = 0;
1039         __link_buffer(b, block, LIST_CLEAN);
1040
1041         if (nf == NF_FRESH) {
1042                 b->state = 0;
1043                 return b;
1044         }
1045
1046         b->state = 1 << B_READING;
1047         *need_submit = 1;
1048
1049         return b;
1050
1051 found_buffer:
1052         if (nf == NF_PREFETCH)
1053                 return NULL;
1054         /*
1055          * Note: it is essential that we don't wait for the buffer to be
1056          * read if dm_bufio_get function is used. Both dm_bufio_get and
1057          * dm_bufio_prefetch can be used in the driver request routine.
1058          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1059          * the same buffer, it would deadlock if we waited.
1060          */
1061         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1062                 return NULL;
1063
1064         b->hold_count++;
1065         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1066                      test_bit(B_WRITING, &b->state));
1067         return b;
1068 }
1069
1070 /*
1071  * The endio routine for reading: set the error, clear the bit and wake up
1072  * anyone waiting on the buffer.
1073  */
1074 static void read_endio(struct dm_buffer *b, blk_status_t status)
1075 {
1076         b->read_error = status;
1077
1078         BUG_ON(!test_bit(B_READING, &b->state));
1079
1080         smp_mb__before_atomic();
1081         clear_bit(B_READING, &b->state);
1082         smp_mb__after_atomic();
1083
1084         wake_up_bit(&b->state, B_READING);
1085 }
1086
1087 /*
1088  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1089  * functions is similar except that dm_bufio_new doesn't read the
1090  * buffer from the disk (assuming that the caller overwrites all the data
1091  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1092  */
1093 static void *new_read(struct dm_bufio_client *c, sector_t block,
1094                       enum new_flag nf, struct dm_buffer **bp)
1095 {
1096         int need_submit;
1097         struct dm_buffer *b;
1098
1099         LIST_HEAD(write_list);
1100
1101         dm_bufio_lock(c);
1102         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1103 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1104         if (b && b->hold_count == 1)
1105                 buffer_record_stack(b);
1106 #endif
1107         dm_bufio_unlock(c);
1108
1109         __flush_write_list(&write_list);
1110
1111         if (!b)
1112                 return NULL;
1113
1114         if (need_submit)
1115                 submit_io(b, REQ_OP_READ, read_endio);
1116
1117         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1118
1119         if (b->read_error) {
1120                 int error = blk_status_to_errno(b->read_error);
1121
1122                 dm_bufio_release(b);
1123
1124                 return ERR_PTR(error);
1125         }
1126
1127         *bp = b;
1128
1129         return b->data;
1130 }
1131
1132 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1133                    struct dm_buffer **bp)
1134 {
1135         return new_read(c, block, NF_GET, bp);
1136 }
1137 EXPORT_SYMBOL_GPL(dm_bufio_get);
1138
1139 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1140                     struct dm_buffer **bp)
1141 {
1142         BUG_ON(dm_bufio_in_request());
1143
1144         return new_read(c, block, NF_READ, bp);
1145 }
1146 EXPORT_SYMBOL_GPL(dm_bufio_read);
1147
1148 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1149                    struct dm_buffer **bp)
1150 {
1151         BUG_ON(dm_bufio_in_request());
1152
1153         return new_read(c, block, NF_FRESH, bp);
1154 }
1155 EXPORT_SYMBOL_GPL(dm_bufio_new);
1156
1157 void dm_bufio_prefetch(struct dm_bufio_client *c,
1158                        sector_t block, unsigned n_blocks)
1159 {
1160         struct blk_plug plug;
1161
1162         LIST_HEAD(write_list);
1163
1164         BUG_ON(dm_bufio_in_request());
1165
1166         blk_start_plug(&plug);
1167         dm_bufio_lock(c);
1168
1169         for (; n_blocks--; block++) {
1170                 int need_submit;
1171                 struct dm_buffer *b;
1172                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1173                                 &write_list);
1174                 if (unlikely(!list_empty(&write_list))) {
1175                         dm_bufio_unlock(c);
1176                         blk_finish_plug(&plug);
1177                         __flush_write_list(&write_list);
1178                         blk_start_plug(&plug);
1179                         dm_bufio_lock(c);
1180                 }
1181                 if (unlikely(b != NULL)) {
1182                         dm_bufio_unlock(c);
1183
1184                         if (need_submit)
1185                                 submit_io(b, REQ_OP_READ, read_endio);
1186                         dm_bufio_release(b);
1187
1188                         cond_resched();
1189
1190                         if (!n_blocks)
1191                                 goto flush_plug;
1192                         dm_bufio_lock(c);
1193                 }
1194         }
1195
1196         dm_bufio_unlock(c);
1197
1198 flush_plug:
1199         blk_finish_plug(&plug);
1200 }
1201 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1202
1203 void dm_bufio_release(struct dm_buffer *b)
1204 {
1205         struct dm_bufio_client *c = b->c;
1206
1207         dm_bufio_lock(c);
1208
1209         BUG_ON(!b->hold_count);
1210
1211         b->hold_count--;
1212         if (!b->hold_count) {
1213                 wake_up(&c->free_buffer_wait);
1214
1215                 /*
1216                  * If there were errors on the buffer, and the buffer is not
1217                  * to be written, free the buffer. There is no point in caching
1218                  * invalid buffer.
1219                  */
1220                 if ((b->read_error || b->write_error) &&
1221                     !test_bit(B_READING, &b->state) &&
1222                     !test_bit(B_WRITING, &b->state) &&
1223                     !test_bit(B_DIRTY, &b->state)) {
1224                         __unlink_buffer(b);
1225                         __free_buffer_wake(b);
1226                 }
1227         }
1228
1229         dm_bufio_unlock(c);
1230 }
1231 EXPORT_SYMBOL_GPL(dm_bufio_release);
1232
1233 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1234                                         unsigned start, unsigned end)
1235 {
1236         struct dm_bufio_client *c = b->c;
1237
1238         BUG_ON(start >= end);
1239         BUG_ON(end > b->c->block_size);
1240
1241         dm_bufio_lock(c);
1242
1243         BUG_ON(test_bit(B_READING, &b->state));
1244
1245         if (!test_and_set_bit(B_DIRTY, &b->state)) {
1246                 b->dirty_start = start;
1247                 b->dirty_end = end;
1248                 __relink_lru(b, LIST_DIRTY);
1249         } else {
1250                 if (start < b->dirty_start)
1251                         b->dirty_start = start;
1252                 if (end > b->dirty_end)
1253                         b->dirty_end = end;
1254         }
1255
1256         dm_bufio_unlock(c);
1257 }
1258 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1259
1260 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1261 {
1262         dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1263 }
1264 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1265
1266 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1267 {
1268         LIST_HEAD(write_list);
1269
1270         BUG_ON(dm_bufio_in_request());
1271
1272         dm_bufio_lock(c);
1273         __write_dirty_buffers_async(c, 0, &write_list);
1274         dm_bufio_unlock(c);
1275         __flush_write_list(&write_list);
1276 }
1277 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1278
1279 /*
1280  * For performance, it is essential that the buffers are written asynchronously
1281  * and simultaneously (so that the block layer can merge the writes) and then
1282  * waited upon.
1283  *
1284  * Finally, we flush hardware disk cache.
1285  */
1286 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1287 {
1288         int a, f;
1289         unsigned long buffers_processed = 0;
1290         struct dm_buffer *b, *tmp;
1291
1292         LIST_HEAD(write_list);
1293
1294         dm_bufio_lock(c);
1295         __write_dirty_buffers_async(c, 0, &write_list);
1296         dm_bufio_unlock(c);
1297         __flush_write_list(&write_list);
1298         dm_bufio_lock(c);
1299
1300 again:
1301         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1302                 int dropped_lock = 0;
1303
1304                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1305                         buffers_processed++;
1306
1307                 BUG_ON(test_bit(B_READING, &b->state));
1308
1309                 if (test_bit(B_WRITING, &b->state)) {
1310                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1311                                 dropped_lock = 1;
1312                                 b->hold_count++;
1313                                 dm_bufio_unlock(c);
1314                                 wait_on_bit_io(&b->state, B_WRITING,
1315                                                TASK_UNINTERRUPTIBLE);
1316                                 dm_bufio_lock(c);
1317                                 b->hold_count--;
1318                         } else
1319                                 wait_on_bit_io(&b->state, B_WRITING,
1320                                                TASK_UNINTERRUPTIBLE);
1321                 }
1322
1323                 if (!test_bit(B_DIRTY, &b->state) &&
1324                     !test_bit(B_WRITING, &b->state))
1325                         __relink_lru(b, LIST_CLEAN);
1326
1327                 cond_resched();
1328
1329                 /*
1330                  * If we dropped the lock, the list is no longer consistent,
1331                  * so we must restart the search.
1332                  *
1333                  * In the most common case, the buffer just processed is
1334                  * relinked to the clean list, so we won't loop scanning the
1335                  * same buffer again and again.
1336                  *
1337                  * This may livelock if there is another thread simultaneously
1338                  * dirtying buffers, so we count the number of buffers walked
1339                  * and if it exceeds the total number of buffers, it means that
1340                  * someone is doing some writes simultaneously with us.  In
1341                  * this case, stop, dropping the lock.
1342                  */
1343                 if (dropped_lock)
1344                         goto again;
1345         }
1346         wake_up(&c->free_buffer_wait);
1347         dm_bufio_unlock(c);
1348
1349         a = xchg(&c->async_write_error, 0);
1350         f = dm_bufio_issue_flush(c);
1351         if (a)
1352                 return a;
1353
1354         return f;
1355 }
1356 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1357
1358 /*
1359  * Use dm-io to send an empty barrier to flush the device.
1360  */
1361 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1362 {
1363         struct dm_io_request io_req = {
1364                 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1365                 .mem.type = DM_IO_KMEM,
1366                 .mem.ptr.addr = NULL,
1367                 .client = c->dm_io,
1368         };
1369         struct dm_io_region io_reg = {
1370                 .bdev = c->bdev,
1371                 .sector = 0,
1372                 .count = 0,
1373         };
1374
1375         BUG_ON(dm_bufio_in_request());
1376
1377         return dm_io(&io_req, 1, &io_reg, NULL);
1378 }
1379 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1380
1381 /*
1382  * Use dm-io to send a discard request to flush the device.
1383  */
1384 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1385 {
1386         struct dm_io_request io_req = {
1387                 .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
1388                 .mem.type = DM_IO_KMEM,
1389                 .mem.ptr.addr = NULL,
1390                 .client = c->dm_io,
1391         };
1392         struct dm_io_region io_reg = {
1393                 .bdev = c->bdev,
1394                 .sector = block_to_sector(c, block),
1395                 .count = block_to_sector(c, count),
1396         };
1397
1398         BUG_ON(dm_bufio_in_request());
1399
1400         return dm_io(&io_req, 1, &io_reg, NULL);
1401 }
1402 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1403
1404 /*
1405  * We first delete any other buffer that may be at that new location.
1406  *
1407  * Then, we write the buffer to the original location if it was dirty.
1408  *
1409  * Then, if we are the only one who is holding the buffer, relink the buffer
1410  * in the buffer tree for the new location.
1411  *
1412  * If there was someone else holding the buffer, we write it to the new
1413  * location but not relink it, because that other user needs to have the buffer
1414  * at the same place.
1415  */
1416 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1417 {
1418         struct dm_bufio_client *c = b->c;
1419         struct dm_buffer *new;
1420
1421         BUG_ON(dm_bufio_in_request());
1422
1423         dm_bufio_lock(c);
1424
1425 retry:
1426         new = __find(c, new_block);
1427         if (new) {
1428                 if (new->hold_count) {
1429                         __wait_for_free_buffer(c);
1430                         goto retry;
1431                 }
1432
1433                 /*
1434                  * FIXME: Is there any point waiting for a write that's going
1435                  * to be overwritten in a bit?
1436                  */
1437                 __make_buffer_clean(new);
1438                 __unlink_buffer(new);
1439                 __free_buffer_wake(new);
1440         }
1441
1442         BUG_ON(!b->hold_count);
1443         BUG_ON(test_bit(B_READING, &b->state));
1444
1445         __write_dirty_buffer(b, NULL);
1446         if (b->hold_count == 1) {
1447                 wait_on_bit_io(&b->state, B_WRITING,
1448                                TASK_UNINTERRUPTIBLE);
1449                 set_bit(B_DIRTY, &b->state);
1450                 b->dirty_start = 0;
1451                 b->dirty_end = c->block_size;
1452                 __unlink_buffer(b);
1453                 __link_buffer(b, new_block, LIST_DIRTY);
1454         } else {
1455                 sector_t old_block;
1456                 wait_on_bit_lock_io(&b->state, B_WRITING,
1457                                     TASK_UNINTERRUPTIBLE);
1458                 /*
1459                  * Relink buffer to "new_block" so that write_callback
1460                  * sees "new_block" as a block number.
1461                  * After the write, link the buffer back to old_block.
1462                  * All this must be done in bufio lock, so that block number
1463                  * change isn't visible to other threads.
1464                  */
1465                 old_block = b->block;
1466                 __unlink_buffer(b);
1467                 __link_buffer(b, new_block, b->list_mode);
1468                 submit_io(b, REQ_OP_WRITE, write_endio);
1469                 wait_on_bit_io(&b->state, B_WRITING,
1470                                TASK_UNINTERRUPTIBLE);
1471                 __unlink_buffer(b);
1472                 __link_buffer(b, old_block, b->list_mode);
1473         }
1474
1475         dm_bufio_unlock(c);
1476         dm_bufio_release(b);
1477 }
1478 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1479
1480 static void forget_buffer_locked(struct dm_buffer *b)
1481 {
1482         if (likely(!b->hold_count) && likely(!b->state)) {
1483                 __unlink_buffer(b);
1484                 __free_buffer_wake(b);
1485         }
1486 }
1487
1488 /*
1489  * Free the given buffer.
1490  *
1491  * This is just a hint, if the buffer is in use or dirty, this function
1492  * does nothing.
1493  */
1494 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1495 {
1496         struct dm_buffer *b;
1497
1498         dm_bufio_lock(c);
1499
1500         b = __find(c, block);
1501         if (b)
1502                 forget_buffer_locked(b);
1503
1504         dm_bufio_unlock(c);
1505 }
1506 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1507
1508 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1509 {
1510         struct dm_buffer *b;
1511         sector_t end_block = block + n_blocks;
1512
1513         while (block < end_block) {
1514                 dm_bufio_lock(c);
1515
1516                 b = __find_next(c, block);
1517                 if (b) {
1518                         block = b->block + 1;
1519                         forget_buffer_locked(b);
1520                 }
1521
1522                 dm_bufio_unlock(c);
1523
1524                 if (!b)
1525                         break;
1526         }
1527
1528 }
1529 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1530
1531 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1532 {
1533         c->minimum_buffers = n;
1534 }
1535 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1536
1537 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1538 {
1539         return c->block_size;
1540 }
1541 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1542
1543 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1544 {
1545         sector_t s = bdev_nr_sectors(c->bdev);
1546         if (s >= c->start)
1547                 s -= c->start;
1548         else
1549                 s = 0;
1550         if (likely(c->sectors_per_block_bits >= 0))
1551                 s >>= c->sectors_per_block_bits;
1552         else
1553                 sector_div(s, c->block_size >> SECTOR_SHIFT);
1554         return s;
1555 }
1556 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1557
1558 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1559 {
1560         return c->dm_io;
1561 }
1562 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1563
1564 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1565 {
1566         return b->block;
1567 }
1568 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1569
1570 void *dm_bufio_get_block_data(struct dm_buffer *b)
1571 {
1572         return b->data;
1573 }
1574 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1575
1576 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1577 {
1578         return b + 1;
1579 }
1580 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1581
1582 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1583 {
1584         return b->c;
1585 }
1586 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1587
1588 static void drop_buffers(struct dm_bufio_client *c)
1589 {
1590         struct dm_buffer *b;
1591         int i;
1592         bool warned = false;
1593
1594         BUG_ON(dm_bufio_in_request());
1595
1596         /*
1597          * An optimization so that the buffers are not written one-by-one.
1598          */
1599         dm_bufio_write_dirty_buffers_async(c);
1600
1601         dm_bufio_lock(c);
1602
1603         while ((b = __get_unclaimed_buffer(c)))
1604                 __free_buffer_wake(b);
1605
1606         for (i = 0; i < LIST_SIZE; i++)
1607                 list_for_each_entry(b, &c->lru[i], lru_list) {
1608                         WARN_ON(!warned);
1609                         warned = true;
1610                         DMERR("leaked buffer %llx, hold count %u, list %d",
1611                               (unsigned long long)b->block, b->hold_count, i);
1612 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1613                         stack_trace_print(b->stack_entries, b->stack_len, 1);
1614                         /* mark unclaimed to avoid BUG_ON below */
1615                         b->hold_count = 0;
1616 #endif
1617                 }
1618
1619 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1620         while ((b = __get_unclaimed_buffer(c)))
1621                 __free_buffer_wake(b);
1622 #endif
1623
1624         for (i = 0; i < LIST_SIZE; i++)
1625                 BUG_ON(!list_empty(&c->lru[i]));
1626
1627         dm_bufio_unlock(c);
1628 }
1629
1630 /*
1631  * We may not be able to evict this buffer if IO pending or the client
1632  * is still using it.  Caller is expected to know buffer is too old.
1633  *
1634  * And if GFP_NOFS is used, we must not do any I/O because we hold
1635  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1636  * rerouted to different bufio client.
1637  */
1638 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1639 {
1640         if (!(gfp & __GFP_FS) ||
1641             (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
1642                 if (test_bit(B_READING, &b->state) ||
1643                     test_bit(B_WRITING, &b->state) ||
1644                     test_bit(B_DIRTY, &b->state))
1645                         return false;
1646         }
1647
1648         if (b->hold_count)
1649                 return false;
1650
1651         __make_buffer_clean(b);
1652         __unlink_buffer(b);
1653         __free_buffer_wake(b);
1654
1655         return true;
1656 }
1657
1658 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1659 {
1660         unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1661         if (likely(c->sectors_per_block_bits >= 0))
1662                 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1663         else
1664                 retain_bytes /= c->block_size;
1665         return retain_bytes;
1666 }
1667
1668 static void __scan(struct dm_bufio_client *c)
1669 {
1670         int l;
1671         struct dm_buffer *b, *tmp;
1672         unsigned long freed = 0;
1673         unsigned long count = c->n_buffers[LIST_CLEAN] +
1674                               c->n_buffers[LIST_DIRTY];
1675         unsigned long retain_target = get_retain_buffers(c);
1676
1677         for (l = 0; l < LIST_SIZE; l++) {
1678                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1679                         if (count - freed <= retain_target)
1680                                 atomic_long_set(&c->need_shrink, 0);
1681                         if (!atomic_long_read(&c->need_shrink))
1682                                 return;
1683                         if (__try_evict_buffer(b, GFP_KERNEL)) {
1684                                 atomic_long_dec(&c->need_shrink);
1685                                 freed++;
1686                         }
1687                         cond_resched();
1688                 }
1689         }
1690 }
1691
1692 static void shrink_work(struct work_struct *w)
1693 {
1694         struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1695
1696         dm_bufio_lock(c);
1697         __scan(c);
1698         dm_bufio_unlock(c);
1699 }
1700
1701 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1702 {
1703         struct dm_bufio_client *c;
1704
1705         c = container_of(shrink, struct dm_bufio_client, shrinker);
1706         atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1707         queue_work(dm_bufio_wq, &c->shrink_work);
1708
1709         return sc->nr_to_scan;
1710 }
1711
1712 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1713 {
1714         struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1715         unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1716                               READ_ONCE(c->n_buffers[LIST_DIRTY]);
1717         unsigned long retain_target = get_retain_buffers(c);
1718         unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1719
1720         if (unlikely(count < retain_target))
1721                 count = 0;
1722         else
1723                 count -= retain_target;
1724
1725         if (unlikely(count < queued_for_cleanup))
1726                 count = 0;
1727         else
1728                 count -= queued_for_cleanup;
1729
1730         return count;
1731 }
1732
1733 /*
1734  * Create the buffering interface
1735  */
1736 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1737                                                unsigned reserved_buffers, unsigned aux_size,
1738                                                void (*alloc_callback)(struct dm_buffer *),
1739                                                void (*write_callback)(struct dm_buffer *),
1740                                                unsigned int flags)
1741 {
1742         int r;
1743         struct dm_bufio_client *c;
1744         unsigned i;
1745         char slab_name[27];
1746
1747         if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1748                 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1749                 r = -EINVAL;
1750                 goto bad_client;
1751         }
1752
1753         c = kzalloc(sizeof(*c), GFP_KERNEL);
1754         if (!c) {
1755                 r = -ENOMEM;
1756                 goto bad_client;
1757         }
1758         c->buffer_tree = RB_ROOT;
1759
1760         c->bdev = bdev;
1761         c->block_size = block_size;
1762         if (is_power_of_2(block_size))
1763                 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1764         else
1765                 c->sectors_per_block_bits = -1;
1766
1767         c->alloc_callback = alloc_callback;
1768         c->write_callback = write_callback;
1769
1770         if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
1771                 c->no_sleep = true;
1772                 static_branch_inc(&no_sleep_enabled);
1773         }
1774
1775         for (i = 0; i < LIST_SIZE; i++) {
1776                 INIT_LIST_HEAD(&c->lru[i]);
1777                 c->n_buffers[i] = 0;
1778         }
1779
1780         mutex_init(&c->lock);
1781         spin_lock_init(&c->spinlock);
1782         INIT_LIST_HEAD(&c->reserved_buffers);
1783         c->need_reserved_buffers = reserved_buffers;
1784
1785         dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1786
1787         init_waitqueue_head(&c->free_buffer_wait);
1788         c->async_write_error = 0;
1789
1790         c->dm_io = dm_io_client_create();
1791         if (IS_ERR(c->dm_io)) {
1792                 r = PTR_ERR(c->dm_io);
1793                 goto bad_dm_io;
1794         }
1795
1796         if (block_size <= KMALLOC_MAX_SIZE &&
1797             (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1798                 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1799                 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1800                 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1801                                                   SLAB_RECLAIM_ACCOUNT, NULL);
1802                 if (!c->slab_cache) {
1803                         r = -ENOMEM;
1804                         goto bad;
1805                 }
1806         }
1807         if (aux_size)
1808                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1809         else
1810                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1811         c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1812                                            0, SLAB_RECLAIM_ACCOUNT, NULL);
1813         if (!c->slab_buffer) {
1814                 r = -ENOMEM;
1815                 goto bad;
1816         }
1817
1818         while (c->need_reserved_buffers) {
1819                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1820
1821                 if (!b) {
1822                         r = -ENOMEM;
1823                         goto bad;
1824                 }
1825                 __free_buffer_wake(b);
1826         }
1827
1828         INIT_WORK(&c->shrink_work, shrink_work);
1829         atomic_long_set(&c->need_shrink, 0);
1830
1831         c->shrinker.count_objects = dm_bufio_shrink_count;
1832         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1833         c->shrinker.seeks = 1;
1834         c->shrinker.batch = 0;
1835         r = register_shrinker(&c->shrinker, "md-%s:(%u:%u)", slab_name,
1836                               MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1837         if (r)
1838                 goto bad;
1839
1840         mutex_lock(&dm_bufio_clients_lock);
1841         dm_bufio_client_count++;
1842         list_add(&c->client_list, &dm_bufio_all_clients);
1843         __cache_size_refresh();
1844         mutex_unlock(&dm_bufio_clients_lock);
1845
1846         return c;
1847
1848 bad:
1849         while (!list_empty(&c->reserved_buffers)) {
1850                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1851                                                  struct dm_buffer, lru_list);
1852                 list_del(&b->lru_list);
1853                 free_buffer(b);
1854         }
1855         kmem_cache_destroy(c->slab_cache);
1856         kmem_cache_destroy(c->slab_buffer);
1857         dm_io_client_destroy(c->dm_io);
1858 bad_dm_io:
1859         mutex_destroy(&c->lock);
1860         kfree(c);
1861 bad_client:
1862         return ERR_PTR(r);
1863 }
1864 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1865
1866 /*
1867  * Free the buffering interface.
1868  * It is required that there are no references on any buffers.
1869  */
1870 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1871 {
1872         unsigned i;
1873
1874         drop_buffers(c);
1875
1876         unregister_shrinker(&c->shrinker);
1877         flush_work(&c->shrink_work);
1878
1879         mutex_lock(&dm_bufio_clients_lock);
1880
1881         list_del(&c->client_list);
1882         dm_bufio_client_count--;
1883         __cache_size_refresh();
1884
1885         mutex_unlock(&dm_bufio_clients_lock);
1886
1887         BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1888         BUG_ON(c->need_reserved_buffers);
1889
1890         while (!list_empty(&c->reserved_buffers)) {
1891                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1892                                                  struct dm_buffer, lru_list);
1893                 list_del(&b->lru_list);
1894                 free_buffer(b);
1895         }
1896
1897         for (i = 0; i < LIST_SIZE; i++)
1898                 if (c->n_buffers[i])
1899                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1900
1901         for (i = 0; i < LIST_SIZE; i++)
1902                 BUG_ON(c->n_buffers[i]);
1903
1904         kmem_cache_destroy(c->slab_cache);
1905         kmem_cache_destroy(c->slab_buffer);
1906         dm_io_client_destroy(c->dm_io);
1907         mutex_destroy(&c->lock);
1908         if (c->no_sleep)
1909                 static_branch_dec(&no_sleep_enabled);
1910         kfree(c);
1911 }
1912 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1913
1914 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1915 {
1916         c->start = start;
1917 }
1918 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1919
1920 static unsigned get_max_age_hz(void)
1921 {
1922         unsigned max_age = READ_ONCE(dm_bufio_max_age);
1923
1924         if (max_age > UINT_MAX / HZ)
1925                 max_age = UINT_MAX / HZ;
1926
1927         return max_age * HZ;
1928 }
1929
1930 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1931 {
1932         return time_after_eq(jiffies, b->last_accessed + age_hz);
1933 }
1934
1935 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1936 {
1937         struct dm_buffer *b, *tmp;
1938         unsigned long retain_target = get_retain_buffers(c);
1939         unsigned long count;
1940         LIST_HEAD(write_list);
1941
1942         dm_bufio_lock(c);
1943
1944         __check_watermark(c, &write_list);
1945         if (unlikely(!list_empty(&write_list))) {
1946                 dm_bufio_unlock(c);
1947                 __flush_write_list(&write_list);
1948                 dm_bufio_lock(c);
1949         }
1950
1951         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1952         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1953                 if (count <= retain_target)
1954                         break;
1955
1956                 if (!older_than(b, age_hz))
1957                         break;
1958
1959                 if (__try_evict_buffer(b, 0))
1960                         count--;
1961
1962                 cond_resched();
1963         }
1964
1965         dm_bufio_unlock(c);
1966 }
1967
1968 static void do_global_cleanup(struct work_struct *w)
1969 {
1970         struct dm_bufio_client *locked_client = NULL;
1971         struct dm_bufio_client *current_client;
1972         struct dm_buffer *b;
1973         unsigned spinlock_hold_count;
1974         unsigned long threshold = dm_bufio_cache_size -
1975                 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1976         unsigned long loops = global_num * 2;
1977
1978         mutex_lock(&dm_bufio_clients_lock);
1979
1980         while (1) {
1981                 cond_resched();
1982
1983                 spin_lock(&global_spinlock);
1984                 if (unlikely(dm_bufio_current_allocated <= threshold))
1985                         break;
1986
1987                 spinlock_hold_count = 0;
1988 get_next:
1989                 if (!loops--)
1990                         break;
1991                 if (unlikely(list_empty(&global_queue)))
1992                         break;
1993                 b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1994
1995                 if (b->accessed) {
1996                         b->accessed = 0;
1997                         list_move(&b->global_list, &global_queue);
1998                         if (likely(++spinlock_hold_count < 16))
1999                                 goto get_next;
2000                         spin_unlock(&global_spinlock);
2001                         continue;
2002                 }
2003
2004                 current_client = b->c;
2005                 if (unlikely(current_client != locked_client)) {
2006                         if (locked_client)
2007                                 dm_bufio_unlock(locked_client);
2008
2009                         if (!dm_bufio_trylock(current_client)) {
2010                                 spin_unlock(&global_spinlock);
2011                                 dm_bufio_lock(current_client);
2012                                 locked_client = current_client;
2013                                 continue;
2014                         }
2015
2016                         locked_client = current_client;
2017                 }
2018
2019                 spin_unlock(&global_spinlock);
2020
2021                 if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
2022                         spin_lock(&global_spinlock);
2023                         list_move(&b->global_list, &global_queue);
2024                         spin_unlock(&global_spinlock);
2025                 }
2026         }
2027
2028         spin_unlock(&global_spinlock);
2029
2030         if (locked_client)
2031                 dm_bufio_unlock(locked_client);
2032
2033         mutex_unlock(&dm_bufio_clients_lock);
2034 }
2035
2036 static void cleanup_old_buffers(void)
2037 {
2038         unsigned long max_age_hz = get_max_age_hz();
2039         struct dm_bufio_client *c;
2040
2041         mutex_lock(&dm_bufio_clients_lock);
2042
2043         __cache_size_refresh();
2044
2045         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2046                 __evict_old_buffers(c, max_age_hz);
2047
2048         mutex_unlock(&dm_bufio_clients_lock);
2049 }
2050
2051 static void work_fn(struct work_struct *w)
2052 {
2053         cleanup_old_buffers();
2054
2055         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2056                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2057 }
2058
2059 /*----------------------------------------------------------------
2060  * Module setup
2061  *--------------------------------------------------------------*/
2062
2063 /*
2064  * This is called only once for the whole dm_bufio module.
2065  * It initializes memory limit.
2066  */
2067 static int __init dm_bufio_init(void)
2068 {
2069         __u64 mem;
2070
2071         dm_bufio_allocated_kmem_cache = 0;
2072         dm_bufio_allocated_get_free_pages = 0;
2073         dm_bufio_allocated_vmalloc = 0;
2074         dm_bufio_current_allocated = 0;
2075
2076         mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2077                                DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2078
2079         if (mem > ULONG_MAX)
2080                 mem = ULONG_MAX;
2081
2082 #ifdef CONFIG_MMU
2083         if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2084                 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2085 #endif
2086
2087         dm_bufio_default_cache_size = mem;
2088
2089         mutex_lock(&dm_bufio_clients_lock);
2090         __cache_size_refresh();
2091         mutex_unlock(&dm_bufio_clients_lock);
2092
2093         dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2094         if (!dm_bufio_wq)
2095                 return -ENOMEM;
2096
2097         INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2098         INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2099         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2100                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2101
2102         return 0;
2103 }
2104
2105 /*
2106  * This is called once when unloading the dm_bufio module.
2107  */
2108 static void __exit dm_bufio_exit(void)
2109 {
2110         int bug = 0;
2111
2112         cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2113         destroy_workqueue(dm_bufio_wq);
2114
2115         if (dm_bufio_client_count) {
2116                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2117                         __func__, dm_bufio_client_count);
2118                 bug = 1;
2119         }
2120
2121         if (dm_bufio_current_allocated) {
2122                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2123                         __func__, dm_bufio_current_allocated);
2124                 bug = 1;
2125         }
2126
2127         if (dm_bufio_allocated_get_free_pages) {
2128                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2129                        __func__, dm_bufio_allocated_get_free_pages);
2130                 bug = 1;
2131         }
2132
2133         if (dm_bufio_allocated_vmalloc) {
2134                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2135                        __func__, dm_bufio_allocated_vmalloc);
2136                 bug = 1;
2137         }
2138
2139         BUG_ON(bug);
2140 }
2141
2142 module_init(dm_bufio_init)
2143 module_exit(dm_bufio_exit)
2144
2145 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2146 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2147
2148 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2149 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2150
2151 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2152 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2153
2154 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2155 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2156
2157 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2158 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2159
2160 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2161 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2162
2163 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2164 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2165
2166 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2167 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2168
2169 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2170 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2171 MODULE_LICENSE("GPL");