Merge tag 'integrity-v6.10-fix' of ssh://ra.kernel.org/pub/scm/linux/kernel/git/zohar...
[linux-2.6-block.git] / drivers / md / bcache / util.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #ifndef _BCACHE_UTIL_H
4 #define _BCACHE_UTIL_H
5
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/kernel.h>
10 #include <linux/sched/clock.h>
11 #include <linux/llist.h>
12 #include <linux/ratelimit.h>
13 #include <linux/vmalloc.h>
14 #include <linux/workqueue.h>
15 #include <linux/crc64.h>
16
17 struct closure;
18
19 #ifdef CONFIG_BCACHE_DEBUG
20
21 #define EBUG_ON(cond)                   BUG_ON(cond)
22 #define atomic_dec_bug(v)       BUG_ON(atomic_dec_return(v) < 0)
23 #define atomic_inc_bug(v, i)    BUG_ON(atomic_inc_return(v) <= i)
24
25 #else /* DEBUG */
26
27 #define EBUG_ON(cond)           do { if (cond) do {} while (0); } while (0)
28 #define atomic_dec_bug(v)       atomic_dec(v)
29 #define atomic_inc_bug(v, i)    atomic_inc(v)
30
31 #endif
32
33 #define DECLARE_HEAP(type, name)                                        \
34         struct {                                                        \
35                 size_t size, used;                                      \
36                 type *data;                                             \
37         } name
38
39 #define init_heap(heap, _size, gfp)                                     \
40 ({                                                                      \
41         size_t _bytes;                                                  \
42         (heap)->used = 0;                                               \
43         (heap)->size = (_size);                                         \
44         _bytes = (heap)->size * sizeof(*(heap)->data);                  \
45         (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);            \
46         (heap)->data;                                                   \
47 })
48
49 #define free_heap(heap)                                                 \
50 do {                                                                    \
51         kvfree((heap)->data);                                           \
52         (heap)->data = NULL;                                            \
53 } while (0)
54
55 #define heap_swap(h, i, j)      swap((h)->data[i], (h)->data[j])
56
57 #define heap_sift(h, i, cmp)                                            \
58 do {                                                                    \
59         size_t _r, _j = i;                                              \
60                                                                         \
61         for (; _j * 2 + 1 < (h)->used; _j = _r) {                       \
62                 _r = _j * 2 + 1;                                        \
63                 if (_r + 1 < (h)->used &&                               \
64                     cmp((h)->data[_r], (h)->data[_r + 1]))              \
65                         _r++;                                           \
66                                                                         \
67                 if (cmp((h)->data[_r], (h)->data[_j]))                  \
68                         break;                                          \
69                 heap_swap(h, _r, _j);                                   \
70         }                                                               \
71 } while (0)
72
73 #define heap_sift_down(h, i, cmp)                                       \
74 do {                                                                    \
75         while (i) {                                                     \
76                 size_t p = (i - 1) / 2;                                 \
77                 if (cmp((h)->data[i], (h)->data[p]))                    \
78                         break;                                          \
79                 heap_swap(h, i, p);                                     \
80                 i = p;                                                  \
81         }                                                               \
82 } while (0)
83
84 #define heap_add(h, d, cmp)                                             \
85 ({                                                                      \
86         bool _r = !heap_full(h);                                        \
87         if (_r) {                                                       \
88                 size_t _i = (h)->used++;                                \
89                 (h)->data[_i] = d;                                      \
90                                                                         \
91                 heap_sift_down(h, _i, cmp);                             \
92                 heap_sift(h, _i, cmp);                                  \
93         }                                                               \
94         _r;                                                             \
95 })
96
97 #define heap_pop(h, d, cmp)                                             \
98 ({                                                                      \
99         bool _r = (h)->used;                                            \
100         if (_r) {                                                       \
101                 (d) = (h)->data[0];                                     \
102                 (h)->used--;                                            \
103                 heap_swap(h, 0, (h)->used);                             \
104                 heap_sift(h, 0, cmp);                                   \
105         }                                                               \
106         _r;                                                             \
107 })
108
109 #define heap_peek(h)    ((h)->used ? (h)->data[0] : NULL)
110
111 #define heap_full(h)    ((h)->used == (h)->size)
112
113 #define DECLARE_FIFO(type, name)                                        \
114         struct {                                                        \
115                 size_t front, back, size, mask;                         \
116                 type *data;                                             \
117         } name
118
119 #define fifo_for_each(c, fifo, iter)                                    \
120         for (iter = (fifo)->front;                                      \
121              c = (fifo)->data[iter], iter != (fifo)->back;              \
122              iter = (iter + 1) & (fifo)->mask)
123
124 #define __init_fifo(fifo, gfp)                                          \
125 ({                                                                      \
126         size_t _allocated_size, _bytes;                                 \
127         BUG_ON(!(fifo)->size);                                          \
128                                                                         \
129         _allocated_size = roundup_pow_of_two((fifo)->size + 1);         \
130         _bytes = _allocated_size * sizeof(*(fifo)->data);               \
131                                                                         \
132         (fifo)->mask = _allocated_size - 1;                             \
133         (fifo)->front = (fifo)->back = 0;                               \
134                                                                         \
135         (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);            \
136         (fifo)->data;                                                   \
137 })
138
139 #define init_fifo_exact(fifo, _size, gfp)                               \
140 ({                                                                      \
141         (fifo)->size = (_size);                                         \
142         __init_fifo(fifo, gfp);                                         \
143 })
144
145 #define init_fifo(fifo, _size, gfp)                                     \
146 ({                                                                      \
147         (fifo)->size = (_size);                                         \
148         if ((fifo)->size > 4)                                           \
149                 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1;    \
150         __init_fifo(fifo, gfp);                                         \
151 })
152
153 #define free_fifo(fifo)                                                 \
154 do {                                                                    \
155         kvfree((fifo)->data);                                           \
156         (fifo)->data = NULL;                                            \
157 } while (0)
158
159 #define fifo_used(fifo)         (((fifo)->back - (fifo)->front) & (fifo)->mask)
160 #define fifo_free(fifo)         ((fifo)->size - fifo_used(fifo))
161
162 #define fifo_empty(fifo)        (!fifo_used(fifo))
163 #define fifo_full(fifo)         (!fifo_free(fifo))
164
165 #define fifo_front(fifo)        ((fifo)->data[(fifo)->front])
166 #define fifo_back(fifo)                                                 \
167         ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
168
169 #define fifo_idx(fifo, p)       (((p) - &fifo_front(fifo)) & (fifo)->mask)
170
171 #define fifo_push_back(fifo, i)                                         \
172 ({                                                                      \
173         bool _r = !fifo_full((fifo));                                   \
174         if (_r) {                                                       \
175                 (fifo)->data[(fifo)->back++] = (i);                     \
176                 (fifo)->back &= (fifo)->mask;                           \
177         }                                                               \
178         _r;                                                             \
179 })
180
181 #define fifo_pop_front(fifo, i)                                         \
182 ({                                                                      \
183         bool _r = !fifo_empty((fifo));                                  \
184         if (_r) {                                                       \
185                 (i) = (fifo)->data[(fifo)->front++];                    \
186                 (fifo)->front &= (fifo)->mask;                          \
187         }                                                               \
188         _r;                                                             \
189 })
190
191 #define fifo_push_front(fifo, i)                                        \
192 ({                                                                      \
193         bool _r = !fifo_full((fifo));                                   \
194         if (_r) {                                                       \
195                 --(fifo)->front;                                        \
196                 (fifo)->front &= (fifo)->mask;                          \
197                 (fifo)->data[(fifo)->front] = (i);                      \
198         }                                                               \
199         _r;                                                             \
200 })
201
202 #define fifo_pop_back(fifo, i)                                          \
203 ({                                                                      \
204         bool _r = !fifo_empty((fifo));                                  \
205         if (_r) {                                                       \
206                 --(fifo)->back;                                         \
207                 (fifo)->back &= (fifo)->mask;                           \
208                 (i) = (fifo)->data[(fifo)->back]                        \
209         }                                                               \
210         _r;                                                             \
211 })
212
213 #define fifo_push(fifo, i)      fifo_push_back(fifo, (i))
214 #define fifo_pop(fifo, i)       fifo_pop_front(fifo, (i))
215
216 #define fifo_swap(l, r)                                                 \
217 do {                                                                    \
218         swap((l)->front, (r)->front);                                   \
219         swap((l)->back, (r)->back);                                     \
220         swap((l)->size, (r)->size);                                     \
221         swap((l)->mask, (r)->mask);                                     \
222         swap((l)->data, (r)->data);                                     \
223 } while (0)
224
225 #define fifo_move(dest, src)                                            \
226 do {                                                                    \
227         typeof(*((dest)->data)) _t;                                     \
228         while (!fifo_full(dest) &&                                      \
229                fifo_pop(src, _t))                                       \
230                 fifo_push(dest, _t);                                    \
231 } while (0)
232
233 /*
234  * Simple array based allocator - preallocates a number of elements and you can
235  * never allocate more than that, also has no locking.
236  *
237  * Handy because if you know you only need a fixed number of elements you don't
238  * have to worry about memory allocation failure, and sometimes a mempool isn't
239  * what you want.
240  *
241  * We treat the free elements as entries in a singly linked list, and the
242  * freelist as a stack - allocating and freeing push and pop off the freelist.
243  */
244
245 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)                       \
246         struct {                                                        \
247                 type    *freelist;                                      \
248                 type    data[size];                                     \
249         } name
250
251 #define array_alloc(array)                                              \
252 ({                                                                      \
253         typeof((array)->freelist) _ret = (array)->freelist;             \
254                                                                         \
255         if (_ret)                                                       \
256                 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
257                                                                         \
258         _ret;                                                           \
259 })
260
261 #define array_free(array, ptr)                                          \
262 do {                                                                    \
263         typeof((array)->freelist) _ptr = ptr;                           \
264                                                                         \
265         *((typeof((array)->freelist) *) _ptr) = (array)->freelist;      \
266         (array)->freelist = _ptr;                                       \
267 } while (0)
268
269 #define array_allocator_init(array)                                     \
270 do {                                                                    \
271         typeof((array)->freelist) _i;                                   \
272                                                                         \
273         BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));        \
274         (array)->freelist = NULL;                                       \
275                                                                         \
276         for (_i = (array)->data;                                        \
277              _i < (array)->data + ARRAY_SIZE((array)->data);            \
278              _i++)                                                      \
279                 array_free(array, _i);                                  \
280 } while (0)
281
282 #define array_freelist_empty(array)     ((array)->freelist == NULL)
283
284 #define ANYSINT_MAX(t)                                                  \
285         ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
286
287 int bch_strtoint_h(const char *cp, int *res);
288 int bch_strtouint_h(const char *cp, unsigned int *res);
289 int bch_strtoll_h(const char *cp, long long *res);
290 int bch_strtoull_h(const char *cp, unsigned long long *res);
291
292 static inline int bch_strtol_h(const char *cp, long *res)
293 {
294 #if BITS_PER_LONG == 32
295         return bch_strtoint_h(cp, (int *) res);
296 #else
297         return bch_strtoll_h(cp, (long long *) res);
298 #endif
299 }
300
301 static inline int bch_strtoul_h(const char *cp, long *res)
302 {
303 #if BITS_PER_LONG == 32
304         return bch_strtouint_h(cp, (unsigned int *) res);
305 #else
306         return bch_strtoull_h(cp, (unsigned long long *) res);
307 #endif
308 }
309
310 #define strtoi_h(cp, res)                                               \
311         (__builtin_types_compatible_p(typeof(*res), int)                \
312         ? bch_strtoint_h(cp, (void *) res)                              \
313         : __builtin_types_compatible_p(typeof(*res), long)              \
314         ? bch_strtol_h(cp, (void *) res)                                \
315         : __builtin_types_compatible_p(typeof(*res), long long)         \
316         ? bch_strtoll_h(cp, (void *) res)                               \
317         : __builtin_types_compatible_p(typeof(*res), unsigned int)      \
318         ? bch_strtouint_h(cp, (void *) res)                             \
319         : __builtin_types_compatible_p(typeof(*res), unsigned long)     \
320         ? bch_strtoul_h(cp, (void *) res)                               \
321         : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
322         ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
323
324 #define strtoul_safe(cp, var)                                           \
325 ({                                                                      \
326         unsigned long _v;                                               \
327         int _r = kstrtoul(cp, 10, &_v);                                 \
328         if (!_r)                                                        \
329                 var = _v;                                               \
330         _r;                                                             \
331 })
332
333 #define strtoul_safe_clamp(cp, var, min, max)                           \
334 ({                                                                      \
335         unsigned long _v;                                               \
336         int _r = kstrtoul(cp, 10, &_v);                                 \
337         if (!_r)                                                        \
338                 var = clamp_t(typeof(var), _v, min, max);               \
339         _r;                                                             \
340 })
341
342 ssize_t bch_hprint(char *buf, int64_t v);
343
344 bool bch_is_zero(const char *p, size_t n);
345 int bch_parse_uuid(const char *s, char *uuid);
346
347 struct time_stats {
348         spinlock_t      lock;
349         /*
350          * all fields are in nanoseconds, averages are ewmas stored left shifted
351          * by 8
352          */
353         uint64_t        max_duration;
354         uint64_t        average_duration;
355         uint64_t        average_frequency;
356         uint64_t        last;
357 };
358
359 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
360
361 static inline unsigned int local_clock_us(void)
362 {
363         return local_clock() >> 10;
364 }
365
366 #define NSEC_PER_ns                     1L
367 #define NSEC_PER_us                     NSEC_PER_USEC
368 #define NSEC_PER_ms                     NSEC_PER_MSEC
369 #define NSEC_PER_sec                    NSEC_PER_SEC
370
371 #define __print_time_stat(stats, name, stat, units)                     \
372         sysfs_print(name ## _ ## stat ## _ ## units,                    \
373                     div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
374
375 #define sysfs_print_time_stats(stats, name,                             \
376                                frequency_units,                         \
377                                duration_units)                          \
378 do {                                                                    \
379         __print_time_stat(stats, name,                                  \
380                           average_frequency,    frequency_units);       \
381         __print_time_stat(stats, name,                                  \
382                           average_duration,     duration_units);        \
383         sysfs_print(name ## _ ##max_duration ## _ ## duration_units,    \
384                         div_u64((stats)->max_duration,                  \
385                                 NSEC_PER_ ## duration_units));          \
386                                                                         \
387         sysfs_print(name ## _last_ ## frequency_units, (stats)->last    \
388                     ? div_s64(local_clock() - (stats)->last,            \
389                               NSEC_PER_ ## frequency_units)             \
390                     : -1LL);                                            \
391 } while (0)
392
393 #define sysfs_time_stats_attribute(name,                                \
394                                    frequency_units,                     \
395                                    duration_units)                      \
396 read_attribute(name ## _average_frequency_ ## frequency_units);         \
397 read_attribute(name ## _average_duration_ ## duration_units);           \
398 read_attribute(name ## _max_duration_ ## duration_units);               \
399 read_attribute(name ## _last_ ## frequency_units)
400
401 #define sysfs_time_stats_attribute_list(name,                           \
402                                         frequency_units,                \
403                                         duration_units)                 \
404 &sysfs_ ## name ## _average_frequency_ ## frequency_units,              \
405 &sysfs_ ## name ## _average_duration_ ## duration_units,                \
406 &sysfs_ ## name ## _max_duration_ ## duration_units,                    \
407 &sysfs_ ## name ## _last_ ## frequency_units,
408
409 #define ewma_add(ewma, val, weight, factor)                             \
410 ({                                                                      \
411         (ewma) *= (weight) - 1;                                         \
412         (ewma) += (val) << factor;                                      \
413         (ewma) /= (weight);                                             \
414         (ewma) >> factor;                                               \
415 })
416
417 struct bch_ratelimit {
418         /* Next time we want to do some work, in nanoseconds */
419         uint64_t                next;
420
421         /*
422          * Rate at which we want to do work, in units per second
423          * The units here correspond to the units passed to bch_next_delay()
424          */
425         atomic_long_t           rate;
426 };
427
428 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
429 {
430         d->next = local_clock();
431 }
432
433 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
434
435 #define __DIV_SAFE(n, d, zero)                                          \
436 ({                                                                      \
437         typeof(n) _n = (n);                                             \
438         typeof(d) _d = (d);                                             \
439         _d ? _n / _d : zero;                                            \
440 })
441
442 #define DIV_SAFE(n, d)  __DIV_SAFE(n, d, 0)
443
444 #define container_of_or_null(ptr, type, member)                         \
445 ({                                                                      \
446         typeof(ptr) _ptr = ptr;                                         \
447         _ptr ? container_of(_ptr, type, member) : NULL;                 \
448 })
449
450 #define RB_INSERT(root, new, member, cmp)                               \
451 ({                                                                      \
452         __label__ dup;                                                  \
453         struct rb_node **n = &(root)->rb_node, *parent = NULL;          \
454         typeof(new) this;                                               \
455         int res, ret = -1;                                              \
456                                                                         \
457         while (*n) {                                                    \
458                 parent = *n;                                            \
459                 this = container_of(*n, typeof(*(new)), member);        \
460                 res = cmp(new, this);                                   \
461                 if (!res)                                               \
462                         goto dup;                                       \
463                 n = res < 0                                             \
464                         ? &(*n)->rb_left                                \
465                         : &(*n)->rb_right;                              \
466         }                                                               \
467                                                                         \
468         rb_link_node(&(new)->member, parent, n);                        \
469         rb_insert_color(&(new)->member, root);                          \
470         ret = 0;                                                        \
471 dup:                                                                    \
472         ret;                                                            \
473 })
474
475 #define RB_SEARCH(root, search, member, cmp)                            \
476 ({                                                                      \
477         struct rb_node *n = (root)->rb_node;                            \
478         typeof(&(search)) this, ret = NULL;                             \
479         int res;                                                        \
480                                                                         \
481         while (n) {                                                     \
482                 this = container_of(n, typeof(search), member);         \
483                 res = cmp(&(search), this);                             \
484                 if (!res) {                                             \
485                         ret = this;                                     \
486                         break;                                          \
487                 }                                                       \
488                 n = res < 0                                             \
489                         ? n->rb_left                                    \
490                         : n->rb_right;                                  \
491         }                                                               \
492         ret;                                                            \
493 })
494
495 #define RB_GREATER(root, search, member, cmp)                           \
496 ({                                                                      \
497         struct rb_node *n = (root)->rb_node;                            \
498         typeof(&(search)) this, ret = NULL;                             \
499         int res;                                                        \
500                                                                         \
501         while (n) {                                                     \
502                 this = container_of(n, typeof(search), member);         \
503                 res = cmp(&(search), this);                             \
504                 if (res < 0) {                                          \
505                         ret = this;                                     \
506                         n = n->rb_left;                                 \
507                 } else                                                  \
508                         n = n->rb_right;                                \
509         }                                                               \
510         ret;                                                            \
511 })
512
513 #define RB_FIRST(root, type, member)                                    \
514         container_of_or_null(rb_first(root), type, member)
515
516 #define RB_LAST(root, type, member)                                     \
517         container_of_or_null(rb_last(root), type, member)
518
519 #define RB_NEXT(ptr, member)                                            \
520         container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
521
522 #define RB_PREV(ptr, member)                                            \
523         container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
524
525 static inline uint64_t bch_crc64(const void *p, size_t len)
526 {
527         uint64_t crc = 0xffffffffffffffffULL;
528
529         crc = crc64_be(crc, p, len);
530         return crc ^ 0xffffffffffffffffULL;
531 }
532
533 /*
534  * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
535  * frac_bits), with the less-significant bits filled in by linear
536  * interpolation.
537  *
538  * This can also be interpreted as a floating-point number format,
539  * where the low frac_bits are the mantissa (with implicit leading
540  * 1 bit), and the more significant bits are the exponent.
541  * The return value is 1.mantissa * 2^exponent.
542  *
543  * The way this is used, fract_bits is 6 and the largest possible
544  * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
545  * so the maximum output is 0x1fc00.
546  */
547 static inline unsigned int fract_exp_two(unsigned int x,
548                                          unsigned int fract_bits)
549 {
550         unsigned int mantissa = 1 << fract_bits;        /* Implicit bit */
551
552         mantissa += x & (mantissa - 1);
553         x >>= fract_bits;       /* The exponent */
554         /* Largest intermediate value 0x7f0000 */
555         return mantissa << x >> fract_bits;
556 }
557
558 void bch_bio_map(struct bio *bio, void *base);
559 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
560
561 #endif /* _BCACHE_UTIL_H */