Merge tag 'edac/v4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-2.6-block.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42         "default",
43         "writethrough",
44         "writeback",
45         "writearound",
46         "none",
47         NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
61
62 /* Superblock */
63
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65                               struct page **res)
66 {
67         const char *err;
68         struct cache_sb *s;
69         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70         unsigned i;
71
72         if (!bh)
73                 return "IO error";
74
75         s = (struct cache_sb *) bh->b_data;
76
77         sb->offset              = le64_to_cpu(s->offset);
78         sb->version             = le64_to_cpu(s->version);
79
80         memcpy(sb->magic,       s->magic, 16);
81         memcpy(sb->uuid,        s->uuid, 16);
82         memcpy(sb->set_uuid,    s->set_uuid, 16);
83         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
84
85         sb->flags               = le64_to_cpu(s->flags);
86         sb->seq                 = le64_to_cpu(s->seq);
87         sb->last_mount          = le32_to_cpu(s->last_mount);
88         sb->first_bucket        = le16_to_cpu(s->first_bucket);
89         sb->keys                = le16_to_cpu(s->keys);
90
91         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92                 sb->d[i] = le64_to_cpu(s->d[i]);
93
94         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95                  sb->version, sb->flags, sb->seq, sb->keys);
96
97         err = "Not a bcache superblock";
98         if (sb->offset != SB_SECTOR)
99                 goto err;
100
101         if (memcmp(sb->magic, bcache_magic, 16))
102                 goto err;
103
104         err = "Too many journal buckets";
105         if (sb->keys > SB_JOURNAL_BUCKETS)
106                 goto err;
107
108         err = "Bad checksum";
109         if (s->csum != csum_set(s))
110                 goto err;
111
112         err = "Bad UUID";
113         if (bch_is_zero(sb->uuid, 16))
114                 goto err;
115
116         sb->block_size  = le16_to_cpu(s->block_size);
117
118         err = "Superblock block size smaller than device block size";
119         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120                 goto err;
121
122         switch (sb->version) {
123         case BCACHE_SB_VERSION_BDEV:
124                 sb->data_offset = BDEV_DATA_START_DEFAULT;
125                 break;
126         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127                 sb->data_offset = le64_to_cpu(s->data_offset);
128
129                 err = "Bad data offset";
130                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131                         goto err;
132
133                 break;
134         case BCACHE_SB_VERSION_CDEV:
135         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
137                 sb->bucket_size = le16_to_cpu(s->bucket_size);
138
139                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
140                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
141
142                 err = "Too many buckets";
143                 if (sb->nbuckets > LONG_MAX)
144                         goto err;
145
146                 err = "Not enough buckets";
147                 if (sb->nbuckets < 1 << 7)
148                         goto err;
149
150                 err = "Bad block/bucket size";
151                 if (!is_power_of_2(sb->block_size) ||
152                     sb->block_size > PAGE_SECTORS ||
153                     !is_power_of_2(sb->bucket_size) ||
154                     sb->bucket_size < PAGE_SECTORS)
155                         goto err;
156
157                 err = "Invalid superblock: device too small";
158                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
159                         goto err;
160
161                 err = "Bad UUID";
162                 if (bch_is_zero(sb->set_uuid, 16))
163                         goto err;
164
165                 err = "Bad cache device number in set";
166                 if (!sb->nr_in_set ||
167                     sb->nr_in_set <= sb->nr_this_dev ||
168                     sb->nr_in_set > MAX_CACHES_PER_SET)
169                         goto err;
170
171                 err = "Journal buckets not sequential";
172                 for (i = 0; i < sb->keys; i++)
173                         if (sb->d[i] != sb->first_bucket + i)
174                                 goto err;
175
176                 err = "Too many journal buckets";
177                 if (sb->first_bucket + sb->keys > sb->nbuckets)
178                         goto err;
179
180                 err = "Invalid superblock: first bucket comes before end of super";
181                 if (sb->first_bucket * sb->bucket_size < 16)
182                         goto err;
183
184                 break;
185         default:
186                 err = "Unsupported superblock version";
187                 goto err;
188         }
189
190         sb->last_mount = get_seconds();
191         err = NULL;
192
193         get_page(bh->b_page);
194         *res = bh->b_page;
195 err:
196         put_bh(bh);
197         return err;
198 }
199
200 static void write_bdev_super_endio(struct bio *bio)
201 {
202         struct cached_dev *dc = bio->bi_private;
203         /* XXX: error checking */
204
205         closure_put(&dc->sb_write);
206 }
207
208 static void __write_super(struct cache_sb *sb, struct bio *bio)
209 {
210         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
211         unsigned i;
212
213         bio->bi_iter.bi_sector  = SB_SECTOR;
214         bio->bi_iter.bi_size    = SB_SIZE;
215         bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
216         bch_bio_map(bio, NULL);
217
218         out->offset             = cpu_to_le64(sb->offset);
219         out->version            = cpu_to_le64(sb->version);
220
221         memcpy(out->uuid,       sb->uuid, 16);
222         memcpy(out->set_uuid,   sb->set_uuid, 16);
223         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
224
225         out->flags              = cpu_to_le64(sb->flags);
226         out->seq                = cpu_to_le64(sb->seq);
227
228         out->last_mount         = cpu_to_le32(sb->last_mount);
229         out->first_bucket       = cpu_to_le16(sb->first_bucket);
230         out->keys               = cpu_to_le16(sb->keys);
231
232         for (i = 0; i < sb->keys; i++)
233                 out->d[i] = cpu_to_le64(sb->d[i]);
234
235         out->csum = csum_set(out);
236
237         pr_debug("ver %llu, flags %llu, seq %llu",
238                  sb->version, sb->flags, sb->seq);
239
240         submit_bio(bio);
241 }
242
243 static void bch_write_bdev_super_unlock(struct closure *cl)
244 {
245         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
246
247         up(&dc->sb_write_mutex);
248 }
249
250 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
251 {
252         struct closure *cl = &dc->sb_write;
253         struct bio *bio = &dc->sb_bio;
254
255         down(&dc->sb_write_mutex);
256         closure_init(cl, parent);
257
258         bio_reset(bio);
259         bio->bi_bdev    = dc->bdev;
260         bio->bi_end_io  = write_bdev_super_endio;
261         bio->bi_private = dc;
262
263         closure_get(cl);
264         __write_super(&dc->sb, bio);
265
266         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
267 }
268
269 static void write_super_endio(struct bio *bio)
270 {
271         struct cache *ca = bio->bi_private;
272
273         bch_count_io_errors(ca, bio->bi_error, "writing superblock");
274         closure_put(&ca->set->sb_write);
275 }
276
277 static void bcache_write_super_unlock(struct closure *cl)
278 {
279         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
280
281         up(&c->sb_write_mutex);
282 }
283
284 void bcache_write_super(struct cache_set *c)
285 {
286         struct closure *cl = &c->sb_write;
287         struct cache *ca;
288         unsigned i;
289
290         down(&c->sb_write_mutex);
291         closure_init(cl, &c->cl);
292
293         c->sb.seq++;
294
295         for_each_cache(ca, c, i) {
296                 struct bio *bio = &ca->sb_bio;
297
298                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
299                 ca->sb.seq              = c->sb.seq;
300                 ca->sb.last_mount       = c->sb.last_mount;
301
302                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
303
304                 bio_reset(bio);
305                 bio->bi_bdev    = ca->bdev;
306                 bio->bi_end_io  = write_super_endio;
307                 bio->bi_private = ca;
308
309                 closure_get(cl);
310                 __write_super(&ca->sb, bio);
311         }
312
313         closure_return_with_destructor(cl, bcache_write_super_unlock);
314 }
315
316 /* UUID io */
317
318 static void uuid_endio(struct bio *bio)
319 {
320         struct closure *cl = bio->bi_private;
321         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
322
323         cache_set_err_on(bio->bi_error, c, "accessing uuids");
324         bch_bbio_free(bio, c);
325         closure_put(cl);
326 }
327
328 static void uuid_io_unlock(struct closure *cl)
329 {
330         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
331
332         up(&c->uuid_write_mutex);
333 }
334
335 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
336                     struct bkey *k, struct closure *parent)
337 {
338         struct closure *cl = &c->uuid_write;
339         struct uuid_entry *u;
340         unsigned i;
341         char buf[80];
342
343         BUG_ON(!parent);
344         down(&c->uuid_write_mutex);
345         closure_init(cl, parent);
346
347         for (i = 0; i < KEY_PTRS(k); i++) {
348                 struct bio *bio = bch_bbio_alloc(c);
349
350                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
351                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
352
353                 bio->bi_end_io  = uuid_endio;
354                 bio->bi_private = cl;
355                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
356                 bch_bio_map(bio, c->uuids);
357
358                 bch_submit_bbio(bio, c, k, i);
359
360                 if (op != REQ_OP_WRITE)
361                         break;
362         }
363
364         bch_extent_to_text(buf, sizeof(buf), k);
365         pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
366
367         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368                 if (!bch_is_zero(u->uuid, 16))
369                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370                                  u - c->uuids, u->uuid, u->label,
371                                  u->first_reg, u->last_reg, u->invalidated);
372
373         closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378         struct bkey *k = &j->uuid_bucket;
379
380         if (__bch_btree_ptr_invalid(c, k))
381                 return "bad uuid pointer";
382
383         bkey_copy(&c->uuid_bucket, k);
384         uuid_io(c, REQ_OP_READ, 0, k, cl);
385
386         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
388                 struct uuid_entry       *u1 = (void *) c->uuids;
389                 int i;
390
391                 closure_sync(cl);
392
393                 /*
394                  * Since the new uuid entry is bigger than the old, we have to
395                  * convert starting at the highest memory address and work down
396                  * in order to do it in place
397                  */
398
399                 for (i = c->nr_uuids - 1;
400                      i >= 0;
401                      --i) {
402                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
403                         memcpy(u1[i].label,     u0[i].label, 32);
404
405                         u1[i].first_reg         = u0[i].first_reg;
406                         u1[i].last_reg          = u0[i].last_reg;
407                         u1[i].invalidated       = u0[i].invalidated;
408
409                         u1[i].flags     = 0;
410                         u1[i].sectors   = 0;
411                 }
412         }
413
414         return NULL;
415 }
416
417 static int __uuid_write(struct cache_set *c)
418 {
419         BKEY_PADDED(key) k;
420         struct closure cl;
421         closure_init_stack(&cl);
422
423         lockdep_assert_held(&bch_register_lock);
424
425         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426                 return 1;
427
428         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
430         closure_sync(&cl);
431
432         bkey_copy(&c->uuid_bucket, &k.key);
433         bkey_put(c, &k.key);
434         return 0;
435 }
436
437 int bch_uuid_write(struct cache_set *c)
438 {
439         int ret = __uuid_write(c);
440
441         if (!ret)
442                 bch_journal_meta(c, NULL);
443
444         return ret;
445 }
446
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
448 {
449         struct uuid_entry *u;
450
451         for (u = c->uuids;
452              u < c->uuids + c->nr_uuids; u++)
453                 if (!memcmp(u->uuid, uuid, 16))
454                         return u;
455
456         return NULL;
457 }
458
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
460 {
461         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462         return uuid_find(c, zero_uuid);
463 }
464
465 /*
466  * Bucket priorities/gens:
467  *
468  * For each bucket, we store on disk its
469    * 8 bit gen
470    * 16 bit priority
471  *
472  * See alloc.c for an explanation of the gen. The priority is used to implement
473  * lru (and in the future other) cache replacement policies; for most purposes
474  * it's just an opaque integer.
475  *
476  * The gens and the priorities don't have a whole lot to do with each other, and
477  * it's actually the gens that must be written out at specific times - it's no
478  * big deal if the priorities don't get written, if we lose them we just reuse
479  * buckets in suboptimal order.
480  *
481  * On disk they're stored in a packed array, and in as many buckets are required
482  * to fit them all. The buckets we use to store them form a list; the journal
483  * header points to the first bucket, the first bucket points to the second
484  * bucket, et cetera.
485  *
486  * This code is used by the allocation code; periodically (whenever it runs out
487  * of buckets to allocate from) the allocation code will invalidate some
488  * buckets, but it can't use those buckets until their new gens are safely on
489  * disk.
490  */
491
492 static void prio_endio(struct bio *bio)
493 {
494         struct cache *ca = bio->bi_private;
495
496         cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
497         bch_bbio_free(bio, ca->set);
498         closure_put(&ca->prio);
499 }
500
501 static void prio_io(struct cache *ca, uint64_t bucket, int op,
502                     unsigned long op_flags)
503 {
504         struct closure *cl = &ca->prio;
505         struct bio *bio = bch_bbio_alloc(ca->set);
506
507         closure_init_stack(cl);
508
509         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
510         bio->bi_bdev            = ca->bdev;
511         bio->bi_iter.bi_size    = bucket_bytes(ca);
512
513         bio->bi_end_io  = prio_endio;
514         bio->bi_private = ca;
515         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
516         bch_bio_map(bio, ca->disk_buckets);
517
518         closure_bio_submit(bio, &ca->prio);
519         closure_sync(cl);
520 }
521
522 void bch_prio_write(struct cache *ca)
523 {
524         int i;
525         struct bucket *b;
526         struct closure cl;
527
528         closure_init_stack(&cl);
529
530         lockdep_assert_held(&ca->set->bucket_lock);
531
532         ca->disk_buckets->seq++;
533
534         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
535                         &ca->meta_sectors_written);
536
537         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
538         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
539
540         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
541                 long bucket;
542                 struct prio_set *p = ca->disk_buckets;
543                 struct bucket_disk *d = p->data;
544                 struct bucket_disk *end = d + prios_per_bucket(ca);
545
546                 for (b = ca->buckets + i * prios_per_bucket(ca);
547                      b < ca->buckets + ca->sb.nbuckets && d < end;
548                      b++, d++) {
549                         d->prio = cpu_to_le16(b->prio);
550                         d->gen = b->gen;
551                 }
552
553                 p->next_bucket  = ca->prio_buckets[i + 1];
554                 p->magic        = pset_magic(&ca->sb);
555                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
556
557                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
558                 BUG_ON(bucket == -1);
559
560                 mutex_unlock(&ca->set->bucket_lock);
561                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
562                 mutex_lock(&ca->set->bucket_lock);
563
564                 ca->prio_buckets[i] = bucket;
565                 atomic_dec_bug(&ca->buckets[bucket].pin);
566         }
567
568         mutex_unlock(&ca->set->bucket_lock);
569
570         bch_journal_meta(ca->set, &cl);
571         closure_sync(&cl);
572
573         mutex_lock(&ca->set->bucket_lock);
574
575         /*
576          * Don't want the old priorities to get garbage collected until after we
577          * finish writing the new ones, and they're journalled
578          */
579         for (i = 0; i < prio_buckets(ca); i++) {
580                 if (ca->prio_last_buckets[i])
581                         __bch_bucket_free(ca,
582                                 &ca->buckets[ca->prio_last_buckets[i]]);
583
584                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
585         }
586 }
587
588 static void prio_read(struct cache *ca, uint64_t bucket)
589 {
590         struct prio_set *p = ca->disk_buckets;
591         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
592         struct bucket *b;
593         unsigned bucket_nr = 0;
594
595         for (b = ca->buckets;
596              b < ca->buckets + ca->sb.nbuckets;
597              b++, d++) {
598                 if (d == end) {
599                         ca->prio_buckets[bucket_nr] = bucket;
600                         ca->prio_last_buckets[bucket_nr] = bucket;
601                         bucket_nr++;
602
603                         prio_io(ca, bucket, REQ_OP_READ, 0);
604
605                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
606                                 pr_warn("bad csum reading priorities");
607
608                         if (p->magic != pset_magic(&ca->sb))
609                                 pr_warn("bad magic reading priorities");
610
611                         bucket = p->next_bucket;
612                         d = p->data;
613                 }
614
615                 b->prio = le16_to_cpu(d->prio);
616                 b->gen = b->last_gc = d->gen;
617         }
618 }
619
620 /* Bcache device */
621
622 static int open_dev(struct block_device *b, fmode_t mode)
623 {
624         struct bcache_device *d = b->bd_disk->private_data;
625         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
626                 return -ENXIO;
627
628         closure_get(&d->cl);
629         return 0;
630 }
631
632 static void release_dev(struct gendisk *b, fmode_t mode)
633 {
634         struct bcache_device *d = b->private_data;
635         closure_put(&d->cl);
636 }
637
638 static int ioctl_dev(struct block_device *b, fmode_t mode,
639                      unsigned int cmd, unsigned long arg)
640 {
641         struct bcache_device *d = b->bd_disk->private_data;
642         return d->ioctl(d, mode, cmd, arg);
643 }
644
645 static const struct block_device_operations bcache_ops = {
646         .open           = open_dev,
647         .release        = release_dev,
648         .ioctl          = ioctl_dev,
649         .owner          = THIS_MODULE,
650 };
651
652 void bcache_device_stop(struct bcache_device *d)
653 {
654         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
655                 closure_queue(&d->cl);
656 }
657
658 static void bcache_device_unlink(struct bcache_device *d)
659 {
660         lockdep_assert_held(&bch_register_lock);
661
662         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
663                 unsigned i;
664                 struct cache *ca;
665
666                 sysfs_remove_link(&d->c->kobj, d->name);
667                 sysfs_remove_link(&d->kobj, "cache");
668
669                 for_each_cache(ca, d->c, i)
670                         bd_unlink_disk_holder(ca->bdev, d->disk);
671         }
672 }
673
674 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
675                                const char *name)
676 {
677         unsigned i;
678         struct cache *ca;
679
680         for_each_cache(ca, d->c, i)
681                 bd_link_disk_holder(ca->bdev, d->disk);
682
683         snprintf(d->name, BCACHEDEVNAME_SIZE,
684                  "%s%u", name, d->id);
685
686         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
687              sysfs_create_link(&c->kobj, &d->kobj, d->name),
688              "Couldn't create device <-> cache set symlinks");
689
690         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
691 }
692
693 static void bcache_device_detach(struct bcache_device *d)
694 {
695         lockdep_assert_held(&bch_register_lock);
696
697         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
698                 struct uuid_entry *u = d->c->uuids + d->id;
699
700                 SET_UUID_FLASH_ONLY(u, 0);
701                 memcpy(u->uuid, invalid_uuid, 16);
702                 u->invalidated = cpu_to_le32(get_seconds());
703                 bch_uuid_write(d->c);
704         }
705
706         bcache_device_unlink(d);
707
708         d->c->devices[d->id] = NULL;
709         closure_put(&d->c->caching);
710         d->c = NULL;
711 }
712
713 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
714                                  unsigned id)
715 {
716         d->id = id;
717         d->c = c;
718         c->devices[id] = d;
719
720         closure_get(&c->caching);
721 }
722
723 static void bcache_device_free(struct bcache_device *d)
724 {
725         lockdep_assert_held(&bch_register_lock);
726
727         pr_info("%s stopped", d->disk->disk_name);
728
729         if (d->c)
730                 bcache_device_detach(d);
731         if (d->disk && d->disk->flags & GENHD_FL_UP)
732                 del_gendisk(d->disk);
733         if (d->disk && d->disk->queue)
734                 blk_cleanup_queue(d->disk->queue);
735         if (d->disk) {
736                 ida_simple_remove(&bcache_minor, d->disk->first_minor);
737                 put_disk(d->disk);
738         }
739
740         if (d->bio_split)
741                 bioset_free(d->bio_split);
742         kvfree(d->full_dirty_stripes);
743         kvfree(d->stripe_sectors_dirty);
744
745         closure_debug_destroy(&d->cl);
746 }
747
748 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
749                               sector_t sectors)
750 {
751         struct request_queue *q;
752         size_t n;
753         int minor;
754
755         if (!d->stripe_size)
756                 d->stripe_size = 1 << 31;
757
758         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
759
760         if (!d->nr_stripes ||
761             d->nr_stripes > INT_MAX ||
762             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
763                 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
764                         (unsigned)d->nr_stripes);
765                 return -ENOMEM;
766         }
767
768         n = d->nr_stripes * sizeof(atomic_t);
769         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
770                 ? kzalloc(n, GFP_KERNEL)
771                 : vzalloc(n);
772         if (!d->stripe_sectors_dirty)
773                 return -ENOMEM;
774
775         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
776         d->full_dirty_stripes = n < PAGE_SIZE << 6
777                 ? kzalloc(n, GFP_KERNEL)
778                 : vzalloc(n);
779         if (!d->full_dirty_stripes)
780                 return -ENOMEM;
781
782         minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
783         if (minor < 0)
784                 return minor;
785
786         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
787             !(d->disk = alloc_disk(1))) {
788                 ida_simple_remove(&bcache_minor, minor);
789                 return -ENOMEM;
790         }
791
792         set_capacity(d->disk, sectors);
793         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
794
795         d->disk->major          = bcache_major;
796         d->disk->first_minor    = minor;
797         d->disk->fops           = &bcache_ops;
798         d->disk->private_data   = d;
799
800         q = blk_alloc_queue(GFP_KERNEL);
801         if (!q)
802                 return -ENOMEM;
803
804         blk_queue_make_request(q, NULL);
805         d->disk->queue                  = q;
806         q->queuedata                    = d;
807         q->backing_dev_info.congested_data = d;
808         q->limits.max_hw_sectors        = UINT_MAX;
809         q->limits.max_sectors           = UINT_MAX;
810         q->limits.max_segment_size      = UINT_MAX;
811         q->limits.max_segments          = BIO_MAX_PAGES;
812         blk_queue_max_discard_sectors(q, UINT_MAX);
813         q->limits.discard_granularity   = 512;
814         q->limits.io_min                = block_size;
815         q->limits.logical_block_size    = block_size;
816         q->limits.physical_block_size   = block_size;
817         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
818         clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
819         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
820
821         blk_queue_write_cache(q, true, true);
822
823         return 0;
824 }
825
826 /* Cached device */
827
828 static void calc_cached_dev_sectors(struct cache_set *c)
829 {
830         uint64_t sectors = 0;
831         struct cached_dev *dc;
832
833         list_for_each_entry(dc, &c->cached_devs, list)
834                 sectors += bdev_sectors(dc->bdev);
835
836         c->cached_dev_sectors = sectors;
837 }
838
839 void bch_cached_dev_run(struct cached_dev *dc)
840 {
841         struct bcache_device *d = &dc->disk;
842         char buf[SB_LABEL_SIZE + 1];
843         char *env[] = {
844                 "DRIVER=bcache",
845                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
846                 NULL,
847                 NULL,
848         };
849
850         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
851         buf[SB_LABEL_SIZE] = '\0';
852         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
853
854         if (atomic_xchg(&dc->running, 1)) {
855                 kfree(env[1]);
856                 kfree(env[2]);
857                 return;
858         }
859
860         if (!d->c &&
861             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
862                 struct closure cl;
863                 closure_init_stack(&cl);
864
865                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
866                 bch_write_bdev_super(dc, &cl);
867                 closure_sync(&cl);
868         }
869
870         add_disk(d->disk);
871         bd_link_disk_holder(dc->bdev, dc->disk.disk);
872         /* won't show up in the uevent file, use udevadm monitor -e instead
873          * only class / kset properties are persistent */
874         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
875         kfree(env[1]);
876         kfree(env[2]);
877
878         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
879             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
880                 pr_debug("error creating sysfs link");
881 }
882
883 static void cached_dev_detach_finish(struct work_struct *w)
884 {
885         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
886         char buf[BDEVNAME_SIZE];
887         struct closure cl;
888         closure_init_stack(&cl);
889
890         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
891         BUG_ON(atomic_read(&dc->count));
892
893         mutex_lock(&bch_register_lock);
894
895         memset(&dc->sb.set_uuid, 0, 16);
896         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
897
898         bch_write_bdev_super(dc, &cl);
899         closure_sync(&cl);
900
901         bcache_device_detach(&dc->disk);
902         list_move(&dc->list, &uncached_devices);
903
904         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
905         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
906
907         mutex_unlock(&bch_register_lock);
908
909         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
910
911         /* Drop ref we took in cached_dev_detach() */
912         closure_put(&dc->disk.cl);
913 }
914
915 void bch_cached_dev_detach(struct cached_dev *dc)
916 {
917         lockdep_assert_held(&bch_register_lock);
918
919         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
920                 return;
921
922         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
923                 return;
924
925         /*
926          * Block the device from being closed and freed until we're finished
927          * detaching
928          */
929         closure_get(&dc->disk.cl);
930
931         bch_writeback_queue(dc);
932         cached_dev_put(dc);
933 }
934
935 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
936 {
937         uint32_t rtime = cpu_to_le32(get_seconds());
938         struct uuid_entry *u;
939         char buf[BDEVNAME_SIZE];
940
941         bdevname(dc->bdev, buf);
942
943         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
944                 return -ENOENT;
945
946         if (dc->disk.c) {
947                 pr_err("Can't attach %s: already attached", buf);
948                 return -EINVAL;
949         }
950
951         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
952                 pr_err("Can't attach %s: shutting down", buf);
953                 return -EINVAL;
954         }
955
956         if (dc->sb.block_size < c->sb.block_size) {
957                 /* Will die */
958                 pr_err("Couldn't attach %s: block size less than set's block size",
959                        buf);
960                 return -EINVAL;
961         }
962
963         u = uuid_find(c, dc->sb.uuid);
964
965         if (u &&
966             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
967              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
968                 memcpy(u->uuid, invalid_uuid, 16);
969                 u->invalidated = cpu_to_le32(get_seconds());
970                 u = NULL;
971         }
972
973         if (!u) {
974                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
975                         pr_err("Couldn't find uuid for %s in set", buf);
976                         return -ENOENT;
977                 }
978
979                 u = uuid_find_empty(c);
980                 if (!u) {
981                         pr_err("Not caching %s, no room for UUID", buf);
982                         return -EINVAL;
983                 }
984         }
985
986         /* Deadlocks since we're called via sysfs...
987         sysfs_remove_file(&dc->kobj, &sysfs_attach);
988          */
989
990         if (bch_is_zero(u->uuid, 16)) {
991                 struct closure cl;
992                 closure_init_stack(&cl);
993
994                 memcpy(u->uuid, dc->sb.uuid, 16);
995                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
996                 u->first_reg = u->last_reg = rtime;
997                 bch_uuid_write(c);
998
999                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1000                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1001
1002                 bch_write_bdev_super(dc, &cl);
1003                 closure_sync(&cl);
1004         } else {
1005                 u->last_reg = rtime;
1006                 bch_uuid_write(c);
1007         }
1008
1009         bcache_device_attach(&dc->disk, c, u - c->uuids);
1010         list_move(&dc->list, &c->cached_devs);
1011         calc_cached_dev_sectors(c);
1012
1013         smp_wmb();
1014         /*
1015          * dc->c must be set before dc->count != 0 - paired with the mb in
1016          * cached_dev_get()
1017          */
1018         atomic_set(&dc->count, 1);
1019
1020         /* Block writeback thread, but spawn it */
1021         down_write(&dc->writeback_lock);
1022         if (bch_cached_dev_writeback_start(dc)) {
1023                 up_write(&dc->writeback_lock);
1024                 return -ENOMEM;
1025         }
1026
1027         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1028                 bch_sectors_dirty_init(dc);
1029                 atomic_set(&dc->has_dirty, 1);
1030                 atomic_inc(&dc->count);
1031                 bch_writeback_queue(dc);
1032         }
1033
1034         bch_cached_dev_run(dc);
1035         bcache_device_link(&dc->disk, c, "bdev");
1036
1037         /* Allow the writeback thread to proceed */
1038         up_write(&dc->writeback_lock);
1039
1040         pr_info("Caching %s as %s on set %pU",
1041                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1042                 dc->disk.c->sb.set_uuid);
1043         return 0;
1044 }
1045
1046 void bch_cached_dev_release(struct kobject *kobj)
1047 {
1048         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1049                                              disk.kobj);
1050         kfree(dc);
1051         module_put(THIS_MODULE);
1052 }
1053
1054 static void cached_dev_free(struct closure *cl)
1055 {
1056         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1057
1058         cancel_delayed_work_sync(&dc->writeback_rate_update);
1059         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1060                 kthread_stop(dc->writeback_thread);
1061
1062         mutex_lock(&bch_register_lock);
1063
1064         if (atomic_read(&dc->running))
1065                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1066         bcache_device_free(&dc->disk);
1067         list_del(&dc->list);
1068
1069         mutex_unlock(&bch_register_lock);
1070
1071         if (!IS_ERR_OR_NULL(dc->bdev))
1072                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1073
1074         wake_up(&unregister_wait);
1075
1076         kobject_put(&dc->disk.kobj);
1077 }
1078
1079 static void cached_dev_flush(struct closure *cl)
1080 {
1081         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1082         struct bcache_device *d = &dc->disk;
1083
1084         mutex_lock(&bch_register_lock);
1085         bcache_device_unlink(d);
1086         mutex_unlock(&bch_register_lock);
1087
1088         bch_cache_accounting_destroy(&dc->accounting);
1089         kobject_del(&d->kobj);
1090
1091         continue_at(cl, cached_dev_free, system_wq);
1092 }
1093
1094 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1095 {
1096         int ret;
1097         struct io *io;
1098         struct request_queue *q = bdev_get_queue(dc->bdev);
1099
1100         __module_get(THIS_MODULE);
1101         INIT_LIST_HEAD(&dc->list);
1102         closure_init(&dc->disk.cl, NULL);
1103         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1104         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1105         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1106         sema_init(&dc->sb_write_mutex, 1);
1107         INIT_LIST_HEAD(&dc->io_lru);
1108         spin_lock_init(&dc->io_lock);
1109         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1110
1111         dc->sequential_cutoff           = 4 << 20;
1112
1113         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1114                 list_add(&io->lru, &dc->io_lru);
1115                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1116         }
1117
1118         dc->disk.stripe_size = q->limits.io_opt >> 9;
1119
1120         if (dc->disk.stripe_size)
1121                 dc->partial_stripes_expensive =
1122                         q->limits.raid_partial_stripes_expensive;
1123
1124         ret = bcache_device_init(&dc->disk, block_size,
1125                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1126         if (ret)
1127                 return ret;
1128
1129         set_capacity(dc->disk.disk,
1130                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1131
1132         dc->disk.disk->queue->backing_dev_info.ra_pages =
1133                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1134                     q->backing_dev_info.ra_pages);
1135
1136         bch_cached_dev_request_init(dc);
1137         bch_cached_dev_writeback_init(dc);
1138         return 0;
1139 }
1140
1141 /* Cached device - bcache superblock */
1142
1143 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1144                                  struct block_device *bdev,
1145                                  struct cached_dev *dc)
1146 {
1147         char name[BDEVNAME_SIZE];
1148         const char *err = "cannot allocate memory";
1149         struct cache_set *c;
1150
1151         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1152         dc->bdev = bdev;
1153         dc->bdev->bd_holder = dc;
1154
1155         bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1156         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1157         get_page(sb_page);
1158
1159         if (cached_dev_init(dc, sb->block_size << 9))
1160                 goto err;
1161
1162         err = "error creating kobject";
1163         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1164                         "bcache"))
1165                 goto err;
1166         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1167                 goto err;
1168
1169         pr_info("registered backing device %s", bdevname(bdev, name));
1170
1171         list_add(&dc->list, &uncached_devices);
1172         list_for_each_entry(c, &bch_cache_sets, list)
1173                 bch_cached_dev_attach(dc, c);
1174
1175         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1176             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1177                 bch_cached_dev_run(dc);
1178
1179         return;
1180 err:
1181         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1182         bcache_device_stop(&dc->disk);
1183 }
1184
1185 /* Flash only volumes */
1186
1187 void bch_flash_dev_release(struct kobject *kobj)
1188 {
1189         struct bcache_device *d = container_of(kobj, struct bcache_device,
1190                                                kobj);
1191         kfree(d);
1192 }
1193
1194 static void flash_dev_free(struct closure *cl)
1195 {
1196         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1197         mutex_lock(&bch_register_lock);
1198         bcache_device_free(d);
1199         mutex_unlock(&bch_register_lock);
1200         kobject_put(&d->kobj);
1201 }
1202
1203 static void flash_dev_flush(struct closure *cl)
1204 {
1205         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1206
1207         mutex_lock(&bch_register_lock);
1208         bcache_device_unlink(d);
1209         mutex_unlock(&bch_register_lock);
1210         kobject_del(&d->kobj);
1211         continue_at(cl, flash_dev_free, system_wq);
1212 }
1213
1214 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1215 {
1216         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1217                                           GFP_KERNEL);
1218         if (!d)
1219                 return -ENOMEM;
1220
1221         closure_init(&d->cl, NULL);
1222         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1223
1224         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1225
1226         if (bcache_device_init(d, block_bytes(c), u->sectors))
1227                 goto err;
1228
1229         bcache_device_attach(d, c, u - c->uuids);
1230         bch_flash_dev_request_init(d);
1231         add_disk(d->disk);
1232
1233         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1234                 goto err;
1235
1236         bcache_device_link(d, c, "volume");
1237
1238         return 0;
1239 err:
1240         kobject_put(&d->kobj);
1241         return -ENOMEM;
1242 }
1243
1244 static int flash_devs_run(struct cache_set *c)
1245 {
1246         int ret = 0;
1247         struct uuid_entry *u;
1248
1249         for (u = c->uuids;
1250              u < c->uuids + c->nr_uuids && !ret;
1251              u++)
1252                 if (UUID_FLASH_ONLY(u))
1253                         ret = flash_dev_run(c, u);
1254
1255         return ret;
1256 }
1257
1258 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1259 {
1260         struct uuid_entry *u;
1261
1262         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1263                 return -EINTR;
1264
1265         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1266                 return -EPERM;
1267
1268         u = uuid_find_empty(c);
1269         if (!u) {
1270                 pr_err("Can't create volume, no room for UUID");
1271                 return -EINVAL;
1272         }
1273
1274         get_random_bytes(u->uuid, 16);
1275         memset(u->label, 0, 32);
1276         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1277
1278         SET_UUID_FLASH_ONLY(u, 1);
1279         u->sectors = size >> 9;
1280
1281         bch_uuid_write(c);
1282
1283         return flash_dev_run(c, u);
1284 }
1285
1286 /* Cache set */
1287
1288 __printf(2, 3)
1289 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1290 {
1291         va_list args;
1292
1293         if (c->on_error != ON_ERROR_PANIC &&
1294             test_bit(CACHE_SET_STOPPING, &c->flags))
1295                 return false;
1296
1297         /* XXX: we can be called from atomic context
1298         acquire_console_sem();
1299         */
1300
1301         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1302
1303         va_start(args, fmt);
1304         vprintk(fmt, args);
1305         va_end(args);
1306
1307         printk(", disabling caching\n");
1308
1309         if (c->on_error == ON_ERROR_PANIC)
1310                 panic("panic forced after error\n");
1311
1312         bch_cache_set_unregister(c);
1313         return true;
1314 }
1315
1316 void bch_cache_set_release(struct kobject *kobj)
1317 {
1318         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1319         kfree(c);
1320         module_put(THIS_MODULE);
1321 }
1322
1323 static void cache_set_free(struct closure *cl)
1324 {
1325         struct cache_set *c = container_of(cl, struct cache_set, cl);
1326         struct cache *ca;
1327         unsigned i;
1328
1329         if (!IS_ERR_OR_NULL(c->debug))
1330                 debugfs_remove(c->debug);
1331
1332         bch_open_buckets_free(c);
1333         bch_btree_cache_free(c);
1334         bch_journal_free(c);
1335
1336         for_each_cache(ca, c, i)
1337                 if (ca) {
1338                         ca->set = NULL;
1339                         c->cache[ca->sb.nr_this_dev] = NULL;
1340                         kobject_put(&ca->kobj);
1341                 }
1342
1343         bch_bset_sort_state_free(&c->sort);
1344         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1345
1346         if (c->moving_gc_wq)
1347                 destroy_workqueue(c->moving_gc_wq);
1348         if (c->bio_split)
1349                 bioset_free(c->bio_split);
1350         if (c->fill_iter)
1351                 mempool_destroy(c->fill_iter);
1352         if (c->bio_meta)
1353                 mempool_destroy(c->bio_meta);
1354         if (c->search)
1355                 mempool_destroy(c->search);
1356         kfree(c->devices);
1357
1358         mutex_lock(&bch_register_lock);
1359         list_del(&c->list);
1360         mutex_unlock(&bch_register_lock);
1361
1362         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1363         wake_up(&unregister_wait);
1364
1365         closure_debug_destroy(&c->cl);
1366         kobject_put(&c->kobj);
1367 }
1368
1369 static void cache_set_flush(struct closure *cl)
1370 {
1371         struct cache_set *c = container_of(cl, struct cache_set, caching);
1372         struct cache *ca;
1373         struct btree *b;
1374         unsigned i;
1375
1376         if (!c)
1377                 closure_return(cl);
1378
1379         bch_cache_accounting_destroy(&c->accounting);
1380
1381         kobject_put(&c->internal);
1382         kobject_del(&c->kobj);
1383
1384         if (c->gc_thread)
1385                 kthread_stop(c->gc_thread);
1386
1387         if (!IS_ERR_OR_NULL(c->root))
1388                 list_add(&c->root->list, &c->btree_cache);
1389
1390         /* Should skip this if we're unregistering because of an error */
1391         list_for_each_entry(b, &c->btree_cache, list) {
1392                 mutex_lock(&b->write_lock);
1393                 if (btree_node_dirty(b))
1394                         __bch_btree_node_write(b, NULL);
1395                 mutex_unlock(&b->write_lock);
1396         }
1397
1398         for_each_cache(ca, c, i)
1399                 if (ca->alloc_thread)
1400                         kthread_stop(ca->alloc_thread);
1401
1402         if (c->journal.cur) {
1403                 cancel_delayed_work_sync(&c->journal.work);
1404                 /* flush last journal entry if needed */
1405                 c->journal.work.work.func(&c->journal.work.work);
1406         }
1407
1408         closure_return(cl);
1409 }
1410
1411 static void __cache_set_unregister(struct closure *cl)
1412 {
1413         struct cache_set *c = container_of(cl, struct cache_set, caching);
1414         struct cached_dev *dc;
1415         size_t i;
1416
1417         mutex_lock(&bch_register_lock);
1418
1419         for (i = 0; i < c->nr_uuids; i++)
1420                 if (c->devices[i]) {
1421                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1422                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1423                                 dc = container_of(c->devices[i],
1424                                                   struct cached_dev, disk);
1425                                 bch_cached_dev_detach(dc);
1426                         } else {
1427                                 bcache_device_stop(c->devices[i]);
1428                         }
1429                 }
1430
1431         mutex_unlock(&bch_register_lock);
1432
1433         continue_at(cl, cache_set_flush, system_wq);
1434 }
1435
1436 void bch_cache_set_stop(struct cache_set *c)
1437 {
1438         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1439                 closure_queue(&c->caching);
1440 }
1441
1442 void bch_cache_set_unregister(struct cache_set *c)
1443 {
1444         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1445         bch_cache_set_stop(c);
1446 }
1447
1448 #define alloc_bucket_pages(gfp, c)                      \
1449         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1450
1451 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1452 {
1453         int iter_size;
1454         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1455         if (!c)
1456                 return NULL;
1457
1458         __module_get(THIS_MODULE);
1459         closure_init(&c->cl, NULL);
1460         set_closure_fn(&c->cl, cache_set_free, system_wq);
1461
1462         closure_init(&c->caching, &c->cl);
1463         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1464
1465         /* Maybe create continue_at_noreturn() and use it here? */
1466         closure_set_stopped(&c->cl);
1467         closure_put(&c->cl);
1468
1469         kobject_init(&c->kobj, &bch_cache_set_ktype);
1470         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1471
1472         bch_cache_accounting_init(&c->accounting, &c->cl);
1473
1474         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1475         c->sb.block_size        = sb->block_size;
1476         c->sb.bucket_size       = sb->bucket_size;
1477         c->sb.nr_in_set         = sb->nr_in_set;
1478         c->sb.last_mount        = sb->last_mount;
1479         c->bucket_bits          = ilog2(sb->bucket_size);
1480         c->block_bits           = ilog2(sb->block_size);
1481         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1482
1483         c->btree_pages          = bucket_pages(c);
1484         if (c->btree_pages > BTREE_MAX_PAGES)
1485                 c->btree_pages = max_t(int, c->btree_pages / 4,
1486                                        BTREE_MAX_PAGES);
1487
1488         sema_init(&c->sb_write_mutex, 1);
1489         mutex_init(&c->bucket_lock);
1490         init_waitqueue_head(&c->btree_cache_wait);
1491         init_waitqueue_head(&c->bucket_wait);
1492         sema_init(&c->uuid_write_mutex, 1);
1493
1494         spin_lock_init(&c->btree_gc_time.lock);
1495         spin_lock_init(&c->btree_split_time.lock);
1496         spin_lock_init(&c->btree_read_time.lock);
1497
1498         bch_moving_init_cache_set(c);
1499
1500         INIT_LIST_HEAD(&c->list);
1501         INIT_LIST_HEAD(&c->cached_devs);
1502         INIT_LIST_HEAD(&c->btree_cache);
1503         INIT_LIST_HEAD(&c->btree_cache_freeable);
1504         INIT_LIST_HEAD(&c->btree_cache_freed);
1505         INIT_LIST_HEAD(&c->data_buckets);
1506
1507         c->search = mempool_create_slab_pool(32, bch_search_cache);
1508         if (!c->search)
1509                 goto err;
1510
1511         iter_size = (sb->bucket_size / sb->block_size + 1) *
1512                 sizeof(struct btree_iter_set);
1513
1514         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1515             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1516                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1517                                 bucket_pages(c))) ||
1518             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1519             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1520             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1521             !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1522                                                 WQ_MEM_RECLAIM, 0)) ||
1523             bch_journal_alloc(c) ||
1524             bch_btree_cache_alloc(c) ||
1525             bch_open_buckets_alloc(c) ||
1526             bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1527                 goto err;
1528
1529         c->congested_read_threshold_us  = 2000;
1530         c->congested_write_threshold_us = 20000;
1531         c->error_limit  = 8 << IO_ERROR_SHIFT;
1532
1533         return c;
1534 err:
1535         bch_cache_set_unregister(c);
1536         return NULL;
1537 }
1538
1539 static void run_cache_set(struct cache_set *c)
1540 {
1541         const char *err = "cannot allocate memory";
1542         struct cached_dev *dc, *t;
1543         struct cache *ca;
1544         struct closure cl;
1545         unsigned i;
1546
1547         closure_init_stack(&cl);
1548
1549         for_each_cache(ca, c, i)
1550                 c->nbuckets += ca->sb.nbuckets;
1551
1552         if (CACHE_SYNC(&c->sb)) {
1553                 LIST_HEAD(journal);
1554                 struct bkey *k;
1555                 struct jset *j;
1556
1557                 err = "cannot allocate memory for journal";
1558                 if (bch_journal_read(c, &journal))
1559                         goto err;
1560
1561                 pr_debug("btree_journal_read() done");
1562
1563                 err = "no journal entries found";
1564                 if (list_empty(&journal))
1565                         goto err;
1566
1567                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1568
1569                 err = "IO error reading priorities";
1570                 for_each_cache(ca, c, i)
1571                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1572
1573                 /*
1574                  * If prio_read() fails it'll call cache_set_error and we'll
1575                  * tear everything down right away, but if we perhaps checked
1576                  * sooner we could avoid journal replay.
1577                  */
1578
1579                 k = &j->btree_root;
1580
1581                 err = "bad btree root";
1582                 if (__bch_btree_ptr_invalid(c, k))
1583                         goto err;
1584
1585                 err = "error reading btree root";
1586                 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1587                 if (IS_ERR_OR_NULL(c->root))
1588                         goto err;
1589
1590                 list_del_init(&c->root->list);
1591                 rw_unlock(true, c->root);
1592
1593                 err = uuid_read(c, j, &cl);
1594                 if (err)
1595                         goto err;
1596
1597                 err = "error in recovery";
1598                 if (bch_btree_check(c))
1599                         goto err;
1600
1601                 bch_journal_mark(c, &journal);
1602                 bch_initial_gc_finish(c);
1603                 pr_debug("btree_check() done");
1604
1605                 /*
1606                  * bcache_journal_next() can't happen sooner, or
1607                  * btree_gc_finish() will give spurious errors about last_gc >
1608                  * gc_gen - this is a hack but oh well.
1609                  */
1610                 bch_journal_next(&c->journal);
1611
1612                 err = "error starting allocator thread";
1613                 for_each_cache(ca, c, i)
1614                         if (bch_cache_allocator_start(ca))
1615                                 goto err;
1616
1617                 /*
1618                  * First place it's safe to allocate: btree_check() and
1619                  * btree_gc_finish() have to run before we have buckets to
1620                  * allocate, and bch_bucket_alloc_set() might cause a journal
1621                  * entry to be written so bcache_journal_next() has to be called
1622                  * first.
1623                  *
1624                  * If the uuids were in the old format we have to rewrite them
1625                  * before the next journal entry is written:
1626                  */
1627                 if (j->version < BCACHE_JSET_VERSION_UUID)
1628                         __uuid_write(c);
1629
1630                 bch_journal_replay(c, &journal);
1631         } else {
1632                 pr_notice("invalidating existing data");
1633
1634                 for_each_cache(ca, c, i) {
1635                         unsigned j;
1636
1637                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1638                                               2, SB_JOURNAL_BUCKETS);
1639
1640                         for (j = 0; j < ca->sb.keys; j++)
1641                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1642                 }
1643
1644                 bch_initial_gc_finish(c);
1645
1646                 err = "error starting allocator thread";
1647                 for_each_cache(ca, c, i)
1648                         if (bch_cache_allocator_start(ca))
1649                                 goto err;
1650
1651                 mutex_lock(&c->bucket_lock);
1652                 for_each_cache(ca, c, i)
1653                         bch_prio_write(ca);
1654                 mutex_unlock(&c->bucket_lock);
1655
1656                 err = "cannot allocate new UUID bucket";
1657                 if (__uuid_write(c))
1658                         goto err;
1659
1660                 err = "cannot allocate new btree root";
1661                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1662                 if (IS_ERR_OR_NULL(c->root))
1663                         goto err;
1664
1665                 mutex_lock(&c->root->write_lock);
1666                 bkey_copy_key(&c->root->key, &MAX_KEY);
1667                 bch_btree_node_write(c->root, &cl);
1668                 mutex_unlock(&c->root->write_lock);
1669
1670                 bch_btree_set_root(c->root);
1671                 rw_unlock(true, c->root);
1672
1673                 /*
1674                  * We don't want to write the first journal entry until
1675                  * everything is set up - fortunately journal entries won't be
1676                  * written until the SET_CACHE_SYNC() here:
1677                  */
1678                 SET_CACHE_SYNC(&c->sb, true);
1679
1680                 bch_journal_next(&c->journal);
1681                 bch_journal_meta(c, &cl);
1682         }
1683
1684         err = "error starting gc thread";
1685         if (bch_gc_thread_start(c))
1686                 goto err;
1687
1688         closure_sync(&cl);
1689         c->sb.last_mount = get_seconds();
1690         bcache_write_super(c);
1691
1692         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1693                 bch_cached_dev_attach(dc, c);
1694
1695         flash_devs_run(c);
1696
1697         set_bit(CACHE_SET_RUNNING, &c->flags);
1698         return;
1699 err:
1700         closure_sync(&cl);
1701         /* XXX: test this, it's broken */
1702         bch_cache_set_error(c, "%s", err);
1703 }
1704
1705 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1706 {
1707         return ca->sb.block_size        == c->sb.block_size &&
1708                 ca->sb.bucket_size      == c->sb.bucket_size &&
1709                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1710 }
1711
1712 static const char *register_cache_set(struct cache *ca)
1713 {
1714         char buf[12];
1715         const char *err = "cannot allocate memory";
1716         struct cache_set *c;
1717
1718         list_for_each_entry(c, &bch_cache_sets, list)
1719                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1720                         if (c->cache[ca->sb.nr_this_dev])
1721                                 return "duplicate cache set member";
1722
1723                         if (!can_attach_cache(ca, c))
1724                                 return "cache sb does not match set";
1725
1726                         if (!CACHE_SYNC(&ca->sb))
1727                                 SET_CACHE_SYNC(&c->sb, false);
1728
1729                         goto found;
1730                 }
1731
1732         c = bch_cache_set_alloc(&ca->sb);
1733         if (!c)
1734                 return err;
1735
1736         err = "error creating kobject";
1737         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1738             kobject_add(&c->internal, &c->kobj, "internal"))
1739                 goto err;
1740
1741         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1742                 goto err;
1743
1744         bch_debug_init_cache_set(c);
1745
1746         list_add(&c->list, &bch_cache_sets);
1747 found:
1748         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1749         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1750             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1751                 goto err;
1752
1753         if (ca->sb.seq > c->sb.seq) {
1754                 c->sb.version           = ca->sb.version;
1755                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1756                 c->sb.flags             = ca->sb.flags;
1757                 c->sb.seq               = ca->sb.seq;
1758                 pr_debug("set version = %llu", c->sb.version);
1759         }
1760
1761         kobject_get(&ca->kobj);
1762         ca->set = c;
1763         ca->set->cache[ca->sb.nr_this_dev] = ca;
1764         c->cache_by_alloc[c->caches_loaded++] = ca;
1765
1766         if (c->caches_loaded == c->sb.nr_in_set)
1767                 run_cache_set(c);
1768
1769         return NULL;
1770 err:
1771         bch_cache_set_unregister(c);
1772         return err;
1773 }
1774
1775 /* Cache device */
1776
1777 void bch_cache_release(struct kobject *kobj)
1778 {
1779         struct cache *ca = container_of(kobj, struct cache, kobj);
1780         unsigned i;
1781
1782         if (ca->set) {
1783                 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1784                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1785         }
1786
1787         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1788         kfree(ca->prio_buckets);
1789         vfree(ca->buckets);
1790
1791         free_heap(&ca->heap);
1792         free_fifo(&ca->free_inc);
1793
1794         for (i = 0; i < RESERVE_NR; i++)
1795                 free_fifo(&ca->free[i]);
1796
1797         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1798                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1799
1800         if (!IS_ERR_OR_NULL(ca->bdev))
1801                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1802
1803         kfree(ca);
1804         module_put(THIS_MODULE);
1805 }
1806
1807 static int cache_alloc(struct cache *ca)
1808 {
1809         size_t free;
1810         struct bucket *b;
1811
1812         __module_get(THIS_MODULE);
1813         kobject_init(&ca->kobj, &bch_cache_ktype);
1814
1815         bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
1816
1817         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1818
1819         if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1820             !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1821             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1822             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1823             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1824             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1825             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1826                                           ca->sb.nbuckets)) ||
1827             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1828                                           2, GFP_KERNEL)) ||
1829             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
1830                 return -ENOMEM;
1831
1832         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1833
1834         for_each_bucket(b, ca)
1835                 atomic_set(&b->pin, 0);
1836
1837         return 0;
1838 }
1839
1840 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1841                                 struct block_device *bdev, struct cache *ca)
1842 {
1843         char name[BDEVNAME_SIZE];
1844         const char *err = NULL; /* must be set for any error case */
1845         int ret = 0;
1846
1847         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1848         ca->bdev = bdev;
1849         ca->bdev->bd_holder = ca;
1850
1851         bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
1852         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1853         get_page(sb_page);
1854
1855         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1856                 ca->discard = CACHE_DISCARD(&ca->sb);
1857
1858         ret = cache_alloc(ca);
1859         if (ret != 0) {
1860                 if (ret == -ENOMEM)
1861                         err = "cache_alloc(): -ENOMEM";
1862                 else
1863                         err = "cache_alloc(): unknown error";
1864                 goto err;
1865         }
1866
1867         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1868                 err = "error calling kobject_add";
1869                 ret = -ENOMEM;
1870                 goto out;
1871         }
1872
1873         mutex_lock(&bch_register_lock);
1874         err = register_cache_set(ca);
1875         mutex_unlock(&bch_register_lock);
1876
1877         if (err) {
1878                 ret = -ENODEV;
1879                 goto out;
1880         }
1881
1882         pr_info("registered cache device %s", bdevname(bdev, name));
1883
1884 out:
1885         kobject_put(&ca->kobj);
1886
1887 err:
1888         if (err)
1889                 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1890
1891         return ret;
1892 }
1893
1894 /* Global interfaces/init */
1895
1896 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1897                                const char *, size_t);
1898
1899 kobj_attribute_write(register,          register_bcache);
1900 kobj_attribute_write(register_quiet,    register_bcache);
1901
1902 static bool bch_is_open_backing(struct block_device *bdev) {
1903         struct cache_set *c, *tc;
1904         struct cached_dev *dc, *t;
1905
1906         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1907                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1908                         if (dc->bdev == bdev)
1909                                 return true;
1910         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1911                 if (dc->bdev == bdev)
1912                         return true;
1913         return false;
1914 }
1915
1916 static bool bch_is_open_cache(struct block_device *bdev) {
1917         struct cache_set *c, *tc;
1918         struct cache *ca;
1919         unsigned i;
1920
1921         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1922                 for_each_cache(ca, c, i)
1923                         if (ca->bdev == bdev)
1924                                 return true;
1925         return false;
1926 }
1927
1928 static bool bch_is_open(struct block_device *bdev) {
1929         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1930 }
1931
1932 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1933                                const char *buffer, size_t size)
1934 {
1935         ssize_t ret = size;
1936         const char *err = "cannot allocate memory";
1937         char *path = NULL;
1938         struct cache_sb *sb = NULL;
1939         struct block_device *bdev = NULL;
1940         struct page *sb_page = NULL;
1941
1942         if (!try_module_get(THIS_MODULE))
1943                 return -EBUSY;
1944
1945         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1946             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1947                 goto err;
1948
1949         err = "failed to open device";
1950         bdev = blkdev_get_by_path(strim(path),
1951                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1952                                   sb);
1953         if (IS_ERR(bdev)) {
1954                 if (bdev == ERR_PTR(-EBUSY)) {
1955                         bdev = lookup_bdev(strim(path));
1956                         mutex_lock(&bch_register_lock);
1957                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1958                                 err = "device already registered";
1959                         else
1960                                 err = "device busy";
1961                         mutex_unlock(&bch_register_lock);
1962                         if (attr == &ksysfs_register_quiet)
1963                                 goto out;
1964                 }
1965                 goto err;
1966         }
1967
1968         err = "failed to set blocksize";
1969         if (set_blocksize(bdev, 4096))
1970                 goto err_close;
1971
1972         err = read_super(sb, bdev, &sb_page);
1973         if (err)
1974                 goto err_close;
1975
1976         if (SB_IS_BDEV(sb)) {
1977                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1978                 if (!dc)
1979                         goto err_close;
1980
1981                 mutex_lock(&bch_register_lock);
1982                 register_bdev(sb, sb_page, bdev, dc);
1983                 mutex_unlock(&bch_register_lock);
1984         } else {
1985                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1986                 if (!ca)
1987                         goto err_close;
1988
1989                 if (register_cache(sb, sb_page, bdev, ca) != 0)
1990                         goto err_close;
1991         }
1992 out:
1993         if (sb_page)
1994                 put_page(sb_page);
1995         kfree(sb);
1996         kfree(path);
1997         module_put(THIS_MODULE);
1998         return ret;
1999
2000 err_close:
2001         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2002 err:
2003         pr_info("error opening %s: %s", path, err);
2004         ret = -EINVAL;
2005         goto out;
2006 }
2007
2008 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2009 {
2010         if (code == SYS_DOWN ||
2011             code == SYS_HALT ||
2012             code == SYS_POWER_OFF) {
2013                 DEFINE_WAIT(wait);
2014                 unsigned long start = jiffies;
2015                 bool stopped = false;
2016
2017                 struct cache_set *c, *tc;
2018                 struct cached_dev *dc, *tdc;
2019
2020                 mutex_lock(&bch_register_lock);
2021
2022                 if (list_empty(&bch_cache_sets) &&
2023                     list_empty(&uncached_devices))
2024                         goto out;
2025
2026                 pr_info("Stopping all devices:");
2027
2028                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2029                         bch_cache_set_stop(c);
2030
2031                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2032                         bcache_device_stop(&dc->disk);
2033
2034                 /* What's a condition variable? */
2035                 while (1) {
2036                         long timeout = start + 2 * HZ - jiffies;
2037
2038                         stopped = list_empty(&bch_cache_sets) &&
2039                                 list_empty(&uncached_devices);
2040
2041                         if (timeout < 0 || stopped)
2042                                 break;
2043
2044                         prepare_to_wait(&unregister_wait, &wait,
2045                                         TASK_UNINTERRUPTIBLE);
2046
2047                         mutex_unlock(&bch_register_lock);
2048                         schedule_timeout(timeout);
2049                         mutex_lock(&bch_register_lock);
2050                 }
2051
2052                 finish_wait(&unregister_wait, &wait);
2053
2054                 if (stopped)
2055                         pr_info("All devices stopped");
2056                 else
2057                         pr_notice("Timeout waiting for devices to be closed");
2058 out:
2059                 mutex_unlock(&bch_register_lock);
2060         }
2061
2062         return NOTIFY_DONE;
2063 }
2064
2065 static struct notifier_block reboot = {
2066         .notifier_call  = bcache_reboot,
2067         .priority       = INT_MAX, /* before any real devices */
2068 };
2069
2070 static void bcache_exit(void)
2071 {
2072         bch_debug_exit();
2073         bch_request_exit();
2074         if (bcache_kobj)
2075                 kobject_put(bcache_kobj);
2076         if (bcache_wq)
2077                 destroy_workqueue(bcache_wq);
2078         if (bcache_major)
2079                 unregister_blkdev(bcache_major, "bcache");
2080         unregister_reboot_notifier(&reboot);
2081 }
2082
2083 static int __init bcache_init(void)
2084 {
2085         static const struct attribute *files[] = {
2086                 &ksysfs_register.attr,
2087                 &ksysfs_register_quiet.attr,
2088                 NULL
2089         };
2090
2091         mutex_init(&bch_register_lock);
2092         init_waitqueue_head(&unregister_wait);
2093         register_reboot_notifier(&reboot);
2094         closure_debug_init();
2095
2096         bcache_major = register_blkdev(0, "bcache");
2097         if (bcache_major < 0) {
2098                 unregister_reboot_notifier(&reboot);
2099                 return bcache_major;
2100         }
2101
2102         if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2103             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2104             sysfs_create_files(bcache_kobj, files) ||
2105             bch_request_init() ||
2106             bch_debug_init(bcache_kobj))
2107                 goto err;
2108
2109         return 0;
2110 err:
2111         bcache_exit();
2112         return -ENOMEM;
2113 }
2114
2115 module_exit(bcache_exit);
2116 module_init(bcache_init);