Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct rrpc_block *rblk = a->rblk;
32         unsigned int pg_offset;
33
34         lockdep_assert_held(&rrpc->rev_lock);
35
36         if (a->addr == ADDR_EMPTY || !rblk)
37                 return;
38
39         spin_lock(&rblk->lock);
40
41         div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43         rblk->nr_invalid_pages++;
44
45         spin_unlock(&rblk->lock);
46
47         rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51                                                                 unsigned len)
52 {
53         sector_t i;
54
55         spin_lock(&rrpc->rev_lock);
56         for (i = slba; i < slba + len; i++) {
57                 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59                 rrpc_page_invalidate(rrpc, gp);
60                 gp->rblk = NULL;
61         }
62         spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66                                         sector_t laddr, unsigned int pages)
67 {
68         struct nvm_rq *rqd;
69         struct rrpc_inflight_rq *inf;
70
71         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72         if (!rqd)
73                 return ERR_PTR(-ENOMEM);
74
75         inf = rrpc_get_inflight_rq(rqd);
76         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77                 mempool_free(rqd, rrpc->rq_pool);
78                 return NULL;
79         }
80
81         return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88         rrpc_unlock_laddr(rrpc, inf);
89
90         mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97         struct nvm_rq *rqd;
98
99         do {
100                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101                 schedule();
102         } while (!rqd);
103
104         if (IS_ERR(rqd)) {
105                 pr_err("rrpc: unable to acquire inflight IO\n");
106                 bio_io_error(bio);
107                 return;
108         }
109
110         rrpc_invalidate_range(rrpc, slba, len);
111         rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116         return (rblk->next_page == rrpc->dev->pgs_per_blk);
117 }
118
119 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
120 {
121         struct nvm_block *blk = rblk->parent;
122
123         return blk->id * rrpc->dev->pgs_per_blk;
124 }
125
126 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127                                                         struct ppa_addr r)
128 {
129         struct ppa_addr l;
130         int secs, pgs, blks, luns;
131         sector_t ppa = r.ppa;
132
133         l.ppa = 0;
134
135         div_u64_rem(ppa, dev->sec_per_pg, &secs);
136         l.g.sec = secs;
137
138         sector_div(ppa, dev->sec_per_pg);
139         div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140         l.g.pg = pgs;
141
142         sector_div(ppa, dev->pgs_per_blk);
143         div_u64_rem(ppa, dev->blks_per_lun, &blks);
144         l.g.blk = blks;
145
146         sector_div(ppa, dev->blks_per_lun);
147         div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148         l.g.lun = luns;
149
150         sector_div(ppa, dev->luns_per_chnl);
151         l.g.ch = ppa;
152
153         return l;
154 }
155
156 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
157 {
158         struct ppa_addr paddr;
159
160         paddr.ppa = addr;
161         return linear_to_generic_addr(dev, paddr);
162 }
163
164 /* requires lun->lock taken */
165 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166 {
167         struct rrpc *rrpc = rlun->rrpc;
168
169         BUG_ON(!rblk);
170
171         if (rlun->cur) {
172                 spin_lock(&rlun->cur->lock);
173                 WARN_ON(!block_is_full(rrpc, rlun->cur));
174                 spin_unlock(&rlun->cur->lock);
175         }
176         rlun->cur = rblk;
177 }
178
179 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180                                                         unsigned long flags)
181 {
182         struct nvm_lun *lun = rlun->parent;
183         struct nvm_block *blk;
184         struct rrpc_block *rblk;
185
186         spin_lock(&lun->lock);
187         blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
188         if (!blk) {
189                 pr_err("nvm: rrpc: cannot get new block from media manager\n");
190                 spin_unlock(&lun->lock);
191                 return NULL;
192         }
193
194         rblk = &rlun->blocks[blk->id];
195         list_add_tail(&rblk->list, &rlun->open_list);
196         spin_unlock(&lun->lock);
197
198         blk->priv = rblk;
199         bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
200         rblk->next_page = 0;
201         rblk->nr_invalid_pages = 0;
202         atomic_set(&rblk->data_cmnt_size, 0);
203
204         return rblk;
205 }
206
207 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
208 {
209         struct rrpc_lun *rlun = rblk->rlun;
210         struct nvm_lun *lun = rlun->parent;
211
212         spin_lock(&lun->lock);
213         nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
214         list_del(&rblk->list);
215         spin_unlock(&lun->lock);
216 }
217
218 static void rrpc_put_blks(struct rrpc *rrpc)
219 {
220         struct rrpc_lun *rlun;
221         int i;
222
223         for (i = 0; i < rrpc->nr_luns; i++) {
224                 rlun = &rrpc->luns[i];
225                 if (rlun->cur)
226                         rrpc_put_blk(rrpc, rlun->cur);
227                 if (rlun->gc_cur)
228                         rrpc_put_blk(rrpc, rlun->gc_cur);
229         }
230 }
231
232 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
233 {
234         int next = atomic_inc_return(&rrpc->next_lun);
235
236         return &rrpc->luns[next % rrpc->nr_luns];
237 }
238
239 static void rrpc_gc_kick(struct rrpc *rrpc)
240 {
241         struct rrpc_lun *rlun;
242         unsigned int i;
243
244         for (i = 0; i < rrpc->nr_luns; i++) {
245                 rlun = &rrpc->luns[i];
246                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
247         }
248 }
249
250 /*
251  * timed GC every interval.
252  */
253 static void rrpc_gc_timer(unsigned long data)
254 {
255         struct rrpc *rrpc = (struct rrpc *)data;
256
257         rrpc_gc_kick(rrpc);
258         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
259 }
260
261 static void rrpc_end_sync_bio(struct bio *bio)
262 {
263         struct completion *waiting = bio->bi_private;
264
265         if (bio->bi_error)
266                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
267
268         complete(waiting);
269 }
270
271 /*
272  * rrpc_move_valid_pages -- migrate live data off the block
273  * @rrpc: the 'rrpc' structure
274  * @block: the block from which to migrate live pages
275  *
276  * Description:
277  *   GC algorithms may call this function to migrate remaining live
278  *   pages off the block prior to erasing it. This function blocks
279  *   further execution until the operation is complete.
280  */
281 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
282 {
283         struct request_queue *q = rrpc->dev->q;
284         struct rrpc_rev_addr *rev;
285         struct nvm_rq *rqd;
286         struct bio *bio;
287         struct page *page;
288         int slot;
289         int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
290         u64 phys_addr;
291         DECLARE_COMPLETION_ONSTACK(wait);
292
293         if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
294                 return 0;
295
296         bio = bio_alloc(GFP_NOIO, 1);
297         if (!bio) {
298                 pr_err("nvm: could not alloc bio to gc\n");
299                 return -ENOMEM;
300         }
301
302         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
303         if (!page)
304                 return -ENOMEM;
305
306         while ((slot = find_first_zero_bit(rblk->invalid_pages,
307                                             nr_pgs_per_blk)) < nr_pgs_per_blk) {
308
309                 /* Lock laddr */
310                 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
311
312 try:
313                 spin_lock(&rrpc->rev_lock);
314                 /* Get logical address from physical to logical table */
315                 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
316                 /* already updated by previous regular write */
317                 if (rev->addr == ADDR_EMPTY) {
318                         spin_unlock(&rrpc->rev_lock);
319                         continue;
320                 }
321
322                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
323                 if (IS_ERR_OR_NULL(rqd)) {
324                         spin_unlock(&rrpc->rev_lock);
325                         schedule();
326                         goto try;
327                 }
328
329                 spin_unlock(&rrpc->rev_lock);
330
331                 /* Perform read to do GC */
332                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
333                 bio->bi_rw = READ;
334                 bio->bi_private = &wait;
335                 bio->bi_end_io = rrpc_end_sync_bio;
336
337                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
338                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
339
340                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
341                         pr_err("rrpc: gc read failed.\n");
342                         rrpc_inflight_laddr_release(rrpc, rqd);
343                         goto finished;
344                 }
345                 wait_for_completion_io(&wait);
346                 if (bio->bi_error) {
347                         rrpc_inflight_laddr_release(rrpc, rqd);
348                         goto finished;
349                 }
350
351                 bio_reset(bio);
352                 reinit_completion(&wait);
353
354                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
355                 bio->bi_rw = WRITE;
356                 bio->bi_private = &wait;
357                 bio->bi_end_io = rrpc_end_sync_bio;
358
359                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
360
361                 /* turn the command around and write the data back to a new
362                  * address
363                  */
364                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
365                         pr_err("rrpc: gc write failed.\n");
366                         rrpc_inflight_laddr_release(rrpc, rqd);
367                         goto finished;
368                 }
369                 wait_for_completion_io(&wait);
370
371                 rrpc_inflight_laddr_release(rrpc, rqd);
372                 if (bio->bi_error)
373                         goto finished;
374
375                 bio_reset(bio);
376         }
377
378 finished:
379         mempool_free(page, rrpc->page_pool);
380         bio_put(bio);
381
382         if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
383                 pr_err("nvm: failed to garbage collect block\n");
384                 return -EIO;
385         }
386
387         return 0;
388 }
389
390 static void rrpc_block_gc(struct work_struct *work)
391 {
392         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
393                                                                         ws_gc);
394         struct rrpc *rrpc = gcb->rrpc;
395         struct rrpc_block *rblk = gcb->rblk;
396         struct nvm_dev *dev = rrpc->dev;
397         struct nvm_lun *lun = rblk->parent->lun;
398         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
399
400         mempool_free(gcb, rrpc->gcb_pool);
401         pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
402
403         if (rrpc_move_valid_pages(rrpc, rblk))
404                 goto put_back;
405
406         if (nvm_erase_blk(dev, rblk->parent))
407                 goto put_back;
408
409         rrpc_put_blk(rrpc, rblk);
410
411         return;
412
413 put_back:
414         spin_lock(&rlun->lock);
415         list_add_tail(&rblk->prio, &rlun->prio_list);
416         spin_unlock(&rlun->lock);
417 }
418
419 /* the block with highest number of invalid pages, will be in the beginning
420  * of the list
421  */
422 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
423                                                         struct rrpc_block *rb)
424 {
425         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
426                 return ra;
427
428         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
429 }
430
431 /* linearly find the block with highest number of invalid pages
432  * requires lun->lock
433  */
434 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
435 {
436         struct list_head *prio_list = &rlun->prio_list;
437         struct rrpc_block *rblock, *max;
438
439         BUG_ON(list_empty(prio_list));
440
441         max = list_first_entry(prio_list, struct rrpc_block, prio);
442         list_for_each_entry(rblock, prio_list, prio)
443                 max = rblock_max_invalid(max, rblock);
444
445         return max;
446 }
447
448 static void rrpc_lun_gc(struct work_struct *work)
449 {
450         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
451         struct rrpc *rrpc = rlun->rrpc;
452         struct nvm_lun *lun = rlun->parent;
453         struct rrpc_block_gc *gcb;
454         unsigned int nr_blocks_need;
455
456         nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
457
458         if (nr_blocks_need < rrpc->nr_luns)
459                 nr_blocks_need = rrpc->nr_luns;
460
461         spin_lock(&rlun->lock);
462         while (nr_blocks_need > lun->nr_free_blocks &&
463                                         !list_empty(&rlun->prio_list)) {
464                 struct rrpc_block *rblock = block_prio_find_max(rlun);
465                 struct nvm_block *block = rblock->parent;
466
467                 if (!rblock->nr_invalid_pages)
468                         break;
469
470                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
471                 if (!gcb)
472                         break;
473
474                 list_del_init(&rblock->prio);
475
476                 BUG_ON(!block_is_full(rrpc, rblock));
477
478                 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
479
480                 gcb->rrpc = rrpc;
481                 gcb->rblk = rblock;
482                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
483
484                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
485
486                 nr_blocks_need--;
487         }
488         spin_unlock(&rlun->lock);
489
490         /* TODO: Hint that request queue can be started again */
491 }
492
493 static void rrpc_gc_queue(struct work_struct *work)
494 {
495         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
496                                                                         ws_gc);
497         struct rrpc *rrpc = gcb->rrpc;
498         struct rrpc_block *rblk = gcb->rblk;
499         struct nvm_lun *lun = rblk->parent->lun;
500         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
501
502         spin_lock(&rlun->lock);
503         list_add_tail(&rblk->prio, &rlun->prio_list);
504         spin_unlock(&rlun->lock);
505
506         mempool_free(gcb, rrpc->gcb_pool);
507         pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
508                                                         rblk->parent->id);
509 }
510
511 static const struct block_device_operations rrpc_fops = {
512         .owner          = THIS_MODULE,
513 };
514
515 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
516 {
517         unsigned int i;
518         struct rrpc_lun *rlun, *max_free;
519
520         if (!is_gc)
521                 return get_next_lun(rrpc);
522
523         /* during GC, we don't care about RR, instead we want to make
524          * sure that we maintain evenness between the block luns.
525          */
526         max_free = &rrpc->luns[0];
527         /* prevent GC-ing lun from devouring pages of a lun with
528          * little free blocks. We don't take the lock as we only need an
529          * estimate.
530          */
531         rrpc_for_each_lun(rrpc, rlun, i) {
532                 if (rlun->parent->nr_free_blocks >
533                                         max_free->parent->nr_free_blocks)
534                         max_free = rlun;
535         }
536
537         return max_free;
538 }
539
540 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
541                                         struct rrpc_block *rblk, u64 paddr)
542 {
543         struct rrpc_addr *gp;
544         struct rrpc_rev_addr *rev;
545
546         BUG_ON(laddr >= rrpc->nr_pages);
547
548         gp = &rrpc->trans_map[laddr];
549         spin_lock(&rrpc->rev_lock);
550         if (gp->rblk)
551                 rrpc_page_invalidate(rrpc, gp);
552
553         gp->addr = paddr;
554         gp->rblk = rblk;
555
556         rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
557         rev->addr = laddr;
558         spin_unlock(&rrpc->rev_lock);
559
560         return gp;
561 }
562
563 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
564 {
565         u64 addr = ADDR_EMPTY;
566
567         spin_lock(&rblk->lock);
568         if (block_is_full(rrpc, rblk))
569                 goto out;
570
571         addr = block_to_addr(rrpc, rblk) + rblk->next_page;
572
573         rblk->next_page++;
574 out:
575         spin_unlock(&rblk->lock);
576         return addr;
577 }
578
579 /* Simple round-robin Logical to physical address translation.
580  *
581  * Retrieve the mapping using the active append point. Then update the ap for
582  * the next write to the disk.
583  *
584  * Returns rrpc_addr with the physical address and block. Remember to return to
585  * rrpc->addr_cache when request is finished.
586  */
587 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
588                                                                 int is_gc)
589 {
590         struct rrpc_lun *rlun;
591         struct rrpc_block *rblk;
592         struct nvm_lun *lun;
593         u64 paddr;
594
595         rlun = rrpc_get_lun_rr(rrpc, is_gc);
596         lun = rlun->parent;
597
598         if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
599                 return NULL;
600
601         spin_lock(&rlun->lock);
602
603         rblk = rlun->cur;
604 retry:
605         paddr = rrpc_alloc_addr(rrpc, rblk);
606
607         if (paddr == ADDR_EMPTY) {
608                 rblk = rrpc_get_blk(rrpc, rlun, 0);
609                 if (rblk) {
610                         rrpc_set_lun_cur(rlun, rblk);
611                         goto retry;
612                 }
613
614                 if (is_gc) {
615                         /* retry from emergency gc block */
616                         paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
617                         if (paddr == ADDR_EMPTY) {
618                                 rblk = rrpc_get_blk(rrpc, rlun, 1);
619                                 if (!rblk) {
620                                         pr_err("rrpc: no more blocks");
621                                         goto err;
622                                 }
623
624                                 rlun->gc_cur = rblk;
625                                 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
626                         }
627                         rblk = rlun->gc_cur;
628                 }
629         }
630
631         spin_unlock(&rlun->lock);
632         return rrpc_update_map(rrpc, laddr, rblk, paddr);
633 err:
634         spin_unlock(&rlun->lock);
635         return NULL;
636 }
637
638 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
639 {
640         struct rrpc_block_gc *gcb;
641
642         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
643         if (!gcb) {
644                 pr_err("rrpc: unable to queue block for gc.");
645                 return;
646         }
647
648         gcb->rrpc = rrpc;
649         gcb->rblk = rblk;
650
651         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
652         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
653 }
654
655 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
656                                                 sector_t laddr, uint8_t npages)
657 {
658         struct rrpc_addr *p;
659         struct rrpc_block *rblk;
660         struct nvm_lun *lun;
661         int cmnt_size, i;
662
663         for (i = 0; i < npages; i++) {
664                 p = &rrpc->trans_map[laddr + i];
665                 rblk = p->rblk;
666                 lun = rblk->parent->lun;
667
668                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
669                 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk)) {
670                         struct nvm_block *blk = rblk->parent;
671                         struct rrpc_lun *rlun = rblk->rlun;
672
673                         spin_lock(&lun->lock);
674                         lun->nr_open_blocks--;
675                         lun->nr_closed_blocks++;
676                         blk->state &= ~NVM_BLK_ST_OPEN;
677                         blk->state |= NVM_BLK_ST_CLOSED;
678                         list_move_tail(&rblk->list, &rlun->closed_list);
679                         spin_unlock(&lun->lock);
680
681                         rrpc_run_gc(rrpc, rblk);
682                 }
683         }
684 }
685
686 static void rrpc_end_io(struct nvm_rq *rqd)
687 {
688         struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
689         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
690         uint8_t npages = rqd->nr_pages;
691         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
692
693         if (bio_data_dir(rqd->bio) == WRITE)
694                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
695
696         bio_put(rqd->bio);
697
698         if (rrqd->flags & NVM_IOTYPE_GC)
699                 return;
700
701         rrpc_unlock_rq(rrpc, rqd);
702
703         if (npages > 1)
704                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
705         if (rqd->metadata)
706                 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
707
708         mempool_free(rqd, rrpc->rq_pool);
709 }
710
711 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
712                         struct nvm_rq *rqd, unsigned long flags, int npages)
713 {
714         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
715         struct rrpc_addr *gp;
716         sector_t laddr = rrpc_get_laddr(bio);
717         int is_gc = flags & NVM_IOTYPE_GC;
718         int i;
719
720         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
721                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
722                 return NVM_IO_REQUEUE;
723         }
724
725         for (i = 0; i < npages; i++) {
726                 /* We assume that mapping occurs at 4KB granularity */
727                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
728                 gp = &rrpc->trans_map[laddr + i];
729
730                 if (gp->rblk) {
731                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
732                                                                 gp->addr);
733                 } else {
734                         BUG_ON(is_gc);
735                         rrpc_unlock_laddr(rrpc, r);
736                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
737                                                         rqd->dma_ppa_list);
738                         return NVM_IO_DONE;
739                 }
740         }
741
742         rqd->opcode = NVM_OP_HBREAD;
743
744         return NVM_IO_OK;
745 }
746
747 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
748                                                         unsigned long flags)
749 {
750         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
751         int is_gc = flags & NVM_IOTYPE_GC;
752         sector_t laddr = rrpc_get_laddr(bio);
753         struct rrpc_addr *gp;
754
755         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
756                 return NVM_IO_REQUEUE;
757
758         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
759         gp = &rrpc->trans_map[laddr];
760
761         if (gp->rblk) {
762                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
763         } else {
764                 BUG_ON(is_gc);
765                 rrpc_unlock_rq(rrpc, rqd);
766                 return NVM_IO_DONE;
767         }
768
769         rqd->opcode = NVM_OP_HBREAD;
770         rrqd->addr = gp;
771
772         return NVM_IO_OK;
773 }
774
775 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
776                         struct nvm_rq *rqd, unsigned long flags, int npages)
777 {
778         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
779         struct rrpc_addr *p;
780         sector_t laddr = rrpc_get_laddr(bio);
781         int is_gc = flags & NVM_IOTYPE_GC;
782         int i;
783
784         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
785                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
786                 return NVM_IO_REQUEUE;
787         }
788
789         for (i = 0; i < npages; i++) {
790                 /* We assume that mapping occurs at 4KB granularity */
791                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
792                 if (!p) {
793                         BUG_ON(is_gc);
794                         rrpc_unlock_laddr(rrpc, r);
795                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
796                                                         rqd->dma_ppa_list);
797                         rrpc_gc_kick(rrpc);
798                         return NVM_IO_REQUEUE;
799                 }
800
801                 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
802                                                                 p->addr);
803         }
804
805         rqd->opcode = NVM_OP_HBWRITE;
806
807         return NVM_IO_OK;
808 }
809
810 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
811                                 struct nvm_rq *rqd, unsigned long flags)
812 {
813         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
814         struct rrpc_addr *p;
815         int is_gc = flags & NVM_IOTYPE_GC;
816         sector_t laddr = rrpc_get_laddr(bio);
817
818         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
819                 return NVM_IO_REQUEUE;
820
821         p = rrpc_map_page(rrpc, laddr, is_gc);
822         if (!p) {
823                 BUG_ON(is_gc);
824                 rrpc_unlock_rq(rrpc, rqd);
825                 rrpc_gc_kick(rrpc);
826                 return NVM_IO_REQUEUE;
827         }
828
829         rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
830         rqd->opcode = NVM_OP_HBWRITE;
831         rrqd->addr = p;
832
833         return NVM_IO_OK;
834 }
835
836 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
837                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
838 {
839         if (npages > 1) {
840                 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
841                                                         &rqd->dma_ppa_list);
842                 if (!rqd->ppa_list) {
843                         pr_err("rrpc: not able to allocate ppa list\n");
844                         return NVM_IO_ERR;
845                 }
846
847                 if (bio_rw(bio) == WRITE)
848                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
849                                                                         npages);
850
851                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
852         }
853
854         if (bio_rw(bio) == WRITE)
855                 return rrpc_write_rq(rrpc, bio, rqd, flags);
856
857         return rrpc_read_rq(rrpc, bio, rqd, flags);
858 }
859
860 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
861                                 struct nvm_rq *rqd, unsigned long flags)
862 {
863         int err;
864         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
865         uint8_t nr_pages = rrpc_get_pages(bio);
866         int bio_size = bio_sectors(bio) << 9;
867
868         if (bio_size < rrpc->dev->sec_size)
869                 return NVM_IO_ERR;
870         else if (bio_size > rrpc->dev->max_rq_size)
871                 return NVM_IO_ERR;
872
873         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
874         if (err)
875                 return err;
876
877         bio_get(bio);
878         rqd->bio = bio;
879         rqd->ins = &rrpc->instance;
880         rqd->nr_pages = nr_pages;
881         rrq->flags = flags;
882
883         err = nvm_submit_io(rrpc->dev, rqd);
884         if (err) {
885                 pr_err("rrpc: I/O submission failed: %d\n", err);
886                 bio_put(bio);
887                 if (!(flags & NVM_IOTYPE_GC)) {
888                         rrpc_unlock_rq(rrpc, rqd);
889                         if (rqd->nr_pages > 1)
890                                 nvm_dev_dma_free(rrpc->dev,
891                         rqd->ppa_list, rqd->dma_ppa_list);
892                 }
893                 return NVM_IO_ERR;
894         }
895
896         return NVM_IO_OK;
897 }
898
899 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
900 {
901         struct rrpc *rrpc = q->queuedata;
902         struct nvm_rq *rqd;
903         int err;
904
905         if (bio->bi_rw & REQ_DISCARD) {
906                 rrpc_discard(rrpc, bio);
907                 return BLK_QC_T_NONE;
908         }
909
910         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
911         if (!rqd) {
912                 pr_err_ratelimited("rrpc: not able to queue bio.");
913                 bio_io_error(bio);
914                 return BLK_QC_T_NONE;
915         }
916         memset(rqd, 0, sizeof(struct nvm_rq));
917
918         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
919         switch (err) {
920         case NVM_IO_OK:
921                 return BLK_QC_T_NONE;
922         case NVM_IO_ERR:
923                 bio_io_error(bio);
924                 break;
925         case NVM_IO_DONE:
926                 bio_endio(bio);
927                 break;
928         case NVM_IO_REQUEUE:
929                 spin_lock(&rrpc->bio_lock);
930                 bio_list_add(&rrpc->requeue_bios, bio);
931                 spin_unlock(&rrpc->bio_lock);
932                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
933                 break;
934         }
935
936         mempool_free(rqd, rrpc->rq_pool);
937         return BLK_QC_T_NONE;
938 }
939
940 static void rrpc_requeue(struct work_struct *work)
941 {
942         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
943         struct bio_list bios;
944         struct bio *bio;
945
946         bio_list_init(&bios);
947
948         spin_lock(&rrpc->bio_lock);
949         bio_list_merge(&bios, &rrpc->requeue_bios);
950         bio_list_init(&rrpc->requeue_bios);
951         spin_unlock(&rrpc->bio_lock);
952
953         while ((bio = bio_list_pop(&bios)))
954                 rrpc_make_rq(rrpc->disk->queue, bio);
955 }
956
957 static void rrpc_gc_free(struct rrpc *rrpc)
958 {
959         struct rrpc_lun *rlun;
960         int i;
961
962         if (rrpc->krqd_wq)
963                 destroy_workqueue(rrpc->krqd_wq);
964
965         if (rrpc->kgc_wq)
966                 destroy_workqueue(rrpc->kgc_wq);
967
968         if (!rrpc->luns)
969                 return;
970
971         for (i = 0; i < rrpc->nr_luns; i++) {
972                 rlun = &rrpc->luns[i];
973
974                 if (!rlun->blocks)
975                         break;
976                 vfree(rlun->blocks);
977         }
978 }
979
980 static int rrpc_gc_init(struct rrpc *rrpc)
981 {
982         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
983                                                                 rrpc->nr_luns);
984         if (!rrpc->krqd_wq)
985                 return -ENOMEM;
986
987         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
988         if (!rrpc->kgc_wq)
989                 return -ENOMEM;
990
991         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
992
993         return 0;
994 }
995
996 static void rrpc_map_free(struct rrpc *rrpc)
997 {
998         vfree(rrpc->rev_trans_map);
999         vfree(rrpc->trans_map);
1000 }
1001
1002 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
1003 {
1004         struct rrpc *rrpc = (struct rrpc *)private;
1005         struct nvm_dev *dev = rrpc->dev;
1006         struct rrpc_addr *addr = rrpc->trans_map + slba;
1007         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1008         sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
1009         u64 elba = slba + nlb;
1010         u64 i;
1011
1012         if (unlikely(elba > dev->total_pages)) {
1013                 pr_err("nvm: L2P data from device is out of bounds!\n");
1014                 return -EINVAL;
1015         }
1016
1017         for (i = 0; i < nlb; i++) {
1018                 u64 pba = le64_to_cpu(entries[i]);
1019                 /* LNVM treats address-spaces as silos, LBA and PBA are
1020                  * equally large and zero-indexed.
1021                  */
1022                 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
1023                         pr_err("nvm: L2P data entry is out of bounds!\n");
1024                         return -EINVAL;
1025                 }
1026
1027                 /* Address zero is a special one. The first page on a disk is
1028                  * protected. As it often holds internal device boot
1029                  * information.
1030                  */
1031                 if (!pba)
1032                         continue;
1033
1034                 addr[i].addr = pba;
1035                 raddr[pba].addr = slba + i;
1036         }
1037
1038         return 0;
1039 }
1040
1041 static int rrpc_map_init(struct rrpc *rrpc)
1042 {
1043         struct nvm_dev *dev = rrpc->dev;
1044         sector_t i;
1045         int ret;
1046
1047         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
1048         if (!rrpc->trans_map)
1049                 return -ENOMEM;
1050
1051         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1052                                                         * rrpc->nr_pages);
1053         if (!rrpc->rev_trans_map)
1054                 return -ENOMEM;
1055
1056         for (i = 0; i < rrpc->nr_pages; i++) {
1057                 struct rrpc_addr *p = &rrpc->trans_map[i];
1058                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1059
1060                 p->addr = ADDR_EMPTY;
1061                 r->addr = ADDR_EMPTY;
1062         }
1063
1064         if (!dev->ops->get_l2p_tbl)
1065                 return 0;
1066
1067         /* Bring up the mapping table from device */
1068         ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages,
1069                                                         rrpc_l2p_update, rrpc);
1070         if (ret) {
1071                 pr_err("nvm: rrpc: could not read L2P table.\n");
1072                 return -EINVAL;
1073         }
1074
1075         return 0;
1076 }
1077
1078
1079 /* Minimum pages needed within a lun */
1080 #define PAGE_POOL_SIZE 16
1081 #define ADDR_POOL_SIZE 64
1082
1083 static int rrpc_core_init(struct rrpc *rrpc)
1084 {
1085         down_write(&rrpc_lock);
1086         if (!rrpc_gcb_cache) {
1087                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1088                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1089                 if (!rrpc_gcb_cache) {
1090                         up_write(&rrpc_lock);
1091                         return -ENOMEM;
1092                 }
1093
1094                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1095                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1096                                 0, 0, NULL);
1097                 if (!rrpc_rq_cache) {
1098                         kmem_cache_destroy(rrpc_gcb_cache);
1099                         up_write(&rrpc_lock);
1100                         return -ENOMEM;
1101                 }
1102         }
1103         up_write(&rrpc_lock);
1104
1105         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1106         if (!rrpc->page_pool)
1107                 return -ENOMEM;
1108
1109         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1110                                                                 rrpc_gcb_cache);
1111         if (!rrpc->gcb_pool)
1112                 return -ENOMEM;
1113
1114         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1115         if (!rrpc->rq_pool)
1116                 return -ENOMEM;
1117
1118         spin_lock_init(&rrpc->inflights.lock);
1119         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1120
1121         return 0;
1122 }
1123
1124 static void rrpc_core_free(struct rrpc *rrpc)
1125 {
1126         mempool_destroy(rrpc->page_pool);
1127         mempool_destroy(rrpc->gcb_pool);
1128         mempool_destroy(rrpc->rq_pool);
1129 }
1130
1131 static void rrpc_luns_free(struct rrpc *rrpc)
1132 {
1133         kfree(rrpc->luns);
1134 }
1135
1136 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1137 {
1138         struct nvm_dev *dev = rrpc->dev;
1139         struct rrpc_lun *rlun;
1140         int i, j;
1141
1142         if (dev->pgs_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1143                 pr_err("rrpc: number of pages per block too high.");
1144                 return -EINVAL;
1145         }
1146
1147         spin_lock_init(&rrpc->rev_lock);
1148
1149         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1150                                                                 GFP_KERNEL);
1151         if (!rrpc->luns)
1152                 return -ENOMEM;
1153
1154         /* 1:1 mapping */
1155         for (i = 0; i < rrpc->nr_luns; i++) {
1156                 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1157
1158                 rlun = &rrpc->luns[i];
1159                 rlun->rrpc = rrpc;
1160                 rlun->parent = lun;
1161                 INIT_LIST_HEAD(&rlun->prio_list);
1162                 INIT_LIST_HEAD(&rlun->open_list);
1163                 INIT_LIST_HEAD(&rlun->closed_list);
1164
1165                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1166                 spin_lock_init(&rlun->lock);
1167
1168                 rrpc->total_blocks += dev->blks_per_lun;
1169                 rrpc->nr_pages += dev->sec_per_lun;
1170
1171                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1172                                                 rrpc->dev->blks_per_lun);
1173                 if (!rlun->blocks)
1174                         goto err;
1175
1176                 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1177                         struct rrpc_block *rblk = &rlun->blocks[j];
1178                         struct nvm_block *blk = &lun->blocks[j];
1179
1180                         rblk->parent = blk;
1181                         rblk->rlun = rlun;
1182                         INIT_LIST_HEAD(&rblk->prio);
1183                         spin_lock_init(&rblk->lock);
1184                 }
1185         }
1186
1187         return 0;
1188 err:
1189         return -ENOMEM;
1190 }
1191
1192 static void rrpc_free(struct rrpc *rrpc)
1193 {
1194         rrpc_gc_free(rrpc);
1195         rrpc_map_free(rrpc);
1196         rrpc_core_free(rrpc);
1197         rrpc_luns_free(rrpc);
1198
1199         kfree(rrpc);
1200 }
1201
1202 static void rrpc_exit(void *private)
1203 {
1204         struct rrpc *rrpc = private;
1205
1206         del_timer(&rrpc->gc_timer);
1207
1208         flush_workqueue(rrpc->krqd_wq);
1209         flush_workqueue(rrpc->kgc_wq);
1210
1211         rrpc_free(rrpc);
1212 }
1213
1214 static sector_t rrpc_capacity(void *private)
1215 {
1216         struct rrpc *rrpc = private;
1217         struct nvm_dev *dev = rrpc->dev;
1218         sector_t reserved, provisioned;
1219
1220         /* cur, gc, and two emergency blocks for each lun */
1221         reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1222         provisioned = rrpc->nr_pages - reserved;
1223
1224         if (reserved > rrpc->nr_pages) {
1225                 pr_err("rrpc: not enough space available to expose storage.\n");
1226                 return 0;
1227         }
1228
1229         sector_div(provisioned, 10);
1230         return provisioned * 9 * NR_PHY_IN_LOG;
1231 }
1232
1233 /*
1234  * Looks up the logical address from reverse trans map and check if its valid by
1235  * comparing the logical to physical address with the physical address.
1236  * Returns 0 on free, otherwise 1 if in use
1237  */
1238 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1239 {
1240         struct nvm_dev *dev = rrpc->dev;
1241         int offset;
1242         struct rrpc_addr *laddr;
1243         u64 paddr, pladdr;
1244
1245         for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1246                 paddr = block_to_addr(rrpc, rblk) + offset;
1247
1248                 pladdr = rrpc->rev_trans_map[paddr].addr;
1249                 if (pladdr == ADDR_EMPTY)
1250                         continue;
1251
1252                 laddr = &rrpc->trans_map[pladdr];
1253
1254                 if (paddr == laddr->addr) {
1255                         laddr->rblk = rblk;
1256                 } else {
1257                         set_bit(offset, rblk->invalid_pages);
1258                         rblk->nr_invalid_pages++;
1259                 }
1260         }
1261 }
1262
1263 static int rrpc_blocks_init(struct rrpc *rrpc)
1264 {
1265         struct rrpc_lun *rlun;
1266         struct rrpc_block *rblk;
1267         int lun_iter, blk_iter;
1268
1269         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1270                 rlun = &rrpc->luns[lun_iter];
1271
1272                 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1273                                                                 blk_iter++) {
1274                         rblk = &rlun->blocks[blk_iter];
1275                         rrpc_block_map_update(rrpc, rblk);
1276                 }
1277         }
1278
1279         return 0;
1280 }
1281
1282 static int rrpc_luns_configure(struct rrpc *rrpc)
1283 {
1284         struct rrpc_lun *rlun;
1285         struct rrpc_block *rblk;
1286         int i;
1287
1288         for (i = 0; i < rrpc->nr_luns; i++) {
1289                 rlun = &rrpc->luns[i];
1290
1291                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1292                 if (!rblk)
1293                         goto err;
1294
1295                 rrpc_set_lun_cur(rlun, rblk);
1296
1297                 /* Emergency gc block */
1298                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1299                 if (!rblk)
1300                         goto err;
1301                 rlun->gc_cur = rblk;
1302         }
1303
1304         return 0;
1305 err:
1306         rrpc_put_blks(rrpc);
1307         return -EINVAL;
1308 }
1309
1310 static struct nvm_tgt_type tt_rrpc;
1311
1312 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1313                                                 int lun_begin, int lun_end)
1314 {
1315         struct request_queue *bqueue = dev->q;
1316         struct request_queue *tqueue = tdisk->queue;
1317         struct rrpc *rrpc;
1318         int ret;
1319
1320         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1321                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1322                                                         dev->identity.dom);
1323                 return ERR_PTR(-EINVAL);
1324         }
1325
1326         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1327         if (!rrpc)
1328                 return ERR_PTR(-ENOMEM);
1329
1330         rrpc->instance.tt = &tt_rrpc;
1331         rrpc->dev = dev;
1332         rrpc->disk = tdisk;
1333
1334         bio_list_init(&rrpc->requeue_bios);
1335         spin_lock_init(&rrpc->bio_lock);
1336         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1337
1338         rrpc->nr_luns = lun_end - lun_begin + 1;
1339
1340         /* simple round-robin strategy */
1341         atomic_set(&rrpc->next_lun, -1);
1342
1343         ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1344         if (ret) {
1345                 pr_err("nvm: rrpc: could not initialize luns\n");
1346                 goto err;
1347         }
1348
1349         rrpc->poffset = dev->sec_per_lun * lun_begin;
1350         rrpc->lun_offset = lun_begin;
1351
1352         ret = rrpc_core_init(rrpc);
1353         if (ret) {
1354                 pr_err("nvm: rrpc: could not initialize core\n");
1355                 goto err;
1356         }
1357
1358         ret = rrpc_map_init(rrpc);
1359         if (ret) {
1360                 pr_err("nvm: rrpc: could not initialize maps\n");
1361                 goto err;
1362         }
1363
1364         ret = rrpc_blocks_init(rrpc);
1365         if (ret) {
1366                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1367                 goto err;
1368         }
1369
1370         ret = rrpc_luns_configure(rrpc);
1371         if (ret) {
1372                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1373                 goto err;
1374         }
1375
1376         ret = rrpc_gc_init(rrpc);
1377         if (ret) {
1378                 pr_err("nvm: rrpc: could not initialize gc\n");
1379                 goto err;
1380         }
1381
1382         /* inherit the size from the underlying device */
1383         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1384         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1385
1386         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1387                         rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1388
1389         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1390
1391         return rrpc;
1392 err:
1393         rrpc_free(rrpc);
1394         return ERR_PTR(ret);
1395 }
1396
1397 /* round robin, page-based FTL, and cost-based GC */
1398 static struct nvm_tgt_type tt_rrpc = {
1399         .name           = "rrpc",
1400         .version        = {1, 0, 0},
1401
1402         .make_rq        = rrpc_make_rq,
1403         .capacity       = rrpc_capacity,
1404         .end_io         = rrpc_end_io,
1405
1406         .init           = rrpc_init,
1407         .exit           = rrpc_exit,
1408 };
1409
1410 static int __init rrpc_module_init(void)
1411 {
1412         return nvm_register_target(&tt_rrpc);
1413 }
1414
1415 static void rrpc_module_exit(void)
1416 {
1417         nvm_unregister_target(&tt_rrpc);
1418 }
1419
1420 module_init(rrpc_module_init);
1421 module_exit(rrpc_module_exit);
1422 MODULE_LICENSE("GPL v2");
1423 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");