1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/genalloc.h>
16 #include <linux/interrupt.h>
17 #include <linux/iommu.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqdomain.h>
20 #include <linux/list.h>
21 #include <linux/log2.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/memblock.h>
25 #include <linux/msi.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_pci.h>
30 #include <linux/of_platform.h>
31 #include <linux/percpu.h>
32 #include <linux/set_memory.h>
33 #include <linux/slab.h>
34 #include <linux/syscore_ops.h>
36 #include <linux/irqchip.h>
37 #include <linux/irqchip/arm-gic-v3.h>
38 #include <linux/irqchip/arm-gic-v4.h>
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
43 #include "irq-gic-common.h"
44 #include <linux/irqchip/irq-msi-lib.h>
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
49 #define ITS_FLAGS_FORCE_NON_SHAREABLE (1ULL << 3)
50 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801 (1ULL << 4)
52 #define RD_LOCAL_LPI_ENABLED BIT(0)
53 #define RD_LOCAL_PENDTABLE_PREALLOCATED BIT(1)
54 #define RD_LOCAL_MEMRESERVE_DONE BIT(2)
56 static u32 lpi_id_bits;
59 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60 * deal with (one configuration byte per interrupt). PENDBASE has to
61 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
63 #define LPI_NRBITS lpi_id_bits
64 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
67 static u8 __ro_after_init lpi_prop_prio;
68 static struct its_node *find_4_1_its(void);
71 * Collection structure - just an ID, and a redistributor address to
72 * ping. We use one per CPU as a bag of interrupts assigned to this
75 struct its_collection {
81 * The ITS_BASER structure - contains memory information, cached
82 * value of BASER register configuration and ITS page size.
94 * The ITS structure - contains most of the infrastructure, with the
95 * top-level MSI domain, the command queue, the collections, and the
96 * list of devices writing to it.
98 * dev_alloc_lock has to be taken for device allocations, while the
99 * spinlock must be taken to parse data structures such as the device
104 struct mutex dev_alloc_lock;
105 struct list_head entry;
107 void __iomem *sgir_base;
108 phys_addr_t phys_base;
109 struct its_cmd_block *cmd_base;
110 struct its_cmd_block *cmd_write;
111 struct its_baser tables[GITS_BASER_NR_REGS];
112 struct its_collection *collections;
113 struct fwnode_handle *fwnode_handle;
114 u64 (*get_msi_base)(struct its_device *its_dev);
119 struct list_head its_device_list;
121 unsigned long list_nr;
123 unsigned int msi_domain_flags;
124 u32 pre_its_base; /* for Socionext Synquacer */
125 int vlpi_redist_offset;
128 static DEFINE_PER_CPU(struct its_node *, local_4_1_its);
130 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
131 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
132 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
134 #define ITS_ITT_ALIGN SZ_256
136 /* The maximum number of VPEID bits supported by VLPI commands */
137 #define ITS_MAX_VPEID_BITS \
140 if (gic_rdists->has_rvpeid && \
141 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
142 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
147 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
149 /* Convert page order to size in bytes */
150 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
152 struct event_lpi_map {
153 unsigned long *lpi_map;
155 irq_hw_number_t lpi_base;
157 raw_spinlock_t vlpi_lock;
159 struct its_vlpi_map *vlpi_maps;
164 * The ITS view of a device - belongs to an ITS, owns an interrupt
165 * translation table, and a list of interrupts. If it some of its
166 * LPIs are injected into a guest (GICv4), the event_map.vm field
167 * indicates which one.
170 struct list_head entry;
171 struct its_node *its;
172 struct event_lpi_map event_map;
182 struct its_device *dev;
183 struct its_vpe **vpes;
187 struct cpu_lpi_count {
192 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
194 static LIST_HEAD(its_nodes);
195 static DEFINE_RAW_SPINLOCK(its_lock);
196 static struct rdists *gic_rdists;
197 static struct irq_domain *its_parent;
199 static unsigned long its_list_map;
200 static u16 vmovp_seq_num;
201 static DEFINE_RAW_SPINLOCK(vmovp_lock);
203 static DEFINE_IDA(its_vpeid_ida);
205 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
206 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
207 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
208 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
210 static gfp_t gfp_flags_quirk;
212 static struct page *its_alloc_pages_node(int node, gfp_t gfp,
218 page = alloc_pages_node(node, gfp | gfp_flags_quirk, order);
223 ret = set_memory_decrypted((unsigned long)page_address(page),
226 * If set_memory_decrypted() fails then we don't know what state the
227 * page is in, so we can't free it. Instead we leak it.
228 * set_memory_decrypted() will already have WARNed.
236 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
238 return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
241 static void its_free_pages(void *addr, unsigned int order)
244 * If the memory cannot be encrypted again then we must leak the pages.
245 * set_memory_encrypted() will already have WARNed.
247 if (set_memory_encrypted((unsigned long)addr, 1 << order))
249 free_pages((unsigned long)addr, order);
252 static struct gen_pool *itt_pool;
254 static void *itt_alloc_pool(int node, int size)
259 if (size >= PAGE_SIZE) {
260 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
262 return page ? page_address(page) : NULL;
266 addr = gen_pool_alloc(itt_pool, size);
270 page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
274 gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
280 static void itt_free_pool(void *addr, int size)
285 if (size >= PAGE_SIZE) {
286 its_free_pages(addr, get_order(size));
290 gen_pool_free(itt_pool, (unsigned long)addr, size);
294 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
295 * always have vSGIs mapped.
297 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
299 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
302 static bool rdists_support_shareable(void)
304 return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
307 static u16 get_its_list(struct its_vm *vm)
309 struct its_node *its;
310 unsigned long its_list = 0;
312 list_for_each_entry(its, &its_nodes, entry) {
316 if (require_its_list_vmovp(vm, its))
317 __set_bit(its->list_nr, &its_list);
320 return (u16)its_list;
323 static inline u32 its_get_event_id(struct irq_data *d)
325 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
326 return d->hwirq - its_dev->event_map.lpi_base;
329 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
332 struct its_node *its = its_dev->its;
334 return its->collections + its_dev->event_map.col_map[event];
337 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
340 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
343 return &its_dev->event_map.vlpi_maps[event];
346 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
348 if (irqd_is_forwarded_to_vcpu(d)) {
349 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
350 u32 event = its_get_event_id(d);
352 return dev_event_to_vlpi_map(its_dev, event);
358 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
360 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
364 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
366 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
369 static struct irq_chip its_vpe_irq_chip;
371 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
373 struct its_vpe *vpe = NULL;
376 if (d->chip == &its_vpe_irq_chip) {
377 vpe = irq_data_get_irq_chip_data(d);
379 struct its_vlpi_map *map = get_vlpi_map(d);
385 cpu = vpe_to_cpuid_lock(vpe, flags);
387 /* Physical LPIs are already locked via the irq_desc lock */
388 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
389 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
390 /* Keep GCC quiet... */
397 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
399 struct its_vpe *vpe = NULL;
401 if (d->chip == &its_vpe_irq_chip) {
402 vpe = irq_data_get_irq_chip_data(d);
404 struct its_vlpi_map *map = get_vlpi_map(d);
410 vpe_to_cpuid_unlock(vpe, flags);
413 static struct its_collection *valid_col(struct its_collection *col)
415 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
421 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
423 if (valid_col(its->collections + vpe->col_idx))
430 * ITS command descriptors - parameters to be encoded in a command
433 struct its_cmd_desc {
436 struct its_device *dev;
441 struct its_device *dev;
446 struct its_device *dev;
451 struct its_device *dev;
456 struct its_collection *col;
461 struct its_device *dev;
467 struct its_device *dev;
468 struct its_collection *col;
473 struct its_device *dev;
478 struct its_collection *col;
487 struct its_collection *col;
493 struct its_device *dev;
501 struct its_device *dev;
508 struct its_collection *col;
529 * The ITS command block, which is what the ITS actually parses.
531 struct its_cmd_block {
534 __le64 raw_cmd_le[4];
538 #define ITS_CMD_QUEUE_SZ SZ_64K
539 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
541 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
542 struct its_cmd_block *,
543 struct its_cmd_desc *);
545 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
546 struct its_cmd_block *,
547 struct its_cmd_desc *);
549 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
551 u64 mask = GENMASK_ULL(h, l);
553 *raw_cmd |= (val << l) & mask;
556 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
558 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
561 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
563 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
566 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
568 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
571 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
573 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
576 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
578 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
581 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
583 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
586 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
588 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
591 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
593 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
596 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
598 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
601 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
603 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
606 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
608 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
611 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
613 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
616 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
618 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
621 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
623 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
626 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
628 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
631 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
633 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
636 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
638 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
641 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
643 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
646 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
648 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
651 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
653 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
656 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
659 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
662 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
665 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
668 static void its_encode_db(struct its_cmd_block *cmd, bool db)
670 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
673 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
675 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
678 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
680 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
683 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
685 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
688 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
690 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
693 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
695 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
698 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
700 /* Let's fixup BE commands */
701 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
702 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
703 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
704 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
707 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
708 struct its_cmd_block *cmd,
709 struct its_cmd_desc *desc)
711 unsigned long itt_addr;
712 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
714 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
716 its_encode_cmd(cmd, GITS_CMD_MAPD);
717 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
718 its_encode_size(cmd, size - 1);
719 its_encode_itt(cmd, itt_addr);
720 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
727 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
728 struct its_cmd_block *cmd,
729 struct its_cmd_desc *desc)
731 its_encode_cmd(cmd, GITS_CMD_MAPC);
732 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
733 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
734 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
738 return desc->its_mapc_cmd.col;
741 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
742 struct its_cmd_block *cmd,
743 struct its_cmd_desc *desc)
745 struct its_collection *col;
747 col = dev_event_to_col(desc->its_mapti_cmd.dev,
748 desc->its_mapti_cmd.event_id);
750 its_encode_cmd(cmd, GITS_CMD_MAPTI);
751 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
752 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
753 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
754 its_encode_collection(cmd, col->col_id);
758 return valid_col(col);
761 static struct its_collection *its_build_movi_cmd(struct its_node *its,
762 struct its_cmd_block *cmd,
763 struct its_cmd_desc *desc)
765 struct its_collection *col;
767 col = dev_event_to_col(desc->its_movi_cmd.dev,
768 desc->its_movi_cmd.event_id);
770 its_encode_cmd(cmd, GITS_CMD_MOVI);
771 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
772 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
773 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
777 return valid_col(col);
780 static struct its_collection *its_build_discard_cmd(struct its_node *its,
781 struct its_cmd_block *cmd,
782 struct its_cmd_desc *desc)
784 struct its_collection *col;
786 col = dev_event_to_col(desc->its_discard_cmd.dev,
787 desc->its_discard_cmd.event_id);
789 its_encode_cmd(cmd, GITS_CMD_DISCARD);
790 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
791 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
795 return valid_col(col);
798 static struct its_collection *its_build_inv_cmd(struct its_node *its,
799 struct its_cmd_block *cmd,
800 struct its_cmd_desc *desc)
802 struct its_collection *col;
804 col = dev_event_to_col(desc->its_inv_cmd.dev,
805 desc->its_inv_cmd.event_id);
807 its_encode_cmd(cmd, GITS_CMD_INV);
808 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
809 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
813 return valid_col(col);
816 static struct its_collection *its_build_int_cmd(struct its_node *its,
817 struct its_cmd_block *cmd,
818 struct its_cmd_desc *desc)
820 struct its_collection *col;
822 col = dev_event_to_col(desc->its_int_cmd.dev,
823 desc->its_int_cmd.event_id);
825 its_encode_cmd(cmd, GITS_CMD_INT);
826 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
827 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
831 return valid_col(col);
834 static struct its_collection *its_build_clear_cmd(struct its_node *its,
835 struct its_cmd_block *cmd,
836 struct its_cmd_desc *desc)
838 struct its_collection *col;
840 col = dev_event_to_col(desc->its_clear_cmd.dev,
841 desc->its_clear_cmd.event_id);
843 its_encode_cmd(cmd, GITS_CMD_CLEAR);
844 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
845 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
849 return valid_col(col);
852 static struct its_collection *its_build_invall_cmd(struct its_node *its,
853 struct its_cmd_block *cmd,
854 struct its_cmd_desc *desc)
856 its_encode_cmd(cmd, GITS_CMD_INVALL);
857 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
861 return desc->its_invall_cmd.col;
864 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
865 struct its_cmd_block *cmd,
866 struct its_cmd_desc *desc)
868 its_encode_cmd(cmd, GITS_CMD_VINVALL);
869 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
873 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
876 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
877 struct its_cmd_block *cmd,
878 struct its_cmd_desc *desc)
880 struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
881 unsigned long vpt_addr, vconf_addr;
885 its_encode_cmd(cmd, GITS_CMD_VMAPP);
886 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
887 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
889 if (!desc->its_vmapp_cmd.valid) {
890 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
892 its_encode_alloc(cmd, alloc);
894 * Unmapping a VPE is self-synchronizing on GICv4.1,
895 * no need to issue a VSYNC.
903 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
904 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
906 its_encode_target(cmd, target);
907 its_encode_vpt_addr(cmd, vpt_addr);
908 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
910 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
915 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
917 its_encode_alloc(cmd, alloc);
920 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
921 * to be unmapped first, and in this case, we may remap the vPE
922 * back while the VPT is not empty. So we can't assume that the
923 * VPT is empty on map. This is why we never advertise PTZ.
925 its_encode_ptz(cmd, false);
926 its_encode_vconf_addr(cmd, vconf_addr);
927 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
935 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
936 struct its_cmd_block *cmd,
937 struct its_cmd_desc *desc)
941 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
942 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
946 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
947 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
948 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
949 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
950 its_encode_db_phys_id(cmd, db);
951 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
955 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
958 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
959 struct its_cmd_block *cmd,
960 struct its_cmd_desc *desc)
964 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
965 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
969 its_encode_cmd(cmd, GITS_CMD_VMOVI);
970 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
971 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
972 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
973 its_encode_db_phys_id(cmd, db);
974 its_encode_db_valid(cmd, true);
978 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
981 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
982 struct its_cmd_block *cmd,
983 struct its_cmd_desc *desc)
987 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
988 its_encode_cmd(cmd, GITS_CMD_VMOVP);
989 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
990 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
991 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
992 its_encode_target(cmd, target);
995 its_encode_db(cmd, true);
996 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
1001 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
1004 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
1005 struct its_cmd_block *cmd,
1006 struct its_cmd_desc *desc)
1008 struct its_vlpi_map *map;
1010 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
1011 desc->its_inv_cmd.event_id);
1013 its_encode_cmd(cmd, GITS_CMD_INV);
1014 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
1015 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
1019 return valid_vpe(its, map->vpe);
1022 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
1023 struct its_cmd_block *cmd,
1024 struct its_cmd_desc *desc)
1026 struct its_vlpi_map *map;
1028 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
1029 desc->its_int_cmd.event_id);
1031 its_encode_cmd(cmd, GITS_CMD_INT);
1032 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
1033 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
1037 return valid_vpe(its, map->vpe);
1040 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
1041 struct its_cmd_block *cmd,
1042 struct its_cmd_desc *desc)
1044 struct its_vlpi_map *map;
1046 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
1047 desc->its_clear_cmd.event_id);
1049 its_encode_cmd(cmd, GITS_CMD_CLEAR);
1050 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
1051 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
1055 return valid_vpe(its, map->vpe);
1058 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
1059 struct its_cmd_block *cmd,
1060 struct its_cmd_desc *desc)
1062 if (WARN_ON(!is_v4_1(its)))
1065 its_encode_cmd(cmd, GITS_CMD_INVDB);
1066 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
1070 return valid_vpe(its, desc->its_invdb_cmd.vpe);
1073 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
1074 struct its_cmd_block *cmd,
1075 struct its_cmd_desc *desc)
1077 if (WARN_ON(!is_v4_1(its)))
1080 its_encode_cmd(cmd, GITS_CMD_VSGI);
1081 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
1082 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
1083 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
1084 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
1085 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
1086 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1090 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1093 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1094 struct its_cmd_block *ptr)
1096 return (ptr - its->cmd_base) * sizeof(*ptr);
1099 static int its_queue_full(struct its_node *its)
1104 widx = its->cmd_write - its->cmd_base;
1105 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1107 /* This is incredibly unlikely to happen, unless the ITS locks up. */
1108 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1114 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1116 struct its_cmd_block *cmd;
1117 u32 count = 1000000; /* 1s! */
1119 while (its_queue_full(its)) {
1122 pr_err_ratelimited("ITS queue not draining\n");
1129 cmd = its->cmd_write++;
1131 /* Handle queue wrapping */
1132 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1133 its->cmd_write = its->cmd_base;
1136 cmd->raw_cmd[0] = 0;
1137 cmd->raw_cmd[1] = 0;
1138 cmd->raw_cmd[2] = 0;
1139 cmd->raw_cmd[3] = 0;
1144 static struct its_cmd_block *its_post_commands(struct its_node *its)
1146 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1148 writel_relaxed(wr, its->base + GITS_CWRITER);
1150 return its->cmd_write;
1153 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1156 * Make sure the commands written to memory are observable by
1159 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1160 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1165 static int its_wait_for_range_completion(struct its_node *its,
1167 struct its_cmd_block *to)
1169 u64 rd_idx, to_idx, linear_idx;
1170 u32 count = 1000000; /* 1s! */
1172 /* Linearize to_idx if the command set has wrapped around */
1173 to_idx = its_cmd_ptr_to_offset(its, to);
1174 if (to_idx < prev_idx)
1175 to_idx += ITS_CMD_QUEUE_SZ;
1177 linear_idx = prev_idx;
1182 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1185 * Compute the read pointer progress, taking the
1186 * potential wrap-around into account.
1188 delta = rd_idx - prev_idx;
1189 if (rd_idx < prev_idx)
1190 delta += ITS_CMD_QUEUE_SZ;
1192 linear_idx += delta;
1193 if (linear_idx >= to_idx)
1198 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1199 to_idx, linear_idx);
1210 /* Warning, macro hell follows */
1211 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1212 void name(struct its_node *its, \
1213 buildtype builder, \
1214 struct its_cmd_desc *desc) \
1216 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1217 synctype *sync_obj; \
1218 unsigned long flags; \
1221 raw_spin_lock_irqsave(&its->lock, flags); \
1223 cmd = its_allocate_entry(its); \
1224 if (!cmd) { /* We're soooooo screewed... */ \
1225 raw_spin_unlock_irqrestore(&its->lock, flags); \
1228 sync_obj = builder(its, cmd, desc); \
1229 its_flush_cmd(its, cmd); \
1232 sync_cmd = its_allocate_entry(its); \
1236 buildfn(its, sync_cmd, sync_obj); \
1237 its_flush_cmd(its, sync_cmd); \
1241 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1242 next_cmd = its_post_commands(its); \
1243 raw_spin_unlock_irqrestore(&its->lock, flags); \
1245 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1246 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1249 static void its_build_sync_cmd(struct its_node *its,
1250 struct its_cmd_block *sync_cmd,
1251 struct its_collection *sync_col)
1253 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1254 its_encode_target(sync_cmd, sync_col->target_address);
1256 its_fixup_cmd(sync_cmd);
1259 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1260 struct its_collection, its_build_sync_cmd)
1262 static void its_build_vsync_cmd(struct its_node *its,
1263 struct its_cmd_block *sync_cmd,
1264 struct its_vpe *sync_vpe)
1266 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1267 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1269 its_fixup_cmd(sync_cmd);
1272 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1273 struct its_vpe, its_build_vsync_cmd)
1275 static void its_send_int(struct its_device *dev, u32 event_id)
1277 struct its_cmd_desc desc;
1279 desc.its_int_cmd.dev = dev;
1280 desc.its_int_cmd.event_id = event_id;
1282 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1285 static void its_send_clear(struct its_device *dev, u32 event_id)
1287 struct its_cmd_desc desc;
1289 desc.its_clear_cmd.dev = dev;
1290 desc.its_clear_cmd.event_id = event_id;
1292 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1295 static void its_send_inv(struct its_device *dev, u32 event_id)
1297 struct its_cmd_desc desc;
1299 desc.its_inv_cmd.dev = dev;
1300 desc.its_inv_cmd.event_id = event_id;
1302 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1305 static void its_send_mapd(struct its_device *dev, int valid)
1307 struct its_cmd_desc desc;
1309 desc.its_mapd_cmd.dev = dev;
1310 desc.its_mapd_cmd.valid = !!valid;
1312 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1315 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1318 struct its_cmd_desc desc;
1320 desc.its_mapc_cmd.col = col;
1321 desc.its_mapc_cmd.valid = !!valid;
1323 its_send_single_command(its, its_build_mapc_cmd, &desc);
1326 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1328 struct its_cmd_desc desc;
1330 desc.its_mapti_cmd.dev = dev;
1331 desc.its_mapti_cmd.phys_id = irq_id;
1332 desc.its_mapti_cmd.event_id = id;
1334 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1337 static void its_send_movi(struct its_device *dev,
1338 struct its_collection *col, u32 id)
1340 struct its_cmd_desc desc;
1342 desc.its_movi_cmd.dev = dev;
1343 desc.its_movi_cmd.col = col;
1344 desc.its_movi_cmd.event_id = id;
1346 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1349 static void its_send_discard(struct its_device *dev, u32 id)
1351 struct its_cmd_desc desc;
1353 desc.its_discard_cmd.dev = dev;
1354 desc.its_discard_cmd.event_id = id;
1356 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1359 static void its_send_invall(struct its_node *its, struct its_collection *col)
1361 struct its_cmd_desc desc;
1363 desc.its_invall_cmd.col = col;
1365 its_send_single_command(its, its_build_invall_cmd, &desc);
1368 static void its_send_vmapti(struct its_device *dev, u32 id)
1370 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1371 struct its_cmd_desc desc;
1373 desc.its_vmapti_cmd.vpe = map->vpe;
1374 desc.its_vmapti_cmd.dev = dev;
1375 desc.its_vmapti_cmd.virt_id = map->vintid;
1376 desc.its_vmapti_cmd.event_id = id;
1377 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1379 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1382 static void its_send_vmovi(struct its_device *dev, u32 id)
1384 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1385 struct its_cmd_desc desc;
1387 desc.its_vmovi_cmd.vpe = map->vpe;
1388 desc.its_vmovi_cmd.dev = dev;
1389 desc.its_vmovi_cmd.event_id = id;
1390 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1392 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1395 static void its_send_vmapp(struct its_node *its,
1396 struct its_vpe *vpe, bool valid)
1398 struct its_cmd_desc desc;
1400 desc.its_vmapp_cmd.vpe = vpe;
1401 desc.its_vmapp_cmd.valid = valid;
1402 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1404 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1407 static void its_send_vmovp(struct its_vpe *vpe)
1409 struct its_cmd_desc desc = {};
1410 struct its_node *its;
1411 int col_id = vpe->col_idx;
1413 desc.its_vmovp_cmd.vpe = vpe;
1415 if (!its_list_map) {
1416 its = list_first_entry(&its_nodes, struct its_node, entry);
1417 desc.its_vmovp_cmd.col = &its->collections[col_id];
1418 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1423 * Yet another marvel of the architecture. If using the
1424 * its_list "feature", we need to make sure that all ITSs
1425 * receive all VMOVP commands in the same order. The only way
1426 * to guarantee this is to make vmovp a serialization point.
1430 guard(raw_spinlock)(&vmovp_lock);
1431 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1432 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1435 list_for_each_entry(its, &its_nodes, entry) {
1439 if (!require_its_list_vmovp(vpe->its_vm, its))
1442 desc.its_vmovp_cmd.col = &its->collections[col_id];
1443 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1447 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1449 struct its_cmd_desc desc;
1451 desc.its_vinvall_cmd.vpe = vpe;
1452 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1455 static void its_send_vinv(struct its_device *dev, u32 event_id)
1457 struct its_cmd_desc desc;
1460 * There is no real VINV command. This is just a normal INV,
1461 * with a VSYNC instead of a SYNC.
1463 desc.its_inv_cmd.dev = dev;
1464 desc.its_inv_cmd.event_id = event_id;
1466 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1469 static void its_send_vint(struct its_device *dev, u32 event_id)
1471 struct its_cmd_desc desc;
1474 * There is no real VINT command. This is just a normal INT,
1475 * with a VSYNC instead of a SYNC.
1477 desc.its_int_cmd.dev = dev;
1478 desc.its_int_cmd.event_id = event_id;
1480 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1483 static void its_send_vclear(struct its_device *dev, u32 event_id)
1485 struct its_cmd_desc desc;
1488 * There is no real VCLEAR command. This is just a normal CLEAR,
1489 * with a VSYNC instead of a SYNC.
1491 desc.its_clear_cmd.dev = dev;
1492 desc.its_clear_cmd.event_id = event_id;
1494 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1497 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1499 struct its_cmd_desc desc;
1501 desc.its_invdb_cmd.vpe = vpe;
1502 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1506 * irqchip functions - assumes MSI, mostly.
1508 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1510 struct its_vlpi_map *map = get_vlpi_map(d);
1511 irq_hw_number_t hwirq;
1516 va = page_address(map->vm->vprop_page);
1517 hwirq = map->vintid;
1519 /* Remember the updated property */
1520 map->properties &= ~clr;
1521 map->properties |= set | LPI_PROP_GROUP1;
1523 va = gic_rdists->prop_table_va;
1527 cfg = va + hwirq - 8192;
1529 *cfg |= set | LPI_PROP_GROUP1;
1532 * Make the above write visible to the redistributors.
1533 * And yes, we're flushing exactly: One. Single. Byte.
1536 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1537 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1542 static void wait_for_syncr(void __iomem *rdbase)
1544 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1548 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1550 void __iomem *rdbase;
1551 unsigned long flags;
1554 /* Target the redistributor this LPI is currently routed to */
1555 cpu = irq_to_cpuid_lock(d, &flags);
1556 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1558 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1559 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1560 wait_for_syncr(rdbase);
1562 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1563 irq_to_cpuid_unlock(d, flags);
1566 static void direct_lpi_inv(struct irq_data *d)
1568 struct its_vlpi_map *map = get_vlpi_map(d);
1572 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1574 WARN_ON(!is_v4_1(its_dev->its));
1576 val = GICR_INVLPIR_V;
1577 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1578 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1583 __direct_lpi_inv(d, val);
1586 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1588 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1590 lpi_write_config(d, clr, set);
1591 if (gic_rdists->has_direct_lpi &&
1592 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1594 else if (!irqd_is_forwarded_to_vcpu(d))
1595 its_send_inv(its_dev, its_get_event_id(d));
1597 its_send_vinv(its_dev, its_get_event_id(d));
1600 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1602 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1603 u32 event = its_get_event_id(d);
1604 struct its_vlpi_map *map;
1607 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1610 if (is_v4_1(its_dev->its))
1613 map = dev_event_to_vlpi_map(its_dev, event);
1615 if (map->db_enabled == enable)
1618 map->db_enabled = enable;
1621 * More fun with the architecture:
1623 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1624 * value or to 1023, depending on the enable bit. But that
1625 * would be issuing a mapping for an /existing/ DevID+EventID
1626 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1627 * to the /same/ vPE, using this opportunity to adjust the
1628 * doorbell. Mouahahahaha. We loves it, Precious.
1630 its_send_vmovi(its_dev, event);
1633 static void its_mask_irq(struct irq_data *d)
1635 if (irqd_is_forwarded_to_vcpu(d))
1636 its_vlpi_set_doorbell(d, false);
1638 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1641 static void its_unmask_irq(struct irq_data *d)
1643 if (irqd_is_forwarded_to_vcpu(d))
1644 its_vlpi_set_doorbell(d, true);
1646 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1649 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1651 if (irqd_affinity_is_managed(d))
1652 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1654 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1657 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1659 if (irqd_affinity_is_managed(d))
1660 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1662 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1665 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1667 if (irqd_affinity_is_managed(d))
1668 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1670 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1673 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1674 const struct cpumask *cpu_mask)
1676 unsigned int cpu = nr_cpu_ids, tmp;
1677 int count = S32_MAX;
1679 for_each_cpu(tmp, cpu_mask) {
1680 int this_count = its_read_lpi_count(d, tmp);
1681 if (this_count < count) {
1691 * As suggested by Thomas Gleixner in:
1692 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1694 static int its_select_cpu(struct irq_data *d,
1695 const struct cpumask *aff_mask)
1697 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1698 static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1699 static struct cpumask __tmpmask;
1700 struct cpumask *tmpmask;
1701 unsigned long flags;
1703 node = its_dev->its->numa_node;
1704 tmpmask = &__tmpmask;
1706 raw_spin_lock_irqsave(&tmpmask_lock, flags);
1708 if (!irqd_affinity_is_managed(d)) {
1709 /* First try the NUMA node */
1710 if (node != NUMA_NO_NODE) {
1712 * Try the intersection of the affinity mask and the
1713 * node mask (and the online mask, just to be safe).
1715 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1716 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1719 * Ideally, we would check if the mask is empty, and
1720 * try again on the full node here.
1722 * But it turns out that the way ACPI describes the
1723 * affinity for ITSs only deals about memory, and
1724 * not target CPUs, so it cannot describe a single
1725 * ITS placed next to two NUMA nodes.
1727 * Instead, just fallback on the online mask. This
1728 * diverges from Thomas' suggestion above.
1730 cpu = cpumask_pick_least_loaded(d, tmpmask);
1731 if (cpu < nr_cpu_ids)
1734 /* If we can't cross sockets, give up */
1735 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1738 /* If the above failed, expand the search */
1741 /* Try the intersection of the affinity and online masks */
1742 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1744 /* If that doesn't fly, the online mask is the last resort */
1745 if (cpumask_empty(tmpmask))
1746 cpumask_copy(tmpmask, cpu_online_mask);
1748 cpu = cpumask_pick_least_loaded(d, tmpmask);
1750 cpumask_copy(tmpmask, aff_mask);
1752 /* If we cannot cross sockets, limit the search to that node */
1753 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1754 node != NUMA_NO_NODE)
1755 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1757 cpu = cpumask_pick_least_loaded(d, tmpmask);
1760 raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1762 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1766 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1769 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1770 struct its_collection *target_col;
1771 u32 id = its_get_event_id(d);
1774 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1775 if (irqd_is_forwarded_to_vcpu(d))
1778 prev_cpu = its_dev->event_map.col_map[id];
1779 its_dec_lpi_count(d, prev_cpu);
1782 cpu = its_select_cpu(d, mask_val);
1784 cpu = cpumask_pick_least_loaded(d, mask_val);
1786 if (cpu < 0 || cpu >= nr_cpu_ids)
1789 /* don't set the affinity when the target cpu is same as current one */
1790 if (cpu != prev_cpu) {
1791 target_col = &its_dev->its->collections[cpu];
1792 its_send_movi(its_dev, target_col, id);
1793 its_dev->event_map.col_map[id] = cpu;
1794 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1797 its_inc_lpi_count(d, cpu);
1799 return IRQ_SET_MASK_OK_DONE;
1802 its_inc_lpi_count(d, prev_cpu);
1806 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1808 struct its_node *its = its_dev->its;
1810 return its->phys_base + GITS_TRANSLATER;
1813 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1815 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1817 msg->data = its_get_event_id(d);
1818 msi_msg_set_addr(irq_data_get_msi_desc(d), msg,
1819 its_dev->its->get_msi_base(its_dev));
1822 static int its_irq_set_irqchip_state(struct irq_data *d,
1823 enum irqchip_irq_state which,
1826 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1827 u32 event = its_get_event_id(d);
1829 if (which != IRQCHIP_STATE_PENDING)
1832 if (irqd_is_forwarded_to_vcpu(d)) {
1834 its_send_vint(its_dev, event);
1836 its_send_vclear(its_dev, event);
1839 its_send_int(its_dev, event);
1841 its_send_clear(its_dev, event);
1847 static int its_irq_retrigger(struct irq_data *d)
1849 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1853 * Two favourable cases:
1855 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1858 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1859 * and we're better off mapping all VPEs always
1861 * If neither (a) nor (b) is true, then we map vPEs on demand.
1864 static bool gic_requires_eager_mapping(void)
1866 if (!its_list_map || gic_rdists->has_rvpeid)
1872 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1874 if (gic_requires_eager_mapping())
1877 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1880 * If the VM wasn't mapped yet, iterate over the vpes and get
1883 vm->vlpi_count[its->list_nr]++;
1885 if (vm->vlpi_count[its->list_nr] == 1) {
1888 for (i = 0; i < vm->nr_vpes; i++) {
1889 struct its_vpe *vpe = vm->vpes[i];
1891 scoped_guard(raw_spinlock, &vpe->vpe_lock)
1892 its_send_vmapp(its, vpe, true);
1894 its_send_vinvall(its, vpe);
1899 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1901 /* Not using the ITS list? Everything is always mapped. */
1902 if (gic_requires_eager_mapping())
1905 guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1907 if (!--vm->vlpi_count[its->list_nr]) {
1910 for (i = 0; i < vm->nr_vpes; i++) {
1911 guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1912 its_send_vmapp(its, vm->vpes[i], false);
1917 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1919 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1920 u32 event = its_get_event_id(d);
1925 if (!its_dev->event_map.vm) {
1926 struct its_vlpi_map *maps;
1928 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1933 its_dev->event_map.vm = info->map->vm;
1934 its_dev->event_map.vlpi_maps = maps;
1935 } else if (its_dev->event_map.vm != info->map->vm) {
1939 /* Get our private copy of the mapping information */
1940 its_dev->event_map.vlpi_maps[event] = *info->map;
1942 if (irqd_is_forwarded_to_vcpu(d)) {
1943 /* Already mapped, move it around */
1944 its_send_vmovi(its_dev, event);
1946 /* Ensure all the VPEs are mapped on this ITS */
1947 its_map_vm(its_dev->its, info->map->vm);
1950 * Flag the interrupt as forwarded so that we can
1951 * start poking the virtual property table.
1953 irqd_set_forwarded_to_vcpu(d);
1955 /* Write out the property to the prop table */
1956 lpi_write_config(d, 0xff, info->map->properties);
1958 /* Drop the physical mapping */
1959 its_send_discard(its_dev, event);
1961 /* and install the virtual one */
1962 its_send_vmapti(its_dev, event);
1964 /* Increment the number of VLPIs */
1965 its_dev->event_map.nr_vlpis++;
1971 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1973 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1974 struct its_vlpi_map *map;
1976 map = get_vlpi_map(d);
1978 if (!its_dev->event_map.vm || !map)
1981 /* Copy our mapping information to the incoming request */
1987 static int its_vlpi_unmap(struct irq_data *d)
1989 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1990 u32 event = its_get_event_id(d);
1992 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1995 /* Drop the virtual mapping */
1996 its_send_discard(its_dev, event);
1998 /* and restore the physical one */
1999 irqd_clr_forwarded_to_vcpu(d);
2000 its_send_mapti(its_dev, d->hwirq, event);
2001 lpi_update_config(d, 0xff, (lpi_prop_prio |
2005 /* Potentially unmap the VM from this ITS */
2006 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
2009 * Drop the refcount and make the device available again if
2010 * this was the last VLPI.
2012 if (!--its_dev->event_map.nr_vlpis) {
2013 its_dev->event_map.vm = NULL;
2014 kfree(its_dev->event_map.vlpi_maps);
2020 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
2022 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2024 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
2027 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
2028 lpi_update_config(d, 0xff, info->config);
2030 lpi_write_config(d, 0xff, info->config);
2031 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
2036 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2038 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2039 struct its_cmd_info *info = vcpu_info;
2042 if (!is_v4(its_dev->its))
2045 guard(raw_spinlock)(&its_dev->event_map.vlpi_lock);
2047 /* Unmap request? */
2049 return its_vlpi_unmap(d);
2051 switch (info->cmd_type) {
2053 return its_vlpi_map(d, info);
2056 return its_vlpi_get(d, info);
2058 case PROP_UPDATE_VLPI:
2059 case PROP_UPDATE_AND_INV_VLPI:
2060 return its_vlpi_prop_update(d, info);
2067 static struct irq_chip its_irq_chip = {
2069 .irq_mask = its_mask_irq,
2070 .irq_unmask = its_unmask_irq,
2071 .irq_eoi = irq_chip_eoi_parent,
2072 .irq_set_affinity = its_set_affinity,
2073 .irq_compose_msi_msg = its_irq_compose_msi_msg,
2074 .irq_set_irqchip_state = its_irq_set_irqchip_state,
2075 .irq_retrigger = its_irq_retrigger,
2076 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
2081 * How we allocate LPIs:
2083 * lpi_range_list contains ranges of LPIs that are to available to
2084 * allocate from. To allocate LPIs, just pick the first range that
2085 * fits the required allocation, and reduce it by the required
2086 * amount. Once empty, remove the range from the list.
2088 * To free a range of LPIs, add a free range to the list, sort it and
2089 * merge the result if the new range happens to be adjacent to an
2090 * already free block.
2092 * The consequence of the above is that allocation is cost is low, but
2093 * freeing is expensive. We assumes that freeing rarely occurs.
2095 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2097 static DEFINE_MUTEX(lpi_range_lock);
2098 static LIST_HEAD(lpi_range_list);
2101 struct list_head entry;
2106 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2108 struct lpi_range *range;
2110 range = kmalloc(sizeof(*range), GFP_KERNEL);
2112 range->base_id = base;
2119 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2121 struct lpi_range *range, *tmp;
2124 mutex_lock(&lpi_range_lock);
2126 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2127 if (range->span >= nr_lpis) {
2128 *base = range->base_id;
2129 range->base_id += nr_lpis;
2130 range->span -= nr_lpis;
2132 if (range->span == 0) {
2133 list_del(&range->entry);
2142 mutex_unlock(&lpi_range_lock);
2144 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2148 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2150 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2152 if (a->base_id + a->span != b->base_id)
2154 b->base_id = a->base_id;
2156 list_del(&a->entry);
2160 static int free_lpi_range(u32 base, u32 nr_lpis)
2162 struct lpi_range *new, *old;
2164 new = mk_lpi_range(base, nr_lpis);
2168 mutex_lock(&lpi_range_lock);
2170 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2171 if (old->base_id < base)
2175 * old is the last element with ->base_id smaller than base,
2176 * so new goes right after it. If there are no elements with
2177 * ->base_id smaller than base, &old->entry ends up pointing
2178 * at the head of the list, and inserting new it the start of
2179 * the list is the right thing to do in that case as well.
2181 list_add(&new->entry, &old->entry);
2183 * Now check if we can merge with the preceding and/or
2186 merge_lpi_ranges(old, new);
2187 merge_lpi_ranges(new, list_next_entry(new, entry));
2189 mutex_unlock(&lpi_range_lock);
2193 static int __init its_lpi_init(u32 id_bits)
2195 u32 lpis = (1UL << id_bits) - 8192;
2199 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2201 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2203 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2208 * Initializing the allocator is just the same as freeing the
2209 * full range of LPIs.
2211 err = free_lpi_range(8192, lpis);
2212 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2216 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2218 unsigned long *bitmap = NULL;
2222 err = alloc_lpi_range(nr_irqs, base);
2227 } while (nr_irqs > 0);
2235 bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2243 *base = *nr_ids = 0;
2248 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2250 WARN_ON(free_lpi_range(base, nr_ids));
2251 bitmap_free(bitmap);
2254 static void gic_reset_prop_table(void *va)
2256 /* Regular IRQ priority, Group-1, disabled */
2257 memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2259 /* Make sure the GIC will observe the written configuration */
2260 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2263 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2265 struct page *prop_page;
2267 prop_page = its_alloc_pages(gfp_flags,
2268 get_order(LPI_PROPBASE_SZ));
2272 gic_reset_prop_table(page_address(prop_page));
2277 static void its_free_prop_table(struct page *prop_page)
2279 its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
2282 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2284 phys_addr_t start, end, addr_end;
2288 * We don't bother checking for a kdump kernel as by
2289 * construction, the LPI tables are out of this kernel's
2292 if (is_kdump_kernel())
2295 addr_end = addr + size - 1;
2297 for_each_reserved_mem_range(i, &start, &end) {
2298 if (addr >= start && addr_end <= end)
2302 /* Not found, not a good sign... */
2303 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2305 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2309 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2311 if (efi_enabled(EFI_CONFIG_TABLES))
2312 return efi_mem_reserve_persistent(addr, size);
2317 static int __init its_setup_lpi_prop_table(void)
2319 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2322 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2323 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2325 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2326 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2329 gic_reset_prop_table(gic_rdists->prop_table_va);
2333 lpi_id_bits = min_t(u32,
2334 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2335 ITS_MAX_LPI_NRBITS);
2336 page = its_allocate_prop_table(GFP_NOWAIT);
2338 pr_err("Failed to allocate PROPBASE\n");
2342 gic_rdists->prop_table_pa = page_to_phys(page);
2343 gic_rdists->prop_table_va = page_address(page);
2344 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2348 pr_info("GICv3: using LPI property table @%pa\n",
2349 &gic_rdists->prop_table_pa);
2351 return its_lpi_init(lpi_id_bits);
2354 static const char *its_base_type_string[] = {
2355 [GITS_BASER_TYPE_DEVICE] = "Devices",
2356 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2357 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2358 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2359 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2360 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2361 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2364 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2366 u32 idx = baser - its->tables;
2368 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2371 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2374 u32 idx = baser - its->tables;
2376 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2377 baser->val = its_read_baser(its, baser);
2380 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2381 u64 cache, u64 shr, u32 order, bool indirect)
2383 u64 val = its_read_baser(its, baser);
2384 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2385 u64 type = GITS_BASER_TYPE(val);
2386 u64 baser_phys, tmp;
2387 u32 alloc_pages, psz;
2392 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2393 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2394 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2395 &its->phys_base, its_base_type_string[type],
2396 alloc_pages, GITS_BASER_PAGES_MAX);
2397 alloc_pages = GITS_BASER_PAGES_MAX;
2398 order = get_order(GITS_BASER_PAGES_MAX * psz);
2401 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2405 base = (void *)page_address(page);
2406 baser_phys = virt_to_phys(base);
2408 /* Check if the physical address of the memory is above 48bits */
2409 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2411 /* 52bit PA is supported only when PageSize=64K */
2412 if (psz != SZ_64K) {
2413 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2414 its_free_pages(base, order);
2418 /* Convert 52bit PA to 48bit field */
2419 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2424 (type << GITS_BASER_TYPE_SHIFT) |
2425 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2426 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2431 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2435 val |= GITS_BASER_PAGE_SIZE_4K;
2438 val |= GITS_BASER_PAGE_SIZE_16K;
2441 val |= GITS_BASER_PAGE_SIZE_64K;
2446 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2448 its_write_baser(its, baser, val);
2451 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2453 * Shareability didn't stick. Just use
2454 * whatever the read reported, which is likely
2455 * to be the only thing this redistributor
2456 * supports. If that's zero, make it
2457 * non-cacheable as well.
2459 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2461 cache = GITS_BASER_nC;
2467 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2468 &its->phys_base, its_base_type_string[type],
2470 its_free_pages(base, order);
2474 baser->order = order;
2477 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2479 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2480 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2481 its_base_type_string[type],
2482 (unsigned long)virt_to_phys(base),
2483 indirect ? "indirect" : "flat", (int)esz,
2484 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2489 static bool its_parse_indirect_baser(struct its_node *its,
2490 struct its_baser *baser,
2491 u32 *order, u32 ids)
2493 u64 tmp = its_read_baser(its, baser);
2494 u64 type = GITS_BASER_TYPE(tmp);
2495 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2496 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2497 u32 new_order = *order;
2498 u32 psz = baser->psz;
2499 bool indirect = false;
2501 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2502 if ((esz << ids) > (psz * 2)) {
2504 * Find out whether hw supports a single or two-level table by
2505 * table by reading bit at offset '62' after writing '1' to it.
2507 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2508 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2512 * The size of the lvl2 table is equal to ITS page size
2513 * which is 'psz'. For computing lvl1 table size,
2514 * subtract ID bits that sparse lvl2 table from 'ids'
2515 * which is reported by ITS hardware times lvl1 table
2518 ids -= ilog2(psz / (int)esz);
2519 esz = GITS_LVL1_ENTRY_SIZE;
2524 * Allocate as many entries as required to fit the
2525 * range of device IDs that the ITS can grok... The ID
2526 * space being incredibly sparse, this results in a
2527 * massive waste of memory if two-level device table
2528 * feature is not supported by hardware.
2530 new_order = max_t(u32, get_order(esz << ids), new_order);
2531 if (new_order > MAX_PAGE_ORDER) {
2532 new_order = MAX_PAGE_ORDER;
2533 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2534 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2535 &its->phys_base, its_base_type_string[type],
2536 device_ids(its), ids);
2544 static u32 compute_common_aff(u64 val)
2548 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2549 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2551 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2554 static u32 compute_its_aff(struct its_node *its)
2560 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2561 * the resulting affinity. We then use that to see if this match
2564 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2565 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2566 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2567 return compute_common_aff(val);
2570 static struct its_node *find_sibling_its(struct its_node *cur_its)
2572 struct its_node *its;
2575 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2578 aff = compute_its_aff(cur_its);
2580 list_for_each_entry(its, &its_nodes, entry) {
2583 if (!is_v4_1(its) || its == cur_its)
2586 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2589 if (aff != compute_its_aff(its))
2592 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2593 baser = its->tables[2].val;
2594 if (!(baser & GITS_BASER_VALID))
2603 static void its_free_tables(struct its_node *its)
2607 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2608 if (its->tables[i].base) {
2609 its_free_pages(its->tables[i].base, its->tables[i].order);
2610 its->tables[i].base = NULL;
2615 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2622 val = its_read_baser(its, baser);
2623 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2627 gpsz = GITS_BASER_PAGE_SIZE_64K;
2630 gpsz = GITS_BASER_PAGE_SIZE_16K;
2634 gpsz = GITS_BASER_PAGE_SIZE_4K;
2638 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2640 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2641 its_write_baser(its, baser, val);
2643 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2663 static int its_alloc_tables(struct its_node *its)
2665 u64 shr = GITS_BASER_InnerShareable;
2666 u64 cache = GITS_BASER_RaWaWb;
2669 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2670 /* erratum 24313: ignore memory access type */
2671 cache = GITS_BASER_nCnB;
2673 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2674 cache = GITS_BASER_nC;
2678 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2679 struct its_baser *baser = its->tables + i;
2680 u64 val = its_read_baser(its, baser);
2681 u64 type = GITS_BASER_TYPE(val);
2682 bool indirect = false;
2685 if (type == GITS_BASER_TYPE_NONE)
2688 if (its_probe_baser_psz(its, baser)) {
2689 its_free_tables(its);
2693 order = get_order(baser->psz);
2696 case GITS_BASER_TYPE_DEVICE:
2697 indirect = its_parse_indirect_baser(its, baser, &order,
2701 case GITS_BASER_TYPE_VCPU:
2703 struct its_node *sibling;
2706 if ((sibling = find_sibling_its(its))) {
2707 *baser = sibling->tables[2];
2708 its_write_baser(its, baser, baser->val);
2713 indirect = its_parse_indirect_baser(its, baser, &order,
2714 ITS_MAX_VPEID_BITS);
2718 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2720 its_free_tables(its);
2724 /* Update settings which will be used for next BASERn */
2725 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2726 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2732 static u64 inherit_vpe_l1_table_from_its(void)
2734 struct its_node *its;
2738 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2739 aff = compute_common_aff(val);
2741 list_for_each_entry(its, &its_nodes, entry) {
2747 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2750 if (aff != compute_its_aff(its))
2753 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2754 baser = its->tables[2].val;
2755 if (!(baser & GITS_BASER_VALID))
2758 /* We have a winner! */
2759 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2761 val = GICR_VPROPBASER_4_1_VALID;
2762 if (baser & GITS_BASER_INDIRECT)
2763 val |= GICR_VPROPBASER_4_1_INDIRECT;
2764 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2765 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2766 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2767 case GIC_PAGE_SIZE_64K:
2768 addr = GITS_BASER_ADDR_48_to_52(baser);
2771 addr = baser & GENMASK_ULL(47, 12);
2774 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2775 if (rdists_support_shareable()) {
2776 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2777 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2778 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2779 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2781 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2783 *this_cpu_ptr(&local_4_1_its) = its;
2790 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2796 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2797 aff = compute_common_aff(val);
2799 for_each_possible_cpu(cpu) {
2800 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2802 if (!base || cpu == smp_processor_id())
2805 val = gic_read_typer(base + GICR_TYPER);
2806 if (aff != compute_common_aff(val))
2810 * At this point, we have a victim. This particular CPU
2811 * has already booted, and has an affinity that matches
2812 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2813 * Make sure we don't write the Z bit in that case.
2815 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2816 val &= ~GICR_VPROPBASER_4_1_Z;
2818 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2819 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2821 *this_cpu_ptr(&local_4_1_its) = *per_cpu_ptr(&local_4_1_its, cpu);
2828 static bool allocate_vpe_l2_table(int cpu, u32 id)
2830 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2831 unsigned int psz, esz, idx, npg, gpsz;
2836 if (!gic_rdists->has_rvpeid)
2839 /* Skip non-present CPUs */
2843 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2845 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2846 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2847 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2853 case GIC_PAGE_SIZE_4K:
2856 case GIC_PAGE_SIZE_16K:
2859 case GIC_PAGE_SIZE_64K:
2864 /* Don't allow vpe_id that exceeds single, flat table limit */
2865 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2866 return (id < (npg * psz / (esz * SZ_8)));
2868 /* Compute 1st level table index & check if that exceeds table limit */
2869 idx = id >> ilog2(psz / (esz * SZ_8));
2870 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2873 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2875 /* Allocate memory for 2nd level table */
2877 page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2881 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2882 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2883 gic_flush_dcache_to_poc(page_address(page), psz);
2885 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2887 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2888 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2889 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2891 /* Ensure updated table contents are visible to RD hardware */
2898 static int allocate_vpe_l1_table(void)
2900 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2901 u64 val, gpsz, npg, pa;
2902 unsigned int psz = SZ_64K;
2903 unsigned int np, epp, esz;
2906 if (!gic_rdists->has_rvpeid)
2910 * if VPENDBASER.Valid is set, disable any previously programmed
2911 * VPE by setting PendingLast while clearing Valid. This has the
2912 * effect of making sure no doorbell will be generated and we can
2913 * then safely clear VPROPBASER.Valid.
2915 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2916 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2917 vlpi_base + GICR_VPENDBASER);
2920 * If we can inherit the configuration from another RD, let's do
2921 * so. Otherwise, we have to go through the allocation process. We
2922 * assume that all RDs have the exact same requirements, as
2923 * nothing will work otherwise.
2925 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2926 if (val & GICR_VPROPBASER_4_1_VALID)
2929 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2930 if (!gic_data_rdist()->vpe_table_mask)
2933 val = inherit_vpe_l1_table_from_its();
2934 if (val & GICR_VPROPBASER_4_1_VALID)
2937 /* First probe the page size */
2938 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2939 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2940 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2941 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2942 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2946 gpsz = GIC_PAGE_SIZE_4K;
2948 case GIC_PAGE_SIZE_4K:
2951 case GIC_PAGE_SIZE_16K:
2954 case GIC_PAGE_SIZE_64K:
2960 * Start populating the register from scratch, including RO fields
2961 * (which we want to print in debug cases...)
2964 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2965 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2967 /* How many entries per GIC page? */
2969 epp = psz / (esz * SZ_8);
2972 * If we need more than just a single L1 page, flag the table
2973 * as indirect and compute the number of required L1 pages.
2975 if (epp < ITS_MAX_VPEID) {
2978 val |= GICR_VPROPBASER_4_1_INDIRECT;
2980 /* Number of L2 pages required to cover the VPEID space */
2981 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2983 /* Number of L1 pages to point to the L2 pages */
2984 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2989 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2991 /* Right, that's the number of CPU pages we need for L1 */
2992 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2994 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2995 np, npg, psz, epp, esz);
2996 page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
3000 gic_data_rdist()->vpe_l1_base = page_address(page);
3001 pa = virt_to_phys(page_address(page));
3002 WARN_ON(!IS_ALIGNED(pa, psz));
3004 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
3005 if (rdists_support_shareable()) {
3006 val |= GICR_VPROPBASER_RaWb;
3007 val |= GICR_VPROPBASER_InnerShareable;
3009 val |= GICR_VPROPBASER_4_1_Z;
3010 val |= GICR_VPROPBASER_4_1_VALID;
3013 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3014 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
3016 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
3017 smp_processor_id(), val,
3018 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
3023 static int its_alloc_collections(struct its_node *its)
3027 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
3029 if (!its->collections)
3032 for (i = 0; i < nr_cpu_ids; i++)
3033 its->collections[i].target_address = ~0ULL;
3038 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
3040 struct page *pend_page;
3042 pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
3046 /* Make sure the GIC will observe the zero-ed page */
3047 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
3052 static void its_free_pending_table(struct page *pt)
3054 its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
3058 * Booting with kdump and LPIs enabled is generally fine. Any other
3059 * case is wrong in the absence of firmware/EFI support.
3061 static bool enabled_lpis_allowed(void)
3066 /* Check whether the property table is in a reserved region */
3067 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3068 addr = val & GENMASK_ULL(51, 12);
3070 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3073 static int __init allocate_lpi_tables(void)
3079 * If LPIs are enabled while we run this from the boot CPU,
3080 * flag the RD tables as pre-allocated if the stars do align.
3082 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3083 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3084 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3085 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3086 pr_info("GICv3: Using preallocated redistributor tables\n");
3089 err = its_setup_lpi_prop_table();
3094 * We allocate all the pending tables anyway, as we may have a
3095 * mix of RDs that have had LPIs enabled, and some that
3096 * don't. We'll free the unused ones as each CPU comes online.
3098 for_each_possible_cpu(cpu) {
3099 struct page *pend_page;
3101 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3103 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3107 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3113 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3115 u32 count = 1000000; /* 1s! */
3120 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3121 clean = !(val & GICR_VPENDBASER_Dirty);
3127 } while (!clean && count);
3129 if (unlikely(!clean))
3130 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3135 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3139 /* Make sure we wait until the RD is done with the initial scan */
3140 val = read_vpend_dirty_clear(vlpi_base);
3141 val &= ~GICR_VPENDBASER_Valid;
3144 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3146 val = read_vpend_dirty_clear(vlpi_base);
3147 if (unlikely(val & GICR_VPENDBASER_Dirty))
3148 val |= GICR_VPENDBASER_PendingLast;
3153 static void its_cpu_init_lpis(void)
3155 void __iomem *rbase = gic_data_rdist_rd_base();
3156 struct page *pend_page;
3160 if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3163 val = readl_relaxed(rbase + GICR_CTLR);
3164 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3165 (val & GICR_CTLR_ENABLE_LPIS)) {
3167 * Check that we get the same property table on all
3168 * RDs. If we don't, this is hopeless.
3170 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3171 paddr &= GENMASK_ULL(51, 12);
3172 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3173 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3175 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3176 paddr &= GENMASK_ULL(51, 16);
3178 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3179 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3184 pend_page = gic_data_rdist()->pend_page;
3185 paddr = page_to_phys(pend_page);
3188 val = (gic_rdists->prop_table_pa |
3189 GICR_PROPBASER_InnerShareable |
3190 GICR_PROPBASER_RaWaWb |
3191 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3193 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3194 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3196 if (!rdists_support_shareable())
3197 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3199 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3200 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3202 * The HW reports non-shareable, we must
3203 * remove the cacheability attributes as
3206 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3207 GICR_PROPBASER_CACHEABILITY_MASK);
3208 val |= GICR_PROPBASER_nC;
3209 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3211 pr_info_once("GIC: using cache flushing for LPI property table\n");
3212 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3216 val = (page_to_phys(pend_page) |
3217 GICR_PENDBASER_InnerShareable |
3218 GICR_PENDBASER_RaWaWb);
3220 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3221 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3223 if (!rdists_support_shareable())
3224 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3226 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3228 * The HW reports non-shareable, we must remove the
3229 * cacheability attributes as well.
3231 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3232 GICR_PENDBASER_CACHEABILITY_MASK);
3233 val |= GICR_PENDBASER_nC;
3234 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3238 val = readl_relaxed(rbase + GICR_CTLR);
3239 val |= GICR_CTLR_ENABLE_LPIS;
3240 writel_relaxed(val, rbase + GICR_CTLR);
3243 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3244 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3247 * It's possible for CPU to receive VLPIs before it is
3248 * scheduled as a vPE, especially for the first CPU, and the
3249 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3250 * as out of range and dropped by GIC.
3251 * So we initialize IDbits to known value to avoid VLPI drop.
3253 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3254 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3255 smp_processor_id(), val);
3256 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3259 * Also clear Valid bit of GICR_VPENDBASER, in case some
3260 * ancient programming gets left in and has possibility of
3261 * corrupting memory.
3263 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3266 if (allocate_vpe_l1_table()) {
3268 * If the allocation has failed, we're in massive trouble.
3269 * Disable direct injection, and pray that no VM was
3270 * already running...
3272 gic_rdists->has_rvpeid = false;
3273 gic_rdists->has_vlpis = false;
3276 /* Make sure the GIC has seen the above */
3278 gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3279 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3281 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3282 "reserved" : "allocated",
3286 static void its_cpu_init_collection(struct its_node *its)
3288 int cpu = smp_processor_id();
3291 /* avoid cross node collections and its mapping */
3292 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3293 struct device_node *cpu_node;
3295 cpu_node = of_get_cpu_node(cpu, NULL);
3296 if (its->numa_node != NUMA_NO_NODE &&
3297 its->numa_node != of_node_to_nid(cpu_node))
3302 * We now have to bind each collection to its target
3305 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3307 * This ITS wants the physical address of the
3310 target = gic_data_rdist()->phys_base;
3312 /* This ITS wants a linear CPU number. */
3313 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3314 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3317 /* Perform collection mapping */
3318 its->collections[cpu].target_address = target;
3319 its->collections[cpu].col_id = cpu;
3321 its_send_mapc(its, &its->collections[cpu], 1);
3322 its_send_invall(its, &its->collections[cpu]);
3325 static void its_cpu_init_collections(void)
3327 struct its_node *its;
3329 raw_spin_lock(&its_lock);
3331 list_for_each_entry(its, &its_nodes, entry)
3332 its_cpu_init_collection(its);
3334 raw_spin_unlock(&its_lock);
3337 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3339 struct its_device *its_dev = NULL, *tmp;
3340 unsigned long flags;
3342 raw_spin_lock_irqsave(&its->lock, flags);
3344 list_for_each_entry(tmp, &its->its_device_list, entry) {
3345 if (tmp->device_id == dev_id) {
3351 raw_spin_unlock_irqrestore(&its->lock, flags);
3356 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3360 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3361 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3362 return &its->tables[i];
3368 static bool its_alloc_table_entry(struct its_node *its,
3369 struct its_baser *baser, u32 id)
3375 /* Don't allow device id that exceeds single, flat table limit */
3376 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3377 if (!(baser->val & GITS_BASER_INDIRECT))
3378 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3380 /* Compute 1st level table index & check if that exceeds table limit */
3381 idx = id >> ilog2(baser->psz / esz);
3382 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3385 table = baser->base;
3387 /* Allocate memory for 2nd level table */
3389 page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3390 get_order(baser->psz));
3394 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3395 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3396 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3398 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3400 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3401 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3402 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3404 /* Ensure updated table contents are visible to ITS hardware */
3411 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3413 struct its_baser *baser;
3415 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3417 /* Don't allow device id that exceeds ITS hardware limit */
3419 return (ilog2(dev_id) < device_ids(its));
3421 return its_alloc_table_entry(its, baser, dev_id);
3424 static bool its_alloc_vpe_table(u32 vpe_id)
3426 struct its_node *its;
3430 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3431 * could try and only do it on ITSs corresponding to devices
3432 * that have interrupts targeted at this VPE, but the
3433 * complexity becomes crazy (and you have tons of memory
3436 list_for_each_entry(its, &its_nodes, entry) {
3437 struct its_baser *baser;
3442 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3446 if (!its_alloc_table_entry(its, baser, vpe_id))
3450 /* Non v4.1? No need to iterate RDs and go back early. */
3451 if (!gic_rdists->has_rvpeid)
3455 * Make sure the L2 tables are allocated for all copies of
3456 * the L1 table on *all* v4.1 RDs.
3458 for_each_possible_cpu(cpu) {
3459 if (!allocate_vpe_l2_table(cpu, vpe_id))
3466 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3467 int nvecs, bool alloc_lpis)
3469 struct its_device *dev;
3470 unsigned long *lpi_map = NULL;
3471 unsigned long flags;
3472 u16 *col_map = NULL;
3479 if (!its_alloc_device_table(its, dev_id))
3482 if (WARN_ON(!is_power_of_2(nvecs)))
3483 nvecs = roundup_pow_of_two(nvecs);
3486 * Even if the device wants a single LPI, the ITT must be
3487 * sized as a power of two (and you need at least one bit...).
3489 nr_ites = max(2, nvecs);
3490 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3491 sz = max(sz, ITS_ITT_ALIGN);
3493 itt = itt_alloc_pool(its->numa_node, sz);
3495 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3498 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3500 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3503 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3508 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3510 itt_free_pool(itt, sz);
3511 bitmap_free(lpi_map);
3516 gic_flush_dcache_to_poc(itt, sz);
3521 dev->nr_ites = nr_ites;
3522 dev->event_map.lpi_map = lpi_map;
3523 dev->event_map.col_map = col_map;
3524 dev->event_map.lpi_base = lpi_base;
3525 dev->event_map.nr_lpis = nr_lpis;
3526 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3527 dev->device_id = dev_id;
3528 INIT_LIST_HEAD(&dev->entry);
3530 raw_spin_lock_irqsave(&its->lock, flags);
3531 list_add(&dev->entry, &its->its_device_list);
3532 raw_spin_unlock_irqrestore(&its->lock, flags);
3534 /* Map device to its ITT */
3535 its_send_mapd(dev, 1);
3540 static void its_free_device(struct its_device *its_dev)
3542 unsigned long flags;
3544 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3545 list_del(&its_dev->entry);
3546 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3547 kfree(its_dev->event_map.col_map);
3548 itt_free_pool(its_dev->itt, its_dev->itt_sz);
3552 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3556 /* Find a free LPI region in lpi_map and allocate them. */
3557 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3558 dev->event_map.nr_lpis,
3559 get_count_order(nvecs));
3563 *hwirq = dev->event_map.lpi_base + idx;
3568 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3569 int nvec, msi_alloc_info_t *info)
3571 struct its_node *its;
3572 struct its_device *its_dev;
3573 struct msi_domain_info *msi_info;
3578 * We ignore "dev" entirely, and rely on the dev_id that has
3579 * been passed via the scratchpad. This limits this domain's
3580 * usefulness to upper layers that definitely know that they
3581 * are built on top of the ITS.
3583 dev_id = info->scratchpad[0].ul;
3585 msi_info = msi_get_domain_info(domain);
3586 its = msi_info->data;
3588 if (!gic_rdists->has_direct_lpi &&
3590 vpe_proxy.dev->its == its &&
3591 dev_id == vpe_proxy.dev->device_id) {
3592 /* Bad luck. Get yourself a better implementation */
3593 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3598 mutex_lock(&its->dev_alloc_lock);
3599 its_dev = its_find_device(its, dev_id);
3602 * We already have seen this ID, probably through
3603 * another alias (PCI bridge of some sort). No need to
3604 * create the device.
3606 its_dev->shared = true;
3607 pr_debug("Reusing ITT for devID %x\n", dev_id);
3611 its_dev = its_create_device(its, dev_id, nvec, true);
3617 if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3618 its_dev->shared = true;
3620 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3622 mutex_unlock(&its->dev_alloc_lock);
3623 info->scratchpad[0].ptr = its_dev;
3627 static void its_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *info)
3629 struct its_device *its_dev = info->scratchpad[0].ptr;
3631 guard(mutex)(&its_dev->its->dev_alloc_lock);
3633 /* If the device is shared, keep everything around */
3634 if (its_dev->shared)
3637 /* LPIs should have been already unmapped at this stage */
3638 if (WARN_ON_ONCE(!bitmap_empty(its_dev->event_map.lpi_map,
3639 its_dev->event_map.nr_lpis)))
3642 its_lpi_free(its_dev->event_map.lpi_map,
3643 its_dev->event_map.lpi_base,
3644 its_dev->event_map.nr_lpis);
3646 /* Unmap device/itt, and get rid of the tracking */
3647 its_send_mapd(its_dev, 0);
3648 its_free_device(its_dev);
3651 static struct msi_domain_ops its_msi_domain_ops = {
3652 .msi_prepare = its_msi_prepare,
3653 .msi_teardown = its_msi_teardown,
3656 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3658 irq_hw_number_t hwirq)
3660 struct irq_fwspec fwspec;
3662 if (irq_domain_get_of_node(domain->parent)) {
3663 fwspec.fwnode = domain->parent->fwnode;
3664 fwspec.param_count = 3;
3665 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3666 fwspec.param[1] = hwirq;
3667 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3668 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3669 fwspec.fwnode = domain->parent->fwnode;
3670 fwspec.param_count = 2;
3671 fwspec.param[0] = hwirq;
3672 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3677 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3680 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3681 unsigned int nr_irqs, void *args)
3683 msi_alloc_info_t *info = args;
3684 struct its_device *its_dev = info->scratchpad[0].ptr;
3685 struct its_node *its = its_dev->its;
3686 struct irq_data *irqd;
3687 irq_hw_number_t hwirq;
3691 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3695 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3699 for (i = 0; i < nr_irqs; i++) {
3700 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3704 irq_domain_set_hwirq_and_chip(domain, virq + i,
3705 hwirq + i, &its_irq_chip, its_dev);
3706 irqd = irq_get_irq_data(virq + i);
3707 irqd_set_single_target(irqd);
3708 irqd_set_affinity_on_activate(irqd);
3709 irqd_set_resend_when_in_progress(irqd);
3710 pr_debug("ID:%d pID:%d vID:%d\n",
3711 (int)(hwirq + i - its_dev->event_map.lpi_base),
3712 (int)(hwirq + i), virq + i);
3718 static int its_irq_domain_activate(struct irq_domain *domain,
3719 struct irq_data *d, bool reserve)
3721 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3722 u32 event = its_get_event_id(d);
3725 cpu = its_select_cpu(d, cpu_online_mask);
3726 if (cpu < 0 || cpu >= nr_cpu_ids)
3729 its_inc_lpi_count(d, cpu);
3730 its_dev->event_map.col_map[event] = cpu;
3731 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3733 /* Map the GIC IRQ and event to the device */
3734 its_send_mapti(its_dev, d->hwirq, event);
3738 static void its_irq_domain_deactivate(struct irq_domain *domain,
3741 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3742 u32 event = its_get_event_id(d);
3744 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3745 /* Stop the delivery of interrupts */
3746 its_send_discard(its_dev, event);
3749 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3750 unsigned int nr_irqs)
3752 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3753 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3756 bitmap_release_region(its_dev->event_map.lpi_map,
3757 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3758 get_count_order(nr_irqs));
3760 for (i = 0; i < nr_irqs; i++) {
3761 struct irq_data *data = irq_domain_get_irq_data(domain,
3763 /* Nuke the entry in the domain */
3764 irq_domain_reset_irq_data(data);
3767 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3770 static const struct irq_domain_ops its_domain_ops = {
3771 .select = msi_lib_irq_domain_select,
3772 .alloc = its_irq_domain_alloc,
3773 .free = its_irq_domain_free,
3774 .activate = its_irq_domain_activate,
3775 .deactivate = its_irq_domain_deactivate,
3781 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3782 * likely), the only way to perform an invalidate is to use a fake
3783 * device to issue an INV command, implying that the LPI has first
3784 * been mapped to some event on that device. Since this is not exactly
3785 * cheap, we try to keep that mapping around as long as possible, and
3786 * only issue an UNMAP if we're short on available slots.
3788 * Broken by design(tm).
3790 * GICv4.1, on the other hand, mandates that we're able to invalidate
3791 * by writing to a MMIO register. It doesn't implement the whole of
3792 * DirectLPI, but that's good enough. And most of the time, we don't
3793 * even have to invalidate anything, as the redistributor can be told
3794 * whether to generate a doorbell or not (we thus leave it enabled,
3797 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3799 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3800 if (gic_rdists->has_rvpeid)
3803 /* Already unmapped? */
3804 if (vpe->vpe_proxy_event == -1)
3807 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3808 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3811 * We don't track empty slots at all, so let's move the
3812 * next_victim pointer if we can quickly reuse that slot
3813 * instead of nuking an existing entry. Not clear that this is
3814 * always a win though, and this might just generate a ripple
3815 * effect... Let's just hope VPEs don't migrate too often.
3817 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3818 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3820 vpe->vpe_proxy_event = -1;
3823 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3825 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3826 if (gic_rdists->has_rvpeid)
3829 if (!gic_rdists->has_direct_lpi) {
3830 unsigned long flags;
3832 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3833 its_vpe_db_proxy_unmap_locked(vpe);
3834 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3838 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3840 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3841 if (gic_rdists->has_rvpeid)
3844 /* Already mapped? */
3845 if (vpe->vpe_proxy_event != -1)
3848 /* This slot was already allocated. Kick the other VPE out. */
3849 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3850 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3852 /* Map the new VPE instead */
3853 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3854 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3855 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3857 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3858 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3861 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3863 unsigned long flags;
3864 struct its_collection *target_col;
3866 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3867 if (gic_rdists->has_rvpeid)
3870 if (gic_rdists->has_direct_lpi) {
3871 void __iomem *rdbase;
3873 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3874 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3875 wait_for_syncr(rdbase);
3880 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3882 its_vpe_db_proxy_map_locked(vpe);
3884 target_col = &vpe_proxy.dev->its->collections[to];
3885 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3886 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3888 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3891 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
3893 void __iomem *rdbase;
3896 val = GICR_INVALLR_V;
3897 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3899 guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
3900 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
3901 gic_write_lpir(val, rdbase + GICR_INVALLR);
3902 wait_for_syncr(rdbase);
3905 static int its_vpe_set_affinity(struct irq_data *d,
3906 const struct cpumask *mask_val,
3909 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3910 unsigned int from, cpu = nr_cpu_ids;
3911 struct cpumask *table_mask;
3912 struct its_node *its;
3913 unsigned long flags;
3916 * Check if we're racing against a VPE being destroyed, for
3917 * which we don't want to allow a VMOVP.
3919 if (!atomic_read(&vpe->vmapp_count)) {
3920 if (gic_requires_eager_mapping())
3924 * If we lazily map the VPEs, this isn't an error and
3925 * we can exit cleanly.
3927 cpu = cpumask_first(mask_val);
3928 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3929 return IRQ_SET_MASK_OK_DONE;
3933 * Changing affinity is mega expensive, so let's be as lazy as
3934 * we can and only do it if we really have to. Also, if mapped
3935 * into the proxy device, we need to move the doorbell
3936 * interrupt to its new location.
3938 * Another thing is that changing the affinity of a vPE affects
3939 * *other interrupts* such as all the vLPIs that are routed to
3940 * this vPE. This means that the irq_desc lock is not enough to
3941 * protect us, and that we must ensure nobody samples vpe->col_idx
3942 * during the update, hence the lock below which must also be
3943 * taken on any vLPI handling path that evaluates vpe->col_idx.
3945 * Finally, we must protect ourselves against concurrent updates of
3946 * the mapping state on this VM should the ITS list be in use (see
3947 * the shortcut in its_send_vmovp() otherewise).
3950 raw_spin_lock(&vpe->its_vm->vmapp_lock);
3952 from = vpe_to_cpuid_lock(vpe, &flags);
3953 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3956 * If we are offered another CPU in the same GICv4.1 ITS
3957 * affinity, pick this one. Otherwise, any CPU will do.
3960 cpu = cpumask_any_and(mask_val, table_mask);
3961 if (cpu < nr_cpu_ids) {
3962 if (cpumask_test_cpu(from, mask_val) &&
3963 cpumask_test_cpu(from, table_mask))
3966 cpu = cpumask_first(mask_val);
3974 its_send_vmovp(vpe);
3976 its = find_4_1_its();
3977 if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
3978 its_vpe_4_1_invall_locked(cpu, vpe);
3980 its_vpe_db_proxy_move(vpe, from, cpu);
3983 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3984 vpe_to_cpuid_unlock(vpe, flags);
3987 raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3989 return IRQ_SET_MASK_OK_DONE;
3992 static void its_wait_vpt_parse_complete(void)
3994 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3997 if (!gic_rdists->has_vpend_valid_dirty)
4000 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
4002 !(val & GICR_VPENDBASER_Dirty),
4006 static void its_vpe_schedule(struct its_vpe *vpe)
4008 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4011 /* Schedule the VPE */
4012 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
4013 GENMASK_ULL(51, 12);
4014 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
4015 if (rdists_support_shareable()) {
4016 val |= GICR_VPROPBASER_RaWb;
4017 val |= GICR_VPROPBASER_InnerShareable;
4019 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
4021 val = virt_to_phys(page_address(vpe->vpt_page)) &
4022 GENMASK_ULL(51, 16);
4023 if (rdists_support_shareable()) {
4024 val |= GICR_VPENDBASER_RaWaWb;
4025 val |= GICR_VPENDBASER_InnerShareable;
4028 * There is no good way of finding out if the pending table is
4029 * empty as we can race against the doorbell interrupt very
4030 * easily. So in the end, vpe->pending_last is only an
4031 * indication that the vcpu has something pending, not one
4032 * that the pending table is empty. A good implementation
4033 * would be able to read its coarse map pretty quickly anyway,
4034 * making this a tolerable issue.
4036 val |= GICR_VPENDBASER_PendingLast;
4037 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
4038 val |= GICR_VPENDBASER_Valid;
4039 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4042 static void its_vpe_deschedule(struct its_vpe *vpe)
4044 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4047 val = its_clear_vpend_valid(vlpi_base, 0, 0);
4049 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
4050 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4053 static void its_vpe_invall(struct its_vpe *vpe)
4055 struct its_node *its;
4057 guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
4059 list_for_each_entry(its, &its_nodes, entry) {
4063 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
4067 * Sending a VINVALL to a single ITS is enough, as all
4068 * we need is to reach the redistributors.
4070 its_send_vinvall(its, vpe);
4075 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4077 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4078 struct its_cmd_info *info = vcpu_info;
4080 switch (info->cmd_type) {
4082 its_vpe_schedule(vpe);
4085 case DESCHEDULE_VPE:
4086 its_vpe_deschedule(vpe);
4090 its_wait_vpt_parse_complete();
4094 its_vpe_invall(vpe);
4102 static void its_vpe_send_cmd(struct its_vpe *vpe,
4103 void (*cmd)(struct its_device *, u32))
4105 unsigned long flags;
4107 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
4109 its_vpe_db_proxy_map_locked(vpe);
4110 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4112 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4115 static void its_vpe_send_inv(struct irq_data *d)
4117 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4119 if (gic_rdists->has_direct_lpi)
4120 __direct_lpi_inv(d, d->parent_data->hwirq);
4122 its_vpe_send_cmd(vpe, its_send_inv);
4125 static void its_vpe_mask_irq(struct irq_data *d)
4128 * We need to unmask the LPI, which is described by the parent
4129 * irq_data. Instead of calling into the parent (which won't
4130 * exactly do the right thing, let's simply use the
4131 * parent_data pointer. Yes, I'm naughty.
4133 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4134 its_vpe_send_inv(d);
4137 static void its_vpe_unmask_irq(struct irq_data *d)
4139 /* Same hack as above... */
4140 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4141 its_vpe_send_inv(d);
4144 static int its_vpe_set_irqchip_state(struct irq_data *d,
4145 enum irqchip_irq_state which,
4148 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4150 if (which != IRQCHIP_STATE_PENDING)
4153 if (gic_rdists->has_direct_lpi) {
4154 void __iomem *rdbase;
4156 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4158 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4160 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4161 wait_for_syncr(rdbase);
4165 its_vpe_send_cmd(vpe, its_send_int);
4167 its_vpe_send_cmd(vpe, its_send_clear);
4173 static int its_vpe_retrigger(struct irq_data *d)
4175 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4178 static struct irq_chip its_vpe_irq_chip = {
4179 .name = "GICv4-vpe",
4180 .irq_mask = its_vpe_mask_irq,
4181 .irq_unmask = its_vpe_unmask_irq,
4182 .irq_eoi = irq_chip_eoi_parent,
4183 .irq_set_affinity = its_vpe_set_affinity,
4184 .irq_retrigger = its_vpe_retrigger,
4185 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4186 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4189 static struct its_node *find_4_1_its(void)
4191 struct its_node *its = *this_cpu_ptr(&local_4_1_its);
4194 list_for_each_entry(its, &its_nodes, entry) {
4206 static void its_vpe_4_1_send_inv(struct irq_data *d)
4208 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4209 struct its_node *its;
4212 * GICv4.1 wants doorbells to be invalidated using the
4213 * INVDB command in order to be broadcast to all RDs. Send
4214 * it to the first valid ITS, and let the HW do its magic.
4216 its = find_4_1_its();
4218 its_send_invdb(its, vpe);
4221 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4223 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4224 its_vpe_4_1_send_inv(d);
4227 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4229 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4230 its_vpe_4_1_send_inv(d);
4233 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4234 struct its_cmd_info *info)
4236 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4239 /* Schedule the VPE */
4240 val |= GICR_VPENDBASER_Valid;
4241 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4242 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4243 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4245 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4248 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4249 struct its_cmd_info *info)
4251 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4255 unsigned long flags;
4258 * vPE is going to block: make the vPE non-resident with
4259 * PendingLast clear and DB set. The GIC guarantees that if
4260 * we read-back PendingLast clear, then a doorbell will be
4261 * delivered when an interrupt comes.
4263 * Note the locking to deal with the concurrent update of
4264 * pending_last from the doorbell interrupt handler that can
4267 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4268 val = its_clear_vpend_valid(vlpi_base,
4269 GICR_VPENDBASER_PendingLast,
4270 GICR_VPENDBASER_4_1_DB);
4271 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4272 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4275 * We're not blocking, so just make the vPE non-resident
4276 * with PendingLast set, indicating that we'll be back.
4278 val = its_clear_vpend_valid(vlpi_base,
4280 GICR_VPENDBASER_PendingLast);
4281 vpe->pending_last = true;
4285 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4287 unsigned long flags;
4290 /* Target the redistributor this vPE is currently known on */
4291 cpu = vpe_to_cpuid_lock(vpe, &flags);
4292 its_vpe_4_1_invall_locked(cpu, vpe);
4293 vpe_to_cpuid_unlock(vpe, flags);
4296 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4298 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4299 struct its_cmd_info *info = vcpu_info;
4301 switch (info->cmd_type) {
4303 its_vpe_4_1_schedule(vpe, info);
4306 case DESCHEDULE_VPE:
4307 its_vpe_4_1_deschedule(vpe, info);
4311 its_wait_vpt_parse_complete();
4315 its_vpe_4_1_invall(vpe);
4323 static struct irq_chip its_vpe_4_1_irq_chip = {
4324 .name = "GICv4.1-vpe",
4325 .irq_mask = its_vpe_4_1_mask_irq,
4326 .irq_unmask = its_vpe_4_1_unmask_irq,
4327 .irq_eoi = irq_chip_eoi_parent,
4328 .irq_set_affinity = its_vpe_set_affinity,
4329 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4332 static void its_configure_sgi(struct irq_data *d, bool clear)
4334 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4335 struct its_cmd_desc desc;
4337 desc.its_vsgi_cmd.vpe = vpe;
4338 desc.its_vsgi_cmd.sgi = d->hwirq;
4339 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4340 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4341 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4342 desc.its_vsgi_cmd.clear = clear;
4345 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4346 * destination VPE is mapped there. Since we map them eagerly at
4347 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4349 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4352 static void its_sgi_mask_irq(struct irq_data *d)
4354 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4356 vpe->sgi_config[d->hwirq].enabled = false;
4357 its_configure_sgi(d, false);
4360 static void its_sgi_unmask_irq(struct irq_data *d)
4362 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4364 vpe->sgi_config[d->hwirq].enabled = true;
4365 its_configure_sgi(d, false);
4368 static int its_sgi_set_affinity(struct irq_data *d,
4369 const struct cpumask *mask_val,
4373 * There is no notion of affinity for virtual SGIs, at least
4374 * not on the host (since they can only be targeting a vPE).
4375 * Tell the kernel we've done whatever it asked for.
4377 irq_data_update_effective_affinity(d, mask_val);
4378 return IRQ_SET_MASK_OK;
4381 static int its_sgi_set_irqchip_state(struct irq_data *d,
4382 enum irqchip_irq_state which,
4385 if (which != IRQCHIP_STATE_PENDING)
4389 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4390 struct its_node *its = find_4_1_its();
4393 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4394 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4395 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4397 its_configure_sgi(d, true);
4403 static int its_sgi_get_irqchip_state(struct irq_data *d,
4404 enum irqchip_irq_state which, bool *val)
4406 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4408 unsigned long flags;
4409 u32 count = 1000000; /* 1s! */
4413 if (which != IRQCHIP_STATE_PENDING)
4417 * Locking galore! We can race against two different events:
4419 * - Concurrent vPE affinity change: we must make sure it cannot
4420 * happen, or we'll talk to the wrong redistributor. This is
4421 * identical to what happens with vLPIs.
4423 * - Concurrent VSGIPENDR access: As it involves accessing two
4424 * MMIO registers, this must be made atomic one way or another.
4426 cpu = vpe_to_cpuid_lock(vpe, &flags);
4427 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4428 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4429 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4431 status = readl_relaxed(base + GICR_VSGIPENDR);
4432 if (!(status & GICR_VSGIPENDR_BUSY))
4437 pr_err_ratelimited("Unable to get SGI status\n");
4445 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4446 vpe_to_cpuid_unlock(vpe, flags);
4451 *val = !!(status & (1 << d->hwirq));
4456 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4458 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4459 struct its_cmd_info *info = vcpu_info;
4461 switch (info->cmd_type) {
4462 case PROP_UPDATE_VSGI:
4463 vpe->sgi_config[d->hwirq].priority = info->priority;
4464 vpe->sgi_config[d->hwirq].group = info->group;
4465 its_configure_sgi(d, false);
4473 static struct irq_chip its_sgi_irq_chip = {
4474 .name = "GICv4.1-sgi",
4475 .irq_mask = its_sgi_mask_irq,
4476 .irq_unmask = its_sgi_unmask_irq,
4477 .irq_set_affinity = its_sgi_set_affinity,
4478 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4479 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4480 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4483 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4484 unsigned int virq, unsigned int nr_irqs,
4487 struct its_vpe *vpe = args;
4490 /* Yes, we do want 16 SGIs */
4491 WARN_ON(nr_irqs != 16);
4493 for (i = 0; i < 16; i++) {
4494 vpe->sgi_config[i].priority = 0;
4495 vpe->sgi_config[i].enabled = false;
4496 vpe->sgi_config[i].group = false;
4498 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4499 &its_sgi_irq_chip, vpe);
4500 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4506 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4508 unsigned int nr_irqs)
4513 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4514 struct irq_data *d, bool reserve)
4516 /* Write out the initial SGI configuration */
4517 its_configure_sgi(d, false);
4521 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4524 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4527 * The VSGI command is awkward:
4529 * - To change the configuration, CLEAR must be set to false,
4530 * leaving the pending bit unchanged.
4531 * - To clear the pending bit, CLEAR must be set to true, leaving
4532 * the configuration unchanged.
4534 * You just can't do both at once, hence the two commands below.
4536 vpe->sgi_config[d->hwirq].enabled = false;
4537 its_configure_sgi(d, false);
4538 its_configure_sgi(d, true);
4541 static const struct irq_domain_ops its_sgi_domain_ops = {
4542 .alloc = its_sgi_irq_domain_alloc,
4543 .free = its_sgi_irq_domain_free,
4544 .activate = its_sgi_irq_domain_activate,
4545 .deactivate = its_sgi_irq_domain_deactivate,
4548 static int its_vpe_id_alloc(void)
4550 return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4553 static void its_vpe_id_free(u16 id)
4555 ida_free(&its_vpeid_ida, id);
4558 static int its_vpe_init(struct its_vpe *vpe)
4560 struct page *vpt_page;
4563 /* Allocate vpe_id */
4564 vpe_id = its_vpe_id_alloc();
4569 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4571 its_vpe_id_free(vpe_id);
4575 if (!its_alloc_vpe_table(vpe_id)) {
4576 its_vpe_id_free(vpe_id);
4577 its_free_pending_table(vpt_page);
4581 raw_spin_lock_init(&vpe->vpe_lock);
4582 vpe->vpe_id = vpe_id;
4583 vpe->vpt_page = vpt_page;
4584 atomic_set(&vpe->vmapp_count, 0);
4585 if (!gic_rdists->has_rvpeid)
4586 vpe->vpe_proxy_event = -1;
4591 static void its_vpe_teardown(struct its_vpe *vpe)
4593 its_vpe_db_proxy_unmap(vpe);
4594 its_vpe_id_free(vpe->vpe_id);
4595 its_free_pending_table(vpe->vpt_page);
4598 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4600 unsigned int nr_irqs)
4602 struct its_vm *vm = domain->host_data;
4605 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4607 for (i = 0; i < nr_irqs; i++) {
4608 struct irq_data *data = irq_domain_get_irq_data(domain,
4610 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4612 BUG_ON(vm != vpe->its_vm);
4614 clear_bit(data->hwirq, vm->db_bitmap);
4615 its_vpe_teardown(vpe);
4616 irq_domain_reset_irq_data(data);
4619 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4620 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4621 its_free_prop_table(vm->vprop_page);
4625 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4626 unsigned int nr_irqs, void *args)
4628 struct irq_chip *irqchip = &its_vpe_irq_chip;
4629 struct its_vm *vm = args;
4630 unsigned long *bitmap;
4631 struct page *vprop_page;
4632 int base, nr_ids, i, err = 0;
4634 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4638 if (nr_ids < nr_irqs) {
4639 its_lpi_free(bitmap, base, nr_ids);
4643 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4645 its_lpi_free(bitmap, base, nr_ids);
4649 vm->db_bitmap = bitmap;
4650 vm->db_lpi_base = base;
4651 vm->nr_db_lpis = nr_ids;
4652 vm->vprop_page = vprop_page;
4653 raw_spin_lock_init(&vm->vmapp_lock);
4655 if (gic_rdists->has_rvpeid)
4656 irqchip = &its_vpe_4_1_irq_chip;
4658 for (i = 0; i < nr_irqs; i++) {
4659 vm->vpes[i]->vpe_db_lpi = base + i;
4660 err = its_vpe_init(vm->vpes[i]);
4663 err = its_irq_gic_domain_alloc(domain, virq + i,
4664 vm->vpes[i]->vpe_db_lpi);
4667 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4668 irqchip, vm->vpes[i]);
4670 irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4674 its_vpe_irq_domain_free(domain, virq, i);
4679 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4680 struct irq_data *d, bool reserve)
4682 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4683 struct its_node *its;
4685 /* Map the VPE to the first possible CPU */
4686 vpe->col_idx = cpumask_first(cpu_online_mask);
4687 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4690 * If we use the list map, we issue VMAPP on demand... Unless
4691 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4692 * so that VSGIs can work.
4694 if (!gic_requires_eager_mapping())
4697 list_for_each_entry(its, &its_nodes, entry) {
4701 its_send_vmapp(its, vpe, true);
4702 its_send_vinvall(its, vpe);
4708 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4711 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4712 struct its_node *its;
4715 * If we use the list map on GICv4.0, we unmap the VPE once no
4716 * VLPIs are associated with the VM.
4718 if (!gic_requires_eager_mapping())
4721 list_for_each_entry(its, &its_nodes, entry) {
4725 its_send_vmapp(its, vpe, false);
4729 * There may be a direct read to the VPT after unmapping the
4730 * vPE, to guarantee the validity of this, we make the VPT
4731 * memory coherent with the CPU caches here.
4733 if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4734 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4738 static const struct irq_domain_ops its_vpe_domain_ops = {
4739 .alloc = its_vpe_irq_domain_alloc,
4740 .free = its_vpe_irq_domain_free,
4741 .activate = its_vpe_irq_domain_activate,
4742 .deactivate = its_vpe_irq_domain_deactivate,
4745 static int its_force_quiescent(void __iomem *base)
4747 u32 count = 1000000; /* 1s */
4750 val = readl_relaxed(base + GITS_CTLR);
4752 * GIC architecture specification requires the ITS to be both
4753 * disabled and quiescent for writes to GITS_BASER<n> or
4754 * GITS_CBASER to not have UNPREDICTABLE results.
4756 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4759 /* Disable the generation of all interrupts to this ITS */
4760 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4761 writel_relaxed(val, base + GITS_CTLR);
4763 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4765 val = readl_relaxed(base + GITS_CTLR);
4766 if (val & GITS_CTLR_QUIESCENT)
4778 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4780 struct its_node *its = data;
4782 /* erratum 22375: only alloc 8MB table size (20 bits) */
4783 its->typer &= ~GITS_TYPER_DEVBITS;
4784 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4785 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4790 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4792 struct its_node *its = data;
4794 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4799 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4801 struct its_node *its = data;
4803 /* On QDF2400, the size of the ITE is 16Bytes */
4804 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4805 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4810 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4812 struct its_node *its = its_dev->its;
4815 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4816 * which maps 32-bit writes targeted at a separate window of
4817 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4818 * with device ID taken from bits [device_id_bits + 1:2] of
4819 * the window offset.
4821 return its->pre_its_base + (its_dev->device_id << 2);
4824 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4826 struct its_node *its = data;
4827 u32 pre_its_window[2];
4830 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4831 "socionext,synquacer-pre-its",
4833 ARRAY_SIZE(pre_its_window))) {
4835 its->pre_its_base = pre_its_window[0];
4836 its->get_msi_base = its_irq_get_msi_base_pre_its;
4838 ids = ilog2(pre_its_window[1]) - 2;
4839 if (device_ids(its) > ids) {
4840 its->typer &= ~GITS_TYPER_DEVBITS;
4841 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4844 /* the pre-ITS breaks isolation, so disable MSI remapping */
4845 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4851 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4853 struct its_node *its = data;
4856 * Hip07 insists on using the wrong address for the VLPI
4857 * page. Trick it into doing the right thing...
4859 its->vlpi_redist_offset = SZ_128K;
4863 static bool __maybe_unused its_enable_rk3588001(void *data)
4865 struct its_node *its = data;
4867 if (!of_machine_is_compatible("rockchip,rk3588") &&
4868 !of_machine_is_compatible("rockchip,rk3588s"))
4871 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4872 gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4877 static bool its_set_non_coherent(void *data)
4879 struct its_node *its = data;
4881 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4885 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
4887 struct its_node *its = data;
4889 its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
4893 static bool __maybe_unused its_enable_rk3568002(void *data)
4895 if (!of_machine_is_compatible("rockchip,rk3566") &&
4896 !of_machine_is_compatible("rockchip,rk3568"))
4899 gfp_flags_quirk |= GFP_DMA32;
4904 static const struct gic_quirk its_quirks[] = {
4905 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4907 .desc = "ITS: Cavium errata 22375, 24313",
4908 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4910 .init = its_enable_quirk_cavium_22375,
4913 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4915 .desc = "ITS: Cavium erratum 23144",
4916 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4918 .init = its_enable_quirk_cavium_23144,
4921 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4923 .desc = "ITS: QDF2400 erratum 0065",
4924 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4926 .init = its_enable_quirk_qdf2400_e0065,
4929 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4932 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4933 * implementation, but with a 'pre-ITS' added that requires
4934 * special handling in software.
4936 .desc = "ITS: Socionext Synquacer pre-ITS",
4939 .init = its_enable_quirk_socionext_synquacer,
4942 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4944 .desc = "ITS: Hip07 erratum 161600802",
4947 .init = its_enable_quirk_hip07_161600802,
4950 #ifdef CONFIG_HISILICON_ERRATUM_162100801
4952 .desc = "ITS: Hip09 erratum 162100801",
4955 .init = its_enable_quirk_hip09_162100801,
4958 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4960 .desc = "ITS: Rockchip erratum RK3588001",
4963 .init = its_enable_rk3588001,
4967 .desc = "ITS: non-coherent attribute",
4968 .property = "dma-noncoherent",
4969 .init = its_set_non_coherent,
4971 #ifdef CONFIG_ROCKCHIP_ERRATUM_3568002
4973 .desc = "ITS: Rockchip erratum RK3568002",
4976 .init = its_enable_rk3568002,
4983 static void its_enable_quirks(struct its_node *its)
4985 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4987 gic_enable_quirks(iidr, its_quirks, its);
4989 if (is_of_node(its->fwnode_handle))
4990 gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4994 static int its_save_disable(void)
4996 struct its_node *its;
4999 raw_spin_lock(&its_lock);
5000 list_for_each_entry(its, &its_nodes, entry) {
5004 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
5005 err = its_force_quiescent(base);
5007 pr_err("ITS@%pa: failed to quiesce: %d\n",
5008 &its->phys_base, err);
5009 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5013 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
5018 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
5022 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5025 raw_spin_unlock(&its_lock);
5030 static void its_restore_enable(void)
5032 struct its_node *its;
5035 raw_spin_lock(&its_lock);
5036 list_for_each_entry(its, &its_nodes, entry) {
5043 * Make sure that the ITS is disabled. If it fails to quiesce,
5044 * don't restore it since writing to CBASER or BASER<n>
5045 * registers is undefined according to the GIC v3 ITS
5048 * Firmware resuming with the ITS enabled is terminally broken.
5050 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
5051 ret = its_force_quiescent(base);
5053 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
5054 &its->phys_base, ret);
5058 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
5061 * Writing CBASER resets CREADR to 0, so make CWRITER and
5062 * cmd_write line up with it.
5064 its->cmd_write = its->cmd_base;
5065 gits_write_cwriter(0, base + GITS_CWRITER);
5067 /* Restore GITS_BASER from the value cache. */
5068 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
5069 struct its_baser *baser = &its->tables[i];
5071 if (!(baser->val & GITS_BASER_VALID))
5074 its_write_baser(its, baser, baser->val);
5076 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5079 * Reinit the collection if it's stored in the ITS. This is
5080 * indicated by the col_id being less than the HCC field.
5081 * CID < HCC as specified in the GIC v3 Documentation.
5083 if (its->collections[smp_processor_id()].col_id <
5084 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
5085 its_cpu_init_collection(its);
5087 raw_spin_unlock(&its_lock);
5090 static struct syscore_ops its_syscore_ops = {
5091 .suspend = its_save_disable,
5092 .resume = its_restore_enable,
5095 static void __init __iomem *its_map_one(struct resource *res, int *err)
5097 void __iomem *its_base;
5100 its_base = ioremap(res->start, SZ_64K);
5102 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5107 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5108 if (val != 0x30 && val != 0x40) {
5109 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5114 *err = its_force_quiescent(its_base);
5116 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5127 static int its_init_domain(struct its_node *its)
5129 struct irq_domain_info dom_info = {
5130 .fwnode = its->fwnode_handle,
5131 .ops = &its_domain_ops,
5132 .domain_flags = its->msi_domain_flags,
5133 .parent = its_parent,
5135 struct msi_domain_info *info;
5137 info = kzalloc(sizeof(*info), GFP_KERNEL);
5141 info->ops = &its_msi_domain_ops;
5143 dom_info.host_data = info;
5145 if (!msi_create_parent_irq_domain(&dom_info, &gic_v3_its_msi_parent_ops)) {
5152 static int its_init_vpe_domain(void)
5154 struct its_node *its;
5158 if (gic_rdists->has_direct_lpi) {
5159 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5163 /* Any ITS will do, even if not v4 */
5164 its = list_first_entry(&its_nodes, struct its_node, entry);
5166 entries = roundup_pow_of_two(nr_cpu_ids);
5167 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5169 if (!vpe_proxy.vpes)
5172 /* Use the last possible DevID */
5173 devid = GENMASK(device_ids(its) - 1, 0);
5174 vpe_proxy.dev = its_create_device(its, devid, entries, false);
5175 if (!vpe_proxy.dev) {
5176 kfree(vpe_proxy.vpes);
5177 pr_err("ITS: Can't allocate GICv4 proxy device\n");
5181 BUG_ON(entries > vpe_proxy.dev->nr_ites);
5183 raw_spin_lock_init(&vpe_proxy.lock);
5184 vpe_proxy.next_victim = 0;
5185 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5186 devid, vpe_proxy.dev->nr_ites);
5191 static int __init its_compute_its_list_map(struct its_node *its)
5197 * This is assumed to be done early enough that we're
5198 * guaranteed to be single-threaded, hence no
5199 * locking. Should this change, we should address
5202 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5203 if (its_number >= GICv4_ITS_LIST_MAX) {
5204 pr_err("ITS@%pa: No ITSList entry available!\n",
5209 ctlr = readl_relaxed(its->base + GITS_CTLR);
5210 ctlr &= ~GITS_CTLR_ITS_NUMBER;
5211 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5212 writel_relaxed(ctlr, its->base + GITS_CTLR);
5213 ctlr = readl_relaxed(its->base + GITS_CTLR);
5214 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5215 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5216 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5219 if (test_and_set_bit(its_number, &its_list_map)) {
5220 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5221 &its->phys_base, its_number);
5228 static int __init its_probe_one(struct its_node *its)
5235 its_enable_quirks(its);
5238 if (!(its->typer & GITS_TYPER_VMOVP)) {
5239 err = its_compute_its_list_map(its);
5245 pr_info("ITS@%pa: Using ITS number %d\n",
5246 &its->phys_base, err);
5248 pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5252 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5254 its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5255 if (!its->sgir_base) {
5260 its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5262 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5263 &its->phys_base, its->mpidr, svpet);
5267 page = its_alloc_pages_node(its->numa_node,
5268 GFP_KERNEL | __GFP_ZERO,
5269 get_order(ITS_CMD_QUEUE_SZ));
5272 goto out_unmap_sgir;
5274 its->cmd_base = (void *)page_address(page);
5275 its->cmd_write = its->cmd_base;
5277 err = its_alloc_tables(its);
5281 err = its_alloc_collections(its);
5283 goto out_free_tables;
5285 baser = (virt_to_phys(its->cmd_base) |
5286 GITS_CBASER_RaWaWb |
5287 GITS_CBASER_InnerShareable |
5288 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5291 gits_write_cbaser(baser, its->base + GITS_CBASER);
5292 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5294 if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5295 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5297 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5298 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5300 * The HW reports non-shareable, we must
5301 * remove the cacheability attributes as
5304 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5305 GITS_CBASER_CACHEABILITY_MASK);
5306 baser |= GITS_CBASER_nC;
5307 gits_write_cbaser(baser, its->base + GITS_CBASER);
5309 pr_info("ITS: using cache flushing for cmd queue\n");
5310 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5313 gits_write_cwriter(0, its->base + GITS_CWRITER);
5314 ctlr = readl_relaxed(its->base + GITS_CTLR);
5315 ctlr |= GITS_CTLR_ENABLE;
5317 ctlr |= GITS_CTLR_ImDe;
5318 writel_relaxed(ctlr, its->base + GITS_CTLR);
5320 err = its_init_domain(its);
5322 goto out_free_tables;
5324 raw_spin_lock(&its_lock);
5325 list_add(&its->entry, &its_nodes);
5326 raw_spin_unlock(&its_lock);
5331 its_free_tables(its);
5333 its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5336 iounmap(its->sgir_base);
5338 pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5342 static bool gic_rdists_supports_plpis(void)
5344 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5347 static int redist_disable_lpis(void)
5349 void __iomem *rbase = gic_data_rdist_rd_base();
5350 u64 timeout = USEC_PER_SEC;
5353 if (!gic_rdists_supports_plpis()) {
5354 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5358 val = readl_relaxed(rbase + GICR_CTLR);
5359 if (!(val & GICR_CTLR_ENABLE_LPIS))
5363 * If coming via a CPU hotplug event, we don't need to disable
5364 * LPIs before trying to re-enable them. They are already
5365 * configured and all is well in the world.
5367 * If running with preallocated tables, there is nothing to do.
5369 if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5370 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5374 * From that point on, we only try to do some damage control.
5376 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5377 smp_processor_id());
5378 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5381 val &= ~GICR_CTLR_ENABLE_LPIS;
5382 writel_relaxed(val, rbase + GICR_CTLR);
5384 /* Make sure any change to GICR_CTLR is observable by the GIC */
5388 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5389 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5390 * Error out if we time out waiting for RWP to clear.
5392 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5394 pr_err("CPU%d: Timeout while disabling LPIs\n",
5395 smp_processor_id());
5403 * After it has been written to 1, it is IMPLEMENTATION
5404 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5405 * cleared to 0. Error out if clearing the bit failed.
5407 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5408 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5415 int its_cpu_init(void)
5417 if (!list_empty(&its_nodes)) {
5420 ret = redist_disable_lpis();
5424 its_cpu_init_lpis();
5425 its_cpu_init_collections();
5431 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5433 cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5434 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5437 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5438 rdist_memreserve_cpuhp_cleanup_workfn);
5440 static int its_cpu_memreserve_lpi(unsigned int cpu)
5442 struct page *pend_page;
5445 /* This gets to run exactly once per CPU */
5446 if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5449 pend_page = gic_data_rdist()->pend_page;
5450 if (WARN_ON(!pend_page)) {
5455 * If the pending table was pre-programmed, free the memory we
5456 * preemptively allocated. Otherwise, reserve that memory for
5459 if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5460 its_free_pending_table(pend_page);
5461 gic_data_rdist()->pend_page = NULL;
5463 phys_addr_t paddr = page_to_phys(pend_page);
5464 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5468 /* Last CPU being brought up gets to issue the cleanup */
5469 if (!IS_ENABLED(CONFIG_SMP) ||
5470 cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5471 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5473 gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5477 /* Mark all the BASER registers as invalid before they get reprogrammed */
5478 static int __init its_reset_one(struct resource *res)
5480 void __iomem *its_base;
5483 its_base = its_map_one(res, &err);
5487 for (i = 0; i < GITS_BASER_NR_REGS; i++)
5488 gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5494 static const struct of_device_id its_device_id[] = {
5495 { .compatible = "arm,gic-v3-its", },
5499 static struct its_node __init *its_node_init(struct resource *res,
5500 struct fwnode_handle *handle, int numa_node)
5502 void __iomem *its_base;
5503 struct its_node *its;
5506 its_base = its_map_one(res, &err);
5510 pr_info("ITS %pR\n", res);
5512 its = kzalloc(sizeof(*its), GFP_KERNEL);
5516 raw_spin_lock_init(&its->lock);
5517 mutex_init(&its->dev_alloc_lock);
5518 INIT_LIST_HEAD(&its->entry);
5519 INIT_LIST_HEAD(&its->its_device_list);
5521 its->typer = gic_read_typer(its_base + GITS_TYPER);
5522 its->base = its_base;
5523 its->phys_base = res->start;
5524 its->get_msi_base = its_irq_get_msi_base;
5525 its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI | IRQ_DOMAIN_FLAG_MSI_IMMUTABLE;
5527 its->numa_node = numa_node;
5528 its->fwnode_handle = handle;
5537 static void its_node_destroy(struct its_node *its)
5543 static int __init its_of_probe(struct device_node *node)
5545 struct device_node *np;
5546 struct resource res;
5550 * Make sure *all* the ITS are reset before we probe any, as
5551 * they may be sharing memory. If any of the ITS fails to
5552 * reset, don't even try to go any further, as this could
5553 * result in something even worse.
5555 for (np = of_find_matching_node(node, its_device_id); np;
5556 np = of_find_matching_node(np, its_device_id)) {
5557 if (!of_device_is_available(np) ||
5558 !of_property_read_bool(np, "msi-controller") ||
5559 of_address_to_resource(np, 0, &res))
5562 err = its_reset_one(&res);
5567 for (np = of_find_matching_node(node, its_device_id); np;
5568 np = of_find_matching_node(np, its_device_id)) {
5569 struct its_node *its;
5571 if (!of_device_is_available(np))
5573 if (!of_property_read_bool(np, "msi-controller")) {
5574 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5579 if (of_address_to_resource(np, 0, &res)) {
5580 pr_warn("%pOF: no regs?\n", np);
5585 its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5589 err = its_probe_one(its);
5591 its_node_destroy(its);
5600 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5602 #ifdef CONFIG_ACPI_NUMA
5603 struct its_srat_map {
5610 static struct its_srat_map *its_srat_maps __initdata;
5611 static int its_in_srat __initdata;
5613 static int __init acpi_get_its_numa_node(u32 its_id)
5617 for (i = 0; i < its_in_srat; i++) {
5618 if (its_id == its_srat_maps[i].its_id)
5619 return its_srat_maps[i].numa_node;
5621 return NUMA_NO_NODE;
5624 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5625 const unsigned long end)
5630 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5631 const unsigned long end)
5634 struct acpi_srat_gic_its_affinity *its_affinity;
5636 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5640 if (its_affinity->header.length < sizeof(*its_affinity)) {
5641 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5642 its_affinity->header.length);
5647 * Note that in theory a new proximity node could be created by this
5648 * entry as it is an SRAT resource allocation structure.
5649 * We do not currently support doing so.
5651 node = pxm_to_node(its_affinity->proximity_domain);
5653 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5654 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5658 its_srat_maps[its_in_srat].numa_node = node;
5659 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5661 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5662 its_affinity->proximity_domain, its_affinity->its_id, node);
5667 static void __init acpi_table_parse_srat_its(void)
5671 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5672 sizeof(struct acpi_table_srat),
5673 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5674 gic_acpi_match_srat_its, 0);
5678 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5683 acpi_table_parse_entries(ACPI_SIG_SRAT,
5684 sizeof(struct acpi_table_srat),
5685 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5686 gic_acpi_parse_srat_its, 0);
5689 /* free the its_srat_maps after ITS probing */
5690 static void __init acpi_its_srat_maps_free(void)
5692 kfree(its_srat_maps);
5695 static void __init acpi_table_parse_srat_its(void) { }
5696 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5697 static void __init acpi_its_srat_maps_free(void) { }
5700 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5701 const unsigned long end)
5703 struct acpi_madt_generic_translator *its_entry;
5704 struct fwnode_handle *dom_handle;
5705 struct its_node *its;
5706 struct resource res;
5709 its_entry = (struct acpi_madt_generic_translator *)header;
5710 memset(&res, 0, sizeof(res));
5711 res.start = its_entry->base_address;
5712 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5713 res.flags = IORESOURCE_MEM;
5715 dom_handle = irq_domain_alloc_fwnode(&res.start);
5717 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5722 err = iort_register_domain_token(its_entry->translation_id, res.start,
5725 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5726 &res.start, its_entry->translation_id);
5730 its = its_node_init(&res, dom_handle,
5731 acpi_get_its_numa_node(its_entry->translation_id));
5737 if (acpi_get_madt_revision() >= 7 &&
5738 (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5739 its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5741 err = its_probe_one(its);
5746 iort_deregister_domain_token(its_entry->translation_id);
5748 irq_domain_free_fwnode(dom_handle);
5752 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5753 const unsigned long end)
5755 struct acpi_madt_generic_translator *its_entry;
5756 struct resource res;
5758 its_entry = (struct acpi_madt_generic_translator *)header;
5759 res = (struct resource) {
5760 .start = its_entry->base_address,
5761 .end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5762 .flags = IORESOURCE_MEM,
5765 return its_reset_one(&res);
5768 static void __init its_acpi_probe(void)
5770 acpi_table_parse_srat_its();
5772 * Make sure *all* the ITS are reset before we probe any, as
5773 * they may be sharing memory. If any of the ITS fails to
5774 * reset, don't even try to go any further, as this could
5775 * result in something even worse.
5777 if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5778 its_acpi_reset, 0) > 0)
5779 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5780 gic_acpi_parse_madt_its, 0);
5781 acpi_its_srat_maps_free();
5784 static void __init its_acpi_probe(void) { }
5787 int __init its_lpi_memreserve_init(void)
5791 if (!efi_enabled(EFI_CONFIG_TABLES))
5794 if (list_empty(&its_nodes))
5797 gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5798 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5799 "irqchip/arm/gicv3/memreserve:online",
5800 its_cpu_memreserve_lpi,
5805 gic_rdists->cpuhp_memreserve_state = state;
5810 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5811 struct irq_domain *parent_domain, u8 irq_prio)
5813 struct device_node *of_node;
5814 struct its_node *its;
5815 bool has_v4 = false;
5816 bool has_v4_1 = false;
5819 itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
5823 gic_rdists = rdists;
5825 lpi_prop_prio = irq_prio;
5826 its_parent = parent_domain;
5827 of_node = to_of_node(handle);
5829 its_of_probe(of_node);
5833 if (list_empty(&its_nodes)) {
5834 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5838 err = allocate_lpi_tables();
5842 list_for_each_entry(its, &its_nodes, entry) {
5843 has_v4 |= is_v4(its);
5844 has_v4_1 |= is_v4_1(its);
5847 /* Don't bother with inconsistent systems */
5848 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5849 rdists->has_rvpeid = false;
5851 if (has_v4 & rdists->has_vlpis) {
5852 const struct irq_domain_ops *sgi_ops;
5855 sgi_ops = &its_sgi_domain_ops;
5859 if (its_init_vpe_domain() ||
5860 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5861 rdists->has_vlpis = false;
5862 pr_err("ITS: Disabling GICv4 support\n");
5866 register_syscore_ops(&its_syscore_ops);