treewide: Use fallthrough pseudo-keyword
[linux-block.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
45 #define ITS_FLAGS_SAVE_SUSPEND_STATE            (1ULL << 3)
46
47 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
48 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
49
50 static u32 lpi_id_bits;
51
52 /*
53  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
54  * deal with (one configuration byte per interrupt). PENDBASE has to
55  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
56  */
57 #define LPI_NRBITS              lpi_id_bits
58 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
59 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
60
61 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
62
63 /*
64  * Collection structure - just an ID, and a redistributor address to
65  * ping. We use one per CPU as a bag of interrupts assigned to this
66  * CPU.
67  */
68 struct its_collection {
69         u64                     target_address;
70         u16                     col_id;
71 };
72
73 /*
74  * The ITS_BASER structure - contains memory information, cached
75  * value of BASER register configuration and ITS page size.
76  */
77 struct its_baser {
78         void            *base;
79         u64             val;
80         u32             order;
81         u32             psz;
82 };
83
84 struct its_device;
85
86 /*
87  * The ITS structure - contains most of the infrastructure, with the
88  * top-level MSI domain, the command queue, the collections, and the
89  * list of devices writing to it.
90  *
91  * dev_alloc_lock has to be taken for device allocations, while the
92  * spinlock must be taken to parse data structures such as the device
93  * list.
94  */
95 struct its_node {
96         raw_spinlock_t          lock;
97         struct mutex            dev_alloc_lock;
98         struct list_head        entry;
99         void __iomem            *base;
100         void __iomem            *sgir_base;
101         phys_addr_t             phys_base;
102         struct its_cmd_block    *cmd_base;
103         struct its_cmd_block    *cmd_write;
104         struct its_baser        tables[GITS_BASER_NR_REGS];
105         struct its_collection   *collections;
106         struct fwnode_handle    *fwnode_handle;
107         u64                     (*get_msi_base)(struct its_device *its_dev);
108         u64                     typer;
109         u64                     cbaser_save;
110         u32                     ctlr_save;
111         u32                     mpidr;
112         struct list_head        its_device_list;
113         u64                     flags;
114         unsigned long           list_nr;
115         int                     numa_node;
116         unsigned int            msi_domain_flags;
117         u32                     pre_its_base; /* for Socionext Synquacer */
118         int                     vlpi_redist_offset;
119 };
120
121 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
122 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
123 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
124
125 #define ITS_ITT_ALIGN           SZ_256
126
127 /* The maximum number of VPEID bits supported by VLPI commands */
128 #define ITS_MAX_VPEID_BITS                                              \
129         ({                                                              \
130                 int nvpeid = 16;                                        \
131                 if (gic_rdists->has_rvpeid &&                           \
132                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
133                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
134                                       GICD_TYPER2_VID);                 \
135                                                                         \
136                 nvpeid;                                                 \
137         })
138 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
139
140 /* Convert page order to size in bytes */
141 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
142
143 struct event_lpi_map {
144         unsigned long           *lpi_map;
145         u16                     *col_map;
146         irq_hw_number_t         lpi_base;
147         int                     nr_lpis;
148         raw_spinlock_t          vlpi_lock;
149         struct its_vm           *vm;
150         struct its_vlpi_map     *vlpi_maps;
151         int                     nr_vlpis;
152 };
153
154 /*
155  * The ITS view of a device - belongs to an ITS, owns an interrupt
156  * translation table, and a list of interrupts.  If it some of its
157  * LPIs are injected into a guest (GICv4), the event_map.vm field
158  * indicates which one.
159  */
160 struct its_device {
161         struct list_head        entry;
162         struct its_node         *its;
163         struct event_lpi_map    event_map;
164         void                    *itt;
165         u32                     nr_ites;
166         u32                     device_id;
167         bool                    shared;
168 };
169
170 static struct {
171         raw_spinlock_t          lock;
172         struct its_device       *dev;
173         struct its_vpe          **vpes;
174         int                     next_victim;
175 } vpe_proxy;
176
177 struct cpu_lpi_count {
178         atomic_t        managed;
179         atomic_t        unmanaged;
180 };
181
182 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
183
184 static LIST_HEAD(its_nodes);
185 static DEFINE_RAW_SPINLOCK(its_lock);
186 static struct rdists *gic_rdists;
187 static struct irq_domain *its_parent;
188
189 static unsigned long its_list_map;
190 static u16 vmovp_seq_num;
191 static DEFINE_RAW_SPINLOCK(vmovp_lock);
192
193 static DEFINE_IDA(its_vpeid_ida);
194
195 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
196 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
197 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
198 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
199
200 /*
201  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
202  * always have vSGIs mapped.
203  */
204 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
205 {
206         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
207 }
208
209 static u16 get_its_list(struct its_vm *vm)
210 {
211         struct its_node *its;
212         unsigned long its_list = 0;
213
214         list_for_each_entry(its, &its_nodes, entry) {
215                 if (!is_v4(its))
216                         continue;
217
218                 if (require_its_list_vmovp(vm, its))
219                         __set_bit(its->list_nr, &its_list);
220         }
221
222         return (u16)its_list;
223 }
224
225 static inline u32 its_get_event_id(struct irq_data *d)
226 {
227         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
228         return d->hwirq - its_dev->event_map.lpi_base;
229 }
230
231 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
232                                                u32 event)
233 {
234         struct its_node *its = its_dev->its;
235
236         return its->collections + its_dev->event_map.col_map[event];
237 }
238
239 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
240                                                u32 event)
241 {
242         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
243                 return NULL;
244
245         return &its_dev->event_map.vlpi_maps[event];
246 }
247
248 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
249 {
250         if (irqd_is_forwarded_to_vcpu(d)) {
251                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
252                 u32 event = its_get_event_id(d);
253
254                 return dev_event_to_vlpi_map(its_dev, event);
255         }
256
257         return NULL;
258 }
259
260 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
261 {
262         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
263         return vpe->col_idx;
264 }
265
266 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
267 {
268         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
269 }
270
271 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
272 {
273         struct its_vlpi_map *map = get_vlpi_map(d);
274         int cpu;
275
276         if (map) {
277                 cpu = vpe_to_cpuid_lock(map->vpe, flags);
278         } else {
279                 /* Physical LPIs are already locked via the irq_desc lock */
280                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
281                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
282                 /* Keep GCC quiet... */
283                 *flags = 0;
284         }
285
286         return cpu;
287 }
288
289 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
290 {
291         struct its_vlpi_map *map = get_vlpi_map(d);
292
293         if (map)
294                 vpe_to_cpuid_unlock(map->vpe, flags);
295 }
296
297 static struct its_collection *valid_col(struct its_collection *col)
298 {
299         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
300                 return NULL;
301
302         return col;
303 }
304
305 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
306 {
307         if (valid_col(its->collections + vpe->col_idx))
308                 return vpe;
309
310         return NULL;
311 }
312
313 /*
314  * ITS command descriptors - parameters to be encoded in a command
315  * block.
316  */
317 struct its_cmd_desc {
318         union {
319                 struct {
320                         struct its_device *dev;
321                         u32 event_id;
322                 } its_inv_cmd;
323
324                 struct {
325                         struct its_device *dev;
326                         u32 event_id;
327                 } its_clear_cmd;
328
329                 struct {
330                         struct its_device *dev;
331                         u32 event_id;
332                 } its_int_cmd;
333
334                 struct {
335                         struct its_device *dev;
336                         int valid;
337                 } its_mapd_cmd;
338
339                 struct {
340                         struct its_collection *col;
341                         int valid;
342                 } its_mapc_cmd;
343
344                 struct {
345                         struct its_device *dev;
346                         u32 phys_id;
347                         u32 event_id;
348                 } its_mapti_cmd;
349
350                 struct {
351                         struct its_device *dev;
352                         struct its_collection *col;
353                         u32 event_id;
354                 } its_movi_cmd;
355
356                 struct {
357                         struct its_device *dev;
358                         u32 event_id;
359                 } its_discard_cmd;
360
361                 struct {
362                         struct its_collection *col;
363                 } its_invall_cmd;
364
365                 struct {
366                         struct its_vpe *vpe;
367                 } its_vinvall_cmd;
368
369                 struct {
370                         struct its_vpe *vpe;
371                         struct its_collection *col;
372                         bool valid;
373                 } its_vmapp_cmd;
374
375                 struct {
376                         struct its_vpe *vpe;
377                         struct its_device *dev;
378                         u32 virt_id;
379                         u32 event_id;
380                         bool db_enabled;
381                 } its_vmapti_cmd;
382
383                 struct {
384                         struct its_vpe *vpe;
385                         struct its_device *dev;
386                         u32 event_id;
387                         bool db_enabled;
388                 } its_vmovi_cmd;
389
390                 struct {
391                         struct its_vpe *vpe;
392                         struct its_collection *col;
393                         u16 seq_num;
394                         u16 its_list;
395                 } its_vmovp_cmd;
396
397                 struct {
398                         struct its_vpe *vpe;
399                 } its_invdb_cmd;
400
401                 struct {
402                         struct its_vpe *vpe;
403                         u8 sgi;
404                         u8 priority;
405                         bool enable;
406                         bool group;
407                         bool clear;
408                 } its_vsgi_cmd;
409         };
410 };
411
412 /*
413  * The ITS command block, which is what the ITS actually parses.
414  */
415 struct its_cmd_block {
416         union {
417                 u64     raw_cmd[4];
418                 __le64  raw_cmd_le[4];
419         };
420 };
421
422 #define ITS_CMD_QUEUE_SZ                SZ_64K
423 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
424
425 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
426                                                     struct its_cmd_block *,
427                                                     struct its_cmd_desc *);
428
429 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
430                                               struct its_cmd_block *,
431                                               struct its_cmd_desc *);
432
433 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
434 {
435         u64 mask = GENMASK_ULL(h, l);
436         *raw_cmd &= ~mask;
437         *raw_cmd |= (val << l) & mask;
438 }
439
440 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
441 {
442         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
443 }
444
445 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
446 {
447         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
448 }
449
450 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
451 {
452         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
453 }
454
455 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
456 {
457         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
458 }
459
460 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
461 {
462         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
463 }
464
465 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
466 {
467         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
468 }
469
470 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
471 {
472         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
473 }
474
475 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
476 {
477         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
478 }
479
480 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
481 {
482         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
483 }
484
485 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
486 {
487         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
488 }
489
490 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
491 {
492         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
493 }
494
495 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
496 {
497         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
498 }
499
500 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
501 {
502         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
503 }
504
505 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
506 {
507         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
508 }
509
510 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
511 {
512         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
513 }
514
515 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
516 {
517         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
518 }
519
520 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
521 {
522         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
523 }
524
525 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
526 {
527         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
528 }
529
530 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
531 {
532         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
533 }
534
535 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
536 {
537         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
538 }
539
540 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
541                                         u32 vpe_db_lpi)
542 {
543         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
544 }
545
546 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
547                                         u32 vpe_db_lpi)
548 {
549         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
550 }
551
552 static void its_encode_db(struct its_cmd_block *cmd, bool db)
553 {
554         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
555 }
556
557 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
558 {
559         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
560 }
561
562 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
563 {
564         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
565 }
566
567 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
568 {
569         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
570 }
571
572 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
573 {
574         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
575 }
576
577 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
578 {
579         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
580 }
581
582 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
583 {
584         /* Let's fixup BE commands */
585         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
586         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
587         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
588         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
589 }
590
591 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
592                                                  struct its_cmd_block *cmd,
593                                                  struct its_cmd_desc *desc)
594 {
595         unsigned long itt_addr;
596         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
597
598         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
599         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
600
601         its_encode_cmd(cmd, GITS_CMD_MAPD);
602         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
603         its_encode_size(cmd, size - 1);
604         its_encode_itt(cmd, itt_addr);
605         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
606
607         its_fixup_cmd(cmd);
608
609         return NULL;
610 }
611
612 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
613                                                  struct its_cmd_block *cmd,
614                                                  struct its_cmd_desc *desc)
615 {
616         its_encode_cmd(cmd, GITS_CMD_MAPC);
617         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
618         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
619         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
620
621         its_fixup_cmd(cmd);
622
623         return desc->its_mapc_cmd.col;
624 }
625
626 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
627                                                   struct its_cmd_block *cmd,
628                                                   struct its_cmd_desc *desc)
629 {
630         struct its_collection *col;
631
632         col = dev_event_to_col(desc->its_mapti_cmd.dev,
633                                desc->its_mapti_cmd.event_id);
634
635         its_encode_cmd(cmd, GITS_CMD_MAPTI);
636         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
637         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
638         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
639         its_encode_collection(cmd, col->col_id);
640
641         its_fixup_cmd(cmd);
642
643         return valid_col(col);
644 }
645
646 static struct its_collection *its_build_movi_cmd(struct its_node *its,
647                                                  struct its_cmd_block *cmd,
648                                                  struct its_cmd_desc *desc)
649 {
650         struct its_collection *col;
651
652         col = dev_event_to_col(desc->its_movi_cmd.dev,
653                                desc->its_movi_cmd.event_id);
654
655         its_encode_cmd(cmd, GITS_CMD_MOVI);
656         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
657         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
658         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
659
660         its_fixup_cmd(cmd);
661
662         return valid_col(col);
663 }
664
665 static struct its_collection *its_build_discard_cmd(struct its_node *its,
666                                                     struct its_cmd_block *cmd,
667                                                     struct its_cmd_desc *desc)
668 {
669         struct its_collection *col;
670
671         col = dev_event_to_col(desc->its_discard_cmd.dev,
672                                desc->its_discard_cmd.event_id);
673
674         its_encode_cmd(cmd, GITS_CMD_DISCARD);
675         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
676         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
677
678         its_fixup_cmd(cmd);
679
680         return valid_col(col);
681 }
682
683 static struct its_collection *its_build_inv_cmd(struct its_node *its,
684                                                 struct its_cmd_block *cmd,
685                                                 struct its_cmd_desc *desc)
686 {
687         struct its_collection *col;
688
689         col = dev_event_to_col(desc->its_inv_cmd.dev,
690                                desc->its_inv_cmd.event_id);
691
692         its_encode_cmd(cmd, GITS_CMD_INV);
693         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
694         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
695
696         its_fixup_cmd(cmd);
697
698         return valid_col(col);
699 }
700
701 static struct its_collection *its_build_int_cmd(struct its_node *its,
702                                                 struct its_cmd_block *cmd,
703                                                 struct its_cmd_desc *desc)
704 {
705         struct its_collection *col;
706
707         col = dev_event_to_col(desc->its_int_cmd.dev,
708                                desc->its_int_cmd.event_id);
709
710         its_encode_cmd(cmd, GITS_CMD_INT);
711         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
712         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
713
714         its_fixup_cmd(cmd);
715
716         return valid_col(col);
717 }
718
719 static struct its_collection *its_build_clear_cmd(struct its_node *its,
720                                                   struct its_cmd_block *cmd,
721                                                   struct its_cmd_desc *desc)
722 {
723         struct its_collection *col;
724
725         col = dev_event_to_col(desc->its_clear_cmd.dev,
726                                desc->its_clear_cmd.event_id);
727
728         its_encode_cmd(cmd, GITS_CMD_CLEAR);
729         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
730         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
731
732         its_fixup_cmd(cmd);
733
734         return valid_col(col);
735 }
736
737 static struct its_collection *its_build_invall_cmd(struct its_node *its,
738                                                    struct its_cmd_block *cmd,
739                                                    struct its_cmd_desc *desc)
740 {
741         its_encode_cmd(cmd, GITS_CMD_INVALL);
742         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
743
744         its_fixup_cmd(cmd);
745
746         return NULL;
747 }
748
749 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
750                                              struct its_cmd_block *cmd,
751                                              struct its_cmd_desc *desc)
752 {
753         its_encode_cmd(cmd, GITS_CMD_VINVALL);
754         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
755
756         its_fixup_cmd(cmd);
757
758         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
759 }
760
761 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
762                                            struct its_cmd_block *cmd,
763                                            struct its_cmd_desc *desc)
764 {
765         unsigned long vpt_addr, vconf_addr;
766         u64 target;
767         bool alloc;
768
769         its_encode_cmd(cmd, GITS_CMD_VMAPP);
770         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
771         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
772
773         if (!desc->its_vmapp_cmd.valid) {
774                 if (is_v4_1(its)) {
775                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
776                         its_encode_alloc(cmd, alloc);
777                 }
778
779                 goto out;
780         }
781
782         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
783         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
784
785         its_encode_target(cmd, target);
786         its_encode_vpt_addr(cmd, vpt_addr);
787         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
788
789         if (!is_v4_1(its))
790                 goto out;
791
792         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
793
794         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
795
796         its_encode_alloc(cmd, alloc);
797
798         /* We can only signal PTZ when alloc==1. Why do we have two bits? */
799         its_encode_ptz(cmd, alloc);
800         its_encode_vconf_addr(cmd, vconf_addr);
801         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
802
803 out:
804         its_fixup_cmd(cmd);
805
806         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
807 }
808
809 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
810                                             struct its_cmd_block *cmd,
811                                             struct its_cmd_desc *desc)
812 {
813         u32 db;
814
815         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
816                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
817         else
818                 db = 1023;
819
820         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
821         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
822         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
823         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
824         its_encode_db_phys_id(cmd, db);
825         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
826
827         its_fixup_cmd(cmd);
828
829         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
830 }
831
832 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
833                                            struct its_cmd_block *cmd,
834                                            struct its_cmd_desc *desc)
835 {
836         u32 db;
837
838         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
839                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
840         else
841                 db = 1023;
842
843         its_encode_cmd(cmd, GITS_CMD_VMOVI);
844         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
845         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
846         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
847         its_encode_db_phys_id(cmd, db);
848         its_encode_db_valid(cmd, true);
849
850         its_fixup_cmd(cmd);
851
852         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
853 }
854
855 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
856                                            struct its_cmd_block *cmd,
857                                            struct its_cmd_desc *desc)
858 {
859         u64 target;
860
861         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
862         its_encode_cmd(cmd, GITS_CMD_VMOVP);
863         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
864         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
865         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
866         its_encode_target(cmd, target);
867
868         if (is_v4_1(its)) {
869                 its_encode_db(cmd, true);
870                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
871         }
872
873         its_fixup_cmd(cmd);
874
875         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
876 }
877
878 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
879                                           struct its_cmd_block *cmd,
880                                           struct its_cmd_desc *desc)
881 {
882         struct its_vlpi_map *map;
883
884         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
885                                     desc->its_inv_cmd.event_id);
886
887         its_encode_cmd(cmd, GITS_CMD_INV);
888         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
889         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
890
891         its_fixup_cmd(cmd);
892
893         return valid_vpe(its, map->vpe);
894 }
895
896 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
897                                           struct its_cmd_block *cmd,
898                                           struct its_cmd_desc *desc)
899 {
900         struct its_vlpi_map *map;
901
902         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
903                                     desc->its_int_cmd.event_id);
904
905         its_encode_cmd(cmd, GITS_CMD_INT);
906         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
907         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
908
909         its_fixup_cmd(cmd);
910
911         return valid_vpe(its, map->vpe);
912 }
913
914 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
915                                             struct its_cmd_block *cmd,
916                                             struct its_cmd_desc *desc)
917 {
918         struct its_vlpi_map *map;
919
920         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
921                                     desc->its_clear_cmd.event_id);
922
923         its_encode_cmd(cmd, GITS_CMD_CLEAR);
924         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
925         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
926
927         its_fixup_cmd(cmd);
928
929         return valid_vpe(its, map->vpe);
930 }
931
932 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
933                                            struct its_cmd_block *cmd,
934                                            struct its_cmd_desc *desc)
935 {
936         if (WARN_ON(!is_v4_1(its)))
937                 return NULL;
938
939         its_encode_cmd(cmd, GITS_CMD_INVDB);
940         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
941
942         its_fixup_cmd(cmd);
943
944         return valid_vpe(its, desc->its_invdb_cmd.vpe);
945 }
946
947 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
948                                           struct its_cmd_block *cmd,
949                                           struct its_cmd_desc *desc)
950 {
951         if (WARN_ON(!is_v4_1(its)))
952                 return NULL;
953
954         its_encode_cmd(cmd, GITS_CMD_VSGI);
955         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
956         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
957         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
958         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
959         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
960         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
961
962         its_fixup_cmd(cmd);
963
964         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
965 }
966
967 static u64 its_cmd_ptr_to_offset(struct its_node *its,
968                                  struct its_cmd_block *ptr)
969 {
970         return (ptr - its->cmd_base) * sizeof(*ptr);
971 }
972
973 static int its_queue_full(struct its_node *its)
974 {
975         int widx;
976         int ridx;
977
978         widx = its->cmd_write - its->cmd_base;
979         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
980
981         /* This is incredibly unlikely to happen, unless the ITS locks up. */
982         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
983                 return 1;
984
985         return 0;
986 }
987
988 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
989 {
990         struct its_cmd_block *cmd;
991         u32 count = 1000000;    /* 1s! */
992
993         while (its_queue_full(its)) {
994                 count--;
995                 if (!count) {
996                         pr_err_ratelimited("ITS queue not draining\n");
997                         return NULL;
998                 }
999                 cpu_relax();
1000                 udelay(1);
1001         }
1002
1003         cmd = its->cmd_write++;
1004
1005         /* Handle queue wrapping */
1006         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1007                 its->cmd_write = its->cmd_base;
1008
1009         /* Clear command  */
1010         cmd->raw_cmd[0] = 0;
1011         cmd->raw_cmd[1] = 0;
1012         cmd->raw_cmd[2] = 0;
1013         cmd->raw_cmd[3] = 0;
1014
1015         return cmd;
1016 }
1017
1018 static struct its_cmd_block *its_post_commands(struct its_node *its)
1019 {
1020         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1021
1022         writel_relaxed(wr, its->base + GITS_CWRITER);
1023
1024         return its->cmd_write;
1025 }
1026
1027 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1028 {
1029         /*
1030          * Make sure the commands written to memory are observable by
1031          * the ITS.
1032          */
1033         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1034                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1035         else
1036                 dsb(ishst);
1037 }
1038
1039 static int its_wait_for_range_completion(struct its_node *its,
1040                                          u64    prev_idx,
1041                                          struct its_cmd_block *to)
1042 {
1043         u64 rd_idx, to_idx, linear_idx;
1044         u32 count = 1000000;    /* 1s! */
1045
1046         /* Linearize to_idx if the command set has wrapped around */
1047         to_idx = its_cmd_ptr_to_offset(its, to);
1048         if (to_idx < prev_idx)
1049                 to_idx += ITS_CMD_QUEUE_SZ;
1050
1051         linear_idx = prev_idx;
1052
1053         while (1) {
1054                 s64 delta;
1055
1056                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1057
1058                 /*
1059                  * Compute the read pointer progress, taking the
1060                  * potential wrap-around into account.
1061                  */
1062                 delta = rd_idx - prev_idx;
1063                 if (rd_idx < prev_idx)
1064                         delta += ITS_CMD_QUEUE_SZ;
1065
1066                 linear_idx += delta;
1067                 if (linear_idx >= to_idx)
1068                         break;
1069
1070                 count--;
1071                 if (!count) {
1072                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1073                                            to_idx, linear_idx);
1074                         return -1;
1075                 }
1076                 prev_idx = rd_idx;
1077                 cpu_relax();
1078                 udelay(1);
1079         }
1080
1081         return 0;
1082 }
1083
1084 /* Warning, macro hell follows */
1085 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1086 void name(struct its_node *its,                                         \
1087           buildtype builder,                                            \
1088           struct its_cmd_desc *desc)                                    \
1089 {                                                                       \
1090         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1091         synctype *sync_obj;                                             \
1092         unsigned long flags;                                            \
1093         u64 rd_idx;                                                     \
1094                                                                         \
1095         raw_spin_lock_irqsave(&its->lock, flags);                       \
1096                                                                         \
1097         cmd = its_allocate_entry(its);                                  \
1098         if (!cmd) {             /* We're soooooo screewed... */         \
1099                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1100                 return;                                                 \
1101         }                                                               \
1102         sync_obj = builder(its, cmd, desc);                             \
1103         its_flush_cmd(its, cmd);                                        \
1104                                                                         \
1105         if (sync_obj) {                                                 \
1106                 sync_cmd = its_allocate_entry(its);                     \
1107                 if (!sync_cmd)                                          \
1108                         goto post;                                      \
1109                                                                         \
1110                 buildfn(its, sync_cmd, sync_obj);                       \
1111                 its_flush_cmd(its, sync_cmd);                           \
1112         }                                                               \
1113                                                                         \
1114 post:                                                                   \
1115         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1116         next_cmd = its_post_commands(its);                              \
1117         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1118                                                                         \
1119         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1120                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1121 }
1122
1123 static void its_build_sync_cmd(struct its_node *its,
1124                                struct its_cmd_block *sync_cmd,
1125                                struct its_collection *sync_col)
1126 {
1127         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1128         its_encode_target(sync_cmd, sync_col->target_address);
1129
1130         its_fixup_cmd(sync_cmd);
1131 }
1132
1133 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1134                              struct its_collection, its_build_sync_cmd)
1135
1136 static void its_build_vsync_cmd(struct its_node *its,
1137                                 struct its_cmd_block *sync_cmd,
1138                                 struct its_vpe *sync_vpe)
1139 {
1140         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1141         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1142
1143         its_fixup_cmd(sync_cmd);
1144 }
1145
1146 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1147                              struct its_vpe, its_build_vsync_cmd)
1148
1149 static void its_send_int(struct its_device *dev, u32 event_id)
1150 {
1151         struct its_cmd_desc desc;
1152
1153         desc.its_int_cmd.dev = dev;
1154         desc.its_int_cmd.event_id = event_id;
1155
1156         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1157 }
1158
1159 static void its_send_clear(struct its_device *dev, u32 event_id)
1160 {
1161         struct its_cmd_desc desc;
1162
1163         desc.its_clear_cmd.dev = dev;
1164         desc.its_clear_cmd.event_id = event_id;
1165
1166         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1167 }
1168
1169 static void its_send_inv(struct its_device *dev, u32 event_id)
1170 {
1171         struct its_cmd_desc desc;
1172
1173         desc.its_inv_cmd.dev = dev;
1174         desc.its_inv_cmd.event_id = event_id;
1175
1176         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1177 }
1178
1179 static void its_send_mapd(struct its_device *dev, int valid)
1180 {
1181         struct its_cmd_desc desc;
1182
1183         desc.its_mapd_cmd.dev = dev;
1184         desc.its_mapd_cmd.valid = !!valid;
1185
1186         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1187 }
1188
1189 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1190                           int valid)
1191 {
1192         struct its_cmd_desc desc;
1193
1194         desc.its_mapc_cmd.col = col;
1195         desc.its_mapc_cmd.valid = !!valid;
1196
1197         its_send_single_command(its, its_build_mapc_cmd, &desc);
1198 }
1199
1200 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1201 {
1202         struct its_cmd_desc desc;
1203
1204         desc.its_mapti_cmd.dev = dev;
1205         desc.its_mapti_cmd.phys_id = irq_id;
1206         desc.its_mapti_cmd.event_id = id;
1207
1208         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1209 }
1210
1211 static void its_send_movi(struct its_device *dev,
1212                           struct its_collection *col, u32 id)
1213 {
1214         struct its_cmd_desc desc;
1215
1216         desc.its_movi_cmd.dev = dev;
1217         desc.its_movi_cmd.col = col;
1218         desc.its_movi_cmd.event_id = id;
1219
1220         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1221 }
1222
1223 static void its_send_discard(struct its_device *dev, u32 id)
1224 {
1225         struct its_cmd_desc desc;
1226
1227         desc.its_discard_cmd.dev = dev;
1228         desc.its_discard_cmd.event_id = id;
1229
1230         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1231 }
1232
1233 static void its_send_invall(struct its_node *its, struct its_collection *col)
1234 {
1235         struct its_cmd_desc desc;
1236
1237         desc.its_invall_cmd.col = col;
1238
1239         its_send_single_command(its, its_build_invall_cmd, &desc);
1240 }
1241
1242 static void its_send_vmapti(struct its_device *dev, u32 id)
1243 {
1244         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1245         struct its_cmd_desc desc;
1246
1247         desc.its_vmapti_cmd.vpe = map->vpe;
1248         desc.its_vmapti_cmd.dev = dev;
1249         desc.its_vmapti_cmd.virt_id = map->vintid;
1250         desc.its_vmapti_cmd.event_id = id;
1251         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1252
1253         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1254 }
1255
1256 static void its_send_vmovi(struct its_device *dev, u32 id)
1257 {
1258         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1259         struct its_cmd_desc desc;
1260
1261         desc.its_vmovi_cmd.vpe = map->vpe;
1262         desc.its_vmovi_cmd.dev = dev;
1263         desc.its_vmovi_cmd.event_id = id;
1264         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1265
1266         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1267 }
1268
1269 static void its_send_vmapp(struct its_node *its,
1270                            struct its_vpe *vpe, bool valid)
1271 {
1272         struct its_cmd_desc desc;
1273
1274         desc.its_vmapp_cmd.vpe = vpe;
1275         desc.its_vmapp_cmd.valid = valid;
1276         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1277
1278         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1279 }
1280
1281 static void its_send_vmovp(struct its_vpe *vpe)
1282 {
1283         struct its_cmd_desc desc = {};
1284         struct its_node *its;
1285         unsigned long flags;
1286         int col_id = vpe->col_idx;
1287
1288         desc.its_vmovp_cmd.vpe = vpe;
1289
1290         if (!its_list_map) {
1291                 its = list_first_entry(&its_nodes, struct its_node, entry);
1292                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1293                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1294                 return;
1295         }
1296
1297         /*
1298          * Yet another marvel of the architecture. If using the
1299          * its_list "feature", we need to make sure that all ITSs
1300          * receive all VMOVP commands in the same order. The only way
1301          * to guarantee this is to make vmovp a serialization point.
1302          *
1303          * Wall <-- Head.
1304          */
1305         raw_spin_lock_irqsave(&vmovp_lock, flags);
1306
1307         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1308         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1309
1310         /* Emit VMOVPs */
1311         list_for_each_entry(its, &its_nodes, entry) {
1312                 if (!is_v4(its))
1313                         continue;
1314
1315                 if (!require_its_list_vmovp(vpe->its_vm, its))
1316                         continue;
1317
1318                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1319                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1320         }
1321
1322         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1323 }
1324
1325 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1326 {
1327         struct its_cmd_desc desc;
1328
1329         desc.its_vinvall_cmd.vpe = vpe;
1330         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1331 }
1332
1333 static void its_send_vinv(struct its_device *dev, u32 event_id)
1334 {
1335         struct its_cmd_desc desc;
1336
1337         /*
1338          * There is no real VINV command. This is just a normal INV,
1339          * with a VSYNC instead of a SYNC.
1340          */
1341         desc.its_inv_cmd.dev = dev;
1342         desc.its_inv_cmd.event_id = event_id;
1343
1344         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1345 }
1346
1347 static void its_send_vint(struct its_device *dev, u32 event_id)
1348 {
1349         struct its_cmd_desc desc;
1350
1351         /*
1352          * There is no real VINT command. This is just a normal INT,
1353          * with a VSYNC instead of a SYNC.
1354          */
1355         desc.its_int_cmd.dev = dev;
1356         desc.its_int_cmd.event_id = event_id;
1357
1358         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1359 }
1360
1361 static void its_send_vclear(struct its_device *dev, u32 event_id)
1362 {
1363         struct its_cmd_desc desc;
1364
1365         /*
1366          * There is no real VCLEAR command. This is just a normal CLEAR,
1367          * with a VSYNC instead of a SYNC.
1368          */
1369         desc.its_clear_cmd.dev = dev;
1370         desc.its_clear_cmd.event_id = event_id;
1371
1372         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1373 }
1374
1375 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1376 {
1377         struct its_cmd_desc desc;
1378
1379         desc.its_invdb_cmd.vpe = vpe;
1380         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1381 }
1382
1383 /*
1384  * irqchip functions - assumes MSI, mostly.
1385  */
1386 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1387 {
1388         struct its_vlpi_map *map = get_vlpi_map(d);
1389         irq_hw_number_t hwirq;
1390         void *va;
1391         u8 *cfg;
1392
1393         if (map) {
1394                 va = page_address(map->vm->vprop_page);
1395                 hwirq = map->vintid;
1396
1397                 /* Remember the updated property */
1398                 map->properties &= ~clr;
1399                 map->properties |= set | LPI_PROP_GROUP1;
1400         } else {
1401                 va = gic_rdists->prop_table_va;
1402                 hwirq = d->hwirq;
1403         }
1404
1405         cfg = va + hwirq - 8192;
1406         *cfg &= ~clr;
1407         *cfg |= set | LPI_PROP_GROUP1;
1408
1409         /*
1410          * Make the above write visible to the redistributors.
1411          * And yes, we're flushing exactly: One. Single. Byte.
1412          * Humpf...
1413          */
1414         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1415                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1416         else
1417                 dsb(ishst);
1418 }
1419
1420 static void wait_for_syncr(void __iomem *rdbase)
1421 {
1422         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1423                 cpu_relax();
1424 }
1425
1426 static void direct_lpi_inv(struct irq_data *d)
1427 {
1428         struct its_vlpi_map *map = get_vlpi_map(d);
1429         void __iomem *rdbase;
1430         unsigned long flags;
1431         u64 val;
1432         int cpu;
1433
1434         if (map) {
1435                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1436
1437                 WARN_ON(!is_v4_1(its_dev->its));
1438
1439                 val  = GICR_INVLPIR_V;
1440                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1441                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1442         } else {
1443                 val = d->hwirq;
1444         }
1445
1446         /* Target the redistributor this LPI is currently routed to */
1447         cpu = irq_to_cpuid_lock(d, &flags);
1448         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1449         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1450         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1451
1452         wait_for_syncr(rdbase);
1453         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1454         irq_to_cpuid_unlock(d, flags);
1455 }
1456
1457 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1458 {
1459         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1460
1461         lpi_write_config(d, clr, set);
1462         if (gic_rdists->has_direct_lpi &&
1463             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1464                 direct_lpi_inv(d);
1465         else if (!irqd_is_forwarded_to_vcpu(d))
1466                 its_send_inv(its_dev, its_get_event_id(d));
1467         else
1468                 its_send_vinv(its_dev, its_get_event_id(d));
1469 }
1470
1471 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1472 {
1473         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1474         u32 event = its_get_event_id(d);
1475         struct its_vlpi_map *map;
1476
1477         /*
1478          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1479          * here.
1480          */
1481         if (is_v4_1(its_dev->its))
1482                 return;
1483
1484         map = dev_event_to_vlpi_map(its_dev, event);
1485
1486         if (map->db_enabled == enable)
1487                 return;
1488
1489         map->db_enabled = enable;
1490
1491         /*
1492          * More fun with the architecture:
1493          *
1494          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1495          * value or to 1023, depending on the enable bit. But that
1496          * would be issueing a mapping for an /existing/ DevID+EventID
1497          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1498          * to the /same/ vPE, using this opportunity to adjust the
1499          * doorbell. Mouahahahaha. We loves it, Precious.
1500          */
1501         its_send_vmovi(its_dev, event);
1502 }
1503
1504 static void its_mask_irq(struct irq_data *d)
1505 {
1506         if (irqd_is_forwarded_to_vcpu(d))
1507                 its_vlpi_set_doorbell(d, false);
1508
1509         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1510 }
1511
1512 static void its_unmask_irq(struct irq_data *d)
1513 {
1514         if (irqd_is_forwarded_to_vcpu(d))
1515                 its_vlpi_set_doorbell(d, true);
1516
1517         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1518 }
1519
1520 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1521 {
1522         if (irqd_affinity_is_managed(d))
1523                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1524
1525         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1526 }
1527
1528 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1529 {
1530         if (irqd_affinity_is_managed(d))
1531                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532         else
1533                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534 }
1535
1536 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1537 {
1538         if (irqd_affinity_is_managed(d))
1539                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540         else
1541                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542 }
1543
1544 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1545                                               const struct cpumask *cpu_mask)
1546 {
1547         unsigned int cpu = nr_cpu_ids, tmp;
1548         int count = S32_MAX;
1549
1550         for_each_cpu(tmp, cpu_mask) {
1551                 int this_count = its_read_lpi_count(d, tmp);
1552                 if (this_count < count) {
1553                         cpu = tmp;
1554                         count = this_count;
1555                 }
1556         }
1557
1558         return cpu;
1559 }
1560
1561 /*
1562  * As suggested by Thomas Gleixner in:
1563  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1564  */
1565 static int its_select_cpu(struct irq_data *d,
1566                           const struct cpumask *aff_mask)
1567 {
1568         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1569         cpumask_var_t tmpmask;
1570         int cpu, node;
1571
1572         if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1573                 return -ENOMEM;
1574
1575         node = its_dev->its->numa_node;
1576
1577         if (!irqd_affinity_is_managed(d)) {
1578                 /* First try the NUMA node */
1579                 if (node != NUMA_NO_NODE) {
1580                         /*
1581                          * Try the intersection of the affinity mask and the
1582                          * node mask (and the online mask, just to be safe).
1583                          */
1584                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1585                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1586
1587                         /*
1588                          * Ideally, we would check if the mask is empty, and
1589                          * try again on the full node here.
1590                          *
1591                          * But it turns out that the way ACPI describes the
1592                          * affinity for ITSs only deals about memory, and
1593                          * not target CPUs, so it cannot describe a single
1594                          * ITS placed next to two NUMA nodes.
1595                          *
1596                          * Instead, just fallback on the online mask. This
1597                          * diverges from Thomas' suggestion above.
1598                          */
1599                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1600                         if (cpu < nr_cpu_ids)
1601                                 goto out;
1602
1603                         /* If we can't cross sockets, give up */
1604                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1605                                 goto out;
1606
1607                         /* If the above failed, expand the search */
1608                 }
1609
1610                 /* Try the intersection of the affinity and online masks */
1611                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1612
1613                 /* If that doesn't fly, the online mask is the last resort */
1614                 if (cpumask_empty(tmpmask))
1615                         cpumask_copy(tmpmask, cpu_online_mask);
1616
1617                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1618         } else {
1619                 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1620
1621                 /* If we cannot cross sockets, limit the search to that node */
1622                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1623                     node != NUMA_NO_NODE)
1624                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1625
1626                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1627         }
1628 out:
1629         free_cpumask_var(tmpmask);
1630
1631         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1632         return cpu;
1633 }
1634
1635 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1636                             bool force)
1637 {
1638         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1639         struct its_collection *target_col;
1640         u32 id = its_get_event_id(d);
1641         int cpu, prev_cpu;
1642
1643         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1644         if (irqd_is_forwarded_to_vcpu(d))
1645                 return -EINVAL;
1646
1647         prev_cpu = its_dev->event_map.col_map[id];
1648         its_dec_lpi_count(d, prev_cpu);
1649
1650         if (!force)
1651                 cpu = its_select_cpu(d, mask_val);
1652         else
1653                 cpu = cpumask_pick_least_loaded(d, mask_val);
1654
1655         if (cpu < 0 || cpu >= nr_cpu_ids)
1656                 goto err;
1657
1658         /* don't set the affinity when the target cpu is same as current one */
1659         if (cpu != prev_cpu) {
1660                 target_col = &its_dev->its->collections[cpu];
1661                 its_send_movi(its_dev, target_col, id);
1662                 its_dev->event_map.col_map[id] = cpu;
1663                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1664         }
1665
1666         its_inc_lpi_count(d, cpu);
1667
1668         return IRQ_SET_MASK_OK_DONE;
1669
1670 err:
1671         its_inc_lpi_count(d, prev_cpu);
1672         return -EINVAL;
1673 }
1674
1675 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1676 {
1677         struct its_node *its = its_dev->its;
1678
1679         return its->phys_base + GITS_TRANSLATER;
1680 }
1681
1682 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1683 {
1684         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1685         struct its_node *its;
1686         u64 addr;
1687
1688         its = its_dev->its;
1689         addr = its->get_msi_base(its_dev);
1690
1691         msg->address_lo         = lower_32_bits(addr);
1692         msg->address_hi         = upper_32_bits(addr);
1693         msg->data               = its_get_event_id(d);
1694
1695         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1696 }
1697
1698 static int its_irq_set_irqchip_state(struct irq_data *d,
1699                                      enum irqchip_irq_state which,
1700                                      bool state)
1701 {
1702         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1703         u32 event = its_get_event_id(d);
1704
1705         if (which != IRQCHIP_STATE_PENDING)
1706                 return -EINVAL;
1707
1708         if (irqd_is_forwarded_to_vcpu(d)) {
1709                 if (state)
1710                         its_send_vint(its_dev, event);
1711                 else
1712                         its_send_vclear(its_dev, event);
1713         } else {
1714                 if (state)
1715                         its_send_int(its_dev, event);
1716                 else
1717                         its_send_clear(its_dev, event);
1718         }
1719
1720         return 0;
1721 }
1722
1723 /*
1724  * Two favourable cases:
1725  *
1726  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1727  *     for vSGI delivery
1728  *
1729  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1730  *     and we're better off mapping all VPEs always
1731  *
1732  * If neither (a) nor (b) is true, then we map vPEs on demand.
1733  *
1734  */
1735 static bool gic_requires_eager_mapping(void)
1736 {
1737         if (!its_list_map || gic_rdists->has_rvpeid)
1738                 return true;
1739
1740         return false;
1741 }
1742
1743 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1744 {
1745         unsigned long flags;
1746
1747         if (gic_requires_eager_mapping())
1748                 return;
1749
1750         raw_spin_lock_irqsave(&vmovp_lock, flags);
1751
1752         /*
1753          * If the VM wasn't mapped yet, iterate over the vpes and get
1754          * them mapped now.
1755          */
1756         vm->vlpi_count[its->list_nr]++;
1757
1758         if (vm->vlpi_count[its->list_nr] == 1) {
1759                 int i;
1760
1761                 for (i = 0; i < vm->nr_vpes; i++) {
1762                         struct its_vpe *vpe = vm->vpes[i];
1763                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1764
1765                         /* Map the VPE to the first possible CPU */
1766                         vpe->col_idx = cpumask_first(cpu_online_mask);
1767                         its_send_vmapp(its, vpe, true);
1768                         its_send_vinvall(its, vpe);
1769                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1770                 }
1771         }
1772
1773         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1774 }
1775
1776 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1777 {
1778         unsigned long flags;
1779
1780         /* Not using the ITS list? Everything is always mapped. */
1781         if (gic_requires_eager_mapping())
1782                 return;
1783
1784         raw_spin_lock_irqsave(&vmovp_lock, flags);
1785
1786         if (!--vm->vlpi_count[its->list_nr]) {
1787                 int i;
1788
1789                 for (i = 0; i < vm->nr_vpes; i++)
1790                         its_send_vmapp(its, vm->vpes[i], false);
1791         }
1792
1793         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1794 }
1795
1796 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1797 {
1798         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1799         u32 event = its_get_event_id(d);
1800         int ret = 0;
1801
1802         if (!info->map)
1803                 return -EINVAL;
1804
1805         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1806
1807         if (!its_dev->event_map.vm) {
1808                 struct its_vlpi_map *maps;
1809
1810                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1811                                GFP_ATOMIC);
1812                 if (!maps) {
1813                         ret = -ENOMEM;
1814                         goto out;
1815                 }
1816
1817                 its_dev->event_map.vm = info->map->vm;
1818                 its_dev->event_map.vlpi_maps = maps;
1819         } else if (its_dev->event_map.vm != info->map->vm) {
1820                 ret = -EINVAL;
1821                 goto out;
1822         }
1823
1824         /* Get our private copy of the mapping information */
1825         its_dev->event_map.vlpi_maps[event] = *info->map;
1826
1827         if (irqd_is_forwarded_to_vcpu(d)) {
1828                 /* Already mapped, move it around */
1829                 its_send_vmovi(its_dev, event);
1830         } else {
1831                 /* Ensure all the VPEs are mapped on this ITS */
1832                 its_map_vm(its_dev->its, info->map->vm);
1833
1834                 /*
1835                  * Flag the interrupt as forwarded so that we can
1836                  * start poking the virtual property table.
1837                  */
1838                 irqd_set_forwarded_to_vcpu(d);
1839
1840                 /* Write out the property to the prop table */
1841                 lpi_write_config(d, 0xff, info->map->properties);
1842
1843                 /* Drop the physical mapping */
1844                 its_send_discard(its_dev, event);
1845
1846                 /* and install the virtual one */
1847                 its_send_vmapti(its_dev, event);
1848
1849                 /* Increment the number of VLPIs */
1850                 its_dev->event_map.nr_vlpis++;
1851         }
1852
1853 out:
1854         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1855         return ret;
1856 }
1857
1858 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1859 {
1860         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1861         struct its_vlpi_map *map;
1862         int ret = 0;
1863
1864         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1865
1866         map = get_vlpi_map(d);
1867
1868         if (!its_dev->event_map.vm || !map) {
1869                 ret = -EINVAL;
1870                 goto out;
1871         }
1872
1873         /* Copy our mapping information to the incoming request */
1874         *info->map = *map;
1875
1876 out:
1877         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1878         return ret;
1879 }
1880
1881 static int its_vlpi_unmap(struct irq_data *d)
1882 {
1883         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1884         u32 event = its_get_event_id(d);
1885         int ret = 0;
1886
1887         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1888
1889         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1890                 ret = -EINVAL;
1891                 goto out;
1892         }
1893
1894         /* Drop the virtual mapping */
1895         its_send_discard(its_dev, event);
1896
1897         /* and restore the physical one */
1898         irqd_clr_forwarded_to_vcpu(d);
1899         its_send_mapti(its_dev, d->hwirq, event);
1900         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1901                                     LPI_PROP_ENABLED |
1902                                     LPI_PROP_GROUP1));
1903
1904         /* Potentially unmap the VM from this ITS */
1905         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1906
1907         /*
1908          * Drop the refcount and make the device available again if
1909          * this was the last VLPI.
1910          */
1911         if (!--its_dev->event_map.nr_vlpis) {
1912                 its_dev->event_map.vm = NULL;
1913                 kfree(its_dev->event_map.vlpi_maps);
1914         }
1915
1916 out:
1917         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1918         return ret;
1919 }
1920
1921 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1922 {
1923         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1924
1925         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1926                 return -EINVAL;
1927
1928         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1929                 lpi_update_config(d, 0xff, info->config);
1930         else
1931                 lpi_write_config(d, 0xff, info->config);
1932         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1933
1934         return 0;
1935 }
1936
1937 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1938 {
1939         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1940         struct its_cmd_info *info = vcpu_info;
1941
1942         /* Need a v4 ITS */
1943         if (!is_v4(its_dev->its))
1944                 return -EINVAL;
1945
1946         /* Unmap request? */
1947         if (!info)
1948                 return its_vlpi_unmap(d);
1949
1950         switch (info->cmd_type) {
1951         case MAP_VLPI:
1952                 return its_vlpi_map(d, info);
1953
1954         case GET_VLPI:
1955                 return its_vlpi_get(d, info);
1956
1957         case PROP_UPDATE_VLPI:
1958         case PROP_UPDATE_AND_INV_VLPI:
1959                 return its_vlpi_prop_update(d, info);
1960
1961         default:
1962                 return -EINVAL;
1963         }
1964 }
1965
1966 static struct irq_chip its_irq_chip = {
1967         .name                   = "ITS",
1968         .irq_mask               = its_mask_irq,
1969         .irq_unmask             = its_unmask_irq,
1970         .irq_eoi                = irq_chip_eoi_parent,
1971         .irq_set_affinity       = its_set_affinity,
1972         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1973         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1974         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1975 };
1976
1977
1978 /*
1979  * How we allocate LPIs:
1980  *
1981  * lpi_range_list contains ranges of LPIs that are to available to
1982  * allocate from. To allocate LPIs, just pick the first range that
1983  * fits the required allocation, and reduce it by the required
1984  * amount. Once empty, remove the range from the list.
1985  *
1986  * To free a range of LPIs, add a free range to the list, sort it and
1987  * merge the result if the new range happens to be adjacent to an
1988  * already free block.
1989  *
1990  * The consequence of the above is that allocation is cost is low, but
1991  * freeing is expensive. We assumes that freeing rarely occurs.
1992  */
1993 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
1994
1995 static DEFINE_MUTEX(lpi_range_lock);
1996 static LIST_HEAD(lpi_range_list);
1997
1998 struct lpi_range {
1999         struct list_head        entry;
2000         u32                     base_id;
2001         u32                     span;
2002 };
2003
2004 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2005 {
2006         struct lpi_range *range;
2007
2008         range = kmalloc(sizeof(*range), GFP_KERNEL);
2009         if (range) {
2010                 range->base_id = base;
2011                 range->span = span;
2012         }
2013
2014         return range;
2015 }
2016
2017 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2018 {
2019         struct lpi_range *range, *tmp;
2020         int err = -ENOSPC;
2021
2022         mutex_lock(&lpi_range_lock);
2023
2024         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2025                 if (range->span >= nr_lpis) {
2026                         *base = range->base_id;
2027                         range->base_id += nr_lpis;
2028                         range->span -= nr_lpis;
2029
2030                         if (range->span == 0) {
2031                                 list_del(&range->entry);
2032                                 kfree(range);
2033                         }
2034
2035                         err = 0;
2036                         break;
2037                 }
2038         }
2039
2040         mutex_unlock(&lpi_range_lock);
2041
2042         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2043         return err;
2044 }
2045
2046 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2047 {
2048         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2049                 return;
2050         if (a->base_id + a->span != b->base_id)
2051                 return;
2052         b->base_id = a->base_id;
2053         b->span += a->span;
2054         list_del(&a->entry);
2055         kfree(a);
2056 }
2057
2058 static int free_lpi_range(u32 base, u32 nr_lpis)
2059 {
2060         struct lpi_range *new, *old;
2061
2062         new = mk_lpi_range(base, nr_lpis);
2063         if (!new)
2064                 return -ENOMEM;
2065
2066         mutex_lock(&lpi_range_lock);
2067
2068         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2069                 if (old->base_id < base)
2070                         break;
2071         }
2072         /*
2073          * old is the last element with ->base_id smaller than base,
2074          * so new goes right after it. If there are no elements with
2075          * ->base_id smaller than base, &old->entry ends up pointing
2076          * at the head of the list, and inserting new it the start of
2077          * the list is the right thing to do in that case as well.
2078          */
2079         list_add(&new->entry, &old->entry);
2080         /*
2081          * Now check if we can merge with the preceding and/or
2082          * following ranges.
2083          */
2084         merge_lpi_ranges(old, new);
2085         merge_lpi_ranges(new, list_next_entry(new, entry));
2086
2087         mutex_unlock(&lpi_range_lock);
2088         return 0;
2089 }
2090
2091 static int __init its_lpi_init(u32 id_bits)
2092 {
2093         u32 lpis = (1UL << id_bits) - 8192;
2094         u32 numlpis;
2095         int err;
2096
2097         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2098
2099         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2100                 lpis = numlpis;
2101                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2102                         lpis);
2103         }
2104
2105         /*
2106          * Initializing the allocator is just the same as freeing the
2107          * full range of LPIs.
2108          */
2109         err = free_lpi_range(8192, lpis);
2110         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2111         return err;
2112 }
2113
2114 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2115 {
2116         unsigned long *bitmap = NULL;
2117         int err = 0;
2118
2119         do {
2120                 err = alloc_lpi_range(nr_irqs, base);
2121                 if (!err)
2122                         break;
2123
2124                 nr_irqs /= 2;
2125         } while (nr_irqs > 0);
2126
2127         if (!nr_irqs)
2128                 err = -ENOSPC;
2129
2130         if (err)
2131                 goto out;
2132
2133         bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2134         if (!bitmap)
2135                 goto out;
2136
2137         *nr_ids = nr_irqs;
2138
2139 out:
2140         if (!bitmap)
2141                 *base = *nr_ids = 0;
2142
2143         return bitmap;
2144 }
2145
2146 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2147 {
2148         WARN_ON(free_lpi_range(base, nr_ids));
2149         kfree(bitmap);
2150 }
2151
2152 static void gic_reset_prop_table(void *va)
2153 {
2154         /* Priority 0xa0, Group-1, disabled */
2155         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2156
2157         /* Make sure the GIC will observe the written configuration */
2158         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2159 }
2160
2161 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2162 {
2163         struct page *prop_page;
2164
2165         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2166         if (!prop_page)
2167                 return NULL;
2168
2169         gic_reset_prop_table(page_address(prop_page));
2170
2171         return prop_page;
2172 }
2173
2174 static void its_free_prop_table(struct page *prop_page)
2175 {
2176         free_pages((unsigned long)page_address(prop_page),
2177                    get_order(LPI_PROPBASE_SZ));
2178 }
2179
2180 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2181 {
2182         phys_addr_t start, end, addr_end;
2183         u64 i;
2184
2185         /*
2186          * We don't bother checking for a kdump kernel as by
2187          * construction, the LPI tables are out of this kernel's
2188          * memory map.
2189          */
2190         if (is_kdump_kernel())
2191                 return true;
2192
2193         addr_end = addr + size - 1;
2194
2195         for_each_reserved_mem_region(i, &start, &end) {
2196                 if (addr >= start && addr_end <= end)
2197                         return true;
2198         }
2199
2200         /* Not found, not a good sign... */
2201         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2202                 &addr, &addr_end);
2203         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2204         return false;
2205 }
2206
2207 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2208 {
2209         if (efi_enabled(EFI_CONFIG_TABLES))
2210                 return efi_mem_reserve_persistent(addr, size);
2211
2212         return 0;
2213 }
2214
2215 static int __init its_setup_lpi_prop_table(void)
2216 {
2217         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2218                 u64 val;
2219
2220                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2221                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2222
2223                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2224                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2225                                                      LPI_PROPBASE_SZ,
2226                                                      MEMREMAP_WB);
2227                 gic_reset_prop_table(gic_rdists->prop_table_va);
2228         } else {
2229                 struct page *page;
2230
2231                 lpi_id_bits = min_t(u32,
2232                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2233                                     ITS_MAX_LPI_NRBITS);
2234                 page = its_allocate_prop_table(GFP_NOWAIT);
2235                 if (!page) {
2236                         pr_err("Failed to allocate PROPBASE\n");
2237                         return -ENOMEM;
2238                 }
2239
2240                 gic_rdists->prop_table_pa = page_to_phys(page);
2241                 gic_rdists->prop_table_va = page_address(page);
2242                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2243                                           LPI_PROPBASE_SZ));
2244         }
2245
2246         pr_info("GICv3: using LPI property table @%pa\n",
2247                 &gic_rdists->prop_table_pa);
2248
2249         return its_lpi_init(lpi_id_bits);
2250 }
2251
2252 static const char *its_base_type_string[] = {
2253         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2254         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2255         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2256         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2257         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2258         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2259         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2260 };
2261
2262 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2263 {
2264         u32 idx = baser - its->tables;
2265
2266         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2267 }
2268
2269 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2270                             u64 val)
2271 {
2272         u32 idx = baser - its->tables;
2273
2274         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2275         baser->val = its_read_baser(its, baser);
2276 }
2277
2278 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2279                            u64 cache, u64 shr, u32 order, bool indirect)
2280 {
2281         u64 val = its_read_baser(its, baser);
2282         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2283         u64 type = GITS_BASER_TYPE(val);
2284         u64 baser_phys, tmp;
2285         u32 alloc_pages, psz;
2286         struct page *page;
2287         void *base;
2288
2289         psz = baser->psz;
2290         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2291         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2292                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2293                         &its->phys_base, its_base_type_string[type],
2294                         alloc_pages, GITS_BASER_PAGES_MAX);
2295                 alloc_pages = GITS_BASER_PAGES_MAX;
2296                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2297         }
2298
2299         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2300         if (!page)
2301                 return -ENOMEM;
2302
2303         base = (void *)page_address(page);
2304         baser_phys = virt_to_phys(base);
2305
2306         /* Check if the physical address of the memory is above 48bits */
2307         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2308
2309                 /* 52bit PA is supported only when PageSize=64K */
2310                 if (psz != SZ_64K) {
2311                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2312                         free_pages((unsigned long)base, order);
2313                         return -ENXIO;
2314                 }
2315
2316                 /* Convert 52bit PA to 48bit field */
2317                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2318         }
2319
2320 retry_baser:
2321         val = (baser_phys                                        |
2322                 (type << GITS_BASER_TYPE_SHIFT)                  |
2323                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2324                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2325                 cache                                            |
2326                 shr                                              |
2327                 GITS_BASER_VALID);
2328
2329         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2330
2331         switch (psz) {
2332         case SZ_4K:
2333                 val |= GITS_BASER_PAGE_SIZE_4K;
2334                 break;
2335         case SZ_16K:
2336                 val |= GITS_BASER_PAGE_SIZE_16K;
2337                 break;
2338         case SZ_64K:
2339                 val |= GITS_BASER_PAGE_SIZE_64K;
2340                 break;
2341         }
2342
2343         its_write_baser(its, baser, val);
2344         tmp = baser->val;
2345
2346         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2347                 /*
2348                  * Shareability didn't stick. Just use
2349                  * whatever the read reported, which is likely
2350                  * to be the only thing this redistributor
2351                  * supports. If that's zero, make it
2352                  * non-cacheable as well.
2353                  */
2354                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2355                 if (!shr) {
2356                         cache = GITS_BASER_nC;
2357                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2358                 }
2359                 goto retry_baser;
2360         }
2361
2362         if (val != tmp) {
2363                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2364                        &its->phys_base, its_base_type_string[type],
2365                        val, tmp);
2366                 free_pages((unsigned long)base, order);
2367                 return -ENXIO;
2368         }
2369
2370         baser->order = order;
2371         baser->base = base;
2372         baser->psz = psz;
2373         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2374
2375         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2376                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2377                 its_base_type_string[type],
2378                 (unsigned long)virt_to_phys(base),
2379                 indirect ? "indirect" : "flat", (int)esz,
2380                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2381
2382         return 0;
2383 }
2384
2385 static bool its_parse_indirect_baser(struct its_node *its,
2386                                      struct its_baser *baser,
2387                                      u32 *order, u32 ids)
2388 {
2389         u64 tmp = its_read_baser(its, baser);
2390         u64 type = GITS_BASER_TYPE(tmp);
2391         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2392         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2393         u32 new_order = *order;
2394         u32 psz = baser->psz;
2395         bool indirect = false;
2396
2397         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2398         if ((esz << ids) > (psz * 2)) {
2399                 /*
2400                  * Find out whether hw supports a single or two-level table by
2401                  * table by reading bit at offset '62' after writing '1' to it.
2402                  */
2403                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2404                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2405
2406                 if (indirect) {
2407                         /*
2408                          * The size of the lvl2 table is equal to ITS page size
2409                          * which is 'psz'. For computing lvl1 table size,
2410                          * subtract ID bits that sparse lvl2 table from 'ids'
2411                          * which is reported by ITS hardware times lvl1 table
2412                          * entry size.
2413                          */
2414                         ids -= ilog2(psz / (int)esz);
2415                         esz = GITS_LVL1_ENTRY_SIZE;
2416                 }
2417         }
2418
2419         /*
2420          * Allocate as many entries as required to fit the
2421          * range of device IDs that the ITS can grok... The ID
2422          * space being incredibly sparse, this results in a
2423          * massive waste of memory if two-level device table
2424          * feature is not supported by hardware.
2425          */
2426         new_order = max_t(u32, get_order(esz << ids), new_order);
2427         if (new_order >= MAX_ORDER) {
2428                 new_order = MAX_ORDER - 1;
2429                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2430                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2431                         &its->phys_base, its_base_type_string[type],
2432                         device_ids(its), ids);
2433         }
2434
2435         *order = new_order;
2436
2437         return indirect;
2438 }
2439
2440 static u32 compute_common_aff(u64 val)
2441 {
2442         u32 aff, clpiaff;
2443
2444         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2445         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2446
2447         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2448 }
2449
2450 static u32 compute_its_aff(struct its_node *its)
2451 {
2452         u64 val;
2453         u32 svpet;
2454
2455         /*
2456          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2457          * the resulting affinity. We then use that to see if this match
2458          * our own affinity.
2459          */
2460         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2461         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2462         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2463         return compute_common_aff(val);
2464 }
2465
2466 static struct its_node *find_sibling_its(struct its_node *cur_its)
2467 {
2468         struct its_node *its;
2469         u32 aff;
2470
2471         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2472                 return NULL;
2473
2474         aff = compute_its_aff(cur_its);
2475
2476         list_for_each_entry(its, &its_nodes, entry) {
2477                 u64 baser;
2478
2479                 if (!is_v4_1(its) || its == cur_its)
2480                         continue;
2481
2482                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2483                         continue;
2484
2485                 if (aff != compute_its_aff(its))
2486                         continue;
2487
2488                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2489                 baser = its->tables[2].val;
2490                 if (!(baser & GITS_BASER_VALID))
2491                         continue;
2492
2493                 return its;
2494         }
2495
2496         return NULL;
2497 }
2498
2499 static void its_free_tables(struct its_node *its)
2500 {
2501         int i;
2502
2503         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2504                 if (its->tables[i].base) {
2505                         free_pages((unsigned long)its->tables[i].base,
2506                                    its->tables[i].order);
2507                         its->tables[i].base = NULL;
2508                 }
2509         }
2510 }
2511
2512 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2513 {
2514         u64 psz = SZ_64K;
2515
2516         while (psz) {
2517                 u64 val, gpsz;
2518
2519                 val = its_read_baser(its, baser);
2520                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2521
2522                 switch (psz) {
2523                 case SZ_64K:
2524                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2525                         break;
2526                 case SZ_16K:
2527                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2528                         break;
2529                 case SZ_4K:
2530                 default:
2531                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2532                         break;
2533                 }
2534
2535                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2536
2537                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2538                 its_write_baser(its, baser, val);
2539
2540                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2541                         break;
2542
2543                 switch (psz) {
2544                 case SZ_64K:
2545                         psz = SZ_16K;
2546                         break;
2547                 case SZ_16K:
2548                         psz = SZ_4K;
2549                         break;
2550                 case SZ_4K:
2551                 default:
2552                         return -1;
2553                 }
2554         }
2555
2556         baser->psz = psz;
2557         return 0;
2558 }
2559
2560 static int its_alloc_tables(struct its_node *its)
2561 {
2562         u64 shr = GITS_BASER_InnerShareable;
2563         u64 cache = GITS_BASER_RaWaWb;
2564         int err, i;
2565
2566         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2567                 /* erratum 24313: ignore memory access type */
2568                 cache = GITS_BASER_nCnB;
2569
2570         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2571                 struct its_baser *baser = its->tables + i;
2572                 u64 val = its_read_baser(its, baser);
2573                 u64 type = GITS_BASER_TYPE(val);
2574                 bool indirect = false;
2575                 u32 order;
2576
2577                 if (type == GITS_BASER_TYPE_NONE)
2578                         continue;
2579
2580                 if (its_probe_baser_psz(its, baser)) {
2581                         its_free_tables(its);
2582                         return -ENXIO;
2583                 }
2584
2585                 order = get_order(baser->psz);
2586
2587                 switch (type) {
2588                 case GITS_BASER_TYPE_DEVICE:
2589                         indirect = its_parse_indirect_baser(its, baser, &order,
2590                                                             device_ids(its));
2591                         break;
2592
2593                 case GITS_BASER_TYPE_VCPU:
2594                         if (is_v4_1(its)) {
2595                                 struct its_node *sibling;
2596
2597                                 WARN_ON(i != 2);
2598                                 if ((sibling = find_sibling_its(its))) {
2599                                         *baser = sibling->tables[2];
2600                                         its_write_baser(its, baser, baser->val);
2601                                         continue;
2602                                 }
2603                         }
2604
2605                         indirect = its_parse_indirect_baser(its, baser, &order,
2606                                                             ITS_MAX_VPEID_BITS);
2607                         break;
2608                 }
2609
2610                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2611                 if (err < 0) {
2612                         its_free_tables(its);
2613                         return err;
2614                 }
2615
2616                 /* Update settings which will be used for next BASERn */
2617                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2618                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2619         }
2620
2621         return 0;
2622 }
2623
2624 static u64 inherit_vpe_l1_table_from_its(void)
2625 {
2626         struct its_node *its;
2627         u64 val;
2628         u32 aff;
2629
2630         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2631         aff = compute_common_aff(val);
2632
2633         list_for_each_entry(its, &its_nodes, entry) {
2634                 u64 baser, addr;
2635
2636                 if (!is_v4_1(its))
2637                         continue;
2638
2639                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2640                         continue;
2641
2642                 if (aff != compute_its_aff(its))
2643                         continue;
2644
2645                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2646                 baser = its->tables[2].val;
2647                 if (!(baser & GITS_BASER_VALID))
2648                         continue;
2649
2650                 /* We have a winner! */
2651                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2652
2653                 val  = GICR_VPROPBASER_4_1_VALID;
2654                 if (baser & GITS_BASER_INDIRECT)
2655                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2656                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2657                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2658                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2659                 case GIC_PAGE_SIZE_64K:
2660                         addr = GITS_BASER_ADDR_48_to_52(baser);
2661                         break;
2662                 default:
2663                         addr = baser & GENMASK_ULL(47, 12);
2664                         break;
2665                 }
2666                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2667                 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2668                                   FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2669                 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2670                                   FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2671                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2672
2673                 return val;
2674         }
2675
2676         return 0;
2677 }
2678
2679 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2680 {
2681         u32 aff;
2682         u64 val;
2683         int cpu;
2684
2685         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2686         aff = compute_common_aff(val);
2687
2688         for_each_possible_cpu(cpu) {
2689                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2690
2691                 if (!base || cpu == smp_processor_id())
2692                         continue;
2693
2694                 val = gic_read_typer(base + GICR_TYPER);
2695                 if (aff != compute_common_aff(val))
2696                         continue;
2697
2698                 /*
2699                  * At this point, we have a victim. This particular CPU
2700                  * has already booted, and has an affinity that matches
2701                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2702                  * Make sure we don't write the Z bit in that case.
2703                  */
2704                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2705                 val &= ~GICR_VPROPBASER_4_1_Z;
2706
2707                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2708                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2709
2710                 return val;
2711         }
2712
2713         return 0;
2714 }
2715
2716 static bool allocate_vpe_l2_table(int cpu, u32 id)
2717 {
2718         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2719         unsigned int psz, esz, idx, npg, gpsz;
2720         u64 val;
2721         struct page *page;
2722         __le64 *table;
2723
2724         if (!gic_rdists->has_rvpeid)
2725                 return true;
2726
2727         /* Skip non-present CPUs */
2728         if (!base)
2729                 return true;
2730
2731         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2732
2733         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2734         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2735         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2736
2737         switch (gpsz) {
2738         default:
2739                 WARN_ON(1);
2740                 fallthrough;
2741         case GIC_PAGE_SIZE_4K:
2742                 psz = SZ_4K;
2743                 break;
2744         case GIC_PAGE_SIZE_16K:
2745                 psz = SZ_16K;
2746                 break;
2747         case GIC_PAGE_SIZE_64K:
2748                 psz = SZ_64K;
2749                 break;
2750         }
2751
2752         /* Don't allow vpe_id that exceeds single, flat table limit */
2753         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2754                 return (id < (npg * psz / (esz * SZ_8)));
2755
2756         /* Compute 1st level table index & check if that exceeds table limit */
2757         idx = id >> ilog2(psz / (esz * SZ_8));
2758         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2759                 return false;
2760
2761         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2762
2763         /* Allocate memory for 2nd level table */
2764         if (!table[idx]) {
2765                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2766                 if (!page)
2767                         return false;
2768
2769                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2770                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2771                         gic_flush_dcache_to_poc(page_address(page), psz);
2772
2773                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2774
2775                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2776                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2777                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2778
2779                 /* Ensure updated table contents are visible to RD hardware */
2780                 dsb(sy);
2781         }
2782
2783         return true;
2784 }
2785
2786 static int allocate_vpe_l1_table(void)
2787 {
2788         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2789         u64 val, gpsz, npg, pa;
2790         unsigned int psz = SZ_64K;
2791         unsigned int np, epp, esz;
2792         struct page *page;
2793
2794         if (!gic_rdists->has_rvpeid)
2795                 return 0;
2796
2797         /*
2798          * if VPENDBASER.Valid is set, disable any previously programmed
2799          * VPE by setting PendingLast while clearing Valid. This has the
2800          * effect of making sure no doorbell will be generated and we can
2801          * then safely clear VPROPBASER.Valid.
2802          */
2803         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2804                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2805                                       vlpi_base + GICR_VPENDBASER);
2806
2807         /*
2808          * If we can inherit the configuration from another RD, let's do
2809          * so. Otherwise, we have to go through the allocation process. We
2810          * assume that all RDs have the exact same requirements, as
2811          * nothing will work otherwise.
2812          */
2813         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2814         if (val & GICR_VPROPBASER_4_1_VALID)
2815                 goto out;
2816
2817         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2818         if (!gic_data_rdist()->vpe_table_mask)
2819                 return -ENOMEM;
2820
2821         val = inherit_vpe_l1_table_from_its();
2822         if (val & GICR_VPROPBASER_4_1_VALID)
2823                 goto out;
2824
2825         /* First probe the page size */
2826         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2827         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2828         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2829         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2830         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2831
2832         switch (gpsz) {
2833         default:
2834                 gpsz = GIC_PAGE_SIZE_4K;
2835                 fallthrough;
2836         case GIC_PAGE_SIZE_4K:
2837                 psz = SZ_4K;
2838                 break;
2839         case GIC_PAGE_SIZE_16K:
2840                 psz = SZ_16K;
2841                 break;
2842         case GIC_PAGE_SIZE_64K:
2843                 psz = SZ_64K;
2844                 break;
2845         }
2846
2847         /*
2848          * Start populating the register from scratch, including RO fields
2849          * (which we want to print in debug cases...)
2850          */
2851         val = 0;
2852         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2853         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2854
2855         /* How many entries per GIC page? */
2856         esz++;
2857         epp = psz / (esz * SZ_8);
2858
2859         /*
2860          * If we need more than just a single L1 page, flag the table
2861          * as indirect and compute the number of required L1 pages.
2862          */
2863         if (epp < ITS_MAX_VPEID) {
2864                 int nl2;
2865
2866                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2867
2868                 /* Number of L2 pages required to cover the VPEID space */
2869                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2870
2871                 /* Number of L1 pages to point to the L2 pages */
2872                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2873         } else {
2874                 npg = 1;
2875         }
2876
2877         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2878
2879         /* Right, that's the number of CPU pages we need for L1 */
2880         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2881
2882         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2883                  np, npg, psz, epp, esz);
2884         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2885         if (!page)
2886                 return -ENOMEM;
2887
2888         gic_data_rdist()->vpe_l1_base = page_address(page);
2889         pa = virt_to_phys(page_address(page));
2890         WARN_ON(!IS_ALIGNED(pa, psz));
2891
2892         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2893         val |= GICR_VPROPBASER_RaWb;
2894         val |= GICR_VPROPBASER_InnerShareable;
2895         val |= GICR_VPROPBASER_4_1_Z;
2896         val |= GICR_VPROPBASER_4_1_VALID;
2897
2898 out:
2899         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2900         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2901
2902         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2903                  smp_processor_id(), val,
2904                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2905
2906         return 0;
2907 }
2908
2909 static int its_alloc_collections(struct its_node *its)
2910 {
2911         int i;
2912
2913         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2914                                    GFP_KERNEL);
2915         if (!its->collections)
2916                 return -ENOMEM;
2917
2918         for (i = 0; i < nr_cpu_ids; i++)
2919                 its->collections[i].target_address = ~0ULL;
2920
2921         return 0;
2922 }
2923
2924 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2925 {
2926         struct page *pend_page;
2927
2928         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2929                                 get_order(LPI_PENDBASE_SZ));
2930         if (!pend_page)
2931                 return NULL;
2932
2933         /* Make sure the GIC will observe the zero-ed page */
2934         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2935
2936         return pend_page;
2937 }
2938
2939 static void its_free_pending_table(struct page *pt)
2940 {
2941         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2942 }
2943
2944 /*
2945  * Booting with kdump and LPIs enabled is generally fine. Any other
2946  * case is wrong in the absence of firmware/EFI support.
2947  */
2948 static bool enabled_lpis_allowed(void)
2949 {
2950         phys_addr_t addr;
2951         u64 val;
2952
2953         /* Check whether the property table is in a reserved region */
2954         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2955         addr = val & GENMASK_ULL(51, 12);
2956
2957         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2958 }
2959
2960 static int __init allocate_lpi_tables(void)
2961 {
2962         u64 val;
2963         int err, cpu;
2964
2965         /*
2966          * If LPIs are enabled while we run this from the boot CPU,
2967          * flag the RD tables as pre-allocated if the stars do align.
2968          */
2969         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2970         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2971                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2972                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2973                 pr_info("GICv3: Using preallocated redistributor tables\n");
2974         }
2975
2976         err = its_setup_lpi_prop_table();
2977         if (err)
2978                 return err;
2979
2980         /*
2981          * We allocate all the pending tables anyway, as we may have a
2982          * mix of RDs that have had LPIs enabled, and some that
2983          * don't. We'll free the unused ones as each CPU comes online.
2984          */
2985         for_each_possible_cpu(cpu) {
2986                 struct page *pend_page;
2987
2988                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2989                 if (!pend_page) {
2990                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2991                         return -ENOMEM;
2992                 }
2993
2994                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2995         }
2996
2997         return 0;
2998 }
2999
3000 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3001 {
3002         u32 count = 1000000;    /* 1s! */
3003         bool clean;
3004         u64 val;
3005
3006         val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3007         val &= ~GICR_VPENDBASER_Valid;
3008         val &= ~clr;
3009         val |= set;
3010         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3011
3012         do {
3013                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3014                 clean = !(val & GICR_VPENDBASER_Dirty);
3015                 if (!clean) {
3016                         count--;
3017                         cpu_relax();
3018                         udelay(1);
3019                 }
3020         } while (!clean && count);
3021
3022         if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3023                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3024                 val |= GICR_VPENDBASER_PendingLast;
3025         }
3026
3027         return val;
3028 }
3029
3030 static void its_cpu_init_lpis(void)
3031 {
3032         void __iomem *rbase = gic_data_rdist_rd_base();
3033         struct page *pend_page;
3034         phys_addr_t paddr;
3035         u64 val, tmp;
3036
3037         if (gic_data_rdist()->lpi_enabled)
3038                 return;
3039
3040         val = readl_relaxed(rbase + GICR_CTLR);
3041         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3042             (val & GICR_CTLR_ENABLE_LPIS)) {
3043                 /*
3044                  * Check that we get the same property table on all
3045                  * RDs. If we don't, this is hopeless.
3046                  */
3047                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3048                 paddr &= GENMASK_ULL(51, 12);
3049                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3050                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3051
3052                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3053                 paddr &= GENMASK_ULL(51, 16);
3054
3055                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3056                 its_free_pending_table(gic_data_rdist()->pend_page);
3057                 gic_data_rdist()->pend_page = NULL;
3058
3059                 goto out;
3060         }
3061
3062         pend_page = gic_data_rdist()->pend_page;
3063         paddr = page_to_phys(pend_page);
3064         WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3065
3066         /* set PROPBASE */
3067         val = (gic_rdists->prop_table_pa |
3068                GICR_PROPBASER_InnerShareable |
3069                GICR_PROPBASER_RaWaWb |
3070                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3071
3072         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3073         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3074
3075         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3076                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3077                         /*
3078                          * The HW reports non-shareable, we must
3079                          * remove the cacheability attributes as
3080                          * well.
3081                          */
3082                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3083                                  GICR_PROPBASER_CACHEABILITY_MASK);
3084                         val |= GICR_PROPBASER_nC;
3085                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3086                 }
3087                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3088                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3089         }
3090
3091         /* set PENDBASE */
3092         val = (page_to_phys(pend_page) |
3093                GICR_PENDBASER_InnerShareable |
3094                GICR_PENDBASER_RaWaWb);
3095
3096         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3097         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3098
3099         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3100                 /*
3101                  * The HW reports non-shareable, we must remove the
3102                  * cacheability attributes as well.
3103                  */
3104                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3105                          GICR_PENDBASER_CACHEABILITY_MASK);
3106                 val |= GICR_PENDBASER_nC;
3107                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3108         }
3109
3110         /* Enable LPIs */
3111         val = readl_relaxed(rbase + GICR_CTLR);
3112         val |= GICR_CTLR_ENABLE_LPIS;
3113         writel_relaxed(val, rbase + GICR_CTLR);
3114
3115         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3116                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3117
3118                 /*
3119                  * It's possible for CPU to receive VLPIs before it is
3120                  * sheduled as a vPE, especially for the first CPU, and the
3121                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3122                  * as out of range and dropped by GIC.
3123                  * So we initialize IDbits to known value to avoid VLPI drop.
3124                  */
3125                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3126                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3127                         smp_processor_id(), val);
3128                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3129
3130                 /*
3131                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3132                  * ancient programming gets left in and has possibility of
3133                  * corrupting memory.
3134                  */
3135                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3136         }
3137
3138         if (allocate_vpe_l1_table()) {
3139                 /*
3140                  * If the allocation has failed, we're in massive trouble.
3141                  * Disable direct injection, and pray that no VM was
3142                  * already running...
3143                  */
3144                 gic_rdists->has_rvpeid = false;
3145                 gic_rdists->has_vlpis = false;
3146         }
3147
3148         /* Make sure the GIC has seen the above */
3149         dsb(sy);
3150 out:
3151         gic_data_rdist()->lpi_enabled = true;
3152         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3153                 smp_processor_id(),
3154                 gic_data_rdist()->pend_page ? "allocated" : "reserved",
3155                 &paddr);
3156 }
3157
3158 static void its_cpu_init_collection(struct its_node *its)
3159 {
3160         int cpu = smp_processor_id();
3161         u64 target;
3162
3163         /* avoid cross node collections and its mapping */
3164         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3165                 struct device_node *cpu_node;
3166
3167                 cpu_node = of_get_cpu_node(cpu, NULL);
3168                 if (its->numa_node != NUMA_NO_NODE &&
3169                         its->numa_node != of_node_to_nid(cpu_node))
3170                         return;
3171         }
3172
3173         /*
3174          * We now have to bind each collection to its target
3175          * redistributor.
3176          */
3177         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3178                 /*
3179                  * This ITS wants the physical address of the
3180                  * redistributor.
3181                  */
3182                 target = gic_data_rdist()->phys_base;
3183         } else {
3184                 /* This ITS wants a linear CPU number. */
3185                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3186                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3187         }
3188
3189         /* Perform collection mapping */
3190         its->collections[cpu].target_address = target;
3191         its->collections[cpu].col_id = cpu;
3192
3193         its_send_mapc(its, &its->collections[cpu], 1);
3194         its_send_invall(its, &its->collections[cpu]);
3195 }
3196
3197 static void its_cpu_init_collections(void)
3198 {
3199         struct its_node *its;
3200
3201         raw_spin_lock(&its_lock);
3202
3203         list_for_each_entry(its, &its_nodes, entry)
3204                 its_cpu_init_collection(its);
3205
3206         raw_spin_unlock(&its_lock);
3207 }
3208
3209 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3210 {
3211         struct its_device *its_dev = NULL, *tmp;
3212         unsigned long flags;
3213
3214         raw_spin_lock_irqsave(&its->lock, flags);
3215
3216         list_for_each_entry(tmp, &its->its_device_list, entry) {
3217                 if (tmp->device_id == dev_id) {
3218                         its_dev = tmp;
3219                         break;
3220                 }
3221         }
3222
3223         raw_spin_unlock_irqrestore(&its->lock, flags);
3224
3225         return its_dev;
3226 }
3227
3228 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3229 {
3230         int i;
3231
3232         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3233                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3234                         return &its->tables[i];
3235         }
3236
3237         return NULL;
3238 }
3239
3240 static bool its_alloc_table_entry(struct its_node *its,
3241                                   struct its_baser *baser, u32 id)
3242 {
3243         struct page *page;
3244         u32 esz, idx;
3245         __le64 *table;
3246
3247         /* Don't allow device id that exceeds single, flat table limit */
3248         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3249         if (!(baser->val & GITS_BASER_INDIRECT))
3250                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3251
3252         /* Compute 1st level table index & check if that exceeds table limit */
3253         idx = id >> ilog2(baser->psz / esz);
3254         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3255                 return false;
3256
3257         table = baser->base;
3258
3259         /* Allocate memory for 2nd level table */
3260         if (!table[idx]) {
3261                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3262                                         get_order(baser->psz));
3263                 if (!page)
3264                         return false;
3265
3266                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3267                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3268                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3269
3270                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3271
3272                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3273                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3274                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3275
3276                 /* Ensure updated table contents are visible to ITS hardware */
3277                 dsb(sy);
3278         }
3279
3280         return true;
3281 }
3282
3283 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3284 {
3285         struct its_baser *baser;
3286
3287         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3288
3289         /* Don't allow device id that exceeds ITS hardware limit */
3290         if (!baser)
3291                 return (ilog2(dev_id) < device_ids(its));
3292
3293         return its_alloc_table_entry(its, baser, dev_id);
3294 }
3295
3296 static bool its_alloc_vpe_table(u32 vpe_id)
3297 {
3298         struct its_node *its;
3299         int cpu;
3300
3301         /*
3302          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3303          * could try and only do it on ITSs corresponding to devices
3304          * that have interrupts targeted at this VPE, but the
3305          * complexity becomes crazy (and you have tons of memory
3306          * anyway, right?).
3307          */
3308         list_for_each_entry(its, &its_nodes, entry) {
3309                 struct its_baser *baser;
3310
3311                 if (!is_v4(its))
3312                         continue;
3313
3314                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3315                 if (!baser)
3316                         return false;
3317
3318                 if (!its_alloc_table_entry(its, baser, vpe_id))
3319                         return false;
3320         }
3321
3322         /* Non v4.1? No need to iterate RDs and go back early. */
3323         if (!gic_rdists->has_rvpeid)
3324                 return true;
3325
3326         /*
3327          * Make sure the L2 tables are allocated for all copies of
3328          * the L1 table on *all* v4.1 RDs.
3329          */
3330         for_each_possible_cpu(cpu) {
3331                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3332                         return false;
3333         }
3334
3335         return true;
3336 }
3337
3338 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3339                                             int nvecs, bool alloc_lpis)
3340 {
3341         struct its_device *dev;
3342         unsigned long *lpi_map = NULL;
3343         unsigned long flags;
3344         u16 *col_map = NULL;
3345         void *itt;
3346         int lpi_base;
3347         int nr_lpis;
3348         int nr_ites;
3349         int sz;
3350
3351         if (!its_alloc_device_table(its, dev_id))
3352                 return NULL;
3353
3354         if (WARN_ON(!is_power_of_2(nvecs)))
3355                 nvecs = roundup_pow_of_two(nvecs);
3356
3357         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3358         /*
3359          * Even if the device wants a single LPI, the ITT must be
3360          * sized as a power of two (and you need at least one bit...).
3361          */
3362         nr_ites = max(2, nvecs);
3363         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3364         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3365         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3366         if (alloc_lpis) {
3367                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3368                 if (lpi_map)
3369                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3370                                           GFP_KERNEL);
3371         } else {
3372                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3373                 nr_lpis = 0;
3374                 lpi_base = 0;
3375         }
3376
3377         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3378                 kfree(dev);
3379                 kfree(itt);
3380                 kfree(lpi_map);
3381                 kfree(col_map);
3382                 return NULL;
3383         }
3384
3385         gic_flush_dcache_to_poc(itt, sz);
3386
3387         dev->its = its;
3388         dev->itt = itt;
3389         dev->nr_ites = nr_ites;
3390         dev->event_map.lpi_map = lpi_map;
3391         dev->event_map.col_map = col_map;
3392         dev->event_map.lpi_base = lpi_base;
3393         dev->event_map.nr_lpis = nr_lpis;
3394         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3395         dev->device_id = dev_id;
3396         INIT_LIST_HEAD(&dev->entry);
3397
3398         raw_spin_lock_irqsave(&its->lock, flags);
3399         list_add(&dev->entry, &its->its_device_list);
3400         raw_spin_unlock_irqrestore(&its->lock, flags);
3401
3402         /* Map device to its ITT */
3403         its_send_mapd(dev, 1);
3404
3405         return dev;
3406 }
3407
3408 static void its_free_device(struct its_device *its_dev)
3409 {
3410         unsigned long flags;
3411
3412         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3413         list_del(&its_dev->entry);
3414         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3415         kfree(its_dev->event_map.col_map);
3416         kfree(its_dev->itt);
3417         kfree(its_dev);
3418 }
3419
3420 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3421 {
3422         int idx;
3423
3424         /* Find a free LPI region in lpi_map and allocate them. */
3425         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3426                                       dev->event_map.nr_lpis,
3427                                       get_count_order(nvecs));
3428         if (idx < 0)
3429                 return -ENOSPC;
3430
3431         *hwirq = dev->event_map.lpi_base + idx;
3432
3433         return 0;
3434 }
3435
3436 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3437                            int nvec, msi_alloc_info_t *info)
3438 {
3439         struct its_node *its;
3440         struct its_device *its_dev;
3441         struct msi_domain_info *msi_info;
3442         u32 dev_id;
3443         int err = 0;
3444
3445         /*
3446          * We ignore "dev" entirely, and rely on the dev_id that has
3447          * been passed via the scratchpad. This limits this domain's
3448          * usefulness to upper layers that definitely know that they
3449          * are built on top of the ITS.
3450          */
3451         dev_id = info->scratchpad[0].ul;
3452
3453         msi_info = msi_get_domain_info(domain);
3454         its = msi_info->data;
3455
3456         if (!gic_rdists->has_direct_lpi &&
3457             vpe_proxy.dev &&
3458             vpe_proxy.dev->its == its &&
3459             dev_id == vpe_proxy.dev->device_id) {
3460                 /* Bad luck. Get yourself a better implementation */
3461                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3462                           dev_id);
3463                 return -EINVAL;
3464         }
3465
3466         mutex_lock(&its->dev_alloc_lock);
3467         its_dev = its_find_device(its, dev_id);
3468         if (its_dev) {
3469                 /*
3470                  * We already have seen this ID, probably through
3471                  * another alias (PCI bridge of some sort). No need to
3472                  * create the device.
3473                  */
3474                 its_dev->shared = true;
3475                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3476                 goto out;
3477         }
3478
3479         its_dev = its_create_device(its, dev_id, nvec, true);
3480         if (!its_dev) {
3481                 err = -ENOMEM;
3482                 goto out;
3483         }
3484
3485         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3486 out:
3487         mutex_unlock(&its->dev_alloc_lock);
3488         info->scratchpad[0].ptr = its_dev;
3489         return err;
3490 }
3491
3492 static struct msi_domain_ops its_msi_domain_ops = {
3493         .msi_prepare    = its_msi_prepare,
3494 };
3495
3496 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3497                                     unsigned int virq,
3498                                     irq_hw_number_t hwirq)
3499 {
3500         struct irq_fwspec fwspec;
3501
3502         if (irq_domain_get_of_node(domain->parent)) {
3503                 fwspec.fwnode = domain->parent->fwnode;
3504                 fwspec.param_count = 3;
3505                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3506                 fwspec.param[1] = hwirq;
3507                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3508         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3509                 fwspec.fwnode = domain->parent->fwnode;
3510                 fwspec.param_count = 2;
3511                 fwspec.param[0] = hwirq;
3512                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3513         } else {
3514                 return -EINVAL;
3515         }
3516
3517         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3518 }
3519
3520 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3521                                 unsigned int nr_irqs, void *args)
3522 {
3523         msi_alloc_info_t *info = args;
3524         struct its_device *its_dev = info->scratchpad[0].ptr;
3525         struct its_node *its = its_dev->its;
3526         struct irq_data *irqd;
3527         irq_hw_number_t hwirq;
3528         int err;
3529         int i;
3530
3531         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3532         if (err)
3533                 return err;
3534
3535         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3536         if (err)
3537                 return err;
3538
3539         for (i = 0; i < nr_irqs; i++) {
3540                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3541                 if (err)
3542                         return err;
3543
3544                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3545                                               hwirq + i, &its_irq_chip, its_dev);
3546                 irqd = irq_get_irq_data(virq + i);
3547                 irqd_set_single_target(irqd);
3548                 irqd_set_affinity_on_activate(irqd);
3549                 pr_debug("ID:%d pID:%d vID:%d\n",
3550                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3551                          (int)(hwirq + i), virq + i);
3552         }
3553
3554         return 0;
3555 }
3556
3557 static int its_irq_domain_activate(struct irq_domain *domain,
3558                                    struct irq_data *d, bool reserve)
3559 {
3560         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3561         u32 event = its_get_event_id(d);
3562         int cpu;
3563
3564         cpu = its_select_cpu(d, cpu_online_mask);
3565         if (cpu < 0 || cpu >= nr_cpu_ids)
3566                 return -EINVAL;
3567
3568         its_inc_lpi_count(d, cpu);
3569         its_dev->event_map.col_map[event] = cpu;
3570         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3571
3572         /* Map the GIC IRQ and event to the device */
3573         its_send_mapti(its_dev, d->hwirq, event);
3574         return 0;
3575 }
3576
3577 static void its_irq_domain_deactivate(struct irq_domain *domain,
3578                                       struct irq_data *d)
3579 {
3580         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3581         u32 event = its_get_event_id(d);
3582
3583         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3584         /* Stop the delivery of interrupts */
3585         its_send_discard(its_dev, event);
3586 }
3587
3588 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3589                                 unsigned int nr_irqs)
3590 {
3591         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3592         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3593         struct its_node *its = its_dev->its;
3594         int i;
3595
3596         bitmap_release_region(its_dev->event_map.lpi_map,
3597                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3598                               get_count_order(nr_irqs));
3599
3600         for (i = 0; i < nr_irqs; i++) {
3601                 struct irq_data *data = irq_domain_get_irq_data(domain,
3602                                                                 virq + i);
3603                 /* Nuke the entry in the domain */
3604                 irq_domain_reset_irq_data(data);
3605         }
3606
3607         mutex_lock(&its->dev_alloc_lock);
3608
3609         /*
3610          * If all interrupts have been freed, start mopping the
3611          * floor. This is conditionned on the device not being shared.
3612          */
3613         if (!its_dev->shared &&
3614             bitmap_empty(its_dev->event_map.lpi_map,
3615                          its_dev->event_map.nr_lpis)) {
3616                 its_lpi_free(its_dev->event_map.lpi_map,
3617                              its_dev->event_map.lpi_base,
3618                              its_dev->event_map.nr_lpis);
3619
3620                 /* Unmap device/itt */
3621                 its_send_mapd(its_dev, 0);
3622                 its_free_device(its_dev);
3623         }
3624
3625         mutex_unlock(&its->dev_alloc_lock);
3626
3627         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3628 }
3629
3630 static const struct irq_domain_ops its_domain_ops = {
3631         .alloc                  = its_irq_domain_alloc,
3632         .free                   = its_irq_domain_free,
3633         .activate               = its_irq_domain_activate,
3634         .deactivate             = its_irq_domain_deactivate,
3635 };
3636
3637 /*
3638  * This is insane.
3639  *
3640  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3641  * likely), the only way to perform an invalidate is to use a fake
3642  * device to issue an INV command, implying that the LPI has first
3643  * been mapped to some event on that device. Since this is not exactly
3644  * cheap, we try to keep that mapping around as long as possible, and
3645  * only issue an UNMAP if we're short on available slots.
3646  *
3647  * Broken by design(tm).
3648  *
3649  * GICv4.1, on the other hand, mandates that we're able to invalidate
3650  * by writing to a MMIO register. It doesn't implement the whole of
3651  * DirectLPI, but that's good enough. And most of the time, we don't
3652  * even have to invalidate anything, as the redistributor can be told
3653  * whether to generate a doorbell or not (we thus leave it enabled,
3654  * always).
3655  */
3656 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3657 {
3658         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3659         if (gic_rdists->has_rvpeid)
3660                 return;
3661
3662         /* Already unmapped? */
3663         if (vpe->vpe_proxy_event == -1)
3664                 return;
3665
3666         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3667         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3668
3669         /*
3670          * We don't track empty slots at all, so let's move the
3671          * next_victim pointer if we can quickly reuse that slot
3672          * instead of nuking an existing entry. Not clear that this is
3673          * always a win though, and this might just generate a ripple
3674          * effect... Let's just hope VPEs don't migrate too often.
3675          */
3676         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3677                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3678
3679         vpe->vpe_proxy_event = -1;
3680 }
3681
3682 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3683 {
3684         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3685         if (gic_rdists->has_rvpeid)
3686                 return;
3687
3688         if (!gic_rdists->has_direct_lpi) {
3689                 unsigned long flags;
3690
3691                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3692                 its_vpe_db_proxy_unmap_locked(vpe);
3693                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3694         }
3695 }
3696
3697 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3698 {
3699         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3700         if (gic_rdists->has_rvpeid)
3701                 return;
3702
3703         /* Already mapped? */
3704         if (vpe->vpe_proxy_event != -1)
3705                 return;
3706
3707         /* This slot was already allocated. Kick the other VPE out. */
3708         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3709                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3710
3711         /* Map the new VPE instead */
3712         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3713         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3714         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3715
3716         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3717         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3718 }
3719
3720 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3721 {
3722         unsigned long flags;
3723         struct its_collection *target_col;
3724
3725         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3726         if (gic_rdists->has_rvpeid)
3727                 return;
3728
3729         if (gic_rdists->has_direct_lpi) {
3730                 void __iomem *rdbase;
3731
3732                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3733                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3734                 wait_for_syncr(rdbase);
3735
3736                 return;
3737         }
3738
3739         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3740
3741         its_vpe_db_proxy_map_locked(vpe);
3742
3743         target_col = &vpe_proxy.dev->its->collections[to];
3744         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3745         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3746
3747         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3748 }
3749
3750 static int its_vpe_set_affinity(struct irq_data *d,
3751                                 const struct cpumask *mask_val,
3752                                 bool force)
3753 {
3754         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3755         int from, cpu = cpumask_first(mask_val);
3756         unsigned long flags;
3757
3758         /*
3759          * Changing affinity is mega expensive, so let's be as lazy as
3760          * we can and only do it if we really have to. Also, if mapped
3761          * into the proxy device, we need to move the doorbell
3762          * interrupt to its new location.
3763          *
3764          * Another thing is that changing the affinity of a vPE affects
3765          * *other interrupts* such as all the vLPIs that are routed to
3766          * this vPE. This means that the irq_desc lock is not enough to
3767          * protect us, and that we must ensure nobody samples vpe->col_idx
3768          * during the update, hence the lock below which must also be
3769          * taken on any vLPI handling path that evaluates vpe->col_idx.
3770          */
3771         from = vpe_to_cpuid_lock(vpe, &flags);
3772         if (from == cpu)
3773                 goto out;
3774
3775         vpe->col_idx = cpu;
3776
3777         /*
3778          * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3779          * is sharing its VPE table with the current one.
3780          */
3781         if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3782             cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3783                 goto out;
3784
3785         its_send_vmovp(vpe);
3786         its_vpe_db_proxy_move(vpe, from, cpu);
3787
3788 out:
3789         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3790         vpe_to_cpuid_unlock(vpe, flags);
3791
3792         return IRQ_SET_MASK_OK_DONE;
3793 }
3794
3795 static void its_wait_vpt_parse_complete(void)
3796 {
3797         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3798         u64 val;
3799
3800         if (!gic_rdists->has_vpend_valid_dirty)
3801                 return;
3802
3803         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3804                                                        val,
3805                                                        !(val & GICR_VPENDBASER_Dirty),
3806                                                        10, 500));
3807 }
3808
3809 static void its_vpe_schedule(struct its_vpe *vpe)
3810 {
3811         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3812         u64 val;
3813
3814         /* Schedule the VPE */
3815         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3816                 GENMASK_ULL(51, 12);
3817         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3818         val |= GICR_VPROPBASER_RaWb;
3819         val |= GICR_VPROPBASER_InnerShareable;
3820         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3821
3822         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3823                 GENMASK_ULL(51, 16);
3824         val |= GICR_VPENDBASER_RaWaWb;
3825         val |= GICR_VPENDBASER_InnerShareable;
3826         /*
3827          * There is no good way of finding out if the pending table is
3828          * empty as we can race against the doorbell interrupt very
3829          * easily. So in the end, vpe->pending_last is only an
3830          * indication that the vcpu has something pending, not one
3831          * that the pending table is empty. A good implementation
3832          * would be able to read its coarse map pretty quickly anyway,
3833          * making this a tolerable issue.
3834          */
3835         val |= GICR_VPENDBASER_PendingLast;
3836         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3837         val |= GICR_VPENDBASER_Valid;
3838         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3839
3840         its_wait_vpt_parse_complete();
3841 }
3842
3843 static void its_vpe_deschedule(struct its_vpe *vpe)
3844 {
3845         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3846         u64 val;
3847
3848         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3849
3850         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3851         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3852 }
3853
3854 static void its_vpe_invall(struct its_vpe *vpe)
3855 {
3856         struct its_node *its;
3857
3858         list_for_each_entry(its, &its_nodes, entry) {
3859                 if (!is_v4(its))
3860                         continue;
3861
3862                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3863                         continue;
3864
3865                 /*
3866                  * Sending a VINVALL to a single ITS is enough, as all
3867                  * we need is to reach the redistributors.
3868                  */
3869                 its_send_vinvall(its, vpe);
3870                 return;
3871         }
3872 }
3873
3874 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3875 {
3876         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3877         struct its_cmd_info *info = vcpu_info;
3878
3879         switch (info->cmd_type) {
3880         case SCHEDULE_VPE:
3881                 its_vpe_schedule(vpe);
3882                 return 0;
3883
3884         case DESCHEDULE_VPE:
3885                 its_vpe_deschedule(vpe);
3886                 return 0;
3887
3888         case INVALL_VPE:
3889                 its_vpe_invall(vpe);
3890                 return 0;
3891
3892         default:
3893                 return -EINVAL;
3894         }
3895 }
3896
3897 static void its_vpe_send_cmd(struct its_vpe *vpe,
3898                              void (*cmd)(struct its_device *, u32))
3899 {
3900         unsigned long flags;
3901
3902         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3903
3904         its_vpe_db_proxy_map_locked(vpe);
3905         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3906
3907         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3908 }
3909
3910 static void its_vpe_send_inv(struct irq_data *d)
3911 {
3912         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3913
3914         if (gic_rdists->has_direct_lpi) {
3915                 void __iomem *rdbase;
3916
3917                 /* Target the redistributor this VPE is currently known on */
3918                 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3919                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3920                 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3921                 wait_for_syncr(rdbase);
3922                 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3923         } else {
3924                 its_vpe_send_cmd(vpe, its_send_inv);
3925         }
3926 }
3927
3928 static void its_vpe_mask_irq(struct irq_data *d)
3929 {
3930         /*
3931          * We need to unmask the LPI, which is described by the parent
3932          * irq_data. Instead of calling into the parent (which won't
3933          * exactly do the right thing, let's simply use the
3934          * parent_data pointer. Yes, I'm naughty.
3935          */
3936         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3937         its_vpe_send_inv(d);
3938 }
3939
3940 static void its_vpe_unmask_irq(struct irq_data *d)
3941 {
3942         /* Same hack as above... */
3943         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3944         its_vpe_send_inv(d);
3945 }
3946
3947 static int its_vpe_set_irqchip_state(struct irq_data *d,
3948                                      enum irqchip_irq_state which,
3949                                      bool state)
3950 {
3951         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3952
3953         if (which != IRQCHIP_STATE_PENDING)
3954                 return -EINVAL;
3955
3956         if (gic_rdists->has_direct_lpi) {
3957                 void __iomem *rdbase;
3958
3959                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3960                 if (state) {
3961                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3962                 } else {
3963                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3964                         wait_for_syncr(rdbase);
3965                 }
3966         } else {
3967                 if (state)
3968                         its_vpe_send_cmd(vpe, its_send_int);
3969                 else
3970                         its_vpe_send_cmd(vpe, its_send_clear);
3971         }
3972
3973         return 0;
3974 }
3975
3976 static int its_vpe_retrigger(struct irq_data *d)
3977 {
3978         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3979 }
3980
3981 static struct irq_chip its_vpe_irq_chip = {
3982         .name                   = "GICv4-vpe",
3983         .irq_mask               = its_vpe_mask_irq,
3984         .irq_unmask             = its_vpe_unmask_irq,
3985         .irq_eoi                = irq_chip_eoi_parent,
3986         .irq_set_affinity       = its_vpe_set_affinity,
3987         .irq_retrigger          = its_vpe_retrigger,
3988         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
3989         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
3990 };
3991
3992 static struct its_node *find_4_1_its(void)
3993 {
3994         static struct its_node *its = NULL;
3995
3996         if (!its) {
3997                 list_for_each_entry(its, &its_nodes, entry) {
3998                         if (is_v4_1(its))
3999                                 return its;
4000                 }
4001
4002                 /* Oops? */
4003                 its = NULL;
4004         }
4005
4006         return its;
4007 }
4008
4009 static void its_vpe_4_1_send_inv(struct irq_data *d)
4010 {
4011         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4012         struct its_node *its;
4013
4014         /*
4015          * GICv4.1 wants doorbells to be invalidated using the
4016          * INVDB command in order to be broadcast to all RDs. Send
4017          * it to the first valid ITS, and let the HW do its magic.
4018          */
4019         its = find_4_1_its();
4020         if (its)
4021                 its_send_invdb(its, vpe);
4022 }
4023
4024 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4025 {
4026         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4027         its_vpe_4_1_send_inv(d);
4028 }
4029
4030 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4031 {
4032         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4033         its_vpe_4_1_send_inv(d);
4034 }
4035
4036 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4037                                  struct its_cmd_info *info)
4038 {
4039         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4040         u64 val = 0;
4041
4042         /* Schedule the VPE */
4043         val |= GICR_VPENDBASER_Valid;
4044         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4045         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4046         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4047
4048         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4049
4050         its_wait_vpt_parse_complete();
4051 }
4052
4053 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4054                                    struct its_cmd_info *info)
4055 {
4056         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4057         u64 val;
4058
4059         if (info->req_db) {
4060                 unsigned long flags;
4061
4062                 /*
4063                  * vPE is going to block: make the vPE non-resident with
4064                  * PendingLast clear and DB set. The GIC guarantees that if
4065                  * we read-back PendingLast clear, then a doorbell will be
4066                  * delivered when an interrupt comes.
4067                  *
4068                  * Note the locking to deal with the concurrent update of
4069                  * pending_last from the doorbell interrupt handler that can
4070                  * run concurrently.
4071                  */
4072                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4073                 val = its_clear_vpend_valid(vlpi_base,
4074                                             GICR_VPENDBASER_PendingLast,
4075                                             GICR_VPENDBASER_4_1_DB);
4076                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4077                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4078         } else {
4079                 /*
4080                  * We're not blocking, so just make the vPE non-resident
4081                  * with PendingLast set, indicating that we'll be back.
4082                  */
4083                 val = its_clear_vpend_valid(vlpi_base,
4084                                             0,
4085                                             GICR_VPENDBASER_PendingLast);
4086                 vpe->pending_last = true;
4087         }
4088 }
4089
4090 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4091 {
4092         void __iomem *rdbase;
4093         unsigned long flags;
4094         u64 val;
4095         int cpu;
4096
4097         val  = GICR_INVALLR_V;
4098         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4099
4100         /* Target the redistributor this vPE is currently known on */
4101         cpu = vpe_to_cpuid_lock(vpe, &flags);
4102         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4103         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4104         gic_write_lpir(val, rdbase + GICR_INVALLR);
4105
4106         wait_for_syncr(rdbase);
4107         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4108         vpe_to_cpuid_unlock(vpe, flags);
4109 }
4110
4111 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4112 {
4113         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4114         struct its_cmd_info *info = vcpu_info;
4115
4116         switch (info->cmd_type) {
4117         case SCHEDULE_VPE:
4118                 its_vpe_4_1_schedule(vpe, info);
4119                 return 0;
4120
4121         case DESCHEDULE_VPE:
4122                 its_vpe_4_1_deschedule(vpe, info);
4123                 return 0;
4124
4125         case INVALL_VPE:
4126                 its_vpe_4_1_invall(vpe);
4127                 return 0;
4128
4129         default:
4130                 return -EINVAL;
4131         }
4132 }
4133
4134 static struct irq_chip its_vpe_4_1_irq_chip = {
4135         .name                   = "GICv4.1-vpe",
4136         .irq_mask               = its_vpe_4_1_mask_irq,
4137         .irq_unmask             = its_vpe_4_1_unmask_irq,
4138         .irq_eoi                = irq_chip_eoi_parent,
4139         .irq_set_affinity       = its_vpe_set_affinity,
4140         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4141 };
4142
4143 static void its_configure_sgi(struct irq_data *d, bool clear)
4144 {
4145         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4146         struct its_cmd_desc desc;
4147
4148         desc.its_vsgi_cmd.vpe = vpe;
4149         desc.its_vsgi_cmd.sgi = d->hwirq;
4150         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4151         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4152         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4153         desc.its_vsgi_cmd.clear = clear;
4154
4155         /*
4156          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4157          * destination VPE is mapped there. Since we map them eagerly at
4158          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4159          */
4160         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4161 }
4162
4163 static void its_sgi_mask_irq(struct irq_data *d)
4164 {
4165         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4166
4167         vpe->sgi_config[d->hwirq].enabled = false;
4168         its_configure_sgi(d, false);
4169 }
4170
4171 static void its_sgi_unmask_irq(struct irq_data *d)
4172 {
4173         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4174
4175         vpe->sgi_config[d->hwirq].enabled = true;
4176         its_configure_sgi(d, false);
4177 }
4178
4179 static int its_sgi_set_affinity(struct irq_data *d,
4180                                 const struct cpumask *mask_val,
4181                                 bool force)
4182 {
4183         /*
4184          * There is no notion of affinity for virtual SGIs, at least
4185          * not on the host (since they can only be targetting a vPE).
4186          * Tell the kernel we've done whatever it asked for.
4187          */
4188         irq_data_update_effective_affinity(d, mask_val);
4189         return IRQ_SET_MASK_OK;
4190 }
4191
4192 static int its_sgi_set_irqchip_state(struct irq_data *d,
4193                                      enum irqchip_irq_state which,
4194                                      bool state)
4195 {
4196         if (which != IRQCHIP_STATE_PENDING)
4197                 return -EINVAL;
4198
4199         if (state) {
4200                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4201                 struct its_node *its = find_4_1_its();
4202                 u64 val;
4203
4204                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4205                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4206                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4207         } else {
4208                 its_configure_sgi(d, true);
4209         }
4210
4211         return 0;
4212 }
4213
4214 static int its_sgi_get_irqchip_state(struct irq_data *d,
4215                                      enum irqchip_irq_state which, bool *val)
4216 {
4217         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4218         void __iomem *base;
4219         unsigned long flags;
4220         u32 count = 1000000;    /* 1s! */
4221         u32 status;
4222         int cpu;
4223
4224         if (which != IRQCHIP_STATE_PENDING)
4225                 return -EINVAL;
4226
4227         /*
4228          * Locking galore! We can race against two different events:
4229          *
4230          * - Concurent vPE affinity change: we must make sure it cannot
4231          *   happen, or we'll talk to the wrong redistributor. This is
4232          *   identical to what happens with vLPIs.
4233          *
4234          * - Concurrent VSGIPENDR access: As it involves accessing two
4235          *   MMIO registers, this must be made atomic one way or another.
4236          */
4237         cpu = vpe_to_cpuid_lock(vpe, &flags);
4238         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4239         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4240         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4241         do {
4242                 status = readl_relaxed(base + GICR_VSGIPENDR);
4243                 if (!(status & GICR_VSGIPENDR_BUSY))
4244                         goto out;
4245
4246                 count--;
4247                 if (!count) {
4248                         pr_err_ratelimited("Unable to get SGI status\n");
4249                         goto out;
4250                 }
4251                 cpu_relax();
4252                 udelay(1);
4253         } while (count);
4254
4255 out:
4256         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4257         vpe_to_cpuid_unlock(vpe, flags);
4258
4259         if (!count)
4260                 return -ENXIO;
4261
4262         *val = !!(status & (1 << d->hwirq));
4263
4264         return 0;
4265 }
4266
4267 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4268 {
4269         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4270         struct its_cmd_info *info = vcpu_info;
4271
4272         switch (info->cmd_type) {
4273         case PROP_UPDATE_VSGI:
4274                 vpe->sgi_config[d->hwirq].priority = info->priority;
4275                 vpe->sgi_config[d->hwirq].group = info->group;
4276                 its_configure_sgi(d, false);
4277                 return 0;
4278
4279         default:
4280                 return -EINVAL;
4281         }
4282 }
4283
4284 static struct irq_chip its_sgi_irq_chip = {
4285         .name                   = "GICv4.1-sgi",
4286         .irq_mask               = its_sgi_mask_irq,
4287         .irq_unmask             = its_sgi_unmask_irq,
4288         .irq_set_affinity       = its_sgi_set_affinity,
4289         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4290         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4291         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4292 };
4293
4294 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4295                                     unsigned int virq, unsigned int nr_irqs,
4296                                     void *args)
4297 {
4298         struct its_vpe *vpe = args;
4299         int i;
4300
4301         /* Yes, we do want 16 SGIs */
4302         WARN_ON(nr_irqs != 16);
4303
4304         for (i = 0; i < 16; i++) {
4305                 vpe->sgi_config[i].priority = 0;
4306                 vpe->sgi_config[i].enabled = false;
4307                 vpe->sgi_config[i].group = false;
4308
4309                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4310                                               &its_sgi_irq_chip, vpe);
4311                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4312         }
4313
4314         return 0;
4315 }
4316
4317 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4318                                     unsigned int virq,
4319                                     unsigned int nr_irqs)
4320 {
4321         /* Nothing to do */
4322 }
4323
4324 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4325                                        struct irq_data *d, bool reserve)
4326 {
4327         /* Write out the initial SGI configuration */
4328         its_configure_sgi(d, false);
4329         return 0;
4330 }
4331
4332 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4333                                           struct irq_data *d)
4334 {
4335         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4336
4337         /*
4338          * The VSGI command is awkward:
4339          *
4340          * - To change the configuration, CLEAR must be set to false,
4341          *   leaving the pending bit unchanged.
4342          * - To clear the pending bit, CLEAR must be set to true, leaving
4343          *   the configuration unchanged.
4344          *
4345          * You just can't do both at once, hence the two commands below.
4346          */
4347         vpe->sgi_config[d->hwirq].enabled = false;
4348         its_configure_sgi(d, false);
4349         its_configure_sgi(d, true);
4350 }
4351
4352 static const struct irq_domain_ops its_sgi_domain_ops = {
4353         .alloc          = its_sgi_irq_domain_alloc,
4354         .free           = its_sgi_irq_domain_free,
4355         .activate       = its_sgi_irq_domain_activate,
4356         .deactivate     = its_sgi_irq_domain_deactivate,
4357 };
4358
4359 static int its_vpe_id_alloc(void)
4360 {
4361         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4362 }
4363
4364 static void its_vpe_id_free(u16 id)
4365 {
4366         ida_simple_remove(&its_vpeid_ida, id);
4367 }
4368
4369 static int its_vpe_init(struct its_vpe *vpe)
4370 {
4371         struct page *vpt_page;
4372         int vpe_id;
4373
4374         /* Allocate vpe_id */
4375         vpe_id = its_vpe_id_alloc();
4376         if (vpe_id < 0)
4377                 return vpe_id;
4378
4379         /* Allocate VPT */
4380         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4381         if (!vpt_page) {
4382                 its_vpe_id_free(vpe_id);
4383                 return -ENOMEM;
4384         }
4385
4386         if (!its_alloc_vpe_table(vpe_id)) {
4387                 its_vpe_id_free(vpe_id);
4388                 its_free_pending_table(vpt_page);
4389                 return -ENOMEM;
4390         }
4391
4392         raw_spin_lock_init(&vpe->vpe_lock);
4393         vpe->vpe_id = vpe_id;
4394         vpe->vpt_page = vpt_page;
4395         if (gic_rdists->has_rvpeid)
4396                 atomic_set(&vpe->vmapp_count, 0);
4397         else
4398                 vpe->vpe_proxy_event = -1;
4399
4400         return 0;
4401 }
4402
4403 static void its_vpe_teardown(struct its_vpe *vpe)
4404 {
4405         its_vpe_db_proxy_unmap(vpe);
4406         its_vpe_id_free(vpe->vpe_id);
4407         its_free_pending_table(vpe->vpt_page);
4408 }
4409
4410 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4411                                     unsigned int virq,
4412                                     unsigned int nr_irqs)
4413 {
4414         struct its_vm *vm = domain->host_data;
4415         int i;
4416
4417         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4418
4419         for (i = 0; i < nr_irqs; i++) {
4420                 struct irq_data *data = irq_domain_get_irq_data(domain,
4421                                                                 virq + i);
4422                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4423
4424                 BUG_ON(vm != vpe->its_vm);
4425
4426                 clear_bit(data->hwirq, vm->db_bitmap);
4427                 its_vpe_teardown(vpe);
4428                 irq_domain_reset_irq_data(data);
4429         }
4430
4431         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4432                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4433                 its_free_prop_table(vm->vprop_page);
4434         }
4435 }
4436
4437 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4438                                     unsigned int nr_irqs, void *args)
4439 {
4440         struct irq_chip *irqchip = &its_vpe_irq_chip;
4441         struct its_vm *vm = args;
4442         unsigned long *bitmap;
4443         struct page *vprop_page;
4444         int base, nr_ids, i, err = 0;
4445
4446         BUG_ON(!vm);
4447
4448         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4449         if (!bitmap)
4450                 return -ENOMEM;
4451
4452         if (nr_ids < nr_irqs) {
4453                 its_lpi_free(bitmap, base, nr_ids);
4454                 return -ENOMEM;
4455         }
4456
4457         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4458         if (!vprop_page) {
4459                 its_lpi_free(bitmap, base, nr_ids);
4460                 return -ENOMEM;
4461         }
4462
4463         vm->db_bitmap = bitmap;
4464         vm->db_lpi_base = base;
4465         vm->nr_db_lpis = nr_ids;
4466         vm->vprop_page = vprop_page;
4467
4468         if (gic_rdists->has_rvpeid)
4469                 irqchip = &its_vpe_4_1_irq_chip;
4470
4471         for (i = 0; i < nr_irqs; i++) {
4472                 vm->vpes[i]->vpe_db_lpi = base + i;
4473                 err = its_vpe_init(vm->vpes[i]);
4474                 if (err)
4475                         break;
4476                 err = its_irq_gic_domain_alloc(domain, virq + i,
4477                                                vm->vpes[i]->vpe_db_lpi);
4478                 if (err)
4479                         break;
4480                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4481                                               irqchip, vm->vpes[i]);
4482                 set_bit(i, bitmap);
4483         }
4484
4485         if (err) {
4486                 if (i > 0)
4487                         its_vpe_irq_domain_free(domain, virq, i - 1);
4488
4489                 its_lpi_free(bitmap, base, nr_ids);
4490                 its_free_prop_table(vprop_page);
4491         }
4492
4493         return err;
4494 }
4495
4496 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4497                                        struct irq_data *d, bool reserve)
4498 {
4499         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4500         struct its_node *its;
4501
4502         /*
4503          * If we use the list map, we issue VMAPP on demand... Unless
4504          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4505          * so that VSGIs can work.
4506          */
4507         if (!gic_requires_eager_mapping())
4508                 return 0;
4509
4510         /* Map the VPE to the first possible CPU */
4511         vpe->col_idx = cpumask_first(cpu_online_mask);
4512
4513         list_for_each_entry(its, &its_nodes, entry) {
4514                 if (!is_v4(its))
4515                         continue;
4516
4517                 its_send_vmapp(its, vpe, true);
4518                 its_send_vinvall(its, vpe);
4519         }
4520
4521         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4522
4523         return 0;
4524 }
4525
4526 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4527                                           struct irq_data *d)
4528 {
4529         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4530         struct its_node *its;
4531
4532         /*
4533          * If we use the list map on GICv4.0, we unmap the VPE once no
4534          * VLPIs are associated with the VM.
4535          */
4536         if (!gic_requires_eager_mapping())
4537                 return;
4538
4539         list_for_each_entry(its, &its_nodes, entry) {
4540                 if (!is_v4(its))
4541                         continue;
4542
4543                 its_send_vmapp(its, vpe, false);
4544         }
4545 }
4546
4547 static const struct irq_domain_ops its_vpe_domain_ops = {
4548         .alloc                  = its_vpe_irq_domain_alloc,
4549         .free                   = its_vpe_irq_domain_free,
4550         .activate               = its_vpe_irq_domain_activate,
4551         .deactivate             = its_vpe_irq_domain_deactivate,
4552 };
4553
4554 static int its_force_quiescent(void __iomem *base)
4555 {
4556         u32 count = 1000000;    /* 1s */
4557         u32 val;
4558
4559         val = readl_relaxed(base + GITS_CTLR);
4560         /*
4561          * GIC architecture specification requires the ITS to be both
4562          * disabled and quiescent for writes to GITS_BASER<n> or
4563          * GITS_CBASER to not have UNPREDICTABLE results.
4564          */
4565         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4566                 return 0;
4567
4568         /* Disable the generation of all interrupts to this ITS */
4569         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4570         writel_relaxed(val, base + GITS_CTLR);
4571
4572         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4573         while (1) {
4574                 val = readl_relaxed(base + GITS_CTLR);
4575                 if (val & GITS_CTLR_QUIESCENT)
4576                         return 0;
4577
4578                 count--;
4579                 if (!count)
4580                         return -EBUSY;
4581
4582                 cpu_relax();
4583                 udelay(1);
4584         }
4585 }
4586
4587 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4588 {
4589         struct its_node *its = data;
4590
4591         /* erratum 22375: only alloc 8MB table size (20 bits) */
4592         its->typer &= ~GITS_TYPER_DEVBITS;
4593         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4594         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4595
4596         return true;
4597 }
4598
4599 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4600 {
4601         struct its_node *its = data;
4602
4603         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4604
4605         return true;
4606 }
4607
4608 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4609 {
4610         struct its_node *its = data;
4611
4612         /* On QDF2400, the size of the ITE is 16Bytes */
4613         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4614         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4615
4616         return true;
4617 }
4618
4619 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4620 {
4621         struct its_node *its = its_dev->its;
4622
4623         /*
4624          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4625          * which maps 32-bit writes targeted at a separate window of
4626          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4627          * with device ID taken from bits [device_id_bits + 1:2] of
4628          * the window offset.
4629          */
4630         return its->pre_its_base + (its_dev->device_id << 2);
4631 }
4632
4633 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4634 {
4635         struct its_node *its = data;
4636         u32 pre_its_window[2];
4637         u32 ids;
4638
4639         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4640                                            "socionext,synquacer-pre-its",
4641                                            pre_its_window,
4642                                            ARRAY_SIZE(pre_its_window))) {
4643
4644                 its->pre_its_base = pre_its_window[0];
4645                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4646
4647                 ids = ilog2(pre_its_window[1]) - 2;
4648                 if (device_ids(its) > ids) {
4649                         its->typer &= ~GITS_TYPER_DEVBITS;
4650                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4651                 }
4652
4653                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4654                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4655                 return true;
4656         }
4657         return false;
4658 }
4659
4660 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4661 {
4662         struct its_node *its = data;
4663
4664         /*
4665          * Hip07 insists on using the wrong address for the VLPI
4666          * page. Trick it into doing the right thing...
4667          */
4668         its->vlpi_redist_offset = SZ_128K;
4669         return true;
4670 }
4671
4672 static const struct gic_quirk its_quirks[] = {
4673 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4674         {
4675                 .desc   = "ITS: Cavium errata 22375, 24313",
4676                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4677                 .mask   = 0xffff0fff,
4678                 .init   = its_enable_quirk_cavium_22375,
4679         },
4680 #endif
4681 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4682         {
4683                 .desc   = "ITS: Cavium erratum 23144",
4684                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4685                 .mask   = 0xffff0fff,
4686                 .init   = its_enable_quirk_cavium_23144,
4687         },
4688 #endif
4689 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4690         {
4691                 .desc   = "ITS: QDF2400 erratum 0065",
4692                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4693                 .mask   = 0xffffffff,
4694                 .init   = its_enable_quirk_qdf2400_e0065,
4695         },
4696 #endif
4697 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4698         {
4699                 /*
4700                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4701                  * implementation, but with a 'pre-ITS' added that requires
4702                  * special handling in software.
4703                  */
4704                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4705                 .iidr   = 0x0001143b,
4706                 .mask   = 0xffffffff,
4707                 .init   = its_enable_quirk_socionext_synquacer,
4708         },
4709 #endif
4710 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4711         {
4712                 .desc   = "ITS: Hip07 erratum 161600802",
4713                 .iidr   = 0x00000004,
4714                 .mask   = 0xffffffff,
4715                 .init   = its_enable_quirk_hip07_161600802,
4716         },
4717 #endif
4718         {
4719         }
4720 };
4721
4722 static void its_enable_quirks(struct its_node *its)
4723 {
4724         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4725
4726         gic_enable_quirks(iidr, its_quirks, its);
4727 }
4728
4729 static int its_save_disable(void)
4730 {
4731         struct its_node *its;
4732         int err = 0;
4733
4734         raw_spin_lock(&its_lock);
4735         list_for_each_entry(its, &its_nodes, entry) {
4736                 void __iomem *base;
4737
4738                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4739                         continue;
4740
4741                 base = its->base;
4742                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4743                 err = its_force_quiescent(base);
4744                 if (err) {
4745                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4746                                &its->phys_base, err);
4747                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4748                         goto err;
4749                 }
4750
4751                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4752         }
4753
4754 err:
4755         if (err) {
4756                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4757                         void __iomem *base;
4758
4759                         if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4760                                 continue;
4761
4762                         base = its->base;
4763                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4764                 }
4765         }
4766         raw_spin_unlock(&its_lock);
4767
4768         return err;
4769 }
4770
4771 static void its_restore_enable(void)
4772 {
4773         struct its_node *its;
4774         int ret;
4775
4776         raw_spin_lock(&its_lock);
4777         list_for_each_entry(its, &its_nodes, entry) {
4778                 void __iomem *base;
4779                 int i;
4780
4781                 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
4782                         continue;
4783
4784                 base = its->base;
4785
4786                 /*
4787                  * Make sure that the ITS is disabled. If it fails to quiesce,
4788                  * don't restore it since writing to CBASER or BASER<n>
4789                  * registers is undefined according to the GIC v3 ITS
4790                  * Specification.
4791                  */
4792                 ret = its_force_quiescent(base);
4793                 if (ret) {
4794                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4795                                &its->phys_base, ret);
4796                         continue;
4797                 }
4798
4799                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4800
4801                 /*
4802                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4803                  * cmd_write line up with it.
4804                  */
4805                 its->cmd_write = its->cmd_base;
4806                 gits_write_cwriter(0, base + GITS_CWRITER);
4807
4808                 /* Restore GITS_BASER from the value cache. */
4809                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4810                         struct its_baser *baser = &its->tables[i];
4811
4812                         if (!(baser->val & GITS_BASER_VALID))
4813                                 continue;
4814
4815                         its_write_baser(its, baser, baser->val);
4816                 }
4817                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4818
4819                 /*
4820                  * Reinit the collection if it's stored in the ITS. This is
4821                  * indicated by the col_id being less than the HCC field.
4822                  * CID < HCC as specified in the GIC v3 Documentation.
4823                  */
4824                 if (its->collections[smp_processor_id()].col_id <
4825                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4826                         its_cpu_init_collection(its);
4827         }
4828         raw_spin_unlock(&its_lock);
4829 }
4830
4831 static struct syscore_ops its_syscore_ops = {
4832         .suspend = its_save_disable,
4833         .resume = its_restore_enable,
4834 };
4835
4836 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4837 {
4838         struct irq_domain *inner_domain;
4839         struct msi_domain_info *info;
4840
4841         info = kzalloc(sizeof(*info), GFP_KERNEL);
4842         if (!info)
4843                 return -ENOMEM;
4844
4845         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4846         if (!inner_domain) {
4847                 kfree(info);
4848                 return -ENOMEM;
4849         }
4850
4851         inner_domain->parent = its_parent;
4852         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4853         inner_domain->flags |= its->msi_domain_flags;
4854         info->ops = &its_msi_domain_ops;
4855         info->data = its;
4856         inner_domain->host_data = info;
4857
4858         return 0;
4859 }
4860
4861 static int its_init_vpe_domain(void)
4862 {
4863         struct its_node *its;
4864         u32 devid;
4865         int entries;
4866
4867         if (gic_rdists->has_direct_lpi) {
4868                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4869                 return 0;
4870         }
4871
4872         /* Any ITS will do, even if not v4 */
4873         its = list_first_entry(&its_nodes, struct its_node, entry);
4874
4875         entries = roundup_pow_of_two(nr_cpu_ids);
4876         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4877                                  GFP_KERNEL);
4878         if (!vpe_proxy.vpes) {
4879                 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4880                 return -ENOMEM;
4881         }
4882
4883         /* Use the last possible DevID */
4884         devid = GENMASK(device_ids(its) - 1, 0);
4885         vpe_proxy.dev = its_create_device(its, devid, entries, false);
4886         if (!vpe_proxy.dev) {
4887                 kfree(vpe_proxy.vpes);
4888                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4889                 return -ENOMEM;
4890         }
4891
4892         BUG_ON(entries > vpe_proxy.dev->nr_ites);
4893
4894         raw_spin_lock_init(&vpe_proxy.lock);
4895         vpe_proxy.next_victim = 0;
4896         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4897                 devid, vpe_proxy.dev->nr_ites);
4898
4899         return 0;
4900 }
4901
4902 static int __init its_compute_its_list_map(struct resource *res,
4903                                            void __iomem *its_base)
4904 {
4905         int its_number;
4906         u32 ctlr;
4907
4908         /*
4909          * This is assumed to be done early enough that we're
4910          * guaranteed to be single-threaded, hence no
4911          * locking. Should this change, we should address
4912          * this.
4913          */
4914         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4915         if (its_number >= GICv4_ITS_LIST_MAX) {
4916                 pr_err("ITS@%pa: No ITSList entry available!\n",
4917                        &res->start);
4918                 return -EINVAL;
4919         }
4920
4921         ctlr = readl_relaxed(its_base + GITS_CTLR);
4922         ctlr &= ~GITS_CTLR_ITS_NUMBER;
4923         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4924         writel_relaxed(ctlr, its_base + GITS_CTLR);
4925         ctlr = readl_relaxed(its_base + GITS_CTLR);
4926         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4927                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4928                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4929         }
4930
4931         if (test_and_set_bit(its_number, &its_list_map)) {
4932                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4933                        &res->start, its_number);
4934                 return -EINVAL;
4935         }
4936
4937         return its_number;
4938 }
4939
4940 static int __init its_probe_one(struct resource *res,
4941                                 struct fwnode_handle *handle, int numa_node)
4942 {
4943         struct its_node *its;
4944         void __iomem *its_base;
4945         u32 val, ctlr;
4946         u64 baser, tmp, typer;
4947         struct page *page;
4948         int err;
4949
4950         its_base = ioremap(res->start, SZ_64K);
4951         if (!its_base) {
4952                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4953                 return -ENOMEM;
4954         }
4955
4956         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4957         if (val != 0x30 && val != 0x40) {
4958                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4959                 err = -ENODEV;
4960                 goto out_unmap;
4961         }
4962
4963         err = its_force_quiescent(its_base);
4964         if (err) {
4965                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4966                 goto out_unmap;
4967         }
4968
4969         pr_info("ITS %pR\n", res);
4970
4971         its = kzalloc(sizeof(*its), GFP_KERNEL);
4972         if (!its) {
4973                 err = -ENOMEM;
4974                 goto out_unmap;
4975         }
4976
4977         raw_spin_lock_init(&its->lock);
4978         mutex_init(&its->dev_alloc_lock);
4979         INIT_LIST_HEAD(&its->entry);
4980         INIT_LIST_HEAD(&its->its_device_list);
4981         typer = gic_read_typer(its_base + GITS_TYPER);
4982         its->typer = typer;
4983         its->base = its_base;
4984         its->phys_base = res->start;
4985         if (is_v4(its)) {
4986                 if (!(typer & GITS_TYPER_VMOVP)) {
4987                         err = its_compute_its_list_map(res, its_base);
4988                         if (err < 0)
4989                                 goto out_free_its;
4990
4991                         its->list_nr = err;
4992
4993                         pr_info("ITS@%pa: Using ITS number %d\n",
4994                                 &res->start, err);
4995                 } else {
4996                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
4997                 }
4998
4999                 if (is_v4_1(its)) {
5000                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5001
5002                         its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5003                         if (!its->sgir_base) {
5004                                 err = -ENOMEM;
5005                                 goto out_free_its;
5006                         }
5007
5008                         its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5009
5010                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5011                                 &res->start, its->mpidr, svpet);
5012                 }
5013         }
5014
5015         its->numa_node = numa_node;
5016
5017         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5018                                 get_order(ITS_CMD_QUEUE_SZ));
5019         if (!page) {
5020                 err = -ENOMEM;
5021                 goto out_unmap_sgir;
5022         }
5023         its->cmd_base = (void *)page_address(page);
5024         its->cmd_write = its->cmd_base;
5025         its->fwnode_handle = handle;
5026         its->get_msi_base = its_irq_get_msi_base;
5027         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5028
5029         its_enable_quirks(its);
5030
5031         err = its_alloc_tables(its);
5032         if (err)
5033                 goto out_free_cmd;
5034
5035         err = its_alloc_collections(its);
5036         if (err)
5037                 goto out_free_tables;
5038
5039         baser = (virt_to_phys(its->cmd_base)    |
5040                  GITS_CBASER_RaWaWb             |
5041                  GITS_CBASER_InnerShareable     |
5042                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5043                  GITS_CBASER_VALID);
5044
5045         gits_write_cbaser(baser, its->base + GITS_CBASER);
5046         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5047
5048         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5049                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5050                         /*
5051                          * The HW reports non-shareable, we must
5052                          * remove the cacheability attributes as
5053                          * well.
5054                          */
5055                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5056                                    GITS_CBASER_CACHEABILITY_MASK);
5057                         baser |= GITS_CBASER_nC;
5058                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5059                 }
5060                 pr_info("ITS: using cache flushing for cmd queue\n");
5061                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5062         }
5063
5064         gits_write_cwriter(0, its->base + GITS_CWRITER);
5065         ctlr = readl_relaxed(its->base + GITS_CTLR);
5066         ctlr |= GITS_CTLR_ENABLE;
5067         if (is_v4(its))
5068                 ctlr |= GITS_CTLR_ImDe;
5069         writel_relaxed(ctlr, its->base + GITS_CTLR);
5070
5071         if (GITS_TYPER_HCC(typer))
5072                 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
5073
5074         err = its_init_domain(handle, its);
5075         if (err)
5076                 goto out_free_tables;
5077
5078         raw_spin_lock(&its_lock);
5079         list_add(&its->entry, &its_nodes);
5080         raw_spin_unlock(&its_lock);
5081
5082         return 0;
5083
5084 out_free_tables:
5085         its_free_tables(its);
5086 out_free_cmd:
5087         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5088 out_unmap_sgir:
5089         if (its->sgir_base)
5090                 iounmap(its->sgir_base);
5091 out_free_its:
5092         kfree(its);
5093 out_unmap:
5094         iounmap(its_base);
5095         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5096         return err;
5097 }
5098
5099 static bool gic_rdists_supports_plpis(void)
5100 {
5101         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5102 }
5103
5104 static int redist_disable_lpis(void)
5105 {
5106         void __iomem *rbase = gic_data_rdist_rd_base();
5107         u64 timeout = USEC_PER_SEC;
5108         u64 val;
5109
5110         if (!gic_rdists_supports_plpis()) {
5111                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5112                 return -ENXIO;
5113         }
5114
5115         val = readl_relaxed(rbase + GICR_CTLR);
5116         if (!(val & GICR_CTLR_ENABLE_LPIS))
5117                 return 0;
5118
5119         /*
5120          * If coming via a CPU hotplug event, we don't need to disable
5121          * LPIs before trying to re-enable them. They are already
5122          * configured and all is well in the world.
5123          *
5124          * If running with preallocated tables, there is nothing to do.
5125          */
5126         if (gic_data_rdist()->lpi_enabled ||
5127             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5128                 return 0;
5129
5130         /*
5131          * From that point on, we only try to do some damage control.
5132          */
5133         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5134                 smp_processor_id());
5135         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5136
5137         /* Disable LPIs */
5138         val &= ~GICR_CTLR_ENABLE_LPIS;
5139         writel_relaxed(val, rbase + GICR_CTLR);
5140
5141         /* Make sure any change to GICR_CTLR is observable by the GIC */
5142         dsb(sy);
5143
5144         /*
5145          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5146          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5147          * Error out if we time out waiting for RWP to clear.
5148          */
5149         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5150                 if (!timeout) {
5151                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5152                                smp_processor_id());
5153                         return -ETIMEDOUT;
5154                 }
5155                 udelay(1);
5156                 timeout--;
5157         }
5158
5159         /*
5160          * After it has been written to 1, it is IMPLEMENTATION
5161          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5162          * cleared to 0. Error out if clearing the bit failed.
5163          */
5164         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5165                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5166                 return -EBUSY;
5167         }
5168
5169         return 0;
5170 }
5171
5172 int its_cpu_init(void)
5173 {
5174         if (!list_empty(&its_nodes)) {
5175                 int ret;
5176
5177                 ret = redist_disable_lpis();
5178                 if (ret)
5179                         return ret;
5180
5181                 its_cpu_init_lpis();
5182                 its_cpu_init_collections();
5183         }
5184
5185         return 0;
5186 }
5187
5188 static const struct of_device_id its_device_id[] = {
5189         {       .compatible     = "arm,gic-v3-its",     },
5190         {},
5191 };
5192
5193 static int __init its_of_probe(struct device_node *node)
5194 {
5195         struct device_node *np;
5196         struct resource res;
5197
5198         for (np = of_find_matching_node(node, its_device_id); np;
5199              np = of_find_matching_node(np, its_device_id)) {
5200                 if (!of_device_is_available(np))
5201                         continue;
5202                 if (!of_property_read_bool(np, "msi-controller")) {
5203                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5204                                 np);
5205                         continue;
5206                 }
5207
5208                 if (of_address_to_resource(np, 0, &res)) {
5209                         pr_warn("%pOF: no regs?\n", np);
5210                         continue;
5211                 }
5212
5213                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5214         }
5215         return 0;
5216 }
5217
5218 #ifdef CONFIG_ACPI
5219
5220 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5221
5222 #ifdef CONFIG_ACPI_NUMA
5223 struct its_srat_map {
5224         /* numa node id */
5225         u32     numa_node;
5226         /* GIC ITS ID */
5227         u32     its_id;
5228 };
5229
5230 static struct its_srat_map *its_srat_maps __initdata;
5231 static int its_in_srat __initdata;
5232
5233 static int __init acpi_get_its_numa_node(u32 its_id)
5234 {
5235         int i;
5236
5237         for (i = 0; i < its_in_srat; i++) {
5238                 if (its_id == its_srat_maps[i].its_id)
5239                         return its_srat_maps[i].numa_node;
5240         }
5241         return NUMA_NO_NODE;
5242 }
5243
5244 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5245                                           const unsigned long end)
5246 {
5247         return 0;
5248 }
5249
5250 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5251                          const unsigned long end)
5252 {
5253         int node;
5254         struct acpi_srat_gic_its_affinity *its_affinity;
5255
5256         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5257         if (!its_affinity)
5258                 return -EINVAL;
5259
5260         if (its_affinity->header.length < sizeof(*its_affinity)) {
5261                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5262                         its_affinity->header.length);
5263                 return -EINVAL;
5264         }
5265
5266         node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
5267
5268         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5269                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5270                 return 0;
5271         }
5272
5273         its_srat_maps[its_in_srat].numa_node = node;
5274         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5275         its_in_srat++;
5276         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5277                 its_affinity->proximity_domain, its_affinity->its_id, node);
5278
5279         return 0;
5280 }
5281
5282 static void __init acpi_table_parse_srat_its(void)
5283 {
5284         int count;
5285
5286         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5287                         sizeof(struct acpi_table_srat),
5288                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5289                         gic_acpi_match_srat_its, 0);
5290         if (count <= 0)
5291                 return;
5292
5293         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5294                                       GFP_KERNEL);
5295         if (!its_srat_maps) {
5296                 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5297                 return;
5298         }
5299
5300         acpi_table_parse_entries(ACPI_SIG_SRAT,
5301                         sizeof(struct acpi_table_srat),
5302                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5303                         gic_acpi_parse_srat_its, 0);
5304 }
5305
5306 /* free the its_srat_maps after ITS probing */
5307 static void __init acpi_its_srat_maps_free(void)
5308 {
5309         kfree(its_srat_maps);
5310 }
5311 #else
5312 static void __init acpi_table_parse_srat_its(void)      { }
5313 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5314 static void __init acpi_its_srat_maps_free(void) { }
5315 #endif
5316
5317 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5318                                           const unsigned long end)
5319 {
5320         struct acpi_madt_generic_translator *its_entry;
5321         struct fwnode_handle *dom_handle;
5322         struct resource res;
5323         int err;
5324
5325         its_entry = (struct acpi_madt_generic_translator *)header;
5326         memset(&res, 0, sizeof(res));
5327         res.start = its_entry->base_address;
5328         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5329         res.flags = IORESOURCE_MEM;
5330
5331         dom_handle = irq_domain_alloc_fwnode(&res.start);
5332         if (!dom_handle) {
5333                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5334                        &res.start);
5335                 return -ENOMEM;
5336         }
5337
5338         err = iort_register_domain_token(its_entry->translation_id, res.start,
5339                                          dom_handle);
5340         if (err) {
5341                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5342                        &res.start, its_entry->translation_id);
5343                 goto dom_err;
5344         }
5345
5346         err = its_probe_one(&res, dom_handle,
5347                         acpi_get_its_numa_node(its_entry->translation_id));
5348         if (!err)
5349                 return 0;
5350
5351         iort_deregister_domain_token(its_entry->translation_id);
5352 dom_err:
5353         irq_domain_free_fwnode(dom_handle);
5354         return err;
5355 }
5356
5357 static void __init its_acpi_probe(void)
5358 {
5359         acpi_table_parse_srat_its();
5360         acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5361                               gic_acpi_parse_madt_its, 0);
5362         acpi_its_srat_maps_free();
5363 }
5364 #else
5365 static void __init its_acpi_probe(void) { }
5366 #endif
5367
5368 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5369                     struct irq_domain *parent_domain)
5370 {
5371         struct device_node *of_node;
5372         struct its_node *its;
5373         bool has_v4 = false;
5374         bool has_v4_1 = false;
5375         int err;
5376
5377         gic_rdists = rdists;
5378
5379         its_parent = parent_domain;
5380         of_node = to_of_node(handle);
5381         if (of_node)
5382                 its_of_probe(of_node);
5383         else
5384                 its_acpi_probe();
5385
5386         if (list_empty(&its_nodes)) {
5387                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5388                 return -ENXIO;
5389         }
5390
5391         err = allocate_lpi_tables();
5392         if (err)
5393                 return err;
5394
5395         list_for_each_entry(its, &its_nodes, entry) {
5396                 has_v4 |= is_v4(its);
5397                 has_v4_1 |= is_v4_1(its);
5398         }
5399
5400         /* Don't bother with inconsistent systems */
5401         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5402                 rdists->has_rvpeid = false;
5403
5404         if (has_v4 & rdists->has_vlpis) {
5405                 const struct irq_domain_ops *sgi_ops;
5406
5407                 if (has_v4_1)
5408                         sgi_ops = &its_sgi_domain_ops;
5409                 else
5410                         sgi_ops = NULL;
5411
5412                 if (its_init_vpe_domain() ||
5413                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5414                         rdists->has_vlpis = false;
5415                         pr_err("ITS: Disabling GICv4 support\n");
5416                 }
5417         }
5418
5419         register_syscore_ops(&its_syscore_ops);
5420
5421         return 0;
5422 }