Merge tag 'tpmdd-v6.4-rc1-fix-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014-2020 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/io-pgtable.h>
18 #include <linux/iommu.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/sys_soc.h>
26
27 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
28 #include <asm/dma-iommu.h>
29 #else
30 #define arm_iommu_create_mapping(...)   NULL
31 #define arm_iommu_attach_device(...)    -ENODEV
32 #define arm_iommu_release_mapping(...)  do {} while (0)
33 #endif
34
35 #define IPMMU_CTX_MAX           16U
36 #define IPMMU_CTX_INVALID       -1
37
38 #define IPMMU_UTLB_MAX          64U
39
40 struct ipmmu_features {
41         bool use_ns_alias_offset;
42         bool has_cache_leaf_nodes;
43         unsigned int number_of_contexts;
44         unsigned int num_utlbs;
45         bool setup_imbuscr;
46         bool twobit_imttbcr_sl0;
47         bool reserved_context;
48         bool cache_snoop;
49         unsigned int ctx_offset_base;
50         unsigned int ctx_offset_stride;
51         unsigned int utlb_offset_base;
52 };
53
54 struct ipmmu_vmsa_device {
55         struct device *dev;
56         void __iomem *base;
57         struct iommu_device iommu;
58         struct ipmmu_vmsa_device *root;
59         const struct ipmmu_features *features;
60         unsigned int num_ctx;
61         spinlock_t lock;                        /* Protects ctx and domains[] */
62         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
63         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
64         s8 utlb_ctx[IPMMU_UTLB_MAX];
65
66         struct iommu_group *group;
67         struct dma_iommu_mapping *mapping;
68 };
69
70 struct ipmmu_vmsa_domain {
71         struct ipmmu_vmsa_device *mmu;
72         struct iommu_domain io_domain;
73
74         struct io_pgtable_cfg cfg;
75         struct io_pgtable_ops *iop;
76
77         unsigned int context_id;
78         struct mutex mutex;                     /* Protects mappings */
79 };
80
81 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
82 {
83         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
84 }
85
86 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
87 {
88         return dev_iommu_priv_get(dev);
89 }
90
91 #define TLB_LOOP_TIMEOUT                100     /* 100us */
92
93 /* -----------------------------------------------------------------------------
94  * Registers Definition
95  */
96
97 #define IM_NS_ALIAS_OFFSET              0x800
98
99 /* MMU "context" registers */
100 #define IMCTR                           0x0000          /* R-Car Gen2/3 */
101 #define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
102 #define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
103 #define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
104
105 #define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
106 #define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
107 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
108 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
109 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
110 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
111 #define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
112
113 #define IMBUSCR                         0x000c          /* R-Car Gen2 only */
114 #define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
115 #define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
116
117 #define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
118 #define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
119
120 #define IMSTR                           0x0020          /* R-Car Gen2/3 */
121 #define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
122 #define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
123 #define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
124 #define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
125
126 #define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
127
128 #define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
129 #define IMEUAR                          0x0034          /* R-Car Gen3 only */
130
131 /* uTLB registers */
132 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
133 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
134 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
135 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
136 #define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
137 #define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
138
139 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
140 #define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
141 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
142
143 /* -----------------------------------------------------------------------------
144  * Root device handling
145  */
146
147 static struct platform_driver ipmmu_driver;
148
149 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
150 {
151         return mmu->root == mmu;
152 }
153
154 static int __ipmmu_check_device(struct device *dev, void *data)
155 {
156         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
157         struct ipmmu_vmsa_device **rootp = data;
158
159         if (ipmmu_is_root(mmu))
160                 *rootp = mmu;
161
162         return 0;
163 }
164
165 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
166 {
167         struct ipmmu_vmsa_device *root = NULL;
168
169         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
170                                       __ipmmu_check_device) == 0 ? root : NULL;
171 }
172
173 /* -----------------------------------------------------------------------------
174  * Read/Write Access
175  */
176
177 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
178 {
179         return ioread32(mmu->base + offset);
180 }
181
182 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
183                         u32 data)
184 {
185         iowrite32(data, mmu->base + offset);
186 }
187
188 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
189                                   unsigned int context_id, unsigned int reg)
190 {
191         unsigned int base = mmu->features->ctx_offset_base;
192
193         if (context_id > 7)
194                 base += 0x800 - 8 * 0x40;
195
196         return base + context_id * mmu->features->ctx_offset_stride + reg;
197 }
198
199 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
200                           unsigned int context_id, unsigned int reg)
201 {
202         return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
203 }
204
205 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
206                             unsigned int context_id, unsigned int reg, u32 data)
207 {
208         ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
209 }
210
211 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
212                                unsigned int reg)
213 {
214         return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
215 }
216
217 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
218                                  unsigned int reg, u32 data)
219 {
220         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
221 }
222
223 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
224                                 unsigned int reg, u32 data)
225 {
226         if (domain->mmu != domain->mmu->root)
227                 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
228
229         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
230 }
231
232 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
233 {
234         return mmu->features->utlb_offset_base + reg;
235 }
236
237 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
238                                 unsigned int utlb, u32 data)
239 {
240         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
241 }
242
243 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
244                                unsigned int utlb, u32 data)
245 {
246         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
247 }
248
249 /* -----------------------------------------------------------------------------
250  * TLB and microTLB Management
251  */
252
253 /* Wait for any pending TLB invalidations to complete */
254 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
255 {
256         unsigned int count = 0;
257
258         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
259                 cpu_relax();
260                 if (++count == TLB_LOOP_TIMEOUT) {
261                         dev_err_ratelimited(domain->mmu->dev,
262                         "TLB sync timed out -- MMU may be deadlocked\n");
263                         return;
264                 }
265                 udelay(1);
266         }
267 }
268
269 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
270 {
271         u32 reg;
272
273         reg = ipmmu_ctx_read_root(domain, IMCTR);
274         reg |= IMCTR_FLUSH;
275         ipmmu_ctx_write_all(domain, IMCTR, reg);
276
277         ipmmu_tlb_sync(domain);
278 }
279
280 /*
281  * Enable MMU translation for the microTLB.
282  */
283 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
284                               unsigned int utlb)
285 {
286         struct ipmmu_vmsa_device *mmu = domain->mmu;
287
288         /*
289          * TODO: Reference-count the microTLB as several bus masters can be
290          * connected to the same microTLB.
291          */
292
293         /* TODO: What should we set the ASID to ? */
294         ipmmu_imuasid_write(mmu, utlb, 0);
295         /* TODO: Do we need to flush the microTLB ? */
296         ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
297                                       IMUCTR_FLUSH | IMUCTR_MMUEN);
298         mmu->utlb_ctx[utlb] = domain->context_id;
299 }
300
301 static void ipmmu_tlb_flush_all(void *cookie)
302 {
303         struct ipmmu_vmsa_domain *domain = cookie;
304
305         ipmmu_tlb_invalidate(domain);
306 }
307
308 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
309                                 size_t granule, void *cookie)
310 {
311         ipmmu_tlb_flush_all(cookie);
312 }
313
314 static const struct iommu_flush_ops ipmmu_flush_ops = {
315         .tlb_flush_all = ipmmu_tlb_flush_all,
316         .tlb_flush_walk = ipmmu_tlb_flush,
317 };
318
319 /* -----------------------------------------------------------------------------
320  * Domain/Context Management
321  */
322
323 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
324                                          struct ipmmu_vmsa_domain *domain)
325 {
326         unsigned long flags;
327         int ret;
328
329         spin_lock_irqsave(&mmu->lock, flags);
330
331         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
332         if (ret != mmu->num_ctx) {
333                 mmu->domains[ret] = domain;
334                 set_bit(ret, mmu->ctx);
335         } else
336                 ret = -EBUSY;
337
338         spin_unlock_irqrestore(&mmu->lock, flags);
339
340         return ret;
341 }
342
343 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
344                                       unsigned int context_id)
345 {
346         unsigned long flags;
347
348         spin_lock_irqsave(&mmu->lock, flags);
349
350         clear_bit(context_id, mmu->ctx);
351         mmu->domains[context_id] = NULL;
352
353         spin_unlock_irqrestore(&mmu->lock, flags);
354 }
355
356 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
357 {
358         u64 ttbr;
359         u32 tmp;
360
361         /* TTBR0 */
362         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
363         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
364         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
365
366         /*
367          * TTBCR
368          * We use long descriptors and allocate the whole 32-bit VA space to
369          * TTBR0.
370          */
371         if (domain->mmu->features->twobit_imttbcr_sl0)
372                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
373         else
374                 tmp = IMTTBCR_SL0_LVL_1;
375
376         if (domain->mmu->features->cache_snoop)
377                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
378                        IMTTBCR_IRGN0_WB_WA;
379
380         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
381
382         /* MAIR0 */
383         ipmmu_ctx_write_root(domain, IMMAIR0,
384                              domain->cfg.arm_lpae_s1_cfg.mair);
385
386         /* IMBUSCR */
387         if (domain->mmu->features->setup_imbuscr)
388                 ipmmu_ctx_write_root(domain, IMBUSCR,
389                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
390                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
391
392         /*
393          * IMSTR
394          * Clear all interrupt flags.
395          */
396         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
397
398         /*
399          * IMCTR
400          * Enable the MMU and interrupt generation. The long-descriptor
401          * translation table format doesn't use TEX remapping. Don't enable AF
402          * software management as we have no use for it. Flush the TLB as
403          * required when modifying the context registers.
404          */
405         ipmmu_ctx_write_all(domain, IMCTR,
406                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
407 }
408
409 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
410 {
411         int ret;
412
413         /*
414          * Allocate the page table operations.
415          *
416          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
417          * access, Long-descriptor format" that the NStable bit being set in a
418          * table descriptor will result in the NStable and NS bits of all child
419          * entries being ignored and considered as being set. The IPMMU seems
420          * not to comply with this, as it generates a secure access page fault
421          * if any of the NStable and NS bits isn't set when running in
422          * non-secure mode.
423          */
424         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
425         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
426         domain->cfg.ias = 32;
427         domain->cfg.oas = 40;
428         domain->cfg.tlb = &ipmmu_flush_ops;
429         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
430         domain->io_domain.geometry.force_aperture = true;
431         /*
432          * TODO: Add support for coherent walk through CCI with DVM and remove
433          * cache handling. For now, delegate it to the io-pgtable code.
434          */
435         domain->cfg.coherent_walk = false;
436         domain->cfg.iommu_dev = domain->mmu->root->dev;
437
438         /*
439          * Find an unused context.
440          */
441         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
442         if (ret < 0)
443                 return ret;
444
445         domain->context_id = ret;
446
447         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
448                                            domain);
449         if (!domain->iop) {
450                 ipmmu_domain_free_context(domain->mmu->root,
451                                           domain->context_id);
452                 return -EINVAL;
453         }
454
455         ipmmu_domain_setup_context(domain);
456         return 0;
457 }
458
459 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
460 {
461         if (!domain->mmu)
462                 return;
463
464         /*
465          * Disable the context. Flush the TLB as required when modifying the
466          * context registers.
467          *
468          * TODO: Is TLB flush really needed ?
469          */
470         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
471         ipmmu_tlb_sync(domain);
472         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
473 }
474
475 /* -----------------------------------------------------------------------------
476  * Fault Handling
477  */
478
479 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
480 {
481         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
482         struct ipmmu_vmsa_device *mmu = domain->mmu;
483         unsigned long iova;
484         u32 status;
485
486         status = ipmmu_ctx_read_root(domain, IMSTR);
487         if (!(status & err_mask))
488                 return IRQ_NONE;
489
490         iova = ipmmu_ctx_read_root(domain, IMELAR);
491         if (IS_ENABLED(CONFIG_64BIT))
492                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
493
494         /*
495          * Clear the error status flags. Unlike traditional interrupt flag
496          * registers that must be cleared by writing 1, this status register
497          * seems to require 0. The error address register must be read before,
498          * otherwise its value will be 0.
499          */
500         ipmmu_ctx_write_root(domain, IMSTR, 0);
501
502         /* Log fatal errors. */
503         if (status & IMSTR_MHIT)
504                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
505                                     iova);
506         if (status & IMSTR_ABORT)
507                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
508                                     iova);
509
510         if (!(status & (IMSTR_PF | IMSTR_TF)))
511                 return IRQ_NONE;
512
513         /*
514          * Try to handle page faults and translation faults.
515          *
516          * TODO: We need to look up the faulty device based on the I/O VA. Use
517          * the IOMMU device for now.
518          */
519         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
520                 return IRQ_HANDLED;
521
522         dev_err_ratelimited(mmu->dev,
523                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
524                             status, iova);
525
526         return IRQ_HANDLED;
527 }
528
529 static irqreturn_t ipmmu_irq(int irq, void *dev)
530 {
531         struct ipmmu_vmsa_device *mmu = dev;
532         irqreturn_t status = IRQ_NONE;
533         unsigned int i;
534         unsigned long flags;
535
536         spin_lock_irqsave(&mmu->lock, flags);
537
538         /*
539          * Check interrupts for all active contexts.
540          */
541         for (i = 0; i < mmu->num_ctx; i++) {
542                 if (!mmu->domains[i])
543                         continue;
544                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
545                         status = IRQ_HANDLED;
546         }
547
548         spin_unlock_irqrestore(&mmu->lock, flags);
549
550         return status;
551 }
552
553 /* -----------------------------------------------------------------------------
554  * IOMMU Operations
555  */
556
557 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
558 {
559         struct ipmmu_vmsa_domain *domain;
560
561         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
562                 return NULL;
563
564         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
565         if (!domain)
566                 return NULL;
567
568         mutex_init(&domain->mutex);
569
570         return &domain->io_domain;
571 }
572
573 static void ipmmu_domain_free(struct iommu_domain *io_domain)
574 {
575         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
576
577         /*
578          * Free the domain resources. We assume that all devices have already
579          * been detached.
580          */
581         ipmmu_domain_destroy_context(domain);
582         free_io_pgtable_ops(domain->iop);
583         kfree(domain);
584 }
585
586 static int ipmmu_attach_device(struct iommu_domain *io_domain,
587                                struct device *dev)
588 {
589         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
590         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
591         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
592         unsigned int i;
593         int ret = 0;
594
595         if (!mmu) {
596                 dev_err(dev, "Cannot attach to IPMMU\n");
597                 return -ENXIO;
598         }
599
600         mutex_lock(&domain->mutex);
601
602         if (!domain->mmu) {
603                 /* The domain hasn't been used yet, initialize it. */
604                 domain->mmu = mmu;
605                 ret = ipmmu_domain_init_context(domain);
606                 if (ret < 0) {
607                         dev_err(dev, "Unable to initialize IPMMU context\n");
608                         domain->mmu = NULL;
609                 } else {
610                         dev_info(dev, "Using IPMMU context %u\n",
611                                  domain->context_id);
612                 }
613         } else if (domain->mmu != mmu) {
614                 /*
615                  * Something is wrong, we can't attach two devices using
616                  * different IOMMUs to the same domain.
617                  */
618                 ret = -EINVAL;
619         } else
620                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
621
622         mutex_unlock(&domain->mutex);
623
624         if (ret < 0)
625                 return ret;
626
627         for (i = 0; i < fwspec->num_ids; ++i)
628                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
629
630         return 0;
631 }
632
633 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
634                      phys_addr_t paddr, size_t pgsize, size_t pgcount,
635                      int prot, gfp_t gfp, size_t *mapped)
636 {
637         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
638
639         return domain->iop->map_pages(domain->iop, iova, paddr, pgsize, pgcount,
640                                       prot, gfp, mapped);
641 }
642
643 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
644                           size_t pgsize, size_t pgcount,
645                           struct iommu_iotlb_gather *gather)
646 {
647         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
648
649         return domain->iop->unmap_pages(domain->iop, iova, pgsize, pgcount, gather);
650 }
651
652 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
653 {
654         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
655
656         if (domain->mmu)
657                 ipmmu_tlb_flush_all(domain);
658 }
659
660 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
661                              struct iommu_iotlb_gather *gather)
662 {
663         ipmmu_flush_iotlb_all(io_domain);
664 }
665
666 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
667                                       dma_addr_t iova)
668 {
669         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
670
671         /* TODO: Is locking needed ? */
672
673         return domain->iop->iova_to_phys(domain->iop, iova);
674 }
675
676 static int ipmmu_init_platform_device(struct device *dev,
677                                       struct of_phandle_args *args)
678 {
679         struct platform_device *ipmmu_pdev;
680
681         ipmmu_pdev = of_find_device_by_node(args->np);
682         if (!ipmmu_pdev)
683                 return -ENODEV;
684
685         dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
686
687         return 0;
688 }
689
690 static const struct soc_device_attribute soc_needs_opt_in[] = {
691         { .family = "R-Car Gen3", },
692         { .family = "R-Car Gen4", },
693         { .family = "RZ/G2", },
694         { /* sentinel */ }
695 };
696
697 static const struct soc_device_attribute soc_denylist[] = {
698         { .soc_id = "r8a774a1", },
699         { .soc_id = "r8a7795", .revision = "ES2.*" },
700         { .soc_id = "r8a7796", },
701         { /* sentinel */ }
702 };
703
704 static const char * const devices_allowlist[] = {
705         "ee100000.mmc",
706         "ee120000.mmc",
707         "ee140000.mmc",
708         "ee160000.mmc"
709 };
710
711 static bool ipmmu_device_is_allowed(struct device *dev)
712 {
713         unsigned int i;
714
715         /*
716          * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices.
717          * For Other SoCs, this returns true anyway.
718          */
719         if (!soc_device_match(soc_needs_opt_in))
720                 return true;
721
722         /* Check whether this SoC can use the IPMMU correctly or not */
723         if (soc_device_match(soc_denylist))
724                 return false;
725
726         /* Check whether this device can work with the IPMMU */
727         for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
728                 if (!strcmp(dev_name(dev), devices_allowlist[i]))
729                         return true;
730         }
731
732         /* Otherwise, do not allow use of IPMMU */
733         return false;
734 }
735
736 static int ipmmu_of_xlate(struct device *dev,
737                           struct of_phandle_args *spec)
738 {
739         if (!ipmmu_device_is_allowed(dev))
740                 return -ENODEV;
741
742         iommu_fwspec_add_ids(dev, spec->args, 1);
743
744         /* Initialize once - xlate() will call multiple times */
745         if (to_ipmmu(dev))
746                 return 0;
747
748         return ipmmu_init_platform_device(dev, spec);
749 }
750
751 static int ipmmu_init_arm_mapping(struct device *dev)
752 {
753         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
754         int ret;
755
756         /*
757          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
758          * VAs. This will allocate a corresponding IOMMU domain.
759          *
760          * TODO:
761          * - Create one mapping per context (TLB).
762          * - Make the mapping size configurable ? We currently use a 2GB mapping
763          *   at a 1GB offset to ensure that NULL VAs will fault.
764          */
765         if (!mmu->mapping) {
766                 struct dma_iommu_mapping *mapping;
767
768                 mapping = arm_iommu_create_mapping(&platform_bus_type,
769                                                    SZ_1G, SZ_2G);
770                 if (IS_ERR(mapping)) {
771                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
772                         ret = PTR_ERR(mapping);
773                         goto error;
774                 }
775
776                 mmu->mapping = mapping;
777         }
778
779         /* Attach the ARM VA mapping to the device. */
780         ret = arm_iommu_attach_device(dev, mmu->mapping);
781         if (ret < 0) {
782                 dev_err(dev, "Failed to attach device to VA mapping\n");
783                 goto error;
784         }
785
786         return 0;
787
788 error:
789         if (mmu->mapping)
790                 arm_iommu_release_mapping(mmu->mapping);
791
792         return ret;
793 }
794
795 static struct iommu_device *ipmmu_probe_device(struct device *dev)
796 {
797         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
798
799         /*
800          * Only let through devices that have been verified in xlate()
801          */
802         if (!mmu)
803                 return ERR_PTR(-ENODEV);
804
805         return &mmu->iommu;
806 }
807
808 static void ipmmu_probe_finalize(struct device *dev)
809 {
810         int ret = 0;
811
812         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
813                 ret = ipmmu_init_arm_mapping(dev);
814
815         if (ret)
816                 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
817 }
818
819 static void ipmmu_release_device(struct device *dev)
820 {
821         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
822         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
823         unsigned int i;
824
825         for (i = 0; i < fwspec->num_ids; ++i) {
826                 unsigned int utlb = fwspec->ids[i];
827
828                 ipmmu_imuctr_write(mmu, utlb, 0);
829                 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
830         }
831
832         arm_iommu_release_mapping(mmu->mapping);
833 }
834
835 static struct iommu_group *ipmmu_find_group(struct device *dev)
836 {
837         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
838         struct iommu_group *group;
839
840         if (mmu->group)
841                 return iommu_group_ref_get(mmu->group);
842
843         group = iommu_group_alloc();
844         if (!IS_ERR(group))
845                 mmu->group = group;
846
847         return group;
848 }
849
850 static const struct iommu_ops ipmmu_ops = {
851         .domain_alloc = ipmmu_domain_alloc,
852         .probe_device = ipmmu_probe_device,
853         .release_device = ipmmu_release_device,
854         .probe_finalize = ipmmu_probe_finalize,
855         .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
856                         ? generic_device_group : ipmmu_find_group,
857         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
858         .of_xlate = ipmmu_of_xlate,
859         .default_domain_ops = &(const struct iommu_domain_ops) {
860                 .attach_dev     = ipmmu_attach_device,
861                 .map_pages      = ipmmu_map,
862                 .unmap_pages    = ipmmu_unmap,
863                 .flush_iotlb_all = ipmmu_flush_iotlb_all,
864                 .iotlb_sync     = ipmmu_iotlb_sync,
865                 .iova_to_phys   = ipmmu_iova_to_phys,
866                 .free           = ipmmu_domain_free,
867         }
868 };
869
870 /* -----------------------------------------------------------------------------
871  * Probe/remove and init
872  */
873
874 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
875 {
876         unsigned int i;
877
878         /* Disable all contexts. */
879         for (i = 0; i < mmu->num_ctx; ++i)
880                 ipmmu_ctx_write(mmu, i, IMCTR, 0);
881 }
882
883 static const struct ipmmu_features ipmmu_features_default = {
884         .use_ns_alias_offset = true,
885         .has_cache_leaf_nodes = false,
886         .number_of_contexts = 1, /* software only tested with one context */
887         .num_utlbs = 32,
888         .setup_imbuscr = true,
889         .twobit_imttbcr_sl0 = false,
890         .reserved_context = false,
891         .cache_snoop = true,
892         .ctx_offset_base = 0,
893         .ctx_offset_stride = 0x40,
894         .utlb_offset_base = 0,
895 };
896
897 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
898         .use_ns_alias_offset = false,
899         .has_cache_leaf_nodes = true,
900         .number_of_contexts = 8,
901         .num_utlbs = 48,
902         .setup_imbuscr = false,
903         .twobit_imttbcr_sl0 = true,
904         .reserved_context = true,
905         .cache_snoop = false,
906         .ctx_offset_base = 0,
907         .ctx_offset_stride = 0x40,
908         .utlb_offset_base = 0,
909 };
910
911 static const struct ipmmu_features ipmmu_features_rcar_gen4 = {
912         .use_ns_alias_offset = false,
913         .has_cache_leaf_nodes = true,
914         .number_of_contexts = 16,
915         .num_utlbs = 64,
916         .setup_imbuscr = false,
917         .twobit_imttbcr_sl0 = true,
918         .reserved_context = true,
919         .cache_snoop = false,
920         .ctx_offset_base = 0x10000,
921         .ctx_offset_stride = 0x1040,
922         .utlb_offset_base = 0x3000,
923 };
924
925 static const struct of_device_id ipmmu_of_ids[] = {
926         {
927                 .compatible = "renesas,ipmmu-vmsa",
928                 .data = &ipmmu_features_default,
929         }, {
930                 .compatible = "renesas,ipmmu-r8a774a1",
931                 .data = &ipmmu_features_rcar_gen3,
932         }, {
933                 .compatible = "renesas,ipmmu-r8a774b1",
934                 .data = &ipmmu_features_rcar_gen3,
935         }, {
936                 .compatible = "renesas,ipmmu-r8a774c0",
937                 .data = &ipmmu_features_rcar_gen3,
938         }, {
939                 .compatible = "renesas,ipmmu-r8a774e1",
940                 .data = &ipmmu_features_rcar_gen3,
941         }, {
942                 .compatible = "renesas,ipmmu-r8a7795",
943                 .data = &ipmmu_features_rcar_gen3,
944         }, {
945                 .compatible = "renesas,ipmmu-r8a7796",
946                 .data = &ipmmu_features_rcar_gen3,
947         }, {
948                 .compatible = "renesas,ipmmu-r8a77961",
949                 .data = &ipmmu_features_rcar_gen3,
950         }, {
951                 .compatible = "renesas,ipmmu-r8a77965",
952                 .data = &ipmmu_features_rcar_gen3,
953         }, {
954                 .compatible = "renesas,ipmmu-r8a77970",
955                 .data = &ipmmu_features_rcar_gen3,
956         }, {
957                 .compatible = "renesas,ipmmu-r8a77980",
958                 .data = &ipmmu_features_rcar_gen3,
959         }, {
960                 .compatible = "renesas,ipmmu-r8a77990",
961                 .data = &ipmmu_features_rcar_gen3,
962         }, {
963                 .compatible = "renesas,ipmmu-r8a77995",
964                 .data = &ipmmu_features_rcar_gen3,
965         }, {
966                 .compatible = "renesas,ipmmu-r8a779a0",
967                 .data = &ipmmu_features_rcar_gen4,
968         }, {
969                 .compatible = "renesas,rcar-gen4-ipmmu-vmsa",
970                 .data = &ipmmu_features_rcar_gen4,
971         }, {
972                 /* Terminator */
973         },
974 };
975
976 static int ipmmu_probe(struct platform_device *pdev)
977 {
978         struct ipmmu_vmsa_device *mmu;
979         struct resource *res;
980         int irq;
981         int ret;
982
983         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
984         if (!mmu) {
985                 dev_err(&pdev->dev, "cannot allocate device data\n");
986                 return -ENOMEM;
987         }
988
989         mmu->dev = &pdev->dev;
990         spin_lock_init(&mmu->lock);
991         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
992         mmu->features = of_device_get_match_data(&pdev->dev);
993         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
994         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
995         if (ret)
996                 return ret;
997
998         /* Map I/O memory and request IRQ. */
999         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1000         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1001         if (IS_ERR(mmu->base))
1002                 return PTR_ERR(mmu->base);
1003
1004         /*
1005          * The IPMMU has two register banks, for secure and non-secure modes.
1006          * The bank mapped at the beginning of the IPMMU address space
1007          * corresponds to the running mode of the CPU. When running in secure
1008          * mode the non-secure register bank is also available at an offset.
1009          *
1010          * Secure mode operation isn't clearly documented and is thus currently
1011          * not implemented in the driver. Furthermore, preliminary tests of
1012          * non-secure operation with the main register bank were not successful.
1013          * Offset the registers base unconditionally to point to the non-secure
1014          * alias space for now.
1015          */
1016         if (mmu->features->use_ns_alias_offset)
1017                 mmu->base += IM_NS_ALIAS_OFFSET;
1018
1019         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1020
1021         /*
1022          * Determine if this IPMMU instance is a root device by checking for
1023          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1024          */
1025         if (!mmu->features->has_cache_leaf_nodes ||
1026             !of_property_present(pdev->dev.of_node, "renesas,ipmmu-main"))
1027                 mmu->root = mmu;
1028         else
1029                 mmu->root = ipmmu_find_root();
1030
1031         /*
1032          * Wait until the root device has been registered for sure.
1033          */
1034         if (!mmu->root)
1035                 return -EPROBE_DEFER;
1036
1037         /* Root devices have mandatory IRQs */
1038         if (ipmmu_is_root(mmu)) {
1039                 irq = platform_get_irq(pdev, 0);
1040                 if (irq < 0)
1041                         return irq;
1042
1043                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1044                                        dev_name(&pdev->dev), mmu);
1045                 if (ret < 0) {
1046                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1047                         return ret;
1048                 }
1049
1050                 ipmmu_device_reset(mmu);
1051
1052                 if (mmu->features->reserved_context) {
1053                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1054                         set_bit(0, mmu->ctx);
1055                 }
1056         }
1057
1058         /*
1059          * Register the IPMMU to the IOMMU subsystem in the following cases:
1060          * - R-Car Gen2 IPMMU (all devices registered)
1061          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1062          */
1063         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1064                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1065                                              dev_name(&pdev->dev));
1066                 if (ret)
1067                         return ret;
1068
1069                 ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1070                 if (ret)
1071                         return ret;
1072         }
1073
1074         /*
1075          * We can't create the ARM mapping here as it requires the bus to have
1076          * an IOMMU, which only happens when bus_set_iommu() is called in
1077          * ipmmu_init() after the probe function returns.
1078          */
1079
1080         platform_set_drvdata(pdev, mmu);
1081
1082         return 0;
1083 }
1084
1085 static void ipmmu_remove(struct platform_device *pdev)
1086 {
1087         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1088
1089         iommu_device_sysfs_remove(&mmu->iommu);
1090         iommu_device_unregister(&mmu->iommu);
1091
1092         arm_iommu_release_mapping(mmu->mapping);
1093
1094         ipmmu_device_reset(mmu);
1095 }
1096
1097 #ifdef CONFIG_PM_SLEEP
1098 static int ipmmu_resume_noirq(struct device *dev)
1099 {
1100         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1101         unsigned int i;
1102
1103         /* Reset root MMU and restore contexts */
1104         if (ipmmu_is_root(mmu)) {
1105                 ipmmu_device_reset(mmu);
1106
1107                 for (i = 0; i < mmu->num_ctx; i++) {
1108                         if (!mmu->domains[i])
1109                                 continue;
1110
1111                         ipmmu_domain_setup_context(mmu->domains[i]);
1112                 }
1113         }
1114
1115         /* Re-enable active micro-TLBs */
1116         for (i = 0; i < mmu->features->num_utlbs; i++) {
1117                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1118                         continue;
1119
1120                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1121         }
1122
1123         return 0;
1124 }
1125
1126 static const struct dev_pm_ops ipmmu_pm  = {
1127         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1128 };
1129 #define DEV_PM_OPS      &ipmmu_pm
1130 #else
1131 #define DEV_PM_OPS      NULL
1132 #endif /* CONFIG_PM_SLEEP */
1133
1134 static struct platform_driver ipmmu_driver = {
1135         .driver = {
1136                 .name = "ipmmu-vmsa",
1137                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1138                 .pm = DEV_PM_OPS,
1139         },
1140         .probe = ipmmu_probe,
1141         .remove_new = ipmmu_remove,
1142 };
1143 builtin_platform_driver(ipmmu_driver);