Merge tag 'drm-intel-next-2017-12-14' into gvt-next
[linux-2.6-block.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT       0
273 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT         32
275 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
276 #define STRTAB_STE_2_S2AA64             (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
278 #define STRTAB_STE_2_S2PTW              (1UL << 54)
279 #define STRTAB_STE_2_S2R                (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT        4
282 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS               8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
287 #define ARM64_TCR_T0SZ_SHIFT            0
288 #define ARM64_TCR_T0SZ_MASK             0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
290 #define ARM64_TCR_TG0_SHIFT             14
291 #define ARM64_TCR_TG0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
293 #define ARM64_TCR_IRGN0_SHIFT           8
294 #define ARM64_TCR_IRGN0_MASK            0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
296 #define ARM64_TCR_ORGN0_SHIFT           10
297 #define ARM64_TCR_ORGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
299 #define ARM64_TCR_SH0_SHIFT             12
300 #define ARM64_TCR_SH0_MASK              0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
302 #define ARM64_TCR_EPD0_SHIFT            7
303 #define ARM64_TCR_EPD0_MASK             0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
305 #define ARM64_TCR_EPD1_SHIFT            23
306 #define ARM64_TCR_EPD1_MASK             0x1UL
307
308 #define CTXDESC_CD_0_ENDI               (1UL << 15)
309 #define CTXDESC_CD_0_V                  (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
312 #define ARM64_TCR_IPS_SHIFT             32
313 #define ARM64_TCR_IPS_MASK              0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
315 #define ARM64_TCR_TBI0_SHIFT            37
316 #define ARM64_TCR_TBI0_MASK             0x1UL
317
318 #define CTXDESC_CD_0_AA64               (1UL << 41)
319 #define CTXDESC_CD_0_S                  (1UL << 44)
320 #define CTXDESC_CD_0_R                  (1UL << 45)
321 #define CTXDESC_CD_0_A                  (1UL << 46)
322 #define CTXDESC_CD_0_ASET_SHIFT         47
323 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
325 #define CTXDESC_CD_0_ASID_SHIFT         48
326 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
327
328 #define CTXDESC_CD_1_TTB0_SHIFT         4
329 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
330
331 #define CTXDESC_CD_3_MAIR_SHIFT         0
332
333 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
334 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
335         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
336          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
337
338 /* Command queue */
339 #define CMDQ_ENT_DWORDS                 2
340 #define CMDQ_MAX_SZ_SHIFT               8
341
342 #define CMDQ_ERR_SHIFT                  24
343 #define CMDQ_ERR_MASK                   0x7f
344 #define CMDQ_ERR_CERROR_NONE_IDX        0
345 #define CMDQ_ERR_CERROR_ILL_IDX         1
346 #define CMDQ_ERR_CERROR_ABT_IDX         2
347
348 #define CMDQ_0_OP_SHIFT                 0
349 #define CMDQ_0_OP_MASK                  0xffUL
350 #define CMDQ_0_SSV                      (1UL << 11)
351
352 #define CMDQ_PREFETCH_0_SID_SHIFT       32
353 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
354 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
355
356 #define CMDQ_CFGI_0_SID_SHIFT           32
357 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
358 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
359 #define CMDQ_CFGI_1_RANGE_SHIFT         0
360 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
361
362 #define CMDQ_TLBI_0_VMID_SHIFT          32
363 #define CMDQ_TLBI_0_ASID_SHIFT          48
364 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
365 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
366 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
367
368 #define CMDQ_PRI_0_SSID_SHIFT           12
369 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
370 #define CMDQ_PRI_0_SID_SHIFT            32
371 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
372 #define CMDQ_PRI_1_GRPID_SHIFT          0
373 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
374 #define CMDQ_PRI_1_RESP_SHIFT           12
375 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
377 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
378
379 #define CMDQ_SYNC_0_CS_SHIFT            12
380 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
381 #define CMDQ_SYNC_0_CS_IRQ              (1UL << CMDQ_SYNC_0_CS_SHIFT)
382 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
383 #define CMDQ_SYNC_0_MSH_SHIFT           22
384 #define CMDQ_SYNC_0_MSH_ISH             (3UL << CMDQ_SYNC_0_MSH_SHIFT)
385 #define CMDQ_SYNC_0_MSIATTR_SHIFT       24
386 #define CMDQ_SYNC_0_MSIATTR_OIWB        (0xfUL << CMDQ_SYNC_0_MSIATTR_SHIFT)
387 #define CMDQ_SYNC_0_MSIDATA_SHIFT       32
388 #define CMDQ_SYNC_0_MSIDATA_MASK        0xffffffffUL
389 #define CMDQ_SYNC_1_MSIADDR_SHIFT       0
390 #define CMDQ_SYNC_1_MSIADDR_MASK        0xffffffffffffcUL
391
392 /* Event queue */
393 #define EVTQ_ENT_DWORDS                 4
394 #define EVTQ_MAX_SZ_SHIFT               7
395
396 #define EVTQ_0_ID_SHIFT                 0
397 #define EVTQ_0_ID_MASK                  0xffUL
398
399 /* PRI queue */
400 #define PRIQ_ENT_DWORDS                 2
401 #define PRIQ_MAX_SZ_SHIFT               8
402
403 #define PRIQ_0_SID_SHIFT                0
404 #define PRIQ_0_SID_MASK                 0xffffffffUL
405 #define PRIQ_0_SSID_SHIFT               32
406 #define PRIQ_0_SSID_MASK                0xfffffUL
407 #define PRIQ_0_PERM_PRIV                (1UL << 58)
408 #define PRIQ_0_PERM_EXEC                (1UL << 59)
409 #define PRIQ_0_PERM_READ                (1UL << 60)
410 #define PRIQ_0_PERM_WRITE               (1UL << 61)
411 #define PRIQ_0_PRG_LAST                 (1UL << 62)
412 #define PRIQ_0_SSID_V                   (1UL << 63)
413
414 #define PRIQ_1_PRG_IDX_SHIFT            0
415 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
416 #define PRIQ_1_ADDR_SHIFT               12
417 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
418
419 /* High-level queue structures */
420 #define ARM_SMMU_POLL_TIMEOUT_US        100
421 #define ARM_SMMU_CMDQ_SYNC_TIMEOUT_US   1000000 /* 1s! */
422 #define ARM_SMMU_CMDQ_SYNC_SPIN_COUNT   10
423
424 #define MSI_IOVA_BASE                   0x8000000
425 #define MSI_IOVA_LENGTH                 0x100000
426
427 static bool disable_bypass;
428 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
429 MODULE_PARM_DESC(disable_bypass,
430         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
431
432 enum pri_resp {
433         PRI_RESP_DENY,
434         PRI_RESP_FAIL,
435         PRI_RESP_SUCC,
436 };
437
438 enum arm_smmu_msi_index {
439         EVTQ_MSI_INDEX,
440         GERROR_MSI_INDEX,
441         PRIQ_MSI_INDEX,
442         ARM_SMMU_MAX_MSIS,
443 };
444
445 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
446         [EVTQ_MSI_INDEX] = {
447                 ARM_SMMU_EVTQ_IRQ_CFG0,
448                 ARM_SMMU_EVTQ_IRQ_CFG1,
449                 ARM_SMMU_EVTQ_IRQ_CFG2,
450         },
451         [GERROR_MSI_INDEX] = {
452                 ARM_SMMU_GERROR_IRQ_CFG0,
453                 ARM_SMMU_GERROR_IRQ_CFG1,
454                 ARM_SMMU_GERROR_IRQ_CFG2,
455         },
456         [PRIQ_MSI_INDEX] = {
457                 ARM_SMMU_PRIQ_IRQ_CFG0,
458                 ARM_SMMU_PRIQ_IRQ_CFG1,
459                 ARM_SMMU_PRIQ_IRQ_CFG2,
460         },
461 };
462
463 struct arm_smmu_cmdq_ent {
464         /* Common fields */
465         u8                              opcode;
466         bool                            substream_valid;
467
468         /* Command-specific fields */
469         union {
470                 #define CMDQ_OP_PREFETCH_CFG    0x1
471                 struct {
472                         u32                     sid;
473                         u8                      size;
474                         u64                     addr;
475                 } prefetch;
476
477                 #define CMDQ_OP_CFGI_STE        0x3
478                 #define CMDQ_OP_CFGI_ALL        0x4
479                 struct {
480                         u32                     sid;
481                         union {
482                                 bool            leaf;
483                                 u8              span;
484                         };
485                 } cfgi;
486
487                 #define CMDQ_OP_TLBI_NH_ASID    0x11
488                 #define CMDQ_OP_TLBI_NH_VA      0x12
489                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
490                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
491                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
492                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
493                 struct {
494                         u16                     asid;
495                         u16                     vmid;
496                         bool                    leaf;
497                         u64                     addr;
498                 } tlbi;
499
500                 #define CMDQ_OP_PRI_RESP        0x41
501                 struct {
502                         u32                     sid;
503                         u32                     ssid;
504                         u16                     grpid;
505                         enum pri_resp           resp;
506                 } pri;
507
508                 #define CMDQ_OP_CMD_SYNC        0x46
509                 struct {
510                         u32                     msidata;
511                         u64                     msiaddr;
512                 } sync;
513         };
514 };
515
516 struct arm_smmu_queue {
517         int                             irq; /* Wired interrupt */
518
519         __le64                          *base;
520         dma_addr_t                      base_dma;
521         u64                             q_base;
522
523         size_t                          ent_dwords;
524         u32                             max_n_shift;
525         u32                             prod;
526         u32                             cons;
527
528         u32 __iomem                     *prod_reg;
529         u32 __iomem                     *cons_reg;
530 };
531
532 struct arm_smmu_cmdq {
533         struct arm_smmu_queue           q;
534         spinlock_t                      lock;
535 };
536
537 struct arm_smmu_evtq {
538         struct arm_smmu_queue           q;
539         u32                             max_stalls;
540 };
541
542 struct arm_smmu_priq {
543         struct arm_smmu_queue           q;
544 };
545
546 /* High-level stream table and context descriptor structures */
547 struct arm_smmu_strtab_l1_desc {
548         u8                              span;
549
550         __le64                          *l2ptr;
551         dma_addr_t                      l2ptr_dma;
552 };
553
554 struct arm_smmu_s1_cfg {
555         __le64                          *cdptr;
556         dma_addr_t                      cdptr_dma;
557
558         struct arm_smmu_ctx_desc {
559                 u16     asid;
560                 u64     ttbr;
561                 u64     tcr;
562                 u64     mair;
563         }                               cd;
564 };
565
566 struct arm_smmu_s2_cfg {
567         u16                             vmid;
568         u64                             vttbr;
569         u64                             vtcr;
570 };
571
572 struct arm_smmu_strtab_ent {
573         /*
574          * An STE is "assigned" if the master emitting the corresponding SID
575          * is attached to a domain. The behaviour of an unassigned STE is
576          * determined by the disable_bypass parameter, whereas an assigned
577          * STE behaves according to s1_cfg/s2_cfg, which themselves are
578          * configured according to the domain type.
579          */
580         bool                            assigned;
581         struct arm_smmu_s1_cfg          *s1_cfg;
582         struct arm_smmu_s2_cfg          *s2_cfg;
583 };
584
585 struct arm_smmu_strtab_cfg {
586         __le64                          *strtab;
587         dma_addr_t                      strtab_dma;
588         struct arm_smmu_strtab_l1_desc  *l1_desc;
589         unsigned int                    num_l1_ents;
590
591         u64                             strtab_base;
592         u32                             strtab_base_cfg;
593 };
594
595 /* An SMMUv3 instance */
596 struct arm_smmu_device {
597         struct device                   *dev;
598         void __iomem                    *base;
599
600 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
601 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
602 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
603 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
604 #define ARM_SMMU_FEAT_PRI               (1 << 4)
605 #define ARM_SMMU_FEAT_ATS               (1 << 5)
606 #define ARM_SMMU_FEAT_SEV               (1 << 6)
607 #define ARM_SMMU_FEAT_MSI               (1 << 7)
608 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
609 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
610 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
611 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
612 #define ARM_SMMU_FEAT_HYP               (1 << 12)
613 #define ARM_SMMU_FEAT_STALL_FORCE       (1 << 13)
614         u32                             features;
615
616 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
617 #define ARM_SMMU_OPT_PAGE0_REGS_ONLY    (1 << 1)
618         u32                             options;
619
620         struct arm_smmu_cmdq            cmdq;
621         struct arm_smmu_evtq            evtq;
622         struct arm_smmu_priq            priq;
623
624         int                             gerr_irq;
625         int                             combined_irq;
626         atomic_t                        sync_nr;
627
628         unsigned long                   ias; /* IPA */
629         unsigned long                   oas; /* PA */
630         unsigned long                   pgsize_bitmap;
631
632 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
633         unsigned int                    asid_bits;
634         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
635
636 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
637         unsigned int                    vmid_bits;
638         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
639
640         unsigned int                    ssid_bits;
641         unsigned int                    sid_bits;
642
643         struct arm_smmu_strtab_cfg      strtab_cfg;
644
645         u32                             sync_count;
646
647         /* IOMMU core code handle */
648         struct iommu_device             iommu;
649 };
650
651 /* SMMU private data for each master */
652 struct arm_smmu_master_data {
653         struct arm_smmu_device          *smmu;
654         struct arm_smmu_strtab_ent      ste;
655 };
656
657 /* SMMU private data for an IOMMU domain */
658 enum arm_smmu_domain_stage {
659         ARM_SMMU_DOMAIN_S1 = 0,
660         ARM_SMMU_DOMAIN_S2,
661         ARM_SMMU_DOMAIN_NESTED,
662         ARM_SMMU_DOMAIN_BYPASS,
663 };
664
665 struct arm_smmu_domain {
666         struct arm_smmu_device          *smmu;
667         struct mutex                    init_mutex; /* Protects smmu pointer */
668
669         struct io_pgtable_ops           *pgtbl_ops;
670
671         enum arm_smmu_domain_stage      stage;
672         union {
673                 struct arm_smmu_s1_cfg  s1_cfg;
674                 struct arm_smmu_s2_cfg  s2_cfg;
675         };
676
677         struct iommu_domain             domain;
678 };
679
680 struct arm_smmu_option_prop {
681         u32 opt;
682         const char *prop;
683 };
684
685 static struct arm_smmu_option_prop arm_smmu_options[] = {
686         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
687         { ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
688         { 0, NULL},
689 };
690
691 static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
692                                                  struct arm_smmu_device *smmu)
693 {
694         if ((offset > SZ_64K) &&
695             (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
696                 offset -= SZ_64K;
697
698         return smmu->base + offset;
699 }
700
701 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
702 {
703         return container_of(dom, struct arm_smmu_domain, domain);
704 }
705
706 static void parse_driver_options(struct arm_smmu_device *smmu)
707 {
708         int i = 0;
709
710         do {
711                 if (of_property_read_bool(smmu->dev->of_node,
712                                                 arm_smmu_options[i].prop)) {
713                         smmu->options |= arm_smmu_options[i].opt;
714                         dev_notice(smmu->dev, "option %s\n",
715                                 arm_smmu_options[i].prop);
716                 }
717         } while (arm_smmu_options[++i].opt);
718 }
719
720 /* Low-level queue manipulation functions */
721 static bool queue_full(struct arm_smmu_queue *q)
722 {
723         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
724                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
725 }
726
727 static bool queue_empty(struct arm_smmu_queue *q)
728 {
729         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
730                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
731 }
732
733 static void queue_sync_cons(struct arm_smmu_queue *q)
734 {
735         q->cons = readl_relaxed(q->cons_reg);
736 }
737
738 static void queue_inc_cons(struct arm_smmu_queue *q)
739 {
740         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
741
742         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
743         writel(q->cons, q->cons_reg);
744 }
745
746 static int queue_sync_prod(struct arm_smmu_queue *q)
747 {
748         int ret = 0;
749         u32 prod = readl_relaxed(q->prod_reg);
750
751         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
752                 ret = -EOVERFLOW;
753
754         q->prod = prod;
755         return ret;
756 }
757
758 static void queue_inc_prod(struct arm_smmu_queue *q)
759 {
760         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
761
762         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
763         writel(q->prod, q->prod_reg);
764 }
765
766 /*
767  * Wait for the SMMU to consume items. If drain is true, wait until the queue
768  * is empty. Otherwise, wait until there is at least one free slot.
769  */
770 static int queue_poll_cons(struct arm_smmu_queue *q, bool sync, bool wfe)
771 {
772         ktime_t timeout;
773         unsigned int delay = 1, spin_cnt = 0;
774
775         /* Wait longer if it's a CMD_SYNC */
776         timeout = ktime_add_us(ktime_get(), sync ?
777                                             ARM_SMMU_CMDQ_SYNC_TIMEOUT_US :
778                                             ARM_SMMU_POLL_TIMEOUT_US);
779
780         while (queue_sync_cons(q), (sync ? !queue_empty(q) : queue_full(q))) {
781                 if (ktime_compare(ktime_get(), timeout) > 0)
782                         return -ETIMEDOUT;
783
784                 if (wfe) {
785                         wfe();
786                 } else if (++spin_cnt < ARM_SMMU_CMDQ_SYNC_SPIN_COUNT) {
787                         cpu_relax();
788                         continue;
789                 } else {
790                         udelay(delay);
791                         delay *= 2;
792                         spin_cnt = 0;
793                 }
794         }
795
796         return 0;
797 }
798
799 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
800 {
801         int i;
802
803         for (i = 0; i < n_dwords; ++i)
804                 *dst++ = cpu_to_le64(*src++);
805 }
806
807 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
808 {
809         if (queue_full(q))
810                 return -ENOSPC;
811
812         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
813         queue_inc_prod(q);
814         return 0;
815 }
816
817 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
818 {
819         int i;
820
821         for (i = 0; i < n_dwords; ++i)
822                 *dst++ = le64_to_cpu(*src++);
823 }
824
825 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
826 {
827         if (queue_empty(q))
828                 return -EAGAIN;
829
830         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
831         queue_inc_cons(q);
832         return 0;
833 }
834
835 /* High-level queue accessors */
836 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
837 {
838         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
839         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
840
841         switch (ent->opcode) {
842         case CMDQ_OP_TLBI_EL2_ALL:
843         case CMDQ_OP_TLBI_NSNH_ALL:
844                 break;
845         case CMDQ_OP_PREFETCH_CFG:
846                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
847                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
848                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
849                 break;
850         case CMDQ_OP_CFGI_STE:
851                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
852                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
853                 break;
854         case CMDQ_OP_CFGI_ALL:
855                 /* Cover the entire SID range */
856                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
857                 break;
858         case CMDQ_OP_TLBI_NH_VA:
859                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
860                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
861                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
862                 break;
863         case CMDQ_OP_TLBI_S2_IPA:
864                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
865                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
866                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
867                 break;
868         case CMDQ_OP_TLBI_NH_ASID:
869                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
870                 /* Fallthrough */
871         case CMDQ_OP_TLBI_S12_VMALL:
872                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
873                 break;
874         case CMDQ_OP_PRI_RESP:
875                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
876                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
877                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
878                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
879                 switch (ent->pri.resp) {
880                 case PRI_RESP_DENY:
881                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
882                         break;
883                 case PRI_RESP_FAIL:
884                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
885                         break;
886                 case PRI_RESP_SUCC:
887                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
888                         break;
889                 default:
890                         return -EINVAL;
891                 }
892                 break;
893         case CMDQ_OP_CMD_SYNC:
894                 if (ent->sync.msiaddr)
895                         cmd[0] |= CMDQ_SYNC_0_CS_IRQ;
896                 else
897                         cmd[0] |= CMDQ_SYNC_0_CS_SEV;
898                 cmd[0] |= CMDQ_SYNC_0_MSH_ISH | CMDQ_SYNC_0_MSIATTR_OIWB;
899                 cmd[0] |= (u64)ent->sync.msidata << CMDQ_SYNC_0_MSIDATA_SHIFT;
900                 cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
901                 break;
902         default:
903                 return -ENOENT;
904         }
905
906         return 0;
907 }
908
909 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
910 {
911         static const char *cerror_str[] = {
912                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
913                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
914                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
915         };
916
917         int i;
918         u64 cmd[CMDQ_ENT_DWORDS];
919         struct arm_smmu_queue *q = &smmu->cmdq.q;
920         u32 cons = readl_relaxed(q->cons_reg);
921         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
922         struct arm_smmu_cmdq_ent cmd_sync = {
923                 .opcode = CMDQ_OP_CMD_SYNC,
924         };
925
926         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
927                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
928
929         switch (idx) {
930         case CMDQ_ERR_CERROR_ABT_IDX:
931                 dev_err(smmu->dev, "retrying command fetch\n");
932         case CMDQ_ERR_CERROR_NONE_IDX:
933                 return;
934         case CMDQ_ERR_CERROR_ILL_IDX:
935                 /* Fallthrough */
936         default:
937                 break;
938         }
939
940         /*
941          * We may have concurrent producers, so we need to be careful
942          * not to touch any of the shadow cmdq state.
943          */
944         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
945         dev_err(smmu->dev, "skipping command in error state:\n");
946         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
947                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
948
949         /* Convert the erroneous command into a CMD_SYNC */
950         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
951                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
952                 return;
953         }
954
955         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
956 }
957
958 static void arm_smmu_cmdq_insert_cmd(struct arm_smmu_device *smmu, u64 *cmd)
959 {
960         struct arm_smmu_queue *q = &smmu->cmdq.q;
961         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
962
963         while (queue_insert_raw(q, cmd) == -ENOSPC) {
964                 if (queue_poll_cons(q, false, wfe))
965                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
966         }
967 }
968
969 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
970                                     struct arm_smmu_cmdq_ent *ent)
971 {
972         u64 cmd[CMDQ_ENT_DWORDS];
973         unsigned long flags;
974
975         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
976                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
977                          ent->opcode);
978                 return;
979         }
980
981         spin_lock_irqsave(&smmu->cmdq.lock, flags);
982         arm_smmu_cmdq_insert_cmd(smmu, cmd);
983         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
984 }
985
986 /*
987  * The difference between val and sync_idx is bounded by the maximum size of
988  * a queue at 2^20 entries, so 32 bits is plenty for wrap-safe arithmetic.
989  */
990 static int __arm_smmu_sync_poll_msi(struct arm_smmu_device *smmu, u32 sync_idx)
991 {
992         ktime_t timeout;
993         u32 val;
994
995         timeout = ktime_add_us(ktime_get(), ARM_SMMU_CMDQ_SYNC_TIMEOUT_US);
996         val = smp_cond_load_acquire(&smmu->sync_count,
997                                     (int)(VAL - sync_idx) >= 0 ||
998                                     !ktime_before(ktime_get(), timeout));
999
1000         return (int)(val - sync_idx) < 0 ? -ETIMEDOUT : 0;
1001 }
1002
1003 static int __arm_smmu_cmdq_issue_sync_msi(struct arm_smmu_device *smmu)
1004 {
1005         u64 cmd[CMDQ_ENT_DWORDS];
1006         unsigned long flags;
1007         struct arm_smmu_cmdq_ent ent = {
1008                 .opcode = CMDQ_OP_CMD_SYNC,
1009                 .sync   = {
1010                         .msidata = atomic_inc_return_relaxed(&smmu->sync_nr),
1011                         .msiaddr = virt_to_phys(&smmu->sync_count),
1012                 },
1013         };
1014
1015         arm_smmu_cmdq_build_cmd(cmd, &ent);
1016
1017         spin_lock_irqsave(&smmu->cmdq.lock, flags);
1018         arm_smmu_cmdq_insert_cmd(smmu, cmd);
1019         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
1020
1021         return __arm_smmu_sync_poll_msi(smmu, ent.sync.msidata);
1022 }
1023
1024 static int __arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
1025 {
1026         u64 cmd[CMDQ_ENT_DWORDS];
1027         unsigned long flags;
1028         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
1029         struct arm_smmu_cmdq_ent ent = { .opcode = CMDQ_OP_CMD_SYNC };
1030         int ret;
1031
1032         arm_smmu_cmdq_build_cmd(cmd, &ent);
1033
1034         spin_lock_irqsave(&smmu->cmdq.lock, flags);
1035         arm_smmu_cmdq_insert_cmd(smmu, cmd);
1036         ret = queue_poll_cons(&smmu->cmdq.q, true, wfe);
1037         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
1038
1039         return ret;
1040 }
1041
1042 static void arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
1043 {
1044         int ret;
1045         bool msi = (smmu->features & ARM_SMMU_FEAT_MSI) &&
1046                    (smmu->features & ARM_SMMU_FEAT_COHERENCY);
1047
1048         ret = msi ? __arm_smmu_cmdq_issue_sync_msi(smmu)
1049                   : __arm_smmu_cmdq_issue_sync(smmu);
1050         if (ret)
1051                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
1052 }
1053
1054 /* Context descriptor manipulation functions */
1055 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
1056 {
1057         u64 val = 0;
1058
1059         /* Repack the TCR. Just care about TTBR0 for now */
1060         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
1061         val |= ARM_SMMU_TCR2CD(tcr, TG0);
1062         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
1063         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
1064         val |= ARM_SMMU_TCR2CD(tcr, SH0);
1065         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
1066         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
1067         val |= ARM_SMMU_TCR2CD(tcr, IPS);
1068         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
1069
1070         return val;
1071 }
1072
1073 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
1074                                     struct arm_smmu_s1_cfg *cfg)
1075 {
1076         u64 val;
1077
1078         /*
1079          * We don't need to issue any invalidation here, as we'll invalidate
1080          * the STE when installing the new entry anyway.
1081          */
1082         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
1083 #ifdef __BIG_ENDIAN
1084               CTXDESC_CD_0_ENDI |
1085 #endif
1086               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
1087               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
1088               CTXDESC_CD_0_V;
1089
1090         /* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
1091         if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
1092                 val |= CTXDESC_CD_0_S;
1093
1094         cfg->cdptr[0] = cpu_to_le64(val);
1095
1096         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
1097         cfg->cdptr[1] = cpu_to_le64(val);
1098
1099         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
1100 }
1101
1102 /* Stream table manipulation functions */
1103 static void
1104 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
1105 {
1106         u64 val = 0;
1107
1108         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
1109                 << STRTAB_L1_DESC_SPAN_SHIFT;
1110         val |= desc->l2ptr_dma &
1111                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
1112
1113         *dst = cpu_to_le64(val);
1114 }
1115
1116 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
1117 {
1118         struct arm_smmu_cmdq_ent cmd = {
1119                 .opcode = CMDQ_OP_CFGI_STE,
1120                 .cfgi   = {
1121                         .sid    = sid,
1122                         .leaf   = true,
1123                 },
1124         };
1125
1126         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1127         arm_smmu_cmdq_issue_sync(smmu);
1128 }
1129
1130 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1131                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1132 {
1133         /*
1134          * This is hideously complicated, but we only really care about
1135          * three cases at the moment:
1136          *
1137          * 1. Invalid (all zero) -> bypass/fault (init)
1138          * 2. Bypass/fault -> translation/bypass (attach)
1139          * 3. Translation/bypass -> bypass/fault (detach)
1140          *
1141          * Given that we can't update the STE atomically and the SMMU
1142          * doesn't read the thing in a defined order, that leaves us
1143          * with the following maintenance requirements:
1144          *
1145          * 1. Update Config, return (init time STEs aren't live)
1146          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1147          * 3. Update Config, sync
1148          */
1149         u64 val = le64_to_cpu(dst[0]);
1150         bool ste_live = false;
1151         struct arm_smmu_cmdq_ent prefetch_cmd = {
1152                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1153                 .prefetch       = {
1154                         .sid    = sid,
1155                 },
1156         };
1157
1158         if (val & STRTAB_STE_0_V) {
1159                 u64 cfg;
1160
1161                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1162                 switch (cfg) {
1163                 case STRTAB_STE_0_CFG_BYPASS:
1164                         break;
1165                 case STRTAB_STE_0_CFG_S1_TRANS:
1166                 case STRTAB_STE_0_CFG_S2_TRANS:
1167                         ste_live = true;
1168                         break;
1169                 case STRTAB_STE_0_CFG_ABORT:
1170                         if (disable_bypass)
1171                                 break;
1172                 default:
1173                         BUG(); /* STE corruption */
1174                 }
1175         }
1176
1177         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1178         val = STRTAB_STE_0_V;
1179
1180         /* Bypass/fault */
1181         if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
1182                 if (!ste->assigned && disable_bypass)
1183                         val |= STRTAB_STE_0_CFG_ABORT;
1184                 else
1185                         val |= STRTAB_STE_0_CFG_BYPASS;
1186
1187                 dst[0] = cpu_to_le64(val);
1188                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1189                          << STRTAB_STE_1_SHCFG_SHIFT);
1190                 dst[2] = 0; /* Nuke the VMID */
1191                 /*
1192                  * The SMMU can perform negative caching, so we must sync
1193                  * the STE regardless of whether the old value was live.
1194                  */
1195                 if (smmu)
1196                         arm_smmu_sync_ste_for_sid(smmu, sid);
1197                 return;
1198         }
1199
1200         if (ste->s1_cfg) {
1201                 BUG_ON(ste_live);
1202                 dst[1] = cpu_to_le64(
1203                          STRTAB_STE_1_S1C_CACHE_WBRA
1204                          << STRTAB_STE_1_S1CIR_SHIFT |
1205                          STRTAB_STE_1_S1C_CACHE_WBRA
1206                          << STRTAB_STE_1_S1COR_SHIFT |
1207                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1208 #ifdef CONFIG_PCI_ATS
1209                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1210 #endif
1211                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1212
1213                 if (smmu->features & ARM_SMMU_FEAT_STALLS &&
1214                    !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1215                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1216
1217                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1218                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1219                         STRTAB_STE_0_CFG_S1_TRANS;
1220         }
1221
1222         if (ste->s2_cfg) {
1223                 BUG_ON(ste_live);
1224                 dst[2] = cpu_to_le64(
1225                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1226                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1227                           << STRTAB_STE_2_VTCR_SHIFT |
1228 #ifdef __BIG_ENDIAN
1229                          STRTAB_STE_2_S2ENDI |
1230 #endif
1231                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1232                          STRTAB_STE_2_S2R);
1233
1234                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1235                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1236
1237                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1238         }
1239
1240         arm_smmu_sync_ste_for_sid(smmu, sid);
1241         dst[0] = cpu_to_le64(val);
1242         arm_smmu_sync_ste_for_sid(smmu, sid);
1243
1244         /* It's likely that we'll want to use the new STE soon */
1245         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1246                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1247 }
1248
1249 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1250 {
1251         unsigned int i;
1252         struct arm_smmu_strtab_ent ste = { .assigned = false };
1253
1254         for (i = 0; i < nent; ++i) {
1255                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1256                 strtab += STRTAB_STE_DWORDS;
1257         }
1258 }
1259
1260 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1261 {
1262         size_t size;
1263         void *strtab;
1264         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1265         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1266
1267         if (desc->l2ptr)
1268                 return 0;
1269
1270         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1271         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1272
1273         desc->span = STRTAB_SPLIT + 1;
1274         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1275                                           GFP_KERNEL | __GFP_ZERO);
1276         if (!desc->l2ptr) {
1277                 dev_err(smmu->dev,
1278                         "failed to allocate l2 stream table for SID %u\n",
1279                         sid);
1280                 return -ENOMEM;
1281         }
1282
1283         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1284         arm_smmu_write_strtab_l1_desc(strtab, desc);
1285         return 0;
1286 }
1287
1288 /* IRQ and event handlers */
1289 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1290 {
1291         int i;
1292         struct arm_smmu_device *smmu = dev;
1293         struct arm_smmu_queue *q = &smmu->evtq.q;
1294         u64 evt[EVTQ_ENT_DWORDS];
1295
1296         do {
1297                 while (!queue_remove_raw(q, evt)) {
1298                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1299
1300                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1301                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1302                                 dev_info(smmu->dev, "\t0x%016llx\n",
1303                                          (unsigned long long)evt[i]);
1304
1305                 }
1306
1307                 /*
1308                  * Not much we can do on overflow, so scream and pretend we're
1309                  * trying harder.
1310                  */
1311                 if (queue_sync_prod(q) == -EOVERFLOW)
1312                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1313         } while (!queue_empty(q));
1314
1315         /* Sync our overflow flag, as we believe we're up to speed */
1316         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1317         return IRQ_HANDLED;
1318 }
1319
1320 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1321 {
1322         u32 sid, ssid;
1323         u16 grpid;
1324         bool ssv, last;
1325
1326         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1327         ssv = evt[0] & PRIQ_0_SSID_V;
1328         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1329         last = evt[0] & PRIQ_0_PRG_LAST;
1330         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1331
1332         dev_info(smmu->dev, "unexpected PRI request received:\n");
1333         dev_info(smmu->dev,
1334                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1335                  sid, ssid, grpid, last ? "L" : "",
1336                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1337                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1338                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1339                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1340                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1341
1342         if (last) {
1343                 struct arm_smmu_cmdq_ent cmd = {
1344                         .opcode                 = CMDQ_OP_PRI_RESP,
1345                         .substream_valid        = ssv,
1346                         .pri                    = {
1347                                 .sid    = sid,
1348                                 .ssid   = ssid,
1349                                 .grpid  = grpid,
1350                                 .resp   = PRI_RESP_DENY,
1351                         },
1352                 };
1353
1354                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1355         }
1356 }
1357
1358 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1359 {
1360         struct arm_smmu_device *smmu = dev;
1361         struct arm_smmu_queue *q = &smmu->priq.q;
1362         u64 evt[PRIQ_ENT_DWORDS];
1363
1364         do {
1365                 while (!queue_remove_raw(q, evt))
1366                         arm_smmu_handle_ppr(smmu, evt);
1367
1368                 if (queue_sync_prod(q) == -EOVERFLOW)
1369                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1370         } while (!queue_empty(q));
1371
1372         /* Sync our overflow flag, as we believe we're up to speed */
1373         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1374         return IRQ_HANDLED;
1375 }
1376
1377 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1378
1379 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1380 {
1381         u32 gerror, gerrorn, active;
1382         struct arm_smmu_device *smmu = dev;
1383
1384         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1385         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1386
1387         active = gerror ^ gerrorn;
1388         if (!(active & GERROR_ERR_MASK))
1389                 return IRQ_NONE; /* No errors pending */
1390
1391         dev_warn(smmu->dev,
1392                  "unexpected global error reported (0x%08x), this could be serious\n",
1393                  active);
1394
1395         if (active & GERROR_SFM_ERR) {
1396                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1397                 arm_smmu_device_disable(smmu);
1398         }
1399
1400         if (active & GERROR_MSI_GERROR_ABT_ERR)
1401                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1402
1403         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1404                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1405
1406         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1407                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1408
1409         if (active & GERROR_MSI_CMDQ_ABT_ERR)
1410                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1411
1412         if (active & GERROR_PRIQ_ABT_ERR)
1413                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1414
1415         if (active & GERROR_EVTQ_ABT_ERR)
1416                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1417
1418         if (active & GERROR_CMDQ_ERR)
1419                 arm_smmu_cmdq_skip_err(smmu);
1420
1421         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1422         return IRQ_HANDLED;
1423 }
1424
1425 static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
1426 {
1427         struct arm_smmu_device *smmu = dev;
1428
1429         arm_smmu_evtq_thread(irq, dev);
1430         if (smmu->features & ARM_SMMU_FEAT_PRI)
1431                 arm_smmu_priq_thread(irq, dev);
1432
1433         return IRQ_HANDLED;
1434 }
1435
1436 static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
1437 {
1438         arm_smmu_gerror_handler(irq, dev);
1439         return IRQ_WAKE_THREAD;
1440 }
1441
1442 /* IO_PGTABLE API */
1443 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1444 {
1445         arm_smmu_cmdq_issue_sync(smmu);
1446 }
1447
1448 static void arm_smmu_tlb_sync(void *cookie)
1449 {
1450         struct arm_smmu_domain *smmu_domain = cookie;
1451         __arm_smmu_tlb_sync(smmu_domain->smmu);
1452 }
1453
1454 static void arm_smmu_tlb_inv_context(void *cookie)
1455 {
1456         struct arm_smmu_domain *smmu_domain = cookie;
1457         struct arm_smmu_device *smmu = smmu_domain->smmu;
1458         struct arm_smmu_cmdq_ent cmd;
1459
1460         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1461                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1462                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1463                 cmd.tlbi.vmid   = 0;
1464         } else {
1465                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1466                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1467         }
1468
1469         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1470         __arm_smmu_tlb_sync(smmu);
1471 }
1472
1473 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1474                                           size_t granule, bool leaf, void *cookie)
1475 {
1476         struct arm_smmu_domain *smmu_domain = cookie;
1477         struct arm_smmu_device *smmu = smmu_domain->smmu;
1478         struct arm_smmu_cmdq_ent cmd = {
1479                 .tlbi = {
1480                         .leaf   = leaf,
1481                         .addr   = iova,
1482                 },
1483         };
1484
1485         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1486                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1487                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1488         } else {
1489                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1490                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1491         }
1492
1493         do {
1494                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1495                 cmd.tlbi.addr += granule;
1496         } while (size -= granule);
1497 }
1498
1499 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1500         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1501         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1502         .tlb_sync       = arm_smmu_tlb_sync,
1503 };
1504
1505 /* IOMMU API */
1506 static bool arm_smmu_capable(enum iommu_cap cap)
1507 {
1508         switch (cap) {
1509         case IOMMU_CAP_CACHE_COHERENCY:
1510                 return true;
1511         case IOMMU_CAP_NOEXEC:
1512                 return true;
1513         default:
1514                 return false;
1515         }
1516 }
1517
1518 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1519 {
1520         struct arm_smmu_domain *smmu_domain;
1521
1522         if (type != IOMMU_DOMAIN_UNMANAGED &&
1523             type != IOMMU_DOMAIN_DMA &&
1524             type != IOMMU_DOMAIN_IDENTITY)
1525                 return NULL;
1526
1527         /*
1528          * Allocate the domain and initialise some of its data structures.
1529          * We can't really do anything meaningful until we've added a
1530          * master.
1531          */
1532         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1533         if (!smmu_domain)
1534                 return NULL;
1535
1536         if (type == IOMMU_DOMAIN_DMA &&
1537             iommu_get_dma_cookie(&smmu_domain->domain)) {
1538                 kfree(smmu_domain);
1539                 return NULL;
1540         }
1541
1542         mutex_init(&smmu_domain->init_mutex);
1543         return &smmu_domain->domain;
1544 }
1545
1546 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1547 {
1548         int idx, size = 1 << span;
1549
1550         do {
1551                 idx = find_first_zero_bit(map, size);
1552                 if (idx == size)
1553                         return -ENOSPC;
1554         } while (test_and_set_bit(idx, map));
1555
1556         return idx;
1557 }
1558
1559 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1560 {
1561         clear_bit(idx, map);
1562 }
1563
1564 static void arm_smmu_domain_free(struct iommu_domain *domain)
1565 {
1566         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1567         struct arm_smmu_device *smmu = smmu_domain->smmu;
1568
1569         iommu_put_dma_cookie(domain);
1570         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1571
1572         /* Free the CD and ASID, if we allocated them */
1573         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1574                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1575
1576                 if (cfg->cdptr) {
1577                         dmam_free_coherent(smmu_domain->smmu->dev,
1578                                            CTXDESC_CD_DWORDS << 3,
1579                                            cfg->cdptr,
1580                                            cfg->cdptr_dma);
1581
1582                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1583                 }
1584         } else {
1585                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1586                 if (cfg->vmid)
1587                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1588         }
1589
1590         kfree(smmu_domain);
1591 }
1592
1593 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1594                                        struct io_pgtable_cfg *pgtbl_cfg)
1595 {
1596         int ret;
1597         int asid;
1598         struct arm_smmu_device *smmu = smmu_domain->smmu;
1599         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1600
1601         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1602         if (asid < 0)
1603                 return asid;
1604
1605         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1606                                          &cfg->cdptr_dma,
1607                                          GFP_KERNEL | __GFP_ZERO);
1608         if (!cfg->cdptr) {
1609                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1610                 ret = -ENOMEM;
1611                 goto out_free_asid;
1612         }
1613
1614         cfg->cd.asid    = (u16)asid;
1615         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1616         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1617         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1618         return 0;
1619
1620 out_free_asid:
1621         arm_smmu_bitmap_free(smmu->asid_map, asid);
1622         return ret;
1623 }
1624
1625 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1626                                        struct io_pgtable_cfg *pgtbl_cfg)
1627 {
1628         int vmid;
1629         struct arm_smmu_device *smmu = smmu_domain->smmu;
1630         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1631
1632         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1633         if (vmid < 0)
1634                 return vmid;
1635
1636         cfg->vmid       = (u16)vmid;
1637         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1638         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1639         return 0;
1640 }
1641
1642 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1643 {
1644         int ret;
1645         unsigned long ias, oas;
1646         enum io_pgtable_fmt fmt;
1647         struct io_pgtable_cfg pgtbl_cfg;
1648         struct io_pgtable_ops *pgtbl_ops;
1649         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1650                                  struct io_pgtable_cfg *);
1651         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1652         struct arm_smmu_device *smmu = smmu_domain->smmu;
1653
1654         if (domain->type == IOMMU_DOMAIN_IDENTITY) {
1655                 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
1656                 return 0;
1657         }
1658
1659         /* Restrict the stage to what we can actually support */
1660         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1661                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1662         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1663                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1664
1665         switch (smmu_domain->stage) {
1666         case ARM_SMMU_DOMAIN_S1:
1667                 ias = VA_BITS;
1668                 oas = smmu->ias;
1669                 fmt = ARM_64_LPAE_S1;
1670                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1671                 break;
1672         case ARM_SMMU_DOMAIN_NESTED:
1673         case ARM_SMMU_DOMAIN_S2:
1674                 ias = smmu->ias;
1675                 oas = smmu->oas;
1676                 fmt = ARM_64_LPAE_S2;
1677                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1678                 break;
1679         default:
1680                 return -EINVAL;
1681         }
1682
1683         pgtbl_cfg = (struct io_pgtable_cfg) {
1684                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1685                 .ias            = ias,
1686                 .oas            = oas,
1687                 .tlb            = &arm_smmu_gather_ops,
1688                 .iommu_dev      = smmu->dev,
1689         };
1690
1691         if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
1692                 pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;
1693
1694         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1695         if (!pgtbl_ops)
1696                 return -ENOMEM;
1697
1698         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1699         domain->geometry.aperture_end = (1UL << ias) - 1;
1700         domain->geometry.force_aperture = true;
1701         smmu_domain->pgtbl_ops = pgtbl_ops;
1702
1703         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1704         if (ret < 0)
1705                 free_io_pgtable_ops(pgtbl_ops);
1706
1707         return ret;
1708 }
1709
1710 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1711 {
1712         __le64 *step;
1713         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1714
1715         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1716                 struct arm_smmu_strtab_l1_desc *l1_desc;
1717                 int idx;
1718
1719                 /* Two-level walk */
1720                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1721                 l1_desc = &cfg->l1_desc[idx];
1722                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1723                 step = &l1_desc->l2ptr[idx];
1724         } else {
1725                 /* Simple linear lookup */
1726                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1727         }
1728
1729         return step;
1730 }
1731
1732 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1733 {
1734         int i;
1735         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1736         struct arm_smmu_device *smmu = master->smmu;
1737
1738         for (i = 0; i < fwspec->num_ids; ++i) {
1739                 u32 sid = fwspec->ids[i];
1740                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1741
1742                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1743         }
1744 }
1745
1746 static void arm_smmu_detach_dev(struct device *dev)
1747 {
1748         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1749
1750         master->ste.assigned = false;
1751         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1752 }
1753
1754 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1755 {
1756         int ret = 0;
1757         struct arm_smmu_device *smmu;
1758         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1759         struct arm_smmu_master_data *master;
1760         struct arm_smmu_strtab_ent *ste;
1761
1762         if (!dev->iommu_fwspec)
1763                 return -ENOENT;
1764
1765         master = dev->iommu_fwspec->iommu_priv;
1766         smmu = master->smmu;
1767         ste = &master->ste;
1768
1769         /* Already attached to a different domain? */
1770         if (ste->assigned)
1771                 arm_smmu_detach_dev(dev);
1772
1773         mutex_lock(&smmu_domain->init_mutex);
1774
1775         if (!smmu_domain->smmu) {
1776                 smmu_domain->smmu = smmu;
1777                 ret = arm_smmu_domain_finalise(domain);
1778                 if (ret) {
1779                         smmu_domain->smmu = NULL;
1780                         goto out_unlock;
1781                 }
1782         } else if (smmu_domain->smmu != smmu) {
1783                 dev_err(dev,
1784                         "cannot attach to SMMU %s (upstream of %s)\n",
1785                         dev_name(smmu_domain->smmu->dev),
1786                         dev_name(smmu->dev));
1787                 ret = -ENXIO;
1788                 goto out_unlock;
1789         }
1790
1791         ste->assigned = true;
1792
1793         if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
1794                 ste->s1_cfg = NULL;
1795                 ste->s2_cfg = NULL;
1796         } else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1797                 ste->s1_cfg = &smmu_domain->s1_cfg;
1798                 ste->s2_cfg = NULL;
1799                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1800         } else {
1801                 ste->s1_cfg = NULL;
1802                 ste->s2_cfg = &smmu_domain->s2_cfg;
1803         }
1804
1805         arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1806 out_unlock:
1807         mutex_unlock(&smmu_domain->init_mutex);
1808         return ret;
1809 }
1810
1811 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1812                         phys_addr_t paddr, size_t size, int prot)
1813 {
1814         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1815
1816         if (!ops)
1817                 return -ENODEV;
1818
1819         return ops->map(ops, iova, paddr, size, prot);
1820 }
1821
1822 static size_t
1823 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1824 {
1825         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1826
1827         if (!ops)
1828                 return 0;
1829
1830         return ops->unmap(ops, iova, size);
1831 }
1832
1833 static void arm_smmu_iotlb_sync(struct iommu_domain *domain)
1834 {
1835         struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;
1836
1837         if (smmu)
1838                 __arm_smmu_tlb_sync(smmu);
1839 }
1840
1841 static phys_addr_t
1842 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1843 {
1844         struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1845
1846         if (domain->type == IOMMU_DOMAIN_IDENTITY)
1847                 return iova;
1848
1849         if (!ops)
1850                 return 0;
1851
1852         return ops->iova_to_phys(ops, iova);
1853 }
1854
1855 static struct platform_driver arm_smmu_driver;
1856
1857 static int arm_smmu_match_node(struct device *dev, void *data)
1858 {
1859         return dev->fwnode == data;
1860 }
1861
1862 static
1863 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1864 {
1865         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1866                                                 fwnode, arm_smmu_match_node);
1867         put_device(dev);
1868         return dev ? dev_get_drvdata(dev) : NULL;
1869 }
1870
1871 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1872 {
1873         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1874
1875         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1876                 limit *= 1UL << STRTAB_SPLIT;
1877
1878         return sid < limit;
1879 }
1880
1881 static struct iommu_ops arm_smmu_ops;
1882
1883 static int arm_smmu_add_device(struct device *dev)
1884 {
1885         int i, ret;
1886         struct arm_smmu_device *smmu;
1887         struct arm_smmu_master_data *master;
1888         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1889         struct iommu_group *group;
1890
1891         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1892                 return -ENODEV;
1893         /*
1894          * We _can_ actually withstand dodgy bus code re-calling add_device()
1895          * without an intervening remove_device()/of_xlate() sequence, but
1896          * we're not going to do so quietly...
1897          */
1898         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1899                 master = fwspec->iommu_priv;
1900                 smmu = master->smmu;
1901         } else {
1902                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1903                 if (!smmu)
1904                         return -ENODEV;
1905                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1906                 if (!master)
1907                         return -ENOMEM;
1908
1909                 master->smmu = smmu;
1910                 fwspec->iommu_priv = master;
1911         }
1912
1913         /* Check the SIDs are in range of the SMMU and our stream table */
1914         for (i = 0; i < fwspec->num_ids; i++) {
1915                 u32 sid = fwspec->ids[i];
1916
1917                 if (!arm_smmu_sid_in_range(smmu, sid))
1918                         return -ERANGE;
1919
1920                 /* Ensure l2 strtab is initialised */
1921                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1922                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1923                         if (ret)
1924                                 return ret;
1925                 }
1926         }
1927
1928         group = iommu_group_get_for_dev(dev);
1929         if (!IS_ERR(group)) {
1930                 iommu_group_put(group);
1931                 iommu_device_link(&smmu->iommu, dev);
1932         }
1933
1934         return PTR_ERR_OR_ZERO(group);
1935 }
1936
1937 static void arm_smmu_remove_device(struct device *dev)
1938 {
1939         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1940         struct arm_smmu_master_data *master;
1941         struct arm_smmu_device *smmu;
1942
1943         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1944                 return;
1945
1946         master = fwspec->iommu_priv;
1947         smmu = master->smmu;
1948         if (master && master->ste.assigned)
1949                 arm_smmu_detach_dev(dev);
1950         iommu_group_remove_device(dev);
1951         iommu_device_unlink(&smmu->iommu, dev);
1952         kfree(master);
1953         iommu_fwspec_free(dev);
1954 }
1955
1956 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1957 {
1958         struct iommu_group *group;
1959
1960         /*
1961          * We don't support devices sharing stream IDs other than PCI RID
1962          * aliases, since the necessary ID-to-device lookup becomes rather
1963          * impractical given a potential sparse 32-bit stream ID space.
1964          */
1965         if (dev_is_pci(dev))
1966                 group = pci_device_group(dev);
1967         else
1968                 group = generic_device_group(dev);
1969
1970         return group;
1971 }
1972
1973 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1974                                     enum iommu_attr attr, void *data)
1975 {
1976         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1977
1978         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1979                 return -EINVAL;
1980
1981         switch (attr) {
1982         case DOMAIN_ATTR_NESTING:
1983                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1984                 return 0;
1985         default:
1986                 return -ENODEV;
1987         }
1988 }
1989
1990 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1991                                     enum iommu_attr attr, void *data)
1992 {
1993         int ret = 0;
1994         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1995
1996         if (domain->type != IOMMU_DOMAIN_UNMANAGED)
1997                 return -EINVAL;
1998
1999         mutex_lock(&smmu_domain->init_mutex);
2000
2001         switch (attr) {
2002         case DOMAIN_ATTR_NESTING:
2003                 if (smmu_domain->smmu) {
2004                         ret = -EPERM;
2005                         goto out_unlock;
2006                 }
2007
2008                 if (*(int *)data)
2009                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
2010                 else
2011                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
2012
2013                 break;
2014         default:
2015                 ret = -ENODEV;
2016         }
2017
2018 out_unlock:
2019         mutex_unlock(&smmu_domain->init_mutex);
2020         return ret;
2021 }
2022
2023 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
2024 {
2025         return iommu_fwspec_add_ids(dev, args->args, 1);
2026 }
2027
2028 static void arm_smmu_get_resv_regions(struct device *dev,
2029                                       struct list_head *head)
2030 {
2031         struct iommu_resv_region *region;
2032         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
2033
2034         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2035                                          prot, IOMMU_RESV_SW_MSI);
2036         if (!region)
2037                 return;
2038
2039         list_add_tail(&region->list, head);
2040
2041         iommu_dma_get_resv_regions(dev, head);
2042 }
2043
2044 static void arm_smmu_put_resv_regions(struct device *dev,
2045                                       struct list_head *head)
2046 {
2047         struct iommu_resv_region *entry, *next;
2048
2049         list_for_each_entry_safe(entry, next, head, list)
2050                 kfree(entry);
2051 }
2052
2053 static struct iommu_ops arm_smmu_ops = {
2054         .capable                = arm_smmu_capable,
2055         .domain_alloc           = arm_smmu_domain_alloc,
2056         .domain_free            = arm_smmu_domain_free,
2057         .attach_dev             = arm_smmu_attach_dev,
2058         .map                    = arm_smmu_map,
2059         .unmap                  = arm_smmu_unmap,
2060         .map_sg                 = default_iommu_map_sg,
2061         .flush_iotlb_all        = arm_smmu_iotlb_sync,
2062         .iotlb_sync             = arm_smmu_iotlb_sync,
2063         .iova_to_phys           = arm_smmu_iova_to_phys,
2064         .add_device             = arm_smmu_add_device,
2065         .remove_device          = arm_smmu_remove_device,
2066         .device_group           = arm_smmu_device_group,
2067         .domain_get_attr        = arm_smmu_domain_get_attr,
2068         .domain_set_attr        = arm_smmu_domain_set_attr,
2069         .of_xlate               = arm_smmu_of_xlate,
2070         .get_resv_regions       = arm_smmu_get_resv_regions,
2071         .put_resv_regions       = arm_smmu_put_resv_regions,
2072         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
2073 };
2074
2075 /* Probing and initialisation functions */
2076 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
2077                                    struct arm_smmu_queue *q,
2078                                    unsigned long prod_off,
2079                                    unsigned long cons_off,
2080                                    size_t dwords)
2081 {
2082         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
2083
2084         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
2085         if (!q->base) {
2086                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
2087                         qsz);
2088                 return -ENOMEM;
2089         }
2090
2091         q->prod_reg     = arm_smmu_page1_fixup(prod_off, smmu);
2092         q->cons_reg     = arm_smmu_page1_fixup(cons_off, smmu);
2093         q->ent_dwords   = dwords;
2094
2095         q->q_base  = Q_BASE_RWA;
2096         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
2097         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
2098                      << Q_BASE_LOG2SIZE_SHIFT;
2099
2100         q->prod = q->cons = 0;
2101         return 0;
2102 }
2103
2104 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
2105 {
2106         int ret;
2107
2108         /* cmdq */
2109         spin_lock_init(&smmu->cmdq.lock);
2110         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2111                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
2112         if (ret)
2113                 return ret;
2114
2115         /* evtq */
2116         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2117                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
2118         if (ret)
2119                 return ret;
2120
2121         /* priq */
2122         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
2123                 return 0;
2124
2125         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2126                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2127 }
2128
2129 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2130 {
2131         unsigned int i;
2132         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2133         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2134         void *strtab = smmu->strtab_cfg.strtab;
2135
2136         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2137         if (!cfg->l1_desc) {
2138                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2139                 return -ENOMEM;
2140         }
2141
2142         for (i = 0; i < cfg->num_l1_ents; ++i) {
2143                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2144                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2145         }
2146
2147         return 0;
2148 }
2149
2150 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2151 {
2152         void *strtab;
2153         u64 reg;
2154         u32 size, l1size;
2155         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2156
2157         /* Calculate the L1 size, capped to the SIDSIZE. */
2158         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2159         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2160         cfg->num_l1_ents = 1 << size;
2161
2162         size += STRTAB_SPLIT;
2163         if (size < smmu->sid_bits)
2164                 dev_warn(smmu->dev,
2165                          "2-level strtab only covers %u/%u bits of SID\n",
2166                          size, smmu->sid_bits);
2167
2168         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2169         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2170                                      GFP_KERNEL | __GFP_ZERO);
2171         if (!strtab) {
2172                 dev_err(smmu->dev,
2173                         "failed to allocate l1 stream table (%u bytes)\n",
2174                         size);
2175                 return -ENOMEM;
2176         }
2177         cfg->strtab = strtab;
2178
2179         /* Configure strtab_base_cfg for 2 levels */
2180         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2181         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2182                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2183         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2184                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2185         cfg->strtab_base_cfg = reg;
2186
2187         return arm_smmu_init_l1_strtab(smmu);
2188 }
2189
2190 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2191 {
2192         void *strtab;
2193         u64 reg;
2194         u32 size;
2195         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2196
2197         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2198         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2199                                      GFP_KERNEL | __GFP_ZERO);
2200         if (!strtab) {
2201                 dev_err(smmu->dev,
2202                         "failed to allocate linear stream table (%u bytes)\n",
2203                         size);
2204                 return -ENOMEM;
2205         }
2206         cfg->strtab = strtab;
2207         cfg->num_l1_ents = 1 << smmu->sid_bits;
2208
2209         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2210         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2211         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2212                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2213         cfg->strtab_base_cfg = reg;
2214
2215         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2216         return 0;
2217 }
2218
2219 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2220 {
2221         u64 reg;
2222         int ret;
2223
2224         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2225                 ret = arm_smmu_init_strtab_2lvl(smmu);
2226         else
2227                 ret = arm_smmu_init_strtab_linear(smmu);
2228
2229         if (ret)
2230                 return ret;
2231
2232         /* Set the strtab base address */
2233         reg  = smmu->strtab_cfg.strtab_dma &
2234                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2235         reg |= STRTAB_BASE_RA;
2236         smmu->strtab_cfg.strtab_base = reg;
2237
2238         /* Allocate the first VMID for stage-2 bypass STEs */
2239         set_bit(0, smmu->vmid_map);
2240         return 0;
2241 }
2242
2243 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2244 {
2245         int ret;
2246
2247         atomic_set(&smmu->sync_nr, 0);
2248         ret = arm_smmu_init_queues(smmu);
2249         if (ret)
2250                 return ret;
2251
2252         return arm_smmu_init_strtab(smmu);
2253 }
2254
2255 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2256                                    unsigned int reg_off, unsigned int ack_off)
2257 {
2258         u32 reg;
2259
2260         writel_relaxed(val, smmu->base + reg_off);
2261         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2262                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2263 }
2264
2265 /* GBPA is "special" */
2266 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2267 {
2268         int ret;
2269         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2270
2271         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2272                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2273         if (ret)
2274                 return ret;
2275
2276         reg &= ~clr;
2277         reg |= set;
2278         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2279         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2280                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2281 }
2282
2283 static void arm_smmu_free_msis(void *data)
2284 {
2285         struct device *dev = data;
2286         platform_msi_domain_free_irqs(dev);
2287 }
2288
2289 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2290 {
2291         phys_addr_t doorbell;
2292         struct device *dev = msi_desc_to_dev(desc);
2293         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2294         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2295
2296         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2297         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2298
2299         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2300         writel_relaxed(msg->data, smmu->base + cfg[1]);
2301         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2302 }
2303
2304 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2305 {
2306         struct msi_desc *desc;
2307         int ret, nvec = ARM_SMMU_MAX_MSIS;
2308         struct device *dev = smmu->dev;
2309
2310         /* Clear the MSI address regs */
2311         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2312         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2313
2314         if (smmu->features & ARM_SMMU_FEAT_PRI)
2315                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2316         else
2317                 nvec--;
2318
2319         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2320                 return;
2321
2322         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2323         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2324         if (ret) {
2325                 dev_warn(dev, "failed to allocate MSIs\n");
2326                 return;
2327         }
2328
2329         for_each_msi_entry(desc, dev) {
2330                 switch (desc->platform.msi_index) {
2331                 case EVTQ_MSI_INDEX:
2332                         smmu->evtq.q.irq = desc->irq;
2333                         break;
2334                 case GERROR_MSI_INDEX:
2335                         smmu->gerr_irq = desc->irq;
2336                         break;
2337                 case PRIQ_MSI_INDEX:
2338                         smmu->priq.q.irq = desc->irq;
2339                         break;
2340                 default:        /* Unknown */
2341                         continue;
2342                 }
2343         }
2344
2345         /* Add callback to free MSIs on teardown */
2346         devm_add_action(dev, arm_smmu_free_msis, dev);
2347 }
2348
2349 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2350 {
2351         int irq, ret;
2352
2353         arm_smmu_setup_msis(smmu);
2354
2355         /* Request interrupt lines */
2356         irq = smmu->evtq.q.irq;
2357         if (irq) {
2358                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2359                                                 arm_smmu_evtq_thread,
2360                                                 IRQF_ONESHOT,
2361                                                 "arm-smmu-v3-evtq", smmu);
2362                 if (ret < 0)
2363                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2364         }
2365
2366         irq = smmu->gerr_irq;
2367         if (irq) {
2368                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2369                                        0, "arm-smmu-v3-gerror", smmu);
2370                 if (ret < 0)
2371                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2372         }
2373
2374         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2375                 irq = smmu->priq.q.irq;
2376                 if (irq) {
2377                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2378                                                         arm_smmu_priq_thread,
2379                                                         IRQF_ONESHOT,
2380                                                         "arm-smmu-v3-priq",
2381                                                         smmu);
2382                         if (ret < 0)
2383                                 dev_warn(smmu->dev,
2384                                          "failed to enable priq irq\n");
2385                 }
2386         }
2387 }
2388
2389 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2390 {
2391         int ret, irq;
2392         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2393
2394         /* Disable IRQs first */
2395         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2396                                       ARM_SMMU_IRQ_CTRLACK);
2397         if (ret) {
2398                 dev_err(smmu->dev, "failed to disable irqs\n");
2399                 return ret;
2400         }
2401
2402         irq = smmu->combined_irq;
2403         if (irq) {
2404                 /*
2405                  * Cavium ThunderX2 implementation doesn't not support unique
2406                  * irq lines. Use single irq line for all the SMMUv3 interrupts.
2407                  */
2408                 ret = devm_request_threaded_irq(smmu->dev, irq,
2409                                         arm_smmu_combined_irq_handler,
2410                                         arm_smmu_combined_irq_thread,
2411                                         IRQF_ONESHOT,
2412                                         "arm-smmu-v3-combined-irq", smmu);
2413                 if (ret < 0)
2414                         dev_warn(smmu->dev, "failed to enable combined irq\n");
2415         } else
2416                 arm_smmu_setup_unique_irqs(smmu);
2417
2418         if (smmu->features & ARM_SMMU_FEAT_PRI)
2419                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2420
2421         /* Enable interrupt generation on the SMMU */
2422         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2423                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2424         if (ret)
2425                 dev_warn(smmu->dev, "failed to enable irqs\n");
2426
2427         return 0;
2428 }
2429
2430 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2431 {
2432         int ret;
2433
2434         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2435         if (ret)
2436                 dev_err(smmu->dev, "failed to clear cr0\n");
2437
2438         return ret;
2439 }
2440
2441 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2442 {
2443         int ret;
2444         u32 reg, enables;
2445         struct arm_smmu_cmdq_ent cmd;
2446
2447         /* Clear CR0 and sync (disables SMMU and queue processing) */
2448         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2449         if (reg & CR0_SMMUEN)
2450                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2451
2452         ret = arm_smmu_device_disable(smmu);
2453         if (ret)
2454                 return ret;
2455
2456         /* CR1 (table and queue memory attributes) */
2457         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2458               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2459               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2460               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2461               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2462               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2463         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2464
2465         /* CR2 (random crap) */
2466         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2467         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2468
2469         /* Stream table */
2470         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2471                        smmu->base + ARM_SMMU_STRTAB_BASE);
2472         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2473                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2474
2475         /* Command queue */
2476         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2477         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2478         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2479
2480         enables = CR0_CMDQEN;
2481         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2482                                       ARM_SMMU_CR0ACK);
2483         if (ret) {
2484                 dev_err(smmu->dev, "failed to enable command queue\n");
2485                 return ret;
2486         }
2487
2488         /* Invalidate any cached configuration */
2489         cmd.opcode = CMDQ_OP_CFGI_ALL;
2490         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2491         arm_smmu_cmdq_issue_sync(smmu);
2492
2493         /* Invalidate any stale TLB entries */
2494         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2495                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2496                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2497         }
2498
2499         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2500         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2501         arm_smmu_cmdq_issue_sync(smmu);
2502
2503         /* Event queue */
2504         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2505         writel_relaxed(smmu->evtq.q.prod,
2506                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
2507         writel_relaxed(smmu->evtq.q.cons,
2508                        arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2509
2510         enables |= CR0_EVTQEN;
2511         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2512                                       ARM_SMMU_CR0ACK);
2513         if (ret) {
2514                 dev_err(smmu->dev, "failed to enable event queue\n");
2515                 return ret;
2516         }
2517
2518         /* PRI queue */
2519         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2520                 writeq_relaxed(smmu->priq.q.q_base,
2521                                smmu->base + ARM_SMMU_PRIQ_BASE);
2522                 writel_relaxed(smmu->priq.q.prod,
2523                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2524                 writel_relaxed(smmu->priq.q.cons,
2525                                arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
2526
2527                 enables |= CR0_PRIQEN;
2528                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2529                                               ARM_SMMU_CR0ACK);
2530                 if (ret) {
2531                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2532                         return ret;
2533                 }
2534         }
2535
2536         ret = arm_smmu_setup_irqs(smmu);
2537         if (ret) {
2538                 dev_err(smmu->dev, "failed to setup irqs\n");
2539                 return ret;
2540         }
2541
2542
2543         /* Enable the SMMU interface, or ensure bypass */
2544         if (!bypass || disable_bypass) {
2545                 enables |= CR0_SMMUEN;
2546         } else {
2547                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2548                 if (ret) {
2549                         dev_err(smmu->dev, "GBPA not responding to update\n");
2550                         return ret;
2551                 }
2552         }
2553         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2554                                       ARM_SMMU_CR0ACK);
2555         if (ret) {
2556                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2557                 return ret;
2558         }
2559
2560         return 0;
2561 }
2562
2563 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2564 {
2565         u32 reg;
2566         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2567
2568         /* IDR0 */
2569         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2570
2571         /* 2-level structures */
2572         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2573                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2574
2575         if (reg & IDR0_CD2L)
2576                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2577
2578         /*
2579          * Translation table endianness.
2580          * We currently require the same endianness as the CPU, but this
2581          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2582          */
2583         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2584         case IDR0_TTENDIAN_MIXED:
2585                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2586                 break;
2587 #ifdef __BIG_ENDIAN
2588         case IDR0_TTENDIAN_BE:
2589                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2590                 break;
2591 #else
2592         case IDR0_TTENDIAN_LE:
2593                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2594                 break;
2595 #endif
2596         default:
2597                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2598                 return -ENXIO;
2599         }
2600
2601         /* Boolean feature flags */
2602         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2603                 smmu->features |= ARM_SMMU_FEAT_PRI;
2604
2605         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2606                 smmu->features |= ARM_SMMU_FEAT_ATS;
2607
2608         if (reg & IDR0_SEV)
2609                 smmu->features |= ARM_SMMU_FEAT_SEV;
2610
2611         if (reg & IDR0_MSI)
2612                 smmu->features |= ARM_SMMU_FEAT_MSI;
2613
2614         if (reg & IDR0_HYP)
2615                 smmu->features |= ARM_SMMU_FEAT_HYP;
2616
2617         /*
2618          * The coherency feature as set by FW is used in preference to the ID
2619          * register, but warn on mismatch.
2620          */
2621         if (!!(reg & IDR0_COHACC) != coherent)
2622                 dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
2623                          coherent ? "true" : "false");
2624
2625         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2626         case IDR0_STALL_MODEL_FORCE:
2627                 smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
2628                 /* Fallthrough */
2629         case IDR0_STALL_MODEL_STALL:
2630                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2631         }
2632
2633         if (reg & IDR0_S1P)
2634                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2635
2636         if (reg & IDR0_S2P)
2637                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2638
2639         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2640                 dev_err(smmu->dev, "no translation support!\n");
2641                 return -ENXIO;
2642         }
2643
2644         /* We only support the AArch64 table format at present */
2645         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2646         case IDR0_TTF_AARCH32_64:
2647                 smmu->ias = 40;
2648                 /* Fallthrough */
2649         case IDR0_TTF_AARCH64:
2650                 break;
2651         default:
2652                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2653                 return -ENXIO;
2654         }
2655
2656         /* ASID/VMID sizes */
2657         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2658         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2659
2660         /* IDR1 */
2661         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2662         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2663                 dev_err(smmu->dev, "embedded implementation not supported\n");
2664                 return -ENXIO;
2665         }
2666
2667         /* Queue sizes, capped at 4k */
2668         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2669                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2670         if (!smmu->cmdq.q.max_n_shift) {
2671                 /* Odd alignment restrictions on the base, so ignore for now */
2672                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2673                 return -ENXIO;
2674         }
2675
2676         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2677                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2678         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2679                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2680
2681         /* SID/SSID sizes */
2682         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2683         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2684
2685         /*
2686          * If the SMMU supports fewer bits than would fill a single L2 stream
2687          * table, use a linear table instead.
2688          */
2689         if (smmu->sid_bits <= STRTAB_SPLIT)
2690                 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2691
2692         /* IDR5 */
2693         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2694
2695         /* Maximum number of outstanding stalls */
2696         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2697                                 & IDR5_STALL_MAX_MASK;
2698
2699         /* Page sizes */
2700         if (reg & IDR5_GRAN64K)
2701                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2702         if (reg & IDR5_GRAN16K)
2703                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2704         if (reg & IDR5_GRAN4K)
2705                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2706
2707         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2708                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2709         else
2710                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2711
2712         /* Output address size */
2713         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2714         case IDR5_OAS_32_BIT:
2715                 smmu->oas = 32;
2716                 break;
2717         case IDR5_OAS_36_BIT:
2718                 smmu->oas = 36;
2719                 break;
2720         case IDR5_OAS_40_BIT:
2721                 smmu->oas = 40;
2722                 break;
2723         case IDR5_OAS_42_BIT:
2724                 smmu->oas = 42;
2725                 break;
2726         case IDR5_OAS_44_BIT:
2727                 smmu->oas = 44;
2728                 break;
2729         default:
2730                 dev_info(smmu->dev,
2731                         "unknown output address size. Truncating to 48-bit\n");
2732                 /* Fallthrough */
2733         case IDR5_OAS_48_BIT:
2734                 smmu->oas = 48;
2735         }
2736
2737         /* Set the DMA mask for our table walker */
2738         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2739                 dev_warn(smmu->dev,
2740                          "failed to set DMA mask for table walker\n");
2741
2742         smmu->ias = max(smmu->ias, smmu->oas);
2743
2744         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2745                  smmu->ias, smmu->oas, smmu->features);
2746         return 0;
2747 }
2748
2749 #ifdef CONFIG_ACPI
2750 static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
2751 {
2752         switch (model) {
2753         case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
2754                 smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
2755                 break;
2756         case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
2757                 smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
2758                 break;
2759         }
2760
2761         dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
2762 }
2763
2764 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2765                                       struct arm_smmu_device *smmu)
2766 {
2767         struct acpi_iort_smmu_v3 *iort_smmu;
2768         struct device *dev = smmu->dev;
2769         struct acpi_iort_node *node;
2770
2771         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2772
2773         /* Retrieve SMMUv3 specific data */
2774         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2775
2776         acpi_smmu_get_options(iort_smmu->model, smmu);
2777
2778         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2779                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2780
2781         return 0;
2782 }
2783 #else
2784 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2785                                              struct arm_smmu_device *smmu)
2786 {
2787         return -ENODEV;
2788 }
2789 #endif
2790
2791 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2792                                     struct arm_smmu_device *smmu)
2793 {
2794         struct device *dev = &pdev->dev;
2795         u32 cells;
2796         int ret = -EINVAL;
2797
2798         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2799                 dev_err(dev, "missing #iommu-cells property\n");
2800         else if (cells != 1)
2801                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2802         else
2803                 ret = 0;
2804
2805         parse_driver_options(smmu);
2806
2807         if (of_dma_is_coherent(dev->of_node))
2808                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2809
2810         return ret;
2811 }
2812
2813 static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
2814 {
2815         if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
2816                 return SZ_64K;
2817         else
2818                 return SZ_128K;
2819 }
2820
2821 static int arm_smmu_device_probe(struct platform_device *pdev)
2822 {
2823         int irq, ret;
2824         struct resource *res;
2825         resource_size_t ioaddr;
2826         struct arm_smmu_device *smmu;
2827         struct device *dev = &pdev->dev;
2828         bool bypass;
2829
2830         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2831         if (!smmu) {
2832                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2833                 return -ENOMEM;
2834         }
2835         smmu->dev = dev;
2836
2837         if (dev->of_node) {
2838                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2839         } else {
2840                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2841                 if (ret == -ENODEV)
2842                         return ret;
2843         }
2844
2845         /* Set bypass mode according to firmware probing result */
2846         bypass = !!ret;
2847
2848         /* Base address */
2849         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2850         if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
2851                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2852                 return -EINVAL;
2853         }
2854         ioaddr = res->start;
2855
2856         smmu->base = devm_ioremap_resource(dev, res);
2857         if (IS_ERR(smmu->base))
2858                 return PTR_ERR(smmu->base);
2859
2860         /* Interrupt lines */
2861
2862         irq = platform_get_irq_byname(pdev, "combined");
2863         if (irq > 0)
2864                 smmu->combined_irq = irq;
2865         else {
2866                 irq = platform_get_irq_byname(pdev, "eventq");
2867                 if (irq > 0)
2868                         smmu->evtq.q.irq = irq;
2869
2870                 irq = platform_get_irq_byname(pdev, "priq");
2871                 if (irq > 0)
2872                         smmu->priq.q.irq = irq;
2873
2874                 irq = platform_get_irq_byname(pdev, "gerror");
2875                 if (irq > 0)
2876                         smmu->gerr_irq = irq;
2877         }
2878         /* Probe the h/w */
2879         ret = arm_smmu_device_hw_probe(smmu);
2880         if (ret)
2881                 return ret;
2882
2883         /* Initialise in-memory data structures */
2884         ret = arm_smmu_init_structures(smmu);
2885         if (ret)
2886                 return ret;
2887
2888         /* Record our private device structure */
2889         platform_set_drvdata(pdev, smmu);
2890
2891         /* Reset the device */
2892         ret = arm_smmu_device_reset(smmu, bypass);
2893         if (ret)
2894                 return ret;
2895
2896         /* And we're up. Go go go! */
2897         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2898                                      "smmu3.%pa", &ioaddr);
2899         if (ret)
2900                 return ret;
2901
2902         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2903         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2904
2905         ret = iommu_device_register(&smmu->iommu);
2906         if (ret) {
2907                 dev_err(dev, "Failed to register iommu\n");
2908                 return ret;
2909         }
2910
2911 #ifdef CONFIG_PCI
2912         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2913                 pci_request_acs();
2914                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2915                 if (ret)
2916                         return ret;
2917         }
2918 #endif
2919 #ifdef CONFIG_ARM_AMBA
2920         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2921                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2922                 if (ret)
2923                         return ret;
2924         }
2925 #endif
2926         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2927                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2928                 if (ret)
2929                         return ret;
2930         }
2931         return 0;
2932 }
2933
2934 static int arm_smmu_device_remove(struct platform_device *pdev)
2935 {
2936         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2937
2938         arm_smmu_device_disable(smmu);
2939
2940         return 0;
2941 }
2942
2943 static void arm_smmu_device_shutdown(struct platform_device *pdev)
2944 {
2945         arm_smmu_device_remove(pdev);
2946 }
2947
2948 static const struct of_device_id arm_smmu_of_match[] = {
2949         { .compatible = "arm,smmu-v3", },
2950         { },
2951 };
2952 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2953
2954 static struct platform_driver arm_smmu_driver = {
2955         .driver = {
2956                 .name           = "arm-smmu-v3",
2957                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2958         },
2959         .probe  = arm_smmu_device_probe,
2960         .remove = arm_smmu_device_remove,
2961         .shutdown = arm_smmu_device_shutdown,
2962 };
2963 module_platform_driver(arm_smmu_driver);
2964
2965 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", NULL);
2966
2967 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2968 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2969 MODULE_LICENSE("GPL v2");