Merge branch 'mlx5-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mellanox...
[linux-block.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 #include <linux/dma-buf.h>
37 #include <linux/dma-resv.h>
38
39 #include "mlx5_ib.h"
40 #include "cmd.h"
41 #include "qp.h"
42
43 #include <linux/mlx5/eq.h>
44
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47         u32                     bytes_committed;
48         u32                     token;
49         u8                      event_subtype;
50         u8                      type;
51         union {
52                 /* Initiator or send message responder pagefault details. */
53                 struct {
54                         /* Received packet size, only valid for responders. */
55                         u32     packet_size;
56                         /*
57                          * Number of resource holding WQE, depends on type.
58                          */
59                         u32     wq_num;
60                         /*
61                          * WQE index. Refers to either the send queue or
62                          * receive queue, according to event_subtype.
63                          */
64                         u16     wqe_index;
65                 } wqe;
66                 /* RDMA responder pagefault details */
67                 struct {
68                         u32     r_key;
69                         /*
70                          * Received packet size, minimal size page fault
71                          * resolution required for forward progress.
72                          */
73                         u32     packet_size;
74                         u32     rdma_op_len;
75                         u64     rdma_va;
76                 } rdma;
77         };
78
79         struct mlx5_ib_pf_eq    *eq;
80         struct work_struct      work;
81 };
82
83 #define MAX_PREFETCH_LEN (4*1024*1024U)
84
85 /* Timeout in ms to wait for an active mmu notifier to complete when handling
86  * a pagefault. */
87 #define MMU_NOTIFIER_TIMEOUT 1000
88
89 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
90 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
91 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
92 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
93 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
94
95 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
96
97 static u64 mlx5_imr_ksm_entries;
98
99 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
100                         struct mlx5_ib_mr *imr, int flags)
101 {
102         struct mlx5_klm *end = pklm + nentries;
103
104         if (flags & MLX5_IB_UPD_XLT_ZAP) {
105                 for (; pklm != end; pklm++, idx++) {
106                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
107                         pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
108                         pklm->va = 0;
109                 }
110                 return;
111         }
112
113         /*
114          * The locking here is pretty subtle. Ideally the implicit_children
115          * xarray would be protected by the umem_mutex, however that is not
116          * possible. Instead this uses a weaker update-then-lock pattern:
117          *
118          *    xa_store()
119          *    mutex_lock(umem_mutex)
120          *     mlx5_ib_update_xlt()
121          *    mutex_unlock(umem_mutex)
122          *    destroy lkey
123          *
124          * ie any change the xarray must be followed by the locked update_xlt
125          * before destroying.
126          *
127          * The umem_mutex provides the acquire/release semantic needed to make
128          * the xa_store() visible to a racing thread.
129          */
130         lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131
132         for (; pklm != end; pklm++, idx++) {
133                 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
134
135                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
136                 if (mtt) {
137                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
138                         pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
139                 } else {
140                         pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
141                         pklm->va = 0;
142                 }
143         }
144 }
145
146 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
147 {
148         u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
149
150         if (umem_dma & ODP_READ_ALLOWED_BIT)
151                 mtt_entry |= MLX5_IB_MTT_READ;
152         if (umem_dma & ODP_WRITE_ALLOWED_BIT)
153                 mtt_entry |= MLX5_IB_MTT_WRITE;
154
155         return mtt_entry;
156 }
157
158 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
159                          struct mlx5_ib_mr *mr, int flags)
160 {
161         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
162         dma_addr_t pa;
163         size_t i;
164
165         if (flags & MLX5_IB_UPD_XLT_ZAP)
166                 return;
167
168         for (i = 0; i < nentries; i++) {
169                 pa = odp->dma_list[idx + i];
170                 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
171         }
172 }
173
174 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
175                            struct mlx5_ib_mr *mr, int flags)
176 {
177         if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
178                 populate_klm(xlt, idx, nentries, mr, flags);
179         } else {
180                 populate_mtt(xlt, idx, nentries, mr, flags);
181         }
182 }
183
184 /*
185  * This must be called after the mr has been removed from implicit_children.
186  * NOTE: The MR does not necessarily have to be
187  * empty here, parallel page faults could have raced with the free process and
188  * added pages to it.
189  */
190 static void free_implicit_child_mr_work(struct work_struct *work)
191 {
192         struct mlx5_ib_mr *mr =
193                 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
194         struct mlx5_ib_mr *imr = mr->parent;
195         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
196         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
197
198         mlx5r_deref_wait_odp_mkey(&mr->mmkey);
199
200         mutex_lock(&odp_imr->umem_mutex);
201         mlx5_ib_update_xlt(mr->parent, ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT,
202                            1, 0,
203                            MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC);
204         mutex_unlock(&odp_imr->umem_mutex);
205         mlx5_ib_dereg_mr(&mr->ibmr, NULL);
206
207         mlx5r_deref_odp_mkey(&imr->mmkey);
208 }
209
210 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
211 {
212         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
213         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
214         struct mlx5_ib_mr *imr = mr->parent;
215
216         if (!refcount_inc_not_zero(&imr->mmkey.usecount))
217                 return;
218
219         xa_erase(&imr->implicit_children, idx);
220
221         /* Freeing a MR is a sleeping operation, so bounce to a work queue */
222         INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
223         queue_work(system_unbound_wq, &mr->odp_destroy.work);
224 }
225
226 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
227                                      const struct mmu_notifier_range *range,
228                                      unsigned long cur_seq)
229 {
230         struct ib_umem_odp *umem_odp =
231                 container_of(mni, struct ib_umem_odp, notifier);
232         struct mlx5_ib_mr *mr;
233         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
234                                     sizeof(struct mlx5_mtt)) - 1;
235         u64 idx = 0, blk_start_idx = 0;
236         u64 invalidations = 0;
237         unsigned long start;
238         unsigned long end;
239         int in_block = 0;
240         u64 addr;
241
242         if (!mmu_notifier_range_blockable(range))
243                 return false;
244
245         mutex_lock(&umem_odp->umem_mutex);
246         mmu_interval_set_seq(mni, cur_seq);
247         /*
248          * If npages is zero then umem_odp->private may not be setup yet. This
249          * does not complete until after the first page is mapped for DMA.
250          */
251         if (!umem_odp->npages)
252                 goto out;
253         mr = umem_odp->private;
254
255         start = max_t(u64, ib_umem_start(umem_odp), range->start);
256         end = min_t(u64, ib_umem_end(umem_odp), range->end);
257
258         /*
259          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
260          * while we are doing the invalidation, no page fault will attempt to
261          * overwrite the same MTTs.  Concurent invalidations might race us,
262          * but they will write 0s as well, so no difference in the end result.
263          */
264         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
265                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
266                 /*
267                  * Strive to write the MTTs in chunks, but avoid overwriting
268                  * non-existing MTTs. The huristic here can be improved to
269                  * estimate the cost of another UMR vs. the cost of bigger
270                  * UMR.
271                  */
272                 if (umem_odp->dma_list[idx] &
273                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
274                         if (!in_block) {
275                                 blk_start_idx = idx;
276                                 in_block = 1;
277                         }
278
279                         /* Count page invalidations */
280                         invalidations += idx - blk_start_idx + 1;
281                 } else {
282                         u64 umr_offset = idx & umr_block_mask;
283
284                         if (in_block && umr_offset == 0) {
285                                 mlx5_ib_update_xlt(mr, blk_start_idx,
286                                                    idx - blk_start_idx, 0,
287                                                    MLX5_IB_UPD_XLT_ZAP |
288                                                    MLX5_IB_UPD_XLT_ATOMIC);
289                                 in_block = 0;
290                         }
291                 }
292         }
293         if (in_block)
294                 mlx5_ib_update_xlt(mr, blk_start_idx,
295                                    idx - blk_start_idx + 1, 0,
296                                    MLX5_IB_UPD_XLT_ZAP |
297                                    MLX5_IB_UPD_XLT_ATOMIC);
298
299         mlx5_update_odp_stats(mr, invalidations, invalidations);
300
301         /*
302          * We are now sure that the device will not access the
303          * memory. We can safely unmap it, and mark it as dirty if
304          * needed.
305          */
306
307         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
308
309         if (unlikely(!umem_odp->npages && mr->parent))
310                 destroy_unused_implicit_child_mr(mr);
311 out:
312         mutex_unlock(&umem_odp->umem_mutex);
313         return true;
314 }
315
316 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
317         .invalidate = mlx5_ib_invalidate_range,
318 };
319
320 static void internal_fill_odp_caps(struct mlx5_ib_dev *dev)
321 {
322         struct ib_odp_caps *caps = &dev->odp_caps;
323
324         memset(caps, 0, sizeof(*caps));
325
326         if (!MLX5_CAP_GEN(dev->mdev, pg) ||
327             !mlx5_ib_can_load_pas_with_umr(dev, 0))
328                 return;
329
330         caps->general_caps = IB_ODP_SUPPORT;
331
332         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
333                 dev->odp_max_size = U64_MAX;
334         else
335                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
336
337         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
338                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
339
340         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
341                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
342
343         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
344                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
345
346         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
347                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
348
349         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
350                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
351
352         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
353                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
354
355         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
356                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
357
358         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
359                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
360
361         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
362                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
363
364         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
365                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
366
367         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
368                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
369
370         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
371                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
372
373         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
374                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
375
376         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
377                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
378
379         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
380             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
381             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
382             !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
383                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
384 }
385
386 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
387                                       struct mlx5_pagefault *pfault,
388                                       int error)
389 {
390         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
391                      pfault->wqe.wq_num : pfault->token;
392         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
393         int err;
394
395         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
396         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
397         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
398         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
399         MLX5_SET(page_fault_resume_in, in, error, !!error);
400
401         err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
402         if (err)
403                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
404                             wq_num, err);
405 }
406
407 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
408                                                 unsigned long idx)
409 {
410         struct ib_umem_odp *odp;
411         struct mlx5_ib_mr *mr;
412         struct mlx5_ib_mr *ret;
413         int err;
414
415         odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
416                                       idx * MLX5_IMR_MTT_SIZE,
417                                       MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
418         if (IS_ERR(odp))
419                 return ERR_CAST(odp);
420
421         mr = mlx5_mr_cache_alloc(
422                 mr_to_mdev(imr), MLX5_IMR_MTT_CACHE_ENTRY, imr->access_flags);
423         if (IS_ERR(mr)) {
424                 ib_umem_odp_release(odp);
425                 return mr;
426         }
427
428         mr->ibmr.pd = imr->ibmr.pd;
429         mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
430         mr->umem = &odp->umem;
431         mr->ibmr.lkey = mr->mmkey.key;
432         mr->ibmr.rkey = mr->mmkey.key;
433         mr->ibmr.iova = idx * MLX5_IMR_MTT_SIZE;
434         mr->parent = imr;
435         odp->private = mr;
436
437         /*
438          * First refcount is owned by the xarray and second refconut
439          * is returned to the caller.
440          */
441         refcount_set(&mr->mmkey.usecount, 2);
442
443         err = mlx5_ib_update_xlt(mr, 0,
444                                  MLX5_IMR_MTT_ENTRIES,
445                                  PAGE_SHIFT,
446                                  MLX5_IB_UPD_XLT_ZAP |
447                                  MLX5_IB_UPD_XLT_ENABLE);
448         if (err) {
449                 ret = ERR_PTR(err);
450                 goto out_mr;
451         }
452
453         xa_lock(&imr->implicit_children);
454         ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
455                            GFP_KERNEL);
456         if (unlikely(ret)) {
457                 if (xa_is_err(ret)) {
458                         ret = ERR_PTR(xa_err(ret));
459                         goto out_lock;
460                 }
461                 /*
462                  * Another thread beat us to creating the child mr, use
463                  * theirs.
464                  */
465                 refcount_inc(&ret->mmkey.usecount);
466                 goto out_lock;
467         }
468         xa_unlock(&imr->implicit_children);
469
470         mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
471         return mr;
472
473 out_lock:
474         xa_unlock(&imr->implicit_children);
475 out_mr:
476         mlx5_ib_dereg_mr(&mr->ibmr, NULL);
477         return ret;
478 }
479
480 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
481                                              int access_flags)
482 {
483         struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
484         struct ib_umem_odp *umem_odp;
485         struct mlx5_ib_mr *imr;
486         int err;
487
488         if (!mlx5_ib_can_load_pas_with_umr(dev,
489                                            MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
490                 return ERR_PTR(-EOPNOTSUPP);
491
492         umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
493         if (IS_ERR(umem_odp))
494                 return ERR_CAST(umem_odp);
495
496         imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags);
497         if (IS_ERR(imr)) {
498                 ib_umem_odp_release(umem_odp);
499                 return imr;
500         }
501
502         imr->ibmr.pd = &pd->ibpd;
503         imr->ibmr.iova = 0;
504         imr->umem = &umem_odp->umem;
505         imr->ibmr.lkey = imr->mmkey.key;
506         imr->ibmr.rkey = imr->mmkey.key;
507         imr->ibmr.device = &dev->ib_dev;
508         imr->umem = &umem_odp->umem;
509         imr->is_odp_implicit = true;
510         xa_init(&imr->implicit_children);
511
512         err = mlx5_ib_update_xlt(imr, 0,
513                                  mlx5_imr_ksm_entries,
514                                  MLX5_KSM_PAGE_SHIFT,
515                                  MLX5_IB_UPD_XLT_INDIRECT |
516                                  MLX5_IB_UPD_XLT_ZAP |
517                                  MLX5_IB_UPD_XLT_ENABLE);
518         if (err)
519                 goto out_mr;
520
521         err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
522         if (err)
523                 goto out_mr;
524
525         mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
526         return imr;
527 out_mr:
528         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
529         mlx5_ib_dereg_mr(&imr->ibmr, NULL);
530         return ERR_PTR(err);
531 }
532
533 void mlx5_ib_free_odp_mr(struct mlx5_ib_mr *mr)
534 {
535         struct mlx5_ib_mr *mtt;
536         unsigned long idx;
537
538         /*
539          * If this is an implicit MR it is already invalidated so we can just
540          * delete the children mkeys.
541          */
542         xa_for_each(&mr->implicit_children, idx, mtt) {
543                 xa_erase(&mr->implicit_children, idx);
544                 mlx5_ib_dereg_mr(&mtt->ibmr, NULL);
545         }
546 }
547
548 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
549 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
550 #define MLX5_PF_FLAGS_ENABLE BIT(3)
551 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
552                              u64 user_va, size_t bcnt, u32 *bytes_mapped,
553                              u32 flags)
554 {
555         int page_shift, ret, np;
556         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
557         u64 access_mask;
558         u64 start_idx;
559         bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
560         u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
561
562         if (flags & MLX5_PF_FLAGS_ENABLE)
563                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
564
565         page_shift = odp->page_shift;
566         start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
567         access_mask = ODP_READ_ALLOWED_BIT;
568
569         if (odp->umem.writable && !downgrade)
570                 access_mask |= ODP_WRITE_ALLOWED_BIT;
571
572         np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
573         if (np < 0)
574                 return np;
575
576         /*
577          * No need to check whether the MTTs really belong to this MR, since
578          * ib_umem_odp_map_dma_and_lock already checks this.
579          */
580         ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
581         mutex_unlock(&odp->umem_mutex);
582
583         if (ret < 0) {
584                 if (ret != -EAGAIN)
585                         mlx5_ib_err(mr_to_mdev(mr),
586                                     "Failed to update mkey page tables\n");
587                 goto out;
588         }
589
590         if (bytes_mapped) {
591                 u32 new_mappings = (np << page_shift) -
592                         (user_va - round_down(user_va, 1 << page_shift));
593
594                 *bytes_mapped += min_t(u32, new_mappings, bcnt);
595         }
596
597         return np << (page_shift - PAGE_SHIFT);
598
599 out:
600         return ret;
601 }
602
603 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
604                                  struct ib_umem_odp *odp_imr, u64 user_va,
605                                  size_t bcnt, u32 *bytes_mapped, u32 flags)
606 {
607         unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
608         unsigned long upd_start_idx = end_idx + 1;
609         unsigned long upd_len = 0;
610         unsigned long npages = 0;
611         int err;
612         int ret;
613
614         if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
615                      mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
616                 return -EFAULT;
617
618         /* Fault each child mr that intersects with our interval. */
619         while (bcnt) {
620                 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
621                 struct ib_umem_odp *umem_odp;
622                 struct mlx5_ib_mr *mtt;
623                 u64 len;
624
625                 xa_lock(&imr->implicit_children);
626                 mtt = xa_load(&imr->implicit_children, idx);
627                 if (unlikely(!mtt)) {
628                         xa_unlock(&imr->implicit_children);
629                         mtt = implicit_get_child_mr(imr, idx);
630                         if (IS_ERR(mtt)) {
631                                 ret = PTR_ERR(mtt);
632                                 goto out;
633                         }
634                         upd_start_idx = min(upd_start_idx, idx);
635                         upd_len = idx - upd_start_idx + 1;
636                 } else {
637                         refcount_inc(&mtt->mmkey.usecount);
638                         xa_unlock(&imr->implicit_children);
639                 }
640
641                 umem_odp = to_ib_umem_odp(mtt->umem);
642                 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
643                       user_va;
644
645                 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
646                                         bytes_mapped, flags);
647
648                 mlx5r_deref_odp_mkey(&mtt->mmkey);
649
650                 if (ret < 0)
651                         goto out;
652                 user_va += len;
653                 bcnt -= len;
654                 npages += ret;
655         }
656
657         ret = npages;
658
659         /*
660          * Any time the implicit_children are changed we must perform an
661          * update of the xlt before exiting to ensure the HW and the
662          * implicit_children remains synchronized.
663          */
664 out:
665         if (likely(!upd_len))
666                 return ret;
667
668         /*
669          * Notice this is not strictly ordered right, the KSM is updated after
670          * the implicit_children is updated, so a parallel page fault could
671          * see a MR that is not yet visible in the KSM.  This is similar to a
672          * parallel page fault seeing a MR that is being concurrently removed
673          * from the KSM. Both of these improbable situations are resolved
674          * safely by resuming the HW and then taking another page fault. The
675          * next pagefault handler will see the new information.
676          */
677         mutex_lock(&odp_imr->umem_mutex);
678         err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
679                                  MLX5_IB_UPD_XLT_INDIRECT |
680                                          MLX5_IB_UPD_XLT_ATOMIC);
681         mutex_unlock(&odp_imr->umem_mutex);
682         if (err) {
683                 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
684                 return err;
685         }
686         return ret;
687 }
688
689 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
690                                u32 *bytes_mapped, u32 flags)
691 {
692         struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
693         u32 xlt_flags = 0;
694         int err;
695         unsigned int page_size;
696
697         if (flags & MLX5_PF_FLAGS_ENABLE)
698                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
699
700         dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
701         err = ib_umem_dmabuf_map_pages(umem_dmabuf);
702         if (err) {
703                 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
704                 return err;
705         }
706
707         page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
708                                              log_page_size, 0,
709                                              umem_dmabuf->umem.iova);
710         if (unlikely(page_size < PAGE_SIZE)) {
711                 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
712                 err = -EINVAL;
713         } else {
714                 err = mlx5_ib_update_mr_pas(mr, xlt_flags);
715         }
716         dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
717
718         if (err)
719                 return err;
720
721         if (bytes_mapped)
722                 *bytes_mapped += bcnt;
723
724         return ib_umem_num_pages(mr->umem);
725 }
726
727 /*
728  * Returns:
729  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
730  *           not accessible, or the MR is no longer valid.
731  *  -EAGAIN/-ENOMEM: The operation should be retried
732  *
733  *  -EINVAL/others: General internal malfunction
734  *  >0: Number of pages mapped
735  */
736 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
737                         u32 *bytes_mapped, u32 flags)
738 {
739         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
740
741         if (unlikely(io_virt < mr->ibmr.iova))
742                 return -EFAULT;
743
744         if (mr->umem->is_dmabuf)
745                 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
746
747         if (!odp->is_implicit_odp) {
748                 u64 user_va;
749
750                 if (check_add_overflow(io_virt - mr->ibmr.iova,
751                                        (u64)odp->umem.address, &user_va))
752                         return -EFAULT;
753                 if (unlikely(user_va >= ib_umem_end(odp) ||
754                              ib_umem_end(odp) - user_va < bcnt))
755                         return -EFAULT;
756                 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
757                                          flags);
758         }
759         return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
760                                      flags);
761 }
762
763 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
764 {
765         int ret;
766
767         ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
768                                 mr->umem->length, NULL,
769                                 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
770         return ret >= 0 ? 0 : ret;
771 }
772
773 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
774 {
775         int ret;
776
777         ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
778                                   MLX5_PF_FLAGS_ENABLE);
779
780         return ret >= 0 ? 0 : ret;
781 }
782
783 struct pf_frame {
784         struct pf_frame *next;
785         u32 key;
786         u64 io_virt;
787         size_t bcnt;
788         int depth;
789 };
790
791 static bool mkey_is_eq(struct mlx5_ib_mkey *mmkey, u32 key)
792 {
793         if (!mmkey)
794                 return false;
795         if (mmkey->type == MLX5_MKEY_MW)
796                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
797         return mmkey->key == key;
798 }
799
800 /*
801  * Handle a single data segment in a page-fault WQE or RDMA region.
802  *
803  * Returns number of OS pages retrieved on success. The caller may continue to
804  * the next data segment.
805  * Can return the following error codes:
806  * -EAGAIN to designate a temporary error. The caller will abort handling the
807  *  page fault and resolve it.
808  * -EFAULT when there's an error mapping the requested pages. The caller will
809  *  abort the page fault handling.
810  */
811 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
812                                          struct ib_pd *pd, u32 key,
813                                          u64 io_virt, size_t bcnt,
814                                          u32 *bytes_committed,
815                                          u32 *bytes_mapped)
816 {
817         int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
818         struct pf_frame *head = NULL, *frame;
819         struct mlx5_ib_mkey *mmkey;
820         struct mlx5_ib_mr *mr;
821         struct mlx5_klm *pklm;
822         u32 *out = NULL;
823         size_t offset;
824
825         io_virt += *bytes_committed;
826         bcnt -= *bytes_committed;
827
828 next_mr:
829         xa_lock(&dev->odp_mkeys);
830         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
831         if (!mmkey) {
832                 xa_unlock(&dev->odp_mkeys);
833                 mlx5_ib_dbg(
834                         dev,
835                         "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
836                         key);
837                 if (bytes_mapped)
838                         *bytes_mapped += bcnt;
839                 /*
840                  * The user could specify a SGL with multiple lkeys and only
841                  * some of them are ODP. Treat the non-ODP ones as fully
842                  * faulted.
843                  */
844                 ret = 0;
845                 goto end;
846         }
847         refcount_inc(&mmkey->usecount);
848         xa_unlock(&dev->odp_mkeys);
849
850         if (!mkey_is_eq(mmkey, key)) {
851                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
852                 ret = -EFAULT;
853                 goto end;
854         }
855
856         switch (mmkey->type) {
857         case MLX5_MKEY_MR:
858                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
859
860                 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
861                 if (ret < 0)
862                         goto end;
863
864                 mlx5_update_odp_stats(mr, faults, ret);
865
866                 npages += ret;
867                 ret = 0;
868                 break;
869
870         case MLX5_MKEY_MW:
871         case MLX5_MKEY_INDIRECT_DEVX:
872                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
873                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
874                         ret = -EFAULT;
875                         goto end;
876                 }
877
878                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
879                         sizeof(*pklm) * (mmkey->ndescs - 2);
880
881                 if (outlen > cur_outlen) {
882                         kfree(out);
883                         out = kzalloc(outlen, GFP_KERNEL);
884                         if (!out) {
885                                 ret = -ENOMEM;
886                                 goto end;
887                         }
888                         cur_outlen = outlen;
889                 }
890
891                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
892                                                        bsf0_klm0_pas_mtt0_1);
893
894                 ret = mlx5_core_query_mkey(dev->mdev, mmkey->key, out, outlen);
895                 if (ret)
896                         goto end;
897
898                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
899                                               memory_key_mkey_entry.start_addr);
900
901                 for (i = 0; bcnt && i < mmkey->ndescs; i++, pklm++) {
902                         if (offset >= be32_to_cpu(pklm->bcount)) {
903                                 offset -= be32_to_cpu(pklm->bcount);
904                                 continue;
905                         }
906
907                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
908                         if (!frame) {
909                                 ret = -ENOMEM;
910                                 goto end;
911                         }
912
913                         frame->key = be32_to_cpu(pklm->key);
914                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
915                         frame->bcnt = min_t(size_t, bcnt,
916                                             be32_to_cpu(pklm->bcount) - offset);
917                         frame->depth = depth + 1;
918                         frame->next = head;
919                         head = frame;
920
921                         bcnt -= frame->bcnt;
922                         offset = 0;
923                 }
924                 break;
925
926         default:
927                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
928                 ret = -EFAULT;
929                 goto end;
930         }
931
932         if (head) {
933                 frame = head;
934                 head = frame->next;
935
936                 key = frame->key;
937                 io_virt = frame->io_virt;
938                 bcnt = frame->bcnt;
939                 depth = frame->depth;
940                 kfree(frame);
941
942                 mlx5r_deref_odp_mkey(mmkey);
943                 goto next_mr;
944         }
945
946 end:
947         if (mmkey)
948                 mlx5r_deref_odp_mkey(mmkey);
949         while (head) {
950                 frame = head;
951                 head = frame->next;
952                 kfree(frame);
953         }
954         kfree(out);
955
956         *bytes_committed = 0;
957         return ret ? ret : npages;
958 }
959
960 /*
961  * Parse a series of data segments for page fault handling.
962  *
963  * @dev:  Pointer to mlx5 IB device
964  * @pfault: contains page fault information.
965  * @wqe: points at the first data segment in the WQE.
966  * @wqe_end: points after the end of the WQE.
967  * @bytes_mapped: receives the number of bytes that the function was able to
968  *                map. This allows the caller to decide intelligently whether
969  *                enough memory was mapped to resolve the page fault
970  *                successfully (e.g. enough for the next MTU, or the entire
971  *                WQE).
972  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
973  *                   the committed bytes).
974  * @receive_queue: receive WQE end of sg list
975  *
976  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
977  * negative error code.
978  */
979 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
980                                    struct mlx5_pagefault *pfault,
981                                    void *wqe,
982                                    void *wqe_end, u32 *bytes_mapped,
983                                    u32 *total_wqe_bytes, bool receive_queue)
984 {
985         int ret = 0, npages = 0;
986         u64 io_virt;
987         u32 key;
988         u32 byte_count;
989         size_t bcnt;
990         int inline_segment;
991
992         if (bytes_mapped)
993                 *bytes_mapped = 0;
994         if (total_wqe_bytes)
995                 *total_wqe_bytes = 0;
996
997         while (wqe < wqe_end) {
998                 struct mlx5_wqe_data_seg *dseg = wqe;
999
1000                 io_virt = be64_to_cpu(dseg->addr);
1001                 key = be32_to_cpu(dseg->lkey);
1002                 byte_count = be32_to_cpu(dseg->byte_count);
1003                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1004                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
1005
1006                 if (inline_segment) {
1007                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1008                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1009                                      16);
1010                 } else {
1011                         wqe += sizeof(*dseg);
1012                 }
1013
1014                 /* receive WQE end of sg list. */
1015                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1016                     io_virt == 0)
1017                         break;
1018
1019                 if (!inline_segment && total_wqe_bytes) {
1020                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1021                                         pfault->bytes_committed);
1022                 }
1023
1024                 /* A zero length data segment designates a length of 2GB. */
1025                 if (bcnt == 0)
1026                         bcnt = 1U << 31;
1027
1028                 if (inline_segment || bcnt <= pfault->bytes_committed) {
1029                         pfault->bytes_committed -=
1030                                 min_t(size_t, bcnt,
1031                                       pfault->bytes_committed);
1032                         continue;
1033                 }
1034
1035                 ret = pagefault_single_data_segment(dev, NULL, key,
1036                                                     io_virt, bcnt,
1037                                                     &pfault->bytes_committed,
1038                                                     bytes_mapped);
1039                 if (ret < 0)
1040                         break;
1041                 npages += ret;
1042         }
1043
1044         return ret < 0 ? ret : npages;
1045 }
1046
1047 /*
1048  * Parse initiator WQE. Advances the wqe pointer to point at the
1049  * scatter-gather list, and set wqe_end to the end of the WQE.
1050  */
1051 static int mlx5_ib_mr_initiator_pfault_handler(
1052         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1053         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1054 {
1055         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1056         u16 wqe_index = pfault->wqe.wqe_index;
1057         struct mlx5_base_av *av;
1058         unsigned ds, opcode;
1059         u32 qpn = qp->trans_qp.base.mqp.qpn;
1060
1061         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1062         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1063                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1064                             ds, wqe_length);
1065                 return -EFAULT;
1066         }
1067
1068         if (ds == 0) {
1069                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1070                             wqe_index, qpn);
1071                 return -EFAULT;
1072         }
1073
1074         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1075         *wqe += sizeof(*ctrl);
1076
1077         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1078                  MLX5_WQE_CTRL_OPCODE_MASK;
1079
1080         if (qp->type == IB_QPT_XRC_INI)
1081                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1082
1083         if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1084                 av = *wqe;
1085                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1086                         *wqe += sizeof(struct mlx5_av);
1087                 else
1088                         *wqe += sizeof(struct mlx5_base_av);
1089         }
1090
1091         switch (opcode) {
1092         case MLX5_OPCODE_RDMA_WRITE:
1093         case MLX5_OPCODE_RDMA_WRITE_IMM:
1094         case MLX5_OPCODE_RDMA_READ:
1095                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1096                 break;
1097         case MLX5_OPCODE_ATOMIC_CS:
1098         case MLX5_OPCODE_ATOMIC_FA:
1099                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1100                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1101                 break;
1102         }
1103
1104         return 0;
1105 }
1106
1107 /*
1108  * Parse responder WQE and set wqe_end to the end of the WQE.
1109  */
1110 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1111                                                    struct mlx5_ib_srq *srq,
1112                                                    void **wqe, void **wqe_end,
1113                                                    int wqe_length)
1114 {
1115         int wqe_size = 1 << srq->msrq.wqe_shift;
1116
1117         if (wqe_size > wqe_length) {
1118                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1119                 return -EFAULT;
1120         }
1121
1122         *wqe_end = *wqe + wqe_size;
1123         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1124
1125         return 0;
1126 }
1127
1128 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1129                                                   struct mlx5_ib_qp *qp,
1130                                                   void *wqe, void **wqe_end,
1131                                                   int wqe_length)
1132 {
1133         struct mlx5_ib_wq *wq = &qp->rq;
1134         int wqe_size = 1 << wq->wqe_shift;
1135
1136         if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1137                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1138                 return -EFAULT;
1139         }
1140
1141         if (wqe_size > wqe_length) {
1142                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1143                 return -EFAULT;
1144         }
1145
1146         *wqe_end = wqe + wqe_size;
1147
1148         return 0;
1149 }
1150
1151 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1152                                                        u32 wq_num, int pf_type)
1153 {
1154         struct mlx5_core_rsc_common *common = NULL;
1155         struct mlx5_core_srq *srq;
1156
1157         switch (pf_type) {
1158         case MLX5_WQE_PF_TYPE_RMP:
1159                 srq = mlx5_cmd_get_srq(dev, wq_num);
1160                 if (srq)
1161                         common = &srq->common;
1162                 break;
1163         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1164         case MLX5_WQE_PF_TYPE_RESP:
1165         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1166                 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1167                 break;
1168         default:
1169                 break;
1170         }
1171
1172         return common;
1173 }
1174
1175 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1176 {
1177         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1178
1179         return to_mibqp(mqp);
1180 }
1181
1182 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1183 {
1184         struct mlx5_core_srq *msrq =
1185                 container_of(res, struct mlx5_core_srq, common);
1186
1187         return to_mibsrq(msrq);
1188 }
1189
1190 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1191                                           struct mlx5_pagefault *pfault)
1192 {
1193         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1194         u16 wqe_index = pfault->wqe.wqe_index;
1195         void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1196         u32 bytes_mapped, total_wqe_bytes;
1197         struct mlx5_core_rsc_common *res;
1198         int resume_with_error = 1;
1199         struct mlx5_ib_qp *qp;
1200         size_t bytes_copied;
1201         int ret = 0;
1202
1203         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1204         if (!res) {
1205                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1206                 return;
1207         }
1208
1209         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1210             res->res != MLX5_RES_XSRQ) {
1211                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1212                             pfault->type);
1213                 goto resolve_page_fault;
1214         }
1215
1216         wqe_start = (void *)__get_free_page(GFP_KERNEL);
1217         if (!wqe_start) {
1218                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1219                 goto resolve_page_fault;
1220         }
1221
1222         wqe = wqe_start;
1223         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1224         if (qp && sq) {
1225                 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1226                                           &bytes_copied);
1227                 if (ret)
1228                         goto read_user;
1229                 ret = mlx5_ib_mr_initiator_pfault_handler(
1230                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1231         } else if (qp && !sq) {
1232                 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1233                                           &bytes_copied);
1234                 if (ret)
1235                         goto read_user;
1236                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1237                         dev, qp, wqe, &wqe_end, bytes_copied);
1238         } else if (!qp) {
1239                 struct mlx5_ib_srq *srq = res_to_srq(res);
1240
1241                 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1242                                            &bytes_copied);
1243                 if (ret)
1244                         goto read_user;
1245                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1246                         dev, srq, &wqe, &wqe_end, bytes_copied);
1247         }
1248
1249         if (ret < 0 || wqe >= wqe_end)
1250                 goto resolve_page_fault;
1251
1252         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1253                                       &total_wqe_bytes, !sq);
1254         if (ret == -EAGAIN)
1255                 goto out;
1256
1257         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1258                 goto resolve_page_fault;
1259
1260 out:
1261         ret = 0;
1262         resume_with_error = 0;
1263
1264 read_user:
1265         if (ret)
1266                 mlx5_ib_err(
1267                         dev,
1268                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1269                         ret, wqe_index, pfault->token);
1270
1271 resolve_page_fault:
1272         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1273         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1274                     pfault->wqe.wq_num, resume_with_error,
1275                     pfault->type);
1276         mlx5_core_res_put(res);
1277         free_page((unsigned long)wqe_start);
1278 }
1279
1280 static int pages_in_range(u64 address, u32 length)
1281 {
1282         return (ALIGN(address + length, PAGE_SIZE) -
1283                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1284 }
1285
1286 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1287                                            struct mlx5_pagefault *pfault)
1288 {
1289         u64 address;
1290         u32 length;
1291         u32 prefetch_len = pfault->bytes_committed;
1292         int prefetch_activated = 0;
1293         u32 rkey = pfault->rdma.r_key;
1294         int ret;
1295
1296         /* The RDMA responder handler handles the page fault in two parts.
1297          * First it brings the necessary pages for the current packet
1298          * (and uses the pfault context), and then (after resuming the QP)
1299          * prefetches more pages. The second operation cannot use the pfault
1300          * context and therefore uses the dummy_pfault context allocated on
1301          * the stack */
1302         pfault->rdma.rdma_va += pfault->bytes_committed;
1303         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1304                                          pfault->rdma.rdma_op_len);
1305         pfault->bytes_committed = 0;
1306
1307         address = pfault->rdma.rdma_va;
1308         length  = pfault->rdma.rdma_op_len;
1309
1310         /* For some operations, the hardware cannot tell the exact message
1311          * length, and in those cases it reports zero. Use prefetch
1312          * logic. */
1313         if (length == 0) {
1314                 prefetch_activated = 1;
1315                 length = pfault->rdma.packet_size;
1316                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1317         }
1318
1319         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1320                                             &pfault->bytes_committed, NULL);
1321         if (ret == -EAGAIN) {
1322                 /* We're racing with an invalidation, don't prefetch */
1323                 prefetch_activated = 0;
1324         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1325                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1326                 if (ret != -ENOENT)
1327                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1328                                     ret, pfault->token, pfault->type);
1329                 return;
1330         }
1331
1332         mlx5_ib_page_fault_resume(dev, pfault, 0);
1333         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1334                     pfault->token, pfault->type,
1335                     prefetch_activated);
1336
1337         /* At this point, there might be a new pagefault already arriving in
1338          * the eq, switch to the dummy pagefault for the rest of the
1339          * processing. We're still OK with the objects being alive as the
1340          * work-queue is being fenced. */
1341
1342         if (prefetch_activated) {
1343                 u32 bytes_committed = 0;
1344
1345                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1346                                                     prefetch_len,
1347                                                     &bytes_committed, NULL);
1348                 if (ret < 0 && ret != -EAGAIN) {
1349                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1350                                     ret, pfault->token, address, prefetch_len);
1351                 }
1352         }
1353 }
1354
1355 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1356 {
1357         u8 event_subtype = pfault->event_subtype;
1358
1359         switch (event_subtype) {
1360         case MLX5_PFAULT_SUBTYPE_WQE:
1361                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1362                 break;
1363         case MLX5_PFAULT_SUBTYPE_RDMA:
1364                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1365                 break;
1366         default:
1367                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1368                             event_subtype);
1369                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1370         }
1371 }
1372
1373 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1374 {
1375         struct mlx5_pagefault *pfault = container_of(work,
1376                                                      struct mlx5_pagefault,
1377                                                      work);
1378         struct mlx5_ib_pf_eq *eq = pfault->eq;
1379
1380         mlx5_ib_pfault(eq->dev, pfault);
1381         mempool_free(pfault, eq->pool);
1382 }
1383
1384 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1385 {
1386         struct mlx5_eqe_page_fault *pf_eqe;
1387         struct mlx5_pagefault *pfault;
1388         struct mlx5_eqe *eqe;
1389         int cc = 0;
1390
1391         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1392                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1393                 if (!pfault) {
1394                         schedule_work(&eq->work);
1395                         break;
1396                 }
1397
1398                 pf_eqe = &eqe->data.page_fault;
1399                 pfault->event_subtype = eqe->sub_type;
1400                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1401
1402                 mlx5_ib_dbg(eq->dev,
1403                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1404                             eqe->sub_type, pfault->bytes_committed);
1405
1406                 switch (eqe->sub_type) {
1407                 case MLX5_PFAULT_SUBTYPE_RDMA:
1408                         /* RDMA based event */
1409                         pfault->type =
1410                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1411                         pfault->token =
1412                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1413                                 MLX5_24BIT_MASK;
1414                         pfault->rdma.r_key =
1415                                 be32_to_cpu(pf_eqe->rdma.r_key);
1416                         pfault->rdma.packet_size =
1417                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1418                         pfault->rdma.rdma_op_len =
1419                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1420                         pfault->rdma.rdma_va =
1421                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1422                         mlx5_ib_dbg(eq->dev,
1423                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1424                                     pfault->type, pfault->token,
1425                                     pfault->rdma.r_key);
1426                         mlx5_ib_dbg(eq->dev,
1427                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1428                                     pfault->rdma.rdma_op_len,
1429                                     pfault->rdma.rdma_va);
1430                         break;
1431
1432                 case MLX5_PFAULT_SUBTYPE_WQE:
1433                         /* WQE based event */
1434                         pfault->type =
1435                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1436                         pfault->token =
1437                                 be32_to_cpu(pf_eqe->wqe.token);
1438                         pfault->wqe.wq_num =
1439                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1440                                 MLX5_24BIT_MASK;
1441                         pfault->wqe.wqe_index =
1442                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1443                         pfault->wqe.packet_size =
1444                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1445                         mlx5_ib_dbg(eq->dev,
1446                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1447                                     pfault->type, pfault->token,
1448                                     pfault->wqe.wq_num,
1449                                     pfault->wqe.wqe_index);
1450                         break;
1451
1452                 default:
1453                         mlx5_ib_warn(eq->dev,
1454                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1455                                      eqe->sub_type);
1456                         /* Unsupported page faults should still be
1457                          * resolved by the page fault handler
1458                          */
1459                 }
1460
1461                 pfault->eq = eq;
1462                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1463                 queue_work(eq->wq, &pfault->work);
1464
1465                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1466         }
1467
1468         mlx5_eq_update_ci(eq->core, cc, 1);
1469 }
1470
1471 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1472                              void *data)
1473 {
1474         struct mlx5_ib_pf_eq *eq =
1475                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1476         unsigned long flags;
1477
1478         if (spin_trylock_irqsave(&eq->lock, flags)) {
1479                 mlx5_ib_eq_pf_process(eq);
1480                 spin_unlock_irqrestore(&eq->lock, flags);
1481         } else {
1482                 schedule_work(&eq->work);
1483         }
1484
1485         return IRQ_HANDLED;
1486 }
1487
1488 /* mempool_refill() was proposed but unfortunately wasn't accepted
1489  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1490  * Cheap workaround.
1491  */
1492 static void mempool_refill(mempool_t *pool)
1493 {
1494         while (pool->curr_nr < pool->min_nr)
1495                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1496 }
1497
1498 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1499 {
1500         struct mlx5_ib_pf_eq *eq =
1501                 container_of(work, struct mlx5_ib_pf_eq, work);
1502
1503         mempool_refill(eq->pool);
1504
1505         spin_lock_irq(&eq->lock);
1506         mlx5_ib_eq_pf_process(eq);
1507         spin_unlock_irq(&eq->lock);
1508 }
1509
1510 enum {
1511         MLX5_IB_NUM_PF_EQE      = 0x1000,
1512         MLX5_IB_NUM_PF_DRAIN    = 64,
1513 };
1514
1515 int mlx5r_odp_create_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1516 {
1517         struct mlx5_eq_param param = {};
1518         int err = 0;
1519
1520         mutex_lock(&dev->odp_eq_mutex);
1521         if (eq->core)
1522                 goto unlock;
1523         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1524         spin_lock_init(&eq->lock);
1525         eq->dev = dev;
1526
1527         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1528                                                sizeof(struct mlx5_pagefault));
1529         if (!eq->pool) {
1530                 err = -ENOMEM;
1531                 goto unlock;
1532         }
1533
1534         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1535                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1536                                  MLX5_NUM_CMD_EQE);
1537         if (!eq->wq) {
1538                 err = -ENOMEM;
1539                 goto err_mempool;
1540         }
1541
1542         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1543         param = (struct mlx5_eq_param) {
1544                 .irq_index = MLX5_IRQ_EQ_CTRL,
1545                 .nent = MLX5_IB_NUM_PF_EQE,
1546         };
1547         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1548         if (!zalloc_cpumask_var(&param.affinity, GFP_KERNEL)) {
1549                 err = -ENOMEM;
1550                 goto err_wq;
1551         }
1552         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1553         free_cpumask_var(param.affinity);
1554         if (IS_ERR(eq->core)) {
1555                 err = PTR_ERR(eq->core);
1556                 goto err_wq;
1557         }
1558         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1559         if (err) {
1560                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1561                 goto err_eq;
1562         }
1563
1564         mutex_unlock(&dev->odp_eq_mutex);
1565         return 0;
1566 err_eq:
1567         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1568 err_wq:
1569         eq->core = NULL;
1570         destroy_workqueue(eq->wq);
1571 err_mempool:
1572         mempool_destroy(eq->pool);
1573 unlock:
1574         mutex_unlock(&dev->odp_eq_mutex);
1575         return err;
1576 }
1577
1578 static int
1579 mlx5_ib_odp_destroy_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1580 {
1581         int err;
1582
1583         if (!eq->core)
1584                 return 0;
1585         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1586         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1587         cancel_work_sync(&eq->work);
1588         destroy_workqueue(eq->wq);
1589         mempool_destroy(eq->pool);
1590
1591         return err;
1592 }
1593
1594 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1595 {
1596         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1597                 return;
1598
1599         switch (ent->order - 2) {
1600         case MLX5_IMR_MTT_CACHE_ENTRY:
1601                 ent->page = PAGE_SHIFT;
1602                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1603                            sizeof(struct mlx5_mtt) /
1604                            MLX5_IB_UMR_OCTOWORD;
1605                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1606                 ent->limit = 0;
1607                 break;
1608
1609         case MLX5_IMR_KSM_CACHE_ENTRY:
1610                 ent->page = MLX5_KSM_PAGE_SHIFT;
1611                 ent->xlt = mlx5_imr_ksm_entries *
1612                            sizeof(struct mlx5_klm) /
1613                            MLX5_IB_UMR_OCTOWORD;
1614                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1615                 ent->limit = 0;
1616                 break;
1617         }
1618 }
1619
1620 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1621         .advise_mr = mlx5_ib_advise_mr,
1622 };
1623
1624 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1625 {
1626         int ret = 0;
1627
1628         internal_fill_odp_caps(dev);
1629
1630         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1631                 return ret;
1632
1633         ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1634
1635         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1636                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1637                 if (ret) {
1638                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1639                         return ret;
1640                 }
1641         }
1642
1643         mutex_init(&dev->odp_eq_mutex);
1644         return ret;
1645 }
1646
1647 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1648 {
1649         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1650                 return;
1651
1652         mlx5_ib_odp_destroy_eq(dev, &dev->odp_pf_eq);
1653 }
1654
1655 int mlx5_ib_odp_init(void)
1656 {
1657         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1658                                        MLX5_IMR_MTT_BITS);
1659
1660         return 0;
1661 }
1662
1663 struct prefetch_mr_work {
1664         struct work_struct work;
1665         u32 pf_flags;
1666         u32 num_sge;
1667         struct {
1668                 u64 io_virt;
1669                 struct mlx5_ib_mr *mr;
1670                 size_t length;
1671         } frags[];
1672 };
1673
1674 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1675 {
1676         u32 i;
1677
1678         for (i = 0; i < work->num_sge; ++i)
1679                 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1680
1681         kvfree(work);
1682 }
1683
1684 static struct mlx5_ib_mr *
1685 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1686                     u32 lkey)
1687 {
1688         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1689         struct mlx5_ib_mr *mr = NULL;
1690         struct mlx5_ib_mkey *mmkey;
1691
1692         xa_lock(&dev->odp_mkeys);
1693         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1694         if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1695                 goto end;
1696
1697         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1698
1699         if (mr->ibmr.pd != pd) {
1700                 mr = NULL;
1701                 goto end;
1702         }
1703
1704         /* prefetch with write-access must be supported by the MR */
1705         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1706             !mr->umem->writable) {
1707                 mr = NULL;
1708                 goto end;
1709         }
1710
1711         refcount_inc(&mmkey->usecount);
1712 end:
1713         xa_unlock(&dev->odp_mkeys);
1714         return mr;
1715 }
1716
1717 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1718 {
1719         struct prefetch_mr_work *work =
1720                 container_of(w, struct prefetch_mr_work, work);
1721         u32 bytes_mapped = 0;
1722         int ret;
1723         u32 i;
1724
1725         /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1726         WARN_ON(!work->num_sge);
1727         for (i = 0; i < work->num_sge; ++i) {
1728                 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1729                                    work->frags[i].length, &bytes_mapped,
1730                                    work->pf_flags);
1731                 if (ret <= 0)
1732                         continue;
1733                 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1734         }
1735
1736         destroy_prefetch_work(work);
1737 }
1738
1739 static bool init_prefetch_work(struct ib_pd *pd,
1740                                enum ib_uverbs_advise_mr_advice advice,
1741                                u32 pf_flags, struct prefetch_mr_work *work,
1742                                struct ib_sge *sg_list, u32 num_sge)
1743 {
1744         u32 i;
1745
1746         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1747         work->pf_flags = pf_flags;
1748
1749         for (i = 0; i < num_sge; ++i) {
1750                 work->frags[i].io_virt = sg_list[i].addr;
1751                 work->frags[i].length = sg_list[i].length;
1752                 work->frags[i].mr =
1753                         get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1754                 if (!work->frags[i].mr) {
1755                         work->num_sge = i;
1756                         return false;
1757                 }
1758         }
1759         work->num_sge = num_sge;
1760         return true;
1761 }
1762
1763 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1764                                     enum ib_uverbs_advise_mr_advice advice,
1765                                     u32 pf_flags, struct ib_sge *sg_list,
1766                                     u32 num_sge)
1767 {
1768         u32 bytes_mapped = 0;
1769         int ret = 0;
1770         u32 i;
1771
1772         for (i = 0; i < num_sge; ++i) {
1773                 struct mlx5_ib_mr *mr;
1774
1775                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1776                 if (!mr)
1777                         return -ENOENT;
1778                 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1779                                    &bytes_mapped, pf_flags);
1780                 if (ret < 0) {
1781                         mlx5r_deref_odp_mkey(&mr->mmkey);
1782                         return ret;
1783                 }
1784                 mlx5_update_odp_stats(mr, prefetch, ret);
1785                 mlx5r_deref_odp_mkey(&mr->mmkey);
1786         }
1787
1788         return 0;
1789 }
1790
1791 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1792                                enum ib_uverbs_advise_mr_advice advice,
1793                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1794 {
1795         u32 pf_flags = 0;
1796         struct prefetch_mr_work *work;
1797
1798         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1799                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1800
1801         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1802                 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1803
1804         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1805                 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1806                                                 num_sge);
1807
1808         work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1809         if (!work)
1810                 return -ENOMEM;
1811
1812         if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1813                 destroy_prefetch_work(work);
1814                 return -EINVAL;
1815         }
1816         queue_work(system_unbound_wq, &work->work);
1817         return 0;
1818 }