RDMA: Rename port_callback to init_port
[linux-block.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57
58 #include "hfi.h"
59 #include "common.h"
60 #include "device.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "verbs_txreq.h"
64 #include "debugfs.h"
65 #include "vnic.h"
66 #include "fault.h"
67 #include "affinity.h"
68
69 static unsigned int hfi1_lkey_table_size = 16;
70 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
71                    S_IRUGO);
72 MODULE_PARM_DESC(lkey_table_size,
73                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
74
75 static unsigned int hfi1_max_pds = 0xFFFF;
76 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_pds,
78                  "Maximum number of protection domains to support");
79
80 static unsigned int hfi1_max_ahs = 0xFFFF;
81 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
82 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
83
84 unsigned int hfi1_max_cqes = 0x2FFFFF;
85 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqes,
87                  "Maximum number of completion queue entries to support");
88
89 unsigned int hfi1_max_cqs = 0x1FFFF;
90 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
91 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
92
93 unsigned int hfi1_max_qp_wrs = 0x3FFF;
94 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
95 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
96
97 unsigned int hfi1_max_qps = 32768;
98 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
99 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
100
101 unsigned int hfi1_max_sges = 0x60;
102 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
103 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
104
105 unsigned int hfi1_max_mcast_grps = 16384;
106 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
107 MODULE_PARM_DESC(max_mcast_grps,
108                  "Maximum number of multicast groups to support");
109
110 unsigned int hfi1_max_mcast_qp_attached = 16;
111 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
112                    uint, S_IRUGO);
113 MODULE_PARM_DESC(max_mcast_qp_attached,
114                  "Maximum number of attached QPs to support");
115
116 unsigned int hfi1_max_srqs = 1024;
117 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
118 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
119
120 unsigned int hfi1_max_srq_sges = 128;
121 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
122 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
123
124 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
125 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
126 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
127
128 unsigned short piothreshold = 256;
129 module_param(piothreshold, ushort, S_IRUGO);
130 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
131
132 static unsigned int sge_copy_mode;
133 module_param(sge_copy_mode, uint, S_IRUGO);
134 MODULE_PARM_DESC(sge_copy_mode,
135                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
136
137 static void verbs_sdma_complete(
138         struct sdma_txreq *cookie,
139         int status);
140
141 static int pio_wait(struct rvt_qp *qp,
142                     struct send_context *sc,
143                     struct hfi1_pkt_state *ps,
144                     u32 flag);
145
146 /* Length of buffer to create verbs txreq cache name */
147 #define TXREQ_NAME_LEN 24
148
149 /* 16B trailing buffer */
150 static const u8 trail_buf[MAX_16B_PADDING];
151
152 static uint wss_threshold = 80;
153 module_param(wss_threshold, uint, S_IRUGO);
154 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
155 static uint wss_clean_period = 256;
156 module_param(wss_clean_period, uint, S_IRUGO);
157 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
158
159 /*
160  * Translate ib_wr_opcode into ib_wc_opcode.
161  */
162 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
163         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
164         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
165         [IB_WR_SEND] = IB_WC_SEND,
166         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
167         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
168         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
169         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
170         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
171         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
172         [IB_WR_REG_MR] = IB_WC_REG_MR
173 };
174
175 /*
176  * Length of header by opcode, 0 --> not supported
177  */
178 const u8 hdr_len_by_opcode[256] = {
179         /* RC */
180         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
181         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
182         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
183         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
184         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
185         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
186         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
187         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
188         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
189         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
190         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
191         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
192         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
193         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
194         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
195         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
196         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
197         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
198         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
199         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
200         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
201         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
202         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
203         /* UC */
204         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
205         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
206         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
207         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
208         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
209         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
210         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
211         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
212         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
213         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
214         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
215         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
216         /* UD */
217         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
218         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
219 };
220
221 static const opcode_handler opcode_handler_tbl[256] = {
222         /* RC */
223         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
224         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
225         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
226         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
227         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
228         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
229         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
230         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
231         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
232         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
233         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
234         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
235         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
236         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
237         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
238         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
239         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
240         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
241         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
242         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
243         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
244         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
245         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
246         /* UC */
247         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
248         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
249         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
250         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
251         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
252         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
253         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
254         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
255         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
256         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
257         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
258         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
259         /* UD */
260         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
261         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
262         /* CNP */
263         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
264 };
265
266 #define OPMASK 0x1f
267
268 static const u32 pio_opmask[BIT(3)] = {
269         /* RC */
270         [IB_OPCODE_RC >> 5] =
271                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
272                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
273                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
274                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
275                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
276                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
277                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
278                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
279                 BIT(RC_OP(FETCH_ADD) & OPMASK),
280         /* UC */
281         [IB_OPCODE_UC >> 5] =
282                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
283                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
284                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
285                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
286 };
287
288 /*
289  * System image GUID.
290  */
291 __be64 ib_hfi1_sys_image_guid;
292
293 /*
294  * Make sure the QP is ready and able to accept the given opcode.
295  */
296 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
297 {
298         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
299                 return NULL;
300         if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
301              packet->qp->allowed_ops) ||
302             (packet->opcode == IB_OPCODE_CNP))
303                 return opcode_handler_tbl[packet->opcode];
304
305         return NULL;
306 }
307
308 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
309 {
310 #ifdef CONFIG_FAULT_INJECTION
311         if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP)
312                 /*
313                  * In order to drop non-IB traffic we
314                  * set PbcInsertHrc to NONE (0x2).
315                  * The packet will still be delivered
316                  * to the receiving node but a
317                  * KHdrHCRCErr (KDETH packet with a bad
318                  * HCRC) will be triggered and the
319                  * packet will not be delivered to the
320                  * correct context.
321                  */
322                 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
323         else
324                 /*
325                  * In order to drop regular verbs
326                  * traffic we set the PbcTestEbp
327                  * flag. The packet will still be
328                  * delivered to the receiving node but
329                  * a 'late ebp error' will be
330                  * triggered and will be dropped.
331                  */
332                 pbc |= PBC_TEST_EBP;
333 #endif
334         return pbc;
335 }
336
337 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
338 {
339         struct hfi1_ctxtdata *rcd = packet->rcd;
340         struct hfi1_pportdata *ppd = rcd->ppd;
341         struct hfi1_16b_header *hdr = packet->hdr;
342         u16 pkey;
343
344         /* Pkey check needed only for bypass packets */
345         if (packet->etype != RHF_RCV_TYPE_BYPASS)
346                 return 0;
347
348         /* Perform pkey check */
349         pkey = hfi1_16B_get_pkey(hdr);
350         return ingress_pkey_check(ppd, pkey, packet->sc,
351                                   packet->qp->s_pkey_index,
352                                   packet->slid, true);
353 }
354
355 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
356                                       bool is_mcast)
357 {
358         u32 qp_num;
359         struct hfi1_ctxtdata *rcd = packet->rcd;
360         struct hfi1_pportdata *ppd = rcd->ppd;
361         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
362         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
363         opcode_handler packet_handler;
364         unsigned long flags;
365
366         inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
367
368         if (unlikely(is_mcast)) {
369                 struct rvt_mcast *mcast;
370                 struct rvt_mcast_qp *p;
371
372                 if (!packet->grh)
373                         goto drop;
374                 mcast = rvt_mcast_find(&ibp->rvp,
375                                        &packet->grh->dgid,
376                                        opa_get_lid(packet->dlid, 9B));
377                 if (!mcast)
378                         goto drop;
379                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
380                         packet->qp = p->qp;
381                         if (hfi1_do_pkey_check(packet))
382                                 goto drop;
383                         spin_lock_irqsave(&packet->qp->r_lock, flags);
384                         packet_handler = qp_ok(packet);
385                         if (likely(packet_handler))
386                                 packet_handler(packet);
387                         else
388                                 ibp->rvp.n_pkt_drops++;
389                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
390                 }
391                 /*
392                  * Notify rvt_multicast_detach() if it is waiting for us
393                  * to finish.
394                  */
395                 if (atomic_dec_return(&mcast->refcount) <= 1)
396                         wake_up(&mcast->wait);
397         } else {
398                 /* Get the destination QP number. */
399                 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
400                     hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
401                         qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
402                 else
403                         qp_num = ib_bth_get_qpn(packet->ohdr);
404
405                 rcu_read_lock();
406                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
407                 if (!packet->qp)
408                         goto unlock_drop;
409
410                 if (hfi1_do_pkey_check(packet))
411                         goto unlock_drop;
412
413                 spin_lock_irqsave(&packet->qp->r_lock, flags);
414                 packet_handler = qp_ok(packet);
415                 if (likely(packet_handler))
416                         packet_handler(packet);
417                 else
418                         ibp->rvp.n_pkt_drops++;
419                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
420                 rcu_read_unlock();
421         }
422         return;
423 unlock_drop:
424         rcu_read_unlock();
425 drop:
426         ibp->rvp.n_pkt_drops++;
427 }
428
429 /**
430  * hfi1_ib_rcv - process an incoming packet
431  * @packet: data packet information
432  *
433  * This is called to process an incoming packet at interrupt level.
434  */
435 void hfi1_ib_rcv(struct hfi1_packet *packet)
436 {
437         struct hfi1_ctxtdata *rcd = packet->rcd;
438
439         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
440         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
441 }
442
443 void hfi1_16B_rcv(struct hfi1_packet *packet)
444 {
445         struct hfi1_ctxtdata *rcd = packet->rcd;
446
447         trace_input_ibhdr(rcd->dd, packet, false);
448         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
449 }
450
451 /*
452  * This is called from a timer to check for QPs
453  * which need kernel memory in order to send a packet.
454  */
455 static void mem_timer(struct timer_list *t)
456 {
457         struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
458         struct list_head *list = &dev->memwait;
459         struct rvt_qp *qp = NULL;
460         struct iowait *wait;
461         unsigned long flags;
462         struct hfi1_qp_priv *priv;
463
464         write_seqlock_irqsave(&dev->iowait_lock, flags);
465         if (!list_empty(list)) {
466                 wait = list_first_entry(list, struct iowait, list);
467                 qp = iowait_to_qp(wait);
468                 priv = qp->priv;
469                 list_del_init(&priv->s_iowait.list);
470                 priv->s_iowait.lock = NULL;
471                 /* refcount held until actual wake up */
472                 if (!list_empty(list))
473                         mod_timer(&dev->mem_timer, jiffies + 1);
474         }
475         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
476
477         if (qp)
478                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
479 }
480
481 /*
482  * This is called with progress side lock held.
483  */
484 /* New API */
485 static void verbs_sdma_complete(
486         struct sdma_txreq *cookie,
487         int status)
488 {
489         struct verbs_txreq *tx =
490                 container_of(cookie, struct verbs_txreq, txreq);
491         struct rvt_qp *qp = tx->qp;
492
493         spin_lock(&qp->s_lock);
494         if (tx->wqe) {
495                 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
496         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
497                 struct hfi1_opa_header *hdr;
498
499                 hdr = &tx->phdr.hdr;
500                 hfi1_rc_send_complete(qp, hdr);
501         }
502         spin_unlock(&qp->s_lock);
503
504         hfi1_put_txreq(tx);
505 }
506
507 static int wait_kmem(struct hfi1_ibdev *dev,
508                      struct rvt_qp *qp,
509                      struct hfi1_pkt_state *ps)
510 {
511         struct hfi1_qp_priv *priv = qp->priv;
512         unsigned long flags;
513         int ret = 0;
514
515         spin_lock_irqsave(&qp->s_lock, flags);
516         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
517                 write_seqlock(&dev->iowait_lock);
518                 list_add_tail(&ps->s_txreq->txreq.list,
519                               &ps->wait->tx_head);
520                 if (list_empty(&priv->s_iowait.list)) {
521                         if (list_empty(&dev->memwait))
522                                 mod_timer(&dev->mem_timer, jiffies + 1);
523                         qp->s_flags |= RVT_S_WAIT_KMEM;
524                         list_add_tail(&priv->s_iowait.list, &dev->memwait);
525                         priv->s_iowait.lock = &dev->iowait_lock;
526                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
527                         rvt_get_qp(qp);
528                 }
529                 write_sequnlock(&dev->iowait_lock);
530                 hfi1_qp_unbusy(qp, ps->wait);
531                 ret = -EBUSY;
532         }
533         spin_unlock_irqrestore(&qp->s_lock, flags);
534
535         return ret;
536 }
537
538 /*
539  * This routine calls txadds for each sg entry.
540  *
541  * Add failures will revert the sge cursor
542  */
543 static noinline int build_verbs_ulp_payload(
544         struct sdma_engine *sde,
545         u32 length,
546         struct verbs_txreq *tx)
547 {
548         struct rvt_sge_state *ss = tx->ss;
549         struct rvt_sge *sg_list = ss->sg_list;
550         struct rvt_sge sge = ss->sge;
551         u8 num_sge = ss->num_sge;
552         u32 len;
553         int ret = 0;
554
555         while (length) {
556                 len = ss->sge.length;
557                 if (len > length)
558                         len = length;
559                 if (len > ss->sge.sge_length)
560                         len = ss->sge.sge_length;
561                 WARN_ON_ONCE(len == 0);
562                 ret = sdma_txadd_kvaddr(
563                         sde->dd,
564                         &tx->txreq,
565                         ss->sge.vaddr,
566                         len);
567                 if (ret)
568                         goto bail_txadd;
569                 rvt_update_sge(ss, len, false);
570                 length -= len;
571         }
572         return ret;
573 bail_txadd:
574         /* unwind cursor */
575         ss->sge = sge;
576         ss->num_sge = num_sge;
577         ss->sg_list = sg_list;
578         return ret;
579 }
580
581 /**
582  * update_tx_opstats - record stats by opcode
583  * @qp; the qp
584  * @ps: transmit packet state
585  * @plen: the plen in dwords
586  *
587  * This is a routine to record the tx opstats after a
588  * packet has been presented to the egress mechanism.
589  */
590 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
591                               u32 plen)
592 {
593 #ifdef CONFIG_DEBUG_FS
594         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
595         struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
596
597         inc_opstats(plen * 4, &s->stats[ps->opcode]);
598         put_cpu_ptr(s);
599 #endif
600 }
601
602 /*
603  * Build the number of DMA descriptors needed to send length bytes of data.
604  *
605  * NOTE: DMA mapping is held in the tx until completed in the ring or
606  *       the tx desc is freed without having been submitted to the ring
607  *
608  * This routine ensures all the helper routine calls succeed.
609  */
610 /* New API */
611 static int build_verbs_tx_desc(
612         struct sdma_engine *sde,
613         u32 length,
614         struct verbs_txreq *tx,
615         struct hfi1_ahg_info *ahg_info,
616         u64 pbc)
617 {
618         int ret = 0;
619         struct hfi1_sdma_header *phdr = &tx->phdr;
620         u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
621         u8 extra_bytes = 0;
622
623         if (tx->phdr.hdr.hdr_type) {
624                 /*
625                  * hdrbytes accounts for PBC. Need to subtract 8 bytes
626                  * before calculating padding.
627                  */
628                 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
629                               (SIZE_OF_CRC << 2) + SIZE_OF_LT;
630         }
631         if (!ahg_info->ahgcount) {
632                 ret = sdma_txinit_ahg(
633                         &tx->txreq,
634                         ahg_info->tx_flags,
635                         hdrbytes + length +
636                         extra_bytes,
637                         ahg_info->ahgidx,
638                         0,
639                         NULL,
640                         0,
641                         verbs_sdma_complete);
642                 if (ret)
643                         goto bail_txadd;
644                 phdr->pbc = cpu_to_le64(pbc);
645                 ret = sdma_txadd_kvaddr(
646                         sde->dd,
647                         &tx->txreq,
648                         phdr,
649                         hdrbytes);
650                 if (ret)
651                         goto bail_txadd;
652         } else {
653                 ret = sdma_txinit_ahg(
654                         &tx->txreq,
655                         ahg_info->tx_flags,
656                         length,
657                         ahg_info->ahgidx,
658                         ahg_info->ahgcount,
659                         ahg_info->ahgdesc,
660                         hdrbytes,
661                         verbs_sdma_complete);
662                 if (ret)
663                         goto bail_txadd;
664         }
665         /* add the ulp payload - if any. tx->ss can be NULL for acks */
666         if (tx->ss) {
667                 ret = build_verbs_ulp_payload(sde, length, tx);
668                 if (ret)
669                         goto bail_txadd;
670         }
671
672         /* add icrc, lt byte, and padding to flit */
673         if (extra_bytes)
674                 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
675                                         (void *)trail_buf, extra_bytes);
676
677 bail_txadd:
678         return ret;
679 }
680
681 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
682                         u64 pbc)
683 {
684         struct hfi1_qp_priv *priv = qp->priv;
685         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
686         u32 hdrwords = ps->s_txreq->hdr_dwords;
687         u32 len = ps->s_txreq->s_cur_size;
688         u32 plen;
689         struct hfi1_ibdev *dev = ps->dev;
690         struct hfi1_pportdata *ppd = ps->ppd;
691         struct verbs_txreq *tx;
692         u8 sc5 = priv->s_sc;
693         int ret;
694         u32 dwords;
695
696         if (ps->s_txreq->phdr.hdr.hdr_type) {
697                 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
698
699                 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
700                           SIZE_OF_LT) >> 2;
701         } else {
702                 dwords = (len + 3) >> 2;
703         }
704         plen = hdrwords + dwords + sizeof(pbc) / 4;
705
706         tx = ps->s_txreq;
707         if (!sdma_txreq_built(&tx->txreq)) {
708                 if (likely(pbc == 0)) {
709                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
710
711                         /* No vl15 here */
712                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
713                         if (ps->s_txreq->phdr.hdr.hdr_type)
714                                 pbc |= PBC_PACKET_BYPASS |
715                                        PBC_INSERT_BYPASS_ICRC;
716                         else
717                                 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
718
719                         if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
720                                 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
721                         pbc = create_pbc(ppd,
722                                          pbc,
723                                          qp->srate_mbps,
724                                          vl,
725                                          plen);
726                 }
727                 tx->wqe = qp->s_wqe;
728                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
729                 if (unlikely(ret))
730                         goto bail_build;
731         }
732         ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
733         if (unlikely(ret < 0)) {
734                 if (ret == -ECOMM)
735                         goto bail_ecomm;
736                 return ret;
737         }
738
739         update_tx_opstats(qp, ps, plen);
740         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
741                                 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
742         return ret;
743
744 bail_ecomm:
745         /* The current one got "sent" */
746         return 0;
747 bail_build:
748         ret = wait_kmem(dev, qp, ps);
749         if (!ret) {
750                 /* free txreq - bad state */
751                 hfi1_put_txreq(ps->s_txreq);
752                 ps->s_txreq = NULL;
753         }
754         return ret;
755 }
756
757 /*
758  * If we are now in the error state, return zero to flush the
759  * send work request.
760  */
761 static int pio_wait(struct rvt_qp *qp,
762                     struct send_context *sc,
763                     struct hfi1_pkt_state *ps,
764                     u32 flag)
765 {
766         struct hfi1_qp_priv *priv = qp->priv;
767         struct hfi1_devdata *dd = sc->dd;
768         unsigned long flags;
769         int ret = 0;
770
771         /*
772          * Note that as soon as want_buffer() is called and
773          * possibly before it returns, sc_piobufavail()
774          * could be called. Therefore, put QP on the I/O wait list before
775          * enabling the PIO avail interrupt.
776          */
777         spin_lock_irqsave(&qp->s_lock, flags);
778         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
779                 write_seqlock(&sc->waitlock);
780                 list_add_tail(&ps->s_txreq->txreq.list,
781                               &ps->wait->tx_head);
782                 if (list_empty(&priv->s_iowait.list)) {
783                         struct hfi1_ibdev *dev = &dd->verbs_dev;
784                         int was_empty;
785
786                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
787                         dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
788                         qp->s_flags |= flag;
789                         was_empty = list_empty(&sc->piowait);
790                         iowait_queue(ps->pkts_sent, &priv->s_iowait,
791                                      &sc->piowait);
792                         priv->s_iowait.lock = &sc->waitlock;
793                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
794                         rvt_get_qp(qp);
795                         /* counting: only call wantpiobuf_intr if first user */
796                         if (was_empty)
797                                 hfi1_sc_wantpiobuf_intr(sc, 1);
798                 }
799                 write_sequnlock(&sc->waitlock);
800                 hfi1_qp_unbusy(qp, ps->wait);
801                 ret = -EBUSY;
802         }
803         spin_unlock_irqrestore(&qp->s_lock, flags);
804         return ret;
805 }
806
807 static void verbs_pio_complete(void *arg, int code)
808 {
809         struct rvt_qp *qp = (struct rvt_qp *)arg;
810         struct hfi1_qp_priv *priv = qp->priv;
811
812         if (iowait_pio_dec(&priv->s_iowait))
813                 iowait_drain_wakeup(&priv->s_iowait);
814 }
815
816 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
817                         u64 pbc)
818 {
819         struct hfi1_qp_priv *priv = qp->priv;
820         u32 hdrwords = ps->s_txreq->hdr_dwords;
821         struct rvt_sge_state *ss = ps->s_txreq->ss;
822         u32 len = ps->s_txreq->s_cur_size;
823         u32 dwords;
824         u32 plen;
825         struct hfi1_pportdata *ppd = ps->ppd;
826         u32 *hdr;
827         u8 sc5;
828         unsigned long flags = 0;
829         struct send_context *sc;
830         struct pio_buf *pbuf;
831         int wc_status = IB_WC_SUCCESS;
832         int ret = 0;
833         pio_release_cb cb = NULL;
834         u8 extra_bytes = 0;
835
836         if (ps->s_txreq->phdr.hdr.hdr_type) {
837                 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
838
839                 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
840                 dwords = (len + extra_bytes) >> 2;
841                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
842         } else {
843                 dwords = (len + 3) >> 2;
844                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
845         }
846         plen = hdrwords + dwords + sizeof(pbc) / 4;
847
848         /* only RC/UC use complete */
849         switch (qp->ibqp.qp_type) {
850         case IB_QPT_RC:
851         case IB_QPT_UC:
852                 cb = verbs_pio_complete;
853                 break;
854         default:
855                 break;
856         }
857
858         /* vl15 special case taken care of in ud.c */
859         sc5 = priv->s_sc;
860         sc = ps->s_txreq->psc;
861
862         if (likely(pbc == 0)) {
863                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
864
865                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
866                 if (ps->s_txreq->phdr.hdr.hdr_type)
867                         pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
868                 else
869                         pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
870
871                 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
872                         pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
873                 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
874         }
875         if (cb)
876                 iowait_pio_inc(&priv->s_iowait);
877         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
878         if (unlikely(!pbuf)) {
879                 if (cb)
880                         verbs_pio_complete(qp, 0);
881                 if (ppd->host_link_state != HLS_UP_ACTIVE) {
882                         /*
883                          * If we have filled the PIO buffers to capacity and are
884                          * not in an active state this request is not going to
885                          * go out to so just complete it with an error or else a
886                          * ULP or the core may be stuck waiting.
887                          */
888                         hfi1_cdbg(
889                                 PIO,
890                                 "alloc failed. state not active, completing");
891                         wc_status = IB_WC_GENERAL_ERR;
892                         goto pio_bail;
893                 } else {
894                         /*
895                          * This is a normal occurrence. The PIO buffs are full
896                          * up but we are still happily sending, well we could be
897                          * so lets continue to queue the request.
898                          */
899                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
900                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
901                         if (!ret)
902                                 /* txreq not queued - free */
903                                 goto bail;
904                         /* tx consumed in wait */
905                         return ret;
906                 }
907         }
908
909         if (dwords == 0) {
910                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
911         } else {
912                 seg_pio_copy_start(pbuf, pbc,
913                                    hdr, hdrwords * 4);
914                 if (ss) {
915                         while (len) {
916                                 void *addr = ss->sge.vaddr;
917                                 u32 slen = ss->sge.length;
918
919                                 if (slen > len)
920                                         slen = len;
921                                 if (slen > ss->sge.sge_length)
922                                         slen = ss->sge.sge_length;
923                                 rvt_update_sge(ss, slen, false);
924                                 seg_pio_copy_mid(pbuf, addr, slen);
925                                 len -= slen;
926                         }
927                 }
928                 /* add icrc, lt byte, and padding to flit */
929                 if (extra_bytes)
930                         seg_pio_copy_mid(pbuf, trail_buf, extra_bytes);
931
932                 seg_pio_copy_end(pbuf);
933         }
934
935         update_tx_opstats(qp, ps, plen);
936         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
937                                &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
938
939 pio_bail:
940         if (qp->s_wqe) {
941                 spin_lock_irqsave(&qp->s_lock, flags);
942                 rvt_send_complete(qp, qp->s_wqe, wc_status);
943                 spin_unlock_irqrestore(&qp->s_lock, flags);
944         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
945                 spin_lock_irqsave(&qp->s_lock, flags);
946                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
947                 spin_unlock_irqrestore(&qp->s_lock, flags);
948         }
949
950         ret = 0;
951
952 bail:
953         hfi1_put_txreq(ps->s_txreq);
954         return ret;
955 }
956
957 /*
958  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
959  * being an entry from the partition key table), return 0
960  * otherwise. Use the matching criteria for egress partition keys
961  * specified in the OPAv1 spec., section 9.1l.7.
962  */
963 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
964 {
965         u16 mkey = pkey & PKEY_LOW_15_MASK;
966         u16 mentry = ent & PKEY_LOW_15_MASK;
967
968         if (mkey == mentry) {
969                 /*
970                  * If pkey[15] is set (full partition member),
971                  * is bit 15 in the corresponding table element
972                  * clear (limited member)?
973                  */
974                 if (pkey & PKEY_MEMBER_MASK)
975                         return !!(ent & PKEY_MEMBER_MASK);
976                 return 1;
977         }
978         return 0;
979 }
980
981 /**
982  * egress_pkey_check - check P_KEY of a packet
983  * @ppd:  Physical IB port data
984  * @slid: SLID for packet
985  * @bkey: PKEY for header
986  * @sc5:  SC for packet
987  * @s_pkey_index: It will be used for look up optimization for kernel contexts
988  * only. If it is negative value, then it means user contexts is calling this
989  * function.
990  *
991  * It checks if hdr's pkey is valid.
992  *
993  * Return: 0 on success, otherwise, 1
994  */
995 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
996                       u8 sc5, int8_t s_pkey_index)
997 {
998         struct hfi1_devdata *dd;
999         int i;
1000         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1001
1002         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1003                 return 0;
1004
1005         /* If SC15, pkey[0:14] must be 0x7fff */
1006         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1007                 goto bad;
1008
1009         /* Is the pkey = 0x0, or 0x8000? */
1010         if ((pkey & PKEY_LOW_15_MASK) == 0)
1011                 goto bad;
1012
1013         /*
1014          * For the kernel contexts only, if a qp is passed into the function,
1015          * the most likely matching pkey has index qp->s_pkey_index
1016          */
1017         if (!is_user_ctxt_mechanism &&
1018             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1019                 return 0;
1020         }
1021
1022         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1023                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1024                         return 0;
1025         }
1026 bad:
1027         /*
1028          * For the user-context mechanism, the P_KEY check would only happen
1029          * once per SDMA request, not once per packet.  Therefore, there's no
1030          * need to increment the counter for the user-context mechanism.
1031          */
1032         if (!is_user_ctxt_mechanism) {
1033                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1034                 dd = ppd->dd;
1035                 if (!(dd->err_info_xmit_constraint.status &
1036                       OPA_EI_STATUS_SMASK)) {
1037                         dd->err_info_xmit_constraint.status |=
1038                                 OPA_EI_STATUS_SMASK;
1039                         dd->err_info_xmit_constraint.slid = slid;
1040                         dd->err_info_xmit_constraint.pkey = pkey;
1041                 }
1042         }
1043         return 1;
1044 }
1045
1046 /**
1047  * get_send_routine - choose an egress routine
1048  *
1049  * Choose an egress routine based on QP type
1050  * and size
1051  */
1052 static inline send_routine get_send_routine(struct rvt_qp *qp,
1053                                             struct hfi1_pkt_state *ps)
1054 {
1055         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1056         struct hfi1_qp_priv *priv = qp->priv;
1057         struct verbs_txreq *tx = ps->s_txreq;
1058
1059         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1060                 return dd->process_pio_send;
1061         switch (qp->ibqp.qp_type) {
1062         case IB_QPT_SMI:
1063                 return dd->process_pio_send;
1064         case IB_QPT_GSI:
1065         case IB_QPT_UD:
1066                 break;
1067         case IB_QPT_UC:
1068         case IB_QPT_RC: {
1069                 if (piothreshold &&
1070                     tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1071                     (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1072                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1073                     !sdma_txreq_built(&tx->txreq))
1074                         return dd->process_pio_send;
1075                 break;
1076         }
1077         default:
1078                 break;
1079         }
1080         return dd->process_dma_send;
1081 }
1082
1083 /**
1084  * hfi1_verbs_send - send a packet
1085  * @qp: the QP to send on
1086  * @ps: the state of the packet to send
1087  *
1088  * Return zero if packet is sent or queued OK.
1089  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1090  */
1091 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1092 {
1093         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1094         struct hfi1_qp_priv *priv = qp->priv;
1095         struct ib_other_headers *ohdr = NULL;
1096         send_routine sr;
1097         int ret;
1098         u16 pkey;
1099         u32 slid;
1100         u8 l4 = 0;
1101
1102         /* locate the pkey within the headers */
1103         if (ps->s_txreq->phdr.hdr.hdr_type) {
1104                 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1105
1106                 l4 = hfi1_16B_get_l4(hdr);
1107                 if (l4 == OPA_16B_L4_IB_LOCAL)
1108                         ohdr = &hdr->u.oth;
1109                 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1110                         ohdr = &hdr->u.l.oth;
1111
1112                 slid = hfi1_16B_get_slid(hdr);
1113                 pkey = hfi1_16B_get_pkey(hdr);
1114         } else {
1115                 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1116                 u8 lnh = ib_get_lnh(hdr);
1117
1118                 if (lnh == HFI1_LRH_GRH)
1119                         ohdr = &hdr->u.l.oth;
1120                 else
1121                         ohdr = &hdr->u.oth;
1122                 slid = ib_get_slid(hdr);
1123                 pkey = ib_bth_get_pkey(ohdr);
1124         }
1125
1126         if (likely(l4 != OPA_16B_L4_FM))
1127                 ps->opcode = ib_bth_get_opcode(ohdr);
1128         else
1129                 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1130
1131         sr = get_send_routine(qp, ps);
1132         ret = egress_pkey_check(dd->pport, slid, pkey,
1133                                 priv->s_sc, qp->s_pkey_index);
1134         if (unlikely(ret)) {
1135                 /*
1136                  * The value we are returning here does not get propagated to
1137                  * the verbs caller. Thus we need to complete the request with
1138                  * error otherwise the caller could be sitting waiting on the
1139                  * completion event. Only do this for PIO. SDMA has its own
1140                  * mechanism for handling the errors. So for SDMA we can just
1141                  * return.
1142                  */
1143                 if (sr == dd->process_pio_send) {
1144                         unsigned long flags;
1145
1146                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1147                                   __func__);
1148                         spin_lock_irqsave(&qp->s_lock, flags);
1149                         rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1150                         spin_unlock_irqrestore(&qp->s_lock, flags);
1151                 }
1152                 return -EINVAL;
1153         }
1154         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1155                 return pio_wait(qp,
1156                                 ps->s_txreq->psc,
1157                                 ps,
1158                                 HFI1_S_WAIT_PIO_DRAIN);
1159         return sr(qp, ps, 0);
1160 }
1161
1162 /**
1163  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1164  * @dd: the device data structure
1165  */
1166 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1167 {
1168         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1169         u32 ver = dd->dc8051_ver;
1170
1171         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1172
1173         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1174                 ((u64)(dc8051_ver_min(ver)) << 16) |
1175                 (u64)dc8051_ver_patch(ver);
1176
1177         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1178                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1179                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1180                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1181                         IB_DEVICE_MEM_MGT_EXTENSIONS |
1182                         IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1183         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1184         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1185         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1186         rdi->dparms.props.hw_ver = dd->minrev;
1187         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1188         rdi->dparms.props.max_mr_size = U64_MAX;
1189         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1190         rdi->dparms.props.max_qp = hfi1_max_qps;
1191         rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1192         rdi->dparms.props.max_send_sge = hfi1_max_sges;
1193         rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1194         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1195         rdi->dparms.props.max_cq = hfi1_max_cqs;
1196         rdi->dparms.props.max_ah = hfi1_max_ahs;
1197         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1198         rdi->dparms.props.max_mr = rdi->lkey_table.max;
1199         rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1200         rdi->dparms.props.max_map_per_fmr = 32767;
1201         rdi->dparms.props.max_pd = hfi1_max_pds;
1202         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1203         rdi->dparms.props.max_qp_init_rd_atom = 255;
1204         rdi->dparms.props.max_srq = hfi1_max_srqs;
1205         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1206         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1207         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1208         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1209         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1210         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1211         rdi->dparms.props.max_total_mcast_qp_attach =
1212                                         rdi->dparms.props.max_mcast_qp_attach *
1213                                         rdi->dparms.props.max_mcast_grp;
1214 }
1215
1216 static inline u16 opa_speed_to_ib(u16 in)
1217 {
1218         u16 out = 0;
1219
1220         if (in & OPA_LINK_SPEED_25G)
1221                 out |= IB_SPEED_EDR;
1222         if (in & OPA_LINK_SPEED_12_5G)
1223                 out |= IB_SPEED_FDR;
1224
1225         return out;
1226 }
1227
1228 /*
1229  * Convert a single OPA link width (no multiple flags) to an IB value.
1230  * A zero OPA link width means link down, which means the IB width value
1231  * is a don't care.
1232  */
1233 static inline u16 opa_width_to_ib(u16 in)
1234 {
1235         switch (in) {
1236         case OPA_LINK_WIDTH_1X:
1237         /* map 2x and 3x to 1x as they don't exist in IB */
1238         case OPA_LINK_WIDTH_2X:
1239         case OPA_LINK_WIDTH_3X:
1240                 return IB_WIDTH_1X;
1241         default: /* link down or unknown, return our largest width */
1242         case OPA_LINK_WIDTH_4X:
1243                 return IB_WIDTH_4X;
1244         }
1245 }
1246
1247 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1248                       struct ib_port_attr *props)
1249 {
1250         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1251         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1252         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1253         u32 lid = ppd->lid;
1254
1255         /* props being zeroed by the caller, avoid zeroing it here */
1256         props->lid = lid ? lid : 0;
1257         props->lmc = ppd->lmc;
1258         /* OPA logical states match IB logical states */
1259         props->state = driver_lstate(ppd);
1260         props->phys_state = driver_pstate(ppd);
1261         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1262         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1263         /* see rate_show() in ib core/sysfs.c */
1264         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1265         props->max_vl_num = ppd->vls_supported;
1266
1267         /* Once we are a "first class" citizen and have added the OPA MTUs to
1268          * the core we can advertise the larger MTU enum to the ULPs, for now
1269          * advertise only 4K.
1270          *
1271          * Those applications which are either OPA aware or pass the MTU enum
1272          * from the Path Records to us will get the new 8k MTU.  Those that
1273          * attempt to process the MTU enum may fail in various ways.
1274          */
1275         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1276                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1277         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1278                 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1279
1280         return 0;
1281 }
1282
1283 static int modify_device(struct ib_device *device,
1284                          int device_modify_mask,
1285                          struct ib_device_modify *device_modify)
1286 {
1287         struct hfi1_devdata *dd = dd_from_ibdev(device);
1288         unsigned i;
1289         int ret;
1290
1291         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1292                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1293                 ret = -EOPNOTSUPP;
1294                 goto bail;
1295         }
1296
1297         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1298                 memcpy(device->node_desc, device_modify->node_desc,
1299                        IB_DEVICE_NODE_DESC_MAX);
1300                 for (i = 0; i < dd->num_pports; i++) {
1301                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1302
1303                         hfi1_node_desc_chg(ibp);
1304                 }
1305         }
1306
1307         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1308                 ib_hfi1_sys_image_guid =
1309                         cpu_to_be64(device_modify->sys_image_guid);
1310                 for (i = 0; i < dd->num_pports; i++) {
1311                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1312
1313                         hfi1_sys_guid_chg(ibp);
1314                 }
1315         }
1316
1317         ret = 0;
1318
1319 bail:
1320         return ret;
1321 }
1322
1323 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1324 {
1325         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1326         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1327         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1328         int ret;
1329
1330         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1331                              OPA_LINKDOWN_REASON_UNKNOWN);
1332         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1333         return ret;
1334 }
1335
1336 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1337                             int guid_index, __be64 *guid)
1338 {
1339         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1340
1341         if (guid_index >= HFI1_GUIDS_PER_PORT)
1342                 return -EINVAL;
1343
1344         *guid = get_sguid(ibp, guid_index);
1345         return 0;
1346 }
1347
1348 /*
1349  * convert ah port,sl to sc
1350  */
1351 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1352 {
1353         struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1354
1355         return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1356 }
1357
1358 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1359 {
1360         struct hfi1_ibport *ibp;
1361         struct hfi1_pportdata *ppd;
1362         struct hfi1_devdata *dd;
1363         u8 sc5;
1364         u8 sl;
1365
1366         if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1367             !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1368                 return -EINVAL;
1369
1370         /* test the mapping for validity */
1371         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1372         ppd = ppd_from_ibp(ibp);
1373         dd = dd_from_ppd(ppd);
1374
1375         sl = rdma_ah_get_sl(ah_attr);
1376         if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1377                 return -EINVAL;
1378
1379         sc5 = ibp->sl_to_sc[sl];
1380         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1381                 return -EINVAL;
1382         return 0;
1383 }
1384
1385 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1386                                struct rdma_ah_attr *ah_attr,
1387                                struct rvt_ah *ah)
1388 {
1389         struct hfi1_ibport *ibp;
1390         struct hfi1_pportdata *ppd;
1391         struct hfi1_devdata *dd;
1392         u8 sc5;
1393         struct rdma_ah_attr *attr = &ah->attr;
1394
1395         /*
1396          * Do not trust reading anything from rvt_ah at this point as it is not
1397          * done being setup. We can however modify things which we need to set.
1398          */
1399
1400         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1401         ppd = ppd_from_ibp(ibp);
1402         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1403         hfi1_update_ah_attr(ibdev, attr);
1404         hfi1_make_opa_lid(attr);
1405         dd = dd_from_ppd(ppd);
1406         ah->vl = sc_to_vlt(dd, sc5);
1407         if (ah->vl < num_vls || ah->vl == 15)
1408                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1409 }
1410
1411 /**
1412  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1413  * @dd: the hfi1_ib device
1414  */
1415 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1416 {
1417         return ARRAY_SIZE(dd->pport[0].pkeys);
1418 }
1419
1420 static void init_ibport(struct hfi1_pportdata *ppd)
1421 {
1422         struct hfi1_ibport *ibp = &ppd->ibport_data;
1423         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1424         int i;
1425
1426         for (i = 0; i < sz; i++) {
1427                 ibp->sl_to_sc[i] = i;
1428                 ibp->sc_to_sl[i] = i;
1429         }
1430
1431         for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1432                 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1433         timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1434
1435         spin_lock_init(&ibp->rvp.lock);
1436         /* Set the prefix to the default value (see ch. 4.1.1) */
1437         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1438         ibp->rvp.sm_lid = 0;
1439         /*
1440          * Below should only set bits defined in OPA PortInfo.CapabilityMask
1441          * and PortInfo.CapabilityMask3
1442          */
1443         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1444                 IB_PORT_CAP_MASK_NOTICE_SUP;
1445         ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1446         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1447         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1448         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1449         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1450         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1451
1452         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1453         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1454 }
1455
1456 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1457 {
1458         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1459         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1460         u32 ver = dd_from_dev(dev)->dc8051_ver;
1461
1462         snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1463                  dc8051_ver_min(ver), dc8051_ver_patch(ver));
1464 }
1465
1466 static const char * const driver_cntr_names[] = {
1467         /* must be element 0*/
1468         "DRIVER_KernIntr",
1469         "DRIVER_ErrorIntr",
1470         "DRIVER_Tx_Errs",
1471         "DRIVER_Rcv_Errs",
1472         "DRIVER_HW_Errs",
1473         "DRIVER_NoPIOBufs",
1474         "DRIVER_CtxtsOpen",
1475         "DRIVER_RcvLen_Errs",
1476         "DRIVER_EgrBufFull",
1477         "DRIVER_EgrHdrFull"
1478 };
1479
1480 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1481 static const char **dev_cntr_names;
1482 static const char **port_cntr_names;
1483 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1484 static int num_dev_cntrs;
1485 static int num_port_cntrs;
1486 static int cntr_names_initialized;
1487
1488 /*
1489  * Convert a list of names separated by '\n' into an array of NULL terminated
1490  * strings. Optionally some entries can be reserved in the array to hold extra
1491  * external strings.
1492  */
1493 static int init_cntr_names(const char *names_in,
1494                            const size_t names_len,
1495                            int num_extra_names,
1496                            int *num_cntrs,
1497                            const char ***cntr_names)
1498 {
1499         char *names_out, *p, **q;
1500         int i, n;
1501
1502         n = 0;
1503         for (i = 0; i < names_len; i++)
1504                 if (names_in[i] == '\n')
1505                         n++;
1506
1507         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1508                             GFP_KERNEL);
1509         if (!names_out) {
1510                 *num_cntrs = 0;
1511                 *cntr_names = NULL;
1512                 return -ENOMEM;
1513         }
1514
1515         p = names_out + (n + num_extra_names) * sizeof(char *);
1516         memcpy(p, names_in, names_len);
1517
1518         q = (char **)names_out;
1519         for (i = 0; i < n; i++) {
1520                 q[i] = p;
1521                 p = strchr(p, '\n');
1522                 *p++ = '\0';
1523         }
1524
1525         *num_cntrs = n;
1526         *cntr_names = (const char **)names_out;
1527         return 0;
1528 }
1529
1530 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1531                                             u8 port_num)
1532 {
1533         int i, err;
1534
1535         mutex_lock(&cntr_names_lock);
1536         if (!cntr_names_initialized) {
1537                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1538
1539                 err = init_cntr_names(dd->cntrnames,
1540                                       dd->cntrnameslen,
1541                                       num_driver_cntrs,
1542                                       &num_dev_cntrs,
1543                                       &dev_cntr_names);
1544                 if (err) {
1545                         mutex_unlock(&cntr_names_lock);
1546                         return NULL;
1547                 }
1548
1549                 for (i = 0; i < num_driver_cntrs; i++)
1550                         dev_cntr_names[num_dev_cntrs + i] =
1551                                 driver_cntr_names[i];
1552
1553                 err = init_cntr_names(dd->portcntrnames,
1554                                       dd->portcntrnameslen,
1555                                       0,
1556                                       &num_port_cntrs,
1557                                       &port_cntr_names);
1558                 if (err) {
1559                         kfree(dev_cntr_names);
1560                         dev_cntr_names = NULL;
1561                         mutex_unlock(&cntr_names_lock);
1562                         return NULL;
1563                 }
1564                 cntr_names_initialized = 1;
1565         }
1566         mutex_unlock(&cntr_names_lock);
1567
1568         if (!port_num)
1569                 return rdma_alloc_hw_stats_struct(
1570                                 dev_cntr_names,
1571                                 num_dev_cntrs + num_driver_cntrs,
1572                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1573         else
1574                 return rdma_alloc_hw_stats_struct(
1575                                 port_cntr_names,
1576                                 num_port_cntrs,
1577                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1578 }
1579
1580 static u64 hfi1_sps_ints(void)
1581 {
1582         unsigned long flags;
1583         struct hfi1_devdata *dd;
1584         u64 sps_ints = 0;
1585
1586         spin_lock_irqsave(&hfi1_devs_lock, flags);
1587         list_for_each_entry(dd, &hfi1_dev_list, list) {
1588                 sps_ints += get_all_cpu_total(dd->int_counter);
1589         }
1590         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1591         return sps_ints;
1592 }
1593
1594 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1595                         u8 port, int index)
1596 {
1597         u64 *values;
1598         int count;
1599
1600         if (!port) {
1601                 u64 *stats = (u64 *)&hfi1_stats;
1602                 int i;
1603
1604                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1605                 values[num_dev_cntrs] = hfi1_sps_ints();
1606                 for (i = 1; i < num_driver_cntrs; i++)
1607                         values[num_dev_cntrs + i] = stats[i];
1608                 count = num_dev_cntrs + num_driver_cntrs;
1609         } else {
1610                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1611
1612                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1613                 count = num_port_cntrs;
1614         }
1615
1616         memcpy(stats->value, values, count * sizeof(u64));
1617         return count;
1618 }
1619
1620 static const struct ib_device_ops hfi1_dev_ops = {
1621         .alloc_hw_stats = alloc_hw_stats,
1622         .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1623         .get_dev_fw_str = hfi1_get_dev_fw_str,
1624         .get_hw_stats = get_hw_stats,
1625         .init_port = hfi1_create_port_files,
1626         .modify_device = modify_device,
1627         /* keep process mad in the driver */
1628         .process_mad = hfi1_process_mad,
1629 };
1630
1631 /**
1632  * hfi1_register_ib_device - register our device with the infiniband core
1633  * @dd: the device data structure
1634  * Return 0 if successful, errno if unsuccessful.
1635  */
1636 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1637 {
1638         struct hfi1_ibdev *dev = &dd->verbs_dev;
1639         struct ib_device *ibdev = &dev->rdi.ibdev;
1640         struct hfi1_pportdata *ppd = dd->pport;
1641         struct hfi1_ibport *ibp = &ppd->ibport_data;
1642         unsigned i;
1643         int ret;
1644
1645         for (i = 0; i < dd->num_pports; i++)
1646                 init_ibport(ppd + i);
1647
1648         /* Only need to initialize non-zero fields. */
1649
1650         timer_setup(&dev->mem_timer, mem_timer, 0);
1651
1652         seqlock_init(&dev->iowait_lock);
1653         seqlock_init(&dev->txwait_lock);
1654         INIT_LIST_HEAD(&dev->txwait);
1655         INIT_LIST_HEAD(&dev->memwait);
1656
1657         ret = verbs_txreq_init(dev);
1658         if (ret)
1659                 goto err_verbs_txreq;
1660
1661         /* Use first-port GUID as node guid */
1662         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1663
1664         /*
1665          * The system image GUID is supposed to be the same for all
1666          * HFIs in a single system but since there can be other
1667          * device types in the system, we can't be sure this is unique.
1668          */
1669         if (!ib_hfi1_sys_image_guid)
1670                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1671         ibdev->owner = THIS_MODULE;
1672         ibdev->phys_port_cnt = dd->num_pports;
1673         ibdev->dev.parent = &dd->pcidev->dev;
1674
1675         ib_set_device_ops(ibdev, &hfi1_dev_ops);
1676
1677         strlcpy(ibdev->node_desc, init_utsname()->nodename,
1678                 sizeof(ibdev->node_desc));
1679
1680         /*
1681          * Fill in rvt info object.
1682          */
1683         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1684         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1685         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1686         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1687         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1688         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1689         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1690         /*
1691          * Fill in rvt info device attributes.
1692          */
1693         hfi1_fill_device_attr(dd);
1694
1695         /* queue pair */
1696         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1697         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1698         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1699         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1700         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1701         dd->verbs_dev.rdi.dparms.qpn_res_end =
1702         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1703         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1704         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1705         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1706         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1707         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1708                                                 RDMA_CORE_CAP_OPA_AH;
1709         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1710
1711         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1712         dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1713         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1714         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1715         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1716         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1717         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1718         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1719         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1720         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1721         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1722         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1723         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1724         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1725         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1726         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1727         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1728         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1729         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1730         dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1731         dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1732                                                 hfi1_comp_vect_mappings_lookup;
1733
1734         /* completeion queue */
1735         dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1736         dd->verbs_dev.rdi.dparms.node = dd->node;
1737
1738         /* misc settings */
1739         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1740         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1741         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1742         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1743         dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1744         dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1745         dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1746
1747         /* post send table */
1748         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1749
1750         /* opcode translation table */
1751         dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1752
1753         ppd = dd->pport;
1754         for (i = 0; i < dd->num_pports; i++, ppd++)
1755                 rvt_init_port(&dd->verbs_dev.rdi,
1756                               &ppd->ibport_data.rvp,
1757                               i,
1758                               ppd->pkeys);
1759
1760         rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1761                                     &ib_hfi1_attr_group);
1762
1763         ret = rvt_register_device(&dd->verbs_dev.rdi, RDMA_DRIVER_HFI1);
1764         if (ret)
1765                 goto err_verbs_txreq;
1766
1767         ret = hfi1_verbs_register_sysfs(dd);
1768         if (ret)
1769                 goto err_class;
1770
1771         return ret;
1772
1773 err_class:
1774         rvt_unregister_device(&dd->verbs_dev.rdi);
1775 err_verbs_txreq:
1776         verbs_txreq_exit(dev);
1777         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1778         return ret;
1779 }
1780
1781 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1782 {
1783         struct hfi1_ibdev *dev = &dd->verbs_dev;
1784
1785         hfi1_verbs_unregister_sysfs(dd);
1786
1787         rvt_unregister_device(&dd->verbs_dev.rdi);
1788
1789         if (!list_empty(&dev->txwait))
1790                 dd_dev_err(dd, "txwait list not empty!\n");
1791         if (!list_empty(&dev->memwait))
1792                 dd_dev_err(dd, "memwait list not empty!\n");
1793
1794         del_timer_sync(&dev->mem_timer);
1795         verbs_txreq_exit(dev);
1796
1797         mutex_lock(&cntr_names_lock);
1798         kfree(dev_cntr_names);
1799         kfree(port_cntr_names);
1800         dev_cntr_names = NULL;
1801         port_cntr_names = NULL;
1802         cntr_names_initialized = 0;
1803         mutex_unlock(&cntr_names_lock);
1804 }
1805
1806 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1807 {
1808         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1809         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1810         struct ib_header *hdr = packet->hdr;
1811         struct rvt_qp *qp = packet->qp;
1812         u32 lqpn, rqpn = 0;
1813         u16 rlid = 0;
1814         u8 sl, sc5, svc_type;
1815
1816         switch (packet->qp->ibqp.qp_type) {
1817         case IB_QPT_UC:
1818                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1819                 rqpn = qp->remote_qpn;
1820                 svc_type = IB_CC_SVCTYPE_UC;
1821                 break;
1822         case IB_QPT_RC:
1823                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1824                 rqpn = qp->remote_qpn;
1825                 svc_type = IB_CC_SVCTYPE_RC;
1826                 break;
1827         case IB_QPT_SMI:
1828         case IB_QPT_GSI:
1829         case IB_QPT_UD:
1830                 svc_type = IB_CC_SVCTYPE_UD;
1831                 break;
1832         default:
1833                 ibp->rvp.n_pkt_drops++;
1834                 return;
1835         }
1836
1837         sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
1838         sl = ibp->sc_to_sl[sc5];
1839         lqpn = qp->ibqp.qp_num;
1840
1841         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1842 }