Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-block.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->link_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         __sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (wait && iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408
409         /* flush from head to tail */
410         sdma_flush_descq(sde);
411         spin_lock_irqsave(&sde->flushlist_lock, flags);
412         /* copy flush list */
413         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414                 list_del_init(&txp->list);
415                 list_add_tail(&txp->list, &flushlist);
416         }
417         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418         /* flush from flush list */
419         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424  * Fields a work request for flushing the descq ring
425  * and the flush list
426  *
427  * If the engine has been brought to running during
428  * the scheduling delay, the flush is ignored, assuming
429  * that the process of bringing the engine to running
430  * would have done this flush prior to going to running.
431  *
432  */
433 static void sdma_field_flush(struct work_struct *work)
434 {
435         unsigned long flags;
436         struct sdma_engine *sde =
437                 container_of(work, struct sdma_engine, flush_worker);
438
439         write_seqlock_irqsave(&sde->head_lock, flags);
440         if (!__sdma_running(sde))
441                 sdma_flush(sde);
442         write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447         struct sdma_engine *sde = container_of(work, struct sdma_engine,
448                                                 err_halt_worker);
449         u64 statuscsr;
450         unsigned long timeout;
451
452         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453         while (1) {
454                 statuscsr = read_sde_csr(sde, SD(STATUS));
455                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456                 if (statuscsr)
457                         break;
458                 if (time_after(jiffies, timeout)) {
459                         dd_dev_err(sde->dd,
460                                    "SDMA engine %d - timeout waiting for engine to halt\n",
461                                    sde->this_idx);
462                         /*
463                          * Continue anyway.  This could happen if there was
464                          * an uncorrectable error in the wrong spot.
465                          */
466                         break;
467                 }
468                 usleep_range(80, 120);
469         }
470
471         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477                 unsigned index;
478                 struct hfi1_devdata *dd = sde->dd;
479
480                 for (index = 0; index < dd->num_sdma; index++) {
481                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483                         if (curr_sdma != sde)
484                                 curr_sdma->progress_check_head =
485                                                         curr_sdma->descq_head;
486                 }
487                 dd_dev_err(sde->dd,
488                            "SDMA engine %d - check scheduled\n",
489                                 sde->this_idx);
490                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491         }
492 }
493
494 static void sdma_err_progress_check(struct timer_list *t)
495 {
496         unsigned index;
497         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
498
499         dd_dev_err(sde->dd, "SDE progress check event\n");
500         for (index = 0; index < sde->dd->num_sdma; index++) {
501                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502                 unsigned long flags;
503
504                 /* check progress on each engine except the current one */
505                 if (curr_sde == sde)
506                         continue;
507                 /*
508                  * We must lock interrupts when acquiring sde->lock,
509                  * to avoid a deadlock if interrupt triggers and spins on
510                  * the same lock on same CPU
511                  */
512                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513                 write_seqlock(&curr_sde->head_lock);
514
515                 /* skip non-running queues */
516                 if (curr_sde->state.current_state != sdma_state_s99_running) {
517                         write_sequnlock(&curr_sde->head_lock);
518                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519                         continue;
520                 }
521
522                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523                     (curr_sde->descq_head ==
524                                 curr_sde->progress_check_head))
525                         __sdma_process_event(curr_sde,
526                                              sdma_event_e90_sw_halted);
527                 write_sequnlock(&curr_sde->head_lock);
528                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529         }
530         schedule_work(&sde->err_halt_worker);
531 }
532
533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535         struct sdma_engine *sde = (struct sdma_engine *)opaque;
536         u64 statuscsr;
537
538         while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541                            sde->this_idx, slashstrip(__FILE__), __LINE__,
542                         __func__);
543 #endif
544                 statuscsr = read_sde_csr(sde, SD(STATUS));
545                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546                 if (statuscsr)
547                         break;
548                 udelay(10);
549         }
550
551         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
557 }
558
559 /*
560  * flush ring for recovery
561  */
562 static void sdma_flush_descq(struct sdma_engine *sde)
563 {
564         u16 head, tail;
565         int progress = 0;
566         struct sdma_txreq *txp = get_txhead(sde);
567
568         /* The reason for some of the complexity of this code is that
569          * not all descriptors have corresponding txps.  So, we have to
570          * be able to skip over descs until we wander into the range of
571          * the next txp on the list.
572          */
573         head = sde->descq_head & sde->sdma_mask;
574         tail = sde->descq_tail & sde->sdma_mask;
575         while (head != tail) {
576                 /* advance head, wrap if needed */
577                 head = ++sde->descq_head & sde->sdma_mask;
578                 /* if now past this txp's descs, do the callback */
579                 if (txp && txp->next_descq_idx == head) {
580                         /* remove from list */
581                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
582                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
583                         trace_hfi1_sdma_progress(sde, head, tail, txp);
584                         txp = get_txhead(sde);
585                 }
586                 progress++;
587         }
588         if (progress)
589                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
590 }
591
592 static void sdma_sw_clean_up_task(unsigned long opaque)
593 {
594         struct sdma_engine *sde = (struct sdma_engine *)opaque;
595         unsigned long flags;
596
597         spin_lock_irqsave(&sde->tail_lock, flags);
598         write_seqlock(&sde->head_lock);
599
600         /*
601          * At this point, the following should always be true:
602          * - We are halted, so no more descriptors are getting retired.
603          * - We are not running, so no one is submitting new work.
604          * - Only we can send the e40_sw_cleaned, so we can't start
605          *   running again until we say so.  So, the active list and
606          *   descq are ours to play with.
607          */
608
609         /*
610          * In the error clean up sequence, software clean must be called
611          * before the hardware clean so we can use the hardware head in
612          * the progress routine.  A hardware clean or SPC unfreeze will
613          * reset the hardware head.
614          *
615          * Process all retired requests. The progress routine will use the
616          * latest physical hardware head - we are not running so speed does
617          * not matter.
618          */
619         sdma_make_progress(sde, 0);
620
621         sdma_flush(sde);
622
623         /*
624          * Reset our notion of head and tail.
625          * Note that the HW registers have been reset via an earlier
626          * clean up.
627          */
628         sde->descq_tail = 0;
629         sde->descq_head = 0;
630         sde->desc_avail = sdma_descq_freecnt(sde);
631         *sde->head_dma = 0;
632
633         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
634
635         write_sequnlock(&sde->head_lock);
636         spin_unlock_irqrestore(&sde->tail_lock, flags);
637 }
638
639 static void sdma_sw_tear_down(struct sdma_engine *sde)
640 {
641         struct sdma_state *ss = &sde->state;
642
643         /* Releasing this reference means the state machine has stopped. */
644         sdma_put(ss);
645
646         /* stop waiting for all unfreeze events to complete */
647         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
648         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
649 }
650
651 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
652 {
653         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
654 }
655
656 static void sdma_set_state(struct sdma_engine *sde,
657                            enum sdma_states next_state)
658 {
659         struct sdma_state *ss = &sde->state;
660         const struct sdma_set_state_action *action = sdma_action_table;
661         unsigned op = 0;
662
663         trace_hfi1_sdma_state(
664                 sde,
665                 sdma_state_names[ss->current_state],
666                 sdma_state_names[next_state]);
667
668         /* debugging bookkeeping */
669         ss->previous_state = ss->current_state;
670         ss->previous_op = ss->current_op;
671         ss->current_state = next_state;
672
673         if (ss->previous_state != sdma_state_s99_running &&
674             next_state == sdma_state_s99_running)
675                 sdma_flush(sde);
676
677         if (action[next_state].op_enable)
678                 op |= SDMA_SENDCTRL_OP_ENABLE;
679
680         if (action[next_state].op_intenable)
681                 op |= SDMA_SENDCTRL_OP_INTENABLE;
682
683         if (action[next_state].op_halt)
684                 op |= SDMA_SENDCTRL_OP_HALT;
685
686         if (action[next_state].op_cleanup)
687                 op |= SDMA_SENDCTRL_OP_CLEANUP;
688
689         if (action[next_state].go_s99_running_tofalse)
690                 ss->go_s99_running = 0;
691
692         if (action[next_state].go_s99_running_totrue)
693                 ss->go_s99_running = 1;
694
695         ss->current_op = op;
696         sdma_sendctrl(sde, ss->current_op);
697 }
698
699 /**
700  * sdma_get_descq_cnt() - called when device probed
701  *
702  * Return a validated descq count.
703  *
704  * This is currently only used in the verbs initialization to build the tx
705  * list.
706  *
707  * This will probably be deleted in favor of a more scalable approach to
708  * alloc tx's.
709  *
710  */
711 u16 sdma_get_descq_cnt(void)
712 {
713         u16 count = sdma_descq_cnt;
714
715         if (!count)
716                 return SDMA_DESCQ_CNT;
717         /* count must be a power of 2 greater than 64 and less than
718          * 32768.   Otherwise return default.
719          */
720         if (!is_power_of_2(count))
721                 return SDMA_DESCQ_CNT;
722         if (count < 64 || count > 32768)
723                 return SDMA_DESCQ_CNT;
724         return count;
725 }
726
727 /**
728  * sdma_engine_get_vl() - return vl for a given sdma engine
729  * @sde: sdma engine
730  *
731  * This function returns the vl mapped to a given engine, or an error if
732  * the mapping can't be found. The mapping fields are protected by RCU.
733  */
734 int sdma_engine_get_vl(struct sdma_engine *sde)
735 {
736         struct hfi1_devdata *dd = sde->dd;
737         struct sdma_vl_map *m;
738         u8 vl;
739
740         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
741                 return -EINVAL;
742
743         rcu_read_lock();
744         m = rcu_dereference(dd->sdma_map);
745         if (unlikely(!m)) {
746                 rcu_read_unlock();
747                 return -EINVAL;
748         }
749         vl = m->engine_to_vl[sde->this_idx];
750         rcu_read_unlock();
751
752         return vl;
753 }
754
755 /**
756  * sdma_select_engine_vl() - select sdma engine
757  * @dd: devdata
758  * @selector: a spreading factor
759  * @vl: this vl
760  *
761  *
762  * This function returns an engine based on the selector and a vl.  The
763  * mapping fields are protected by RCU.
764  */
765 struct sdma_engine *sdma_select_engine_vl(
766         struct hfi1_devdata *dd,
767         u32 selector,
768         u8 vl)
769 {
770         struct sdma_vl_map *m;
771         struct sdma_map_elem *e;
772         struct sdma_engine *rval;
773
774         /* NOTE This should only happen if SC->VL changed after the initial
775          *      checks on the QP/AH
776          *      Default will return engine 0 below
777          */
778         if (vl >= num_vls) {
779                 rval = NULL;
780                 goto done;
781         }
782
783         rcu_read_lock();
784         m = rcu_dereference(dd->sdma_map);
785         if (unlikely(!m)) {
786                 rcu_read_unlock();
787                 return &dd->per_sdma[0];
788         }
789         e = m->map[vl & m->mask];
790         rval = e->sde[selector & e->mask];
791         rcu_read_unlock();
792
793 done:
794         rval =  !rval ? &dd->per_sdma[0] : rval;
795         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
796         return rval;
797 }
798
799 /**
800  * sdma_select_engine_sc() - select sdma engine
801  * @dd: devdata
802  * @selector: a spreading factor
803  * @sc5: the 5 bit sc
804  *
805  *
806  * This function returns an engine based on the selector and an sc.
807  */
808 struct sdma_engine *sdma_select_engine_sc(
809         struct hfi1_devdata *dd,
810         u32 selector,
811         u8 sc5)
812 {
813         u8 vl = sc_to_vlt(dd, sc5);
814
815         return sdma_select_engine_vl(dd, selector, vl);
816 }
817
818 struct sdma_rht_map_elem {
819         u32 mask;
820         u8 ctr;
821         struct sdma_engine *sde[0];
822 };
823
824 struct sdma_rht_node {
825         unsigned long cpu_id;
826         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
827         struct rhash_head node;
828 };
829
830 #define NR_CPUS_HINT 192
831
832 static const struct rhashtable_params sdma_rht_params = {
833         .nelem_hint = NR_CPUS_HINT,
834         .head_offset = offsetof(struct sdma_rht_node, node),
835         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
836         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
837         .max_size = NR_CPUS,
838         .min_size = 8,
839         .automatic_shrinking = true,
840 };
841
842 /*
843  * sdma_select_user_engine() - select sdma engine based on user setup
844  * @dd: devdata
845  * @selector: a spreading factor
846  * @vl: this vl
847  *
848  * This function returns an sdma engine for a user sdma request.
849  * User defined sdma engine affinity setting is honored when applicable,
850  * otherwise system default sdma engine mapping is used. To ensure correct
851  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
852  */
853 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
854                                             u32 selector, u8 vl)
855 {
856         struct sdma_rht_node *rht_node;
857         struct sdma_engine *sde = NULL;
858         const struct cpumask *current_mask = &current->cpus_allowed;
859         unsigned long cpu_id;
860
861         /*
862          * To ensure that always the same sdma engine(s) will be
863          * selected make sure the process is pinned to this CPU only.
864          */
865         if (cpumask_weight(current_mask) != 1)
866                 goto out;
867
868         cpu_id = smp_processor_id();
869         rcu_read_lock();
870         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
871                                           sdma_rht_params);
872
873         if (rht_node && rht_node->map[vl]) {
874                 struct sdma_rht_map_elem *map = rht_node->map[vl];
875
876                 sde = map->sde[selector & map->mask];
877         }
878         rcu_read_unlock();
879
880         if (sde)
881                 return sde;
882
883 out:
884         return sdma_select_engine_vl(dd, selector, vl);
885 }
886
887 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
888 {
889         int i;
890
891         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
892                 map->sde[map->ctr + i] = map->sde[i];
893 }
894
895 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
896                                  struct sdma_engine *sde)
897 {
898         unsigned int i, pow;
899
900         /* only need to check the first ctr entries for a match */
901         for (i = 0; i < map->ctr; i++) {
902                 if (map->sde[i] == sde) {
903                         memmove(&map->sde[i], &map->sde[i + 1],
904                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
905                         map->ctr--;
906                         pow = roundup_pow_of_two(map->ctr ? : 1);
907                         map->mask = pow - 1;
908                         sdma_populate_sde_map(map);
909                         break;
910                 }
911         }
912 }
913
914 /*
915  * Prevents concurrent reads and writes of the sdma engine cpu_mask
916  */
917 static DEFINE_MUTEX(process_to_sde_mutex);
918
919 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
920                                 size_t count)
921 {
922         struct hfi1_devdata *dd = sde->dd;
923         cpumask_var_t mask, new_mask;
924         unsigned long cpu;
925         int ret, vl, sz;
926
927         vl = sdma_engine_get_vl(sde);
928         if (unlikely(vl < 0))
929                 return -EINVAL;
930
931         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
932         if (!ret)
933                 return -ENOMEM;
934
935         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
936         if (!ret) {
937                 free_cpumask_var(mask);
938                 return -ENOMEM;
939         }
940         ret = cpulist_parse(buf, mask);
941         if (ret)
942                 goto out_free;
943
944         if (!cpumask_subset(mask, cpu_online_mask)) {
945                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
946                 ret = -EINVAL;
947                 goto out_free;
948         }
949
950         sz = sizeof(struct sdma_rht_map_elem) +
951                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
952
953         mutex_lock(&process_to_sde_mutex);
954
955         for_each_cpu(cpu, mask) {
956                 struct sdma_rht_node *rht_node;
957
958                 /* Check if we have this already mapped */
959                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
960                         cpumask_set_cpu(cpu, new_mask);
961                         continue;
962                 }
963
964                 if (vl >= ARRAY_SIZE(rht_node->map)) {
965                         ret = -EINVAL;
966                         goto out;
967                 }
968
969                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
970                                                   sdma_rht_params);
971                 if (!rht_node) {
972                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
973                         if (!rht_node) {
974                                 ret = -ENOMEM;
975                                 goto out;
976                         }
977
978                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
979                         if (!rht_node->map[vl]) {
980                                 kfree(rht_node);
981                                 ret = -ENOMEM;
982                                 goto out;
983                         }
984                         rht_node->cpu_id = cpu;
985                         rht_node->map[vl]->mask = 0;
986                         rht_node->map[vl]->ctr = 1;
987                         rht_node->map[vl]->sde[0] = sde;
988
989                         ret = rhashtable_insert_fast(dd->sdma_rht,
990                                                      &rht_node->node,
991                                                      sdma_rht_params);
992                         if (ret) {
993                                 kfree(rht_node->map[vl]);
994                                 kfree(rht_node);
995                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
996                                            cpu);
997                                 goto out;
998                         }
999
1000                 } else {
1001                         int ctr, pow;
1002
1003                         /* Add new user mappings */
1004                         if (!rht_node->map[vl])
1005                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1006
1007                         if (!rht_node->map[vl]) {
1008                                 ret = -ENOMEM;
1009                                 goto out;
1010                         }
1011
1012                         rht_node->map[vl]->ctr++;
1013                         ctr = rht_node->map[vl]->ctr;
1014                         rht_node->map[vl]->sde[ctr - 1] = sde;
1015                         pow = roundup_pow_of_two(ctr);
1016                         rht_node->map[vl]->mask = pow - 1;
1017
1018                         /* Populate the sde map table */
1019                         sdma_populate_sde_map(rht_node->map[vl]);
1020                 }
1021                 cpumask_set_cpu(cpu, new_mask);
1022         }
1023
1024         /* Clean up old mappings */
1025         for_each_cpu(cpu, cpu_online_mask) {
1026                 struct sdma_rht_node *rht_node;
1027
1028                 /* Don't cleanup sdes that are set in the new mask */
1029                 if (cpumask_test_cpu(cpu, mask))
1030                         continue;
1031
1032                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1033                                                   sdma_rht_params);
1034                 if (rht_node) {
1035                         bool empty = true;
1036                         int i;
1037
1038                         /* Remove mappings for old sde */
1039                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1040                                 if (rht_node->map[i])
1041                                         sdma_cleanup_sde_map(rht_node->map[i],
1042                                                              sde);
1043
1044                         /* Free empty hash table entries */
1045                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1046                                 if (!rht_node->map[i])
1047                                         continue;
1048
1049                                 if (rht_node->map[i]->ctr) {
1050                                         empty = false;
1051                                         break;
1052                                 }
1053                         }
1054
1055                         if (empty) {
1056                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1057                                                              &rht_node->node,
1058                                                              sdma_rht_params);
1059                                 WARN_ON(ret);
1060
1061                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1062                                         kfree(rht_node->map[i]);
1063
1064                                 kfree(rht_node);
1065                         }
1066                 }
1067         }
1068
1069         cpumask_copy(&sde->cpu_mask, new_mask);
1070 out:
1071         mutex_unlock(&process_to_sde_mutex);
1072 out_free:
1073         free_cpumask_var(mask);
1074         free_cpumask_var(new_mask);
1075         return ret ? : strnlen(buf, PAGE_SIZE);
1076 }
1077
1078 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1079 {
1080         mutex_lock(&process_to_sde_mutex);
1081         if (cpumask_empty(&sde->cpu_mask))
1082                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1083         else
1084                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1085         mutex_unlock(&process_to_sde_mutex);
1086         return strnlen(buf, PAGE_SIZE);
1087 }
1088
1089 static void sdma_rht_free(void *ptr, void *arg)
1090 {
1091         struct sdma_rht_node *rht_node = ptr;
1092         int i;
1093
1094         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1095                 kfree(rht_node->map[i]);
1096
1097         kfree(rht_node);
1098 }
1099
1100 /**
1101  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1102  * @s: seq file
1103  * @dd: hfi1_devdata
1104  * @cpuid: cpu id
1105  *
1106  * This routine dumps the process to sde mappings per cpu
1107  */
1108 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1109                                 struct hfi1_devdata *dd,
1110                                 unsigned long cpuid)
1111 {
1112         struct sdma_rht_node *rht_node;
1113         int i, j;
1114
1115         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1116                                           sdma_rht_params);
1117         if (!rht_node)
1118                 return;
1119
1120         seq_printf(s, "cpu%3lu: ", cpuid);
1121         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1122                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1123                         continue;
1124
1125                 seq_printf(s, " vl%d: [", i);
1126
1127                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1128                         if (!rht_node->map[i]->sde[j])
1129                                 continue;
1130
1131                         if (j > 0)
1132                                 seq_puts(s, ",");
1133
1134                         seq_printf(s, " sdma%2d",
1135                                    rht_node->map[i]->sde[j]->this_idx);
1136                 }
1137                 seq_puts(s, " ]");
1138         }
1139
1140         seq_puts(s, "\n");
1141 }
1142
1143 /*
1144  * Free the indicated map struct
1145  */
1146 static void sdma_map_free(struct sdma_vl_map *m)
1147 {
1148         int i;
1149
1150         for (i = 0; m && i < m->actual_vls; i++)
1151                 kfree(m->map[i]);
1152         kfree(m);
1153 }
1154
1155 /*
1156  * Handle RCU callback
1157  */
1158 static void sdma_map_rcu_callback(struct rcu_head *list)
1159 {
1160         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1161
1162         sdma_map_free(m);
1163 }
1164
1165 /**
1166  * sdma_map_init - called when # vls change
1167  * @dd: hfi1_devdata
1168  * @port: port number
1169  * @num_vls: number of vls
1170  * @vl_engines: per vl engine mapping (optional)
1171  *
1172  * This routine changes the mapping based on the number of vls.
1173  *
1174  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1175  * implies auto computing the loading and giving each VLs a uniform
1176  * distribution of engines per VL.
1177  *
1178  * The auto algorithm computes the sde_per_vl and the number of extra
1179  * engines.  Any extra engines are added from the last VL on down.
1180  *
1181  * rcu locking is used here to control access to the mapping fields.
1182  *
1183  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1184  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1185  * up to the next highest power of 2 and the first entry is reused
1186  * in a round robin fashion.
1187  *
1188  * If an error occurs the map change is not done and the mapping is
1189  * not changed.
1190  *
1191  */
1192 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1193 {
1194         int i, j;
1195         int extra, sde_per_vl;
1196         int engine = 0;
1197         u8 lvl_engines[OPA_MAX_VLS];
1198         struct sdma_vl_map *oldmap, *newmap;
1199
1200         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1201                 return 0;
1202
1203         if (!vl_engines) {
1204                 /* truncate divide */
1205                 sde_per_vl = dd->num_sdma / num_vls;
1206                 /* extras */
1207                 extra = dd->num_sdma % num_vls;
1208                 vl_engines = lvl_engines;
1209                 /* add extras from last vl down */
1210                 for (i = num_vls - 1; i >= 0; i--, extra--)
1211                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1212         }
1213         /* build new map */
1214         newmap = kzalloc(
1215                 sizeof(struct sdma_vl_map) +
1216                         roundup_pow_of_two(num_vls) *
1217                         sizeof(struct sdma_map_elem *),
1218                 GFP_KERNEL);
1219         if (!newmap)
1220                 goto bail;
1221         newmap->actual_vls = num_vls;
1222         newmap->vls = roundup_pow_of_two(num_vls);
1223         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1224         /* initialize back-map */
1225         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1226                 newmap->engine_to_vl[i] = -1;
1227         for (i = 0; i < newmap->vls; i++) {
1228                 /* save for wrap around */
1229                 int first_engine = engine;
1230
1231                 if (i < newmap->actual_vls) {
1232                         int sz = roundup_pow_of_two(vl_engines[i]);
1233
1234                         /* only allocate once */
1235                         newmap->map[i] = kzalloc(
1236                                 sizeof(struct sdma_map_elem) +
1237                                         sz * sizeof(struct sdma_engine *),
1238                                 GFP_KERNEL);
1239                         if (!newmap->map[i])
1240                                 goto bail;
1241                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1242                         /* assign engines */
1243                         for (j = 0; j < sz; j++) {
1244                                 newmap->map[i]->sde[j] =
1245                                         &dd->per_sdma[engine];
1246                                 if (++engine >= first_engine + vl_engines[i])
1247                                         /* wrap back to first engine */
1248                                         engine = first_engine;
1249                         }
1250                         /* assign back-map */
1251                         for (j = 0; j < vl_engines[i]; j++)
1252                                 newmap->engine_to_vl[first_engine + j] = i;
1253                 } else {
1254                         /* just re-use entry without allocating */
1255                         newmap->map[i] = newmap->map[i % num_vls];
1256                 }
1257                 engine = first_engine + vl_engines[i];
1258         }
1259         /* newmap in hand, save old map */
1260         spin_lock_irq(&dd->sde_map_lock);
1261         oldmap = rcu_dereference_protected(dd->sdma_map,
1262                                            lockdep_is_held(&dd->sde_map_lock));
1263
1264         /* publish newmap */
1265         rcu_assign_pointer(dd->sdma_map, newmap);
1266
1267         spin_unlock_irq(&dd->sde_map_lock);
1268         /* success, free any old map after grace period */
1269         if (oldmap)
1270                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1271         return 0;
1272 bail:
1273         /* free any partial allocation */
1274         sdma_map_free(newmap);
1275         return -ENOMEM;
1276 }
1277
1278 /**
1279  * sdma_clean()  Clean up allocated memory
1280  * @dd:          struct hfi1_devdata
1281  * @num_engines: num sdma engines
1282  *
1283  * This routine can be called regardless of the success of
1284  * sdma_init()
1285  */
1286 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1287 {
1288         size_t i;
1289         struct sdma_engine *sde;
1290
1291         if (dd->sdma_pad_dma) {
1292                 dma_free_coherent(&dd->pcidev->dev, 4,
1293                                   (void *)dd->sdma_pad_dma,
1294                                   dd->sdma_pad_phys);
1295                 dd->sdma_pad_dma = NULL;
1296                 dd->sdma_pad_phys = 0;
1297         }
1298         if (dd->sdma_heads_dma) {
1299                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1300                                   (void *)dd->sdma_heads_dma,
1301                                   dd->sdma_heads_phys);
1302                 dd->sdma_heads_dma = NULL;
1303                 dd->sdma_heads_phys = 0;
1304         }
1305         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1306                 sde = &dd->per_sdma[i];
1307
1308                 sde->head_dma = NULL;
1309                 sde->head_phys = 0;
1310
1311                 if (sde->descq) {
1312                         dma_free_coherent(
1313                                 &dd->pcidev->dev,
1314                                 sde->descq_cnt * sizeof(u64[2]),
1315                                 sde->descq,
1316                                 sde->descq_phys
1317                         );
1318                         sde->descq = NULL;
1319                         sde->descq_phys = 0;
1320                 }
1321                 kvfree(sde->tx_ring);
1322                 sde->tx_ring = NULL;
1323         }
1324         spin_lock_irq(&dd->sde_map_lock);
1325         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1326         RCU_INIT_POINTER(dd->sdma_map, NULL);
1327         spin_unlock_irq(&dd->sde_map_lock);
1328         synchronize_rcu();
1329         kfree(dd->per_sdma);
1330         dd->per_sdma = NULL;
1331
1332         if (dd->sdma_rht) {
1333                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1334                 kfree(dd->sdma_rht);
1335                 dd->sdma_rht = NULL;
1336         }
1337 }
1338
1339 /**
1340  * sdma_init() - called when device probed
1341  * @dd: hfi1_devdata
1342  * @port: port number (currently only zero)
1343  *
1344  * Initializes each sde and its csrs.
1345  * Interrupts are not required to be enabled.
1346  *
1347  * Returns:
1348  * 0 - success, -errno on failure
1349  */
1350 int sdma_init(struct hfi1_devdata *dd, u8 port)
1351 {
1352         unsigned this_idx;
1353         struct sdma_engine *sde;
1354         struct rhashtable *tmp_sdma_rht;
1355         u16 descq_cnt;
1356         void *curr_head;
1357         struct hfi1_pportdata *ppd = dd->pport + port;
1358         u32 per_sdma_credits;
1359         uint idle_cnt = sdma_idle_cnt;
1360         size_t num_engines = dd->chip_sdma_engines;
1361         int ret = -ENOMEM;
1362
1363         if (!HFI1_CAP_IS_KSET(SDMA)) {
1364                 HFI1_CAP_CLEAR(SDMA_AHG);
1365                 return 0;
1366         }
1367         if (mod_num_sdma &&
1368             /* can't exceed chip support */
1369             mod_num_sdma <= dd->chip_sdma_engines &&
1370             /* count must be >= vls */
1371             mod_num_sdma >= num_vls)
1372                 num_engines = mod_num_sdma;
1373
1374         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1375         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1376         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1377                     dd->chip_sdma_mem_size);
1378
1379         per_sdma_credits =
1380                 dd->chip_sdma_mem_size / (num_engines * SDMA_BLOCK_SIZE);
1381
1382         /* set up freeze waitqueue */
1383         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1384         atomic_set(&dd->sdma_unfreeze_count, 0);
1385
1386         descq_cnt = sdma_get_descq_cnt();
1387         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1388                     num_engines, descq_cnt);
1389
1390         /* alloc memory for array of send engines */
1391         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1392                                     GFP_KERNEL, dd->node);
1393         if (!dd->per_sdma)
1394                 return ret;
1395
1396         idle_cnt = ns_to_cclock(dd, idle_cnt);
1397         if (idle_cnt)
1398                 dd->default_desc1 =
1399                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1400         else
1401                 dd->default_desc1 =
1402                         SDMA_DESC1_INT_REQ_FLAG;
1403
1404         if (!sdma_desct_intr)
1405                 sdma_desct_intr = SDMA_DESC_INTR;
1406
1407         /* Allocate memory for SendDMA descriptor FIFOs */
1408         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1409                 sde = &dd->per_sdma[this_idx];
1410                 sde->dd = dd;
1411                 sde->ppd = ppd;
1412                 sde->this_idx = this_idx;
1413                 sde->descq_cnt = descq_cnt;
1414                 sde->desc_avail = sdma_descq_freecnt(sde);
1415                 sde->sdma_shift = ilog2(descq_cnt);
1416                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1417
1418                 /* Create a mask specifically for each interrupt source */
1419                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1420                                            this_idx);
1421                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1422                                                 this_idx);
1423                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1424                                             this_idx);
1425                 /* Create a combined mask to cover all 3 interrupt sources */
1426                 sde->imask = sde->int_mask | sde->progress_mask |
1427                              sde->idle_mask;
1428
1429                 spin_lock_init(&sde->tail_lock);
1430                 seqlock_init(&sde->head_lock);
1431                 spin_lock_init(&sde->senddmactrl_lock);
1432                 spin_lock_init(&sde->flushlist_lock);
1433                 /* insure there is always a zero bit */
1434                 sde->ahg_bits = 0xfffffffe00000000ULL;
1435
1436                 sdma_set_state(sde, sdma_state_s00_hw_down);
1437
1438                 /* set up reference counting */
1439                 kref_init(&sde->state.kref);
1440                 init_completion(&sde->state.comp);
1441
1442                 INIT_LIST_HEAD(&sde->flushlist);
1443                 INIT_LIST_HEAD(&sde->dmawait);
1444
1445                 sde->tail_csr =
1446                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1447
1448                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1449                              (unsigned long)sde);
1450
1451                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1452                              (unsigned long)sde);
1453                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1454                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1455
1456                 sde->progress_check_head = 0;
1457
1458                 timer_setup(&sde->err_progress_check_timer,
1459                             sdma_err_progress_check, 0);
1460
1461                 sde->descq = dma_zalloc_coherent(
1462                         &dd->pcidev->dev,
1463                         descq_cnt * sizeof(u64[2]),
1464                         &sde->descq_phys,
1465                         GFP_KERNEL
1466                 );
1467                 if (!sde->descq)
1468                         goto bail;
1469                 sde->tx_ring =
1470                         kvzalloc_node(sizeof(struct sdma_txreq *) * descq_cnt,
1471                                       GFP_KERNEL, dd->node);
1472                 if (!sde->tx_ring)
1473                         goto bail;
1474         }
1475
1476         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1477         /* Allocate memory for DMA of head registers to memory */
1478         dd->sdma_heads_dma = dma_zalloc_coherent(
1479                 &dd->pcidev->dev,
1480                 dd->sdma_heads_size,
1481                 &dd->sdma_heads_phys,
1482                 GFP_KERNEL
1483         );
1484         if (!dd->sdma_heads_dma) {
1485                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1486                 goto bail;
1487         }
1488
1489         /* Allocate memory for pad */
1490         dd->sdma_pad_dma = dma_zalloc_coherent(
1491                 &dd->pcidev->dev,
1492                 sizeof(u32),
1493                 &dd->sdma_pad_phys,
1494                 GFP_KERNEL
1495         );
1496         if (!dd->sdma_pad_dma) {
1497                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1498                 goto bail;
1499         }
1500
1501         /* assign each engine to different cacheline and init registers */
1502         curr_head = (void *)dd->sdma_heads_dma;
1503         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1504                 unsigned long phys_offset;
1505
1506                 sde = &dd->per_sdma[this_idx];
1507
1508                 sde->head_dma = curr_head;
1509                 curr_head += L1_CACHE_BYTES;
1510                 phys_offset = (unsigned long)sde->head_dma -
1511                               (unsigned long)dd->sdma_heads_dma;
1512                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1513                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1514         }
1515         dd->flags |= HFI1_HAS_SEND_DMA;
1516         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1517         dd->num_sdma = num_engines;
1518         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1519         if (ret < 0)
1520                 goto bail;
1521
1522         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1523         if (!tmp_sdma_rht) {
1524                 ret = -ENOMEM;
1525                 goto bail;
1526         }
1527
1528         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1529         if (ret < 0)
1530                 goto bail;
1531         dd->sdma_rht = tmp_sdma_rht;
1532
1533         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1534         return 0;
1535
1536 bail:
1537         sdma_clean(dd, num_engines);
1538         return ret;
1539 }
1540
1541 /**
1542  * sdma_all_running() - called when the link goes up
1543  * @dd: hfi1_devdata
1544  *
1545  * This routine moves all engines to the running state.
1546  */
1547 void sdma_all_running(struct hfi1_devdata *dd)
1548 {
1549         struct sdma_engine *sde;
1550         unsigned int i;
1551
1552         /* move all engines to running */
1553         for (i = 0; i < dd->num_sdma; ++i) {
1554                 sde = &dd->per_sdma[i];
1555                 sdma_process_event(sde, sdma_event_e30_go_running);
1556         }
1557 }
1558
1559 /**
1560  * sdma_all_idle() - called when the link goes down
1561  * @dd: hfi1_devdata
1562  *
1563  * This routine moves all engines to the idle state.
1564  */
1565 void sdma_all_idle(struct hfi1_devdata *dd)
1566 {
1567         struct sdma_engine *sde;
1568         unsigned int i;
1569
1570         /* idle all engines */
1571         for (i = 0; i < dd->num_sdma; ++i) {
1572                 sde = &dd->per_sdma[i];
1573                 sdma_process_event(sde, sdma_event_e70_go_idle);
1574         }
1575 }
1576
1577 /**
1578  * sdma_start() - called to kick off state processing for all engines
1579  * @dd: hfi1_devdata
1580  *
1581  * This routine is for kicking off the state processing for all required
1582  * sdma engines.  Interrupts need to be working at this point.
1583  *
1584  */
1585 void sdma_start(struct hfi1_devdata *dd)
1586 {
1587         unsigned i;
1588         struct sdma_engine *sde;
1589
1590         /* kick off the engines state processing */
1591         for (i = 0; i < dd->num_sdma; ++i) {
1592                 sde = &dd->per_sdma[i];
1593                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1594         }
1595 }
1596
1597 /**
1598  * sdma_exit() - used when module is removed
1599  * @dd: hfi1_devdata
1600  */
1601 void sdma_exit(struct hfi1_devdata *dd)
1602 {
1603         unsigned this_idx;
1604         struct sdma_engine *sde;
1605
1606         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1607                         ++this_idx) {
1608                 sde = &dd->per_sdma[this_idx];
1609                 if (!list_empty(&sde->dmawait))
1610                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1611                                    sde->this_idx);
1612                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1613
1614                 del_timer_sync(&sde->err_progress_check_timer);
1615
1616                 /*
1617                  * This waits for the state machine to exit so it is not
1618                  * necessary to kill the sdma_sw_clean_up_task to make sure
1619                  * it is not running.
1620                  */
1621                 sdma_finalput(&sde->state);
1622         }
1623 }
1624
1625 /*
1626  * unmap the indicated descriptor
1627  */
1628 static inline void sdma_unmap_desc(
1629         struct hfi1_devdata *dd,
1630         struct sdma_desc *descp)
1631 {
1632         switch (sdma_mapping_type(descp)) {
1633         case SDMA_MAP_SINGLE:
1634                 dma_unmap_single(
1635                         &dd->pcidev->dev,
1636                         sdma_mapping_addr(descp),
1637                         sdma_mapping_len(descp),
1638                         DMA_TO_DEVICE);
1639                 break;
1640         case SDMA_MAP_PAGE:
1641                 dma_unmap_page(
1642                         &dd->pcidev->dev,
1643                         sdma_mapping_addr(descp),
1644                         sdma_mapping_len(descp),
1645                         DMA_TO_DEVICE);
1646                 break;
1647         }
1648 }
1649
1650 /*
1651  * return the mode as indicated by the first
1652  * descriptor in the tx.
1653  */
1654 static inline u8 ahg_mode(struct sdma_txreq *tx)
1655 {
1656         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1657                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1658 }
1659
1660 /**
1661  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1662  * @dd: hfi1_devdata for unmapping
1663  * @tx: tx request to clean
1664  *
1665  * This is used in the progress routine to clean the tx or
1666  * by the ULP to toss an in-process tx build.
1667  *
1668  * The code can be called multiple times without issue.
1669  *
1670  */
1671 void __sdma_txclean(
1672         struct hfi1_devdata *dd,
1673         struct sdma_txreq *tx)
1674 {
1675         u16 i;
1676
1677         if (tx->num_desc) {
1678                 u8 skip = 0, mode = ahg_mode(tx);
1679
1680                 /* unmap first */
1681                 sdma_unmap_desc(dd, &tx->descp[0]);
1682                 /* determine number of AHG descriptors to skip */
1683                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1684                         skip = mode >> 1;
1685                 for (i = 1 + skip; i < tx->num_desc; i++)
1686                         sdma_unmap_desc(dd, &tx->descp[i]);
1687                 tx->num_desc = 0;
1688         }
1689         kfree(tx->coalesce_buf);
1690         tx->coalesce_buf = NULL;
1691         /* kmalloc'ed descp */
1692         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1693                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1694                 kfree(tx->descp);
1695         }
1696 }
1697
1698 static inline u16 sdma_gethead(struct sdma_engine *sde)
1699 {
1700         struct hfi1_devdata *dd = sde->dd;
1701         int use_dmahead;
1702         u16 hwhead;
1703
1704 #ifdef CONFIG_SDMA_VERBOSITY
1705         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1706                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1707 #endif
1708
1709 retry:
1710         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1711                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1712         hwhead = use_dmahead ?
1713                 (u16)le64_to_cpu(*sde->head_dma) :
1714                 (u16)read_sde_csr(sde, SD(HEAD));
1715
1716         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1717                 u16 cnt;
1718                 u16 swtail;
1719                 u16 swhead;
1720                 int sane;
1721
1722                 swhead = sde->descq_head & sde->sdma_mask;
1723                 /* this code is really bad for cache line trading */
1724                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1725                 cnt = sde->descq_cnt;
1726
1727                 if (swhead < swtail)
1728                         /* not wrapped */
1729                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1730                 else if (swhead > swtail)
1731                         /* wrapped around */
1732                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1733                                 (hwhead <= swtail);
1734                 else
1735                         /* empty */
1736                         sane = (hwhead == swhead);
1737
1738                 if (unlikely(!sane)) {
1739                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1740                                    sde->this_idx,
1741                                    use_dmahead ? "dma" : "kreg",
1742                                    hwhead, swhead, swtail, cnt);
1743                         if (use_dmahead) {
1744                                 /* try one more time, using csr */
1745                                 use_dmahead = 0;
1746                                 goto retry;
1747                         }
1748                         /* proceed as if no progress */
1749                         hwhead = swhead;
1750                 }
1751         }
1752         return hwhead;
1753 }
1754
1755 /*
1756  * This is called when there are send DMA descriptors that might be
1757  * available.
1758  *
1759  * This is called with head_lock held.
1760  */
1761 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1762 {
1763         struct iowait *wait, *nw;
1764         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1765         uint i, n = 0, seq, max_idx = 0;
1766         struct sdma_txreq *stx;
1767         struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1768         u8 max_starved_cnt = 0;
1769
1770 #ifdef CONFIG_SDMA_VERBOSITY
1771         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1772                    slashstrip(__FILE__), __LINE__, __func__);
1773         dd_dev_err(sde->dd, "avail: %u\n", avail);
1774 #endif
1775
1776         do {
1777                 seq = read_seqbegin(&dev->iowait_lock);
1778                 if (!list_empty(&sde->dmawait)) {
1779                         /* at least one item */
1780                         write_seqlock(&dev->iowait_lock);
1781                         /* Harvest waiters wanting DMA descriptors */
1782                         list_for_each_entry_safe(
1783                                         wait,
1784                                         nw,
1785                                         &sde->dmawait,
1786                                         list) {
1787                                 u16 num_desc = 0;
1788
1789                                 if (!wait->wakeup)
1790                                         continue;
1791                                 if (n == ARRAY_SIZE(waits))
1792                                         break;
1793                                 if (!list_empty(&wait->tx_head)) {
1794                                         stx = list_first_entry(
1795                                                 &wait->tx_head,
1796                                                 struct sdma_txreq,
1797                                                 list);
1798                                         num_desc = stx->num_desc;
1799                                 }
1800                                 if (num_desc > avail)
1801                                         break;
1802                                 avail -= num_desc;
1803                                 /* Find the most starved wait memeber */
1804                                 iowait_starve_find_max(wait, &max_starved_cnt,
1805                                                        n, &max_idx);
1806                                 list_del_init(&wait->list);
1807                                 waits[n++] = wait;
1808                         }
1809                         write_sequnlock(&dev->iowait_lock);
1810                         break;
1811                 }
1812         } while (read_seqretry(&dev->iowait_lock, seq));
1813
1814         /* Schedule the most starved one first */
1815         if (n)
1816                 waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1817
1818         for (i = 0; i < n; i++)
1819                 if (i != max_idx)
1820                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1821 }
1822
1823 /* head_lock must be held */
1824 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1825 {
1826         struct sdma_txreq *txp = NULL;
1827         int progress = 0;
1828         u16 hwhead, swhead;
1829         int idle_check_done = 0;
1830
1831         hwhead = sdma_gethead(sde);
1832
1833         /* The reason for some of the complexity of this code is that
1834          * not all descriptors have corresponding txps.  So, we have to
1835          * be able to skip over descs until we wander into the range of
1836          * the next txp on the list.
1837          */
1838
1839 retry:
1840         txp = get_txhead(sde);
1841         swhead = sde->descq_head & sde->sdma_mask;
1842         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1843         while (swhead != hwhead) {
1844                 /* advance head, wrap if needed */
1845                 swhead = ++sde->descq_head & sde->sdma_mask;
1846
1847                 /* if now past this txp's descs, do the callback */
1848                 if (txp && txp->next_descq_idx == swhead) {
1849                         /* remove from list */
1850                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1851                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1852                         /* see if there is another txp */
1853                         txp = get_txhead(sde);
1854                 }
1855                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1856                 progress++;
1857         }
1858
1859         /*
1860          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1861          * to updates to the the dma_head location in host memory. The head
1862          * value read might not be fully up to date. If there are pending
1863          * descriptors and the SDMA idle interrupt fired then read from the
1864          * CSR SDMA head instead to get the latest value from the hardware.
1865          * The hardware SDMA head should be read at most once in this invocation
1866          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1867          */
1868         if ((status & sde->idle_mask) && !idle_check_done) {
1869                 u16 swtail;
1870
1871                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1872                 if (swtail != hwhead) {
1873                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1874                         idle_check_done = 1;
1875                         goto retry;
1876                 }
1877         }
1878
1879         sde->last_status = status;
1880         if (progress)
1881                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1882 }
1883
1884 /*
1885  * sdma_engine_interrupt() - interrupt handler for engine
1886  * @sde: sdma engine
1887  * @status: sdma interrupt reason
1888  *
1889  * Status is a mask of the 3 possible interrupts for this engine.  It will
1890  * contain bits _only_ for this SDMA engine.  It will contain at least one
1891  * bit, it may contain more.
1892  */
1893 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1894 {
1895         trace_hfi1_sdma_engine_interrupt(sde, status);
1896         write_seqlock(&sde->head_lock);
1897         sdma_set_desc_cnt(sde, sdma_desct_intr);
1898         if (status & sde->idle_mask)
1899                 sde->idle_int_cnt++;
1900         else if (status & sde->progress_mask)
1901                 sde->progress_int_cnt++;
1902         else if (status & sde->int_mask)
1903                 sde->sdma_int_cnt++;
1904         sdma_make_progress(sde, status);
1905         write_sequnlock(&sde->head_lock);
1906 }
1907
1908 /**
1909  * sdma_engine_error() - error handler for engine
1910  * @sde: sdma engine
1911  * @status: sdma interrupt reason
1912  */
1913 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1914 {
1915         unsigned long flags;
1916
1917 #ifdef CONFIG_SDMA_VERBOSITY
1918         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1919                    sde->this_idx,
1920                    (unsigned long long)status,
1921                    sdma_state_names[sde->state.current_state]);
1922 #endif
1923         spin_lock_irqsave(&sde->tail_lock, flags);
1924         write_seqlock(&sde->head_lock);
1925         if (status & ALL_SDMA_ENG_HALT_ERRS)
1926                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1927         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1928                 dd_dev_err(sde->dd,
1929                            "SDMA (%u) engine error: 0x%llx state %s\n",
1930                            sde->this_idx,
1931                            (unsigned long long)status,
1932                            sdma_state_names[sde->state.current_state]);
1933                 dump_sdma_state(sde);
1934         }
1935         write_sequnlock(&sde->head_lock);
1936         spin_unlock_irqrestore(&sde->tail_lock, flags);
1937 }
1938
1939 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1940 {
1941         u64 set_senddmactrl = 0;
1942         u64 clr_senddmactrl = 0;
1943         unsigned long flags;
1944
1945 #ifdef CONFIG_SDMA_VERBOSITY
1946         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1947                    sde->this_idx,
1948                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1949                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1950                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1951                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1952 #endif
1953
1954         if (op & SDMA_SENDCTRL_OP_ENABLE)
1955                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1956         else
1957                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1958
1959         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1960                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1961         else
1962                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1963
1964         if (op & SDMA_SENDCTRL_OP_HALT)
1965                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1966         else
1967                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1968
1969         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1970
1971         sde->p_senddmactrl |= set_senddmactrl;
1972         sde->p_senddmactrl &= ~clr_senddmactrl;
1973
1974         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1975                 write_sde_csr(sde, SD(CTRL),
1976                               sde->p_senddmactrl |
1977                               SD(CTRL_SDMA_CLEANUP_SMASK));
1978         else
1979                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1980
1981         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1982
1983 #ifdef CONFIG_SDMA_VERBOSITY
1984         sdma_dumpstate(sde);
1985 #endif
1986 }
1987
1988 static void sdma_setlengen(struct sdma_engine *sde)
1989 {
1990 #ifdef CONFIG_SDMA_VERBOSITY
1991         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1992                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1993 #endif
1994
1995         /*
1996          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1997          * count to enable generation checking and load the internal
1998          * generation counter.
1999          */
2000         write_sde_csr(sde, SD(LEN_GEN),
2001                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
2002         write_sde_csr(sde, SD(LEN_GEN),
2003                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
2004                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2005 }
2006
2007 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2008 {
2009         /* Commit writes to memory and advance the tail on the chip */
2010         smp_wmb(); /* see get_txhead() */
2011         writeq(tail, sde->tail_csr);
2012 }
2013
2014 /*
2015  * This is called when changing to state s10_hw_start_up_halt_wait as
2016  * a result of send buffer errors or send DMA descriptor errors.
2017  */
2018 static void sdma_hw_start_up(struct sdma_engine *sde)
2019 {
2020         u64 reg;
2021
2022 #ifdef CONFIG_SDMA_VERBOSITY
2023         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2024                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2025 #endif
2026
2027         sdma_setlengen(sde);
2028         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2029         *sde->head_dma = 0;
2030
2031         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2032               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2033         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2034 }
2035
2036 /*
2037  * set_sdma_integrity
2038  *
2039  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2040  */
2041 static void set_sdma_integrity(struct sdma_engine *sde)
2042 {
2043         struct hfi1_devdata *dd = sde->dd;
2044
2045         write_sde_csr(sde, SD(CHECK_ENABLE),
2046                       hfi1_pkt_base_sdma_integrity(dd));
2047 }
2048
2049 static void init_sdma_regs(
2050         struct sdma_engine *sde,
2051         u32 credits,
2052         uint idle_cnt)
2053 {
2054         u8 opval, opmask;
2055 #ifdef CONFIG_SDMA_VERBOSITY
2056         struct hfi1_devdata *dd = sde->dd;
2057
2058         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2059                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2060 #endif
2061
2062         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2063         sdma_setlengen(sde);
2064         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2065         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2066         write_sde_csr(sde, SD(DESC_CNT), 0);
2067         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2068         write_sde_csr(sde, SD(MEMORY),
2069                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2070                       ((u64)(credits * sde->this_idx) <<
2071                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2072         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2073         set_sdma_integrity(sde);
2074         opmask = OPCODE_CHECK_MASK_DISABLED;
2075         opval = OPCODE_CHECK_VAL_DISABLED;
2076         write_sde_csr(sde, SD(CHECK_OPCODE),
2077                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2078                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2079 }
2080
2081 #ifdef CONFIG_SDMA_VERBOSITY
2082
2083 #define sdma_dumpstate_helper0(reg) do { \
2084                 csr = read_csr(sde->dd, reg); \
2085                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2086         } while (0)
2087
2088 #define sdma_dumpstate_helper(reg) do { \
2089                 csr = read_sde_csr(sde, reg); \
2090                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2091                         #reg, sde->this_idx, csr); \
2092         } while (0)
2093
2094 #define sdma_dumpstate_helper2(reg) do { \
2095                 csr = read_csr(sde->dd, reg + (8 * i)); \
2096                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2097                                 #reg, i, csr); \
2098         } while (0)
2099
2100 void sdma_dumpstate(struct sdma_engine *sde)
2101 {
2102         u64 csr;
2103         unsigned i;
2104
2105         sdma_dumpstate_helper(SD(CTRL));
2106         sdma_dumpstate_helper(SD(STATUS));
2107         sdma_dumpstate_helper0(SD(ERR_STATUS));
2108         sdma_dumpstate_helper0(SD(ERR_MASK));
2109         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2110         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2111
2112         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2113                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2114                 sdma_dumpstate_helper2(CCE_INT_MASK);
2115                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2116         }
2117
2118         sdma_dumpstate_helper(SD(TAIL));
2119         sdma_dumpstate_helper(SD(HEAD));
2120         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2121         sdma_dumpstate_helper(SD(IDLE_CNT));
2122         sdma_dumpstate_helper(SD(RELOAD_CNT));
2123         sdma_dumpstate_helper(SD(DESC_CNT));
2124         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2125         sdma_dumpstate_helper(SD(MEMORY));
2126         sdma_dumpstate_helper0(SD(ENGINES));
2127         sdma_dumpstate_helper0(SD(MEM_SIZE));
2128         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2129         sdma_dumpstate_helper(SD(BASE_ADDR));
2130         sdma_dumpstate_helper(SD(LEN_GEN));
2131         sdma_dumpstate_helper(SD(HEAD_ADDR));
2132         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2133         sdma_dumpstate_helper(SD(CHECK_VL));
2134         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2135         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2136         sdma_dumpstate_helper(SD(CHECK_SLID));
2137         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2138 }
2139 #endif
2140
2141 static void dump_sdma_state(struct sdma_engine *sde)
2142 {
2143         struct hw_sdma_desc *descqp;
2144         u64 desc[2];
2145         u64 addr;
2146         u8 gen;
2147         u16 len;
2148         u16 head, tail, cnt;
2149
2150         head = sde->descq_head & sde->sdma_mask;
2151         tail = sde->descq_tail & sde->sdma_mask;
2152         cnt = sdma_descq_freecnt(sde);
2153
2154         dd_dev_err(sde->dd,
2155                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2156                    sde->this_idx, head, tail, cnt,
2157                    !list_empty(&sde->flushlist));
2158
2159         /* print info for each entry in the descriptor queue */
2160         while (head != tail) {
2161                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2162
2163                 descqp = &sde->descq[head];
2164                 desc[0] = le64_to_cpu(descqp->qw[0]);
2165                 desc[1] = le64_to_cpu(descqp->qw[1]);
2166                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2167                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2168                                 'H' : '-';
2169                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2170                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2171                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2172                         & SDMA_DESC0_PHY_ADDR_MASK;
2173                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2174                         & SDMA_DESC1_GENERATION_MASK;
2175                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2176                         & SDMA_DESC0_BYTE_COUNT_MASK;
2177                 dd_dev_err(sde->dd,
2178                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2179                            head, flags, addr, gen, len);
2180                 dd_dev_err(sde->dd,
2181                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2182                            desc[0], desc[1]);
2183                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2184                         dd_dev_err(sde->dd,
2185                                    "\taidx: %u amode: %u alen: %u\n",
2186                                    (u8)((desc[1] &
2187                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2188                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2189                                    (u8)((desc[1] &
2190                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2191                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2192                                    (u8)((desc[1] &
2193                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2194                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2195                 head++;
2196                 head &= sde->sdma_mask;
2197         }
2198 }
2199
2200 #define SDE_FMT \
2201         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2202 /**
2203  * sdma_seqfile_dump_sde() - debugfs dump of sde
2204  * @s: seq file
2205  * @sde: send dma engine to dump
2206  *
2207  * This routine dumps the sde to the indicated seq file.
2208  */
2209 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2210 {
2211         u16 head, tail;
2212         struct hw_sdma_desc *descqp;
2213         u64 desc[2];
2214         u64 addr;
2215         u8 gen;
2216         u16 len;
2217
2218         head = sde->descq_head & sde->sdma_mask;
2219         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2220         seq_printf(s, SDE_FMT, sde->this_idx,
2221                    sde->cpu,
2222                    sdma_state_name(sde->state.current_state),
2223                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2224                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2225                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2226                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2227                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2228                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2229                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2230                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2231                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2232                    (unsigned long long)sde->last_status,
2233                    (unsigned long long)sde->ahg_bits,
2234                    sde->tx_tail,
2235                    sde->tx_head,
2236                    sde->descq_tail,
2237                    sde->descq_head,
2238                    !list_empty(&sde->flushlist),
2239                    sde->descq_full_count,
2240                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2241
2242         /* print info for each entry in the descriptor queue */
2243         while (head != tail) {
2244                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2245
2246                 descqp = &sde->descq[head];
2247                 desc[0] = le64_to_cpu(descqp->qw[0]);
2248                 desc[1] = le64_to_cpu(descqp->qw[1]);
2249                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2250                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2251                                 'H' : '-';
2252                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2253                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2254                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2255                         & SDMA_DESC0_PHY_ADDR_MASK;
2256                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2257                         & SDMA_DESC1_GENERATION_MASK;
2258                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2259                         & SDMA_DESC0_BYTE_COUNT_MASK;
2260                 seq_printf(s,
2261                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2262                            head, flags, addr, gen, len);
2263                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2264                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2265                                    (u8)((desc[1] &
2266                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2267                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2268                                    (u8)((desc[1] &
2269                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2270                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2271                 head = (head + 1) & sde->sdma_mask;
2272         }
2273 }
2274
2275 /*
2276  * add the generation number into
2277  * the qw1 and return
2278  */
2279 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2280 {
2281         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2282
2283         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2284         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2285                         << SDMA_DESC1_GENERATION_SHIFT;
2286         return qw1;
2287 }
2288
2289 /*
2290  * This routine submits the indicated tx
2291  *
2292  * Space has already been guaranteed and
2293  * tail side of ring is locked.
2294  *
2295  * The hardware tail update is done
2296  * in the caller and that is facilitated
2297  * by returning the new tail.
2298  *
2299  * There is special case logic for ahg
2300  * to not add the generation number for
2301  * up to 2 descriptors that follow the
2302  * first descriptor.
2303  *
2304  */
2305 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2306 {
2307         int i;
2308         u16 tail;
2309         struct sdma_desc *descp = tx->descp;
2310         u8 skip = 0, mode = ahg_mode(tx);
2311
2312         tail = sde->descq_tail & sde->sdma_mask;
2313         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2314         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2315         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2316                                    tail, &sde->descq[tail]);
2317         tail = ++sde->descq_tail & sde->sdma_mask;
2318         descp++;
2319         if (mode > SDMA_AHG_APPLY_UPDATE1)
2320                 skip = mode >> 1;
2321         for (i = 1; i < tx->num_desc; i++, descp++) {
2322                 u64 qw1;
2323
2324                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2325                 if (skip) {
2326                         /* edits don't have generation */
2327                         qw1 = descp->qw[1];
2328                         skip--;
2329                 } else {
2330                         /* replace generation with real one for non-edits */
2331                         qw1 = add_gen(sde, descp->qw[1]);
2332                 }
2333                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2334                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2335                                            tail, &sde->descq[tail]);
2336                 tail = ++sde->descq_tail & sde->sdma_mask;
2337         }
2338         tx->next_descq_idx = tail;
2339 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2340         tx->sn = sde->tail_sn++;
2341         trace_hfi1_sdma_in_sn(sde, tx->sn);
2342         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2343 #endif
2344         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2345         sde->desc_avail -= tx->num_desc;
2346         return tail;
2347 }
2348
2349 /*
2350  * Check for progress
2351  */
2352 static int sdma_check_progress(
2353         struct sdma_engine *sde,
2354         struct iowait *wait,
2355         struct sdma_txreq *tx,
2356         bool pkts_sent)
2357 {
2358         int ret;
2359
2360         sde->desc_avail = sdma_descq_freecnt(sde);
2361         if (tx->num_desc <= sde->desc_avail)
2362                 return -EAGAIN;
2363         /* pulse the head_lock */
2364         if (wait && wait->sleep) {
2365                 unsigned seq;
2366
2367                 seq = raw_seqcount_begin(
2368                         (const seqcount_t *)&sde->head_lock.seqcount);
2369                 ret = wait->sleep(sde, wait, tx, seq, pkts_sent);
2370                 if (ret == -EAGAIN)
2371                         sde->desc_avail = sdma_descq_freecnt(sde);
2372         } else {
2373                 ret = -EBUSY;
2374         }
2375         return ret;
2376 }
2377
2378 /**
2379  * sdma_send_txreq() - submit a tx req to ring
2380  * @sde: sdma engine to use
2381  * @wait: wait structure to use when full (may be NULL)
2382  * @tx: sdma_txreq to submit
2383  * @pkts_sent: has any packet been sent yet?
2384  *
2385  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2386  * the packet will be queued to the list in wait.
2387  *
2388  * Return:
2389  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2390  * ring (wait == NULL)
2391  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2392  */
2393 int sdma_send_txreq(struct sdma_engine *sde,
2394                     struct iowait *wait,
2395                     struct sdma_txreq *tx,
2396                     bool pkts_sent)
2397 {
2398         int ret = 0;
2399         u16 tail;
2400         unsigned long flags;
2401
2402         /* user should have supplied entire packet */
2403         if (unlikely(tx->tlen))
2404                 return -EINVAL;
2405         tx->wait = wait;
2406         spin_lock_irqsave(&sde->tail_lock, flags);
2407 retry:
2408         if (unlikely(!__sdma_running(sde)))
2409                 goto unlock_noconn;
2410         if (unlikely(tx->num_desc > sde->desc_avail))
2411                 goto nodesc;
2412         tail = submit_tx(sde, tx);
2413         if (wait)
2414                 iowait_sdma_inc(wait);
2415         sdma_update_tail(sde, tail);
2416 unlock:
2417         spin_unlock_irqrestore(&sde->tail_lock, flags);
2418         return ret;
2419 unlock_noconn:
2420         if (wait)
2421                 iowait_sdma_inc(wait);
2422         tx->next_descq_idx = 0;
2423 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2424         tx->sn = sde->tail_sn++;
2425         trace_hfi1_sdma_in_sn(sde, tx->sn);
2426 #endif
2427         spin_lock(&sde->flushlist_lock);
2428         list_add_tail(&tx->list, &sde->flushlist);
2429         spin_unlock(&sde->flushlist_lock);
2430         if (wait) {
2431                 wait->tx_count++;
2432                 wait->count += tx->num_desc;
2433         }
2434         schedule_work(&sde->flush_worker);
2435         ret = -ECOMM;
2436         goto unlock;
2437 nodesc:
2438         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2439         if (ret == -EAGAIN) {
2440                 ret = 0;
2441                 goto retry;
2442         }
2443         sde->descq_full_count++;
2444         goto unlock;
2445 }
2446
2447 /**
2448  * sdma_send_txlist() - submit a list of tx req to ring
2449  * @sde: sdma engine to use
2450  * @wait: wait structure to use when full (may be NULL)
2451  * @tx_list: list of sdma_txreqs to submit
2452  * @count: pointer to a u32 which, after return will contain the total number of
2453  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2454  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2455  *         which are added to SDMA engine flush list if the SDMA engine state is
2456  *         not running.
2457  *
2458  * The call submits the list into the ring.
2459  *
2460  * If the iowait structure is non-NULL and not equal to the iowait list
2461  * the unprocessed part of the list  will be appended to the list in wait.
2462  *
2463  * In all cases, the tx_list will be updated so the head of the tx_list is
2464  * the list of descriptors that have yet to be transmitted.
2465  *
2466  * The intent of this call is to provide a more efficient
2467  * way of submitting multiple packets to SDMA while holding the tail
2468  * side locking.
2469  *
2470  * Return:
2471  * 0 - Success,
2472  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2473  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2474  */
2475 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2476                      struct list_head *tx_list, u32 *count_out)
2477 {
2478         struct sdma_txreq *tx, *tx_next;
2479         int ret = 0;
2480         unsigned long flags;
2481         u16 tail = INVALID_TAIL;
2482         u32 submit_count = 0, flush_count = 0, total_count;
2483
2484         spin_lock_irqsave(&sde->tail_lock, flags);
2485 retry:
2486         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2487                 tx->wait = wait;
2488                 if (unlikely(!__sdma_running(sde)))
2489                         goto unlock_noconn;
2490                 if (unlikely(tx->num_desc > sde->desc_avail))
2491                         goto nodesc;
2492                 if (unlikely(tx->tlen)) {
2493                         ret = -EINVAL;
2494                         goto update_tail;
2495                 }
2496                 list_del_init(&tx->list);
2497                 tail = submit_tx(sde, tx);
2498                 submit_count++;
2499                 if (tail != INVALID_TAIL &&
2500                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2501                         sdma_update_tail(sde, tail);
2502                         tail = INVALID_TAIL;
2503                 }
2504         }
2505 update_tail:
2506         total_count = submit_count + flush_count;
2507         if (wait) {
2508                 iowait_sdma_add(wait, total_count);
2509                 iowait_starve_clear(submit_count > 0, wait);
2510         }
2511         if (tail != INVALID_TAIL)
2512                 sdma_update_tail(sde, tail);
2513         spin_unlock_irqrestore(&sde->tail_lock, flags);
2514         *count_out = total_count;
2515         return ret;
2516 unlock_noconn:
2517         spin_lock(&sde->flushlist_lock);
2518         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2519                 tx->wait = wait;
2520                 list_del_init(&tx->list);
2521                 tx->next_descq_idx = 0;
2522 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2523                 tx->sn = sde->tail_sn++;
2524                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2525 #endif
2526                 list_add_tail(&tx->list, &sde->flushlist);
2527                 flush_count++;
2528                 if (wait) {
2529                         wait->tx_count++;
2530                         wait->count += tx->num_desc;
2531                 }
2532         }
2533         spin_unlock(&sde->flushlist_lock);
2534         schedule_work(&sde->flush_worker);
2535         ret = -ECOMM;
2536         goto update_tail;
2537 nodesc:
2538         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2539         if (ret == -EAGAIN) {
2540                 ret = 0;
2541                 goto retry;
2542         }
2543         sde->descq_full_count++;
2544         goto update_tail;
2545 }
2546
2547 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2548 {
2549         unsigned long flags;
2550
2551         spin_lock_irqsave(&sde->tail_lock, flags);
2552         write_seqlock(&sde->head_lock);
2553
2554         __sdma_process_event(sde, event);
2555
2556         if (sde->state.current_state == sdma_state_s99_running)
2557                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2558
2559         write_sequnlock(&sde->head_lock);
2560         spin_unlock_irqrestore(&sde->tail_lock, flags);
2561 }
2562
2563 static void __sdma_process_event(struct sdma_engine *sde,
2564                                  enum sdma_events event)
2565 {
2566         struct sdma_state *ss = &sde->state;
2567         int need_progress = 0;
2568
2569         /* CONFIG SDMA temporary */
2570 #ifdef CONFIG_SDMA_VERBOSITY
2571         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2572                    sdma_state_names[ss->current_state],
2573                    sdma_event_names[event]);
2574 #endif
2575
2576         switch (ss->current_state) {
2577         case sdma_state_s00_hw_down:
2578                 switch (event) {
2579                 case sdma_event_e00_go_hw_down:
2580                         break;
2581                 case sdma_event_e30_go_running:
2582                         /*
2583                          * If down, but running requested (usually result
2584                          * of link up, then we need to start up.
2585                          * This can happen when hw down is requested while
2586                          * bringing the link up with traffic active on
2587                          * 7220, e.g.
2588                          */
2589                         ss->go_s99_running = 1;
2590                         /* fall through -- and start dma engine */
2591                 case sdma_event_e10_go_hw_start:
2592                         /* This reference means the state machine is started */
2593                         sdma_get(&sde->state);
2594                         sdma_set_state(sde,
2595                                        sdma_state_s10_hw_start_up_halt_wait);
2596                         break;
2597                 case sdma_event_e15_hw_halt_done:
2598                         break;
2599                 case sdma_event_e25_hw_clean_up_done:
2600                         break;
2601                 case sdma_event_e40_sw_cleaned:
2602                         sdma_sw_tear_down(sde);
2603                         break;
2604                 case sdma_event_e50_hw_cleaned:
2605                         break;
2606                 case sdma_event_e60_hw_halted:
2607                         break;
2608                 case sdma_event_e70_go_idle:
2609                         break;
2610                 case sdma_event_e80_hw_freeze:
2611                         break;
2612                 case sdma_event_e81_hw_frozen:
2613                         break;
2614                 case sdma_event_e82_hw_unfreeze:
2615                         break;
2616                 case sdma_event_e85_link_down:
2617                         break;
2618                 case sdma_event_e90_sw_halted:
2619                         break;
2620                 }
2621                 break;
2622
2623         case sdma_state_s10_hw_start_up_halt_wait:
2624                 switch (event) {
2625                 case sdma_event_e00_go_hw_down:
2626                         sdma_set_state(sde, sdma_state_s00_hw_down);
2627                         sdma_sw_tear_down(sde);
2628                         break;
2629                 case sdma_event_e10_go_hw_start:
2630                         break;
2631                 case sdma_event_e15_hw_halt_done:
2632                         sdma_set_state(sde,
2633                                        sdma_state_s15_hw_start_up_clean_wait);
2634                         sdma_start_hw_clean_up(sde);
2635                         break;
2636                 case sdma_event_e25_hw_clean_up_done:
2637                         break;
2638                 case sdma_event_e30_go_running:
2639                         ss->go_s99_running = 1;
2640                         break;
2641                 case sdma_event_e40_sw_cleaned:
2642                         break;
2643                 case sdma_event_e50_hw_cleaned:
2644                         break;
2645                 case sdma_event_e60_hw_halted:
2646                         schedule_work(&sde->err_halt_worker);
2647                         break;
2648                 case sdma_event_e70_go_idle:
2649                         ss->go_s99_running = 0;
2650                         break;
2651                 case sdma_event_e80_hw_freeze:
2652                         break;
2653                 case sdma_event_e81_hw_frozen:
2654                         break;
2655                 case sdma_event_e82_hw_unfreeze:
2656                         break;
2657                 case sdma_event_e85_link_down:
2658                         break;
2659                 case sdma_event_e90_sw_halted:
2660                         break;
2661                 }
2662                 break;
2663
2664         case sdma_state_s15_hw_start_up_clean_wait:
2665                 switch (event) {
2666                 case sdma_event_e00_go_hw_down:
2667                         sdma_set_state(sde, sdma_state_s00_hw_down);
2668                         sdma_sw_tear_down(sde);
2669                         break;
2670                 case sdma_event_e10_go_hw_start:
2671                         break;
2672                 case sdma_event_e15_hw_halt_done:
2673                         break;
2674                 case sdma_event_e25_hw_clean_up_done:
2675                         sdma_hw_start_up(sde);
2676                         sdma_set_state(sde, ss->go_s99_running ?
2677                                        sdma_state_s99_running :
2678                                        sdma_state_s20_idle);
2679                         break;
2680                 case sdma_event_e30_go_running:
2681                         ss->go_s99_running = 1;
2682                         break;
2683                 case sdma_event_e40_sw_cleaned:
2684                         break;
2685                 case sdma_event_e50_hw_cleaned:
2686                         break;
2687                 case sdma_event_e60_hw_halted:
2688                         break;
2689                 case sdma_event_e70_go_idle:
2690                         ss->go_s99_running = 0;
2691                         break;
2692                 case sdma_event_e80_hw_freeze:
2693                         break;
2694                 case sdma_event_e81_hw_frozen:
2695                         break;
2696                 case sdma_event_e82_hw_unfreeze:
2697                         break;
2698                 case sdma_event_e85_link_down:
2699                         break;
2700                 case sdma_event_e90_sw_halted:
2701                         break;
2702                 }
2703                 break;
2704
2705         case sdma_state_s20_idle:
2706                 switch (event) {
2707                 case sdma_event_e00_go_hw_down:
2708                         sdma_set_state(sde, sdma_state_s00_hw_down);
2709                         sdma_sw_tear_down(sde);
2710                         break;
2711                 case sdma_event_e10_go_hw_start:
2712                         break;
2713                 case sdma_event_e15_hw_halt_done:
2714                         break;
2715                 case sdma_event_e25_hw_clean_up_done:
2716                         break;
2717                 case sdma_event_e30_go_running:
2718                         sdma_set_state(sde, sdma_state_s99_running);
2719                         ss->go_s99_running = 1;
2720                         break;
2721                 case sdma_event_e40_sw_cleaned:
2722                         break;
2723                 case sdma_event_e50_hw_cleaned:
2724                         break;
2725                 case sdma_event_e60_hw_halted:
2726                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2727                         schedule_work(&sde->err_halt_worker);
2728                         break;
2729                 case sdma_event_e70_go_idle:
2730                         break;
2731                 case sdma_event_e85_link_down:
2732                         /* fall through */
2733                 case sdma_event_e80_hw_freeze:
2734                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2735                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2736                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2737                         break;
2738                 case sdma_event_e81_hw_frozen:
2739                         break;
2740                 case sdma_event_e82_hw_unfreeze:
2741                         break;
2742                 case sdma_event_e90_sw_halted:
2743                         break;
2744                 }
2745                 break;
2746
2747         case sdma_state_s30_sw_clean_up_wait:
2748                 switch (event) {
2749                 case sdma_event_e00_go_hw_down:
2750                         sdma_set_state(sde, sdma_state_s00_hw_down);
2751                         break;
2752                 case sdma_event_e10_go_hw_start:
2753                         break;
2754                 case sdma_event_e15_hw_halt_done:
2755                         break;
2756                 case sdma_event_e25_hw_clean_up_done:
2757                         break;
2758                 case sdma_event_e30_go_running:
2759                         ss->go_s99_running = 1;
2760                         break;
2761                 case sdma_event_e40_sw_cleaned:
2762                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2763                         sdma_start_hw_clean_up(sde);
2764                         break;
2765                 case sdma_event_e50_hw_cleaned:
2766                         break;
2767                 case sdma_event_e60_hw_halted:
2768                         break;
2769                 case sdma_event_e70_go_idle:
2770                         ss->go_s99_running = 0;
2771                         break;
2772                 case sdma_event_e80_hw_freeze:
2773                         break;
2774                 case sdma_event_e81_hw_frozen:
2775                         break;
2776                 case sdma_event_e82_hw_unfreeze:
2777                         break;
2778                 case sdma_event_e85_link_down:
2779                         ss->go_s99_running = 0;
2780                         break;
2781                 case sdma_event_e90_sw_halted:
2782                         break;
2783                 }
2784                 break;
2785
2786         case sdma_state_s40_hw_clean_up_wait:
2787                 switch (event) {
2788                 case sdma_event_e00_go_hw_down:
2789                         sdma_set_state(sde, sdma_state_s00_hw_down);
2790                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2791                         break;
2792                 case sdma_event_e10_go_hw_start:
2793                         break;
2794                 case sdma_event_e15_hw_halt_done:
2795                         break;
2796                 case sdma_event_e25_hw_clean_up_done:
2797                         sdma_hw_start_up(sde);
2798                         sdma_set_state(sde, ss->go_s99_running ?
2799                                        sdma_state_s99_running :
2800                                        sdma_state_s20_idle);
2801                         break;
2802                 case sdma_event_e30_go_running:
2803                         ss->go_s99_running = 1;
2804                         break;
2805                 case sdma_event_e40_sw_cleaned:
2806                         break;
2807                 case sdma_event_e50_hw_cleaned:
2808                         break;
2809                 case sdma_event_e60_hw_halted:
2810                         break;
2811                 case sdma_event_e70_go_idle:
2812                         ss->go_s99_running = 0;
2813                         break;
2814                 case sdma_event_e80_hw_freeze:
2815                         break;
2816                 case sdma_event_e81_hw_frozen:
2817                         break;
2818                 case sdma_event_e82_hw_unfreeze:
2819                         break;
2820                 case sdma_event_e85_link_down:
2821                         ss->go_s99_running = 0;
2822                         break;
2823                 case sdma_event_e90_sw_halted:
2824                         break;
2825                 }
2826                 break;
2827
2828         case sdma_state_s50_hw_halt_wait:
2829                 switch (event) {
2830                 case sdma_event_e00_go_hw_down:
2831                         sdma_set_state(sde, sdma_state_s00_hw_down);
2832                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2833                         break;
2834                 case sdma_event_e10_go_hw_start:
2835                         break;
2836                 case sdma_event_e15_hw_halt_done:
2837                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2838                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2839                         break;
2840                 case sdma_event_e25_hw_clean_up_done:
2841                         break;
2842                 case sdma_event_e30_go_running:
2843                         ss->go_s99_running = 1;
2844                         break;
2845                 case sdma_event_e40_sw_cleaned:
2846                         break;
2847                 case sdma_event_e50_hw_cleaned:
2848                         break;
2849                 case sdma_event_e60_hw_halted:
2850                         schedule_work(&sde->err_halt_worker);
2851                         break;
2852                 case sdma_event_e70_go_idle:
2853                         ss->go_s99_running = 0;
2854                         break;
2855                 case sdma_event_e80_hw_freeze:
2856                         break;
2857                 case sdma_event_e81_hw_frozen:
2858                         break;
2859                 case sdma_event_e82_hw_unfreeze:
2860                         break;
2861                 case sdma_event_e85_link_down:
2862                         ss->go_s99_running = 0;
2863                         break;
2864                 case sdma_event_e90_sw_halted:
2865                         break;
2866                 }
2867                 break;
2868
2869         case sdma_state_s60_idle_halt_wait:
2870                 switch (event) {
2871                 case sdma_event_e00_go_hw_down:
2872                         sdma_set_state(sde, sdma_state_s00_hw_down);
2873                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2874                         break;
2875                 case sdma_event_e10_go_hw_start:
2876                         break;
2877                 case sdma_event_e15_hw_halt_done:
2878                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2879                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2880                         break;
2881                 case sdma_event_e25_hw_clean_up_done:
2882                         break;
2883                 case sdma_event_e30_go_running:
2884                         ss->go_s99_running = 1;
2885                         break;
2886                 case sdma_event_e40_sw_cleaned:
2887                         break;
2888                 case sdma_event_e50_hw_cleaned:
2889                         break;
2890                 case sdma_event_e60_hw_halted:
2891                         schedule_work(&sde->err_halt_worker);
2892                         break;
2893                 case sdma_event_e70_go_idle:
2894                         ss->go_s99_running = 0;
2895                         break;
2896                 case sdma_event_e80_hw_freeze:
2897                         break;
2898                 case sdma_event_e81_hw_frozen:
2899                         break;
2900                 case sdma_event_e82_hw_unfreeze:
2901                         break;
2902                 case sdma_event_e85_link_down:
2903                         break;
2904                 case sdma_event_e90_sw_halted:
2905                         break;
2906                 }
2907                 break;
2908
2909         case sdma_state_s80_hw_freeze:
2910                 switch (event) {
2911                 case sdma_event_e00_go_hw_down:
2912                         sdma_set_state(sde, sdma_state_s00_hw_down);
2913                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2914                         break;
2915                 case sdma_event_e10_go_hw_start:
2916                         break;
2917                 case sdma_event_e15_hw_halt_done:
2918                         break;
2919                 case sdma_event_e25_hw_clean_up_done:
2920                         break;
2921                 case sdma_event_e30_go_running:
2922                         ss->go_s99_running = 1;
2923                         break;
2924                 case sdma_event_e40_sw_cleaned:
2925                         break;
2926                 case sdma_event_e50_hw_cleaned:
2927                         break;
2928                 case sdma_event_e60_hw_halted:
2929                         break;
2930                 case sdma_event_e70_go_idle:
2931                         ss->go_s99_running = 0;
2932                         break;
2933                 case sdma_event_e80_hw_freeze:
2934                         break;
2935                 case sdma_event_e81_hw_frozen:
2936                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2937                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2938                         break;
2939                 case sdma_event_e82_hw_unfreeze:
2940                         break;
2941                 case sdma_event_e85_link_down:
2942                         break;
2943                 case sdma_event_e90_sw_halted:
2944                         break;
2945                 }
2946                 break;
2947
2948         case sdma_state_s82_freeze_sw_clean:
2949                 switch (event) {
2950                 case sdma_event_e00_go_hw_down:
2951                         sdma_set_state(sde, sdma_state_s00_hw_down);
2952                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2953                         break;
2954                 case sdma_event_e10_go_hw_start:
2955                         break;
2956                 case sdma_event_e15_hw_halt_done:
2957                         break;
2958                 case sdma_event_e25_hw_clean_up_done:
2959                         break;
2960                 case sdma_event_e30_go_running:
2961                         ss->go_s99_running = 1;
2962                         break;
2963                 case sdma_event_e40_sw_cleaned:
2964                         /* notify caller this engine is done cleaning */
2965                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2966                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2967                         break;
2968                 case sdma_event_e50_hw_cleaned:
2969                         break;
2970                 case sdma_event_e60_hw_halted:
2971                         break;
2972                 case sdma_event_e70_go_idle:
2973                         ss->go_s99_running = 0;
2974                         break;
2975                 case sdma_event_e80_hw_freeze:
2976                         break;
2977                 case sdma_event_e81_hw_frozen:
2978                         break;
2979                 case sdma_event_e82_hw_unfreeze:
2980                         sdma_hw_start_up(sde);
2981                         sdma_set_state(sde, ss->go_s99_running ?
2982                                        sdma_state_s99_running :
2983                                        sdma_state_s20_idle);
2984                         break;
2985                 case sdma_event_e85_link_down:
2986                         break;
2987                 case sdma_event_e90_sw_halted:
2988                         break;
2989                 }
2990                 break;
2991
2992         case sdma_state_s99_running:
2993                 switch (event) {
2994                 case sdma_event_e00_go_hw_down:
2995                         sdma_set_state(sde, sdma_state_s00_hw_down);
2996                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2997                         break;
2998                 case sdma_event_e10_go_hw_start:
2999                         break;
3000                 case sdma_event_e15_hw_halt_done:
3001                         break;
3002                 case sdma_event_e25_hw_clean_up_done:
3003                         break;
3004                 case sdma_event_e30_go_running:
3005                         break;
3006                 case sdma_event_e40_sw_cleaned:
3007                         break;
3008                 case sdma_event_e50_hw_cleaned:
3009                         break;
3010                 case sdma_event_e60_hw_halted:
3011                         need_progress = 1;
3012                         sdma_err_progress_check_schedule(sde);
3013                         /* fall through */
3014                 case sdma_event_e90_sw_halted:
3015                         /*
3016                         * SW initiated halt does not perform engines
3017                         * progress check
3018                         */
3019                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3020                         schedule_work(&sde->err_halt_worker);
3021                         break;
3022                 case sdma_event_e70_go_idle:
3023                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3024                         break;
3025                 case sdma_event_e85_link_down:
3026                         ss->go_s99_running = 0;
3027                         /* fall through */
3028                 case sdma_event_e80_hw_freeze:
3029                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3030                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3031                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3032                         break;
3033                 case sdma_event_e81_hw_frozen:
3034                         break;
3035                 case sdma_event_e82_hw_unfreeze:
3036                         break;
3037                 }
3038                 break;
3039         }
3040
3041         ss->last_event = event;
3042         if (need_progress)
3043                 sdma_make_progress(sde, 0);
3044 }
3045
3046 /*
3047  * _extend_sdma_tx_descs() - helper to extend txreq
3048  *
3049  * This is called once the initial nominal allocation
3050  * of descriptors in the sdma_txreq is exhausted.
3051  *
3052  * The code will bump the allocation up to the max
3053  * of MAX_DESC (64) descriptors. There doesn't seem
3054  * much point in an interim step. The last descriptor
3055  * is reserved for coalesce buffer in order to support
3056  * cases where input packet has >MAX_DESC iovecs.
3057  *
3058  */
3059 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3060 {
3061         int i;
3062
3063         /* Handle last descriptor */
3064         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3065                 /* if tlen is 0, it is for padding, release last descriptor */
3066                 if (!tx->tlen) {
3067                         tx->desc_limit = MAX_DESC;
3068                 } else if (!tx->coalesce_buf) {
3069                         /* allocate coalesce buffer with space for padding */
3070                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3071                                                    GFP_ATOMIC);
3072                         if (!tx->coalesce_buf)
3073                                 goto enomem;
3074                         tx->coalesce_idx = 0;
3075                 }
3076                 return 0;
3077         }
3078
3079         if (unlikely(tx->num_desc == MAX_DESC))
3080                 goto enomem;
3081
3082         tx->descp = kmalloc_array(
3083                         MAX_DESC,
3084                         sizeof(struct sdma_desc),
3085                         GFP_ATOMIC);
3086         if (!tx->descp)
3087                 goto enomem;
3088
3089         /* reserve last descriptor for coalescing */
3090         tx->desc_limit = MAX_DESC - 1;
3091         /* copy ones already built */
3092         for (i = 0; i < tx->num_desc; i++)
3093                 tx->descp[i] = tx->descs[i];
3094         return 0;
3095 enomem:
3096         __sdma_txclean(dd, tx);
3097         return -ENOMEM;
3098 }
3099
3100 /*
3101  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3102  *
3103  * This is called once the initial nominal allocation of descriptors
3104  * in the sdma_txreq is exhausted.
3105  *
3106  * This function calls _extend_sdma_tx_descs to extend or allocate
3107  * coalesce buffer. If there is a allocated coalesce buffer, it will
3108  * copy the input packet data into the coalesce buffer. It also adds
3109  * coalesce buffer descriptor once when whole packet is received.
3110  *
3111  * Return:
3112  * <0 - error
3113  * 0 - coalescing, don't populate descriptor
3114  * 1 - continue with populating descriptor
3115  */
3116 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3117                            int type, void *kvaddr, struct page *page,
3118                            unsigned long offset, u16 len)
3119 {
3120         int pad_len, rval;
3121         dma_addr_t addr;
3122
3123         rval = _extend_sdma_tx_descs(dd, tx);
3124         if (rval) {
3125                 __sdma_txclean(dd, tx);
3126                 return rval;
3127         }
3128
3129         /* If coalesce buffer is allocated, copy data into it */
3130         if (tx->coalesce_buf) {
3131                 if (type == SDMA_MAP_NONE) {
3132                         __sdma_txclean(dd, tx);
3133                         return -EINVAL;
3134                 }
3135
3136                 if (type == SDMA_MAP_PAGE) {
3137                         kvaddr = kmap(page);
3138                         kvaddr += offset;
3139                 } else if (WARN_ON(!kvaddr)) {
3140                         __sdma_txclean(dd, tx);
3141                         return -EINVAL;
3142                 }
3143
3144                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3145                 tx->coalesce_idx += len;
3146                 if (type == SDMA_MAP_PAGE)
3147                         kunmap(page);
3148
3149                 /* If there is more data, return */
3150                 if (tx->tlen - tx->coalesce_idx)
3151                         return 0;
3152
3153                 /* Whole packet is received; add any padding */
3154                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3155                 if (pad_len) {
3156                         pad_len = sizeof(u32) - pad_len;
3157                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3158                         /* padding is taken care of for coalescing case */
3159                         tx->packet_len += pad_len;
3160                         tx->tlen += pad_len;
3161                 }
3162
3163                 /* dma map the coalesce buffer */
3164                 addr = dma_map_single(&dd->pcidev->dev,
3165                                       tx->coalesce_buf,
3166                                       tx->tlen,
3167                                       DMA_TO_DEVICE);
3168
3169                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3170                         __sdma_txclean(dd, tx);
3171                         return -ENOSPC;
3172                 }
3173
3174                 /* Add descriptor for coalesce buffer */
3175                 tx->desc_limit = MAX_DESC;
3176                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3177                                          addr, tx->tlen);
3178         }
3179
3180         return 1;
3181 }
3182
3183 /* Update sdes when the lmc changes */
3184 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3185 {
3186         struct sdma_engine *sde;
3187         int i;
3188         u64 sreg;
3189
3190         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3191                 SD(CHECK_SLID_MASK_SHIFT)) |
3192                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3193                 SD(CHECK_SLID_VALUE_SHIFT));
3194
3195         for (i = 0; i < dd->num_sdma; i++) {
3196                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3197                           i, (u32)sreg);
3198                 sde = &dd->per_sdma[i];
3199                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3200         }
3201 }
3202
3203 /* tx not dword sized - pad */
3204 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3205 {
3206         int rval = 0;
3207
3208         tx->num_desc++;
3209         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3210                 rval = _extend_sdma_tx_descs(dd, tx);
3211                 if (rval) {
3212                         __sdma_txclean(dd, tx);
3213                         return rval;
3214                 }
3215         }
3216         /* finish the one just added */
3217         make_tx_sdma_desc(
3218                 tx,
3219                 SDMA_MAP_NONE,
3220                 dd->sdma_pad_phys,
3221                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3222         _sdma_close_tx(dd, tx);
3223         return rval;
3224 }
3225
3226 /*
3227  * Add ahg to the sdma_txreq
3228  *
3229  * The logic will consume up to 3
3230  * descriptors at the beginning of
3231  * sdma_txreq.
3232  */
3233 void _sdma_txreq_ahgadd(
3234         struct sdma_txreq *tx,
3235         u8 num_ahg,
3236         u8 ahg_entry,
3237         u32 *ahg,
3238         u8 ahg_hlen)
3239 {
3240         u32 i, shift = 0, desc = 0;
3241         u8 mode;
3242
3243         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3244         /* compute mode */
3245         if (num_ahg == 1)
3246                 mode = SDMA_AHG_APPLY_UPDATE1;
3247         else if (num_ahg <= 5)
3248                 mode = SDMA_AHG_APPLY_UPDATE2;
3249         else
3250                 mode = SDMA_AHG_APPLY_UPDATE3;
3251         tx->num_desc++;
3252         /* initialize to consumed descriptors to zero */
3253         switch (mode) {
3254         case SDMA_AHG_APPLY_UPDATE3:
3255                 tx->num_desc++;
3256                 tx->descs[2].qw[0] = 0;
3257                 tx->descs[2].qw[1] = 0;
3258                 /* FALLTHROUGH */
3259         case SDMA_AHG_APPLY_UPDATE2:
3260                 tx->num_desc++;
3261                 tx->descs[1].qw[0] = 0;
3262                 tx->descs[1].qw[1] = 0;
3263                 break;
3264         }
3265         ahg_hlen >>= 2;
3266         tx->descs[0].qw[1] |=
3267                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3268                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3269                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3270                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3271                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3272                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3273                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3274                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3275         for (i = 0; i < (num_ahg - 1); i++) {
3276                 if (!shift && !(i & 2))
3277                         desc++;
3278                 tx->descs[desc].qw[!!(i & 2)] |=
3279                         (((u64)ahg[i + 1])
3280                                 << shift);
3281                 shift = (shift + 32) & 63;
3282         }
3283 }
3284
3285 /**
3286  * sdma_ahg_alloc - allocate an AHG entry
3287  * @sde: engine to allocate from
3288  *
3289  * Return:
3290  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3291  * -ENOSPC if an entry is not available
3292  */
3293 int sdma_ahg_alloc(struct sdma_engine *sde)
3294 {
3295         int nr;
3296         int oldbit;
3297
3298         if (!sde) {
3299                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3300                 return -EINVAL;
3301         }
3302         while (1) {
3303                 nr = ffz(READ_ONCE(sde->ahg_bits));
3304                 if (nr > 31) {
3305                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3306                         return -ENOSPC;
3307                 }
3308                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3309                 if (!oldbit)
3310                         break;
3311                 cpu_relax();
3312         }
3313         trace_hfi1_ahg_allocate(sde, nr);
3314         return nr;
3315 }
3316
3317 /**
3318  * sdma_ahg_free - free an AHG entry
3319  * @sde: engine to return AHG entry
3320  * @ahg_index: index to free
3321  *
3322  * This routine frees the indicate AHG entry.
3323  */
3324 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3325 {
3326         if (!sde)
3327                 return;
3328         trace_hfi1_ahg_deallocate(sde, ahg_index);
3329         if (ahg_index < 0 || ahg_index > 31)
3330                 return;
3331         clear_bit(ahg_index, &sde->ahg_bits);
3332 }
3333
3334 /*
3335  * SPC freeze handling for SDMA engines.  Called when the driver knows
3336  * the SPC is going into a freeze but before the freeze is fully
3337  * settled.  Generally an error interrupt.
3338  *
3339  * This event will pull the engine out of running so no more entries can be
3340  * added to the engine's queue.
3341  */
3342 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3343 {
3344         int i;
3345         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3346                                              sdma_event_e80_hw_freeze;
3347
3348         /* set up the wait but do not wait here */
3349         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3350
3351         /* tell all engines to stop running and wait */
3352         for (i = 0; i < dd->num_sdma; i++)
3353                 sdma_process_event(&dd->per_sdma[i], event);
3354
3355         /* sdma_freeze() will wait for all engines to have stopped */
3356 }
3357
3358 /*
3359  * SPC freeze handling for SDMA engines.  Called when the driver knows
3360  * the SPC is fully frozen.
3361  */
3362 void sdma_freeze(struct hfi1_devdata *dd)
3363 {
3364         int i;
3365         int ret;
3366
3367         /*
3368          * Make sure all engines have moved out of the running state before
3369          * continuing.
3370          */
3371         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3372                                        atomic_read(&dd->sdma_unfreeze_count) <=
3373                                        0);
3374         /* interrupted or count is negative, then unloading - just exit */
3375         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3376                 return;
3377
3378         /* set up the count for the next wait */
3379         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3380
3381         /* tell all engines that the SPC is frozen, they can start cleaning */
3382         for (i = 0; i < dd->num_sdma; i++)
3383                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3384
3385         /*
3386          * Wait for everyone to finish software clean before exiting.  The
3387          * software clean will read engine CSRs, so must be completed before
3388          * the next step, which will clear the engine CSRs.
3389          */
3390         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3391                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3392         /* no need to check results - done no matter what */
3393 }
3394
3395 /*
3396  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3397  *
3398  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3399  * that is left is a software clean.  We could do it after the SPC is fully
3400  * frozen, but then we'd have to add another state to wait for the unfreeze.
3401  * Instead, just defer the software clean until the unfreeze step.
3402  */
3403 void sdma_unfreeze(struct hfi1_devdata *dd)
3404 {
3405         int i;
3406
3407         /* tell all engines start freeze clean up */
3408         for (i = 0; i < dd->num_sdma; i++)
3409                 sdma_process_event(&dd->per_sdma[i],
3410                                    sdma_event_e82_hw_unfreeze);
3411 }
3412
3413 /**
3414  * _sdma_engine_progress_schedule() - schedule progress on engine
3415  * @sde: sdma_engine to schedule progress
3416  *
3417  */
3418 void _sdma_engine_progress_schedule(
3419         struct sdma_engine *sde)
3420 {
3421         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3422         /* assume we have selected a good cpu */
3423         write_csr(sde->dd,
3424                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3425                   sde->progress_mask);
3426 }