Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[linux-2.6-block.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52
53 #include "core_priv.h"
54
55 static const char * const ib_events[] = {
56         [IB_EVENT_CQ_ERR]               = "CQ error",
57         [IB_EVENT_QP_FATAL]             = "QP fatal error",
58         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
59         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
60         [IB_EVENT_COMM_EST]             = "communication established",
61         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
62         [IB_EVENT_PATH_MIG]             = "path migration successful",
63         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
64         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
65         [IB_EVENT_PORT_ACTIVE]          = "port active",
66         [IB_EVENT_PORT_ERR]             = "port error",
67         [IB_EVENT_LID_CHANGE]           = "LID change",
68         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
69         [IB_EVENT_SM_CHANGE]            = "SM change",
70         [IB_EVENT_SRQ_ERR]              = "SRQ error",
71         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
72         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
73         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
74         [IB_EVENT_GID_CHANGE]           = "GID changed",
75 };
76
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79         size_t index = event;
80
81         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82                         ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85
86 static const char * const wc_statuses[] = {
87         [IB_WC_SUCCESS]                 = "success",
88         [IB_WC_LOC_LEN_ERR]             = "local length error",
89         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
90         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
91         [IB_WC_LOC_PROT_ERR]            = "local protection error",
92         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
93         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
94         [IB_WC_BAD_RESP_ERR]            = "bad response error",
95         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
96         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
97         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
98         [IB_WC_REM_OP_ERR]              = "remote operation error",
99         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
100         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
101         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
102         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
103         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
104         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
105         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
106         [IB_WC_FATAL_ERR]               = "fatal error",
107         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
108         [IB_WC_GENERAL_ERR]             = "general error",
109 };
110
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113         size_t index = status;
114
115         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116                         wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122         switch (rate) {
123         case IB_RATE_2_5_GBPS: return  1;
124         case IB_RATE_5_GBPS:   return  2;
125         case IB_RATE_10_GBPS:  return  4;
126         case IB_RATE_20_GBPS:  return  8;
127         case IB_RATE_30_GBPS:  return 12;
128         case IB_RATE_40_GBPS:  return 16;
129         case IB_RATE_60_GBPS:  return 24;
130         case IB_RATE_80_GBPS:  return 32;
131         case IB_RATE_120_GBPS: return 48;
132         default:               return -1;
133         }
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139         switch (mult) {
140         case 1:  return IB_RATE_2_5_GBPS;
141         case 2:  return IB_RATE_5_GBPS;
142         case 4:  return IB_RATE_10_GBPS;
143         case 8:  return IB_RATE_20_GBPS;
144         case 12: return IB_RATE_30_GBPS;
145         case 16: return IB_RATE_40_GBPS;
146         case 24: return IB_RATE_60_GBPS;
147         case 32: return IB_RATE_80_GBPS;
148         case 48: return IB_RATE_120_GBPS;
149         default: return IB_RATE_PORT_CURRENT;
150         }
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156         switch (rate) {
157         case IB_RATE_2_5_GBPS: return 2500;
158         case IB_RATE_5_GBPS:   return 5000;
159         case IB_RATE_10_GBPS:  return 10000;
160         case IB_RATE_20_GBPS:  return 20000;
161         case IB_RATE_30_GBPS:  return 30000;
162         case IB_RATE_40_GBPS:  return 40000;
163         case IB_RATE_60_GBPS:  return 60000;
164         case IB_RATE_80_GBPS:  return 80000;
165         case IB_RATE_120_GBPS: return 120000;
166         case IB_RATE_14_GBPS:  return 14062;
167         case IB_RATE_56_GBPS:  return 56250;
168         case IB_RATE_112_GBPS: return 112500;
169         case IB_RATE_168_GBPS: return 168750;
170         case IB_RATE_25_GBPS:  return 25781;
171         case IB_RATE_100_GBPS: return 103125;
172         case IB_RATE_200_GBPS: return 206250;
173         case IB_RATE_300_GBPS: return 309375;
174         default:               return -1;
175         }
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182         switch (node_type) {
183         case RDMA_NODE_IB_CA:
184         case RDMA_NODE_IB_SWITCH:
185         case RDMA_NODE_IB_ROUTER:
186                 return RDMA_TRANSPORT_IB;
187         case RDMA_NODE_RNIC:
188                 return RDMA_TRANSPORT_IWARP;
189         case RDMA_NODE_USNIC:
190                 return RDMA_TRANSPORT_USNIC;
191         case RDMA_NODE_USNIC_UDP:
192                 return RDMA_TRANSPORT_USNIC_UDP;
193         default:
194                 BUG();
195                 return 0;
196         }
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202         if (device->get_link_layer)
203                 return device->get_link_layer(device, port_num);
204
205         switch (rdma_node_get_transport(device->node_type)) {
206         case RDMA_TRANSPORT_IB:
207                 return IB_LINK_LAYER_INFINIBAND;
208         case RDMA_TRANSPORT_IWARP:
209         case RDMA_TRANSPORT_USNIC:
210         case RDMA_TRANSPORT_USNIC_UDP:
211                 return IB_LINK_LAYER_ETHERNET;
212         default:
213                 return IB_LINK_LAYER_UNSPECIFIED;
214         }
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217
218 /* Protection domains */
219
220 /**
221  * ib_alloc_pd - Allocates an unused protection domain.
222  * @device: The device on which to allocate the protection domain.
223  *
224  * A protection domain object provides an association between QPs, shared
225  * receive queues, address handles, memory regions, and memory windows.
226  *
227  * Every PD has a local_dma_lkey which can be used as the lkey value for local
228  * memory operations.
229  */
230 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
231                 const char *caller)
232 {
233         struct ib_pd *pd;
234         int mr_access_flags = 0;
235
236         pd = device->alloc_pd(device, NULL, NULL);
237         if (IS_ERR(pd))
238                 return pd;
239
240         pd->device = device;
241         pd->uobject = NULL;
242         pd->__internal_mr = NULL;
243         atomic_set(&pd->usecnt, 0);
244         pd->flags = flags;
245
246         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
247                 pd->local_dma_lkey = device->local_dma_lkey;
248         else
249                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
250
251         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
252                 pr_warn("%s: enabling unsafe global rkey\n", caller);
253                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
254         }
255
256         if (mr_access_flags) {
257                 struct ib_mr *mr;
258
259                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
260                 if (IS_ERR(mr)) {
261                         ib_dealloc_pd(pd);
262                         return ERR_CAST(mr);
263                 }
264
265                 mr->device      = pd->device;
266                 mr->pd          = pd;
267                 mr->uobject     = NULL;
268                 mr->need_inval  = false;
269
270                 pd->__internal_mr = mr;
271
272                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
273                         pd->local_dma_lkey = pd->__internal_mr->lkey;
274
275                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
276                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
277         }
278
279         return pd;
280 }
281 EXPORT_SYMBOL(__ib_alloc_pd);
282
283 /**
284  * ib_dealloc_pd - Deallocates a protection domain.
285  * @pd: The protection domain to deallocate.
286  *
287  * It is an error to call this function while any resources in the pd still
288  * exist.  The caller is responsible to synchronously destroy them and
289  * guarantee no new allocations will happen.
290  */
291 void ib_dealloc_pd(struct ib_pd *pd)
292 {
293         int ret;
294
295         if (pd->__internal_mr) {
296                 ret = pd->device->dereg_mr(pd->__internal_mr);
297                 WARN_ON(ret);
298                 pd->__internal_mr = NULL;
299         }
300
301         /* uverbs manipulates usecnt with proper locking, while the kabi
302            requires the caller to guarantee we can't race here. */
303         WARN_ON(atomic_read(&pd->usecnt));
304
305         /* Making delalloc_pd a void return is a WIP, no driver should return
306            an error here. */
307         ret = pd->device->dealloc_pd(pd);
308         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
309 }
310 EXPORT_SYMBOL(ib_dealloc_pd);
311
312 /* Address handles */
313
314 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
315 {
316         struct ib_ah *ah;
317
318         ah = pd->device->create_ah(pd, ah_attr, NULL);
319
320         if (!IS_ERR(ah)) {
321                 ah->device  = pd->device;
322                 ah->pd      = pd;
323                 ah->uobject = NULL;
324                 ah->type    = ah_attr->type;
325                 atomic_inc(&pd->usecnt);
326         }
327
328         return ah;
329 }
330 EXPORT_SYMBOL(rdma_create_ah);
331
332 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
333 {
334         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
335         struct iphdr ip4h_checked;
336         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
337
338         /* If it's IPv6, the version must be 6, otherwise, the first
339          * 20 bytes (before the IPv4 header) are garbled.
340          */
341         if (ip6h->version != 6)
342                 return (ip4h->version == 4) ? 4 : 0;
343         /* version may be 6 or 4 because the first 20 bytes could be garbled */
344
345         /* RoCE v2 requires no options, thus header length
346          * must be 5 words
347          */
348         if (ip4h->ihl != 5)
349                 return 6;
350
351         /* Verify checksum.
352          * We can't write on scattered buffers so we need to copy to
353          * temp buffer.
354          */
355         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
356         ip4h_checked.check = 0;
357         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
358         /* if IPv4 header checksum is OK, believe it */
359         if (ip4h->check == ip4h_checked.check)
360                 return 4;
361         return 6;
362 }
363 EXPORT_SYMBOL(ib_get_rdma_header_version);
364
365 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
366                                                      u8 port_num,
367                                                      const struct ib_grh *grh)
368 {
369         int grh_version;
370
371         if (rdma_protocol_ib(device, port_num))
372                 return RDMA_NETWORK_IB;
373
374         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
375
376         if (grh_version == 4)
377                 return RDMA_NETWORK_IPV4;
378
379         if (grh->next_hdr == IPPROTO_UDP)
380                 return RDMA_NETWORK_IPV6;
381
382         return RDMA_NETWORK_ROCE_V1;
383 }
384
385 struct find_gid_index_context {
386         u16 vlan_id;
387         enum ib_gid_type gid_type;
388 };
389
390 static bool find_gid_index(const union ib_gid *gid,
391                            const struct ib_gid_attr *gid_attr,
392                            void *context)
393 {
394         struct find_gid_index_context *ctx =
395                 (struct find_gid_index_context *)context;
396
397         if (ctx->gid_type != gid_attr->gid_type)
398                 return false;
399
400         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
401             (is_vlan_dev(gid_attr->ndev) &&
402              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
403                 return false;
404
405         return true;
406 }
407
408 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
409                                    u16 vlan_id, const union ib_gid *sgid,
410                                    enum ib_gid_type gid_type,
411                                    u16 *gid_index)
412 {
413         struct find_gid_index_context context = {.vlan_id = vlan_id,
414                                                  .gid_type = gid_type};
415
416         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
417                                      &context, gid_index);
418 }
419
420 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
421                               enum rdma_network_type net_type,
422                               union ib_gid *sgid, union ib_gid *dgid)
423 {
424         struct sockaddr_in  src_in;
425         struct sockaddr_in  dst_in;
426         __be32 src_saddr, dst_saddr;
427
428         if (!sgid || !dgid)
429                 return -EINVAL;
430
431         if (net_type == RDMA_NETWORK_IPV4) {
432                 memcpy(&src_in.sin_addr.s_addr,
433                        &hdr->roce4grh.saddr, 4);
434                 memcpy(&dst_in.sin_addr.s_addr,
435                        &hdr->roce4grh.daddr, 4);
436                 src_saddr = src_in.sin_addr.s_addr;
437                 dst_saddr = dst_in.sin_addr.s_addr;
438                 ipv6_addr_set_v4mapped(src_saddr,
439                                        (struct in6_addr *)sgid);
440                 ipv6_addr_set_v4mapped(dst_saddr,
441                                        (struct in6_addr *)dgid);
442                 return 0;
443         } else if (net_type == RDMA_NETWORK_IPV6 ||
444                    net_type == RDMA_NETWORK_IB) {
445                 *dgid = hdr->ibgrh.dgid;
446                 *sgid = hdr->ibgrh.sgid;
447                 return 0;
448         } else {
449                 return -EINVAL;
450         }
451 }
452 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
453
454 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
455                        const struct ib_wc *wc, const struct ib_grh *grh,
456                        struct rdma_ah_attr *ah_attr)
457 {
458         u32 flow_class;
459         u16 gid_index;
460         int ret;
461         enum rdma_network_type net_type = RDMA_NETWORK_IB;
462         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
463         int hoplimit = 0xff;
464         union ib_gid dgid;
465         union ib_gid sgid;
466
467         memset(ah_attr, 0, sizeof *ah_attr);
468         ah_attr->type = rdma_ah_find_type(device, port_num);
469         if (rdma_cap_eth_ah(device, port_num)) {
470                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
471                         net_type = wc->network_hdr_type;
472                 else
473                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
474                 gid_type = ib_network_to_gid_type(net_type);
475         }
476         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
477                                         &sgid, &dgid);
478         if (ret)
479                 return ret;
480
481         if (rdma_protocol_roce(device, port_num)) {
482                 int if_index = 0;
483                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
484                                 wc->vlan_id : 0xffff;
485                 struct net_device *idev;
486                 struct net_device *resolved_dev;
487
488                 if (!(wc->wc_flags & IB_WC_GRH))
489                         return -EPROTOTYPE;
490
491                 if (!device->get_netdev)
492                         return -EOPNOTSUPP;
493
494                 idev = device->get_netdev(device, port_num);
495                 if (!idev)
496                         return -ENODEV;
497
498                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
499                                                    ah_attr->roce.dmac,
500                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
501                                                    NULL : &vlan_id,
502                                                    &if_index, &hoplimit);
503                 if (ret) {
504                         dev_put(idev);
505                         return ret;
506                 }
507
508                 resolved_dev = dev_get_by_index(&init_net, if_index);
509                 if (resolved_dev->flags & IFF_LOOPBACK) {
510                         dev_put(resolved_dev);
511                         resolved_dev = idev;
512                         dev_hold(resolved_dev);
513                 }
514                 rcu_read_lock();
515                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
516                                                                    resolved_dev))
517                         ret = -EHOSTUNREACH;
518                 rcu_read_unlock();
519                 dev_put(idev);
520                 dev_put(resolved_dev);
521                 if (ret)
522                         return ret;
523
524                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
525                                               &dgid, gid_type, &gid_index);
526                 if (ret)
527                         return ret;
528         }
529
530         rdma_ah_set_dlid(ah_attr, wc->slid);
531         rdma_ah_set_sl(ah_attr, wc->sl);
532         rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
533         rdma_ah_set_port_num(ah_attr, port_num);
534
535         if (wc->wc_flags & IB_WC_GRH) {
536                 if (!rdma_cap_eth_ah(device, port_num)) {
537                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
538                                 ret = ib_find_cached_gid_by_port(device, &dgid,
539                                                                  IB_GID_TYPE_IB,
540                                                                  port_num, NULL,
541                                                                  &gid_index);
542                                 if (ret)
543                                         return ret;
544                         } else {
545                                 gid_index = 0;
546                         }
547                 }
548
549                 flow_class = be32_to_cpu(grh->version_tclass_flow);
550                 rdma_ah_set_grh(ah_attr, &sgid,
551                                 flow_class & 0xFFFFF,
552                                 (u8)gid_index, hoplimit,
553                                 (flow_class >> 20) & 0xFF);
554
555         }
556         return 0;
557 }
558 EXPORT_SYMBOL(ib_init_ah_from_wc);
559
560 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
561                                    const struct ib_grh *grh, u8 port_num)
562 {
563         struct rdma_ah_attr ah_attr;
564         int ret;
565
566         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
567         if (ret)
568                 return ERR_PTR(ret);
569
570         return rdma_create_ah(pd, &ah_attr);
571 }
572 EXPORT_SYMBOL(ib_create_ah_from_wc);
573
574 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
575 {
576         if (ah->type != ah_attr->type)
577                 return -EINVAL;
578
579         return ah->device->modify_ah ?
580                 ah->device->modify_ah(ah, ah_attr) :
581                 -ENOSYS;
582 }
583 EXPORT_SYMBOL(rdma_modify_ah);
584
585 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
586 {
587         return ah->device->query_ah ?
588                 ah->device->query_ah(ah, ah_attr) :
589                 -ENOSYS;
590 }
591 EXPORT_SYMBOL(rdma_query_ah);
592
593 int rdma_destroy_ah(struct ib_ah *ah)
594 {
595         struct ib_pd *pd;
596         int ret;
597
598         pd = ah->pd;
599         ret = ah->device->destroy_ah(ah);
600         if (!ret)
601                 atomic_dec(&pd->usecnt);
602
603         return ret;
604 }
605 EXPORT_SYMBOL(rdma_destroy_ah);
606
607 /* Shared receive queues */
608
609 struct ib_srq *ib_create_srq(struct ib_pd *pd,
610                              struct ib_srq_init_attr *srq_init_attr)
611 {
612         struct ib_srq *srq;
613
614         if (!pd->device->create_srq)
615                 return ERR_PTR(-ENOSYS);
616
617         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
618
619         if (!IS_ERR(srq)) {
620                 srq->device        = pd->device;
621                 srq->pd            = pd;
622                 srq->uobject       = NULL;
623                 srq->event_handler = srq_init_attr->event_handler;
624                 srq->srq_context   = srq_init_attr->srq_context;
625                 srq->srq_type      = srq_init_attr->srq_type;
626                 if (srq->srq_type == IB_SRQT_XRC) {
627                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
628                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
629                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
630                         atomic_inc(&srq->ext.xrc.cq->usecnt);
631                 }
632                 atomic_inc(&pd->usecnt);
633                 atomic_set(&srq->usecnt, 0);
634         }
635
636         return srq;
637 }
638 EXPORT_SYMBOL(ib_create_srq);
639
640 int ib_modify_srq(struct ib_srq *srq,
641                   struct ib_srq_attr *srq_attr,
642                   enum ib_srq_attr_mask srq_attr_mask)
643 {
644         return srq->device->modify_srq ?
645                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
646                 -ENOSYS;
647 }
648 EXPORT_SYMBOL(ib_modify_srq);
649
650 int ib_query_srq(struct ib_srq *srq,
651                  struct ib_srq_attr *srq_attr)
652 {
653         return srq->device->query_srq ?
654                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
655 }
656 EXPORT_SYMBOL(ib_query_srq);
657
658 int ib_destroy_srq(struct ib_srq *srq)
659 {
660         struct ib_pd *pd;
661         enum ib_srq_type srq_type;
662         struct ib_xrcd *uninitialized_var(xrcd);
663         struct ib_cq *uninitialized_var(cq);
664         int ret;
665
666         if (atomic_read(&srq->usecnt))
667                 return -EBUSY;
668
669         pd = srq->pd;
670         srq_type = srq->srq_type;
671         if (srq_type == IB_SRQT_XRC) {
672                 xrcd = srq->ext.xrc.xrcd;
673                 cq = srq->ext.xrc.cq;
674         }
675
676         ret = srq->device->destroy_srq(srq);
677         if (!ret) {
678                 atomic_dec(&pd->usecnt);
679                 if (srq_type == IB_SRQT_XRC) {
680                         atomic_dec(&xrcd->usecnt);
681                         atomic_dec(&cq->usecnt);
682                 }
683         }
684
685         return ret;
686 }
687 EXPORT_SYMBOL(ib_destroy_srq);
688
689 /* Queue pairs */
690
691 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
692 {
693         struct ib_qp *qp = context;
694         unsigned long flags;
695
696         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
697         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
698                 if (event->element.qp->event_handler)
699                         event->element.qp->event_handler(event, event->element.qp->qp_context);
700         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
701 }
702
703 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
704 {
705         mutex_lock(&xrcd->tgt_qp_mutex);
706         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
707         mutex_unlock(&xrcd->tgt_qp_mutex);
708 }
709
710 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
711                                   void (*event_handler)(struct ib_event *, void *),
712                                   void *qp_context)
713 {
714         struct ib_qp *qp;
715         unsigned long flags;
716
717         qp = kzalloc(sizeof *qp, GFP_KERNEL);
718         if (!qp)
719                 return ERR_PTR(-ENOMEM);
720
721         qp->real_qp = real_qp;
722         atomic_inc(&real_qp->usecnt);
723         qp->device = real_qp->device;
724         qp->event_handler = event_handler;
725         qp->qp_context = qp_context;
726         qp->qp_num = real_qp->qp_num;
727         qp->qp_type = real_qp->qp_type;
728
729         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
730         list_add(&qp->open_list, &real_qp->open_list);
731         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
732
733         return qp;
734 }
735
736 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
737                          struct ib_qp_open_attr *qp_open_attr)
738 {
739         struct ib_qp *qp, *real_qp;
740
741         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
742                 return ERR_PTR(-EINVAL);
743
744         qp = ERR_PTR(-EINVAL);
745         mutex_lock(&xrcd->tgt_qp_mutex);
746         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
747                 if (real_qp->qp_num == qp_open_attr->qp_num) {
748                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
749                                           qp_open_attr->qp_context);
750                         break;
751                 }
752         }
753         mutex_unlock(&xrcd->tgt_qp_mutex);
754         return qp;
755 }
756 EXPORT_SYMBOL(ib_open_qp);
757
758 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
759                 struct ib_qp_init_attr *qp_init_attr)
760 {
761         struct ib_qp *real_qp = qp;
762
763         qp->event_handler = __ib_shared_qp_event_handler;
764         qp->qp_context = qp;
765         qp->pd = NULL;
766         qp->send_cq = qp->recv_cq = NULL;
767         qp->srq = NULL;
768         qp->xrcd = qp_init_attr->xrcd;
769         atomic_inc(&qp_init_attr->xrcd->usecnt);
770         INIT_LIST_HEAD(&qp->open_list);
771
772         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
773                           qp_init_attr->qp_context);
774         if (!IS_ERR(qp))
775                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
776         else
777                 real_qp->device->destroy_qp(real_qp);
778         return qp;
779 }
780
781 struct ib_qp *ib_create_qp(struct ib_pd *pd,
782                            struct ib_qp_init_attr *qp_init_attr)
783 {
784         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
785         struct ib_qp *qp;
786         int ret;
787
788         if (qp_init_attr->rwq_ind_tbl &&
789             (qp_init_attr->recv_cq ||
790             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
791             qp_init_attr->cap.max_recv_sge))
792                 return ERR_PTR(-EINVAL);
793
794         /*
795          * If the callers is using the RDMA API calculate the resources
796          * needed for the RDMA READ/WRITE operations.
797          *
798          * Note that these callers need to pass in a port number.
799          */
800         if (qp_init_attr->cap.max_rdma_ctxs)
801                 rdma_rw_init_qp(device, qp_init_attr);
802
803         qp = device->create_qp(pd, qp_init_attr, NULL);
804         if (IS_ERR(qp))
805                 return qp;
806
807         qp->device     = device;
808         qp->real_qp    = qp;
809         qp->uobject    = NULL;
810         qp->qp_type    = qp_init_attr->qp_type;
811         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
812
813         atomic_set(&qp->usecnt, 0);
814         qp->mrs_used = 0;
815         spin_lock_init(&qp->mr_lock);
816         INIT_LIST_HEAD(&qp->rdma_mrs);
817         INIT_LIST_HEAD(&qp->sig_mrs);
818
819         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
820                 return ib_create_xrc_qp(qp, qp_init_attr);
821
822         qp->event_handler = qp_init_attr->event_handler;
823         qp->qp_context = qp_init_attr->qp_context;
824         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
825                 qp->recv_cq = NULL;
826                 qp->srq = NULL;
827         } else {
828                 qp->recv_cq = qp_init_attr->recv_cq;
829                 if (qp_init_attr->recv_cq)
830                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
831                 qp->srq = qp_init_attr->srq;
832                 if (qp->srq)
833                         atomic_inc(&qp_init_attr->srq->usecnt);
834         }
835
836         qp->pd      = pd;
837         qp->send_cq = qp_init_attr->send_cq;
838         qp->xrcd    = NULL;
839
840         atomic_inc(&pd->usecnt);
841         if (qp_init_attr->send_cq)
842                 atomic_inc(&qp_init_attr->send_cq->usecnt);
843         if (qp_init_attr->rwq_ind_tbl)
844                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
845
846         if (qp_init_attr->cap.max_rdma_ctxs) {
847                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
848                 if (ret) {
849                         pr_err("failed to init MR pool ret= %d\n", ret);
850                         ib_destroy_qp(qp);
851                         return ERR_PTR(ret);
852                 }
853         }
854
855         /*
856          * Note: all hw drivers guarantee that max_send_sge is lower than
857          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
858          * max_send_sge <= max_sge_rd.
859          */
860         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
861         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
862                                  device->attrs.max_sge_rd);
863
864         return qp;
865 }
866 EXPORT_SYMBOL(ib_create_qp);
867
868 static const struct {
869         int                     valid;
870         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
871         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
872 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
873         [IB_QPS_RESET] = {
874                 [IB_QPS_RESET] = { .valid = 1 },
875                 [IB_QPS_INIT]  = {
876                         .valid = 1,
877                         .req_param = {
878                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
879                                                 IB_QP_PORT                      |
880                                                 IB_QP_QKEY),
881                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
882                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
883                                                 IB_QP_PORT                      |
884                                                 IB_QP_ACCESS_FLAGS),
885                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
886                                                 IB_QP_PORT                      |
887                                                 IB_QP_ACCESS_FLAGS),
888                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
889                                                 IB_QP_PORT                      |
890                                                 IB_QP_ACCESS_FLAGS),
891                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
892                                                 IB_QP_PORT                      |
893                                                 IB_QP_ACCESS_FLAGS),
894                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
895                                                 IB_QP_QKEY),
896                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
897                                                 IB_QP_QKEY),
898                         }
899                 },
900         },
901         [IB_QPS_INIT]  = {
902                 [IB_QPS_RESET] = { .valid = 1 },
903                 [IB_QPS_ERR] =   { .valid = 1 },
904                 [IB_QPS_INIT]  = {
905                         .valid = 1,
906                         .opt_param = {
907                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
908                                                 IB_QP_PORT                      |
909                                                 IB_QP_QKEY),
910                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
911                                                 IB_QP_PORT                      |
912                                                 IB_QP_ACCESS_FLAGS),
913                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
914                                                 IB_QP_PORT                      |
915                                                 IB_QP_ACCESS_FLAGS),
916                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
917                                                 IB_QP_PORT                      |
918                                                 IB_QP_ACCESS_FLAGS),
919                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
920                                                 IB_QP_PORT                      |
921                                                 IB_QP_ACCESS_FLAGS),
922                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
923                                                 IB_QP_QKEY),
924                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
925                                                 IB_QP_QKEY),
926                         }
927                 },
928                 [IB_QPS_RTR]   = {
929                         .valid = 1,
930                         .req_param = {
931                                 [IB_QPT_UC]  = (IB_QP_AV                        |
932                                                 IB_QP_PATH_MTU                  |
933                                                 IB_QP_DEST_QPN                  |
934                                                 IB_QP_RQ_PSN),
935                                 [IB_QPT_RC]  = (IB_QP_AV                        |
936                                                 IB_QP_PATH_MTU                  |
937                                                 IB_QP_DEST_QPN                  |
938                                                 IB_QP_RQ_PSN                    |
939                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
940                                                 IB_QP_MIN_RNR_TIMER),
941                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
942                                                 IB_QP_PATH_MTU                  |
943                                                 IB_QP_DEST_QPN                  |
944                                                 IB_QP_RQ_PSN),
945                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
946                                                 IB_QP_PATH_MTU                  |
947                                                 IB_QP_DEST_QPN                  |
948                                                 IB_QP_RQ_PSN                    |
949                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
950                                                 IB_QP_MIN_RNR_TIMER),
951                         },
952                         .opt_param = {
953                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
954                                                  IB_QP_QKEY),
955                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
956                                                  IB_QP_ACCESS_FLAGS             |
957                                                  IB_QP_PKEY_INDEX),
958                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
959                                                  IB_QP_ACCESS_FLAGS             |
960                                                  IB_QP_PKEY_INDEX),
961                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
962                                                  IB_QP_ACCESS_FLAGS             |
963                                                  IB_QP_PKEY_INDEX),
964                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
965                                                  IB_QP_ACCESS_FLAGS             |
966                                                  IB_QP_PKEY_INDEX),
967                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
968                                                  IB_QP_QKEY),
969                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
970                                                  IB_QP_QKEY),
971                          },
972                 },
973         },
974         [IB_QPS_RTR]   = {
975                 [IB_QPS_RESET] = { .valid = 1 },
976                 [IB_QPS_ERR] =   { .valid = 1 },
977                 [IB_QPS_RTS]   = {
978                         .valid = 1,
979                         .req_param = {
980                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
981                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
982                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
983                                                 IB_QP_RETRY_CNT                 |
984                                                 IB_QP_RNR_RETRY                 |
985                                                 IB_QP_SQ_PSN                    |
986                                                 IB_QP_MAX_QP_RD_ATOMIC),
987                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
988                                                 IB_QP_RETRY_CNT                 |
989                                                 IB_QP_RNR_RETRY                 |
990                                                 IB_QP_SQ_PSN                    |
991                                                 IB_QP_MAX_QP_RD_ATOMIC),
992                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
993                                                 IB_QP_SQ_PSN),
994                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
995                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
996                         },
997                         .opt_param = {
998                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
999                                                  IB_QP_QKEY),
1000                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1001                                                  IB_QP_ALT_PATH                 |
1002                                                  IB_QP_ACCESS_FLAGS             |
1003                                                  IB_QP_PATH_MIG_STATE),
1004                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1005                                                  IB_QP_ALT_PATH                 |
1006                                                  IB_QP_ACCESS_FLAGS             |
1007                                                  IB_QP_MIN_RNR_TIMER            |
1008                                                  IB_QP_PATH_MIG_STATE),
1009                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1010                                                  IB_QP_ALT_PATH                 |
1011                                                  IB_QP_ACCESS_FLAGS             |
1012                                                  IB_QP_PATH_MIG_STATE),
1013                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1014                                                  IB_QP_ALT_PATH                 |
1015                                                  IB_QP_ACCESS_FLAGS             |
1016                                                  IB_QP_MIN_RNR_TIMER            |
1017                                                  IB_QP_PATH_MIG_STATE),
1018                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1019                                                  IB_QP_QKEY),
1020                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1021                                                  IB_QP_QKEY),
1022                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1023                          }
1024                 }
1025         },
1026         [IB_QPS_RTS]   = {
1027                 [IB_QPS_RESET] = { .valid = 1 },
1028                 [IB_QPS_ERR] =   { .valid = 1 },
1029                 [IB_QPS_RTS]   = {
1030                         .valid = 1,
1031                         .opt_param = {
1032                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1033                                                 IB_QP_QKEY),
1034                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1035                                                 IB_QP_ACCESS_FLAGS              |
1036                                                 IB_QP_ALT_PATH                  |
1037                                                 IB_QP_PATH_MIG_STATE),
1038                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1039                                                 IB_QP_ACCESS_FLAGS              |
1040                                                 IB_QP_ALT_PATH                  |
1041                                                 IB_QP_PATH_MIG_STATE            |
1042                                                 IB_QP_MIN_RNR_TIMER),
1043                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1044                                                 IB_QP_ACCESS_FLAGS              |
1045                                                 IB_QP_ALT_PATH                  |
1046                                                 IB_QP_PATH_MIG_STATE),
1047                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1048                                                 IB_QP_ACCESS_FLAGS              |
1049                                                 IB_QP_ALT_PATH                  |
1050                                                 IB_QP_PATH_MIG_STATE            |
1051                                                 IB_QP_MIN_RNR_TIMER),
1052                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1053                                                 IB_QP_QKEY),
1054                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1055                                                 IB_QP_QKEY),
1056                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1057                         }
1058                 },
1059                 [IB_QPS_SQD]   = {
1060                         .valid = 1,
1061                         .opt_param = {
1062                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1063                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1064                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1065                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1066                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1067                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1068                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1069                         }
1070                 },
1071         },
1072         [IB_QPS_SQD]   = {
1073                 [IB_QPS_RESET] = { .valid = 1 },
1074                 [IB_QPS_ERR] =   { .valid = 1 },
1075                 [IB_QPS_RTS]   = {
1076                         .valid = 1,
1077                         .opt_param = {
1078                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1079                                                 IB_QP_QKEY),
1080                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1081                                                 IB_QP_ALT_PATH                  |
1082                                                 IB_QP_ACCESS_FLAGS              |
1083                                                 IB_QP_PATH_MIG_STATE),
1084                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1085                                                 IB_QP_ALT_PATH                  |
1086                                                 IB_QP_ACCESS_FLAGS              |
1087                                                 IB_QP_MIN_RNR_TIMER             |
1088                                                 IB_QP_PATH_MIG_STATE),
1089                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1090                                                 IB_QP_ALT_PATH                  |
1091                                                 IB_QP_ACCESS_FLAGS              |
1092                                                 IB_QP_PATH_MIG_STATE),
1093                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1094                                                 IB_QP_ALT_PATH                  |
1095                                                 IB_QP_ACCESS_FLAGS              |
1096                                                 IB_QP_MIN_RNR_TIMER             |
1097                                                 IB_QP_PATH_MIG_STATE),
1098                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1099                                                 IB_QP_QKEY),
1100                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1101                                                 IB_QP_QKEY),
1102                         }
1103                 },
1104                 [IB_QPS_SQD]   = {
1105                         .valid = 1,
1106                         .opt_param = {
1107                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1108                                                 IB_QP_QKEY),
1109                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1110                                                 IB_QP_ALT_PATH                  |
1111                                                 IB_QP_ACCESS_FLAGS              |
1112                                                 IB_QP_PKEY_INDEX                |
1113                                                 IB_QP_PATH_MIG_STATE),
1114                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1115                                                 IB_QP_AV                        |
1116                                                 IB_QP_TIMEOUT                   |
1117                                                 IB_QP_RETRY_CNT                 |
1118                                                 IB_QP_RNR_RETRY                 |
1119                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1120                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1121                                                 IB_QP_ALT_PATH                  |
1122                                                 IB_QP_ACCESS_FLAGS              |
1123                                                 IB_QP_PKEY_INDEX                |
1124                                                 IB_QP_MIN_RNR_TIMER             |
1125                                                 IB_QP_PATH_MIG_STATE),
1126                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1127                                                 IB_QP_AV                        |
1128                                                 IB_QP_TIMEOUT                   |
1129                                                 IB_QP_RETRY_CNT                 |
1130                                                 IB_QP_RNR_RETRY                 |
1131                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1132                                                 IB_QP_ALT_PATH                  |
1133                                                 IB_QP_ACCESS_FLAGS              |
1134                                                 IB_QP_PKEY_INDEX                |
1135                                                 IB_QP_PATH_MIG_STATE),
1136                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1137                                                 IB_QP_AV                        |
1138                                                 IB_QP_TIMEOUT                   |
1139                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1140                                                 IB_QP_ALT_PATH                  |
1141                                                 IB_QP_ACCESS_FLAGS              |
1142                                                 IB_QP_PKEY_INDEX                |
1143                                                 IB_QP_MIN_RNR_TIMER             |
1144                                                 IB_QP_PATH_MIG_STATE),
1145                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1146                                                 IB_QP_QKEY),
1147                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1148                                                 IB_QP_QKEY),
1149                         }
1150                 }
1151         },
1152         [IB_QPS_SQE]   = {
1153                 [IB_QPS_RESET] = { .valid = 1 },
1154                 [IB_QPS_ERR] =   { .valid = 1 },
1155                 [IB_QPS_RTS]   = {
1156                         .valid = 1,
1157                         .opt_param = {
1158                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1159                                                 IB_QP_QKEY),
1160                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1161                                                 IB_QP_ACCESS_FLAGS),
1162                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1163                                                 IB_QP_QKEY),
1164                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1165                                                 IB_QP_QKEY),
1166                         }
1167                 }
1168         },
1169         [IB_QPS_ERR] = {
1170                 [IB_QPS_RESET] = { .valid = 1 },
1171                 [IB_QPS_ERR] =   { .valid = 1 }
1172         }
1173 };
1174
1175 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1176                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1177                        enum rdma_link_layer ll)
1178 {
1179         enum ib_qp_attr_mask req_param, opt_param;
1180
1181         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1182             next_state < 0 || next_state > IB_QPS_ERR)
1183                 return 0;
1184
1185         if (mask & IB_QP_CUR_STATE  &&
1186             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1187             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1188                 return 0;
1189
1190         if (!qp_state_table[cur_state][next_state].valid)
1191                 return 0;
1192
1193         req_param = qp_state_table[cur_state][next_state].req_param[type];
1194         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1195
1196         if ((mask & req_param) != req_param)
1197                 return 0;
1198
1199         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1200                 return 0;
1201
1202         return 1;
1203 }
1204 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1205
1206 int ib_resolve_eth_dmac(struct ib_device *device,
1207                         struct rdma_ah_attr *ah_attr)
1208 {
1209         int           ret = 0;
1210         struct ib_global_route *grh;
1211
1212         if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1213                 return -EINVAL;
1214
1215         if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1216                 return 0;
1217
1218         grh = rdma_ah_retrieve_grh(ah_attr);
1219
1220         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1221                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1222                                 ah_attr->roce.dmac);
1223         } else {
1224                 union ib_gid            sgid;
1225                 struct ib_gid_attr      sgid_attr;
1226                 int                     ifindex;
1227                 int                     hop_limit;
1228
1229                 ret = ib_query_gid(device,
1230                                    rdma_ah_get_port_num(ah_attr),
1231                                    grh->sgid_index,
1232                                    &sgid, &sgid_attr);
1233
1234                 if (ret || !sgid_attr.ndev) {
1235                         if (!ret)
1236                                 ret = -ENXIO;
1237                         goto out;
1238                 }
1239
1240                 ifindex = sgid_attr.ndev->ifindex;
1241
1242                 ret =
1243                 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1244                                              ah_attr->roce.dmac,
1245                                              NULL, &ifindex, &hop_limit);
1246
1247                 dev_put(sgid_attr.ndev);
1248
1249                 grh->hop_limit = hop_limit;
1250         }
1251 out:
1252         return ret;
1253 }
1254 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1255
1256 int ib_modify_qp(struct ib_qp *qp,
1257                  struct ib_qp_attr *qp_attr,
1258                  int qp_attr_mask)
1259 {
1260
1261         if (qp_attr_mask & IB_QP_AV) {
1262                 int ret;
1263
1264                 ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1265                 if (ret)
1266                         return ret;
1267         }
1268
1269         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1270 }
1271 EXPORT_SYMBOL(ib_modify_qp);
1272
1273 int ib_query_qp(struct ib_qp *qp,
1274                 struct ib_qp_attr *qp_attr,
1275                 int qp_attr_mask,
1276                 struct ib_qp_init_attr *qp_init_attr)
1277 {
1278         return qp->device->query_qp ?
1279                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1280                 -ENOSYS;
1281 }
1282 EXPORT_SYMBOL(ib_query_qp);
1283
1284 int ib_close_qp(struct ib_qp *qp)
1285 {
1286         struct ib_qp *real_qp;
1287         unsigned long flags;
1288
1289         real_qp = qp->real_qp;
1290         if (real_qp == qp)
1291                 return -EINVAL;
1292
1293         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1294         list_del(&qp->open_list);
1295         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1296
1297         atomic_dec(&real_qp->usecnt);
1298         kfree(qp);
1299
1300         return 0;
1301 }
1302 EXPORT_SYMBOL(ib_close_qp);
1303
1304 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1305 {
1306         struct ib_xrcd *xrcd;
1307         struct ib_qp *real_qp;
1308         int ret;
1309
1310         real_qp = qp->real_qp;
1311         xrcd = real_qp->xrcd;
1312
1313         mutex_lock(&xrcd->tgt_qp_mutex);
1314         ib_close_qp(qp);
1315         if (atomic_read(&real_qp->usecnt) == 0)
1316                 list_del(&real_qp->xrcd_list);
1317         else
1318                 real_qp = NULL;
1319         mutex_unlock(&xrcd->tgt_qp_mutex);
1320
1321         if (real_qp) {
1322                 ret = ib_destroy_qp(real_qp);
1323                 if (!ret)
1324                         atomic_dec(&xrcd->usecnt);
1325                 else
1326                         __ib_insert_xrcd_qp(xrcd, real_qp);
1327         }
1328
1329         return 0;
1330 }
1331
1332 int ib_destroy_qp(struct ib_qp *qp)
1333 {
1334         struct ib_pd *pd;
1335         struct ib_cq *scq, *rcq;
1336         struct ib_srq *srq;
1337         struct ib_rwq_ind_table *ind_tbl;
1338         int ret;
1339
1340         WARN_ON_ONCE(qp->mrs_used > 0);
1341
1342         if (atomic_read(&qp->usecnt))
1343                 return -EBUSY;
1344
1345         if (qp->real_qp != qp)
1346                 return __ib_destroy_shared_qp(qp);
1347
1348         pd   = qp->pd;
1349         scq  = qp->send_cq;
1350         rcq  = qp->recv_cq;
1351         srq  = qp->srq;
1352         ind_tbl = qp->rwq_ind_tbl;
1353
1354         if (!qp->uobject)
1355                 rdma_rw_cleanup_mrs(qp);
1356
1357         ret = qp->device->destroy_qp(qp);
1358         if (!ret) {
1359                 if (pd)
1360                         atomic_dec(&pd->usecnt);
1361                 if (scq)
1362                         atomic_dec(&scq->usecnt);
1363                 if (rcq)
1364                         atomic_dec(&rcq->usecnt);
1365                 if (srq)
1366                         atomic_dec(&srq->usecnt);
1367                 if (ind_tbl)
1368                         atomic_dec(&ind_tbl->usecnt);
1369         }
1370
1371         return ret;
1372 }
1373 EXPORT_SYMBOL(ib_destroy_qp);
1374
1375 /* Completion queues */
1376
1377 struct ib_cq *ib_create_cq(struct ib_device *device,
1378                            ib_comp_handler comp_handler,
1379                            void (*event_handler)(struct ib_event *, void *),
1380                            void *cq_context,
1381                            const struct ib_cq_init_attr *cq_attr)
1382 {
1383         struct ib_cq *cq;
1384
1385         cq = device->create_cq(device, cq_attr, NULL, NULL);
1386
1387         if (!IS_ERR(cq)) {
1388                 cq->device        = device;
1389                 cq->uobject       = NULL;
1390                 cq->comp_handler  = comp_handler;
1391                 cq->event_handler = event_handler;
1392                 cq->cq_context    = cq_context;
1393                 atomic_set(&cq->usecnt, 0);
1394         }
1395
1396         return cq;
1397 }
1398 EXPORT_SYMBOL(ib_create_cq);
1399
1400 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1401 {
1402         return cq->device->modify_cq ?
1403                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1404 }
1405 EXPORT_SYMBOL(ib_modify_cq);
1406
1407 int ib_destroy_cq(struct ib_cq *cq)
1408 {
1409         if (atomic_read(&cq->usecnt))
1410                 return -EBUSY;
1411
1412         return cq->device->destroy_cq(cq);
1413 }
1414 EXPORT_SYMBOL(ib_destroy_cq);
1415
1416 int ib_resize_cq(struct ib_cq *cq, int cqe)
1417 {
1418         return cq->device->resize_cq ?
1419                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1420 }
1421 EXPORT_SYMBOL(ib_resize_cq);
1422
1423 /* Memory regions */
1424
1425 int ib_dereg_mr(struct ib_mr *mr)
1426 {
1427         struct ib_pd *pd = mr->pd;
1428         int ret;
1429
1430         ret = mr->device->dereg_mr(mr);
1431         if (!ret)
1432                 atomic_dec(&pd->usecnt);
1433
1434         return ret;
1435 }
1436 EXPORT_SYMBOL(ib_dereg_mr);
1437
1438 /**
1439  * ib_alloc_mr() - Allocates a memory region
1440  * @pd:            protection domain associated with the region
1441  * @mr_type:       memory region type
1442  * @max_num_sg:    maximum sg entries available for registration.
1443  *
1444  * Notes:
1445  * Memory registeration page/sg lists must not exceed max_num_sg.
1446  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1447  * max_num_sg * used_page_size.
1448  *
1449  */
1450 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1451                           enum ib_mr_type mr_type,
1452                           u32 max_num_sg)
1453 {
1454         struct ib_mr *mr;
1455
1456         if (!pd->device->alloc_mr)
1457                 return ERR_PTR(-ENOSYS);
1458
1459         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1460         if (!IS_ERR(mr)) {
1461                 mr->device  = pd->device;
1462                 mr->pd      = pd;
1463                 mr->uobject = NULL;
1464                 atomic_inc(&pd->usecnt);
1465                 mr->need_inval = false;
1466         }
1467
1468         return mr;
1469 }
1470 EXPORT_SYMBOL(ib_alloc_mr);
1471
1472 /* "Fast" memory regions */
1473
1474 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1475                             int mr_access_flags,
1476                             struct ib_fmr_attr *fmr_attr)
1477 {
1478         struct ib_fmr *fmr;
1479
1480         if (!pd->device->alloc_fmr)
1481                 return ERR_PTR(-ENOSYS);
1482
1483         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1484         if (!IS_ERR(fmr)) {
1485                 fmr->device = pd->device;
1486                 fmr->pd     = pd;
1487                 atomic_inc(&pd->usecnt);
1488         }
1489
1490         return fmr;
1491 }
1492 EXPORT_SYMBOL(ib_alloc_fmr);
1493
1494 int ib_unmap_fmr(struct list_head *fmr_list)
1495 {
1496         struct ib_fmr *fmr;
1497
1498         if (list_empty(fmr_list))
1499                 return 0;
1500
1501         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1502         return fmr->device->unmap_fmr(fmr_list);
1503 }
1504 EXPORT_SYMBOL(ib_unmap_fmr);
1505
1506 int ib_dealloc_fmr(struct ib_fmr *fmr)
1507 {
1508         struct ib_pd *pd;
1509         int ret;
1510
1511         pd = fmr->pd;
1512         ret = fmr->device->dealloc_fmr(fmr);
1513         if (!ret)
1514                 atomic_dec(&pd->usecnt);
1515
1516         return ret;
1517 }
1518 EXPORT_SYMBOL(ib_dealloc_fmr);
1519
1520 /* Multicast groups */
1521
1522 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1523 {
1524         int ret;
1525
1526         if (!qp->device->attach_mcast)
1527                 return -ENOSYS;
1528         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1529             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1530             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1531                 return -EINVAL;
1532
1533         ret = qp->device->attach_mcast(qp, gid, lid);
1534         if (!ret)
1535                 atomic_inc(&qp->usecnt);
1536         return ret;
1537 }
1538 EXPORT_SYMBOL(ib_attach_mcast);
1539
1540 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1541 {
1542         int ret;
1543
1544         if (!qp->device->detach_mcast)
1545                 return -ENOSYS;
1546         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1547             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1548             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1549                 return -EINVAL;
1550
1551         ret = qp->device->detach_mcast(qp, gid, lid);
1552         if (!ret)
1553                 atomic_dec(&qp->usecnt);
1554         return ret;
1555 }
1556 EXPORT_SYMBOL(ib_detach_mcast);
1557
1558 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1559 {
1560         struct ib_xrcd *xrcd;
1561
1562         if (!device->alloc_xrcd)
1563                 return ERR_PTR(-ENOSYS);
1564
1565         xrcd = device->alloc_xrcd(device, NULL, NULL);
1566         if (!IS_ERR(xrcd)) {
1567                 xrcd->device = device;
1568                 xrcd->inode = NULL;
1569                 atomic_set(&xrcd->usecnt, 0);
1570                 mutex_init(&xrcd->tgt_qp_mutex);
1571                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1572         }
1573
1574         return xrcd;
1575 }
1576 EXPORT_SYMBOL(ib_alloc_xrcd);
1577
1578 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1579 {
1580         struct ib_qp *qp;
1581         int ret;
1582
1583         if (atomic_read(&xrcd->usecnt))
1584                 return -EBUSY;
1585
1586         while (!list_empty(&xrcd->tgt_qp_list)) {
1587                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1588                 ret = ib_destroy_qp(qp);
1589                 if (ret)
1590                         return ret;
1591         }
1592
1593         return xrcd->device->dealloc_xrcd(xrcd);
1594 }
1595 EXPORT_SYMBOL(ib_dealloc_xrcd);
1596
1597 /**
1598  * ib_create_wq - Creates a WQ associated with the specified protection
1599  * domain.
1600  * @pd: The protection domain associated with the WQ.
1601  * @wq_init_attr: A list of initial attributes required to create the
1602  * WQ. If WQ creation succeeds, then the attributes are updated to
1603  * the actual capabilities of the created WQ.
1604  *
1605  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1606  * the requested size of the WQ, and set to the actual values allocated
1607  * on return.
1608  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1609  * at least as large as the requested values.
1610  */
1611 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1612                            struct ib_wq_init_attr *wq_attr)
1613 {
1614         struct ib_wq *wq;
1615
1616         if (!pd->device->create_wq)
1617                 return ERR_PTR(-ENOSYS);
1618
1619         wq = pd->device->create_wq(pd, wq_attr, NULL);
1620         if (!IS_ERR(wq)) {
1621                 wq->event_handler = wq_attr->event_handler;
1622                 wq->wq_context = wq_attr->wq_context;
1623                 wq->wq_type = wq_attr->wq_type;
1624                 wq->cq = wq_attr->cq;
1625                 wq->device = pd->device;
1626                 wq->pd = pd;
1627                 wq->uobject = NULL;
1628                 atomic_inc(&pd->usecnt);
1629                 atomic_inc(&wq_attr->cq->usecnt);
1630                 atomic_set(&wq->usecnt, 0);
1631         }
1632         return wq;
1633 }
1634 EXPORT_SYMBOL(ib_create_wq);
1635
1636 /**
1637  * ib_destroy_wq - Destroys the specified WQ.
1638  * @wq: The WQ to destroy.
1639  */
1640 int ib_destroy_wq(struct ib_wq *wq)
1641 {
1642         int err;
1643         struct ib_cq *cq = wq->cq;
1644         struct ib_pd *pd = wq->pd;
1645
1646         if (atomic_read(&wq->usecnt))
1647                 return -EBUSY;
1648
1649         err = wq->device->destroy_wq(wq);
1650         if (!err) {
1651                 atomic_dec(&pd->usecnt);
1652                 atomic_dec(&cq->usecnt);
1653         }
1654         return err;
1655 }
1656 EXPORT_SYMBOL(ib_destroy_wq);
1657
1658 /**
1659  * ib_modify_wq - Modifies the specified WQ.
1660  * @wq: The WQ to modify.
1661  * @wq_attr: On input, specifies the WQ attributes to modify.
1662  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1663  *   are being modified.
1664  * On output, the current values of selected WQ attributes are returned.
1665  */
1666 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1667                  u32 wq_attr_mask)
1668 {
1669         int err;
1670
1671         if (!wq->device->modify_wq)
1672                 return -ENOSYS;
1673
1674         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1675         return err;
1676 }
1677 EXPORT_SYMBOL(ib_modify_wq);
1678
1679 /*
1680  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1681  * @device: The device on which to create the rwq indirection table.
1682  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1683  * create the Indirection Table.
1684  *
1685  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1686  *      than the created ib_rwq_ind_table object and the caller is responsible
1687  *      for its memory allocation/free.
1688  */
1689 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1690                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1691 {
1692         struct ib_rwq_ind_table *rwq_ind_table;
1693         int i;
1694         u32 table_size;
1695
1696         if (!device->create_rwq_ind_table)
1697                 return ERR_PTR(-ENOSYS);
1698
1699         table_size = (1 << init_attr->log_ind_tbl_size);
1700         rwq_ind_table = device->create_rwq_ind_table(device,
1701                                 init_attr, NULL);
1702         if (IS_ERR(rwq_ind_table))
1703                 return rwq_ind_table;
1704
1705         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1706         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1707         rwq_ind_table->device = device;
1708         rwq_ind_table->uobject = NULL;
1709         atomic_set(&rwq_ind_table->usecnt, 0);
1710
1711         for (i = 0; i < table_size; i++)
1712                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1713
1714         return rwq_ind_table;
1715 }
1716 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1717
1718 /*
1719  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1720  * @wq_ind_table: The Indirection Table to destroy.
1721 */
1722 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1723 {
1724         int err, i;
1725         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1726         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1727
1728         if (atomic_read(&rwq_ind_table->usecnt))
1729                 return -EBUSY;
1730
1731         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1732         if (!err) {
1733                 for (i = 0; i < table_size; i++)
1734                         atomic_dec(&ind_tbl[i]->usecnt);
1735         }
1736
1737         return err;
1738 }
1739 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1740
1741 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1742                                struct ib_flow_attr *flow_attr,
1743                                int domain)
1744 {
1745         struct ib_flow *flow_id;
1746         if (!qp->device->create_flow)
1747                 return ERR_PTR(-ENOSYS);
1748
1749         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1750         if (!IS_ERR(flow_id)) {
1751                 atomic_inc(&qp->usecnt);
1752                 flow_id->qp = qp;
1753         }
1754         return flow_id;
1755 }
1756 EXPORT_SYMBOL(ib_create_flow);
1757
1758 int ib_destroy_flow(struct ib_flow *flow_id)
1759 {
1760         int err;
1761         struct ib_qp *qp = flow_id->qp;
1762
1763         err = qp->device->destroy_flow(flow_id);
1764         if (!err)
1765                 atomic_dec(&qp->usecnt);
1766         return err;
1767 }
1768 EXPORT_SYMBOL(ib_destroy_flow);
1769
1770 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1771                        struct ib_mr_status *mr_status)
1772 {
1773         return mr->device->check_mr_status ?
1774                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1775 }
1776 EXPORT_SYMBOL(ib_check_mr_status);
1777
1778 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1779                          int state)
1780 {
1781         if (!device->set_vf_link_state)
1782                 return -ENOSYS;
1783
1784         return device->set_vf_link_state(device, vf, port, state);
1785 }
1786 EXPORT_SYMBOL(ib_set_vf_link_state);
1787
1788 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1789                      struct ifla_vf_info *info)
1790 {
1791         if (!device->get_vf_config)
1792                 return -ENOSYS;
1793
1794         return device->get_vf_config(device, vf, port, info);
1795 }
1796 EXPORT_SYMBOL(ib_get_vf_config);
1797
1798 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1799                     struct ifla_vf_stats *stats)
1800 {
1801         if (!device->get_vf_stats)
1802                 return -ENOSYS;
1803
1804         return device->get_vf_stats(device, vf, port, stats);
1805 }
1806 EXPORT_SYMBOL(ib_get_vf_stats);
1807
1808 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1809                    int type)
1810 {
1811         if (!device->set_vf_guid)
1812                 return -ENOSYS;
1813
1814         return device->set_vf_guid(device, vf, port, guid, type);
1815 }
1816 EXPORT_SYMBOL(ib_set_vf_guid);
1817
1818 /**
1819  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1820  *     and set it the memory region.
1821  * @mr:            memory region
1822  * @sg:            dma mapped scatterlist
1823  * @sg_nents:      number of entries in sg
1824  * @sg_offset:     offset in bytes into sg
1825  * @page_size:     page vector desired page size
1826  *
1827  * Constraints:
1828  * - The first sg element is allowed to have an offset.
1829  * - Each sg element must either be aligned to page_size or virtually
1830  *   contiguous to the previous element. In case an sg element has a
1831  *   non-contiguous offset, the mapping prefix will not include it.
1832  * - The last sg element is allowed to have length less than page_size.
1833  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1834  *   then only max_num_sg entries will be mapped.
1835  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1836  *   constraints holds and the page_size argument is ignored.
1837  *
1838  * Returns the number of sg elements that were mapped to the memory region.
1839  *
1840  * After this completes successfully, the  memory region
1841  * is ready for registration.
1842  */
1843 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1844                  unsigned int *sg_offset, unsigned int page_size)
1845 {
1846         if (unlikely(!mr->device->map_mr_sg))
1847                 return -ENOSYS;
1848
1849         mr->page_size = page_size;
1850
1851         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1852 }
1853 EXPORT_SYMBOL(ib_map_mr_sg);
1854
1855 /**
1856  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1857  *     to a page vector
1858  * @mr:            memory region
1859  * @sgl:           dma mapped scatterlist
1860  * @sg_nents:      number of entries in sg
1861  * @sg_offset_p:   IN:  start offset in bytes into sg
1862  *                 OUT: offset in bytes for element n of the sg of the first
1863  *                      byte that has not been processed where n is the return
1864  *                      value of this function.
1865  * @set_page:      driver page assignment function pointer
1866  *
1867  * Core service helper for drivers to convert the largest
1868  * prefix of given sg list to a page vector. The sg list
1869  * prefix converted is the prefix that meet the requirements
1870  * of ib_map_mr_sg.
1871  *
1872  * Returns the number of sg elements that were assigned to
1873  * a page vector.
1874  */
1875 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1876                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1877 {
1878         struct scatterlist *sg;
1879         u64 last_end_dma_addr = 0;
1880         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1881         unsigned int last_page_off = 0;
1882         u64 page_mask = ~((u64)mr->page_size - 1);
1883         int i, ret;
1884
1885         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1886                 return -EINVAL;
1887
1888         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1889         mr->length = 0;
1890
1891         for_each_sg(sgl, sg, sg_nents, i) {
1892                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1893                 u64 prev_addr = dma_addr;
1894                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1895                 u64 end_dma_addr = dma_addr + dma_len;
1896                 u64 page_addr = dma_addr & page_mask;
1897
1898                 /*
1899                  * For the second and later elements, check whether either the
1900                  * end of element i-1 or the start of element i is not aligned
1901                  * on a page boundary.
1902                  */
1903                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1904                         /* Stop mapping if there is a gap. */
1905                         if (last_end_dma_addr != dma_addr)
1906                                 break;
1907
1908                         /*
1909                          * Coalesce this element with the last. If it is small
1910                          * enough just update mr->length. Otherwise start
1911                          * mapping from the next page.
1912                          */
1913                         goto next_page;
1914                 }
1915
1916                 do {
1917                         ret = set_page(mr, page_addr);
1918                         if (unlikely(ret < 0)) {
1919                                 sg_offset = prev_addr - sg_dma_address(sg);
1920                                 mr->length += prev_addr - dma_addr;
1921                                 if (sg_offset_p)
1922                                         *sg_offset_p = sg_offset;
1923                                 return i || sg_offset ? i : ret;
1924                         }
1925                         prev_addr = page_addr;
1926 next_page:
1927                         page_addr += mr->page_size;
1928                 } while (page_addr < end_dma_addr);
1929
1930                 mr->length += dma_len;
1931                 last_end_dma_addr = end_dma_addr;
1932                 last_page_off = end_dma_addr & ~page_mask;
1933
1934                 sg_offset = 0;
1935         }
1936
1937         if (sg_offset_p)
1938                 *sg_offset_p = 0;
1939         return i;
1940 }
1941 EXPORT_SYMBOL(ib_sg_to_pages);
1942
1943 struct ib_drain_cqe {
1944         struct ib_cqe cqe;
1945         struct completion done;
1946 };
1947
1948 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1949 {
1950         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1951                                                 cqe);
1952
1953         complete(&cqe->done);
1954 }
1955
1956 /*
1957  * Post a WR and block until its completion is reaped for the SQ.
1958  */
1959 static void __ib_drain_sq(struct ib_qp *qp)
1960 {
1961         struct ib_cq *cq = qp->send_cq;
1962         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1963         struct ib_drain_cqe sdrain;
1964         struct ib_send_wr swr = {}, *bad_swr;
1965         int ret;
1966
1967         swr.wr_cqe = &sdrain.cqe;
1968         sdrain.cqe.done = ib_drain_qp_done;
1969         init_completion(&sdrain.done);
1970
1971         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1972         if (ret) {
1973                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1974                 return;
1975         }
1976
1977         ret = ib_post_send(qp, &swr, &bad_swr);
1978         if (ret) {
1979                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1980                 return;
1981         }
1982
1983         if (cq->poll_ctx == IB_POLL_DIRECT)
1984                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
1985                         ib_process_cq_direct(cq, -1);
1986         else
1987                 wait_for_completion(&sdrain.done);
1988 }
1989
1990 /*
1991  * Post a WR and block until its completion is reaped for the RQ.
1992  */
1993 static void __ib_drain_rq(struct ib_qp *qp)
1994 {
1995         struct ib_cq *cq = qp->recv_cq;
1996         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1997         struct ib_drain_cqe rdrain;
1998         struct ib_recv_wr rwr = {}, *bad_rwr;
1999         int ret;
2000
2001         rwr.wr_cqe = &rdrain.cqe;
2002         rdrain.cqe.done = ib_drain_qp_done;
2003         init_completion(&rdrain.done);
2004
2005         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2006         if (ret) {
2007                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2008                 return;
2009         }
2010
2011         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2012         if (ret) {
2013                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2014                 return;
2015         }
2016
2017         if (cq->poll_ctx == IB_POLL_DIRECT)
2018                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2019                         ib_process_cq_direct(cq, -1);
2020         else
2021                 wait_for_completion(&rdrain.done);
2022 }
2023
2024 /**
2025  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2026  *                 application.
2027  * @qp:            queue pair to drain
2028  *
2029  * If the device has a provider-specific drain function, then
2030  * call that.  Otherwise call the generic drain function
2031  * __ib_drain_sq().
2032  *
2033  * The caller must:
2034  *
2035  * ensure there is room in the CQ and SQ for the drain work request and
2036  * completion.
2037  *
2038  * allocate the CQ using ib_alloc_cq().
2039  *
2040  * ensure that there are no other contexts that are posting WRs concurrently.
2041  * Otherwise the drain is not guaranteed.
2042  */
2043 void ib_drain_sq(struct ib_qp *qp)
2044 {
2045         if (qp->device->drain_sq)
2046                 qp->device->drain_sq(qp);
2047         else
2048                 __ib_drain_sq(qp);
2049 }
2050 EXPORT_SYMBOL(ib_drain_sq);
2051
2052 /**
2053  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2054  *                 application.
2055  * @qp:            queue pair to drain
2056  *
2057  * If the device has a provider-specific drain function, then
2058  * call that.  Otherwise call the generic drain function
2059  * __ib_drain_rq().
2060  *
2061  * The caller must:
2062  *
2063  * ensure there is room in the CQ and RQ for the drain work request and
2064  * completion.
2065  *
2066  * allocate the CQ using ib_alloc_cq().
2067  *
2068  * ensure that there are no other contexts that are posting WRs concurrently.
2069  * Otherwise the drain is not guaranteed.
2070  */
2071 void ib_drain_rq(struct ib_qp *qp)
2072 {
2073         if (qp->device->drain_rq)
2074                 qp->device->drain_rq(qp);
2075         else
2076                 __ib_drain_rq(qp);
2077 }
2078 EXPORT_SYMBOL(ib_drain_rq);
2079
2080 /**
2081  * ib_drain_qp() - Block until all CQEs have been consumed by the
2082  *                 application on both the RQ and SQ.
2083  * @qp:            queue pair to drain
2084  *
2085  * The caller must:
2086  *
2087  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2088  * and completions.
2089  *
2090  * allocate the CQs using ib_alloc_cq().
2091  *
2092  * ensure that there are no other contexts that are posting WRs concurrently.
2093  * Otherwise the drain is not guaranteed.
2094  */
2095 void ib_drain_qp(struct ib_qp *qp)
2096 {
2097         ib_drain_sq(qp);
2098         if (!qp->srq)
2099                 ib_drain_rq(qp);
2100 }
2101 EXPORT_SYMBOL(ib_drain_qp);