Merge remote-tracking branches 'asoc/topic/mc13783', 'asoc/topic/msm8916', 'asoc...
[linux-2.6-block.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57                                struct rdma_ah_attr *ah_attr);
58
59 static const char * const ib_events[] = {
60         [IB_EVENT_CQ_ERR]               = "CQ error",
61         [IB_EVENT_QP_FATAL]             = "QP fatal error",
62         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
63         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
64         [IB_EVENT_COMM_EST]             = "communication established",
65         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
66         [IB_EVENT_PATH_MIG]             = "path migration successful",
67         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
68         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
69         [IB_EVENT_PORT_ACTIVE]          = "port active",
70         [IB_EVENT_PORT_ERR]             = "port error",
71         [IB_EVENT_LID_CHANGE]           = "LID change",
72         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
73         [IB_EVENT_SM_CHANGE]            = "SM change",
74         [IB_EVENT_SRQ_ERR]              = "SRQ error",
75         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
76         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
77         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
78         [IB_EVENT_GID_CHANGE]           = "GID changed",
79 };
80
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83         size_t index = event;
84
85         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86                         ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89
90 static const char * const wc_statuses[] = {
91         [IB_WC_SUCCESS]                 = "success",
92         [IB_WC_LOC_LEN_ERR]             = "local length error",
93         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
94         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
95         [IB_WC_LOC_PROT_ERR]            = "local protection error",
96         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
97         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
98         [IB_WC_BAD_RESP_ERR]            = "bad response error",
99         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
100         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
101         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
102         [IB_WC_REM_OP_ERR]              = "remote operation error",
103         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
104         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
105         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
106         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
107         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
108         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
109         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
110         [IB_WC_FATAL_ERR]               = "fatal error",
111         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
112         [IB_WC_GENERAL_ERR]             = "general error",
113 };
114
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117         size_t index = status;
118
119         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120                         wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126         switch (rate) {
127         case IB_RATE_2_5_GBPS: return  1;
128         case IB_RATE_5_GBPS:   return  2;
129         case IB_RATE_10_GBPS:  return  4;
130         case IB_RATE_20_GBPS:  return  8;
131         case IB_RATE_30_GBPS:  return 12;
132         case IB_RATE_40_GBPS:  return 16;
133         case IB_RATE_60_GBPS:  return 24;
134         case IB_RATE_80_GBPS:  return 32;
135         case IB_RATE_120_GBPS: return 48;
136         default:               return -1;
137         }
138 }
139 EXPORT_SYMBOL(ib_rate_to_mult);
140
141 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
142 {
143         switch (mult) {
144         case 1:  return IB_RATE_2_5_GBPS;
145         case 2:  return IB_RATE_5_GBPS;
146         case 4:  return IB_RATE_10_GBPS;
147         case 8:  return IB_RATE_20_GBPS;
148         case 12: return IB_RATE_30_GBPS;
149         case 16: return IB_RATE_40_GBPS;
150         case 24: return IB_RATE_60_GBPS;
151         case 32: return IB_RATE_80_GBPS;
152         case 48: return IB_RATE_120_GBPS;
153         default: return IB_RATE_PORT_CURRENT;
154         }
155 }
156 EXPORT_SYMBOL(mult_to_ib_rate);
157
158 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
159 {
160         switch (rate) {
161         case IB_RATE_2_5_GBPS: return 2500;
162         case IB_RATE_5_GBPS:   return 5000;
163         case IB_RATE_10_GBPS:  return 10000;
164         case IB_RATE_20_GBPS:  return 20000;
165         case IB_RATE_30_GBPS:  return 30000;
166         case IB_RATE_40_GBPS:  return 40000;
167         case IB_RATE_60_GBPS:  return 60000;
168         case IB_RATE_80_GBPS:  return 80000;
169         case IB_RATE_120_GBPS: return 120000;
170         case IB_RATE_14_GBPS:  return 14062;
171         case IB_RATE_56_GBPS:  return 56250;
172         case IB_RATE_112_GBPS: return 112500;
173         case IB_RATE_168_GBPS: return 168750;
174         case IB_RATE_25_GBPS:  return 25781;
175         case IB_RATE_100_GBPS: return 103125;
176         case IB_RATE_200_GBPS: return 206250;
177         case IB_RATE_300_GBPS: return 309375;
178         default:               return -1;
179         }
180 }
181 EXPORT_SYMBOL(ib_rate_to_mbps);
182
183 __attribute_const__ enum rdma_transport_type
184 rdma_node_get_transport(enum rdma_node_type node_type)
185 {
186
187         if (node_type == RDMA_NODE_USNIC)
188                 return RDMA_TRANSPORT_USNIC;
189         if (node_type == RDMA_NODE_USNIC_UDP)
190                 return RDMA_TRANSPORT_USNIC_UDP;
191         if (node_type == RDMA_NODE_RNIC)
192                 return RDMA_TRANSPORT_IWARP;
193
194         return RDMA_TRANSPORT_IB;
195 }
196 EXPORT_SYMBOL(rdma_node_get_transport);
197
198 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
199 {
200         enum rdma_transport_type lt;
201         if (device->get_link_layer)
202                 return device->get_link_layer(device, port_num);
203
204         lt = rdma_node_get_transport(device->node_type);
205         if (lt == RDMA_TRANSPORT_IB)
206                 return IB_LINK_LAYER_INFINIBAND;
207
208         return IB_LINK_LAYER_ETHERNET;
209 }
210 EXPORT_SYMBOL(rdma_port_get_link_layer);
211
212 /* Protection domains */
213
214 /**
215  * ib_alloc_pd - Allocates an unused protection domain.
216  * @device: The device on which to allocate the protection domain.
217  *
218  * A protection domain object provides an association between QPs, shared
219  * receive queues, address handles, memory regions, and memory windows.
220  *
221  * Every PD has a local_dma_lkey which can be used as the lkey value for local
222  * memory operations.
223  */
224 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
225                 const char *caller)
226 {
227         struct ib_pd *pd;
228         int mr_access_flags = 0;
229
230         pd = device->alloc_pd(device, NULL, NULL);
231         if (IS_ERR(pd))
232                 return pd;
233
234         pd->device = device;
235         pd->uobject = NULL;
236         pd->__internal_mr = NULL;
237         atomic_set(&pd->usecnt, 0);
238         pd->flags = flags;
239
240         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
241                 pd->local_dma_lkey = device->local_dma_lkey;
242         else
243                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
244
245         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
246                 pr_warn("%s: enabling unsafe global rkey\n", caller);
247                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
248         }
249
250         if (mr_access_flags) {
251                 struct ib_mr *mr;
252
253                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
254                 if (IS_ERR(mr)) {
255                         ib_dealloc_pd(pd);
256                         return ERR_CAST(mr);
257                 }
258
259                 mr->device      = pd->device;
260                 mr->pd          = pd;
261                 mr->uobject     = NULL;
262                 mr->need_inval  = false;
263
264                 pd->__internal_mr = mr;
265
266                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
267                         pd->local_dma_lkey = pd->__internal_mr->lkey;
268
269                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
270                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
271         }
272
273         return pd;
274 }
275 EXPORT_SYMBOL(__ib_alloc_pd);
276
277 /**
278  * ib_dealloc_pd - Deallocates a protection domain.
279  * @pd: The protection domain to deallocate.
280  *
281  * It is an error to call this function while any resources in the pd still
282  * exist.  The caller is responsible to synchronously destroy them and
283  * guarantee no new allocations will happen.
284  */
285 void ib_dealloc_pd(struct ib_pd *pd)
286 {
287         int ret;
288
289         if (pd->__internal_mr) {
290                 ret = pd->device->dereg_mr(pd->__internal_mr);
291                 WARN_ON(ret);
292                 pd->__internal_mr = NULL;
293         }
294
295         /* uverbs manipulates usecnt with proper locking, while the kabi
296            requires the caller to guarantee we can't race here. */
297         WARN_ON(atomic_read(&pd->usecnt));
298
299         /* Making delalloc_pd a void return is a WIP, no driver should return
300            an error here. */
301         ret = pd->device->dealloc_pd(pd);
302         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
303 }
304 EXPORT_SYMBOL(ib_dealloc_pd);
305
306 /* Address handles */
307
308 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
309                                      struct rdma_ah_attr *ah_attr,
310                                      struct ib_udata *udata)
311 {
312         struct ib_ah *ah;
313
314         ah = pd->device->create_ah(pd, ah_attr, udata);
315
316         if (!IS_ERR(ah)) {
317                 ah->device  = pd->device;
318                 ah->pd      = pd;
319                 ah->uobject = NULL;
320                 ah->type    = ah_attr->type;
321                 atomic_inc(&pd->usecnt);
322         }
323
324         return ah;
325 }
326
327 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
328 {
329         return _rdma_create_ah(pd, ah_attr, NULL);
330 }
331 EXPORT_SYMBOL(rdma_create_ah);
332
333 /**
334  * rdma_create_user_ah - Creates an address handle for the
335  * given address vector.
336  * It resolves destination mac address for ah attribute of RoCE type.
337  * @pd: The protection domain associated with the address handle.
338  * @ah_attr: The attributes of the address vector.
339  * @udata: pointer to user's input output buffer information need by
340  *         provider driver.
341  *
342  * It returns 0 on success and returns appropriate error code on error.
343  * The address handle is used to reference a local or global destination
344  * in all UD QP post sends.
345  */
346 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
347                                   struct rdma_ah_attr *ah_attr,
348                                   struct ib_udata *udata)
349 {
350         int err;
351
352         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
353                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
354                 if (err)
355                         return ERR_PTR(err);
356         }
357
358         return _rdma_create_ah(pd, ah_attr, udata);
359 }
360 EXPORT_SYMBOL(rdma_create_user_ah);
361
362 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
363 {
364         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
365         struct iphdr ip4h_checked;
366         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
367
368         /* If it's IPv6, the version must be 6, otherwise, the first
369          * 20 bytes (before the IPv4 header) are garbled.
370          */
371         if (ip6h->version != 6)
372                 return (ip4h->version == 4) ? 4 : 0;
373         /* version may be 6 or 4 because the first 20 bytes could be garbled */
374
375         /* RoCE v2 requires no options, thus header length
376          * must be 5 words
377          */
378         if (ip4h->ihl != 5)
379                 return 6;
380
381         /* Verify checksum.
382          * We can't write on scattered buffers so we need to copy to
383          * temp buffer.
384          */
385         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
386         ip4h_checked.check = 0;
387         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
388         /* if IPv4 header checksum is OK, believe it */
389         if (ip4h->check == ip4h_checked.check)
390                 return 4;
391         return 6;
392 }
393 EXPORT_SYMBOL(ib_get_rdma_header_version);
394
395 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
396                                                      u8 port_num,
397                                                      const struct ib_grh *grh)
398 {
399         int grh_version;
400
401         if (rdma_protocol_ib(device, port_num))
402                 return RDMA_NETWORK_IB;
403
404         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
405
406         if (grh_version == 4)
407                 return RDMA_NETWORK_IPV4;
408
409         if (grh->next_hdr == IPPROTO_UDP)
410                 return RDMA_NETWORK_IPV6;
411
412         return RDMA_NETWORK_ROCE_V1;
413 }
414
415 struct find_gid_index_context {
416         u16 vlan_id;
417         enum ib_gid_type gid_type;
418 };
419
420 static bool find_gid_index(const union ib_gid *gid,
421                            const struct ib_gid_attr *gid_attr,
422                            void *context)
423 {
424         struct find_gid_index_context *ctx =
425                 (struct find_gid_index_context *)context;
426
427         if (ctx->gid_type != gid_attr->gid_type)
428                 return false;
429
430         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
431             (is_vlan_dev(gid_attr->ndev) &&
432              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
433                 return false;
434
435         return true;
436 }
437
438 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
439                                    u16 vlan_id, const union ib_gid *sgid,
440                                    enum ib_gid_type gid_type,
441                                    u16 *gid_index)
442 {
443         struct find_gid_index_context context = {.vlan_id = vlan_id,
444                                                  .gid_type = gid_type};
445
446         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
447                                      &context, gid_index);
448 }
449
450 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
451                               enum rdma_network_type net_type,
452                               union ib_gid *sgid, union ib_gid *dgid)
453 {
454         struct sockaddr_in  src_in;
455         struct sockaddr_in  dst_in;
456         __be32 src_saddr, dst_saddr;
457
458         if (!sgid || !dgid)
459                 return -EINVAL;
460
461         if (net_type == RDMA_NETWORK_IPV4) {
462                 memcpy(&src_in.sin_addr.s_addr,
463                        &hdr->roce4grh.saddr, 4);
464                 memcpy(&dst_in.sin_addr.s_addr,
465                        &hdr->roce4grh.daddr, 4);
466                 src_saddr = src_in.sin_addr.s_addr;
467                 dst_saddr = dst_in.sin_addr.s_addr;
468                 ipv6_addr_set_v4mapped(src_saddr,
469                                        (struct in6_addr *)sgid);
470                 ipv6_addr_set_v4mapped(dst_saddr,
471                                        (struct in6_addr *)dgid);
472                 return 0;
473         } else if (net_type == RDMA_NETWORK_IPV6 ||
474                    net_type == RDMA_NETWORK_IB) {
475                 *dgid = hdr->ibgrh.dgid;
476                 *sgid = hdr->ibgrh.sgid;
477                 return 0;
478         } else {
479                 return -EINVAL;
480         }
481 }
482 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
483
484 /*
485  * This function creates ah from the incoming packet.
486  * Incoming packet has dgid of the receiver node on which this code is
487  * getting executed and, sgid contains the GID of the sender.
488  *
489  * When resolving mac address of destination, the arrived dgid is used
490  * as sgid and, sgid is used as dgid because sgid contains destinations
491  * GID whom to respond to.
492  *
493  * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
494  * position of arguments dgid and sgid do not match the order of the
495  * parameters.
496  */
497 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
498                        const struct ib_wc *wc, const struct ib_grh *grh,
499                        struct rdma_ah_attr *ah_attr)
500 {
501         u32 flow_class;
502         u16 gid_index;
503         int ret;
504         enum rdma_network_type net_type = RDMA_NETWORK_IB;
505         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
506         int hoplimit = 0xff;
507         union ib_gid dgid;
508         union ib_gid sgid;
509
510         might_sleep();
511
512         memset(ah_attr, 0, sizeof *ah_attr);
513         ah_attr->type = rdma_ah_find_type(device, port_num);
514         if (rdma_cap_eth_ah(device, port_num)) {
515                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
516                         net_type = wc->network_hdr_type;
517                 else
518                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
519                 gid_type = ib_network_to_gid_type(net_type);
520         }
521         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
522                                         &sgid, &dgid);
523         if (ret)
524                 return ret;
525
526         if (rdma_protocol_roce(device, port_num)) {
527                 int if_index = 0;
528                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
529                                 wc->vlan_id : 0xffff;
530                 struct net_device *idev;
531                 struct net_device *resolved_dev;
532
533                 if (!(wc->wc_flags & IB_WC_GRH))
534                         return -EPROTOTYPE;
535
536                 if (!device->get_netdev)
537                         return -EOPNOTSUPP;
538
539                 idev = device->get_netdev(device, port_num);
540                 if (!idev)
541                         return -ENODEV;
542
543                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
544                                                    ah_attr->roce.dmac,
545                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
546                                                    NULL : &vlan_id,
547                                                    &if_index, &hoplimit);
548                 if (ret) {
549                         dev_put(idev);
550                         return ret;
551                 }
552
553                 resolved_dev = dev_get_by_index(&init_net, if_index);
554                 rcu_read_lock();
555                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
556                                                                    resolved_dev))
557                         ret = -EHOSTUNREACH;
558                 rcu_read_unlock();
559                 dev_put(idev);
560                 dev_put(resolved_dev);
561                 if (ret)
562                         return ret;
563
564                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
565                                               &dgid, gid_type, &gid_index);
566                 if (ret)
567                         return ret;
568         }
569
570         rdma_ah_set_dlid(ah_attr, wc->slid);
571         rdma_ah_set_sl(ah_attr, wc->sl);
572         rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
573         rdma_ah_set_port_num(ah_attr, port_num);
574
575         if (wc->wc_flags & IB_WC_GRH) {
576                 if (!rdma_cap_eth_ah(device, port_num)) {
577                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
578                                 ret = ib_find_cached_gid_by_port(device, &dgid,
579                                                                  IB_GID_TYPE_IB,
580                                                                  port_num, NULL,
581                                                                  &gid_index);
582                                 if (ret)
583                                         return ret;
584                         } else {
585                                 gid_index = 0;
586                         }
587                 }
588
589                 flow_class = be32_to_cpu(grh->version_tclass_flow);
590                 rdma_ah_set_grh(ah_attr, &sgid,
591                                 flow_class & 0xFFFFF,
592                                 (u8)gid_index, hoplimit,
593                                 (flow_class >> 20) & 0xFF);
594
595         }
596         return 0;
597 }
598 EXPORT_SYMBOL(ib_init_ah_from_wc);
599
600 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
601                                    const struct ib_grh *grh, u8 port_num)
602 {
603         struct rdma_ah_attr ah_attr;
604         int ret;
605
606         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
607         if (ret)
608                 return ERR_PTR(ret);
609
610         return rdma_create_ah(pd, &ah_attr);
611 }
612 EXPORT_SYMBOL(ib_create_ah_from_wc);
613
614 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
615 {
616         if (ah->type != ah_attr->type)
617                 return -EINVAL;
618
619         return ah->device->modify_ah ?
620                 ah->device->modify_ah(ah, ah_attr) :
621                 -ENOSYS;
622 }
623 EXPORT_SYMBOL(rdma_modify_ah);
624
625 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
626 {
627         return ah->device->query_ah ?
628                 ah->device->query_ah(ah, ah_attr) :
629                 -ENOSYS;
630 }
631 EXPORT_SYMBOL(rdma_query_ah);
632
633 int rdma_destroy_ah(struct ib_ah *ah)
634 {
635         struct ib_pd *pd;
636         int ret;
637
638         pd = ah->pd;
639         ret = ah->device->destroy_ah(ah);
640         if (!ret)
641                 atomic_dec(&pd->usecnt);
642
643         return ret;
644 }
645 EXPORT_SYMBOL(rdma_destroy_ah);
646
647 /* Shared receive queues */
648
649 struct ib_srq *ib_create_srq(struct ib_pd *pd,
650                              struct ib_srq_init_attr *srq_init_attr)
651 {
652         struct ib_srq *srq;
653
654         if (!pd->device->create_srq)
655                 return ERR_PTR(-ENOSYS);
656
657         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
658
659         if (!IS_ERR(srq)) {
660                 srq->device        = pd->device;
661                 srq->pd            = pd;
662                 srq->uobject       = NULL;
663                 srq->event_handler = srq_init_attr->event_handler;
664                 srq->srq_context   = srq_init_attr->srq_context;
665                 srq->srq_type      = srq_init_attr->srq_type;
666                 if (ib_srq_has_cq(srq->srq_type)) {
667                         srq->ext.cq   = srq_init_attr->ext.cq;
668                         atomic_inc(&srq->ext.cq->usecnt);
669                 }
670                 if (srq->srq_type == IB_SRQT_XRC) {
671                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
672                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
673                 }
674                 atomic_inc(&pd->usecnt);
675                 atomic_set(&srq->usecnt, 0);
676         }
677
678         return srq;
679 }
680 EXPORT_SYMBOL(ib_create_srq);
681
682 int ib_modify_srq(struct ib_srq *srq,
683                   struct ib_srq_attr *srq_attr,
684                   enum ib_srq_attr_mask srq_attr_mask)
685 {
686         return srq->device->modify_srq ?
687                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
688                 -ENOSYS;
689 }
690 EXPORT_SYMBOL(ib_modify_srq);
691
692 int ib_query_srq(struct ib_srq *srq,
693                  struct ib_srq_attr *srq_attr)
694 {
695         return srq->device->query_srq ?
696                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
697 }
698 EXPORT_SYMBOL(ib_query_srq);
699
700 int ib_destroy_srq(struct ib_srq *srq)
701 {
702         struct ib_pd *pd;
703         enum ib_srq_type srq_type;
704         struct ib_xrcd *uninitialized_var(xrcd);
705         struct ib_cq *uninitialized_var(cq);
706         int ret;
707
708         if (atomic_read(&srq->usecnt))
709                 return -EBUSY;
710
711         pd = srq->pd;
712         srq_type = srq->srq_type;
713         if (ib_srq_has_cq(srq_type))
714                 cq = srq->ext.cq;
715         if (srq_type == IB_SRQT_XRC)
716                 xrcd = srq->ext.xrc.xrcd;
717
718         ret = srq->device->destroy_srq(srq);
719         if (!ret) {
720                 atomic_dec(&pd->usecnt);
721                 if (srq_type == IB_SRQT_XRC)
722                         atomic_dec(&xrcd->usecnt);
723                 if (ib_srq_has_cq(srq_type))
724                         atomic_dec(&cq->usecnt);
725         }
726
727         return ret;
728 }
729 EXPORT_SYMBOL(ib_destroy_srq);
730
731 /* Queue pairs */
732
733 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
734 {
735         struct ib_qp *qp = context;
736         unsigned long flags;
737
738         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
739         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
740                 if (event->element.qp->event_handler)
741                         event->element.qp->event_handler(event, event->element.qp->qp_context);
742         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
743 }
744
745 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
746 {
747         mutex_lock(&xrcd->tgt_qp_mutex);
748         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
749         mutex_unlock(&xrcd->tgt_qp_mutex);
750 }
751
752 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
753                                   void (*event_handler)(struct ib_event *, void *),
754                                   void *qp_context)
755 {
756         struct ib_qp *qp;
757         unsigned long flags;
758         int err;
759
760         qp = kzalloc(sizeof *qp, GFP_KERNEL);
761         if (!qp)
762                 return ERR_PTR(-ENOMEM);
763
764         qp->real_qp = real_qp;
765         err = ib_open_shared_qp_security(qp, real_qp->device);
766         if (err) {
767                 kfree(qp);
768                 return ERR_PTR(err);
769         }
770
771         qp->real_qp = real_qp;
772         atomic_inc(&real_qp->usecnt);
773         qp->device = real_qp->device;
774         qp->event_handler = event_handler;
775         qp->qp_context = qp_context;
776         qp->qp_num = real_qp->qp_num;
777         qp->qp_type = real_qp->qp_type;
778
779         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
780         list_add(&qp->open_list, &real_qp->open_list);
781         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
782
783         return qp;
784 }
785
786 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
787                          struct ib_qp_open_attr *qp_open_attr)
788 {
789         struct ib_qp *qp, *real_qp;
790
791         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
792                 return ERR_PTR(-EINVAL);
793
794         qp = ERR_PTR(-EINVAL);
795         mutex_lock(&xrcd->tgt_qp_mutex);
796         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
797                 if (real_qp->qp_num == qp_open_attr->qp_num) {
798                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
799                                           qp_open_attr->qp_context);
800                         break;
801                 }
802         }
803         mutex_unlock(&xrcd->tgt_qp_mutex);
804         return qp;
805 }
806 EXPORT_SYMBOL(ib_open_qp);
807
808 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
809                 struct ib_qp_init_attr *qp_init_attr)
810 {
811         struct ib_qp *real_qp = qp;
812
813         qp->event_handler = __ib_shared_qp_event_handler;
814         qp->qp_context = qp;
815         qp->pd = NULL;
816         qp->send_cq = qp->recv_cq = NULL;
817         qp->srq = NULL;
818         qp->xrcd = qp_init_attr->xrcd;
819         atomic_inc(&qp_init_attr->xrcd->usecnt);
820         INIT_LIST_HEAD(&qp->open_list);
821
822         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
823                           qp_init_attr->qp_context);
824         if (!IS_ERR(qp))
825                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
826         else
827                 real_qp->device->destroy_qp(real_qp);
828         return qp;
829 }
830
831 struct ib_qp *ib_create_qp(struct ib_pd *pd,
832                            struct ib_qp_init_attr *qp_init_attr)
833 {
834         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
835         struct ib_qp *qp;
836         int ret;
837
838         if (qp_init_attr->rwq_ind_tbl &&
839             (qp_init_attr->recv_cq ||
840             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
841             qp_init_attr->cap.max_recv_sge))
842                 return ERR_PTR(-EINVAL);
843
844         /*
845          * If the callers is using the RDMA API calculate the resources
846          * needed for the RDMA READ/WRITE operations.
847          *
848          * Note that these callers need to pass in a port number.
849          */
850         if (qp_init_attr->cap.max_rdma_ctxs)
851                 rdma_rw_init_qp(device, qp_init_attr);
852
853         qp = device->create_qp(pd, qp_init_attr, NULL);
854         if (IS_ERR(qp))
855                 return qp;
856
857         ret = ib_create_qp_security(qp, device);
858         if (ret) {
859                 ib_destroy_qp(qp);
860                 return ERR_PTR(ret);
861         }
862
863         qp->device     = device;
864         qp->real_qp    = qp;
865         qp->uobject    = NULL;
866         qp->qp_type    = qp_init_attr->qp_type;
867         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
868
869         atomic_set(&qp->usecnt, 0);
870         qp->mrs_used = 0;
871         spin_lock_init(&qp->mr_lock);
872         INIT_LIST_HEAD(&qp->rdma_mrs);
873         INIT_LIST_HEAD(&qp->sig_mrs);
874         qp->port = 0;
875
876         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
877                 return ib_create_xrc_qp(qp, qp_init_attr);
878
879         qp->event_handler = qp_init_attr->event_handler;
880         qp->qp_context = qp_init_attr->qp_context;
881         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
882                 qp->recv_cq = NULL;
883                 qp->srq = NULL;
884         } else {
885                 qp->recv_cq = qp_init_attr->recv_cq;
886                 if (qp_init_attr->recv_cq)
887                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
888                 qp->srq = qp_init_attr->srq;
889                 if (qp->srq)
890                         atomic_inc(&qp_init_attr->srq->usecnt);
891         }
892
893         qp->pd      = pd;
894         qp->send_cq = qp_init_attr->send_cq;
895         qp->xrcd    = NULL;
896
897         atomic_inc(&pd->usecnt);
898         if (qp_init_attr->send_cq)
899                 atomic_inc(&qp_init_attr->send_cq->usecnt);
900         if (qp_init_attr->rwq_ind_tbl)
901                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
902
903         if (qp_init_attr->cap.max_rdma_ctxs) {
904                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
905                 if (ret) {
906                         pr_err("failed to init MR pool ret= %d\n", ret);
907                         ib_destroy_qp(qp);
908                         return ERR_PTR(ret);
909                 }
910         }
911
912         /*
913          * Note: all hw drivers guarantee that max_send_sge is lower than
914          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
915          * max_send_sge <= max_sge_rd.
916          */
917         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
918         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
919                                  device->attrs.max_sge_rd);
920
921         return qp;
922 }
923 EXPORT_SYMBOL(ib_create_qp);
924
925 static const struct {
926         int                     valid;
927         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
928         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
929 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
930         [IB_QPS_RESET] = {
931                 [IB_QPS_RESET] = { .valid = 1 },
932                 [IB_QPS_INIT]  = {
933                         .valid = 1,
934                         .req_param = {
935                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
936                                                 IB_QP_PORT                      |
937                                                 IB_QP_QKEY),
938                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
939                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
940                                                 IB_QP_PORT                      |
941                                                 IB_QP_ACCESS_FLAGS),
942                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
943                                                 IB_QP_PORT                      |
944                                                 IB_QP_ACCESS_FLAGS),
945                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
946                                                 IB_QP_PORT                      |
947                                                 IB_QP_ACCESS_FLAGS),
948                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
949                                                 IB_QP_PORT                      |
950                                                 IB_QP_ACCESS_FLAGS),
951                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
952                                                 IB_QP_QKEY),
953                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
954                                                 IB_QP_QKEY),
955                         }
956                 },
957         },
958         [IB_QPS_INIT]  = {
959                 [IB_QPS_RESET] = { .valid = 1 },
960                 [IB_QPS_ERR] =   { .valid = 1 },
961                 [IB_QPS_INIT]  = {
962                         .valid = 1,
963                         .opt_param = {
964                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
965                                                 IB_QP_PORT                      |
966                                                 IB_QP_QKEY),
967                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
968                                                 IB_QP_PORT                      |
969                                                 IB_QP_ACCESS_FLAGS),
970                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
971                                                 IB_QP_PORT                      |
972                                                 IB_QP_ACCESS_FLAGS),
973                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
974                                                 IB_QP_PORT                      |
975                                                 IB_QP_ACCESS_FLAGS),
976                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
977                                                 IB_QP_PORT                      |
978                                                 IB_QP_ACCESS_FLAGS),
979                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
980                                                 IB_QP_QKEY),
981                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
982                                                 IB_QP_QKEY),
983                         }
984                 },
985                 [IB_QPS_RTR]   = {
986                         .valid = 1,
987                         .req_param = {
988                                 [IB_QPT_UC]  = (IB_QP_AV                        |
989                                                 IB_QP_PATH_MTU                  |
990                                                 IB_QP_DEST_QPN                  |
991                                                 IB_QP_RQ_PSN),
992                                 [IB_QPT_RC]  = (IB_QP_AV                        |
993                                                 IB_QP_PATH_MTU                  |
994                                                 IB_QP_DEST_QPN                  |
995                                                 IB_QP_RQ_PSN                    |
996                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
997                                                 IB_QP_MIN_RNR_TIMER),
998                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
999                                                 IB_QP_PATH_MTU                  |
1000                                                 IB_QP_DEST_QPN                  |
1001                                                 IB_QP_RQ_PSN),
1002                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1003                                                 IB_QP_PATH_MTU                  |
1004                                                 IB_QP_DEST_QPN                  |
1005                                                 IB_QP_RQ_PSN                    |
1006                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1007                                                 IB_QP_MIN_RNR_TIMER),
1008                         },
1009                         .opt_param = {
1010                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1011                                                  IB_QP_QKEY),
1012                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1013                                                  IB_QP_ACCESS_FLAGS             |
1014                                                  IB_QP_PKEY_INDEX),
1015                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1016                                                  IB_QP_ACCESS_FLAGS             |
1017                                                  IB_QP_PKEY_INDEX),
1018                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1019                                                  IB_QP_ACCESS_FLAGS             |
1020                                                  IB_QP_PKEY_INDEX),
1021                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1022                                                  IB_QP_ACCESS_FLAGS             |
1023                                                  IB_QP_PKEY_INDEX),
1024                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1025                                                  IB_QP_QKEY),
1026                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1027                                                  IB_QP_QKEY),
1028                          },
1029                 },
1030         },
1031         [IB_QPS_RTR]   = {
1032                 [IB_QPS_RESET] = { .valid = 1 },
1033                 [IB_QPS_ERR] =   { .valid = 1 },
1034                 [IB_QPS_RTS]   = {
1035                         .valid = 1,
1036                         .req_param = {
1037                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1038                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1039                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1040                                                 IB_QP_RETRY_CNT                 |
1041                                                 IB_QP_RNR_RETRY                 |
1042                                                 IB_QP_SQ_PSN                    |
1043                                                 IB_QP_MAX_QP_RD_ATOMIC),
1044                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1045                                                 IB_QP_RETRY_CNT                 |
1046                                                 IB_QP_RNR_RETRY                 |
1047                                                 IB_QP_SQ_PSN                    |
1048                                                 IB_QP_MAX_QP_RD_ATOMIC),
1049                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1050                                                 IB_QP_SQ_PSN),
1051                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1052                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1053                         },
1054                         .opt_param = {
1055                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1056                                                  IB_QP_QKEY),
1057                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1058                                                  IB_QP_ALT_PATH                 |
1059                                                  IB_QP_ACCESS_FLAGS             |
1060                                                  IB_QP_PATH_MIG_STATE),
1061                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1062                                                  IB_QP_ALT_PATH                 |
1063                                                  IB_QP_ACCESS_FLAGS             |
1064                                                  IB_QP_MIN_RNR_TIMER            |
1065                                                  IB_QP_PATH_MIG_STATE),
1066                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1067                                                  IB_QP_ALT_PATH                 |
1068                                                  IB_QP_ACCESS_FLAGS             |
1069                                                  IB_QP_PATH_MIG_STATE),
1070                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1071                                                  IB_QP_ALT_PATH                 |
1072                                                  IB_QP_ACCESS_FLAGS             |
1073                                                  IB_QP_MIN_RNR_TIMER            |
1074                                                  IB_QP_PATH_MIG_STATE),
1075                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1076                                                  IB_QP_QKEY),
1077                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1078                                                  IB_QP_QKEY),
1079                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1080                          }
1081                 }
1082         },
1083         [IB_QPS_RTS]   = {
1084                 [IB_QPS_RESET] = { .valid = 1 },
1085                 [IB_QPS_ERR] =   { .valid = 1 },
1086                 [IB_QPS_RTS]   = {
1087                         .valid = 1,
1088                         .opt_param = {
1089                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1090                                                 IB_QP_QKEY),
1091                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1092                                                 IB_QP_ACCESS_FLAGS              |
1093                                                 IB_QP_ALT_PATH                  |
1094                                                 IB_QP_PATH_MIG_STATE),
1095                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1096                                                 IB_QP_ACCESS_FLAGS              |
1097                                                 IB_QP_ALT_PATH                  |
1098                                                 IB_QP_PATH_MIG_STATE            |
1099                                                 IB_QP_MIN_RNR_TIMER),
1100                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1101                                                 IB_QP_ACCESS_FLAGS              |
1102                                                 IB_QP_ALT_PATH                  |
1103                                                 IB_QP_PATH_MIG_STATE),
1104                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1105                                                 IB_QP_ACCESS_FLAGS              |
1106                                                 IB_QP_ALT_PATH                  |
1107                                                 IB_QP_PATH_MIG_STATE            |
1108                                                 IB_QP_MIN_RNR_TIMER),
1109                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1110                                                 IB_QP_QKEY),
1111                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1112                                                 IB_QP_QKEY),
1113                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1114                         }
1115                 },
1116                 [IB_QPS_SQD]   = {
1117                         .valid = 1,
1118                         .opt_param = {
1119                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1120                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1121                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1122                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1123                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1124                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1125                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1126                         }
1127                 },
1128         },
1129         [IB_QPS_SQD]   = {
1130                 [IB_QPS_RESET] = { .valid = 1 },
1131                 [IB_QPS_ERR] =   { .valid = 1 },
1132                 [IB_QPS_RTS]   = {
1133                         .valid = 1,
1134                         .opt_param = {
1135                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1136                                                 IB_QP_QKEY),
1137                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1138                                                 IB_QP_ALT_PATH                  |
1139                                                 IB_QP_ACCESS_FLAGS              |
1140                                                 IB_QP_PATH_MIG_STATE),
1141                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1142                                                 IB_QP_ALT_PATH                  |
1143                                                 IB_QP_ACCESS_FLAGS              |
1144                                                 IB_QP_MIN_RNR_TIMER             |
1145                                                 IB_QP_PATH_MIG_STATE),
1146                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1147                                                 IB_QP_ALT_PATH                  |
1148                                                 IB_QP_ACCESS_FLAGS              |
1149                                                 IB_QP_PATH_MIG_STATE),
1150                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1151                                                 IB_QP_ALT_PATH                  |
1152                                                 IB_QP_ACCESS_FLAGS              |
1153                                                 IB_QP_MIN_RNR_TIMER             |
1154                                                 IB_QP_PATH_MIG_STATE),
1155                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1156                                                 IB_QP_QKEY),
1157                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1158                                                 IB_QP_QKEY),
1159                         }
1160                 },
1161                 [IB_QPS_SQD]   = {
1162                         .valid = 1,
1163                         .opt_param = {
1164                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1165                                                 IB_QP_QKEY),
1166                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1167                                                 IB_QP_ALT_PATH                  |
1168                                                 IB_QP_ACCESS_FLAGS              |
1169                                                 IB_QP_PKEY_INDEX                |
1170                                                 IB_QP_PATH_MIG_STATE),
1171                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1172                                                 IB_QP_AV                        |
1173                                                 IB_QP_TIMEOUT                   |
1174                                                 IB_QP_RETRY_CNT                 |
1175                                                 IB_QP_RNR_RETRY                 |
1176                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1177                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1178                                                 IB_QP_ALT_PATH                  |
1179                                                 IB_QP_ACCESS_FLAGS              |
1180                                                 IB_QP_PKEY_INDEX                |
1181                                                 IB_QP_MIN_RNR_TIMER             |
1182                                                 IB_QP_PATH_MIG_STATE),
1183                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1184                                                 IB_QP_AV                        |
1185                                                 IB_QP_TIMEOUT                   |
1186                                                 IB_QP_RETRY_CNT                 |
1187                                                 IB_QP_RNR_RETRY                 |
1188                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1189                                                 IB_QP_ALT_PATH                  |
1190                                                 IB_QP_ACCESS_FLAGS              |
1191                                                 IB_QP_PKEY_INDEX                |
1192                                                 IB_QP_PATH_MIG_STATE),
1193                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1194                                                 IB_QP_AV                        |
1195                                                 IB_QP_TIMEOUT                   |
1196                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1197                                                 IB_QP_ALT_PATH                  |
1198                                                 IB_QP_ACCESS_FLAGS              |
1199                                                 IB_QP_PKEY_INDEX                |
1200                                                 IB_QP_MIN_RNR_TIMER             |
1201                                                 IB_QP_PATH_MIG_STATE),
1202                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1203                                                 IB_QP_QKEY),
1204                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1205                                                 IB_QP_QKEY),
1206                         }
1207                 }
1208         },
1209         [IB_QPS_SQE]   = {
1210                 [IB_QPS_RESET] = { .valid = 1 },
1211                 [IB_QPS_ERR] =   { .valid = 1 },
1212                 [IB_QPS_RTS]   = {
1213                         .valid = 1,
1214                         .opt_param = {
1215                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1216                                                 IB_QP_QKEY),
1217                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1218                                                 IB_QP_ACCESS_FLAGS),
1219                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1220                                                 IB_QP_QKEY),
1221                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1222                                                 IB_QP_QKEY),
1223                         }
1224                 }
1225         },
1226         [IB_QPS_ERR] = {
1227                 [IB_QPS_RESET] = { .valid = 1 },
1228                 [IB_QPS_ERR] =   { .valid = 1 }
1229         }
1230 };
1231
1232 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1233                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1234                        enum rdma_link_layer ll)
1235 {
1236         enum ib_qp_attr_mask req_param, opt_param;
1237
1238         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1239             next_state < 0 || next_state > IB_QPS_ERR)
1240                 return 0;
1241
1242         if (mask & IB_QP_CUR_STATE  &&
1243             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1244             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1245                 return 0;
1246
1247         if (!qp_state_table[cur_state][next_state].valid)
1248                 return 0;
1249
1250         req_param = qp_state_table[cur_state][next_state].req_param[type];
1251         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1252
1253         if ((mask & req_param) != req_param)
1254                 return 0;
1255
1256         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1257                 return 0;
1258
1259         return 1;
1260 }
1261 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1262
1263 static int ib_resolve_eth_dmac(struct ib_device *device,
1264                                struct rdma_ah_attr *ah_attr)
1265 {
1266         int           ret = 0;
1267         struct ib_global_route *grh;
1268
1269         if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1270                 return -EINVAL;
1271
1272         if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1273                 return 0;
1274
1275         grh = rdma_ah_retrieve_grh(ah_attr);
1276
1277         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1278                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1279                                 ah_attr->roce.dmac);
1280                 return 0;
1281         }
1282         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1283                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1284                         __be32 addr = 0;
1285
1286                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1287                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1288                 } else {
1289                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1290                                         (char *)ah_attr->roce.dmac);
1291                 }
1292         } else {
1293                 union ib_gid            sgid;
1294                 struct ib_gid_attr      sgid_attr;
1295                 int                     ifindex;
1296                 int                     hop_limit;
1297
1298                 ret = ib_query_gid(device,
1299                                    rdma_ah_get_port_num(ah_attr),
1300                                    grh->sgid_index,
1301                                    &sgid, &sgid_attr);
1302
1303                 if (ret || !sgid_attr.ndev) {
1304                         if (!ret)
1305                                 ret = -ENXIO;
1306                         goto out;
1307                 }
1308
1309                 ifindex = sgid_attr.ndev->ifindex;
1310
1311                 ret =
1312                 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1313                                              ah_attr->roce.dmac,
1314                                              NULL, &ifindex, &hop_limit);
1315
1316                 dev_put(sgid_attr.ndev);
1317
1318                 grh->hop_limit = hop_limit;
1319         }
1320 out:
1321         return ret;
1322 }
1323
1324 /**
1325  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1326  * @qp: The QP to modify.
1327  * @attr: On input, specifies the QP attributes to modify.  On output,
1328  *   the current values of selected QP attributes are returned.
1329  * @attr_mask: A bit-mask used to specify which attributes of the QP
1330  *   are being modified.
1331  * @udata: pointer to user's input output buffer information
1332  *   are being modified.
1333  * It returns 0 on success and returns appropriate error code on error.
1334  */
1335 int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr,
1336                             int attr_mask, struct ib_udata *udata)
1337 {
1338         int ret;
1339
1340         if (attr_mask & IB_QP_AV) {
1341                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1342                 if (ret)
1343                         return ret;
1344         }
1345         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1346         if (!ret && (attr_mask & IB_QP_PORT))
1347                 qp->port = attr->port_num;
1348
1349         return ret;
1350 }
1351 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1352
1353 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1354 {
1355         int rc;
1356         u32 netdev_speed;
1357         struct net_device *netdev;
1358         struct ethtool_link_ksettings lksettings;
1359
1360         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1361                 return -EINVAL;
1362
1363         if (!dev->get_netdev)
1364                 return -EOPNOTSUPP;
1365
1366         netdev = dev->get_netdev(dev, port_num);
1367         if (!netdev)
1368                 return -ENODEV;
1369
1370         rtnl_lock();
1371         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1372         rtnl_unlock();
1373
1374         dev_put(netdev);
1375
1376         if (!rc) {
1377                 netdev_speed = lksettings.base.speed;
1378         } else {
1379                 netdev_speed = SPEED_1000;
1380                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1381                         netdev_speed);
1382         }
1383
1384         if (netdev_speed <= SPEED_1000) {
1385                 *width = IB_WIDTH_1X;
1386                 *speed = IB_SPEED_SDR;
1387         } else if (netdev_speed <= SPEED_10000) {
1388                 *width = IB_WIDTH_1X;
1389                 *speed = IB_SPEED_FDR10;
1390         } else if (netdev_speed <= SPEED_20000) {
1391                 *width = IB_WIDTH_4X;
1392                 *speed = IB_SPEED_DDR;
1393         } else if (netdev_speed <= SPEED_25000) {
1394                 *width = IB_WIDTH_1X;
1395                 *speed = IB_SPEED_EDR;
1396         } else if (netdev_speed <= SPEED_40000) {
1397                 *width = IB_WIDTH_4X;
1398                 *speed = IB_SPEED_FDR10;
1399         } else {
1400                 *width = IB_WIDTH_4X;
1401                 *speed = IB_SPEED_EDR;
1402         }
1403
1404         return 0;
1405 }
1406 EXPORT_SYMBOL(ib_get_eth_speed);
1407
1408 int ib_modify_qp(struct ib_qp *qp,
1409                  struct ib_qp_attr *qp_attr,
1410                  int qp_attr_mask)
1411 {
1412         return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
1413 }
1414 EXPORT_SYMBOL(ib_modify_qp);
1415
1416 int ib_query_qp(struct ib_qp *qp,
1417                 struct ib_qp_attr *qp_attr,
1418                 int qp_attr_mask,
1419                 struct ib_qp_init_attr *qp_init_attr)
1420 {
1421         return qp->device->query_qp ?
1422                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1423                 -ENOSYS;
1424 }
1425 EXPORT_SYMBOL(ib_query_qp);
1426
1427 int ib_close_qp(struct ib_qp *qp)
1428 {
1429         struct ib_qp *real_qp;
1430         unsigned long flags;
1431
1432         real_qp = qp->real_qp;
1433         if (real_qp == qp)
1434                 return -EINVAL;
1435
1436         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1437         list_del(&qp->open_list);
1438         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1439
1440         atomic_dec(&real_qp->usecnt);
1441         if (qp->qp_sec)
1442                 ib_close_shared_qp_security(qp->qp_sec);
1443         kfree(qp);
1444
1445         return 0;
1446 }
1447 EXPORT_SYMBOL(ib_close_qp);
1448
1449 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1450 {
1451         struct ib_xrcd *xrcd;
1452         struct ib_qp *real_qp;
1453         int ret;
1454
1455         real_qp = qp->real_qp;
1456         xrcd = real_qp->xrcd;
1457
1458         mutex_lock(&xrcd->tgt_qp_mutex);
1459         ib_close_qp(qp);
1460         if (atomic_read(&real_qp->usecnt) == 0)
1461                 list_del(&real_qp->xrcd_list);
1462         else
1463                 real_qp = NULL;
1464         mutex_unlock(&xrcd->tgt_qp_mutex);
1465
1466         if (real_qp) {
1467                 ret = ib_destroy_qp(real_qp);
1468                 if (!ret)
1469                         atomic_dec(&xrcd->usecnt);
1470                 else
1471                         __ib_insert_xrcd_qp(xrcd, real_qp);
1472         }
1473
1474         return 0;
1475 }
1476
1477 int ib_destroy_qp(struct ib_qp *qp)
1478 {
1479         struct ib_pd *pd;
1480         struct ib_cq *scq, *rcq;
1481         struct ib_srq *srq;
1482         struct ib_rwq_ind_table *ind_tbl;
1483         struct ib_qp_security *sec;
1484         int ret;
1485
1486         WARN_ON_ONCE(qp->mrs_used > 0);
1487
1488         if (atomic_read(&qp->usecnt))
1489                 return -EBUSY;
1490
1491         if (qp->real_qp != qp)
1492                 return __ib_destroy_shared_qp(qp);
1493
1494         pd   = qp->pd;
1495         scq  = qp->send_cq;
1496         rcq  = qp->recv_cq;
1497         srq  = qp->srq;
1498         ind_tbl = qp->rwq_ind_tbl;
1499         sec  = qp->qp_sec;
1500         if (sec)
1501                 ib_destroy_qp_security_begin(sec);
1502
1503         if (!qp->uobject)
1504                 rdma_rw_cleanup_mrs(qp);
1505
1506         ret = qp->device->destroy_qp(qp);
1507         if (!ret) {
1508                 if (pd)
1509                         atomic_dec(&pd->usecnt);
1510                 if (scq)
1511                         atomic_dec(&scq->usecnt);
1512                 if (rcq)
1513                         atomic_dec(&rcq->usecnt);
1514                 if (srq)
1515                         atomic_dec(&srq->usecnt);
1516                 if (ind_tbl)
1517                         atomic_dec(&ind_tbl->usecnt);
1518                 if (sec)
1519                         ib_destroy_qp_security_end(sec);
1520         } else {
1521                 if (sec)
1522                         ib_destroy_qp_security_abort(sec);
1523         }
1524
1525         return ret;
1526 }
1527 EXPORT_SYMBOL(ib_destroy_qp);
1528
1529 /* Completion queues */
1530
1531 struct ib_cq *ib_create_cq(struct ib_device *device,
1532                            ib_comp_handler comp_handler,
1533                            void (*event_handler)(struct ib_event *, void *),
1534                            void *cq_context,
1535                            const struct ib_cq_init_attr *cq_attr)
1536 {
1537         struct ib_cq *cq;
1538
1539         cq = device->create_cq(device, cq_attr, NULL, NULL);
1540
1541         if (!IS_ERR(cq)) {
1542                 cq->device        = device;
1543                 cq->uobject       = NULL;
1544                 cq->comp_handler  = comp_handler;
1545                 cq->event_handler = event_handler;
1546                 cq->cq_context    = cq_context;
1547                 atomic_set(&cq->usecnt, 0);
1548         }
1549
1550         return cq;
1551 }
1552 EXPORT_SYMBOL(ib_create_cq);
1553
1554 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1555 {
1556         return cq->device->modify_cq ?
1557                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1558 }
1559 EXPORT_SYMBOL(rdma_set_cq_moderation);
1560
1561 int ib_destroy_cq(struct ib_cq *cq)
1562 {
1563         if (atomic_read(&cq->usecnt))
1564                 return -EBUSY;
1565
1566         return cq->device->destroy_cq(cq);
1567 }
1568 EXPORT_SYMBOL(ib_destroy_cq);
1569
1570 int ib_resize_cq(struct ib_cq *cq, int cqe)
1571 {
1572         return cq->device->resize_cq ?
1573                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1574 }
1575 EXPORT_SYMBOL(ib_resize_cq);
1576
1577 /* Memory regions */
1578
1579 int ib_dereg_mr(struct ib_mr *mr)
1580 {
1581         struct ib_pd *pd = mr->pd;
1582         int ret;
1583
1584         ret = mr->device->dereg_mr(mr);
1585         if (!ret)
1586                 atomic_dec(&pd->usecnt);
1587
1588         return ret;
1589 }
1590 EXPORT_SYMBOL(ib_dereg_mr);
1591
1592 /**
1593  * ib_alloc_mr() - Allocates a memory region
1594  * @pd:            protection domain associated with the region
1595  * @mr_type:       memory region type
1596  * @max_num_sg:    maximum sg entries available for registration.
1597  *
1598  * Notes:
1599  * Memory registeration page/sg lists must not exceed max_num_sg.
1600  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1601  * max_num_sg * used_page_size.
1602  *
1603  */
1604 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1605                           enum ib_mr_type mr_type,
1606                           u32 max_num_sg)
1607 {
1608         struct ib_mr *mr;
1609
1610         if (!pd->device->alloc_mr)
1611                 return ERR_PTR(-ENOSYS);
1612
1613         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1614         if (!IS_ERR(mr)) {
1615                 mr->device  = pd->device;
1616                 mr->pd      = pd;
1617                 mr->uobject = NULL;
1618                 atomic_inc(&pd->usecnt);
1619                 mr->need_inval = false;
1620         }
1621
1622         return mr;
1623 }
1624 EXPORT_SYMBOL(ib_alloc_mr);
1625
1626 /* "Fast" memory regions */
1627
1628 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1629                             int mr_access_flags,
1630                             struct ib_fmr_attr *fmr_attr)
1631 {
1632         struct ib_fmr *fmr;
1633
1634         if (!pd->device->alloc_fmr)
1635                 return ERR_PTR(-ENOSYS);
1636
1637         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1638         if (!IS_ERR(fmr)) {
1639                 fmr->device = pd->device;
1640                 fmr->pd     = pd;
1641                 atomic_inc(&pd->usecnt);
1642         }
1643
1644         return fmr;
1645 }
1646 EXPORT_SYMBOL(ib_alloc_fmr);
1647
1648 int ib_unmap_fmr(struct list_head *fmr_list)
1649 {
1650         struct ib_fmr *fmr;
1651
1652         if (list_empty(fmr_list))
1653                 return 0;
1654
1655         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1656         return fmr->device->unmap_fmr(fmr_list);
1657 }
1658 EXPORT_SYMBOL(ib_unmap_fmr);
1659
1660 int ib_dealloc_fmr(struct ib_fmr *fmr)
1661 {
1662         struct ib_pd *pd;
1663         int ret;
1664
1665         pd = fmr->pd;
1666         ret = fmr->device->dealloc_fmr(fmr);
1667         if (!ret)
1668                 atomic_dec(&pd->usecnt);
1669
1670         return ret;
1671 }
1672 EXPORT_SYMBOL(ib_dealloc_fmr);
1673
1674 /* Multicast groups */
1675
1676 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1677 {
1678         struct ib_qp_init_attr init_attr = {};
1679         struct ib_qp_attr attr = {};
1680         int num_eth_ports = 0;
1681         int port;
1682
1683         /* If QP state >= init, it is assigned to a port and we can check this
1684          * port only.
1685          */
1686         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1687                 if (attr.qp_state >= IB_QPS_INIT) {
1688                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1689                             IB_LINK_LAYER_INFINIBAND)
1690                                 return true;
1691                         goto lid_check;
1692                 }
1693         }
1694
1695         /* Can't get a quick answer, iterate over all ports */
1696         for (port = 0; port < qp->device->phys_port_cnt; port++)
1697                 if (rdma_port_get_link_layer(qp->device, port) !=
1698                     IB_LINK_LAYER_INFINIBAND)
1699                         num_eth_ports++;
1700
1701         /* If we have at lease one Ethernet port, RoCE annex declares that
1702          * multicast LID should be ignored. We can't tell at this step if the
1703          * QP belongs to an IB or Ethernet port.
1704          */
1705         if (num_eth_ports)
1706                 return true;
1707
1708         /* If all the ports are IB, we can check according to IB spec. */
1709 lid_check:
1710         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1711                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
1712 }
1713
1714 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1715 {
1716         int ret;
1717
1718         if (!qp->device->attach_mcast)
1719                 return -ENOSYS;
1720
1721         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1722             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1723                 return -EINVAL;
1724
1725         ret = qp->device->attach_mcast(qp, gid, lid);
1726         if (!ret)
1727                 atomic_inc(&qp->usecnt);
1728         return ret;
1729 }
1730 EXPORT_SYMBOL(ib_attach_mcast);
1731
1732 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1733 {
1734         int ret;
1735
1736         if (!qp->device->detach_mcast)
1737                 return -ENOSYS;
1738
1739         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1740             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1741                 return -EINVAL;
1742
1743         ret = qp->device->detach_mcast(qp, gid, lid);
1744         if (!ret)
1745                 atomic_dec(&qp->usecnt);
1746         return ret;
1747 }
1748 EXPORT_SYMBOL(ib_detach_mcast);
1749
1750 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1751 {
1752         struct ib_xrcd *xrcd;
1753
1754         if (!device->alloc_xrcd)
1755                 return ERR_PTR(-ENOSYS);
1756
1757         xrcd = device->alloc_xrcd(device, NULL, NULL);
1758         if (!IS_ERR(xrcd)) {
1759                 xrcd->device = device;
1760                 xrcd->inode = NULL;
1761                 atomic_set(&xrcd->usecnt, 0);
1762                 mutex_init(&xrcd->tgt_qp_mutex);
1763                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1764         }
1765
1766         return xrcd;
1767 }
1768 EXPORT_SYMBOL(ib_alloc_xrcd);
1769
1770 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1771 {
1772         struct ib_qp *qp;
1773         int ret;
1774
1775         if (atomic_read(&xrcd->usecnt))
1776                 return -EBUSY;
1777
1778         while (!list_empty(&xrcd->tgt_qp_list)) {
1779                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1780                 ret = ib_destroy_qp(qp);
1781                 if (ret)
1782                         return ret;
1783         }
1784
1785         return xrcd->device->dealloc_xrcd(xrcd);
1786 }
1787 EXPORT_SYMBOL(ib_dealloc_xrcd);
1788
1789 /**
1790  * ib_create_wq - Creates a WQ associated with the specified protection
1791  * domain.
1792  * @pd: The protection domain associated with the WQ.
1793  * @wq_init_attr: A list of initial attributes required to create the
1794  * WQ. If WQ creation succeeds, then the attributes are updated to
1795  * the actual capabilities of the created WQ.
1796  *
1797  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1798  * the requested size of the WQ, and set to the actual values allocated
1799  * on return.
1800  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1801  * at least as large as the requested values.
1802  */
1803 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1804                            struct ib_wq_init_attr *wq_attr)
1805 {
1806         struct ib_wq *wq;
1807
1808         if (!pd->device->create_wq)
1809                 return ERR_PTR(-ENOSYS);
1810
1811         wq = pd->device->create_wq(pd, wq_attr, NULL);
1812         if (!IS_ERR(wq)) {
1813                 wq->event_handler = wq_attr->event_handler;
1814                 wq->wq_context = wq_attr->wq_context;
1815                 wq->wq_type = wq_attr->wq_type;
1816                 wq->cq = wq_attr->cq;
1817                 wq->device = pd->device;
1818                 wq->pd = pd;
1819                 wq->uobject = NULL;
1820                 atomic_inc(&pd->usecnt);
1821                 atomic_inc(&wq_attr->cq->usecnt);
1822                 atomic_set(&wq->usecnt, 0);
1823         }
1824         return wq;
1825 }
1826 EXPORT_SYMBOL(ib_create_wq);
1827
1828 /**
1829  * ib_destroy_wq - Destroys the specified WQ.
1830  * @wq: The WQ to destroy.
1831  */
1832 int ib_destroy_wq(struct ib_wq *wq)
1833 {
1834         int err;
1835         struct ib_cq *cq = wq->cq;
1836         struct ib_pd *pd = wq->pd;
1837
1838         if (atomic_read(&wq->usecnt))
1839                 return -EBUSY;
1840
1841         err = wq->device->destroy_wq(wq);
1842         if (!err) {
1843                 atomic_dec(&pd->usecnt);
1844                 atomic_dec(&cq->usecnt);
1845         }
1846         return err;
1847 }
1848 EXPORT_SYMBOL(ib_destroy_wq);
1849
1850 /**
1851  * ib_modify_wq - Modifies the specified WQ.
1852  * @wq: The WQ to modify.
1853  * @wq_attr: On input, specifies the WQ attributes to modify.
1854  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1855  *   are being modified.
1856  * On output, the current values of selected WQ attributes are returned.
1857  */
1858 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1859                  u32 wq_attr_mask)
1860 {
1861         int err;
1862
1863         if (!wq->device->modify_wq)
1864                 return -ENOSYS;
1865
1866         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1867         return err;
1868 }
1869 EXPORT_SYMBOL(ib_modify_wq);
1870
1871 /*
1872  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1873  * @device: The device on which to create the rwq indirection table.
1874  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1875  * create the Indirection Table.
1876  *
1877  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1878  *      than the created ib_rwq_ind_table object and the caller is responsible
1879  *      for its memory allocation/free.
1880  */
1881 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1882                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1883 {
1884         struct ib_rwq_ind_table *rwq_ind_table;
1885         int i;
1886         u32 table_size;
1887
1888         if (!device->create_rwq_ind_table)
1889                 return ERR_PTR(-ENOSYS);
1890
1891         table_size = (1 << init_attr->log_ind_tbl_size);
1892         rwq_ind_table = device->create_rwq_ind_table(device,
1893                                 init_attr, NULL);
1894         if (IS_ERR(rwq_ind_table))
1895                 return rwq_ind_table;
1896
1897         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1898         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1899         rwq_ind_table->device = device;
1900         rwq_ind_table->uobject = NULL;
1901         atomic_set(&rwq_ind_table->usecnt, 0);
1902
1903         for (i = 0; i < table_size; i++)
1904                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1905
1906         return rwq_ind_table;
1907 }
1908 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1909
1910 /*
1911  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1912  * @wq_ind_table: The Indirection Table to destroy.
1913 */
1914 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1915 {
1916         int err, i;
1917         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1918         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1919
1920         if (atomic_read(&rwq_ind_table->usecnt))
1921                 return -EBUSY;
1922
1923         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1924         if (!err) {
1925                 for (i = 0; i < table_size; i++)
1926                         atomic_dec(&ind_tbl[i]->usecnt);
1927         }
1928
1929         return err;
1930 }
1931 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1932
1933 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1934                                struct ib_flow_attr *flow_attr,
1935                                int domain)
1936 {
1937         struct ib_flow *flow_id;
1938         if (!qp->device->create_flow)
1939                 return ERR_PTR(-ENOSYS);
1940
1941         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1942         if (!IS_ERR(flow_id)) {
1943                 atomic_inc(&qp->usecnt);
1944                 flow_id->qp = qp;
1945         }
1946         return flow_id;
1947 }
1948 EXPORT_SYMBOL(ib_create_flow);
1949
1950 int ib_destroy_flow(struct ib_flow *flow_id)
1951 {
1952         int err;
1953         struct ib_qp *qp = flow_id->qp;
1954
1955         err = qp->device->destroy_flow(flow_id);
1956         if (!err)
1957                 atomic_dec(&qp->usecnt);
1958         return err;
1959 }
1960 EXPORT_SYMBOL(ib_destroy_flow);
1961
1962 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1963                        struct ib_mr_status *mr_status)
1964 {
1965         return mr->device->check_mr_status ?
1966                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1967 }
1968 EXPORT_SYMBOL(ib_check_mr_status);
1969
1970 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1971                          int state)
1972 {
1973         if (!device->set_vf_link_state)
1974                 return -ENOSYS;
1975
1976         return device->set_vf_link_state(device, vf, port, state);
1977 }
1978 EXPORT_SYMBOL(ib_set_vf_link_state);
1979
1980 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1981                      struct ifla_vf_info *info)
1982 {
1983         if (!device->get_vf_config)
1984                 return -ENOSYS;
1985
1986         return device->get_vf_config(device, vf, port, info);
1987 }
1988 EXPORT_SYMBOL(ib_get_vf_config);
1989
1990 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1991                     struct ifla_vf_stats *stats)
1992 {
1993         if (!device->get_vf_stats)
1994                 return -ENOSYS;
1995
1996         return device->get_vf_stats(device, vf, port, stats);
1997 }
1998 EXPORT_SYMBOL(ib_get_vf_stats);
1999
2000 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2001                    int type)
2002 {
2003         if (!device->set_vf_guid)
2004                 return -ENOSYS;
2005
2006         return device->set_vf_guid(device, vf, port, guid, type);
2007 }
2008 EXPORT_SYMBOL(ib_set_vf_guid);
2009
2010 /**
2011  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2012  *     and set it the memory region.
2013  * @mr:            memory region
2014  * @sg:            dma mapped scatterlist
2015  * @sg_nents:      number of entries in sg
2016  * @sg_offset:     offset in bytes into sg
2017  * @page_size:     page vector desired page size
2018  *
2019  * Constraints:
2020  * - The first sg element is allowed to have an offset.
2021  * - Each sg element must either be aligned to page_size or virtually
2022  *   contiguous to the previous element. In case an sg element has a
2023  *   non-contiguous offset, the mapping prefix will not include it.
2024  * - The last sg element is allowed to have length less than page_size.
2025  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2026  *   then only max_num_sg entries will be mapped.
2027  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2028  *   constraints holds and the page_size argument is ignored.
2029  *
2030  * Returns the number of sg elements that were mapped to the memory region.
2031  *
2032  * After this completes successfully, the  memory region
2033  * is ready for registration.
2034  */
2035 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2036                  unsigned int *sg_offset, unsigned int page_size)
2037 {
2038         if (unlikely(!mr->device->map_mr_sg))
2039                 return -ENOSYS;
2040
2041         mr->page_size = page_size;
2042
2043         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2044 }
2045 EXPORT_SYMBOL(ib_map_mr_sg);
2046
2047 /**
2048  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2049  *     to a page vector
2050  * @mr:            memory region
2051  * @sgl:           dma mapped scatterlist
2052  * @sg_nents:      number of entries in sg
2053  * @sg_offset_p:   IN:  start offset in bytes into sg
2054  *                 OUT: offset in bytes for element n of the sg of the first
2055  *                      byte that has not been processed where n is the return
2056  *                      value of this function.
2057  * @set_page:      driver page assignment function pointer
2058  *
2059  * Core service helper for drivers to convert the largest
2060  * prefix of given sg list to a page vector. The sg list
2061  * prefix converted is the prefix that meet the requirements
2062  * of ib_map_mr_sg.
2063  *
2064  * Returns the number of sg elements that were assigned to
2065  * a page vector.
2066  */
2067 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2068                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2069 {
2070         struct scatterlist *sg;
2071         u64 last_end_dma_addr = 0;
2072         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2073         unsigned int last_page_off = 0;
2074         u64 page_mask = ~((u64)mr->page_size - 1);
2075         int i, ret;
2076
2077         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2078                 return -EINVAL;
2079
2080         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2081         mr->length = 0;
2082
2083         for_each_sg(sgl, sg, sg_nents, i) {
2084                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2085                 u64 prev_addr = dma_addr;
2086                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2087                 u64 end_dma_addr = dma_addr + dma_len;
2088                 u64 page_addr = dma_addr & page_mask;
2089
2090                 /*
2091                  * For the second and later elements, check whether either the
2092                  * end of element i-1 or the start of element i is not aligned
2093                  * on a page boundary.
2094                  */
2095                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2096                         /* Stop mapping if there is a gap. */
2097                         if (last_end_dma_addr != dma_addr)
2098                                 break;
2099
2100                         /*
2101                          * Coalesce this element with the last. If it is small
2102                          * enough just update mr->length. Otherwise start
2103                          * mapping from the next page.
2104                          */
2105                         goto next_page;
2106                 }
2107
2108                 do {
2109                         ret = set_page(mr, page_addr);
2110                         if (unlikely(ret < 0)) {
2111                                 sg_offset = prev_addr - sg_dma_address(sg);
2112                                 mr->length += prev_addr - dma_addr;
2113                                 if (sg_offset_p)
2114                                         *sg_offset_p = sg_offset;
2115                                 return i || sg_offset ? i : ret;
2116                         }
2117                         prev_addr = page_addr;
2118 next_page:
2119                         page_addr += mr->page_size;
2120                 } while (page_addr < end_dma_addr);
2121
2122                 mr->length += dma_len;
2123                 last_end_dma_addr = end_dma_addr;
2124                 last_page_off = end_dma_addr & ~page_mask;
2125
2126                 sg_offset = 0;
2127         }
2128
2129         if (sg_offset_p)
2130                 *sg_offset_p = 0;
2131         return i;
2132 }
2133 EXPORT_SYMBOL(ib_sg_to_pages);
2134
2135 struct ib_drain_cqe {
2136         struct ib_cqe cqe;
2137         struct completion done;
2138 };
2139
2140 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2141 {
2142         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2143                                                 cqe);
2144
2145         complete(&cqe->done);
2146 }
2147
2148 /*
2149  * Post a WR and block until its completion is reaped for the SQ.
2150  */
2151 static void __ib_drain_sq(struct ib_qp *qp)
2152 {
2153         struct ib_cq *cq = qp->send_cq;
2154         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2155         struct ib_drain_cqe sdrain;
2156         struct ib_send_wr swr = {}, *bad_swr;
2157         int ret;
2158
2159         swr.wr_cqe = &sdrain.cqe;
2160         sdrain.cqe.done = ib_drain_qp_done;
2161         init_completion(&sdrain.done);
2162
2163         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2164         if (ret) {
2165                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2166                 return;
2167         }
2168
2169         ret = ib_post_send(qp, &swr, &bad_swr);
2170         if (ret) {
2171                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2172                 return;
2173         }
2174
2175         if (cq->poll_ctx == IB_POLL_DIRECT)
2176                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2177                         ib_process_cq_direct(cq, -1);
2178         else
2179                 wait_for_completion(&sdrain.done);
2180 }
2181
2182 /*
2183  * Post a WR and block until its completion is reaped for the RQ.
2184  */
2185 static void __ib_drain_rq(struct ib_qp *qp)
2186 {
2187         struct ib_cq *cq = qp->recv_cq;
2188         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2189         struct ib_drain_cqe rdrain;
2190         struct ib_recv_wr rwr = {}, *bad_rwr;
2191         int ret;
2192
2193         rwr.wr_cqe = &rdrain.cqe;
2194         rdrain.cqe.done = ib_drain_qp_done;
2195         init_completion(&rdrain.done);
2196
2197         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2198         if (ret) {
2199                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2200                 return;
2201         }
2202
2203         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2204         if (ret) {
2205                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2206                 return;
2207         }
2208
2209         if (cq->poll_ctx == IB_POLL_DIRECT)
2210                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2211                         ib_process_cq_direct(cq, -1);
2212         else
2213                 wait_for_completion(&rdrain.done);
2214 }
2215
2216 /**
2217  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2218  *                 application.
2219  * @qp:            queue pair to drain
2220  *
2221  * If the device has a provider-specific drain function, then
2222  * call that.  Otherwise call the generic drain function
2223  * __ib_drain_sq().
2224  *
2225  * The caller must:
2226  *
2227  * ensure there is room in the CQ and SQ for the drain work request and
2228  * completion.
2229  *
2230  * allocate the CQ using ib_alloc_cq().
2231  *
2232  * ensure that there are no other contexts that are posting WRs concurrently.
2233  * Otherwise the drain is not guaranteed.
2234  */
2235 void ib_drain_sq(struct ib_qp *qp)
2236 {
2237         if (qp->device->drain_sq)
2238                 qp->device->drain_sq(qp);
2239         else
2240                 __ib_drain_sq(qp);
2241 }
2242 EXPORT_SYMBOL(ib_drain_sq);
2243
2244 /**
2245  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2246  *                 application.
2247  * @qp:            queue pair to drain
2248  *
2249  * If the device has a provider-specific drain function, then
2250  * call that.  Otherwise call the generic drain function
2251  * __ib_drain_rq().
2252  *
2253  * The caller must:
2254  *
2255  * ensure there is room in the CQ and RQ for the drain work request and
2256  * completion.
2257  *
2258  * allocate the CQ using ib_alloc_cq().
2259  *
2260  * ensure that there are no other contexts that are posting WRs concurrently.
2261  * Otherwise the drain is not guaranteed.
2262  */
2263 void ib_drain_rq(struct ib_qp *qp)
2264 {
2265         if (qp->device->drain_rq)
2266                 qp->device->drain_rq(qp);
2267         else
2268                 __ib_drain_rq(qp);
2269 }
2270 EXPORT_SYMBOL(ib_drain_rq);
2271
2272 /**
2273  * ib_drain_qp() - Block until all CQEs have been consumed by the
2274  *                 application on both the RQ and SQ.
2275  * @qp:            queue pair to drain
2276  *
2277  * The caller must:
2278  *
2279  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2280  * and completions.
2281  *
2282  * allocate the CQs using ib_alloc_cq().
2283  *
2284  * ensure that there are no other contexts that are posting WRs concurrently.
2285  * Otherwise the drain is not guaranteed.
2286  */
2287 void ib_drain_qp(struct ib_qp *qp)
2288 {
2289         ib_drain_sq(qp);
2290         if (!qp->srq)
2291                 ib_drain_rq(qp);
2292 }
2293 EXPORT_SYMBOL(ib_drain_qp);