RDMA/restrack: Resource-tracker should not use uobject pointers
[linux-2.6-block.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57                                struct rdma_ah_attr *ah_attr);
58
59 static const char * const ib_events[] = {
60         [IB_EVENT_CQ_ERR]               = "CQ error",
61         [IB_EVENT_QP_FATAL]             = "QP fatal error",
62         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
63         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
64         [IB_EVENT_COMM_EST]             = "communication established",
65         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
66         [IB_EVENT_PATH_MIG]             = "path migration successful",
67         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
68         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
69         [IB_EVENT_PORT_ACTIVE]          = "port active",
70         [IB_EVENT_PORT_ERR]             = "port error",
71         [IB_EVENT_LID_CHANGE]           = "LID change",
72         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
73         [IB_EVENT_SM_CHANGE]            = "SM change",
74         [IB_EVENT_SRQ_ERR]              = "SRQ error",
75         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
76         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
77         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
78         [IB_EVENT_GID_CHANGE]           = "GID changed",
79 };
80
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83         size_t index = event;
84
85         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86                         ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89
90 static const char * const wc_statuses[] = {
91         [IB_WC_SUCCESS]                 = "success",
92         [IB_WC_LOC_LEN_ERR]             = "local length error",
93         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
94         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
95         [IB_WC_LOC_PROT_ERR]            = "local protection error",
96         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
97         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
98         [IB_WC_BAD_RESP_ERR]            = "bad response error",
99         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
100         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
101         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
102         [IB_WC_REM_OP_ERR]              = "remote operation error",
103         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
104         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
105         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
106         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
107         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
108         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
109         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
110         [IB_WC_FATAL_ERR]               = "fatal error",
111         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
112         [IB_WC_GENERAL_ERR]             = "general error",
113 };
114
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117         size_t index = status;
118
119         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120                         wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126         switch (rate) {
127         case IB_RATE_2_5_GBPS: return   1;
128         case IB_RATE_5_GBPS:   return   2;
129         case IB_RATE_10_GBPS:  return   4;
130         case IB_RATE_20_GBPS:  return   8;
131         case IB_RATE_30_GBPS:  return  12;
132         case IB_RATE_40_GBPS:  return  16;
133         case IB_RATE_60_GBPS:  return  24;
134         case IB_RATE_80_GBPS:  return  32;
135         case IB_RATE_120_GBPS: return  48;
136         case IB_RATE_14_GBPS:  return   6;
137         case IB_RATE_56_GBPS:  return  22;
138         case IB_RATE_112_GBPS: return  45;
139         case IB_RATE_168_GBPS: return  67;
140         case IB_RATE_25_GBPS:  return  10;
141         case IB_RATE_100_GBPS: return  40;
142         case IB_RATE_200_GBPS: return  80;
143         case IB_RATE_300_GBPS: return 120;
144         case IB_RATE_28_GBPS:  return  11;
145         case IB_RATE_50_GBPS:  return  20;
146         case IB_RATE_400_GBPS: return 160;
147         case IB_RATE_600_GBPS: return 240;
148         default:               return  -1;
149         }
150 }
151 EXPORT_SYMBOL(ib_rate_to_mult);
152
153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
154 {
155         switch (mult) {
156         case 1:   return IB_RATE_2_5_GBPS;
157         case 2:   return IB_RATE_5_GBPS;
158         case 4:   return IB_RATE_10_GBPS;
159         case 8:   return IB_RATE_20_GBPS;
160         case 12:  return IB_RATE_30_GBPS;
161         case 16:  return IB_RATE_40_GBPS;
162         case 24:  return IB_RATE_60_GBPS;
163         case 32:  return IB_RATE_80_GBPS;
164         case 48:  return IB_RATE_120_GBPS;
165         case 6:   return IB_RATE_14_GBPS;
166         case 22:  return IB_RATE_56_GBPS;
167         case 45:  return IB_RATE_112_GBPS;
168         case 67:  return IB_RATE_168_GBPS;
169         case 10:  return IB_RATE_25_GBPS;
170         case 40:  return IB_RATE_100_GBPS;
171         case 80:  return IB_RATE_200_GBPS;
172         case 120: return IB_RATE_300_GBPS;
173         case 11:  return IB_RATE_28_GBPS;
174         case 20:  return IB_RATE_50_GBPS;
175         case 160: return IB_RATE_400_GBPS;
176         case 240: return IB_RATE_600_GBPS;
177         default:  return IB_RATE_PORT_CURRENT;
178         }
179 }
180 EXPORT_SYMBOL(mult_to_ib_rate);
181
182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
183 {
184         switch (rate) {
185         case IB_RATE_2_5_GBPS: return 2500;
186         case IB_RATE_5_GBPS:   return 5000;
187         case IB_RATE_10_GBPS:  return 10000;
188         case IB_RATE_20_GBPS:  return 20000;
189         case IB_RATE_30_GBPS:  return 30000;
190         case IB_RATE_40_GBPS:  return 40000;
191         case IB_RATE_60_GBPS:  return 60000;
192         case IB_RATE_80_GBPS:  return 80000;
193         case IB_RATE_120_GBPS: return 120000;
194         case IB_RATE_14_GBPS:  return 14062;
195         case IB_RATE_56_GBPS:  return 56250;
196         case IB_RATE_112_GBPS: return 112500;
197         case IB_RATE_168_GBPS: return 168750;
198         case IB_RATE_25_GBPS:  return 25781;
199         case IB_RATE_100_GBPS: return 103125;
200         case IB_RATE_200_GBPS: return 206250;
201         case IB_RATE_300_GBPS: return 309375;
202         case IB_RATE_28_GBPS:  return 28125;
203         case IB_RATE_50_GBPS:  return 53125;
204         case IB_RATE_400_GBPS: return 425000;
205         case IB_RATE_600_GBPS: return 637500;
206         default:               return -1;
207         }
208 }
209 EXPORT_SYMBOL(ib_rate_to_mbps);
210
211 __attribute_const__ enum rdma_transport_type
212 rdma_node_get_transport(enum rdma_node_type node_type)
213 {
214
215         if (node_type == RDMA_NODE_USNIC)
216                 return RDMA_TRANSPORT_USNIC;
217         if (node_type == RDMA_NODE_USNIC_UDP)
218                 return RDMA_TRANSPORT_USNIC_UDP;
219         if (node_type == RDMA_NODE_RNIC)
220                 return RDMA_TRANSPORT_IWARP;
221
222         return RDMA_TRANSPORT_IB;
223 }
224 EXPORT_SYMBOL(rdma_node_get_transport);
225
226 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
227 {
228         enum rdma_transport_type lt;
229         if (device->ops.get_link_layer)
230                 return device->ops.get_link_layer(device, port_num);
231
232         lt = rdma_node_get_transport(device->node_type);
233         if (lt == RDMA_TRANSPORT_IB)
234                 return IB_LINK_LAYER_INFINIBAND;
235
236         return IB_LINK_LAYER_ETHERNET;
237 }
238 EXPORT_SYMBOL(rdma_port_get_link_layer);
239
240 /* Protection domains */
241
242 /**
243  * ib_alloc_pd - Allocates an unused protection domain.
244  * @device: The device on which to allocate the protection domain.
245  *
246  * A protection domain object provides an association between QPs, shared
247  * receive queues, address handles, memory regions, and memory windows.
248  *
249  * Every PD has a local_dma_lkey which can be used as the lkey value for local
250  * memory operations.
251  */
252 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
253                 const char *caller)
254 {
255         struct ib_pd *pd;
256         int mr_access_flags = 0;
257
258         pd = device->ops.alloc_pd(device, NULL, NULL);
259         if (IS_ERR(pd))
260                 return pd;
261
262         pd->device = device;
263         pd->uobject = NULL;
264         pd->__internal_mr = NULL;
265         atomic_set(&pd->usecnt, 0);
266         pd->flags = flags;
267
268         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
269                 pd->local_dma_lkey = device->local_dma_lkey;
270         else
271                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
272
273         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
274                 pr_warn("%s: enabling unsafe global rkey\n", caller);
275                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
276         }
277
278         pd->res.type = RDMA_RESTRACK_PD;
279         rdma_restrack_set_task(&pd->res, caller);
280         rdma_restrack_kadd(&pd->res);
281
282         if (mr_access_flags) {
283                 struct ib_mr *mr;
284
285                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
286                 if (IS_ERR(mr)) {
287                         ib_dealloc_pd(pd);
288                         return ERR_CAST(mr);
289                 }
290
291                 mr->device      = pd->device;
292                 mr->pd          = pd;
293                 mr->uobject     = NULL;
294                 mr->need_inval  = false;
295
296                 pd->__internal_mr = mr;
297
298                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
299                         pd->local_dma_lkey = pd->__internal_mr->lkey;
300
301                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
302                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
303         }
304
305         return pd;
306 }
307 EXPORT_SYMBOL(__ib_alloc_pd);
308
309 /**
310  * ib_dealloc_pd - Deallocates a protection domain.
311  * @pd: The protection domain to deallocate.
312  *
313  * It is an error to call this function while any resources in the pd still
314  * exist.  The caller is responsible to synchronously destroy them and
315  * guarantee no new allocations will happen.
316  */
317 void ib_dealloc_pd(struct ib_pd *pd)
318 {
319         int ret;
320
321         if (pd->__internal_mr) {
322                 ret = pd->device->ops.dereg_mr(pd->__internal_mr);
323                 WARN_ON(ret);
324                 pd->__internal_mr = NULL;
325         }
326
327         /* uverbs manipulates usecnt with proper locking, while the kabi
328            requires the caller to guarantee we can't race here. */
329         WARN_ON(atomic_read(&pd->usecnt));
330
331         rdma_restrack_del(&pd->res);
332         /* Making delalloc_pd a void return is a WIP, no driver should return
333            an error here. */
334         ret = pd->device->ops.dealloc_pd(pd);
335         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
336 }
337 EXPORT_SYMBOL(ib_dealloc_pd);
338
339 /* Address handles */
340
341 /**
342  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
343  * @dest:       Pointer to destination ah_attr. Contents of the destination
344  *              pointer is assumed to be invalid and attribute are overwritten.
345  * @src:        Pointer to source ah_attr.
346  */
347 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
348                        const struct rdma_ah_attr *src)
349 {
350         *dest = *src;
351         if (dest->grh.sgid_attr)
352                 rdma_hold_gid_attr(dest->grh.sgid_attr);
353 }
354 EXPORT_SYMBOL(rdma_copy_ah_attr);
355
356 /**
357  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
358  * @old:        Pointer to existing ah_attr which needs to be replaced.
359  *              old is assumed to be valid or zero'd
360  * @new:        Pointer to the new ah_attr.
361  *
362  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
363  * old the ah_attr is valid; after that it copies the new attribute and holds
364  * the reference to the replaced ah_attr.
365  */
366 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
367                           const struct rdma_ah_attr *new)
368 {
369         rdma_destroy_ah_attr(old);
370         *old = *new;
371         if (old->grh.sgid_attr)
372                 rdma_hold_gid_attr(old->grh.sgid_attr);
373 }
374 EXPORT_SYMBOL(rdma_replace_ah_attr);
375
376 /**
377  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
378  * @dest:       Pointer to destination ah_attr to copy to.
379  *              dest is assumed to be valid or zero'd
380  * @src:        Pointer to the new ah_attr.
381  *
382  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
383  * if it is valid. This also transfers ownership of internal references from
384  * src to dest, making src invalid in the process. No new reference of the src
385  * ah_attr is taken.
386  */
387 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
388 {
389         rdma_destroy_ah_attr(dest);
390         *dest = *src;
391         src->grh.sgid_attr = NULL;
392 }
393 EXPORT_SYMBOL(rdma_move_ah_attr);
394
395 /*
396  * Validate that the rdma_ah_attr is valid for the device before passing it
397  * off to the driver.
398  */
399 static int rdma_check_ah_attr(struct ib_device *device,
400                               struct rdma_ah_attr *ah_attr)
401 {
402         if (!rdma_is_port_valid(device, ah_attr->port_num))
403                 return -EINVAL;
404
405         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
406              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
407             !(ah_attr->ah_flags & IB_AH_GRH))
408                 return -EINVAL;
409
410         if (ah_attr->grh.sgid_attr) {
411                 /*
412                  * Make sure the passed sgid_attr is consistent with the
413                  * parameters
414                  */
415                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
416                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
417                         return -EINVAL;
418         }
419         return 0;
420 }
421
422 /*
423  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
424  * On success the caller is responsible to call rdma_unfill_sgid_attr().
425  */
426 static int rdma_fill_sgid_attr(struct ib_device *device,
427                                struct rdma_ah_attr *ah_attr,
428                                const struct ib_gid_attr **old_sgid_attr)
429 {
430         const struct ib_gid_attr *sgid_attr;
431         struct ib_global_route *grh;
432         int ret;
433
434         *old_sgid_attr = ah_attr->grh.sgid_attr;
435
436         ret = rdma_check_ah_attr(device, ah_attr);
437         if (ret)
438                 return ret;
439
440         if (!(ah_attr->ah_flags & IB_AH_GRH))
441                 return 0;
442
443         grh = rdma_ah_retrieve_grh(ah_attr);
444         if (grh->sgid_attr)
445                 return 0;
446
447         sgid_attr =
448                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
449         if (IS_ERR(sgid_attr))
450                 return PTR_ERR(sgid_attr);
451
452         /* Move ownerhip of the kref into the ah_attr */
453         grh->sgid_attr = sgid_attr;
454         return 0;
455 }
456
457 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
458                                   const struct ib_gid_attr *old_sgid_attr)
459 {
460         /*
461          * Fill didn't change anything, the caller retains ownership of
462          * whatever it passed
463          */
464         if (ah_attr->grh.sgid_attr == old_sgid_attr)
465                 return;
466
467         /*
468          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
469          * doesn't see any change in the rdma_ah_attr. If we get here
470          * old_sgid_attr is NULL.
471          */
472         rdma_destroy_ah_attr(ah_attr);
473 }
474
475 static const struct ib_gid_attr *
476 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
477                       const struct ib_gid_attr *old_attr)
478 {
479         if (old_attr)
480                 rdma_put_gid_attr(old_attr);
481         if (ah_attr->ah_flags & IB_AH_GRH) {
482                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
483                 return ah_attr->grh.sgid_attr;
484         }
485         return NULL;
486 }
487
488 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
489                                      struct rdma_ah_attr *ah_attr,
490                                      struct ib_udata *udata)
491 {
492         struct ib_ah *ah;
493
494         if (!pd->device->ops.create_ah)
495                 return ERR_PTR(-EOPNOTSUPP);
496
497         ah = pd->device->ops.create_ah(pd, ah_attr, udata);
498
499         if (!IS_ERR(ah)) {
500                 ah->device  = pd->device;
501                 ah->pd      = pd;
502                 ah->uobject = NULL;
503                 ah->type    = ah_attr->type;
504                 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
505
506                 atomic_inc(&pd->usecnt);
507         }
508
509         return ah;
510 }
511
512 /**
513  * rdma_create_ah - Creates an address handle for the
514  * given address vector.
515  * @pd: The protection domain associated with the address handle.
516  * @ah_attr: The attributes of the address vector.
517  *
518  * It returns 0 on success and returns appropriate error code on error.
519  * The address handle is used to reference a local or global destination
520  * in all UD QP post sends.
521  */
522 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
523 {
524         const struct ib_gid_attr *old_sgid_attr;
525         struct ib_ah *ah;
526         int ret;
527
528         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
529         if (ret)
530                 return ERR_PTR(ret);
531
532         ah = _rdma_create_ah(pd, ah_attr, NULL);
533
534         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
535         return ah;
536 }
537 EXPORT_SYMBOL(rdma_create_ah);
538
539 /**
540  * rdma_create_user_ah - Creates an address handle for the
541  * given address vector.
542  * It resolves destination mac address for ah attribute of RoCE type.
543  * @pd: The protection domain associated with the address handle.
544  * @ah_attr: The attributes of the address vector.
545  * @udata: pointer to user's input output buffer information need by
546  *         provider driver.
547  *
548  * It returns 0 on success and returns appropriate error code on error.
549  * The address handle is used to reference a local or global destination
550  * in all UD QP post sends.
551  */
552 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
553                                   struct rdma_ah_attr *ah_attr,
554                                   struct ib_udata *udata)
555 {
556         const struct ib_gid_attr *old_sgid_attr;
557         struct ib_ah *ah;
558         int err;
559
560         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
561         if (err)
562                 return ERR_PTR(err);
563
564         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
565                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
566                 if (err) {
567                         ah = ERR_PTR(err);
568                         goto out;
569                 }
570         }
571
572         ah = _rdma_create_ah(pd, ah_attr, udata);
573
574 out:
575         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
576         return ah;
577 }
578 EXPORT_SYMBOL(rdma_create_user_ah);
579
580 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
581 {
582         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
583         struct iphdr ip4h_checked;
584         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
585
586         /* If it's IPv6, the version must be 6, otherwise, the first
587          * 20 bytes (before the IPv4 header) are garbled.
588          */
589         if (ip6h->version != 6)
590                 return (ip4h->version == 4) ? 4 : 0;
591         /* version may be 6 or 4 because the first 20 bytes could be garbled */
592
593         /* RoCE v2 requires no options, thus header length
594          * must be 5 words
595          */
596         if (ip4h->ihl != 5)
597                 return 6;
598
599         /* Verify checksum.
600          * We can't write on scattered buffers so we need to copy to
601          * temp buffer.
602          */
603         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
604         ip4h_checked.check = 0;
605         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
606         /* if IPv4 header checksum is OK, believe it */
607         if (ip4h->check == ip4h_checked.check)
608                 return 4;
609         return 6;
610 }
611 EXPORT_SYMBOL(ib_get_rdma_header_version);
612
613 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
614                                                      u8 port_num,
615                                                      const struct ib_grh *grh)
616 {
617         int grh_version;
618
619         if (rdma_protocol_ib(device, port_num))
620                 return RDMA_NETWORK_IB;
621
622         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
623
624         if (grh_version == 4)
625                 return RDMA_NETWORK_IPV4;
626
627         if (grh->next_hdr == IPPROTO_UDP)
628                 return RDMA_NETWORK_IPV6;
629
630         return RDMA_NETWORK_ROCE_V1;
631 }
632
633 struct find_gid_index_context {
634         u16 vlan_id;
635         enum ib_gid_type gid_type;
636 };
637
638 static bool find_gid_index(const union ib_gid *gid,
639                            const struct ib_gid_attr *gid_attr,
640                            void *context)
641 {
642         struct find_gid_index_context *ctx = context;
643
644         if (ctx->gid_type != gid_attr->gid_type)
645                 return false;
646
647         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
648             (is_vlan_dev(gid_attr->ndev) &&
649              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
650                 return false;
651
652         return true;
653 }
654
655 static const struct ib_gid_attr *
656 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
657                        u16 vlan_id, const union ib_gid *sgid,
658                        enum ib_gid_type gid_type)
659 {
660         struct find_gid_index_context context = {.vlan_id = vlan_id,
661                                                  .gid_type = gid_type};
662
663         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
664                                        &context);
665 }
666
667 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
668                               enum rdma_network_type net_type,
669                               union ib_gid *sgid, union ib_gid *dgid)
670 {
671         struct sockaddr_in  src_in;
672         struct sockaddr_in  dst_in;
673         __be32 src_saddr, dst_saddr;
674
675         if (!sgid || !dgid)
676                 return -EINVAL;
677
678         if (net_type == RDMA_NETWORK_IPV4) {
679                 memcpy(&src_in.sin_addr.s_addr,
680                        &hdr->roce4grh.saddr, 4);
681                 memcpy(&dst_in.sin_addr.s_addr,
682                        &hdr->roce4grh.daddr, 4);
683                 src_saddr = src_in.sin_addr.s_addr;
684                 dst_saddr = dst_in.sin_addr.s_addr;
685                 ipv6_addr_set_v4mapped(src_saddr,
686                                        (struct in6_addr *)sgid);
687                 ipv6_addr_set_v4mapped(dst_saddr,
688                                        (struct in6_addr *)dgid);
689                 return 0;
690         } else if (net_type == RDMA_NETWORK_IPV6 ||
691                    net_type == RDMA_NETWORK_IB) {
692                 *dgid = hdr->ibgrh.dgid;
693                 *sgid = hdr->ibgrh.sgid;
694                 return 0;
695         } else {
696                 return -EINVAL;
697         }
698 }
699 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
700
701 /* Resolve destination mac address and hop limit for unicast destination
702  * GID entry, considering the source GID entry as well.
703  * ah_attribute must have have valid port_num, sgid_index.
704  */
705 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
706                                        struct rdma_ah_attr *ah_attr)
707 {
708         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
709         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
710         int hop_limit = 0xff;
711         int ret = 0;
712
713         /* If destination is link local and source GID is RoCEv1,
714          * IP stack is not used.
715          */
716         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
717             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
718                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
719                                 ah_attr->roce.dmac);
720                 return ret;
721         }
722
723         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
724                                            ah_attr->roce.dmac,
725                                            sgid_attr, &hop_limit);
726
727         grh->hop_limit = hop_limit;
728         return ret;
729 }
730
731 /*
732  * This function initializes address handle attributes from the incoming packet.
733  * Incoming packet has dgid of the receiver node on which this code is
734  * getting executed and, sgid contains the GID of the sender.
735  *
736  * When resolving mac address of destination, the arrived dgid is used
737  * as sgid and, sgid is used as dgid because sgid contains destinations
738  * GID whom to respond to.
739  *
740  * On success the caller is responsible to call rdma_destroy_ah_attr on the
741  * attr.
742  */
743 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
744                             const struct ib_wc *wc, const struct ib_grh *grh,
745                             struct rdma_ah_attr *ah_attr)
746 {
747         u32 flow_class;
748         int ret;
749         enum rdma_network_type net_type = RDMA_NETWORK_IB;
750         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
751         const struct ib_gid_attr *sgid_attr;
752         int hoplimit = 0xff;
753         union ib_gid dgid;
754         union ib_gid sgid;
755
756         might_sleep();
757
758         memset(ah_attr, 0, sizeof *ah_attr);
759         ah_attr->type = rdma_ah_find_type(device, port_num);
760         if (rdma_cap_eth_ah(device, port_num)) {
761                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
762                         net_type = wc->network_hdr_type;
763                 else
764                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
765                 gid_type = ib_network_to_gid_type(net_type);
766         }
767         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
768                                         &sgid, &dgid);
769         if (ret)
770                 return ret;
771
772         rdma_ah_set_sl(ah_attr, wc->sl);
773         rdma_ah_set_port_num(ah_attr, port_num);
774
775         if (rdma_protocol_roce(device, port_num)) {
776                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
777                                 wc->vlan_id : 0xffff;
778
779                 if (!(wc->wc_flags & IB_WC_GRH))
780                         return -EPROTOTYPE;
781
782                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
783                                                    vlan_id, &dgid,
784                                                    gid_type);
785                 if (IS_ERR(sgid_attr))
786                         return PTR_ERR(sgid_attr);
787
788                 flow_class = be32_to_cpu(grh->version_tclass_flow);
789                 rdma_move_grh_sgid_attr(ah_attr,
790                                         &sgid,
791                                         flow_class & 0xFFFFF,
792                                         hoplimit,
793                                         (flow_class >> 20) & 0xFF,
794                                         sgid_attr);
795
796                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
797                 if (ret)
798                         rdma_destroy_ah_attr(ah_attr);
799
800                 return ret;
801         } else {
802                 rdma_ah_set_dlid(ah_attr, wc->slid);
803                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
804
805                 if ((wc->wc_flags & IB_WC_GRH) == 0)
806                         return 0;
807
808                 if (dgid.global.interface_id !=
809                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
810                         sgid_attr = rdma_find_gid_by_port(
811                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
812                 } else
813                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
814
815                 if (IS_ERR(sgid_attr))
816                         return PTR_ERR(sgid_attr);
817                 flow_class = be32_to_cpu(grh->version_tclass_flow);
818                 rdma_move_grh_sgid_attr(ah_attr,
819                                         &sgid,
820                                         flow_class & 0xFFFFF,
821                                         hoplimit,
822                                         (flow_class >> 20) & 0xFF,
823                                         sgid_attr);
824
825                 return 0;
826         }
827 }
828 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
829
830 /**
831  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
832  * of the reference
833  *
834  * @attr:       Pointer to AH attribute structure
835  * @dgid:       Destination GID
836  * @flow_label: Flow label
837  * @hop_limit:  Hop limit
838  * @traffic_class: traffic class
839  * @sgid_attr:  Pointer to SGID attribute
840  *
841  * This takes ownership of the sgid_attr reference. The caller must ensure
842  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
843  * calling this function.
844  */
845 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
846                              u32 flow_label, u8 hop_limit, u8 traffic_class,
847                              const struct ib_gid_attr *sgid_attr)
848 {
849         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
850                         traffic_class);
851         attr->grh.sgid_attr = sgid_attr;
852 }
853 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
854
855 /**
856  * rdma_destroy_ah_attr - Release reference to SGID attribute of
857  * ah attribute.
858  * @ah_attr: Pointer to ah attribute
859  *
860  * Release reference to the SGID attribute of the ah attribute if it is
861  * non NULL. It is safe to call this multiple times, and safe to call it on
862  * a zero initialized ah_attr.
863  */
864 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
865 {
866         if (ah_attr->grh.sgid_attr) {
867                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
868                 ah_attr->grh.sgid_attr = NULL;
869         }
870 }
871 EXPORT_SYMBOL(rdma_destroy_ah_attr);
872
873 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
874                                    const struct ib_grh *grh, u8 port_num)
875 {
876         struct rdma_ah_attr ah_attr;
877         struct ib_ah *ah;
878         int ret;
879
880         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
881         if (ret)
882                 return ERR_PTR(ret);
883
884         ah = rdma_create_ah(pd, &ah_attr);
885
886         rdma_destroy_ah_attr(&ah_attr);
887         return ah;
888 }
889 EXPORT_SYMBOL(ib_create_ah_from_wc);
890
891 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
892 {
893         const struct ib_gid_attr *old_sgid_attr;
894         int ret;
895
896         if (ah->type != ah_attr->type)
897                 return -EINVAL;
898
899         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
900         if (ret)
901                 return ret;
902
903         ret = ah->device->ops.modify_ah ?
904                 ah->device->ops.modify_ah(ah, ah_attr) :
905                 -EOPNOTSUPP;
906
907         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
908         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
909         return ret;
910 }
911 EXPORT_SYMBOL(rdma_modify_ah);
912
913 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
914 {
915         ah_attr->grh.sgid_attr = NULL;
916
917         return ah->device->ops.query_ah ?
918                 ah->device->ops.query_ah(ah, ah_attr) :
919                 -EOPNOTSUPP;
920 }
921 EXPORT_SYMBOL(rdma_query_ah);
922
923 int rdma_destroy_ah(struct ib_ah *ah)
924 {
925         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
926         struct ib_pd *pd;
927         int ret;
928
929         pd = ah->pd;
930         ret = ah->device->ops.destroy_ah(ah);
931         if (!ret) {
932                 atomic_dec(&pd->usecnt);
933                 if (sgid_attr)
934                         rdma_put_gid_attr(sgid_attr);
935         }
936
937         return ret;
938 }
939 EXPORT_SYMBOL(rdma_destroy_ah);
940
941 /* Shared receive queues */
942
943 struct ib_srq *ib_create_srq(struct ib_pd *pd,
944                              struct ib_srq_init_attr *srq_init_attr)
945 {
946         struct ib_srq *srq;
947
948         if (!pd->device->ops.create_srq)
949                 return ERR_PTR(-EOPNOTSUPP);
950
951         srq = pd->device->ops.create_srq(pd, srq_init_attr, NULL);
952
953         if (!IS_ERR(srq)) {
954                 srq->device        = pd->device;
955                 srq->pd            = pd;
956                 srq->uobject       = NULL;
957                 srq->event_handler = srq_init_attr->event_handler;
958                 srq->srq_context   = srq_init_attr->srq_context;
959                 srq->srq_type      = srq_init_attr->srq_type;
960                 if (ib_srq_has_cq(srq->srq_type)) {
961                         srq->ext.cq   = srq_init_attr->ext.cq;
962                         atomic_inc(&srq->ext.cq->usecnt);
963                 }
964                 if (srq->srq_type == IB_SRQT_XRC) {
965                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
966                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
967                 }
968                 atomic_inc(&pd->usecnt);
969                 atomic_set(&srq->usecnt, 0);
970         }
971
972         return srq;
973 }
974 EXPORT_SYMBOL(ib_create_srq);
975
976 int ib_modify_srq(struct ib_srq *srq,
977                   struct ib_srq_attr *srq_attr,
978                   enum ib_srq_attr_mask srq_attr_mask)
979 {
980         return srq->device->ops.modify_srq ?
981                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
982                                             NULL) : -EOPNOTSUPP;
983 }
984 EXPORT_SYMBOL(ib_modify_srq);
985
986 int ib_query_srq(struct ib_srq *srq,
987                  struct ib_srq_attr *srq_attr)
988 {
989         return srq->device->ops.query_srq ?
990                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
991 }
992 EXPORT_SYMBOL(ib_query_srq);
993
994 int ib_destroy_srq(struct ib_srq *srq)
995 {
996         struct ib_pd *pd;
997         enum ib_srq_type srq_type;
998         struct ib_xrcd *uninitialized_var(xrcd);
999         struct ib_cq *uninitialized_var(cq);
1000         int ret;
1001
1002         if (atomic_read(&srq->usecnt))
1003                 return -EBUSY;
1004
1005         pd = srq->pd;
1006         srq_type = srq->srq_type;
1007         if (ib_srq_has_cq(srq_type))
1008                 cq = srq->ext.cq;
1009         if (srq_type == IB_SRQT_XRC)
1010                 xrcd = srq->ext.xrc.xrcd;
1011
1012         ret = srq->device->ops.destroy_srq(srq);
1013         if (!ret) {
1014                 atomic_dec(&pd->usecnt);
1015                 if (srq_type == IB_SRQT_XRC)
1016                         atomic_dec(&xrcd->usecnt);
1017                 if (ib_srq_has_cq(srq_type))
1018                         atomic_dec(&cq->usecnt);
1019         }
1020
1021         return ret;
1022 }
1023 EXPORT_SYMBOL(ib_destroy_srq);
1024
1025 /* Queue pairs */
1026
1027 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1028 {
1029         struct ib_qp *qp = context;
1030         unsigned long flags;
1031
1032         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1033         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1034                 if (event->element.qp->event_handler)
1035                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1036         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1037 }
1038
1039 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1040 {
1041         mutex_lock(&xrcd->tgt_qp_mutex);
1042         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1043         mutex_unlock(&xrcd->tgt_qp_mutex);
1044 }
1045
1046 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1047                                   void (*event_handler)(struct ib_event *, void *),
1048                                   void *qp_context)
1049 {
1050         struct ib_qp *qp;
1051         unsigned long flags;
1052         int err;
1053
1054         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1055         if (!qp)
1056                 return ERR_PTR(-ENOMEM);
1057
1058         qp->real_qp = real_qp;
1059         err = ib_open_shared_qp_security(qp, real_qp->device);
1060         if (err) {
1061                 kfree(qp);
1062                 return ERR_PTR(err);
1063         }
1064
1065         qp->real_qp = real_qp;
1066         atomic_inc(&real_qp->usecnt);
1067         qp->device = real_qp->device;
1068         qp->event_handler = event_handler;
1069         qp->qp_context = qp_context;
1070         qp->qp_num = real_qp->qp_num;
1071         qp->qp_type = real_qp->qp_type;
1072
1073         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1074         list_add(&qp->open_list, &real_qp->open_list);
1075         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1076
1077         return qp;
1078 }
1079
1080 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1081                          struct ib_qp_open_attr *qp_open_attr)
1082 {
1083         struct ib_qp *qp, *real_qp;
1084
1085         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1086                 return ERR_PTR(-EINVAL);
1087
1088         qp = ERR_PTR(-EINVAL);
1089         mutex_lock(&xrcd->tgt_qp_mutex);
1090         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1091                 if (real_qp->qp_num == qp_open_attr->qp_num) {
1092                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1093                                           qp_open_attr->qp_context);
1094                         break;
1095                 }
1096         }
1097         mutex_unlock(&xrcd->tgt_qp_mutex);
1098         return qp;
1099 }
1100 EXPORT_SYMBOL(ib_open_qp);
1101
1102 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
1103                 struct ib_qp_init_attr *qp_init_attr)
1104 {
1105         struct ib_qp *real_qp = qp;
1106
1107         qp->event_handler = __ib_shared_qp_event_handler;
1108         qp->qp_context = qp;
1109         qp->pd = NULL;
1110         qp->send_cq = qp->recv_cq = NULL;
1111         qp->srq = NULL;
1112         qp->xrcd = qp_init_attr->xrcd;
1113         atomic_inc(&qp_init_attr->xrcd->usecnt);
1114         INIT_LIST_HEAD(&qp->open_list);
1115
1116         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1117                           qp_init_attr->qp_context);
1118         if (!IS_ERR(qp))
1119                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1120         else
1121                 real_qp->device->ops.destroy_qp(real_qp);
1122         return qp;
1123 }
1124
1125 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1126                            struct ib_qp_init_attr *qp_init_attr)
1127 {
1128         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1129         struct ib_qp *qp;
1130         int ret;
1131
1132         if (qp_init_attr->rwq_ind_tbl &&
1133             (qp_init_attr->recv_cq ||
1134             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1135             qp_init_attr->cap.max_recv_sge))
1136                 return ERR_PTR(-EINVAL);
1137
1138         /*
1139          * If the callers is using the RDMA API calculate the resources
1140          * needed for the RDMA READ/WRITE operations.
1141          *
1142          * Note that these callers need to pass in a port number.
1143          */
1144         if (qp_init_attr->cap.max_rdma_ctxs)
1145                 rdma_rw_init_qp(device, qp_init_attr);
1146
1147         qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1148         if (IS_ERR(qp))
1149                 return qp;
1150
1151         ret = ib_create_qp_security(qp, device);
1152         if (ret) {
1153                 ib_destroy_qp(qp);
1154                 return ERR_PTR(ret);
1155         }
1156
1157         qp->real_qp    = qp;
1158         qp->qp_type    = qp_init_attr->qp_type;
1159         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1160
1161         atomic_set(&qp->usecnt, 0);
1162         qp->mrs_used = 0;
1163         spin_lock_init(&qp->mr_lock);
1164         INIT_LIST_HEAD(&qp->rdma_mrs);
1165         INIT_LIST_HEAD(&qp->sig_mrs);
1166         qp->port = 0;
1167
1168         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
1169                 return ib_create_xrc_qp(qp, qp_init_attr);
1170
1171         qp->event_handler = qp_init_attr->event_handler;
1172         qp->qp_context = qp_init_attr->qp_context;
1173         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1174                 qp->recv_cq = NULL;
1175                 qp->srq = NULL;
1176         } else {
1177                 qp->recv_cq = qp_init_attr->recv_cq;
1178                 if (qp_init_attr->recv_cq)
1179                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
1180                 qp->srq = qp_init_attr->srq;
1181                 if (qp->srq)
1182                         atomic_inc(&qp_init_attr->srq->usecnt);
1183         }
1184
1185         qp->send_cq = qp_init_attr->send_cq;
1186         qp->xrcd    = NULL;
1187
1188         atomic_inc(&pd->usecnt);
1189         if (qp_init_attr->send_cq)
1190                 atomic_inc(&qp_init_attr->send_cq->usecnt);
1191         if (qp_init_attr->rwq_ind_tbl)
1192                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1193
1194         if (qp_init_attr->cap.max_rdma_ctxs) {
1195                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1196                 if (ret) {
1197                         pr_err("failed to init MR pool ret= %d\n", ret);
1198                         ib_destroy_qp(qp);
1199                         return ERR_PTR(ret);
1200                 }
1201         }
1202
1203         /*
1204          * Note: all hw drivers guarantee that max_send_sge is lower than
1205          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1206          * max_send_sge <= max_sge_rd.
1207          */
1208         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1209         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1210                                  device->attrs.max_sge_rd);
1211
1212         return qp;
1213 }
1214 EXPORT_SYMBOL(ib_create_qp);
1215
1216 static const struct {
1217         int                     valid;
1218         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1219         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1220 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1221         [IB_QPS_RESET] = {
1222                 [IB_QPS_RESET] = { .valid = 1 },
1223                 [IB_QPS_INIT]  = {
1224                         .valid = 1,
1225                         .req_param = {
1226                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1227                                                 IB_QP_PORT                      |
1228                                                 IB_QP_QKEY),
1229                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1230                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1231                                                 IB_QP_PORT                      |
1232                                                 IB_QP_ACCESS_FLAGS),
1233                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1234                                                 IB_QP_PORT                      |
1235                                                 IB_QP_ACCESS_FLAGS),
1236                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1237                                                 IB_QP_PORT                      |
1238                                                 IB_QP_ACCESS_FLAGS),
1239                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1240                                                 IB_QP_PORT                      |
1241                                                 IB_QP_ACCESS_FLAGS),
1242                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1243                                                 IB_QP_QKEY),
1244                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1245                                                 IB_QP_QKEY),
1246                         }
1247                 },
1248         },
1249         [IB_QPS_INIT]  = {
1250                 [IB_QPS_RESET] = { .valid = 1 },
1251                 [IB_QPS_ERR] =   { .valid = 1 },
1252                 [IB_QPS_INIT]  = {
1253                         .valid = 1,
1254                         .opt_param = {
1255                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1256                                                 IB_QP_PORT                      |
1257                                                 IB_QP_QKEY),
1258                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1259                                                 IB_QP_PORT                      |
1260                                                 IB_QP_ACCESS_FLAGS),
1261                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1262                                                 IB_QP_PORT                      |
1263                                                 IB_QP_ACCESS_FLAGS),
1264                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1265                                                 IB_QP_PORT                      |
1266                                                 IB_QP_ACCESS_FLAGS),
1267                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1268                                                 IB_QP_PORT                      |
1269                                                 IB_QP_ACCESS_FLAGS),
1270                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1271                                                 IB_QP_QKEY),
1272                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1273                                                 IB_QP_QKEY),
1274                         }
1275                 },
1276                 [IB_QPS_RTR]   = {
1277                         .valid = 1,
1278                         .req_param = {
1279                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1280                                                 IB_QP_PATH_MTU                  |
1281                                                 IB_QP_DEST_QPN                  |
1282                                                 IB_QP_RQ_PSN),
1283                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1284                                                 IB_QP_PATH_MTU                  |
1285                                                 IB_QP_DEST_QPN                  |
1286                                                 IB_QP_RQ_PSN                    |
1287                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1288                                                 IB_QP_MIN_RNR_TIMER),
1289                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1290                                                 IB_QP_PATH_MTU                  |
1291                                                 IB_QP_DEST_QPN                  |
1292                                                 IB_QP_RQ_PSN),
1293                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1294                                                 IB_QP_PATH_MTU                  |
1295                                                 IB_QP_DEST_QPN                  |
1296                                                 IB_QP_RQ_PSN                    |
1297                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1298                                                 IB_QP_MIN_RNR_TIMER),
1299                         },
1300                         .opt_param = {
1301                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1302                                                  IB_QP_QKEY),
1303                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1304                                                  IB_QP_ACCESS_FLAGS             |
1305                                                  IB_QP_PKEY_INDEX),
1306                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1307                                                  IB_QP_ACCESS_FLAGS             |
1308                                                  IB_QP_PKEY_INDEX),
1309                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1310                                                  IB_QP_ACCESS_FLAGS             |
1311                                                  IB_QP_PKEY_INDEX),
1312                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1313                                                  IB_QP_ACCESS_FLAGS             |
1314                                                  IB_QP_PKEY_INDEX),
1315                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1316                                                  IB_QP_QKEY),
1317                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1318                                                  IB_QP_QKEY),
1319                          },
1320                 },
1321         },
1322         [IB_QPS_RTR]   = {
1323                 [IB_QPS_RESET] = { .valid = 1 },
1324                 [IB_QPS_ERR] =   { .valid = 1 },
1325                 [IB_QPS_RTS]   = {
1326                         .valid = 1,
1327                         .req_param = {
1328                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1329                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1330                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1331                                                 IB_QP_RETRY_CNT                 |
1332                                                 IB_QP_RNR_RETRY                 |
1333                                                 IB_QP_SQ_PSN                    |
1334                                                 IB_QP_MAX_QP_RD_ATOMIC),
1335                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1336                                                 IB_QP_RETRY_CNT                 |
1337                                                 IB_QP_RNR_RETRY                 |
1338                                                 IB_QP_SQ_PSN                    |
1339                                                 IB_QP_MAX_QP_RD_ATOMIC),
1340                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1341                                                 IB_QP_SQ_PSN),
1342                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1343                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1344                         },
1345                         .opt_param = {
1346                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1347                                                  IB_QP_QKEY),
1348                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1349                                                  IB_QP_ALT_PATH                 |
1350                                                  IB_QP_ACCESS_FLAGS             |
1351                                                  IB_QP_PATH_MIG_STATE),
1352                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1353                                                  IB_QP_ALT_PATH                 |
1354                                                  IB_QP_ACCESS_FLAGS             |
1355                                                  IB_QP_MIN_RNR_TIMER            |
1356                                                  IB_QP_PATH_MIG_STATE),
1357                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1358                                                  IB_QP_ALT_PATH                 |
1359                                                  IB_QP_ACCESS_FLAGS             |
1360                                                  IB_QP_PATH_MIG_STATE),
1361                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1362                                                  IB_QP_ALT_PATH                 |
1363                                                  IB_QP_ACCESS_FLAGS             |
1364                                                  IB_QP_MIN_RNR_TIMER            |
1365                                                  IB_QP_PATH_MIG_STATE),
1366                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1367                                                  IB_QP_QKEY),
1368                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1369                                                  IB_QP_QKEY),
1370                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1371                          }
1372                 }
1373         },
1374         [IB_QPS_RTS]   = {
1375                 [IB_QPS_RESET] = { .valid = 1 },
1376                 [IB_QPS_ERR] =   { .valid = 1 },
1377                 [IB_QPS_RTS]   = {
1378                         .valid = 1,
1379                         .opt_param = {
1380                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1381                                                 IB_QP_QKEY),
1382                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1383                                                 IB_QP_ACCESS_FLAGS              |
1384                                                 IB_QP_ALT_PATH                  |
1385                                                 IB_QP_PATH_MIG_STATE),
1386                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1387                                                 IB_QP_ACCESS_FLAGS              |
1388                                                 IB_QP_ALT_PATH                  |
1389                                                 IB_QP_PATH_MIG_STATE            |
1390                                                 IB_QP_MIN_RNR_TIMER),
1391                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1392                                                 IB_QP_ACCESS_FLAGS              |
1393                                                 IB_QP_ALT_PATH                  |
1394                                                 IB_QP_PATH_MIG_STATE),
1395                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1396                                                 IB_QP_ACCESS_FLAGS              |
1397                                                 IB_QP_ALT_PATH                  |
1398                                                 IB_QP_PATH_MIG_STATE            |
1399                                                 IB_QP_MIN_RNR_TIMER),
1400                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1401                                                 IB_QP_QKEY),
1402                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1403                                                 IB_QP_QKEY),
1404                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1405                         }
1406                 },
1407                 [IB_QPS_SQD]   = {
1408                         .valid = 1,
1409                         .opt_param = {
1410                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1411                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1412                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1413                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1414                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1415                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1416                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1417                         }
1418                 },
1419         },
1420         [IB_QPS_SQD]   = {
1421                 [IB_QPS_RESET] = { .valid = 1 },
1422                 [IB_QPS_ERR] =   { .valid = 1 },
1423                 [IB_QPS_RTS]   = {
1424                         .valid = 1,
1425                         .opt_param = {
1426                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1427                                                 IB_QP_QKEY),
1428                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1429                                                 IB_QP_ALT_PATH                  |
1430                                                 IB_QP_ACCESS_FLAGS              |
1431                                                 IB_QP_PATH_MIG_STATE),
1432                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1433                                                 IB_QP_ALT_PATH                  |
1434                                                 IB_QP_ACCESS_FLAGS              |
1435                                                 IB_QP_MIN_RNR_TIMER             |
1436                                                 IB_QP_PATH_MIG_STATE),
1437                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1438                                                 IB_QP_ALT_PATH                  |
1439                                                 IB_QP_ACCESS_FLAGS              |
1440                                                 IB_QP_PATH_MIG_STATE),
1441                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1442                                                 IB_QP_ALT_PATH                  |
1443                                                 IB_QP_ACCESS_FLAGS              |
1444                                                 IB_QP_MIN_RNR_TIMER             |
1445                                                 IB_QP_PATH_MIG_STATE),
1446                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1447                                                 IB_QP_QKEY),
1448                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1449                                                 IB_QP_QKEY),
1450                         }
1451                 },
1452                 [IB_QPS_SQD]   = {
1453                         .valid = 1,
1454                         .opt_param = {
1455                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1456                                                 IB_QP_QKEY),
1457                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1458                                                 IB_QP_ALT_PATH                  |
1459                                                 IB_QP_ACCESS_FLAGS              |
1460                                                 IB_QP_PKEY_INDEX                |
1461                                                 IB_QP_PATH_MIG_STATE),
1462                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1463                                                 IB_QP_AV                        |
1464                                                 IB_QP_TIMEOUT                   |
1465                                                 IB_QP_RETRY_CNT                 |
1466                                                 IB_QP_RNR_RETRY                 |
1467                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1468                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1469                                                 IB_QP_ALT_PATH                  |
1470                                                 IB_QP_ACCESS_FLAGS              |
1471                                                 IB_QP_PKEY_INDEX                |
1472                                                 IB_QP_MIN_RNR_TIMER             |
1473                                                 IB_QP_PATH_MIG_STATE),
1474                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1475                                                 IB_QP_AV                        |
1476                                                 IB_QP_TIMEOUT                   |
1477                                                 IB_QP_RETRY_CNT                 |
1478                                                 IB_QP_RNR_RETRY                 |
1479                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1480                                                 IB_QP_ALT_PATH                  |
1481                                                 IB_QP_ACCESS_FLAGS              |
1482                                                 IB_QP_PKEY_INDEX                |
1483                                                 IB_QP_PATH_MIG_STATE),
1484                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1485                                                 IB_QP_AV                        |
1486                                                 IB_QP_TIMEOUT                   |
1487                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1488                                                 IB_QP_ALT_PATH                  |
1489                                                 IB_QP_ACCESS_FLAGS              |
1490                                                 IB_QP_PKEY_INDEX                |
1491                                                 IB_QP_MIN_RNR_TIMER             |
1492                                                 IB_QP_PATH_MIG_STATE),
1493                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1494                                                 IB_QP_QKEY),
1495                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1496                                                 IB_QP_QKEY),
1497                         }
1498                 }
1499         },
1500         [IB_QPS_SQE]   = {
1501                 [IB_QPS_RESET] = { .valid = 1 },
1502                 [IB_QPS_ERR] =   { .valid = 1 },
1503                 [IB_QPS_RTS]   = {
1504                         .valid = 1,
1505                         .opt_param = {
1506                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1507                                                 IB_QP_QKEY),
1508                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1509                                                 IB_QP_ACCESS_FLAGS),
1510                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1511                                                 IB_QP_QKEY),
1512                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1513                                                 IB_QP_QKEY),
1514                         }
1515                 }
1516         },
1517         [IB_QPS_ERR] = {
1518                 [IB_QPS_RESET] = { .valid = 1 },
1519                 [IB_QPS_ERR] =   { .valid = 1 }
1520         }
1521 };
1522
1523 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1524                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1525 {
1526         enum ib_qp_attr_mask req_param, opt_param;
1527
1528         if (mask & IB_QP_CUR_STATE  &&
1529             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1530             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1531                 return false;
1532
1533         if (!qp_state_table[cur_state][next_state].valid)
1534                 return false;
1535
1536         req_param = qp_state_table[cur_state][next_state].req_param[type];
1537         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1538
1539         if ((mask & req_param) != req_param)
1540                 return false;
1541
1542         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1543                 return false;
1544
1545         return true;
1546 }
1547 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1548
1549 /**
1550  * ib_resolve_eth_dmac - Resolve destination mac address
1551  * @device:             Device to consider
1552  * @ah_attr:            address handle attribute which describes the
1553  *                      source and destination parameters
1554  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1555  * returns 0 on success or appropriate error code. It initializes the
1556  * necessary ah_attr fields when call is successful.
1557  */
1558 static int ib_resolve_eth_dmac(struct ib_device *device,
1559                                struct rdma_ah_attr *ah_attr)
1560 {
1561         int ret = 0;
1562
1563         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1564                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1565                         __be32 addr = 0;
1566
1567                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1568                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1569                 } else {
1570                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1571                                         (char *)ah_attr->roce.dmac);
1572                 }
1573         } else {
1574                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1575         }
1576         return ret;
1577 }
1578
1579 static bool is_qp_type_connected(const struct ib_qp *qp)
1580 {
1581         return (qp->qp_type == IB_QPT_UC ||
1582                 qp->qp_type == IB_QPT_RC ||
1583                 qp->qp_type == IB_QPT_XRC_INI ||
1584                 qp->qp_type == IB_QPT_XRC_TGT);
1585 }
1586
1587 /**
1588  * IB core internal function to perform QP attributes modification.
1589  */
1590 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1591                          int attr_mask, struct ib_udata *udata)
1592 {
1593         u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1594         const struct ib_gid_attr *old_sgid_attr_av;
1595         const struct ib_gid_attr *old_sgid_attr_alt_av;
1596         int ret;
1597
1598         if (attr_mask & IB_QP_AV) {
1599                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1600                                           &old_sgid_attr_av);
1601                 if (ret)
1602                         return ret;
1603         }
1604         if (attr_mask & IB_QP_ALT_PATH) {
1605                 /*
1606                  * FIXME: This does not track the migration state, so if the
1607                  * user loads a new alternate path after the HW has migrated
1608                  * from primary->alternate we will keep the wrong
1609                  * references. This is OK for IB because the reference
1610                  * counting does not serve any functional purpose.
1611                  */
1612                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1613                                           &old_sgid_attr_alt_av);
1614                 if (ret)
1615                         goto out_av;
1616
1617                 /*
1618                  * Today the core code can only handle alternate paths and APM
1619                  * for IB. Ban them in roce mode.
1620                  */
1621                 if (!(rdma_protocol_ib(qp->device,
1622                                        attr->alt_ah_attr.port_num) &&
1623                       rdma_protocol_ib(qp->device, port))) {
1624                         ret = EINVAL;
1625                         goto out;
1626                 }
1627         }
1628
1629         /*
1630          * If the user provided the qp_attr then we have to resolve it. Kernel
1631          * users have to provide already resolved rdma_ah_attr's
1632          */
1633         if (udata && (attr_mask & IB_QP_AV) &&
1634             attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1635             is_qp_type_connected(qp)) {
1636                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1637                 if (ret)
1638                         goto out;
1639         }
1640
1641         if (rdma_ib_or_roce(qp->device, port)) {
1642                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1643                         dev_warn(&qp->device->dev,
1644                                  "%s rq_psn overflow, masking to 24 bits\n",
1645                                  __func__);
1646                         attr->rq_psn &= 0xffffff;
1647                 }
1648
1649                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1650                         dev_warn(&qp->device->dev,
1651                                  " %s sq_psn overflow, masking to 24 bits\n",
1652                                  __func__);
1653                         attr->sq_psn &= 0xffffff;
1654                 }
1655         }
1656
1657         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1658         if (ret)
1659                 goto out;
1660
1661         if (attr_mask & IB_QP_PORT)
1662                 qp->port = attr->port_num;
1663         if (attr_mask & IB_QP_AV)
1664                 qp->av_sgid_attr =
1665                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1666         if (attr_mask & IB_QP_ALT_PATH)
1667                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1668                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1669
1670 out:
1671         if (attr_mask & IB_QP_ALT_PATH)
1672                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1673 out_av:
1674         if (attr_mask & IB_QP_AV)
1675                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1676         return ret;
1677 }
1678
1679 /**
1680  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1681  * @ib_qp: The QP to modify.
1682  * @attr: On input, specifies the QP attributes to modify.  On output,
1683  *   the current values of selected QP attributes are returned.
1684  * @attr_mask: A bit-mask used to specify which attributes of the QP
1685  *   are being modified.
1686  * @udata: pointer to user's input output buffer information
1687  *   are being modified.
1688  * It returns 0 on success and returns appropriate error code on error.
1689  */
1690 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1691                             int attr_mask, struct ib_udata *udata)
1692 {
1693         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1694 }
1695 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1696
1697 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1698 {
1699         int rc;
1700         u32 netdev_speed;
1701         struct net_device *netdev;
1702         struct ethtool_link_ksettings lksettings;
1703
1704         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1705                 return -EINVAL;
1706
1707         if (!dev->ops.get_netdev)
1708                 return -EOPNOTSUPP;
1709
1710         netdev = dev->ops.get_netdev(dev, port_num);
1711         if (!netdev)
1712                 return -ENODEV;
1713
1714         rtnl_lock();
1715         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1716         rtnl_unlock();
1717
1718         dev_put(netdev);
1719
1720         if (!rc) {
1721                 netdev_speed = lksettings.base.speed;
1722         } else {
1723                 netdev_speed = SPEED_1000;
1724                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1725                         netdev_speed);
1726         }
1727
1728         if (netdev_speed <= SPEED_1000) {
1729                 *width = IB_WIDTH_1X;
1730                 *speed = IB_SPEED_SDR;
1731         } else if (netdev_speed <= SPEED_10000) {
1732                 *width = IB_WIDTH_1X;
1733                 *speed = IB_SPEED_FDR10;
1734         } else if (netdev_speed <= SPEED_20000) {
1735                 *width = IB_WIDTH_4X;
1736                 *speed = IB_SPEED_DDR;
1737         } else if (netdev_speed <= SPEED_25000) {
1738                 *width = IB_WIDTH_1X;
1739                 *speed = IB_SPEED_EDR;
1740         } else if (netdev_speed <= SPEED_40000) {
1741                 *width = IB_WIDTH_4X;
1742                 *speed = IB_SPEED_FDR10;
1743         } else {
1744                 *width = IB_WIDTH_4X;
1745                 *speed = IB_SPEED_EDR;
1746         }
1747
1748         return 0;
1749 }
1750 EXPORT_SYMBOL(ib_get_eth_speed);
1751
1752 int ib_modify_qp(struct ib_qp *qp,
1753                  struct ib_qp_attr *qp_attr,
1754                  int qp_attr_mask)
1755 {
1756         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1757 }
1758 EXPORT_SYMBOL(ib_modify_qp);
1759
1760 int ib_query_qp(struct ib_qp *qp,
1761                 struct ib_qp_attr *qp_attr,
1762                 int qp_attr_mask,
1763                 struct ib_qp_init_attr *qp_init_attr)
1764 {
1765         qp_attr->ah_attr.grh.sgid_attr = NULL;
1766         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1767
1768         return qp->device->ops.query_qp ?
1769                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1770                                          qp_init_attr) : -EOPNOTSUPP;
1771 }
1772 EXPORT_SYMBOL(ib_query_qp);
1773
1774 int ib_close_qp(struct ib_qp *qp)
1775 {
1776         struct ib_qp *real_qp;
1777         unsigned long flags;
1778
1779         real_qp = qp->real_qp;
1780         if (real_qp == qp)
1781                 return -EINVAL;
1782
1783         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1784         list_del(&qp->open_list);
1785         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1786
1787         atomic_dec(&real_qp->usecnt);
1788         if (qp->qp_sec)
1789                 ib_close_shared_qp_security(qp->qp_sec);
1790         kfree(qp);
1791
1792         return 0;
1793 }
1794 EXPORT_SYMBOL(ib_close_qp);
1795
1796 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1797 {
1798         struct ib_xrcd *xrcd;
1799         struct ib_qp *real_qp;
1800         int ret;
1801
1802         real_qp = qp->real_qp;
1803         xrcd = real_qp->xrcd;
1804
1805         mutex_lock(&xrcd->tgt_qp_mutex);
1806         ib_close_qp(qp);
1807         if (atomic_read(&real_qp->usecnt) == 0)
1808                 list_del(&real_qp->xrcd_list);
1809         else
1810                 real_qp = NULL;
1811         mutex_unlock(&xrcd->tgt_qp_mutex);
1812
1813         if (real_qp) {
1814                 ret = ib_destroy_qp(real_qp);
1815                 if (!ret)
1816                         atomic_dec(&xrcd->usecnt);
1817                 else
1818                         __ib_insert_xrcd_qp(xrcd, real_qp);
1819         }
1820
1821         return 0;
1822 }
1823
1824 int ib_destroy_qp(struct ib_qp *qp)
1825 {
1826         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1827         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1828         struct ib_pd *pd;
1829         struct ib_cq *scq, *rcq;
1830         struct ib_srq *srq;
1831         struct ib_rwq_ind_table *ind_tbl;
1832         struct ib_qp_security *sec;
1833         int ret;
1834
1835         WARN_ON_ONCE(qp->mrs_used > 0);
1836
1837         if (atomic_read(&qp->usecnt))
1838                 return -EBUSY;
1839
1840         if (qp->real_qp != qp)
1841                 return __ib_destroy_shared_qp(qp);
1842
1843         pd   = qp->pd;
1844         scq  = qp->send_cq;
1845         rcq  = qp->recv_cq;
1846         srq  = qp->srq;
1847         ind_tbl = qp->rwq_ind_tbl;
1848         sec  = qp->qp_sec;
1849         if (sec)
1850                 ib_destroy_qp_security_begin(sec);
1851
1852         if (!qp->uobject)
1853                 rdma_rw_cleanup_mrs(qp);
1854
1855         rdma_restrack_del(&qp->res);
1856         ret = qp->device->ops.destroy_qp(qp);
1857         if (!ret) {
1858                 if (alt_path_sgid_attr)
1859                         rdma_put_gid_attr(alt_path_sgid_attr);
1860                 if (av_sgid_attr)
1861                         rdma_put_gid_attr(av_sgid_attr);
1862                 if (pd)
1863                         atomic_dec(&pd->usecnt);
1864                 if (scq)
1865                         atomic_dec(&scq->usecnt);
1866                 if (rcq)
1867                         atomic_dec(&rcq->usecnt);
1868                 if (srq)
1869                         atomic_dec(&srq->usecnt);
1870                 if (ind_tbl)
1871                         atomic_dec(&ind_tbl->usecnt);
1872                 if (sec)
1873                         ib_destroy_qp_security_end(sec);
1874         } else {
1875                 if (sec)
1876                         ib_destroy_qp_security_abort(sec);
1877         }
1878
1879         return ret;
1880 }
1881 EXPORT_SYMBOL(ib_destroy_qp);
1882
1883 /* Completion queues */
1884
1885 struct ib_cq *__ib_create_cq(struct ib_device *device,
1886                              ib_comp_handler comp_handler,
1887                              void (*event_handler)(struct ib_event *, void *),
1888                              void *cq_context,
1889                              const struct ib_cq_init_attr *cq_attr,
1890                              const char *caller)
1891 {
1892         struct ib_cq *cq;
1893
1894         cq = device->ops.create_cq(device, cq_attr, NULL, NULL);
1895
1896         if (!IS_ERR(cq)) {
1897                 cq->device        = device;
1898                 cq->uobject       = NULL;
1899                 cq->comp_handler  = comp_handler;
1900                 cq->event_handler = event_handler;
1901                 cq->cq_context    = cq_context;
1902                 atomic_set(&cq->usecnt, 0);
1903                 cq->res.type = RDMA_RESTRACK_CQ;
1904                 rdma_restrack_set_task(&cq->res, caller);
1905                 rdma_restrack_kadd(&cq->res);
1906         }
1907
1908         return cq;
1909 }
1910 EXPORT_SYMBOL(__ib_create_cq);
1911
1912 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1913 {
1914         return cq->device->ops.modify_cq ?
1915                 cq->device->ops.modify_cq(cq, cq_count,
1916                                           cq_period) : -EOPNOTSUPP;
1917 }
1918 EXPORT_SYMBOL(rdma_set_cq_moderation);
1919
1920 int ib_destroy_cq(struct ib_cq *cq)
1921 {
1922         if (atomic_read(&cq->usecnt))
1923                 return -EBUSY;
1924
1925         rdma_restrack_del(&cq->res);
1926         return cq->device->ops.destroy_cq(cq);
1927 }
1928 EXPORT_SYMBOL(ib_destroy_cq);
1929
1930 int ib_resize_cq(struct ib_cq *cq, int cqe)
1931 {
1932         return cq->device->ops.resize_cq ?
1933                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1934 }
1935 EXPORT_SYMBOL(ib_resize_cq);
1936
1937 /* Memory regions */
1938
1939 int ib_dereg_mr(struct ib_mr *mr)
1940 {
1941         struct ib_pd *pd = mr->pd;
1942         struct ib_dm *dm = mr->dm;
1943         int ret;
1944
1945         rdma_restrack_del(&mr->res);
1946         ret = mr->device->ops.dereg_mr(mr);
1947         if (!ret) {
1948                 atomic_dec(&pd->usecnt);
1949                 if (dm)
1950                         atomic_dec(&dm->usecnt);
1951         }
1952
1953         return ret;
1954 }
1955 EXPORT_SYMBOL(ib_dereg_mr);
1956
1957 /**
1958  * ib_alloc_mr() - Allocates a memory region
1959  * @pd:            protection domain associated with the region
1960  * @mr_type:       memory region type
1961  * @max_num_sg:    maximum sg entries available for registration.
1962  *
1963  * Notes:
1964  * Memory registeration page/sg lists must not exceed max_num_sg.
1965  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1966  * max_num_sg * used_page_size.
1967  *
1968  */
1969 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1970                           enum ib_mr_type mr_type,
1971                           u32 max_num_sg)
1972 {
1973         struct ib_mr *mr;
1974
1975         if (!pd->device->ops.alloc_mr)
1976                 return ERR_PTR(-EOPNOTSUPP);
1977
1978         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
1979         if (!IS_ERR(mr)) {
1980                 mr->device  = pd->device;
1981                 mr->pd      = pd;
1982                 mr->dm      = NULL;
1983                 mr->uobject = NULL;
1984                 atomic_inc(&pd->usecnt);
1985                 mr->need_inval = false;
1986                 mr->res.type = RDMA_RESTRACK_MR;
1987                 rdma_restrack_kadd(&mr->res);
1988         }
1989
1990         return mr;
1991 }
1992 EXPORT_SYMBOL(ib_alloc_mr);
1993
1994 /* "Fast" memory regions */
1995
1996 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1997                             int mr_access_flags,
1998                             struct ib_fmr_attr *fmr_attr)
1999 {
2000         struct ib_fmr *fmr;
2001
2002         if (!pd->device->ops.alloc_fmr)
2003                 return ERR_PTR(-EOPNOTSUPP);
2004
2005         fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2006         if (!IS_ERR(fmr)) {
2007                 fmr->device = pd->device;
2008                 fmr->pd     = pd;
2009                 atomic_inc(&pd->usecnt);
2010         }
2011
2012         return fmr;
2013 }
2014 EXPORT_SYMBOL(ib_alloc_fmr);
2015
2016 int ib_unmap_fmr(struct list_head *fmr_list)
2017 {
2018         struct ib_fmr *fmr;
2019
2020         if (list_empty(fmr_list))
2021                 return 0;
2022
2023         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2024         return fmr->device->ops.unmap_fmr(fmr_list);
2025 }
2026 EXPORT_SYMBOL(ib_unmap_fmr);
2027
2028 int ib_dealloc_fmr(struct ib_fmr *fmr)
2029 {
2030         struct ib_pd *pd;
2031         int ret;
2032
2033         pd = fmr->pd;
2034         ret = fmr->device->ops.dealloc_fmr(fmr);
2035         if (!ret)
2036                 atomic_dec(&pd->usecnt);
2037
2038         return ret;
2039 }
2040 EXPORT_SYMBOL(ib_dealloc_fmr);
2041
2042 /* Multicast groups */
2043
2044 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2045 {
2046         struct ib_qp_init_attr init_attr = {};
2047         struct ib_qp_attr attr = {};
2048         int num_eth_ports = 0;
2049         int port;
2050
2051         /* If QP state >= init, it is assigned to a port and we can check this
2052          * port only.
2053          */
2054         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2055                 if (attr.qp_state >= IB_QPS_INIT) {
2056                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2057                             IB_LINK_LAYER_INFINIBAND)
2058                                 return true;
2059                         goto lid_check;
2060                 }
2061         }
2062
2063         /* Can't get a quick answer, iterate over all ports */
2064         for (port = 0; port < qp->device->phys_port_cnt; port++)
2065                 if (rdma_port_get_link_layer(qp->device, port) !=
2066                     IB_LINK_LAYER_INFINIBAND)
2067                         num_eth_ports++;
2068
2069         /* If we have at lease one Ethernet port, RoCE annex declares that
2070          * multicast LID should be ignored. We can't tell at this step if the
2071          * QP belongs to an IB or Ethernet port.
2072          */
2073         if (num_eth_ports)
2074                 return true;
2075
2076         /* If all the ports are IB, we can check according to IB spec. */
2077 lid_check:
2078         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2079                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2080 }
2081
2082 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2083 {
2084         int ret;
2085
2086         if (!qp->device->ops.attach_mcast)
2087                 return -EOPNOTSUPP;
2088
2089         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2090             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2091                 return -EINVAL;
2092
2093         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2094         if (!ret)
2095                 atomic_inc(&qp->usecnt);
2096         return ret;
2097 }
2098 EXPORT_SYMBOL(ib_attach_mcast);
2099
2100 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2101 {
2102         int ret;
2103
2104         if (!qp->device->ops.detach_mcast)
2105                 return -EOPNOTSUPP;
2106
2107         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2108             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2109                 return -EINVAL;
2110
2111         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2112         if (!ret)
2113                 atomic_dec(&qp->usecnt);
2114         return ret;
2115 }
2116 EXPORT_SYMBOL(ib_detach_mcast);
2117
2118 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2119 {
2120         struct ib_xrcd *xrcd;
2121
2122         if (!device->ops.alloc_xrcd)
2123                 return ERR_PTR(-EOPNOTSUPP);
2124
2125         xrcd = device->ops.alloc_xrcd(device, NULL, NULL);
2126         if (!IS_ERR(xrcd)) {
2127                 xrcd->device = device;
2128                 xrcd->inode = NULL;
2129                 atomic_set(&xrcd->usecnt, 0);
2130                 mutex_init(&xrcd->tgt_qp_mutex);
2131                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2132         }
2133
2134         return xrcd;
2135 }
2136 EXPORT_SYMBOL(__ib_alloc_xrcd);
2137
2138 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
2139 {
2140         struct ib_qp *qp;
2141         int ret;
2142
2143         if (atomic_read(&xrcd->usecnt))
2144                 return -EBUSY;
2145
2146         while (!list_empty(&xrcd->tgt_qp_list)) {
2147                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2148                 ret = ib_destroy_qp(qp);
2149                 if (ret)
2150                         return ret;
2151         }
2152
2153         return xrcd->device->ops.dealloc_xrcd(xrcd);
2154 }
2155 EXPORT_SYMBOL(ib_dealloc_xrcd);
2156
2157 /**
2158  * ib_create_wq - Creates a WQ associated with the specified protection
2159  * domain.
2160  * @pd: The protection domain associated with the WQ.
2161  * @wq_attr: A list of initial attributes required to create the
2162  * WQ. If WQ creation succeeds, then the attributes are updated to
2163  * the actual capabilities of the created WQ.
2164  *
2165  * wq_attr->max_wr and wq_attr->max_sge determine
2166  * the requested size of the WQ, and set to the actual values allocated
2167  * on return.
2168  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2169  * at least as large as the requested values.
2170  */
2171 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2172                            struct ib_wq_init_attr *wq_attr)
2173 {
2174         struct ib_wq *wq;
2175
2176         if (!pd->device->ops.create_wq)
2177                 return ERR_PTR(-EOPNOTSUPP);
2178
2179         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2180         if (!IS_ERR(wq)) {
2181                 wq->event_handler = wq_attr->event_handler;
2182                 wq->wq_context = wq_attr->wq_context;
2183                 wq->wq_type = wq_attr->wq_type;
2184                 wq->cq = wq_attr->cq;
2185                 wq->device = pd->device;
2186                 wq->pd = pd;
2187                 wq->uobject = NULL;
2188                 atomic_inc(&pd->usecnt);
2189                 atomic_inc(&wq_attr->cq->usecnt);
2190                 atomic_set(&wq->usecnt, 0);
2191         }
2192         return wq;
2193 }
2194 EXPORT_SYMBOL(ib_create_wq);
2195
2196 /**
2197  * ib_destroy_wq - Destroys the specified WQ.
2198  * @wq: The WQ to destroy.
2199  */
2200 int ib_destroy_wq(struct ib_wq *wq)
2201 {
2202         int err;
2203         struct ib_cq *cq = wq->cq;
2204         struct ib_pd *pd = wq->pd;
2205
2206         if (atomic_read(&wq->usecnt))
2207                 return -EBUSY;
2208
2209         err = wq->device->ops.destroy_wq(wq);
2210         if (!err) {
2211                 atomic_dec(&pd->usecnt);
2212                 atomic_dec(&cq->usecnt);
2213         }
2214         return err;
2215 }
2216 EXPORT_SYMBOL(ib_destroy_wq);
2217
2218 /**
2219  * ib_modify_wq - Modifies the specified WQ.
2220  * @wq: The WQ to modify.
2221  * @wq_attr: On input, specifies the WQ attributes to modify.
2222  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2223  *   are being modified.
2224  * On output, the current values of selected WQ attributes are returned.
2225  */
2226 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2227                  u32 wq_attr_mask)
2228 {
2229         int err;
2230
2231         if (!wq->device->ops.modify_wq)
2232                 return -EOPNOTSUPP;
2233
2234         err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2235         return err;
2236 }
2237 EXPORT_SYMBOL(ib_modify_wq);
2238
2239 /*
2240  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2241  * @device: The device on which to create the rwq indirection table.
2242  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2243  * create the Indirection Table.
2244  *
2245  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2246  *      than the created ib_rwq_ind_table object and the caller is responsible
2247  *      for its memory allocation/free.
2248  */
2249 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2250                                                  struct ib_rwq_ind_table_init_attr *init_attr)
2251 {
2252         struct ib_rwq_ind_table *rwq_ind_table;
2253         int i;
2254         u32 table_size;
2255
2256         if (!device->ops.create_rwq_ind_table)
2257                 return ERR_PTR(-EOPNOTSUPP);
2258
2259         table_size = (1 << init_attr->log_ind_tbl_size);
2260         rwq_ind_table = device->ops.create_rwq_ind_table(device,
2261                                                          init_attr, NULL);
2262         if (IS_ERR(rwq_ind_table))
2263                 return rwq_ind_table;
2264
2265         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2266         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2267         rwq_ind_table->device = device;
2268         rwq_ind_table->uobject = NULL;
2269         atomic_set(&rwq_ind_table->usecnt, 0);
2270
2271         for (i = 0; i < table_size; i++)
2272                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2273
2274         return rwq_ind_table;
2275 }
2276 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2277
2278 /*
2279  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2280  * @wq_ind_table: The Indirection Table to destroy.
2281 */
2282 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2283 {
2284         int err, i;
2285         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2286         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2287
2288         if (atomic_read(&rwq_ind_table->usecnt))
2289                 return -EBUSY;
2290
2291         err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2292         if (!err) {
2293                 for (i = 0; i < table_size; i++)
2294                         atomic_dec(&ind_tbl[i]->usecnt);
2295         }
2296
2297         return err;
2298 }
2299 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2300
2301 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2302                        struct ib_mr_status *mr_status)
2303 {
2304         if (!mr->device->ops.check_mr_status)
2305                 return -EOPNOTSUPP;
2306
2307         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2308 }
2309 EXPORT_SYMBOL(ib_check_mr_status);
2310
2311 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2312                          int state)
2313 {
2314         if (!device->ops.set_vf_link_state)
2315                 return -EOPNOTSUPP;
2316
2317         return device->ops.set_vf_link_state(device, vf, port, state);
2318 }
2319 EXPORT_SYMBOL(ib_set_vf_link_state);
2320
2321 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2322                      struct ifla_vf_info *info)
2323 {
2324         if (!device->ops.get_vf_config)
2325                 return -EOPNOTSUPP;
2326
2327         return device->ops.get_vf_config(device, vf, port, info);
2328 }
2329 EXPORT_SYMBOL(ib_get_vf_config);
2330
2331 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2332                     struct ifla_vf_stats *stats)
2333 {
2334         if (!device->ops.get_vf_stats)
2335                 return -EOPNOTSUPP;
2336
2337         return device->ops.get_vf_stats(device, vf, port, stats);
2338 }
2339 EXPORT_SYMBOL(ib_get_vf_stats);
2340
2341 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2342                    int type)
2343 {
2344         if (!device->ops.set_vf_guid)
2345                 return -EOPNOTSUPP;
2346
2347         return device->ops.set_vf_guid(device, vf, port, guid, type);
2348 }
2349 EXPORT_SYMBOL(ib_set_vf_guid);
2350
2351 /**
2352  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2353  *     and set it the memory region.
2354  * @mr:            memory region
2355  * @sg:            dma mapped scatterlist
2356  * @sg_nents:      number of entries in sg
2357  * @sg_offset:     offset in bytes into sg
2358  * @page_size:     page vector desired page size
2359  *
2360  * Constraints:
2361  * - The first sg element is allowed to have an offset.
2362  * - Each sg element must either be aligned to page_size or virtually
2363  *   contiguous to the previous element. In case an sg element has a
2364  *   non-contiguous offset, the mapping prefix will not include it.
2365  * - The last sg element is allowed to have length less than page_size.
2366  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2367  *   then only max_num_sg entries will be mapped.
2368  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2369  *   constraints holds and the page_size argument is ignored.
2370  *
2371  * Returns the number of sg elements that were mapped to the memory region.
2372  *
2373  * After this completes successfully, the  memory region
2374  * is ready for registration.
2375  */
2376 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2377                  unsigned int *sg_offset, unsigned int page_size)
2378 {
2379         if (unlikely(!mr->device->ops.map_mr_sg))
2380                 return -EOPNOTSUPP;
2381
2382         mr->page_size = page_size;
2383
2384         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2385 }
2386 EXPORT_SYMBOL(ib_map_mr_sg);
2387
2388 /**
2389  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2390  *     to a page vector
2391  * @mr:            memory region
2392  * @sgl:           dma mapped scatterlist
2393  * @sg_nents:      number of entries in sg
2394  * @sg_offset_p:   IN:  start offset in bytes into sg
2395  *                 OUT: offset in bytes for element n of the sg of the first
2396  *                      byte that has not been processed where n is the return
2397  *                      value of this function.
2398  * @set_page:      driver page assignment function pointer
2399  *
2400  * Core service helper for drivers to convert the largest
2401  * prefix of given sg list to a page vector. The sg list
2402  * prefix converted is the prefix that meet the requirements
2403  * of ib_map_mr_sg.
2404  *
2405  * Returns the number of sg elements that were assigned to
2406  * a page vector.
2407  */
2408 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2409                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2410 {
2411         struct scatterlist *sg;
2412         u64 last_end_dma_addr = 0;
2413         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2414         unsigned int last_page_off = 0;
2415         u64 page_mask = ~((u64)mr->page_size - 1);
2416         int i, ret;
2417
2418         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2419                 return -EINVAL;
2420
2421         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2422         mr->length = 0;
2423
2424         for_each_sg(sgl, sg, sg_nents, i) {
2425                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2426                 u64 prev_addr = dma_addr;
2427                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2428                 u64 end_dma_addr = dma_addr + dma_len;
2429                 u64 page_addr = dma_addr & page_mask;
2430
2431                 /*
2432                  * For the second and later elements, check whether either the
2433                  * end of element i-1 or the start of element i is not aligned
2434                  * on a page boundary.
2435                  */
2436                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2437                         /* Stop mapping if there is a gap. */
2438                         if (last_end_dma_addr != dma_addr)
2439                                 break;
2440
2441                         /*
2442                          * Coalesce this element with the last. If it is small
2443                          * enough just update mr->length. Otherwise start
2444                          * mapping from the next page.
2445                          */
2446                         goto next_page;
2447                 }
2448
2449                 do {
2450                         ret = set_page(mr, page_addr);
2451                         if (unlikely(ret < 0)) {
2452                                 sg_offset = prev_addr - sg_dma_address(sg);
2453                                 mr->length += prev_addr - dma_addr;
2454                                 if (sg_offset_p)
2455                                         *sg_offset_p = sg_offset;
2456                                 return i || sg_offset ? i : ret;
2457                         }
2458                         prev_addr = page_addr;
2459 next_page:
2460                         page_addr += mr->page_size;
2461                 } while (page_addr < end_dma_addr);
2462
2463                 mr->length += dma_len;
2464                 last_end_dma_addr = end_dma_addr;
2465                 last_page_off = end_dma_addr & ~page_mask;
2466
2467                 sg_offset = 0;
2468         }
2469
2470         if (sg_offset_p)
2471                 *sg_offset_p = 0;
2472         return i;
2473 }
2474 EXPORT_SYMBOL(ib_sg_to_pages);
2475
2476 struct ib_drain_cqe {
2477         struct ib_cqe cqe;
2478         struct completion done;
2479 };
2480
2481 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2482 {
2483         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2484                                                 cqe);
2485
2486         complete(&cqe->done);
2487 }
2488
2489 /*
2490  * Post a WR and block until its completion is reaped for the SQ.
2491  */
2492 static void __ib_drain_sq(struct ib_qp *qp)
2493 {
2494         struct ib_cq *cq = qp->send_cq;
2495         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2496         struct ib_drain_cqe sdrain;
2497         struct ib_rdma_wr swr = {
2498                 .wr = {
2499                         .next = NULL,
2500                         { .wr_cqe       = &sdrain.cqe, },
2501                         .opcode = IB_WR_RDMA_WRITE,
2502                 },
2503         };
2504         int ret;
2505
2506         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2507         if (ret) {
2508                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2509                 return;
2510         }
2511
2512         sdrain.cqe.done = ib_drain_qp_done;
2513         init_completion(&sdrain.done);
2514
2515         ret = ib_post_send(qp, &swr.wr, NULL);
2516         if (ret) {
2517                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2518                 return;
2519         }
2520
2521         if (cq->poll_ctx == IB_POLL_DIRECT)
2522                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2523                         ib_process_cq_direct(cq, -1);
2524         else
2525                 wait_for_completion(&sdrain.done);
2526 }
2527
2528 /*
2529  * Post a WR and block until its completion is reaped for the RQ.
2530  */
2531 static void __ib_drain_rq(struct ib_qp *qp)
2532 {
2533         struct ib_cq *cq = qp->recv_cq;
2534         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2535         struct ib_drain_cqe rdrain;
2536         struct ib_recv_wr rwr = {};
2537         int ret;
2538
2539         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2540         if (ret) {
2541                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2542                 return;
2543         }
2544
2545         rwr.wr_cqe = &rdrain.cqe;
2546         rdrain.cqe.done = ib_drain_qp_done;
2547         init_completion(&rdrain.done);
2548
2549         ret = ib_post_recv(qp, &rwr, NULL);
2550         if (ret) {
2551                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2552                 return;
2553         }
2554
2555         if (cq->poll_ctx == IB_POLL_DIRECT)
2556                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2557                         ib_process_cq_direct(cq, -1);
2558         else
2559                 wait_for_completion(&rdrain.done);
2560 }
2561
2562 /**
2563  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2564  *                 application.
2565  * @qp:            queue pair to drain
2566  *
2567  * If the device has a provider-specific drain function, then
2568  * call that.  Otherwise call the generic drain function
2569  * __ib_drain_sq().
2570  *
2571  * The caller must:
2572  *
2573  * ensure there is room in the CQ and SQ for the drain work request and
2574  * completion.
2575  *
2576  * allocate the CQ using ib_alloc_cq().
2577  *
2578  * ensure that there are no other contexts that are posting WRs concurrently.
2579  * Otherwise the drain is not guaranteed.
2580  */
2581 void ib_drain_sq(struct ib_qp *qp)
2582 {
2583         if (qp->device->ops.drain_sq)
2584                 qp->device->ops.drain_sq(qp);
2585         else
2586                 __ib_drain_sq(qp);
2587 }
2588 EXPORT_SYMBOL(ib_drain_sq);
2589
2590 /**
2591  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2592  *                 application.
2593  * @qp:            queue pair to drain
2594  *
2595  * If the device has a provider-specific drain function, then
2596  * call that.  Otherwise call the generic drain function
2597  * __ib_drain_rq().
2598  *
2599  * The caller must:
2600  *
2601  * ensure there is room in the CQ and RQ for the drain work request and
2602  * completion.
2603  *
2604  * allocate the CQ using ib_alloc_cq().
2605  *
2606  * ensure that there are no other contexts that are posting WRs concurrently.
2607  * Otherwise the drain is not guaranteed.
2608  */
2609 void ib_drain_rq(struct ib_qp *qp)
2610 {
2611         if (qp->device->ops.drain_rq)
2612                 qp->device->ops.drain_rq(qp);
2613         else
2614                 __ib_drain_rq(qp);
2615 }
2616 EXPORT_SYMBOL(ib_drain_rq);
2617
2618 /**
2619  * ib_drain_qp() - Block until all CQEs have been consumed by the
2620  *                 application on both the RQ and SQ.
2621  * @qp:            queue pair to drain
2622  *
2623  * The caller must:
2624  *
2625  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2626  * and completions.
2627  *
2628  * allocate the CQs using ib_alloc_cq().
2629  *
2630  * ensure that there are no other contexts that are posting WRs concurrently.
2631  * Otherwise the drain is not guaranteed.
2632  */
2633 void ib_drain_qp(struct ib_qp *qp)
2634 {
2635         ib_drain_sq(qp);
2636         if (!qp->srq)
2637                 ib_drain_rq(qp);
2638 }
2639 EXPORT_SYMBOL(ib_drain_qp);
2640
2641 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2642                                      enum rdma_netdev_t type, const char *name,
2643                                      unsigned char name_assign_type,
2644                                      void (*setup)(struct net_device *))
2645 {
2646         struct rdma_netdev_alloc_params params;
2647         struct net_device *netdev;
2648         int rc;
2649
2650         if (!device->ops.rdma_netdev_get_params)
2651                 return ERR_PTR(-EOPNOTSUPP);
2652
2653         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2654                                                 &params);
2655         if (rc)
2656                 return ERR_PTR(rc);
2657
2658         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2659                                   setup, params.txqs, params.rxqs);
2660         if (!netdev)
2661                 return ERR_PTR(-ENOMEM);
2662
2663         return netdev;
2664 }
2665 EXPORT_SYMBOL(rdma_alloc_netdev);
2666
2667 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2668                      enum rdma_netdev_t type, const char *name,
2669                      unsigned char name_assign_type,
2670                      void (*setup)(struct net_device *),
2671                      struct net_device *netdev)
2672 {
2673         struct rdma_netdev_alloc_params params;
2674         int rc;
2675
2676         if (!device->ops.rdma_netdev_get_params)
2677                 return -EOPNOTSUPP;
2678
2679         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2680                                                 &params);
2681         if (rc)
2682                 return rc;
2683
2684         return params.initialize_rdma_netdev(device, port_num,
2685                                              netdev, params.param);
2686 }
2687 EXPORT_SYMBOL(rdma_init_netdev);