8549345c616918c8eb9d03dca6c341f73c292a0c
[linux-2.6-block.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51
52 #include "core_priv.h"
53
54 static const char * const ib_events[] = {
55         [IB_EVENT_CQ_ERR]               = "CQ error",
56         [IB_EVENT_QP_FATAL]             = "QP fatal error",
57         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
58         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
59         [IB_EVENT_COMM_EST]             = "communication established",
60         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
61         [IB_EVENT_PATH_MIG]             = "path migration successful",
62         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
63         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
64         [IB_EVENT_PORT_ACTIVE]          = "port active",
65         [IB_EVENT_PORT_ERR]             = "port error",
66         [IB_EVENT_LID_CHANGE]           = "LID change",
67         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
68         [IB_EVENT_SM_CHANGE]            = "SM change",
69         [IB_EVENT_SRQ_ERR]              = "SRQ error",
70         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
71         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
72         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
73         [IB_EVENT_GID_CHANGE]           = "GID changed",
74 };
75
76 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
77 {
78         size_t index = event;
79
80         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
81                         ib_events[index] : "unrecognized event";
82 }
83 EXPORT_SYMBOL(ib_event_msg);
84
85 static const char * const wc_statuses[] = {
86         [IB_WC_SUCCESS]                 = "success",
87         [IB_WC_LOC_LEN_ERR]             = "local length error",
88         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
89         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
90         [IB_WC_LOC_PROT_ERR]            = "local protection error",
91         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
92         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
93         [IB_WC_BAD_RESP_ERR]            = "bad response error",
94         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
95         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
96         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
97         [IB_WC_REM_OP_ERR]              = "remote operation error",
98         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
99         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
100         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
101         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
102         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
103         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
104         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
105         [IB_WC_FATAL_ERR]               = "fatal error",
106         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
107         [IB_WC_GENERAL_ERR]             = "general error",
108 };
109
110 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
111 {
112         size_t index = status;
113
114         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
115                         wc_statuses[index] : "unrecognized status";
116 }
117 EXPORT_SYMBOL(ib_wc_status_msg);
118
119 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
120 {
121         switch (rate) {
122         case IB_RATE_2_5_GBPS: return  1;
123         case IB_RATE_5_GBPS:   return  2;
124         case IB_RATE_10_GBPS:  return  4;
125         case IB_RATE_20_GBPS:  return  8;
126         case IB_RATE_30_GBPS:  return 12;
127         case IB_RATE_40_GBPS:  return 16;
128         case IB_RATE_60_GBPS:  return 24;
129         case IB_RATE_80_GBPS:  return 32;
130         case IB_RATE_120_GBPS: return 48;
131         default:               return -1;
132         }
133 }
134 EXPORT_SYMBOL(ib_rate_to_mult);
135
136 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
137 {
138         switch (mult) {
139         case 1:  return IB_RATE_2_5_GBPS;
140         case 2:  return IB_RATE_5_GBPS;
141         case 4:  return IB_RATE_10_GBPS;
142         case 8:  return IB_RATE_20_GBPS;
143         case 12: return IB_RATE_30_GBPS;
144         case 16: return IB_RATE_40_GBPS;
145         case 24: return IB_RATE_60_GBPS;
146         case 32: return IB_RATE_80_GBPS;
147         case 48: return IB_RATE_120_GBPS;
148         default: return IB_RATE_PORT_CURRENT;
149         }
150 }
151 EXPORT_SYMBOL(mult_to_ib_rate);
152
153 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
154 {
155         switch (rate) {
156         case IB_RATE_2_5_GBPS: return 2500;
157         case IB_RATE_5_GBPS:   return 5000;
158         case IB_RATE_10_GBPS:  return 10000;
159         case IB_RATE_20_GBPS:  return 20000;
160         case IB_RATE_30_GBPS:  return 30000;
161         case IB_RATE_40_GBPS:  return 40000;
162         case IB_RATE_60_GBPS:  return 60000;
163         case IB_RATE_80_GBPS:  return 80000;
164         case IB_RATE_120_GBPS: return 120000;
165         case IB_RATE_14_GBPS:  return 14062;
166         case IB_RATE_56_GBPS:  return 56250;
167         case IB_RATE_112_GBPS: return 112500;
168         case IB_RATE_168_GBPS: return 168750;
169         case IB_RATE_25_GBPS:  return 25781;
170         case IB_RATE_100_GBPS: return 103125;
171         case IB_RATE_200_GBPS: return 206250;
172         case IB_RATE_300_GBPS: return 309375;
173         default:               return -1;
174         }
175 }
176 EXPORT_SYMBOL(ib_rate_to_mbps);
177
178 __attribute_const__ enum rdma_transport_type
179 rdma_node_get_transport(enum rdma_node_type node_type)
180 {
181         switch (node_type) {
182         case RDMA_NODE_IB_CA:
183         case RDMA_NODE_IB_SWITCH:
184         case RDMA_NODE_IB_ROUTER:
185                 return RDMA_TRANSPORT_IB;
186         case RDMA_NODE_RNIC:
187                 return RDMA_TRANSPORT_IWARP;
188         case RDMA_NODE_USNIC:
189                 return RDMA_TRANSPORT_USNIC;
190         case RDMA_NODE_USNIC_UDP:
191                 return RDMA_TRANSPORT_USNIC_UDP;
192         default:
193                 BUG();
194                 return 0;
195         }
196 }
197 EXPORT_SYMBOL(rdma_node_get_transport);
198
199 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
200 {
201         if (device->get_link_layer)
202                 return device->get_link_layer(device, port_num);
203
204         switch (rdma_node_get_transport(device->node_type)) {
205         case RDMA_TRANSPORT_IB:
206                 return IB_LINK_LAYER_INFINIBAND;
207         case RDMA_TRANSPORT_IWARP:
208         case RDMA_TRANSPORT_USNIC:
209         case RDMA_TRANSPORT_USNIC_UDP:
210                 return IB_LINK_LAYER_ETHERNET;
211         default:
212                 return IB_LINK_LAYER_UNSPECIFIED;
213         }
214 }
215 EXPORT_SYMBOL(rdma_port_get_link_layer);
216
217 /* Protection domains */
218
219 /**
220  * ib_alloc_pd - Allocates an unused protection domain.
221  * @device: The device on which to allocate the protection domain.
222  *
223  * A protection domain object provides an association between QPs, shared
224  * receive queues, address handles, memory regions, and memory windows.
225  *
226  * Every PD has a local_dma_lkey which can be used as the lkey value for local
227  * memory operations.
228  */
229 struct ib_pd *ib_alloc_pd(struct ib_device *device)
230 {
231         struct ib_pd *pd;
232
233         pd = device->alloc_pd(device, NULL, NULL);
234         if (IS_ERR(pd))
235                 return pd;
236
237         pd->device = device;
238         pd->uobject = NULL;
239         pd->local_mr = NULL;
240         atomic_set(&pd->usecnt, 0);
241
242         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
243                 pd->local_dma_lkey = device->local_dma_lkey;
244         else {
245                 struct ib_mr *mr;
246
247                 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
248                 if (IS_ERR(mr)) {
249                         ib_dealloc_pd(pd);
250                         return (struct ib_pd *)mr;
251                 }
252
253                 pd->local_mr = mr;
254                 pd->local_dma_lkey = pd->local_mr->lkey;
255         }
256         return pd;
257 }
258 EXPORT_SYMBOL(ib_alloc_pd);
259
260 /**
261  * ib_dealloc_pd - Deallocates a protection domain.
262  * @pd: The protection domain to deallocate.
263  *
264  * It is an error to call this function while any resources in the pd still
265  * exist.  The caller is responsible to synchronously destroy them and
266  * guarantee no new allocations will happen.
267  */
268 void ib_dealloc_pd(struct ib_pd *pd)
269 {
270         int ret;
271
272         if (pd->local_mr) {
273                 ret = ib_dereg_mr(pd->local_mr);
274                 WARN_ON(ret);
275                 pd->local_mr = NULL;
276         }
277
278         /* uverbs manipulates usecnt with proper locking, while the kabi
279            requires the caller to guarantee we can't race here. */
280         WARN_ON(atomic_read(&pd->usecnt));
281
282         /* Making delalloc_pd a void return is a WIP, no driver should return
283            an error here. */
284         ret = pd->device->dealloc_pd(pd);
285         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
286 }
287 EXPORT_SYMBOL(ib_dealloc_pd);
288
289 /* Address handles */
290
291 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
292 {
293         struct ib_ah *ah;
294
295         ah = pd->device->create_ah(pd, ah_attr);
296
297         if (!IS_ERR(ah)) {
298                 ah->device  = pd->device;
299                 ah->pd      = pd;
300                 ah->uobject = NULL;
301                 atomic_inc(&pd->usecnt);
302         }
303
304         return ah;
305 }
306 EXPORT_SYMBOL(ib_create_ah);
307
308 static int ib_get_header_version(const union rdma_network_hdr *hdr)
309 {
310         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
311         struct iphdr ip4h_checked;
312         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
313
314         /* If it's IPv6, the version must be 6, otherwise, the first
315          * 20 bytes (before the IPv4 header) are garbled.
316          */
317         if (ip6h->version != 6)
318                 return (ip4h->version == 4) ? 4 : 0;
319         /* version may be 6 or 4 because the first 20 bytes could be garbled */
320
321         /* RoCE v2 requires no options, thus header length
322          * must be 5 words
323          */
324         if (ip4h->ihl != 5)
325                 return 6;
326
327         /* Verify checksum.
328          * We can't write on scattered buffers so we need to copy to
329          * temp buffer.
330          */
331         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
332         ip4h_checked.check = 0;
333         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
334         /* if IPv4 header checksum is OK, believe it */
335         if (ip4h->check == ip4h_checked.check)
336                 return 4;
337         return 6;
338 }
339
340 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
341                                                      u8 port_num,
342                                                      const struct ib_grh *grh)
343 {
344         int grh_version;
345
346         if (rdma_protocol_ib(device, port_num))
347                 return RDMA_NETWORK_IB;
348
349         grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
350
351         if (grh_version == 4)
352                 return RDMA_NETWORK_IPV4;
353
354         if (grh->next_hdr == IPPROTO_UDP)
355                 return RDMA_NETWORK_IPV6;
356
357         return RDMA_NETWORK_ROCE_V1;
358 }
359
360 struct find_gid_index_context {
361         u16 vlan_id;
362         enum ib_gid_type gid_type;
363 };
364
365 static bool find_gid_index(const union ib_gid *gid,
366                            const struct ib_gid_attr *gid_attr,
367                            void *context)
368 {
369         struct find_gid_index_context *ctx =
370                 (struct find_gid_index_context *)context;
371
372         if (ctx->gid_type != gid_attr->gid_type)
373                 return false;
374
375         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
376             (is_vlan_dev(gid_attr->ndev) &&
377              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
378                 return false;
379
380         return true;
381 }
382
383 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
384                                    u16 vlan_id, const union ib_gid *sgid,
385                                    enum ib_gid_type gid_type,
386                                    u16 *gid_index)
387 {
388         struct find_gid_index_context context = {.vlan_id = vlan_id,
389                                                  .gid_type = gid_type};
390
391         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
392                                      &context, gid_index);
393 }
394
395 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
396                                   enum rdma_network_type net_type,
397                                   union ib_gid *sgid, union ib_gid *dgid)
398 {
399         struct sockaddr_in  src_in;
400         struct sockaddr_in  dst_in;
401         __be32 src_saddr, dst_saddr;
402
403         if (!sgid || !dgid)
404                 return -EINVAL;
405
406         if (net_type == RDMA_NETWORK_IPV4) {
407                 memcpy(&src_in.sin_addr.s_addr,
408                        &hdr->roce4grh.saddr, 4);
409                 memcpy(&dst_in.sin_addr.s_addr,
410                        &hdr->roce4grh.daddr, 4);
411                 src_saddr = src_in.sin_addr.s_addr;
412                 dst_saddr = dst_in.sin_addr.s_addr;
413                 ipv6_addr_set_v4mapped(src_saddr,
414                                        (struct in6_addr *)sgid);
415                 ipv6_addr_set_v4mapped(dst_saddr,
416                                        (struct in6_addr *)dgid);
417                 return 0;
418         } else if (net_type == RDMA_NETWORK_IPV6 ||
419                    net_type == RDMA_NETWORK_IB) {
420                 *dgid = hdr->ibgrh.dgid;
421                 *sgid = hdr->ibgrh.sgid;
422                 return 0;
423         } else {
424                 return -EINVAL;
425         }
426 }
427
428 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
429                        const struct ib_wc *wc, const struct ib_grh *grh,
430                        struct ib_ah_attr *ah_attr)
431 {
432         u32 flow_class;
433         u16 gid_index;
434         int ret;
435         enum rdma_network_type net_type = RDMA_NETWORK_IB;
436         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
437         int hoplimit = 0xff;
438         union ib_gid dgid;
439         union ib_gid sgid;
440
441         memset(ah_attr, 0, sizeof *ah_attr);
442         if (rdma_cap_eth_ah(device, port_num)) {
443                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
444                         net_type = wc->network_hdr_type;
445                 else
446                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
447                 gid_type = ib_network_to_gid_type(net_type);
448         }
449         ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
450                                      &sgid, &dgid);
451         if (ret)
452                 return ret;
453
454         if (rdma_protocol_roce(device, port_num)) {
455                 int if_index = 0;
456                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
457                                 wc->vlan_id : 0xffff;
458                 struct net_device *idev;
459                 struct net_device *resolved_dev;
460
461                 if (!(wc->wc_flags & IB_WC_GRH))
462                         return -EPROTOTYPE;
463
464                 if (!device->get_netdev)
465                         return -EOPNOTSUPP;
466
467                 idev = device->get_netdev(device, port_num);
468                 if (!idev)
469                         return -ENODEV;
470
471                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
472                                                    ah_attr->dmac,
473                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
474                                                    NULL : &vlan_id,
475                                                    &if_index, &hoplimit);
476                 if (ret) {
477                         dev_put(idev);
478                         return ret;
479                 }
480
481                 resolved_dev = dev_get_by_index(&init_net, if_index);
482                 if (resolved_dev->flags & IFF_LOOPBACK) {
483                         dev_put(resolved_dev);
484                         resolved_dev = idev;
485                         dev_hold(resolved_dev);
486                 }
487                 rcu_read_lock();
488                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
489                                                                    resolved_dev))
490                         ret = -EHOSTUNREACH;
491                 rcu_read_unlock();
492                 dev_put(idev);
493                 dev_put(resolved_dev);
494                 if (ret)
495                         return ret;
496
497                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
498                                               &dgid, gid_type, &gid_index);
499                 if (ret)
500                         return ret;
501         }
502
503         ah_attr->dlid = wc->slid;
504         ah_attr->sl = wc->sl;
505         ah_attr->src_path_bits = wc->dlid_path_bits;
506         ah_attr->port_num = port_num;
507
508         if (wc->wc_flags & IB_WC_GRH) {
509                 ah_attr->ah_flags = IB_AH_GRH;
510                 ah_attr->grh.dgid = sgid;
511
512                 if (!rdma_cap_eth_ah(device, port_num)) {
513                         ret = ib_find_cached_gid_by_port(device, &dgid,
514                                                          IB_GID_TYPE_IB,
515                                                          port_num, NULL,
516                                                          &gid_index);
517                         if (ret)
518                                 return ret;
519                 }
520
521                 ah_attr->grh.sgid_index = (u8) gid_index;
522                 flow_class = be32_to_cpu(grh->version_tclass_flow);
523                 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
524                 ah_attr->grh.hop_limit = hoplimit;
525                 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
526         }
527         return 0;
528 }
529 EXPORT_SYMBOL(ib_init_ah_from_wc);
530
531 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
532                                    const struct ib_grh *grh, u8 port_num)
533 {
534         struct ib_ah_attr ah_attr;
535         int ret;
536
537         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
538         if (ret)
539                 return ERR_PTR(ret);
540
541         return ib_create_ah(pd, &ah_attr);
542 }
543 EXPORT_SYMBOL(ib_create_ah_from_wc);
544
545 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
546 {
547         return ah->device->modify_ah ?
548                 ah->device->modify_ah(ah, ah_attr) :
549                 -ENOSYS;
550 }
551 EXPORT_SYMBOL(ib_modify_ah);
552
553 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
554 {
555         return ah->device->query_ah ?
556                 ah->device->query_ah(ah, ah_attr) :
557                 -ENOSYS;
558 }
559 EXPORT_SYMBOL(ib_query_ah);
560
561 int ib_destroy_ah(struct ib_ah *ah)
562 {
563         struct ib_pd *pd;
564         int ret;
565
566         pd = ah->pd;
567         ret = ah->device->destroy_ah(ah);
568         if (!ret)
569                 atomic_dec(&pd->usecnt);
570
571         return ret;
572 }
573 EXPORT_SYMBOL(ib_destroy_ah);
574
575 /* Shared receive queues */
576
577 struct ib_srq *ib_create_srq(struct ib_pd *pd,
578                              struct ib_srq_init_attr *srq_init_attr)
579 {
580         struct ib_srq *srq;
581
582         if (!pd->device->create_srq)
583                 return ERR_PTR(-ENOSYS);
584
585         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
586
587         if (!IS_ERR(srq)) {
588                 srq->device        = pd->device;
589                 srq->pd            = pd;
590                 srq->uobject       = NULL;
591                 srq->event_handler = srq_init_attr->event_handler;
592                 srq->srq_context   = srq_init_attr->srq_context;
593                 srq->srq_type      = srq_init_attr->srq_type;
594                 if (srq->srq_type == IB_SRQT_XRC) {
595                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
596                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
597                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
598                         atomic_inc(&srq->ext.xrc.cq->usecnt);
599                 }
600                 atomic_inc(&pd->usecnt);
601                 atomic_set(&srq->usecnt, 0);
602         }
603
604         return srq;
605 }
606 EXPORT_SYMBOL(ib_create_srq);
607
608 int ib_modify_srq(struct ib_srq *srq,
609                   struct ib_srq_attr *srq_attr,
610                   enum ib_srq_attr_mask srq_attr_mask)
611 {
612         return srq->device->modify_srq ?
613                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
614                 -ENOSYS;
615 }
616 EXPORT_SYMBOL(ib_modify_srq);
617
618 int ib_query_srq(struct ib_srq *srq,
619                  struct ib_srq_attr *srq_attr)
620 {
621         return srq->device->query_srq ?
622                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
623 }
624 EXPORT_SYMBOL(ib_query_srq);
625
626 int ib_destroy_srq(struct ib_srq *srq)
627 {
628         struct ib_pd *pd;
629         enum ib_srq_type srq_type;
630         struct ib_xrcd *uninitialized_var(xrcd);
631         struct ib_cq *uninitialized_var(cq);
632         int ret;
633
634         if (atomic_read(&srq->usecnt))
635                 return -EBUSY;
636
637         pd = srq->pd;
638         srq_type = srq->srq_type;
639         if (srq_type == IB_SRQT_XRC) {
640                 xrcd = srq->ext.xrc.xrcd;
641                 cq = srq->ext.xrc.cq;
642         }
643
644         ret = srq->device->destroy_srq(srq);
645         if (!ret) {
646                 atomic_dec(&pd->usecnt);
647                 if (srq_type == IB_SRQT_XRC) {
648                         atomic_dec(&xrcd->usecnt);
649                         atomic_dec(&cq->usecnt);
650                 }
651         }
652
653         return ret;
654 }
655 EXPORT_SYMBOL(ib_destroy_srq);
656
657 /* Queue pairs */
658
659 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
660 {
661         struct ib_qp *qp = context;
662         unsigned long flags;
663
664         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
665         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
666                 if (event->element.qp->event_handler)
667                         event->element.qp->event_handler(event, event->element.qp->qp_context);
668         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
669 }
670
671 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
672 {
673         mutex_lock(&xrcd->tgt_qp_mutex);
674         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
675         mutex_unlock(&xrcd->tgt_qp_mutex);
676 }
677
678 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
679                                   void (*event_handler)(struct ib_event *, void *),
680                                   void *qp_context)
681 {
682         struct ib_qp *qp;
683         unsigned long flags;
684
685         qp = kzalloc(sizeof *qp, GFP_KERNEL);
686         if (!qp)
687                 return ERR_PTR(-ENOMEM);
688
689         qp->real_qp = real_qp;
690         atomic_inc(&real_qp->usecnt);
691         qp->device = real_qp->device;
692         qp->event_handler = event_handler;
693         qp->qp_context = qp_context;
694         qp->qp_num = real_qp->qp_num;
695         qp->qp_type = real_qp->qp_type;
696
697         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
698         list_add(&qp->open_list, &real_qp->open_list);
699         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
700
701         return qp;
702 }
703
704 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
705                          struct ib_qp_open_attr *qp_open_attr)
706 {
707         struct ib_qp *qp, *real_qp;
708
709         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
710                 return ERR_PTR(-EINVAL);
711
712         qp = ERR_PTR(-EINVAL);
713         mutex_lock(&xrcd->tgt_qp_mutex);
714         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
715                 if (real_qp->qp_num == qp_open_attr->qp_num) {
716                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
717                                           qp_open_attr->qp_context);
718                         break;
719                 }
720         }
721         mutex_unlock(&xrcd->tgt_qp_mutex);
722         return qp;
723 }
724 EXPORT_SYMBOL(ib_open_qp);
725
726 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
727                 struct ib_qp_init_attr *qp_init_attr)
728 {
729         struct ib_qp *real_qp = qp;
730
731         qp->event_handler = __ib_shared_qp_event_handler;
732         qp->qp_context = qp;
733         qp->pd = NULL;
734         qp->send_cq = qp->recv_cq = NULL;
735         qp->srq = NULL;
736         qp->xrcd = qp_init_attr->xrcd;
737         atomic_inc(&qp_init_attr->xrcd->usecnt);
738         INIT_LIST_HEAD(&qp->open_list);
739
740         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
741                           qp_init_attr->qp_context);
742         if (!IS_ERR(qp))
743                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
744         else
745                 real_qp->device->destroy_qp(real_qp);
746         return qp;
747 }
748
749 struct ib_qp *ib_create_qp(struct ib_pd *pd,
750                            struct ib_qp_init_attr *qp_init_attr)
751 {
752         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
753         struct ib_qp *qp;
754
755         qp = device->create_qp(pd, qp_init_attr, NULL);
756         if (IS_ERR(qp))
757                 return qp;
758
759         qp->device     = device;
760         qp->real_qp    = qp;
761         qp->uobject    = NULL;
762         qp->qp_type    = qp_init_attr->qp_type;
763
764         atomic_set(&qp->usecnt, 0);
765         qp->mrs_used = 0;
766         spin_lock_init(&qp->mr_lock);
767
768         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
769                 return ib_create_xrc_qp(qp, qp_init_attr);
770
771         qp->event_handler = qp_init_attr->event_handler;
772         qp->qp_context = qp_init_attr->qp_context;
773         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
774                 qp->recv_cq = NULL;
775                 qp->srq = NULL;
776         } else {
777                 qp->recv_cq = qp_init_attr->recv_cq;
778                 atomic_inc(&qp_init_attr->recv_cq->usecnt);
779                 qp->srq = qp_init_attr->srq;
780                 if (qp->srq)
781                         atomic_inc(&qp_init_attr->srq->usecnt);
782         }
783
784         qp->pd      = pd;
785         qp->send_cq = qp_init_attr->send_cq;
786         qp->xrcd    = NULL;
787
788         atomic_inc(&pd->usecnt);
789         atomic_inc(&qp_init_attr->send_cq->usecnt);
790         return qp;
791 }
792 EXPORT_SYMBOL(ib_create_qp);
793
794 static const struct {
795         int                     valid;
796         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
797         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
798 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
799         [IB_QPS_RESET] = {
800                 [IB_QPS_RESET] = { .valid = 1 },
801                 [IB_QPS_INIT]  = {
802                         .valid = 1,
803                         .req_param = {
804                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
805                                                 IB_QP_PORT                      |
806                                                 IB_QP_QKEY),
807                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
808                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
809                                                 IB_QP_PORT                      |
810                                                 IB_QP_ACCESS_FLAGS),
811                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
812                                                 IB_QP_PORT                      |
813                                                 IB_QP_ACCESS_FLAGS),
814                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
815                                                 IB_QP_PORT                      |
816                                                 IB_QP_ACCESS_FLAGS),
817                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
818                                                 IB_QP_PORT                      |
819                                                 IB_QP_ACCESS_FLAGS),
820                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
821                                                 IB_QP_QKEY),
822                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
823                                                 IB_QP_QKEY),
824                         }
825                 },
826         },
827         [IB_QPS_INIT]  = {
828                 [IB_QPS_RESET] = { .valid = 1 },
829                 [IB_QPS_ERR] =   { .valid = 1 },
830                 [IB_QPS_INIT]  = {
831                         .valid = 1,
832                         .opt_param = {
833                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
834                                                 IB_QP_PORT                      |
835                                                 IB_QP_QKEY),
836                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
837                                                 IB_QP_PORT                      |
838                                                 IB_QP_ACCESS_FLAGS),
839                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
840                                                 IB_QP_PORT                      |
841                                                 IB_QP_ACCESS_FLAGS),
842                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
843                                                 IB_QP_PORT                      |
844                                                 IB_QP_ACCESS_FLAGS),
845                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
846                                                 IB_QP_PORT                      |
847                                                 IB_QP_ACCESS_FLAGS),
848                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
849                                                 IB_QP_QKEY),
850                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
851                                                 IB_QP_QKEY),
852                         }
853                 },
854                 [IB_QPS_RTR]   = {
855                         .valid = 1,
856                         .req_param = {
857                                 [IB_QPT_UC]  = (IB_QP_AV                        |
858                                                 IB_QP_PATH_MTU                  |
859                                                 IB_QP_DEST_QPN                  |
860                                                 IB_QP_RQ_PSN),
861                                 [IB_QPT_RC]  = (IB_QP_AV                        |
862                                                 IB_QP_PATH_MTU                  |
863                                                 IB_QP_DEST_QPN                  |
864                                                 IB_QP_RQ_PSN                    |
865                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
866                                                 IB_QP_MIN_RNR_TIMER),
867                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
868                                                 IB_QP_PATH_MTU                  |
869                                                 IB_QP_DEST_QPN                  |
870                                                 IB_QP_RQ_PSN),
871                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
872                                                 IB_QP_PATH_MTU                  |
873                                                 IB_QP_DEST_QPN                  |
874                                                 IB_QP_RQ_PSN                    |
875                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
876                                                 IB_QP_MIN_RNR_TIMER),
877                         },
878                         .opt_param = {
879                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
880                                                  IB_QP_QKEY),
881                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
882                                                  IB_QP_ACCESS_FLAGS             |
883                                                  IB_QP_PKEY_INDEX),
884                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
885                                                  IB_QP_ACCESS_FLAGS             |
886                                                  IB_QP_PKEY_INDEX),
887                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
888                                                  IB_QP_ACCESS_FLAGS             |
889                                                  IB_QP_PKEY_INDEX),
890                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
891                                                  IB_QP_ACCESS_FLAGS             |
892                                                  IB_QP_PKEY_INDEX),
893                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
894                                                  IB_QP_QKEY),
895                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
896                                                  IB_QP_QKEY),
897                          },
898                 },
899         },
900         [IB_QPS_RTR]   = {
901                 [IB_QPS_RESET] = { .valid = 1 },
902                 [IB_QPS_ERR] =   { .valid = 1 },
903                 [IB_QPS_RTS]   = {
904                         .valid = 1,
905                         .req_param = {
906                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
907                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
908                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
909                                                 IB_QP_RETRY_CNT                 |
910                                                 IB_QP_RNR_RETRY                 |
911                                                 IB_QP_SQ_PSN                    |
912                                                 IB_QP_MAX_QP_RD_ATOMIC),
913                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
914                                                 IB_QP_RETRY_CNT                 |
915                                                 IB_QP_RNR_RETRY                 |
916                                                 IB_QP_SQ_PSN                    |
917                                                 IB_QP_MAX_QP_RD_ATOMIC),
918                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
919                                                 IB_QP_SQ_PSN),
920                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
921                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
922                         },
923                         .opt_param = {
924                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
925                                                  IB_QP_QKEY),
926                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
927                                                  IB_QP_ALT_PATH                 |
928                                                  IB_QP_ACCESS_FLAGS             |
929                                                  IB_QP_PATH_MIG_STATE),
930                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
931                                                  IB_QP_ALT_PATH                 |
932                                                  IB_QP_ACCESS_FLAGS             |
933                                                  IB_QP_MIN_RNR_TIMER            |
934                                                  IB_QP_PATH_MIG_STATE),
935                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
936                                                  IB_QP_ALT_PATH                 |
937                                                  IB_QP_ACCESS_FLAGS             |
938                                                  IB_QP_PATH_MIG_STATE),
939                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
940                                                  IB_QP_ALT_PATH                 |
941                                                  IB_QP_ACCESS_FLAGS             |
942                                                  IB_QP_MIN_RNR_TIMER            |
943                                                  IB_QP_PATH_MIG_STATE),
944                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
945                                                  IB_QP_QKEY),
946                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
947                                                  IB_QP_QKEY),
948                          }
949                 }
950         },
951         [IB_QPS_RTS]   = {
952                 [IB_QPS_RESET] = { .valid = 1 },
953                 [IB_QPS_ERR] =   { .valid = 1 },
954                 [IB_QPS_RTS]   = {
955                         .valid = 1,
956                         .opt_param = {
957                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
958                                                 IB_QP_QKEY),
959                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
960                                                 IB_QP_ACCESS_FLAGS              |
961                                                 IB_QP_ALT_PATH                  |
962                                                 IB_QP_PATH_MIG_STATE),
963                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
964                                                 IB_QP_ACCESS_FLAGS              |
965                                                 IB_QP_ALT_PATH                  |
966                                                 IB_QP_PATH_MIG_STATE            |
967                                                 IB_QP_MIN_RNR_TIMER),
968                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
969                                                 IB_QP_ACCESS_FLAGS              |
970                                                 IB_QP_ALT_PATH                  |
971                                                 IB_QP_PATH_MIG_STATE),
972                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
973                                                 IB_QP_ACCESS_FLAGS              |
974                                                 IB_QP_ALT_PATH                  |
975                                                 IB_QP_PATH_MIG_STATE            |
976                                                 IB_QP_MIN_RNR_TIMER),
977                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
978                                                 IB_QP_QKEY),
979                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
980                                                 IB_QP_QKEY),
981                         }
982                 },
983                 [IB_QPS_SQD]   = {
984                         .valid = 1,
985                         .opt_param = {
986                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
987                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
988                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
989                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
990                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
991                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
992                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
993                         }
994                 },
995         },
996         [IB_QPS_SQD]   = {
997                 [IB_QPS_RESET] = { .valid = 1 },
998                 [IB_QPS_ERR] =   { .valid = 1 },
999                 [IB_QPS_RTS]   = {
1000                         .valid = 1,
1001                         .opt_param = {
1002                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1003                                                 IB_QP_QKEY),
1004                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1005                                                 IB_QP_ALT_PATH                  |
1006                                                 IB_QP_ACCESS_FLAGS              |
1007                                                 IB_QP_PATH_MIG_STATE),
1008                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1009                                                 IB_QP_ALT_PATH                  |
1010                                                 IB_QP_ACCESS_FLAGS              |
1011                                                 IB_QP_MIN_RNR_TIMER             |
1012                                                 IB_QP_PATH_MIG_STATE),
1013                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1014                                                 IB_QP_ALT_PATH                  |
1015                                                 IB_QP_ACCESS_FLAGS              |
1016                                                 IB_QP_PATH_MIG_STATE),
1017                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1018                                                 IB_QP_ALT_PATH                  |
1019                                                 IB_QP_ACCESS_FLAGS              |
1020                                                 IB_QP_MIN_RNR_TIMER             |
1021                                                 IB_QP_PATH_MIG_STATE),
1022                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1023                                                 IB_QP_QKEY),
1024                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1025                                                 IB_QP_QKEY),
1026                         }
1027                 },
1028                 [IB_QPS_SQD]   = {
1029                         .valid = 1,
1030                         .opt_param = {
1031                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1032                                                 IB_QP_QKEY),
1033                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1034                                                 IB_QP_ALT_PATH                  |
1035                                                 IB_QP_ACCESS_FLAGS              |
1036                                                 IB_QP_PKEY_INDEX                |
1037                                                 IB_QP_PATH_MIG_STATE),
1038                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1039                                                 IB_QP_AV                        |
1040                                                 IB_QP_TIMEOUT                   |
1041                                                 IB_QP_RETRY_CNT                 |
1042                                                 IB_QP_RNR_RETRY                 |
1043                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1044                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1045                                                 IB_QP_ALT_PATH                  |
1046                                                 IB_QP_ACCESS_FLAGS              |
1047                                                 IB_QP_PKEY_INDEX                |
1048                                                 IB_QP_MIN_RNR_TIMER             |
1049                                                 IB_QP_PATH_MIG_STATE),
1050                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1051                                                 IB_QP_AV                        |
1052                                                 IB_QP_TIMEOUT                   |
1053                                                 IB_QP_RETRY_CNT                 |
1054                                                 IB_QP_RNR_RETRY                 |
1055                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1056                                                 IB_QP_ALT_PATH                  |
1057                                                 IB_QP_ACCESS_FLAGS              |
1058                                                 IB_QP_PKEY_INDEX                |
1059                                                 IB_QP_PATH_MIG_STATE),
1060                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1061                                                 IB_QP_AV                        |
1062                                                 IB_QP_TIMEOUT                   |
1063                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1064                                                 IB_QP_ALT_PATH                  |
1065                                                 IB_QP_ACCESS_FLAGS              |
1066                                                 IB_QP_PKEY_INDEX                |
1067                                                 IB_QP_MIN_RNR_TIMER             |
1068                                                 IB_QP_PATH_MIG_STATE),
1069                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1070                                                 IB_QP_QKEY),
1071                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1072                                                 IB_QP_QKEY),
1073                         }
1074                 }
1075         },
1076         [IB_QPS_SQE]   = {
1077                 [IB_QPS_RESET] = { .valid = 1 },
1078                 [IB_QPS_ERR] =   { .valid = 1 },
1079                 [IB_QPS_RTS]   = {
1080                         .valid = 1,
1081                         .opt_param = {
1082                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1083                                                 IB_QP_QKEY),
1084                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1085                                                 IB_QP_ACCESS_FLAGS),
1086                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1087                                                 IB_QP_QKEY),
1088                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1089                                                 IB_QP_QKEY),
1090                         }
1091                 }
1092         },
1093         [IB_QPS_ERR] = {
1094                 [IB_QPS_RESET] = { .valid = 1 },
1095                 [IB_QPS_ERR] =   { .valid = 1 }
1096         }
1097 };
1098
1099 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1100                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1101                        enum rdma_link_layer ll)
1102 {
1103         enum ib_qp_attr_mask req_param, opt_param;
1104
1105         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1106             next_state < 0 || next_state > IB_QPS_ERR)
1107                 return 0;
1108
1109         if (mask & IB_QP_CUR_STATE  &&
1110             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1111             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1112                 return 0;
1113
1114         if (!qp_state_table[cur_state][next_state].valid)
1115                 return 0;
1116
1117         req_param = qp_state_table[cur_state][next_state].req_param[type];
1118         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1119
1120         if ((mask & req_param) != req_param)
1121                 return 0;
1122
1123         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1124                 return 0;
1125
1126         return 1;
1127 }
1128 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1129
1130 int ib_resolve_eth_dmac(struct ib_qp *qp,
1131                         struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1132 {
1133         int           ret = 0;
1134
1135         if (*qp_attr_mask & IB_QP_AV) {
1136                 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1137                     qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1138                         return -EINVAL;
1139
1140                 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1141                         return 0;
1142
1143                 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1144                         rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1145                                         qp_attr->ah_attr.dmac);
1146                 } else {
1147                         union ib_gid            sgid;
1148                         struct ib_gid_attr      sgid_attr;
1149                         int                     ifindex;
1150                         int                     hop_limit;
1151
1152                         ret = ib_query_gid(qp->device,
1153                                            qp_attr->ah_attr.port_num,
1154                                            qp_attr->ah_attr.grh.sgid_index,
1155                                            &sgid, &sgid_attr);
1156
1157                         if (ret || !sgid_attr.ndev) {
1158                                 if (!ret)
1159                                         ret = -ENXIO;
1160                                 goto out;
1161                         }
1162
1163                         ifindex = sgid_attr.ndev->ifindex;
1164
1165                         ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1166                                                            &qp_attr->ah_attr.grh.dgid,
1167                                                            qp_attr->ah_attr.dmac,
1168                                                            NULL, &ifindex, &hop_limit);
1169
1170                         dev_put(sgid_attr.ndev);
1171
1172                         qp_attr->ah_attr.grh.hop_limit = hop_limit;
1173                 }
1174         }
1175 out:
1176         return ret;
1177 }
1178 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1179
1180
1181 int ib_modify_qp(struct ib_qp *qp,
1182                  struct ib_qp_attr *qp_attr,
1183                  int qp_attr_mask)
1184 {
1185         int ret;
1186
1187         ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1188         if (ret)
1189                 return ret;
1190
1191         return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1192 }
1193 EXPORT_SYMBOL(ib_modify_qp);
1194
1195 int ib_query_qp(struct ib_qp *qp,
1196                 struct ib_qp_attr *qp_attr,
1197                 int qp_attr_mask,
1198                 struct ib_qp_init_attr *qp_init_attr)
1199 {
1200         return qp->device->query_qp ?
1201                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1202                 -ENOSYS;
1203 }
1204 EXPORT_SYMBOL(ib_query_qp);
1205
1206 int ib_close_qp(struct ib_qp *qp)
1207 {
1208         struct ib_qp *real_qp;
1209         unsigned long flags;
1210
1211         real_qp = qp->real_qp;
1212         if (real_qp == qp)
1213                 return -EINVAL;
1214
1215         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1216         list_del(&qp->open_list);
1217         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1218
1219         atomic_dec(&real_qp->usecnt);
1220         kfree(qp);
1221
1222         return 0;
1223 }
1224 EXPORT_SYMBOL(ib_close_qp);
1225
1226 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1227 {
1228         struct ib_xrcd *xrcd;
1229         struct ib_qp *real_qp;
1230         int ret;
1231
1232         real_qp = qp->real_qp;
1233         xrcd = real_qp->xrcd;
1234
1235         mutex_lock(&xrcd->tgt_qp_mutex);
1236         ib_close_qp(qp);
1237         if (atomic_read(&real_qp->usecnt) == 0)
1238                 list_del(&real_qp->xrcd_list);
1239         else
1240                 real_qp = NULL;
1241         mutex_unlock(&xrcd->tgt_qp_mutex);
1242
1243         if (real_qp) {
1244                 ret = ib_destroy_qp(real_qp);
1245                 if (!ret)
1246                         atomic_dec(&xrcd->usecnt);
1247                 else
1248                         __ib_insert_xrcd_qp(xrcd, real_qp);
1249         }
1250
1251         return 0;
1252 }
1253
1254 int ib_destroy_qp(struct ib_qp *qp)
1255 {
1256         struct ib_pd *pd;
1257         struct ib_cq *scq, *rcq;
1258         struct ib_srq *srq;
1259         int ret;
1260
1261         WARN_ON_ONCE(qp->mrs_used > 0);
1262
1263         if (atomic_read(&qp->usecnt))
1264                 return -EBUSY;
1265
1266         if (qp->real_qp != qp)
1267                 return __ib_destroy_shared_qp(qp);
1268
1269         pd   = qp->pd;
1270         scq  = qp->send_cq;
1271         rcq  = qp->recv_cq;
1272         srq  = qp->srq;
1273
1274         ret = qp->device->destroy_qp(qp);
1275         if (!ret) {
1276                 if (pd)
1277                         atomic_dec(&pd->usecnt);
1278                 if (scq)
1279                         atomic_dec(&scq->usecnt);
1280                 if (rcq)
1281                         atomic_dec(&rcq->usecnt);
1282                 if (srq)
1283                         atomic_dec(&srq->usecnt);
1284         }
1285
1286         return ret;
1287 }
1288 EXPORT_SYMBOL(ib_destroy_qp);
1289
1290 /* Completion queues */
1291
1292 struct ib_cq *ib_create_cq(struct ib_device *device,
1293                            ib_comp_handler comp_handler,
1294                            void (*event_handler)(struct ib_event *, void *),
1295                            void *cq_context,
1296                            const struct ib_cq_init_attr *cq_attr)
1297 {
1298         struct ib_cq *cq;
1299
1300         cq = device->create_cq(device, cq_attr, NULL, NULL);
1301
1302         if (!IS_ERR(cq)) {
1303                 cq->device        = device;
1304                 cq->uobject       = NULL;
1305                 cq->comp_handler  = comp_handler;
1306                 cq->event_handler = event_handler;
1307                 cq->cq_context    = cq_context;
1308                 atomic_set(&cq->usecnt, 0);
1309         }
1310
1311         return cq;
1312 }
1313 EXPORT_SYMBOL(ib_create_cq);
1314
1315 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1316 {
1317         return cq->device->modify_cq ?
1318                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1319 }
1320 EXPORT_SYMBOL(ib_modify_cq);
1321
1322 int ib_destroy_cq(struct ib_cq *cq)
1323 {
1324         if (atomic_read(&cq->usecnt))
1325                 return -EBUSY;
1326
1327         return cq->device->destroy_cq(cq);
1328 }
1329 EXPORT_SYMBOL(ib_destroy_cq);
1330
1331 int ib_resize_cq(struct ib_cq *cq, int cqe)
1332 {
1333         return cq->device->resize_cq ?
1334                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1335 }
1336 EXPORT_SYMBOL(ib_resize_cq);
1337
1338 /* Memory regions */
1339
1340 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1341 {
1342         struct ib_mr *mr;
1343         int err;
1344
1345         err = ib_check_mr_access(mr_access_flags);
1346         if (err)
1347                 return ERR_PTR(err);
1348
1349         mr = pd->device->get_dma_mr(pd, mr_access_flags);
1350
1351         if (!IS_ERR(mr)) {
1352                 mr->device  = pd->device;
1353                 mr->pd      = pd;
1354                 mr->uobject = NULL;
1355                 atomic_inc(&pd->usecnt);
1356         }
1357
1358         return mr;
1359 }
1360 EXPORT_SYMBOL(ib_get_dma_mr);
1361
1362 int ib_dereg_mr(struct ib_mr *mr)
1363 {
1364         struct ib_pd *pd = mr->pd;
1365         int ret;
1366
1367         ret = mr->device->dereg_mr(mr);
1368         if (!ret)
1369                 atomic_dec(&pd->usecnt);
1370
1371         return ret;
1372 }
1373 EXPORT_SYMBOL(ib_dereg_mr);
1374
1375 /**
1376  * ib_alloc_mr() - Allocates a memory region
1377  * @pd:            protection domain associated with the region
1378  * @mr_type:       memory region type
1379  * @max_num_sg:    maximum sg entries available for registration.
1380  *
1381  * Notes:
1382  * Memory registeration page/sg lists must not exceed max_num_sg.
1383  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1384  * max_num_sg * used_page_size.
1385  *
1386  */
1387 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1388                           enum ib_mr_type mr_type,
1389                           u32 max_num_sg)
1390 {
1391         struct ib_mr *mr;
1392
1393         if (!pd->device->alloc_mr)
1394                 return ERR_PTR(-ENOSYS);
1395
1396         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1397         if (!IS_ERR(mr)) {
1398                 mr->device  = pd->device;
1399                 mr->pd      = pd;
1400                 mr->uobject = NULL;
1401                 atomic_inc(&pd->usecnt);
1402         }
1403
1404         return mr;
1405 }
1406 EXPORT_SYMBOL(ib_alloc_mr);
1407
1408 /* "Fast" memory regions */
1409
1410 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1411                             int mr_access_flags,
1412                             struct ib_fmr_attr *fmr_attr)
1413 {
1414         struct ib_fmr *fmr;
1415
1416         if (!pd->device->alloc_fmr)
1417                 return ERR_PTR(-ENOSYS);
1418
1419         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1420         if (!IS_ERR(fmr)) {
1421                 fmr->device = pd->device;
1422                 fmr->pd     = pd;
1423                 atomic_inc(&pd->usecnt);
1424         }
1425
1426         return fmr;
1427 }
1428 EXPORT_SYMBOL(ib_alloc_fmr);
1429
1430 int ib_unmap_fmr(struct list_head *fmr_list)
1431 {
1432         struct ib_fmr *fmr;
1433
1434         if (list_empty(fmr_list))
1435                 return 0;
1436
1437         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1438         return fmr->device->unmap_fmr(fmr_list);
1439 }
1440 EXPORT_SYMBOL(ib_unmap_fmr);
1441
1442 int ib_dealloc_fmr(struct ib_fmr *fmr)
1443 {
1444         struct ib_pd *pd;
1445         int ret;
1446
1447         pd = fmr->pd;
1448         ret = fmr->device->dealloc_fmr(fmr);
1449         if (!ret)
1450                 atomic_dec(&pd->usecnt);
1451
1452         return ret;
1453 }
1454 EXPORT_SYMBOL(ib_dealloc_fmr);
1455
1456 /* Multicast groups */
1457
1458 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1459 {
1460         int ret;
1461
1462         if (!qp->device->attach_mcast)
1463                 return -ENOSYS;
1464         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1465                 return -EINVAL;
1466
1467         ret = qp->device->attach_mcast(qp, gid, lid);
1468         if (!ret)
1469                 atomic_inc(&qp->usecnt);
1470         return ret;
1471 }
1472 EXPORT_SYMBOL(ib_attach_mcast);
1473
1474 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1475 {
1476         int ret;
1477
1478         if (!qp->device->detach_mcast)
1479                 return -ENOSYS;
1480         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1481                 return -EINVAL;
1482
1483         ret = qp->device->detach_mcast(qp, gid, lid);
1484         if (!ret)
1485                 atomic_dec(&qp->usecnt);
1486         return ret;
1487 }
1488 EXPORT_SYMBOL(ib_detach_mcast);
1489
1490 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1491 {
1492         struct ib_xrcd *xrcd;
1493
1494         if (!device->alloc_xrcd)
1495                 return ERR_PTR(-ENOSYS);
1496
1497         xrcd = device->alloc_xrcd(device, NULL, NULL);
1498         if (!IS_ERR(xrcd)) {
1499                 xrcd->device = device;
1500                 xrcd->inode = NULL;
1501                 atomic_set(&xrcd->usecnt, 0);
1502                 mutex_init(&xrcd->tgt_qp_mutex);
1503                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1504         }
1505
1506         return xrcd;
1507 }
1508 EXPORT_SYMBOL(ib_alloc_xrcd);
1509
1510 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1511 {
1512         struct ib_qp *qp;
1513         int ret;
1514
1515         if (atomic_read(&xrcd->usecnt))
1516                 return -EBUSY;
1517
1518         while (!list_empty(&xrcd->tgt_qp_list)) {
1519                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1520                 ret = ib_destroy_qp(qp);
1521                 if (ret)
1522                         return ret;
1523         }
1524
1525         return xrcd->device->dealloc_xrcd(xrcd);
1526 }
1527 EXPORT_SYMBOL(ib_dealloc_xrcd);
1528
1529 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1530                                struct ib_flow_attr *flow_attr,
1531                                int domain)
1532 {
1533         struct ib_flow *flow_id;
1534         if (!qp->device->create_flow)
1535                 return ERR_PTR(-ENOSYS);
1536
1537         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1538         if (!IS_ERR(flow_id))
1539                 atomic_inc(&qp->usecnt);
1540         return flow_id;
1541 }
1542 EXPORT_SYMBOL(ib_create_flow);
1543
1544 int ib_destroy_flow(struct ib_flow *flow_id)
1545 {
1546         int err;
1547         struct ib_qp *qp = flow_id->qp;
1548
1549         err = qp->device->destroy_flow(flow_id);
1550         if (!err)
1551                 atomic_dec(&qp->usecnt);
1552         return err;
1553 }
1554 EXPORT_SYMBOL(ib_destroy_flow);
1555
1556 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1557                        struct ib_mr_status *mr_status)
1558 {
1559         return mr->device->check_mr_status ?
1560                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1561 }
1562 EXPORT_SYMBOL(ib_check_mr_status);
1563
1564 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1565                          int state)
1566 {
1567         if (!device->set_vf_link_state)
1568                 return -ENOSYS;
1569
1570         return device->set_vf_link_state(device, vf, port, state);
1571 }
1572 EXPORT_SYMBOL(ib_set_vf_link_state);
1573
1574 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1575                      struct ifla_vf_info *info)
1576 {
1577         if (!device->get_vf_config)
1578                 return -ENOSYS;
1579
1580         return device->get_vf_config(device, vf, port, info);
1581 }
1582 EXPORT_SYMBOL(ib_get_vf_config);
1583
1584 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1585                     struct ifla_vf_stats *stats)
1586 {
1587         if (!device->get_vf_stats)
1588                 return -ENOSYS;
1589
1590         return device->get_vf_stats(device, vf, port, stats);
1591 }
1592 EXPORT_SYMBOL(ib_get_vf_stats);
1593
1594 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1595                    int type)
1596 {
1597         if (!device->set_vf_guid)
1598                 return -ENOSYS;
1599
1600         return device->set_vf_guid(device, vf, port, guid, type);
1601 }
1602 EXPORT_SYMBOL(ib_set_vf_guid);
1603
1604 /**
1605  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1606  *     and set it the memory region.
1607  * @mr:            memory region
1608  * @sg:            dma mapped scatterlist
1609  * @sg_nents:      number of entries in sg
1610  * @sg_offset:     offset in bytes into sg
1611  * @page_size:     page vector desired page size
1612  *
1613  * Constraints:
1614  * - The first sg element is allowed to have an offset.
1615  * - Each sg element must be aligned to page_size (or physically
1616  *   contiguous to the previous element). In case an sg element has a
1617  *   non contiguous offset, the mapping prefix will not include it.
1618  * - The last sg element is allowed to have length less than page_size.
1619  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1620  *   then only max_num_sg entries will be mapped.
1621  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1622  *   constraints holds and the page_size argument is ignored.
1623  *
1624  * Returns the number of sg elements that were mapped to the memory region.
1625  *
1626  * After this completes successfully, the  memory region
1627  * is ready for registration.
1628  */
1629 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1630                 unsigned int sg_offset, unsigned int page_size)
1631 {
1632         if (unlikely(!mr->device->map_mr_sg))
1633                 return -ENOSYS;
1634
1635         mr->page_size = page_size;
1636
1637         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1638 }
1639 EXPORT_SYMBOL(ib_map_mr_sg);
1640
1641 /**
1642  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1643  *     to a page vector
1644  * @mr:            memory region
1645  * @sgl:           dma mapped scatterlist
1646  * @sg_nents:      number of entries in sg
1647  * @sg_offset:     offset in bytes into sg
1648  * @set_page:      driver page assignment function pointer
1649  *
1650  * Core service helper for drivers to convert the largest
1651  * prefix of given sg list to a page vector. The sg list
1652  * prefix converted is the prefix that meet the requirements
1653  * of ib_map_mr_sg.
1654  *
1655  * Returns the number of sg elements that were assigned to
1656  * a page vector.
1657  */
1658 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1659                 unsigned int sg_offset, int (*set_page)(struct ib_mr *, u64))
1660 {
1661         struct scatterlist *sg;
1662         u64 last_end_dma_addr = 0;
1663         unsigned int last_page_off = 0;
1664         u64 page_mask = ~((u64)mr->page_size - 1);
1665         int i, ret;
1666
1667         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1668         mr->length = 0;
1669
1670         for_each_sg(sgl, sg, sg_nents, i) {
1671                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1672                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1673                 u64 end_dma_addr = dma_addr + dma_len;
1674                 u64 page_addr = dma_addr & page_mask;
1675
1676                 /*
1677                  * For the second and later elements, check whether either the
1678                  * end of element i-1 or the start of element i is not aligned
1679                  * on a page boundary.
1680                  */
1681                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1682                         /* Stop mapping if there is a gap. */
1683                         if (last_end_dma_addr != dma_addr)
1684                                 break;
1685
1686                         /*
1687                          * Coalesce this element with the last. If it is small
1688                          * enough just update mr->length. Otherwise start
1689                          * mapping from the next page.
1690                          */
1691                         goto next_page;
1692                 }
1693
1694                 do {
1695                         ret = set_page(mr, page_addr);
1696                         if (unlikely(ret < 0))
1697                                 return i ? : ret;
1698 next_page:
1699                         page_addr += mr->page_size;
1700                 } while (page_addr < end_dma_addr);
1701
1702                 mr->length += dma_len;
1703                 last_end_dma_addr = end_dma_addr;
1704                 last_page_off = end_dma_addr & ~page_mask;
1705
1706                 sg_offset = 0;
1707         }
1708
1709         return i;
1710 }
1711 EXPORT_SYMBOL(ib_sg_to_pages);
1712
1713 struct ib_drain_cqe {
1714         struct ib_cqe cqe;
1715         struct completion done;
1716 };
1717
1718 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1719 {
1720         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1721                                                 cqe);
1722
1723         complete(&cqe->done);
1724 }
1725
1726 /*
1727  * Post a WR and block until its completion is reaped for the SQ.
1728  */
1729 static void __ib_drain_sq(struct ib_qp *qp)
1730 {
1731         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1732         struct ib_drain_cqe sdrain;
1733         struct ib_send_wr swr = {}, *bad_swr;
1734         int ret;
1735
1736         if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1737                 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1738                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1739                 return;
1740         }
1741
1742         swr.wr_cqe = &sdrain.cqe;
1743         sdrain.cqe.done = ib_drain_qp_done;
1744         init_completion(&sdrain.done);
1745
1746         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1747         if (ret) {
1748                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1749                 return;
1750         }
1751
1752         ret = ib_post_send(qp, &swr, &bad_swr);
1753         if (ret) {
1754                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1755                 return;
1756         }
1757
1758         wait_for_completion(&sdrain.done);
1759 }
1760
1761 /*
1762  * Post a WR and block until its completion is reaped for the RQ.
1763  */
1764 static void __ib_drain_rq(struct ib_qp *qp)
1765 {
1766         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1767         struct ib_drain_cqe rdrain;
1768         struct ib_recv_wr rwr = {}, *bad_rwr;
1769         int ret;
1770
1771         if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1772                 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1773                           "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1774                 return;
1775         }
1776
1777         rwr.wr_cqe = &rdrain.cqe;
1778         rdrain.cqe.done = ib_drain_qp_done;
1779         init_completion(&rdrain.done);
1780
1781         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1782         if (ret) {
1783                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1784                 return;
1785         }
1786
1787         ret = ib_post_recv(qp, &rwr, &bad_rwr);
1788         if (ret) {
1789                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1790                 return;
1791         }
1792
1793         wait_for_completion(&rdrain.done);
1794 }
1795
1796 /**
1797  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1798  *                 application.
1799  * @qp:            queue pair to drain
1800  *
1801  * If the device has a provider-specific drain function, then
1802  * call that.  Otherwise call the generic drain function
1803  * __ib_drain_sq().
1804  *
1805  * The caller must:
1806  *
1807  * ensure there is room in the CQ and SQ for the drain work request and
1808  * completion.
1809  *
1810  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1811  * IB_POLL_DIRECT.
1812  *
1813  * ensure that there are no other contexts that are posting WRs concurrently.
1814  * Otherwise the drain is not guaranteed.
1815  */
1816 void ib_drain_sq(struct ib_qp *qp)
1817 {
1818         if (qp->device->drain_sq)
1819                 qp->device->drain_sq(qp);
1820         else
1821                 __ib_drain_sq(qp);
1822 }
1823 EXPORT_SYMBOL(ib_drain_sq);
1824
1825 /**
1826  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1827  *                 application.
1828  * @qp:            queue pair to drain
1829  *
1830  * If the device has a provider-specific drain function, then
1831  * call that.  Otherwise call the generic drain function
1832  * __ib_drain_rq().
1833  *
1834  * The caller must:
1835  *
1836  * ensure there is room in the CQ and RQ for the drain work request and
1837  * completion.
1838  *
1839  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1840  * IB_POLL_DIRECT.
1841  *
1842  * ensure that there are no other contexts that are posting WRs concurrently.
1843  * Otherwise the drain is not guaranteed.
1844  */
1845 void ib_drain_rq(struct ib_qp *qp)
1846 {
1847         if (qp->device->drain_rq)
1848                 qp->device->drain_rq(qp);
1849         else
1850                 __ib_drain_rq(qp);
1851 }
1852 EXPORT_SYMBOL(ib_drain_rq);
1853
1854 /**
1855  * ib_drain_qp() - Block until all CQEs have been consumed by the
1856  *                 application on both the RQ and SQ.
1857  * @qp:            queue pair to drain
1858  *
1859  * The caller must:
1860  *
1861  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
1862  * and completions.
1863  *
1864  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
1865  * IB_POLL_DIRECT.
1866  *
1867  * ensure that there are no other contexts that are posting WRs concurrently.
1868  * Otherwise the drain is not guaranteed.
1869  */
1870 void ib_drain_qp(struct ib_qp *qp)
1871 {
1872         ib_drain_sq(qp);
1873         if (!qp->srq)
1874                 ib_drain_rq(qp);
1875 }
1876 EXPORT_SYMBOL(ib_drain_qp);