treewide: Use fallthrough pseudo-keyword
[linux-block.git] / drivers / iio / magnetometer / ak8974.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Asahi Kasei EMD Corporation AK8974
4  * and Aichi Steel AMI305 magnetometer chips.
5  * Based on a patch from Samu Onkalo and the AK8975 IIO driver.
6  *
7  * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
8  * Copyright (c) 2010 NVIDIA Corporation.
9  * Copyright (C) 2016 Linaro Ltd.
10  *
11  * Author: Samu Onkalo <samu.p.onkalo@nokia.com>
12  * Author: Linus Walleij <linus.walleij@linaro.org>
13  */
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h> /* For irq_get_irq_data() */
19 #include <linux/completion.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/bitops.h>
24 #include <linux/random.h>
25 #include <linux/regmap.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/pm_runtime.h>
28
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/trigger.h>
33 #include <linux/iio/trigger_consumer.h>
34 #include <linux/iio/triggered_buffer.h>
35
36 /*
37  * 16-bit registers are little-endian. LSB is at the address defined below
38  * and MSB is at the next higher address.
39  */
40
41 /* These registers are common for AK8974 and AMI30x */
42 #define AK8974_SELFTEST         0x0C
43 #define AK8974_SELFTEST_IDLE    0x55
44 #define AK8974_SELFTEST_OK      0xAA
45
46 #define AK8974_INFO             0x0D
47
48 #define AK8974_WHOAMI           0x0F
49 #define AK8974_WHOAMI_VALUE_AMI306 0x46
50 #define AK8974_WHOAMI_VALUE_AMI305 0x47
51 #define AK8974_WHOAMI_VALUE_AK8974 0x48
52 #define AK8974_WHOAMI_VALUE_HSCDTD008A 0x49
53
54 #define AK8974_DATA_X           0x10
55 #define AK8974_DATA_Y           0x12
56 #define AK8974_DATA_Z           0x14
57 #define AK8974_INT_SRC          0x16
58 #define AK8974_STATUS           0x18
59 #define AK8974_INT_CLEAR        0x1A
60 #define AK8974_CTRL1            0x1B
61 #define AK8974_CTRL2            0x1C
62 #define AK8974_CTRL3            0x1D
63 #define AK8974_INT_CTRL         0x1E
64 #define AK8974_INT_THRES        0x26  /* Absolute any axis value threshold */
65 #define AK8974_PRESET           0x30
66
67 /* AK8974-specific offsets */
68 #define AK8974_OFFSET_X         0x20
69 #define AK8974_OFFSET_Y         0x22
70 #define AK8974_OFFSET_Z         0x24
71 /* AMI305-specific offsets */
72 #define AMI305_OFFSET_X         0x6C
73 #define AMI305_OFFSET_Y         0x72
74 #define AMI305_OFFSET_Z         0x78
75
76 /* Different temperature registers */
77 #define AK8974_TEMP             0x31
78 #define AMI305_TEMP             0x60
79
80 /* AMI306-specific control register */
81 #define AMI306_CTRL4            0x5C
82
83 /* AMI306 factory calibration data */
84
85 /* fine axis sensitivity */
86 #define AMI306_FINEOUTPUT_X     0x90
87 #define AMI306_FINEOUTPUT_Y     0x92
88 #define AMI306_FINEOUTPUT_Z     0x94
89
90 /* axis sensitivity */
91 #define AMI306_SENS_X           0x96
92 #define AMI306_SENS_Y           0x98
93 #define AMI306_SENS_Z           0x9A
94
95 /* axis cross-interference */
96 #define AMI306_GAIN_PARA_XZ     0x9C
97 #define AMI306_GAIN_PARA_XY     0x9D
98 #define AMI306_GAIN_PARA_YZ     0x9E
99 #define AMI306_GAIN_PARA_YX     0x9F
100 #define AMI306_GAIN_PARA_ZY     0xA0
101 #define AMI306_GAIN_PARA_ZX     0xA1
102
103 /* offset at ZERO magnetic field */
104 #define AMI306_OFFZERO_X        0xF8
105 #define AMI306_OFFZERO_Y        0xFA
106 #define AMI306_OFFZERO_Z        0xFC
107
108
109 #define AK8974_INT_X_HIGH       BIT(7) /* Axis over +threshold  */
110 #define AK8974_INT_Y_HIGH       BIT(6)
111 #define AK8974_INT_Z_HIGH       BIT(5)
112 #define AK8974_INT_X_LOW        BIT(4) /* Axis below -threshold */
113 #define AK8974_INT_Y_LOW        BIT(3)
114 #define AK8974_INT_Z_LOW        BIT(2)
115 #define AK8974_INT_RANGE        BIT(1) /* Range overflow (any axis) */
116
117 #define AK8974_STATUS_DRDY      BIT(6) /* Data ready */
118 #define AK8974_STATUS_OVERRUN   BIT(5) /* Data overrun */
119 #define AK8974_STATUS_INT       BIT(4) /* Interrupt occurred */
120
121 #define AK8974_CTRL1_POWER      BIT(7) /* 0 = standby; 1 = active */
122 #define AK8974_CTRL1_RATE       BIT(4) /* 0 = 10 Hz; 1 = 20 Hz   */
123 #define AK8974_CTRL1_FORCE_EN   BIT(1) /* 0 = normal; 1 = force  */
124 #define AK8974_CTRL1_MODE2      BIT(0) /* 0 */
125
126 #define AK8974_CTRL2_INT_EN     BIT(4)  /* 1 = enable interrupts              */
127 #define AK8974_CTRL2_DRDY_EN    BIT(3)  /* 1 = enable data ready signal */
128 #define AK8974_CTRL2_DRDY_POL   BIT(2)  /* 1 = data ready active high   */
129 #define AK8974_CTRL2_RESDEF     (AK8974_CTRL2_DRDY_POL)
130
131 #define AK8974_CTRL3_RESET      BIT(7) /* Software reset                  */
132 #define AK8974_CTRL3_FORCE      BIT(6) /* Start forced measurement */
133 #define AK8974_CTRL3_SELFTEST   BIT(4) /* Set selftest register   */
134 #define AK8974_CTRL3_RESDEF     0x00
135
136 #define AK8974_INT_CTRL_XEN     BIT(7) /* Enable interrupt for this axis */
137 #define AK8974_INT_CTRL_YEN     BIT(6)
138 #define AK8974_INT_CTRL_ZEN     BIT(5)
139 #define AK8974_INT_CTRL_XYZEN   (BIT(7)|BIT(6)|BIT(5))
140 #define AK8974_INT_CTRL_POL     BIT(3) /* 0 = active low; 1 = active high */
141 #define AK8974_INT_CTRL_PULSE   BIT(1) /* 0 = latched; 1 = pulse (50 usec) */
142 #define AK8974_INT_CTRL_RESDEF  (AK8974_INT_CTRL_XYZEN | AK8974_INT_CTRL_POL)
143
144 /* HSCDTD008A-specific control register */
145 #define HSCDTD008A_CTRL4        0x1E
146 #define HSCDTD008A_CTRL4_MMD    BIT(7)  /* must be set to 1 */
147 #define HSCDTD008A_CTRL4_RANGE  BIT(4)  /* 0 = 14-bit output; 1 = 15-bit output */
148 #define HSCDTD008A_CTRL4_RESDEF (HSCDTD008A_CTRL4_MMD | HSCDTD008A_CTRL4_RANGE)
149
150 /* The AMI305 has elaborate FW version and serial number registers */
151 #define AMI305_VER              0xE8
152 #define AMI305_SN               0xEA
153
154 #define AK8974_MAX_RANGE        2048
155
156 #define AK8974_POWERON_DELAY    50
157 #define AK8974_ACTIVATE_DELAY   1
158 #define AK8974_SELFTEST_DELAY   1
159 /*
160  * Set the autosuspend to two orders of magnitude larger than the poweron
161  * delay to make sane reasonable power tradeoff savings (5 seconds in
162  * this case).
163  */
164 #define AK8974_AUTOSUSPEND_DELAY 5000
165
166 #define AK8974_MEASTIME         3
167
168 #define AK8974_PWR_ON           1
169 #define AK8974_PWR_OFF          0
170
171 /**
172  * struct ak8974 - state container for the AK8974 driver
173  * @i2c: parent I2C client
174  * @orientation: mounting matrix, flipped axis etc
175  * @map: regmap to access the AK8974 registers over I2C
176  * @regs: the avdd and dvdd power regulators
177  * @name: the name of the part
178  * @variant: the whoami ID value (for selecting code paths)
179  * @lock: locks the magnetometer for exclusive use during a measurement
180  * @drdy_irq: uses the DRDY IRQ line
181  * @drdy_complete: completion for DRDY
182  * @drdy_active_low: the DRDY IRQ is active low
183  * @scan: timestamps
184  */
185 struct ak8974 {
186         struct i2c_client *i2c;
187         struct iio_mount_matrix orientation;
188         struct regmap *map;
189         struct regulator_bulk_data regs[2];
190         const char *name;
191         u8 variant;
192         struct mutex lock;
193         bool drdy_irq;
194         struct completion drdy_complete;
195         bool drdy_active_low;
196         /* Ensure timestamp is naturally aligned */
197         struct {
198                 __le16 channels[3];
199                 s64 ts __aligned(8);
200         } scan;
201 };
202
203 static const char ak8974_reg_avdd[] = "avdd";
204 static const char ak8974_reg_dvdd[] = "dvdd";
205
206 static int ak8974_get_u16_val(struct ak8974 *ak8974, u8 reg, u16 *val)
207 {
208         int ret;
209         __le16 bulk;
210
211         ret = regmap_bulk_read(ak8974->map, reg, &bulk, 2);
212         if (ret)
213                 return ret;
214         *val = le16_to_cpu(bulk);
215
216         return 0;
217 }
218
219 static int ak8974_set_u16_val(struct ak8974 *ak8974, u8 reg, u16 val)
220 {
221         __le16 bulk = cpu_to_le16(val);
222
223         return regmap_bulk_write(ak8974->map, reg, &bulk, 2);
224 }
225
226 static int ak8974_set_power(struct ak8974 *ak8974, bool mode)
227 {
228         int ret;
229         u8 val;
230
231         val = mode ? AK8974_CTRL1_POWER : 0;
232         val |= AK8974_CTRL1_FORCE_EN;
233         ret = regmap_write(ak8974->map, AK8974_CTRL1, val);
234         if (ret < 0)
235                 return ret;
236
237         if (mode)
238                 msleep(AK8974_ACTIVATE_DELAY);
239
240         return 0;
241 }
242
243 static int ak8974_reset(struct ak8974 *ak8974)
244 {
245         int ret;
246
247         /* Power on to get register access. Sets CTRL1 reg to reset state */
248         ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
249         if (ret)
250                 return ret;
251         ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_RESDEF);
252         if (ret)
253                 return ret;
254         ret = regmap_write(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_RESDEF);
255         if (ret)
256                 return ret;
257         if (ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A) {
258                 ret = regmap_write(ak8974->map, AK8974_INT_CTRL,
259                                    AK8974_INT_CTRL_RESDEF);
260                 if (ret)
261                         return ret;
262         } else {
263                 ret = regmap_write(ak8974->map, HSCDTD008A_CTRL4,
264                                    HSCDTD008A_CTRL4_RESDEF);
265                 if (ret)
266                         return ret;
267         }
268
269         /* After reset, power off is default state */
270         return ak8974_set_power(ak8974, AK8974_PWR_OFF);
271 }
272
273 static int ak8974_configure(struct ak8974 *ak8974)
274 {
275         int ret;
276
277         ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_DRDY_EN |
278                            AK8974_CTRL2_INT_EN);
279         if (ret)
280                 return ret;
281         ret = regmap_write(ak8974->map, AK8974_CTRL3, 0);
282         if (ret)
283                 return ret;
284         if (ak8974->variant == AK8974_WHOAMI_VALUE_AMI306) {
285                 /* magic from datasheet: set high-speed measurement mode */
286                 ret = ak8974_set_u16_val(ak8974, AMI306_CTRL4, 0xA07E);
287                 if (ret)
288                         return ret;
289         }
290         if (ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A)
291                 return 0;
292         ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_POL);
293         if (ret)
294                 return ret;
295
296         return regmap_write(ak8974->map, AK8974_PRESET, 0);
297 }
298
299 static int ak8974_trigmeas(struct ak8974 *ak8974)
300 {
301         unsigned int clear;
302         u8 mask;
303         u8 val;
304         int ret;
305
306         /* Clear any previous measurement overflow status */
307         ret = regmap_read(ak8974->map, AK8974_INT_CLEAR, &clear);
308         if (ret)
309                 return ret;
310
311         /* If we have a DRDY IRQ line, use it */
312         if (ak8974->drdy_irq) {
313                 mask = AK8974_CTRL2_INT_EN |
314                         AK8974_CTRL2_DRDY_EN |
315                         AK8974_CTRL2_DRDY_POL;
316                 val = AK8974_CTRL2_DRDY_EN;
317
318                 if (!ak8974->drdy_active_low)
319                         val |= AK8974_CTRL2_DRDY_POL;
320
321                 init_completion(&ak8974->drdy_complete);
322                 ret = regmap_update_bits(ak8974->map, AK8974_CTRL2,
323                                          mask, val);
324                 if (ret)
325                         return ret;
326         }
327
328         /* Force a measurement */
329         return regmap_update_bits(ak8974->map,
330                                   AK8974_CTRL3,
331                                   AK8974_CTRL3_FORCE,
332                                   AK8974_CTRL3_FORCE);
333 }
334
335 static int ak8974_await_drdy(struct ak8974 *ak8974)
336 {
337         int timeout = 2;
338         unsigned int val;
339         int ret;
340
341         if (ak8974->drdy_irq) {
342                 ret = wait_for_completion_timeout(&ak8974->drdy_complete,
343                                         1 + msecs_to_jiffies(1000));
344                 if (!ret) {
345                         dev_err(&ak8974->i2c->dev,
346                                 "timeout waiting for DRDY IRQ\n");
347                         return -ETIMEDOUT;
348                 }
349                 return 0;
350         }
351
352         /* Default delay-based poll loop */
353         do {
354                 msleep(AK8974_MEASTIME);
355                 ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
356                 if (ret < 0)
357                         return ret;
358                 if (val & AK8974_STATUS_DRDY)
359                         return 0;
360         } while (--timeout);
361
362         dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY\n");
363         return -ETIMEDOUT;
364 }
365
366 static int ak8974_getresult(struct ak8974 *ak8974, __le16 *result)
367 {
368         unsigned int src;
369         int ret;
370
371         ret = ak8974_await_drdy(ak8974);
372         if (ret)
373                 return ret;
374         ret = regmap_read(ak8974->map, AK8974_INT_SRC, &src);
375         if (ret < 0)
376                 return ret;
377
378         /* Out of range overflow! Strong magnet close? */
379         if (src & AK8974_INT_RANGE) {
380                 dev_err(&ak8974->i2c->dev,
381                         "range overflow in sensor\n");
382                 return -ERANGE;
383         }
384
385         ret = regmap_bulk_read(ak8974->map, AK8974_DATA_X, result, 6);
386         if (ret)
387                 return ret;
388
389         return ret;
390 }
391
392 static irqreturn_t ak8974_drdy_irq(int irq, void *d)
393 {
394         struct ak8974 *ak8974 = d;
395
396         if (!ak8974->drdy_irq)
397                 return IRQ_NONE;
398
399         /* TODO: timestamp here to get good measurement stamps */
400         return IRQ_WAKE_THREAD;
401 }
402
403 static irqreturn_t ak8974_drdy_irq_thread(int irq, void *d)
404 {
405         struct ak8974 *ak8974 = d;
406         unsigned int val;
407         int ret;
408
409         /* Check if this was a DRDY from us */
410         ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
411         if (ret < 0) {
412                 dev_err(&ak8974->i2c->dev, "error reading DRDY status\n");
413                 return IRQ_HANDLED;
414         }
415         if (val & AK8974_STATUS_DRDY) {
416                 /* Yes this was our IRQ */
417                 complete(&ak8974->drdy_complete);
418                 return IRQ_HANDLED;
419         }
420
421         /* We may be on a shared IRQ, let the next client check */
422         return IRQ_NONE;
423 }
424
425 static int ak8974_selftest(struct ak8974 *ak8974)
426 {
427         struct device *dev = &ak8974->i2c->dev;
428         unsigned int val;
429         int ret;
430
431         ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
432         if (ret)
433                 return ret;
434         if (val != AK8974_SELFTEST_IDLE) {
435                 dev_err(dev, "selftest not idle before test\n");
436                 return -EIO;
437         }
438
439         /* Trigger self-test */
440         ret = regmap_update_bits(ak8974->map,
441                         AK8974_CTRL3,
442                         AK8974_CTRL3_SELFTEST,
443                         AK8974_CTRL3_SELFTEST);
444         if (ret) {
445                 dev_err(dev, "could not write CTRL3\n");
446                 return ret;
447         }
448
449         msleep(AK8974_SELFTEST_DELAY);
450
451         ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
452         if (ret)
453                 return ret;
454         if (val != AK8974_SELFTEST_OK) {
455                 dev_err(dev, "selftest result NOT OK (%02x)\n", val);
456                 return -EIO;
457         }
458
459         ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
460         if (ret)
461                 return ret;
462         if (val != AK8974_SELFTEST_IDLE) {
463                 dev_err(dev, "selftest not idle after test (%02x)\n", val);
464                 return -EIO;
465         }
466         dev_dbg(dev, "passed self-test\n");
467
468         return 0;
469 }
470
471 static void ak8974_read_calib_data(struct ak8974 *ak8974, unsigned int reg,
472                                    __le16 *tab, size_t tab_size)
473 {
474         int ret = regmap_bulk_read(ak8974->map, reg, tab, tab_size);
475         if (ret) {
476                 memset(tab, 0xFF, tab_size);
477                 dev_warn(&ak8974->i2c->dev,
478                          "can't read calibration data (regs %u..%zu): %d\n",
479                          reg, reg + tab_size - 1, ret);
480         } else {
481                 add_device_randomness(tab, tab_size);
482         }
483 }
484
485 static int ak8974_detect(struct ak8974 *ak8974)
486 {
487         unsigned int whoami;
488         const char *name;
489         int ret;
490         unsigned int fw;
491         u16 sn;
492
493         ret = regmap_read(ak8974->map, AK8974_WHOAMI, &whoami);
494         if (ret)
495                 return ret;
496
497         name = "ami305";
498
499         switch (whoami) {
500         case AK8974_WHOAMI_VALUE_AMI306:
501                 name = "ami306";
502                 fallthrough;
503         case AK8974_WHOAMI_VALUE_AMI305:
504                 ret = regmap_read(ak8974->map, AMI305_VER, &fw);
505                 if (ret)
506                         return ret;
507                 fw &= 0x7f; /* only bits 0 thru 6 valid */
508                 ret = ak8974_get_u16_val(ak8974, AMI305_SN, &sn);
509                 if (ret)
510                         return ret;
511                 add_device_randomness(&sn, sizeof(sn));
512                 dev_info(&ak8974->i2c->dev,
513                          "detected %s, FW ver %02x, S/N: %04x\n",
514                          name, fw, sn);
515                 break;
516         case AK8974_WHOAMI_VALUE_AK8974:
517                 name = "ak8974";
518                 dev_info(&ak8974->i2c->dev, "detected AK8974\n");
519                 break;
520         case AK8974_WHOAMI_VALUE_HSCDTD008A:
521                 name = "hscdtd008a";
522                 dev_info(&ak8974->i2c->dev, "detected hscdtd008a\n");
523                 break;
524         default:
525                 dev_err(&ak8974->i2c->dev, "unsupported device (%02x) ",
526                         whoami);
527                 return -ENODEV;
528         }
529
530         ak8974->name = name;
531         ak8974->variant = whoami;
532
533         if (whoami == AK8974_WHOAMI_VALUE_AMI306) {
534                 __le16 fab_data1[9], fab_data2[3];
535                 int i;
536
537                 ak8974_read_calib_data(ak8974, AMI306_FINEOUTPUT_X,
538                                        fab_data1, sizeof(fab_data1));
539                 ak8974_read_calib_data(ak8974, AMI306_OFFZERO_X,
540                                        fab_data2, sizeof(fab_data2));
541
542                 for (i = 0; i < 3; ++i) {
543                         static const char axis[3] = "XYZ";
544                         static const char pgaxis[6] = "ZYZXYX";
545                         unsigned offz = le16_to_cpu(fab_data2[i]) & 0x7F;
546                         unsigned fine = le16_to_cpu(fab_data1[i]);
547                         unsigned sens = le16_to_cpu(fab_data1[i + 3]);
548                         unsigned pgain1 = le16_to_cpu(fab_data1[i + 6]);
549                         unsigned pgain2 = pgain1 >> 8;
550
551                         pgain1 &= 0xFF;
552
553                         dev_info(&ak8974->i2c->dev,
554                                  "factory calibration for axis %c: offz=%u sens=%u fine=%u pga%c=%u pga%c=%u\n",
555                                  axis[i], offz, sens, fine, pgaxis[i * 2],
556                                  pgain1, pgaxis[i * 2 + 1], pgain2);
557                 }
558         }
559
560         return 0;
561 }
562
563 static int ak8974_measure_channel(struct ak8974 *ak8974, unsigned long address,
564                                   int *val)
565 {
566         __le16 hw_values[3];
567         int ret;
568
569         pm_runtime_get_sync(&ak8974->i2c->dev);
570         mutex_lock(&ak8974->lock);
571
572         /*
573          * We read all axes and discard all but one, for optimized
574          * reading, use the triggered buffer.
575          */
576         ret = ak8974_trigmeas(ak8974);
577         if (ret)
578                 goto out_unlock;
579         ret = ak8974_getresult(ak8974, hw_values);
580         if (ret)
581                 goto out_unlock;
582         /*
583          * This explicit cast to (s16) is necessary as the measurement
584          * is done in 2's complement with positive and negative values.
585          * The follwing assignment to *val will then convert the signed
586          * s16 value to a signed int value.
587          */
588         *val = (s16)le16_to_cpu(hw_values[address]);
589 out_unlock:
590         mutex_unlock(&ak8974->lock);
591         pm_runtime_mark_last_busy(&ak8974->i2c->dev);
592         pm_runtime_put_autosuspend(&ak8974->i2c->dev);
593
594         return ret;
595 }
596
597 static int ak8974_read_raw(struct iio_dev *indio_dev,
598                            struct iio_chan_spec const *chan,
599                            int *val, int *val2,
600                            long mask)
601 {
602         struct ak8974 *ak8974 = iio_priv(indio_dev);
603         int ret;
604
605         switch (mask) {
606         case IIO_CHAN_INFO_RAW:
607                 if (chan->address > 2) {
608                         dev_err(&ak8974->i2c->dev, "faulty channel address\n");
609                         return -EIO;
610                 }
611                 ret = ak8974_measure_channel(ak8974, chan->address, val);
612                 if (ret)
613                         return ret;
614                 return IIO_VAL_INT;
615         case IIO_CHAN_INFO_SCALE:
616                 switch (ak8974->variant) {
617                 case AK8974_WHOAMI_VALUE_AMI306:
618                 case AK8974_WHOAMI_VALUE_AMI305:
619                         /*
620                          * The datasheet for AMI305 and AMI306, page 6
621                          * specifies the range of the sensor to be
622                          * +/- 12 Gauss.
623                          */
624                         *val = 12;
625                         /*
626                          * 12 bits are used, +/- 2^11
627                          * [ -2048 .. 2047 ] (manual page 20)
628                          * [ 0xf800 .. 0x07ff ]
629                          */
630                         *val2 = 11;
631                         return IIO_VAL_FRACTIONAL_LOG2;
632                 case AK8974_WHOAMI_VALUE_HSCDTD008A:
633                         /*
634                          * The datasheet for HSCDTF008A, page 3 specifies the
635                          * range of the sensor as +/- 2.4 mT per axis, which
636                          * corresponds to +/- 2400 uT = +/- 24 Gauss.
637                          */
638                         *val = 24;
639                         /*
640                          * 15 bits are used (set up in CTRL4), +/- 2^14
641                          * [ -16384 .. 16383 ] (manual page 24)
642                          * [ 0xc000 .. 0x3fff ]
643                          */
644                         *val2 = 14;
645                         return IIO_VAL_FRACTIONAL_LOG2;
646                 default:
647                         /* GUESSING +/- 12 Gauss */
648                         *val = 12;
649                         /* GUESSING 12 bits ADC +/- 2^11 */
650                         *val2 = 11;
651                         return IIO_VAL_FRACTIONAL_LOG2;
652                 }
653                 break;
654         default:
655                 /* Unknown request */
656                 break;
657         }
658
659         return -EINVAL;
660 }
661
662 static void ak8974_fill_buffer(struct iio_dev *indio_dev)
663 {
664         struct ak8974 *ak8974 = iio_priv(indio_dev);
665         int ret;
666
667         pm_runtime_get_sync(&ak8974->i2c->dev);
668         mutex_lock(&ak8974->lock);
669
670         ret = ak8974_trigmeas(ak8974);
671         if (ret) {
672                 dev_err(&ak8974->i2c->dev, "error triggering measure\n");
673                 goto out_unlock;
674         }
675         ret = ak8974_getresult(ak8974, ak8974->scan.channels);
676         if (ret) {
677                 dev_err(&ak8974->i2c->dev, "error getting measures\n");
678                 goto out_unlock;
679         }
680
681         iio_push_to_buffers_with_timestamp(indio_dev, &ak8974->scan,
682                                            iio_get_time_ns(indio_dev));
683
684  out_unlock:
685         mutex_unlock(&ak8974->lock);
686         pm_runtime_mark_last_busy(&ak8974->i2c->dev);
687         pm_runtime_put_autosuspend(&ak8974->i2c->dev);
688 }
689
690 static irqreturn_t ak8974_handle_trigger(int irq, void *p)
691 {
692         const struct iio_poll_func *pf = p;
693         struct iio_dev *indio_dev = pf->indio_dev;
694
695         ak8974_fill_buffer(indio_dev);
696         iio_trigger_notify_done(indio_dev->trig);
697
698         return IRQ_HANDLED;
699 }
700
701 static const struct iio_mount_matrix *
702 ak8974_get_mount_matrix(const struct iio_dev *indio_dev,
703                         const struct iio_chan_spec *chan)
704 {
705         struct ak8974 *ak8974 = iio_priv(indio_dev);
706
707         return &ak8974->orientation;
708 }
709
710 static const struct iio_chan_spec_ext_info ak8974_ext_info[] = {
711         IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8974_get_mount_matrix),
712         { },
713 };
714
715 #define AK8974_AXIS_CHANNEL(axis, index, bits)                          \
716         {                                                               \
717                 .type = IIO_MAGN,                                       \
718                 .modified = 1,                                          \
719                 .channel2 = IIO_MOD_##axis,                             \
720                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
721                         BIT(IIO_CHAN_INFO_SCALE),                       \
722                 .ext_info = ak8974_ext_info,                            \
723                 .address = index,                                       \
724                 .scan_index = index,                                    \
725                 .scan_type = {                                          \
726                         .sign = 's',                                    \
727                         .realbits = bits,                               \
728                         .storagebits = 16,                              \
729                         .endianness = IIO_LE                            \
730                 },                                                      \
731         }
732
733 /*
734  * We have no datasheet for the AK8974 but we guess that its
735  * ADC is 12 bits. The AMI305 and AMI306 certainly has 12bit
736  * ADC.
737  */
738 static const struct iio_chan_spec ak8974_12_bits_channels[] = {
739         AK8974_AXIS_CHANNEL(X, 0, 12),
740         AK8974_AXIS_CHANNEL(Y, 1, 12),
741         AK8974_AXIS_CHANNEL(Z, 2, 12),
742         IIO_CHAN_SOFT_TIMESTAMP(3),
743 };
744
745 /*
746  * The HSCDTD008A has 15 bits resolution the way we set it up
747  * in CTRL4.
748  */
749 static const struct iio_chan_spec ak8974_15_bits_channels[] = {
750         AK8974_AXIS_CHANNEL(X, 0, 15),
751         AK8974_AXIS_CHANNEL(Y, 1, 15),
752         AK8974_AXIS_CHANNEL(Z, 2, 15),
753         IIO_CHAN_SOFT_TIMESTAMP(3),
754 };
755
756 static const unsigned long ak8974_scan_masks[] = { 0x7, 0 };
757
758 static const struct iio_info ak8974_info = {
759         .read_raw = &ak8974_read_raw,
760 };
761
762 static bool ak8974_writeable_reg(struct device *dev, unsigned int reg)
763 {
764         struct i2c_client *i2c = to_i2c_client(dev);
765         struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
766         struct ak8974 *ak8974 = iio_priv(indio_dev);
767
768         switch (reg) {
769         case AK8974_CTRL1:
770         case AK8974_CTRL2:
771         case AK8974_CTRL3:
772         case AK8974_INT_CTRL:
773         case AK8974_INT_THRES:
774         case AK8974_INT_THRES + 1:
775                 return true;
776         case AK8974_PRESET:
777         case AK8974_PRESET + 1:
778                 return ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A;
779         case AK8974_OFFSET_X:
780         case AK8974_OFFSET_X + 1:
781         case AK8974_OFFSET_Y:
782         case AK8974_OFFSET_Y + 1:
783         case AK8974_OFFSET_Z:
784         case AK8974_OFFSET_Z + 1:
785                 return ak8974->variant == AK8974_WHOAMI_VALUE_AK8974 ||
786                        ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A;
787         case AMI305_OFFSET_X:
788         case AMI305_OFFSET_X + 1:
789         case AMI305_OFFSET_Y:
790         case AMI305_OFFSET_Y + 1:
791         case AMI305_OFFSET_Z:
792         case AMI305_OFFSET_Z + 1:
793                 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI305 ||
794                        ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
795         case AMI306_CTRL4:
796         case AMI306_CTRL4 + 1:
797                 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
798         default:
799                 return false;
800         }
801 }
802
803 static bool ak8974_precious_reg(struct device *dev, unsigned int reg)
804 {
805         return reg == AK8974_INT_CLEAR;
806 }
807
808 static const struct regmap_config ak8974_regmap_config = {
809         .reg_bits = 8,
810         .val_bits = 8,
811         .max_register = 0xff,
812         .writeable_reg = ak8974_writeable_reg,
813         .precious_reg = ak8974_precious_reg,
814 };
815
816 static int ak8974_probe(struct i2c_client *i2c,
817                         const struct i2c_device_id *id)
818 {
819         struct iio_dev *indio_dev;
820         struct ak8974 *ak8974;
821         unsigned long irq_trig;
822         int irq = i2c->irq;
823         int ret;
824
825         /* Register with IIO */
826         indio_dev = devm_iio_device_alloc(&i2c->dev, sizeof(*ak8974));
827         if (indio_dev == NULL)
828                 return -ENOMEM;
829
830         ak8974 = iio_priv(indio_dev);
831         i2c_set_clientdata(i2c, indio_dev);
832         ak8974->i2c = i2c;
833         mutex_init(&ak8974->lock);
834
835         ret = iio_read_mount_matrix(&i2c->dev, "mount-matrix",
836                                     &ak8974->orientation);
837         if (ret)
838                 return ret;
839
840         ak8974->regs[0].supply = ak8974_reg_avdd;
841         ak8974->regs[1].supply = ak8974_reg_dvdd;
842
843         ret = devm_regulator_bulk_get(&i2c->dev,
844                                       ARRAY_SIZE(ak8974->regs),
845                                       ak8974->regs);
846         if (ret < 0) {
847                 if (ret != -EPROBE_DEFER)
848                         dev_err(&i2c->dev, "cannot get regulators: %d\n", ret);
849                 else
850                         dev_dbg(&i2c->dev,
851                                 "regulators unavailable, deferring probe\n");
852
853                 return ret;
854         }
855
856         ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
857         if (ret < 0) {
858                 dev_err(&i2c->dev, "cannot enable regulators\n");
859                 return ret;
860         }
861
862         /* Take runtime PM online */
863         pm_runtime_get_noresume(&i2c->dev);
864         pm_runtime_set_active(&i2c->dev);
865         pm_runtime_enable(&i2c->dev);
866
867         ak8974->map = devm_regmap_init_i2c(i2c, &ak8974_regmap_config);
868         if (IS_ERR(ak8974->map)) {
869                 dev_err(&i2c->dev, "failed to allocate register map\n");
870                 pm_runtime_put_noidle(&i2c->dev);
871                 pm_runtime_disable(&i2c->dev);
872                 return PTR_ERR(ak8974->map);
873         }
874
875         ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
876         if (ret) {
877                 dev_err(&i2c->dev, "could not power on\n");
878                 goto disable_pm;
879         }
880
881         ret = ak8974_detect(ak8974);
882         if (ret) {
883                 dev_err(&i2c->dev, "neither AK8974 nor AMI30x found\n");
884                 goto disable_pm;
885         }
886
887         ret = ak8974_selftest(ak8974);
888         if (ret)
889                 dev_err(&i2c->dev, "selftest failed (continuing anyway)\n");
890
891         ret = ak8974_reset(ak8974);
892         if (ret) {
893                 dev_err(&i2c->dev, "AK8974 reset failed\n");
894                 goto disable_pm;
895         }
896
897         switch (ak8974->variant) {
898         case AK8974_WHOAMI_VALUE_AMI306:
899         case AK8974_WHOAMI_VALUE_AMI305:
900                 indio_dev->channels = ak8974_12_bits_channels;
901                 indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels);
902                 break;
903         case AK8974_WHOAMI_VALUE_HSCDTD008A:
904                 indio_dev->channels = ak8974_15_bits_channels;
905                 indio_dev->num_channels = ARRAY_SIZE(ak8974_15_bits_channels);
906                 break;
907         default:
908                 indio_dev->channels = ak8974_12_bits_channels;
909                 indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels);
910                 break;
911         }
912         indio_dev->info = &ak8974_info;
913         indio_dev->available_scan_masks = ak8974_scan_masks;
914         indio_dev->modes = INDIO_DIRECT_MODE;
915         indio_dev->name = ak8974->name;
916
917         ret = iio_triggered_buffer_setup(indio_dev, NULL,
918                                          ak8974_handle_trigger,
919                                          NULL);
920         if (ret) {
921                 dev_err(&i2c->dev, "triggered buffer setup failed\n");
922                 goto disable_pm;
923         }
924
925         /* If we have a valid DRDY IRQ, make use of it */
926         if (irq > 0) {
927                 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
928                 if (irq_trig == IRQF_TRIGGER_RISING) {
929                         dev_info(&i2c->dev, "enable rising edge DRDY IRQ\n");
930                 } else if (irq_trig == IRQF_TRIGGER_FALLING) {
931                         ak8974->drdy_active_low = true;
932                         dev_info(&i2c->dev, "enable falling edge DRDY IRQ\n");
933                 } else {
934                         irq_trig = IRQF_TRIGGER_RISING;
935                 }
936                 irq_trig |= IRQF_ONESHOT;
937                 irq_trig |= IRQF_SHARED;
938
939                 ret = devm_request_threaded_irq(&i2c->dev,
940                                                 irq,
941                                                 ak8974_drdy_irq,
942                                                 ak8974_drdy_irq_thread,
943                                                 irq_trig,
944                                                 ak8974->name,
945                                                 ak8974);
946                 if (ret) {
947                         dev_err(&i2c->dev, "unable to request DRDY IRQ "
948                                 "- proceeding without IRQ\n");
949                         goto no_irq;
950                 }
951                 ak8974->drdy_irq = true;
952         }
953
954 no_irq:
955         ret = iio_device_register(indio_dev);
956         if (ret) {
957                 dev_err(&i2c->dev, "device register failed\n");
958                 goto cleanup_buffer;
959         }
960
961         pm_runtime_set_autosuspend_delay(&i2c->dev,
962                                          AK8974_AUTOSUSPEND_DELAY);
963         pm_runtime_use_autosuspend(&i2c->dev);
964         pm_runtime_put(&i2c->dev);
965
966         return 0;
967
968 cleanup_buffer:
969         iio_triggered_buffer_cleanup(indio_dev);
970 disable_pm:
971         pm_runtime_put_noidle(&i2c->dev);
972         pm_runtime_disable(&i2c->dev);
973         ak8974_set_power(ak8974, AK8974_PWR_OFF);
974         regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
975
976         return ret;
977 }
978
979 static int ak8974_remove(struct i2c_client *i2c)
980 {
981         struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
982         struct ak8974 *ak8974 = iio_priv(indio_dev);
983
984         iio_device_unregister(indio_dev);
985         iio_triggered_buffer_cleanup(indio_dev);
986         pm_runtime_get_sync(&i2c->dev);
987         pm_runtime_put_noidle(&i2c->dev);
988         pm_runtime_disable(&i2c->dev);
989         ak8974_set_power(ak8974, AK8974_PWR_OFF);
990         regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
991
992         return 0;
993 }
994
995 static int __maybe_unused ak8974_runtime_suspend(struct device *dev)
996 {
997         struct ak8974 *ak8974 =
998                 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
999
1000         ak8974_set_power(ak8974, AK8974_PWR_OFF);
1001         regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
1002
1003         return 0;
1004 }
1005
1006 static int __maybe_unused ak8974_runtime_resume(struct device *dev)
1007 {
1008         struct ak8974 *ak8974 =
1009                 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
1010         int ret;
1011
1012         ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
1013         if (ret)
1014                 return ret;
1015         msleep(AK8974_POWERON_DELAY);
1016         ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
1017         if (ret)
1018                 goto out_regulator_disable;
1019
1020         ret = ak8974_configure(ak8974);
1021         if (ret)
1022                 goto out_disable_power;
1023
1024         return 0;
1025
1026 out_disable_power:
1027         ak8974_set_power(ak8974, AK8974_PWR_OFF);
1028 out_regulator_disable:
1029         regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
1030
1031         return ret;
1032 }
1033
1034 static const struct dev_pm_ops ak8974_dev_pm_ops = {
1035         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1036                                 pm_runtime_force_resume)
1037         SET_RUNTIME_PM_OPS(ak8974_runtime_suspend,
1038                            ak8974_runtime_resume, NULL)
1039 };
1040
1041 static const struct i2c_device_id ak8974_id[] = {
1042         {"ami305", 0 },
1043         {"ami306", 0 },
1044         {"ak8974", 0 },
1045         {"hscdtd008a", 0 },
1046         {}
1047 };
1048 MODULE_DEVICE_TABLE(i2c, ak8974_id);
1049
1050 static const struct of_device_id ak8974_of_match[] = {
1051         { .compatible = "asahi-kasei,ak8974", },
1052         { .compatible = "alps,hscdtd008a", },
1053         {}
1054 };
1055 MODULE_DEVICE_TABLE(of, ak8974_of_match);
1056
1057 static struct i2c_driver ak8974_driver = {
1058         .driver  = {
1059                 .name   = "ak8974",
1060                 .pm = &ak8974_dev_pm_ops,
1061                 .of_match_table = of_match_ptr(ak8974_of_match),
1062         },
1063         .probe    = ak8974_probe,
1064         .remove   = ak8974_remove,
1065         .id_table = ak8974_id,
1066 };
1067 module_i2c_driver(ak8974_driver);
1068
1069 MODULE_DESCRIPTION("AK8974 and AMI30x 3-axis magnetometer driver");
1070 MODULE_AUTHOR("Samu Onkalo");
1071 MODULE_AUTHOR("Linus Walleij");
1072 MODULE_LICENSE("GPL v2");