10d16ec5104b674c49cf248f5618bc6f20ad7903
[linux-2.6-block.git] / drivers / iio / imu / inv_mpu6050 / inv_mpu_ring.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Invensense, Inc.
4 */
5
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/err.h>
9 #include <linux/delay.h>
10 #include <linux/sysfs.h>
11 #include <linux/jiffies.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/poll.h>
15 #include <linux/math64.h>
16 #include <asm/unaligned.h>
17 #include "inv_mpu_iio.h"
18
19 /**
20  *  inv_mpu6050_update_period() - Update chip internal period estimation
21  *
22  *  @st:                driver state
23  *  @timestamp:         the interrupt timestamp
24  *  @nb:                number of data set in the fifo
25  *
26  *  This function uses interrupt timestamps to estimate the chip period and
27  *  to choose the data timestamp to come.
28  */
29 static void inv_mpu6050_update_period(struct inv_mpu6050_state *st,
30                                       s64 timestamp, size_t nb)
31 {
32         /* Period boundaries for accepting timestamp */
33         const s64 period_min =
34                 (NSEC_PER_MSEC * (100 - INV_MPU6050_TS_PERIOD_JITTER)) / 100;
35         const s64 period_max =
36                 (NSEC_PER_MSEC * (100 + INV_MPU6050_TS_PERIOD_JITTER)) / 100;
37         const s32 divider = INV_MPU6050_FREQ_DIVIDER(st);
38         s64 delta, interval;
39         bool use_it_timestamp = false;
40
41         if (st->it_timestamp == 0) {
42                 /* not initialized, forced to use it_timestamp */
43                 use_it_timestamp = true;
44         } else if (nb == 1) {
45                 /*
46                  * Validate the use of it timestamp by checking if interrupt
47                  * has been delayed.
48                  * nb > 1 means interrupt was delayed for more than 1 sample,
49                  * so it's obviously not good.
50                  * Compute the chip period between 2 interrupts for validating.
51                  */
52                 delta = div_s64(timestamp - st->it_timestamp, divider);
53                 if (delta > period_min && delta < period_max) {
54                         /* update chip period and use it timestamp */
55                         st->chip_period = (st->chip_period + delta) / 2;
56                         use_it_timestamp = true;
57                 }
58         }
59
60         if (use_it_timestamp) {
61                 /*
62                  * Manage case of multiple samples in the fifo (nb > 1):
63                  * compute timestamp corresponding to the first sample using
64                  * estimated chip period.
65                  */
66                 interval = (nb - 1) * st->chip_period * divider;
67                 st->data_timestamp = timestamp - interval;
68         }
69
70         /* save it timestamp */
71         st->it_timestamp = timestamp;
72 }
73
74 /**
75  *  inv_mpu6050_get_timestamp() - Return the current data timestamp
76  *
77  *  @st:                driver state
78  *  @return:            current data timestamp
79  *
80  *  This function returns the current data timestamp and prepares for next one.
81  */
82 static s64 inv_mpu6050_get_timestamp(struct inv_mpu6050_state *st)
83 {
84         s64 ts;
85
86         /* return current data timestamp and increment */
87         ts = st->data_timestamp;
88         st->data_timestamp += st->chip_period * INV_MPU6050_FREQ_DIVIDER(st);
89
90         return ts;
91 }
92
93 int inv_reset_fifo(struct iio_dev *indio_dev)
94 {
95         int result;
96         u8 d;
97         struct inv_mpu6050_state  *st = iio_priv(indio_dev);
98
99         /* reset it timestamp validation */
100         st->it_timestamp = 0;
101
102         /* disable interrupt */
103         result = regmap_write(st->map, st->reg->int_enable, 0);
104         if (result) {
105                 dev_err(regmap_get_device(st->map), "int_enable failed %d\n",
106                         result);
107                 return result;
108         }
109         /* disable the sensor output to FIFO */
110         result = regmap_write(st->map, st->reg->fifo_en, 0);
111         if (result)
112                 goto reset_fifo_fail;
113         /* disable fifo reading */
114         result = regmap_write(st->map, st->reg->user_ctrl,
115                               st->chip_config.user_ctrl);
116         if (result)
117                 goto reset_fifo_fail;
118
119         /* reset FIFO*/
120         d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_RST;
121         result = regmap_write(st->map, st->reg->user_ctrl, d);
122         if (result)
123                 goto reset_fifo_fail;
124
125         /* enable interrupt */
126         if (st->chip_config.accl_fifo_enable ||
127             st->chip_config.gyro_fifo_enable ||
128             st->chip_config.magn_fifo_enable) {
129                 result = regmap_write(st->map, st->reg->int_enable,
130                                       INV_MPU6050_BIT_DATA_RDY_EN);
131                 if (result)
132                         return result;
133         }
134         /* enable FIFO reading */
135         d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_EN;
136         result = regmap_write(st->map, st->reg->user_ctrl, d);
137         if (result)
138                 goto reset_fifo_fail;
139         /* enable sensor output to FIFO */
140         d = 0;
141         if (st->chip_config.gyro_fifo_enable)
142                 d |= INV_MPU6050_BITS_GYRO_OUT;
143         if (st->chip_config.accl_fifo_enable)
144                 d |= INV_MPU6050_BIT_ACCEL_OUT;
145         if (st->chip_config.magn_fifo_enable)
146                 d |= INV_MPU6050_BIT_SLAVE_0;
147         result = regmap_write(st->map, st->reg->fifo_en, d);
148         if (result)
149                 goto reset_fifo_fail;
150
151         return 0;
152
153 reset_fifo_fail:
154         dev_err(regmap_get_device(st->map), "reset fifo failed %d\n", result);
155         result = regmap_write(st->map, st->reg->int_enable,
156                               INV_MPU6050_BIT_DATA_RDY_EN);
157
158         return result;
159 }
160
161 /**
162  * inv_mpu6050_read_fifo() - Transfer data from hardware FIFO to KFIFO.
163  */
164 irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
165 {
166         struct iio_poll_func *pf = p;
167         struct iio_dev *indio_dev = pf->indio_dev;
168         struct inv_mpu6050_state *st = iio_priv(indio_dev);
169         size_t bytes_per_datum;
170         int result;
171         u8 data[INV_MPU6050_OUTPUT_DATA_SIZE];
172         u16 fifo_count;
173         s64 timestamp;
174         int int_status;
175         size_t i, nb;
176
177         mutex_lock(&st->lock);
178
179         /* ack interrupt and check status */
180         result = regmap_read(st->map, st->reg->int_status, &int_status);
181         if (result) {
182                 dev_err(regmap_get_device(st->map),
183                         "failed to ack interrupt\n");
184                 goto flush_fifo;
185         }
186         if (!(int_status & INV_MPU6050_BIT_RAW_DATA_RDY_INT)) {
187                 dev_warn(regmap_get_device(st->map),
188                         "spurious interrupt with status 0x%x\n", int_status);
189                 goto end_session;
190         }
191
192         if (!(st->chip_config.accl_fifo_enable |
193                 st->chip_config.gyro_fifo_enable |
194                 st->chip_config.magn_fifo_enable))
195                 goto end_session;
196         bytes_per_datum = 0;
197         if (st->chip_config.accl_fifo_enable)
198                 bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
199
200         if (st->chip_config.gyro_fifo_enable)
201                 bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
202
203         if (st->chip_type == INV_ICM20602)
204                 bytes_per_datum += INV_ICM20602_BYTES_PER_TEMP_SENSOR;
205
206         if (st->chip_config.magn_fifo_enable)
207                 bytes_per_datum += INV_MPU9X50_BYTES_MAGN;
208
209         /*
210          * read fifo_count register to know how many bytes are inside the FIFO
211          * right now
212          */
213         result = regmap_bulk_read(st->map, st->reg->fifo_count_h, data,
214                                   INV_MPU6050_FIFO_COUNT_BYTE);
215         if (result)
216                 goto end_session;
217         fifo_count = get_unaligned_be16(&data[0]);
218
219         /*
220          * Handle fifo overflow by resetting fifo.
221          * Reset if there is only 3 data set free remaining to mitigate
222          * possible delay between reading fifo count and fifo data.
223          */
224         nb = 3 * bytes_per_datum;
225         if (fifo_count >= st->hw->fifo_size - nb) {
226                 dev_warn(regmap_get_device(st->map), "fifo overflow reset\n");
227                 goto flush_fifo;
228         }
229
230         /* compute and process all complete datum */
231         nb = fifo_count / bytes_per_datum;
232         inv_mpu6050_update_period(st, pf->timestamp, nb);
233         for (i = 0; i < nb; ++i) {
234                 result = regmap_bulk_read(st->map, st->reg->fifo_r_w,
235                                           data, bytes_per_datum);
236                 if (result)
237                         goto flush_fifo;
238                 /* skip first samples if needed */
239                 if (st->skip_samples) {
240                         st->skip_samples--;
241                         continue;
242                 }
243                 timestamp = inv_mpu6050_get_timestamp(st);
244                 iio_push_to_buffers_with_timestamp(indio_dev, data, timestamp);
245         }
246
247 end_session:
248         mutex_unlock(&st->lock);
249         iio_trigger_notify_done(indio_dev->trig);
250
251         return IRQ_HANDLED;
252
253 flush_fifo:
254         /* Flush HW and SW FIFOs. */
255         inv_reset_fifo(indio_dev);
256         mutex_unlock(&st->lock);
257         iio_trigger_notify_done(indio_dev->trig);
258
259         return IRQ_HANDLED;
260 }