Merge tag 'loongarch-fixes-6.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / i2c / busses / i2c-mxs.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale MXS I2C bus driver
4  *
5  * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
7  *
8  * based on a (non-working) driver which was:
9  *
10  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
11  */
12
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
22 #include <linux/io.h>
23 #include <linux/stmp_device.h>
24 #include <linux/of.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/dma/mxs-dma.h>
28
29 #define DRIVER_NAME "mxs-i2c"
30
31 #define MXS_I2C_CTRL0           (0x00)
32 #define MXS_I2C_CTRL0_SET       (0x04)
33 #define MXS_I2C_CTRL0_CLR       (0x08)
34
35 #define MXS_I2C_CTRL0_SFTRST                    0x80000000
36 #define MXS_I2C_CTRL0_RUN                       0x20000000
37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST          0x02000000
38 #define MXS_I2C_CTRL0_PIO_MODE                  0x01000000
39 #define MXS_I2C_CTRL0_RETAIN_CLOCK              0x00200000
40 #define MXS_I2C_CTRL0_POST_SEND_STOP            0x00100000
41 #define MXS_I2C_CTRL0_PRE_SEND_START            0x00080000
42 #define MXS_I2C_CTRL0_MASTER_MODE               0x00020000
43 #define MXS_I2C_CTRL0_DIRECTION                 0x00010000
44 #define MXS_I2C_CTRL0_XFER_COUNT(v)             ((v) & 0x0000FFFF)
45
46 #define MXS_I2C_TIMING0         (0x10)
47 #define MXS_I2C_TIMING1         (0x20)
48 #define MXS_I2C_TIMING2         (0x30)
49
50 #define MXS_I2C_CTRL1           (0x40)
51 #define MXS_I2C_CTRL1_SET       (0x44)
52 #define MXS_I2C_CTRL1_CLR       (0x48)
53
54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK             0x10000000
55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ              0x80
56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ     0x40
57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ          0x20
58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ    0x10
59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ            0x08
60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ           0x04
61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ            0x02
62 #define MXS_I2C_CTRL1_SLAVE_IRQ                 0x01
63
64 #define MXS_I2C_STAT            (0x50)
65 #define MXS_I2C_STAT_GOT_A_NAK                  0x10000000
66 #define MXS_I2C_STAT_BUS_BUSY                   0x00000800
67 #define MXS_I2C_STAT_CLK_GEN_BUSY               0x00000400
68
69 #define MXS_I2C_DATA(i2c)       ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
70
71 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
72
73 #define MXS_I2C_DEBUG0_DMAREQ   0x80000000
74
75 #define MXS_I2C_IRQ_MASK        (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
76                                  MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
77                                  MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
78                                  MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
79                                  MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
80                                  MXS_I2C_CTRL1_SLAVE_IRQ)
81
82
83 #define MXS_CMD_I2C_SELECT      (MXS_I2C_CTRL0_RETAIN_CLOCK |   \
84                                  MXS_I2C_CTRL0_PRE_SEND_START | \
85                                  MXS_I2C_CTRL0_MASTER_MODE |    \
86                                  MXS_I2C_CTRL0_DIRECTION |      \
87                                  MXS_I2C_CTRL0_XFER_COUNT(1))
88
89 #define MXS_CMD_I2C_WRITE       (MXS_I2C_CTRL0_PRE_SEND_START | \
90                                  MXS_I2C_CTRL0_MASTER_MODE |    \
91                                  MXS_I2C_CTRL0_DIRECTION)
92
93 #define MXS_CMD_I2C_READ        (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
94                                  MXS_I2C_CTRL0_MASTER_MODE)
95
96 enum mxs_i2c_devtype {
97         MXS_I2C_UNKNOWN = 0,
98         MXS_I2C_V1,
99         MXS_I2C_V2,
100 };
101
102 /**
103  * struct mxs_i2c_dev - per device, private MXS-I2C data
104  *
105  * @dev: driver model device node
106  * @dev_type: distinguish i.MX23/i.MX28 features
107  * @regs: IO registers pointer
108  * @cmd_complete: completion object for transaction wait
109  * @cmd_err: error code for last transaction
110  * @adapter: i2c subsystem adapter node
111  */
112 struct mxs_i2c_dev {
113         struct device *dev;
114         enum mxs_i2c_devtype dev_type;
115         void __iomem *regs;
116         struct completion cmd_complete;
117         int cmd_err;
118         struct i2c_adapter adapter;
119
120         uint32_t timing0;
121         uint32_t timing1;
122         uint32_t timing2;
123
124         /* DMA support components */
125         struct dma_chan                 *dmach;
126         uint32_t                        pio_data[2];
127         uint32_t                        addr_data;
128         struct scatterlist              sg_io[2];
129         bool                            dma_read;
130 };
131
132 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
133 {
134         int ret = stmp_reset_block(i2c->regs);
135         if (ret)
136                 return ret;
137
138         /*
139          * Configure timing for the I2C block. The I2C TIMING2 register has to
140          * be programmed with this particular magic number. The rest is derived
141          * from the XTAL speed and requested I2C speed.
142          *
143          * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
144          */
145         writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
146         writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
147         writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
148
149         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
150
151         return 0;
152 }
153
154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
155 {
156         if (i2c->dma_read) {
157                 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
158                 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
159         } else {
160                 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
161         }
162 }
163
164 static void mxs_i2c_dma_irq_callback(void *param)
165 {
166         struct mxs_i2c_dev *i2c = param;
167
168         complete(&i2c->cmd_complete);
169         mxs_i2c_dma_finish(i2c);
170 }
171
172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
173                         struct i2c_msg *msg, u8 *buf, uint32_t flags)
174 {
175         struct dma_async_tx_descriptor *desc;
176         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
177
178         i2c->addr_data = i2c_8bit_addr_from_msg(msg);
179
180         if (msg->flags & I2C_M_RD) {
181                 i2c->dma_read = true;
182
183                 /*
184                  * SELECT command.
185                  */
186
187                 /* Queue the PIO register write transfer. */
188                 i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
189                 desc = dmaengine_prep_slave_sg(i2c->dmach,
190                                         (struct scatterlist *)&i2c->pio_data[0],
191                                         1, DMA_TRANS_NONE, 0);
192                 if (!desc) {
193                         dev_err(i2c->dev,
194                                 "Failed to get PIO reg. write descriptor.\n");
195                         goto select_init_pio_fail;
196                 }
197
198                 /* Queue the DMA data transfer. */
199                 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
200                 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
201                 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
202                                         DMA_MEM_TO_DEV,
203                                         DMA_PREP_INTERRUPT |
204                                         MXS_DMA_CTRL_WAIT4END);
205                 if (!desc) {
206                         dev_err(i2c->dev,
207                                 "Failed to get DMA data write descriptor.\n");
208                         goto select_init_dma_fail;
209                 }
210
211                 /*
212                  * READ command.
213                  */
214
215                 /* Queue the PIO register write transfer. */
216                 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
217                                 MXS_I2C_CTRL0_XFER_COUNT(msg->len);
218                 desc = dmaengine_prep_slave_sg(i2c->dmach,
219                                         (struct scatterlist *)&i2c->pio_data[1],
220                                         1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
221                 if (!desc) {
222                         dev_err(i2c->dev,
223                                 "Failed to get PIO reg. write descriptor.\n");
224                         goto select_init_dma_fail;
225                 }
226
227                 /* Queue the DMA data transfer. */
228                 sg_init_one(&i2c->sg_io[1], buf, msg->len);
229                 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
230                 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
231                                         DMA_DEV_TO_MEM,
232                                         DMA_PREP_INTERRUPT |
233                                         MXS_DMA_CTRL_WAIT4END);
234                 if (!desc) {
235                         dev_err(i2c->dev,
236                                 "Failed to get DMA data write descriptor.\n");
237                         goto read_init_dma_fail;
238                 }
239         } else {
240                 i2c->dma_read = false;
241
242                 /*
243                  * WRITE command.
244                  */
245
246                 /* Queue the PIO register write transfer. */
247                 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
248                                 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
249                 desc = dmaengine_prep_slave_sg(i2c->dmach,
250                                         (struct scatterlist *)&i2c->pio_data[0],
251                                         1, DMA_TRANS_NONE, 0);
252                 if (!desc) {
253                         dev_err(i2c->dev,
254                                 "Failed to get PIO reg. write descriptor.\n");
255                         goto write_init_pio_fail;
256                 }
257
258                 /* Queue the DMA data transfer. */
259                 sg_init_table(i2c->sg_io, 2);
260                 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
261                 sg_set_buf(&i2c->sg_io[1], buf, msg->len);
262                 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
263                 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
264                                         DMA_MEM_TO_DEV,
265                                         DMA_PREP_INTERRUPT |
266                                         MXS_DMA_CTRL_WAIT4END);
267                 if (!desc) {
268                         dev_err(i2c->dev,
269                                 "Failed to get DMA data write descriptor.\n");
270                         goto write_init_dma_fail;
271                 }
272         }
273
274         /*
275          * The last descriptor must have this callback,
276          * to finish the DMA transaction.
277          */
278         desc->callback = mxs_i2c_dma_irq_callback;
279         desc->callback_param = i2c;
280
281         /* Start the transfer. */
282         dmaengine_submit(desc);
283         dma_async_issue_pending(i2c->dmach);
284         return 0;
285
286 /* Read failpath. */
287 read_init_dma_fail:
288         dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
289 select_init_dma_fail:
290         dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
291 select_init_pio_fail:
292         dmaengine_terminate_sync(i2c->dmach);
293         return -EINVAL;
294
295 /* Write failpath. */
296 write_init_dma_fail:
297         dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
298 write_init_pio_fail:
299         dmaengine_terminate_sync(i2c->dmach);
300         return -EINVAL;
301 }
302
303 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
304 {
305         unsigned long timeout = jiffies + msecs_to_jiffies(1000);
306
307         while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
308                 if (readl(i2c->regs + MXS_I2C_CTRL1) &
309                                 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
310                         return -ENXIO;
311                 if (time_after(jiffies, timeout))
312                         return -ETIMEDOUT;
313                 cond_resched();
314         }
315
316         return 0;
317 }
318
319 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
320 {
321         u32 state;
322
323         state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
324
325         if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
326                 i2c->cmd_err = -ENXIO;
327         else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
328                           MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
329                           MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
330                           MXS_I2C_CTRL1_SLAVE_IRQ))
331                 i2c->cmd_err = -EIO;
332
333         return i2c->cmd_err;
334 }
335
336 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
337 {
338         u32 reg;
339
340         writel(cmd, i2c->regs + MXS_I2C_CTRL0);
341
342         /* readback makes sure the write is latched into hardware */
343         reg = readl(i2c->regs + MXS_I2C_CTRL0);
344         reg |= MXS_I2C_CTRL0_RUN;
345         writel(reg, i2c->regs + MXS_I2C_CTRL0);
346 }
347
348 /*
349  * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
350  * CTRL0::PIO_MODE bit description clarifies the order in which the registers
351  * must be written during PIO mode operation. First, the CTRL0 register has
352  * to be programmed with all the necessary bits but the RUN bit. Then the
353  * payload has to be written into the DATA register. Finally, the transmission
354  * is executed by setting the RUN bit in CTRL0.
355  */
356 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
357                                           u32 data)
358 {
359         writel(cmd, i2c->regs + MXS_I2C_CTRL0);
360
361         if (i2c->dev_type == MXS_I2C_V1)
362                 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
363
364         writel(data, i2c->regs + MXS_I2C_DATA(i2c));
365         writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
366 }
367
368 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
369                         struct i2c_msg *msg, uint32_t flags)
370 {
371         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
372         uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
373         uint32_t data = 0;
374         int i, ret, xlen = 0, xmit = 0;
375         uint32_t start;
376
377         /* Mute IRQs coming from this block. */
378         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
379
380         /*
381          * MX23 idea:
382          * - Enable CTRL0::PIO_MODE (1 << 24)
383          * - Enable CTRL1::ACK_MODE (1 << 27)
384          *
385          * WARNING! The MX23 is broken in some way, even if it claims
386          * to support PIO, when we try to transfer any amount of data
387          * that is not aligned to 4 bytes, the DMA engine will have
388          * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
389          * transfer. This in turn will mess up the next transfer as
390          * the block it emit one byte write onto the bus terminated
391          * with a NAK+STOP. A possible workaround is to reset the IP
392          * block after every PIO transmission, which might just work.
393          *
394          * NOTE: The CTRL0::PIO_MODE description is important, since
395          * it outlines how the PIO mode is really supposed to work.
396          */
397         if (msg->flags & I2C_M_RD) {
398                 /*
399                  * PIO READ transfer:
400                  *
401                  * This transfer MUST be limited to 4 bytes maximum. It is not
402                  * possible to transfer more than four bytes via PIO, since we
403                  * can not in any way make sure we can read the data from the
404                  * DATA register fast enough. Besides, the RX FIFO is only four
405                  * bytes deep, thus we can only really read up to four bytes at
406                  * time. Finally, there is no bit indicating us that new data
407                  * arrived at the FIFO and can thus be fetched from the DATA
408                  * register.
409                  */
410                 BUG_ON(msg->len > 4);
411
412                 /* SELECT command. */
413                 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
414                                               addr_data);
415
416                 ret = mxs_i2c_pio_wait_xfer_end(i2c);
417                 if (ret) {
418                         dev_dbg(i2c->dev,
419                                 "PIO: Failed to send SELECT command!\n");
420                         goto cleanup;
421                 }
422
423                 /* READ command. */
424                 mxs_i2c_pio_trigger_cmd(i2c,
425                                         MXS_CMD_I2C_READ | flags |
426                                         MXS_I2C_CTRL0_XFER_COUNT(msg->len));
427
428                 ret = mxs_i2c_pio_wait_xfer_end(i2c);
429                 if (ret) {
430                         dev_dbg(i2c->dev,
431                                 "PIO: Failed to send READ command!\n");
432                         goto cleanup;
433                 }
434
435                 data = readl(i2c->regs + MXS_I2C_DATA(i2c));
436                 for (i = 0; i < msg->len; i++) {
437                         msg->buf[i] = data & 0xff;
438                         data >>= 8;
439                 }
440         } else {
441                 /*
442                  * PIO WRITE transfer:
443                  *
444                  * The code below implements clock stretching to circumvent
445                  * the possibility of kernel not being able to supply data
446                  * fast enough. It is possible to transfer arbitrary amount
447                  * of data using PIO write.
448                  */
449
450                 /*
451                  * The LSB of data buffer is the first byte blasted across
452                  * the bus. Higher order bytes follow. Thus the following
453                  * filling schematic.
454                  */
455
456                 data = addr_data << 24;
457
458                 /* Start the transfer with START condition. */
459                 start = MXS_I2C_CTRL0_PRE_SEND_START;
460
461                 /* If the transfer is long, use clock stretching. */
462                 if (msg->len > 3)
463                         start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
464
465                 for (i = 0; i < msg->len; i++) {
466                         data >>= 8;
467                         data |= (msg->buf[i] << 24);
468
469                         xmit = 0;
470
471                         /* This is the last transfer of the message. */
472                         if (i + 1 == msg->len) {
473                                 /* Add optional STOP flag. */
474                                 start |= flags;
475                                 /* Remove RETAIN_CLOCK bit. */
476                                 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
477                                 xmit = 1;
478                         }
479
480                         /* Four bytes are ready in the "data" variable. */
481                         if ((i & 3) == 2)
482                                 xmit = 1;
483
484                         /* Nothing interesting happened, continue stuffing. */
485                         if (!xmit)
486                                 continue;
487
488                         /*
489                          * Compute the size of the transfer and shift the
490                          * data accordingly.
491                          *
492                          * i = (4k + 0) .... xlen = 2
493                          * i = (4k + 1) .... xlen = 3
494                          * i = (4k + 2) .... xlen = 4
495                          * i = (4k + 3) .... xlen = 1
496                          */
497
498                         if ((i % 4) == 3)
499                                 xlen = 1;
500                         else
501                                 xlen = (i % 4) + 2;
502
503                         data >>= (4 - xlen) * 8;
504
505                         dev_dbg(i2c->dev,
506                                 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
507                                 xlen, i, msg->len,
508                                 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
509                                 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
510                                 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
511
512                         writel(MXS_I2C_DEBUG0_DMAREQ,
513                                i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
514
515                         mxs_i2c_pio_trigger_write_cmd(i2c,
516                                 start | MXS_I2C_CTRL0_MASTER_MODE |
517                                 MXS_I2C_CTRL0_DIRECTION |
518                                 MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
519
520                         /* The START condition is sent only once. */
521                         start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
522
523                         /* Wait for the end of the transfer. */
524                         ret = mxs_i2c_pio_wait_xfer_end(i2c);
525                         if (ret) {
526                                 dev_dbg(i2c->dev,
527                                         "PIO: Failed to finish WRITE cmd!\n");
528                                 break;
529                         }
530
531                         /* Check NAK here. */
532                         ret = readl(i2c->regs + MXS_I2C_STAT) &
533                                     MXS_I2C_STAT_GOT_A_NAK;
534                         if (ret) {
535                                 ret = -ENXIO;
536                                 goto cleanup;
537                         }
538                 }
539         }
540
541         /* make sure we capture any occurred error into cmd_err */
542         ret = mxs_i2c_pio_check_error_state(i2c);
543
544 cleanup:
545         /* Clear any dangling IRQs and re-enable interrupts. */
546         writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
547         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
548
549         /* Clear the PIO_MODE on i.MX23 */
550         if (i2c->dev_type == MXS_I2C_V1)
551                 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
552
553         return ret;
554 }
555
556 /*
557  * Low level master read/write transaction.
558  */
559 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
560                                 int stop)
561 {
562         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
563         int ret;
564         int flags;
565         u8 *dma_buf;
566         int use_pio = 0;
567         unsigned long time_left;
568
569         flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
570
571         dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572                 msg->addr, msg->len, msg->flags, stop);
573
574         /*
575          * The MX28 I2C IP block can only do PIO READ for transfer of to up
576          * 4 bytes of length. The write transfer is not limited as it can use
577          * clock stretching to avoid FIFO underruns.
578          */
579         if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
580                 use_pio = 1;
581         if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
582                 use_pio = 1;
583
584         i2c->cmd_err = 0;
585         if (use_pio) {
586                 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
587                 /* No need to reset the block if NAK was received. */
588                 if (ret && (ret != -ENXIO))
589                         mxs_i2c_reset(i2c);
590         } else {
591                 dma_buf = i2c_get_dma_safe_msg_buf(msg, 1);
592                 if (!dma_buf)
593                         return -ENOMEM;
594
595                 reinit_completion(&i2c->cmd_complete);
596                 ret = mxs_i2c_dma_setup_xfer(adap, msg, dma_buf, flags);
597                 if (ret) {
598                         i2c_put_dma_safe_msg_buf(dma_buf, msg, false);
599                         return ret;
600                 }
601
602                 time_left = wait_for_completion_timeout(&i2c->cmd_complete,
603                                                 msecs_to_jiffies(1000));
604                 i2c_put_dma_safe_msg_buf(dma_buf, msg, true);
605                 if (!time_left)
606                         goto timeout;
607
608                 ret = i2c->cmd_err;
609         }
610
611         if (ret == -ENXIO) {
612                 /*
613                  * If the transfer fails with a NAK from the slave the
614                  * controller halts until it gets told to return to idle state.
615                  */
616                 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
617                        i2c->regs + MXS_I2C_CTRL1_SET);
618         }
619
620         /*
621          * WARNING!
622          * The i.MX23 is strange. After each and every operation, it's I2C IP
623          * block must be reset, otherwise the IP block will misbehave. This can
624          * be observed on the bus by the block sending out one single byte onto
625          * the bus. In case such an error happens, bit 27 will be set in the
626          * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
627          * and is marked as "TBD" instead. To reset this bit to a correct state,
628          * reset the whole block. Since the block reset does not take long, do
629          * reset the block after every transfer to play safe.
630          */
631         if (i2c->dev_type == MXS_I2C_V1)
632                 mxs_i2c_reset(i2c);
633
634         dev_dbg(i2c->dev, "Done with err=%d\n", ret);
635
636         return ret;
637
638 timeout:
639         dev_dbg(i2c->dev, "Timeout!\n");
640         mxs_i2c_dma_finish(i2c);
641         ret = mxs_i2c_reset(i2c);
642         if (ret)
643                 return ret;
644
645         return -ETIMEDOUT;
646 }
647
648 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
649                         int num)
650 {
651         int i;
652         int err;
653
654         for (i = 0; i < num; i++) {
655                 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
656                 if (err)
657                         return err;
658         }
659
660         return num;
661 }
662
663 static u32 mxs_i2c_func(struct i2c_adapter *adap)
664 {
665         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
666 }
667
668 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
669 {
670         struct mxs_i2c_dev *i2c = dev_id;
671         u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
672
673         if (!stat)
674                 return IRQ_NONE;
675
676         if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
677                 i2c->cmd_err = -ENXIO;
678         else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
679                     MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
680                     MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
681                 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
682                 i2c->cmd_err = -EIO;
683
684         writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
685
686         return IRQ_HANDLED;
687 }
688
689 static const struct i2c_algorithm mxs_i2c_algo = {
690         .master_xfer = mxs_i2c_xfer,
691         .functionality = mxs_i2c_func,
692 };
693
694 static const struct i2c_adapter_quirks mxs_i2c_quirks = {
695         .flags = I2C_AQ_NO_ZERO_LEN,
696 };
697
698 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
699 {
700         /* The I2C block clock runs at 24MHz */
701         const uint32_t clk = 24000000;
702         uint32_t divider;
703         uint16_t high_count, low_count, rcv_count, xmit_count;
704         uint32_t bus_free, leadin;
705         struct device *dev = i2c->dev;
706
707         divider = DIV_ROUND_UP(clk, speed);
708
709         if (divider < 25) {
710                 /*
711                  * limit the divider, so that min(low_count, high_count)
712                  * is >= 1
713                  */
714                 divider = 25;
715                 dev_warn(dev,
716                         "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
717                         speed / 1000, speed % 1000,
718                         clk / divider / 1000, clk / divider % 1000);
719         } else if (divider > 1897) {
720                 /*
721                  * limit the divider, so that max(low_count, high_count)
722                  * cannot exceed 1023
723                  */
724                 divider = 1897;
725                 dev_warn(dev,
726                         "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
727                         speed / 1000, speed % 1000,
728                         clk / divider / 1000, clk / divider % 1000);
729         }
730
731         /*
732          * The I2C spec specifies the following timing data:
733          *                          standard mode  fast mode Bitfield name
734          * tLOW (SCL LOW period)     4700 ns        1300 ns
735          * tHIGH (SCL HIGH period)   4000 ns         600 ns
736          * tSU;DAT (data setup time)  250 ns         100 ns
737          * tHD;STA (START hold time) 4000 ns         600 ns
738          * tBUF (bus free time)      4700 ns        1300 ns
739          *
740          * The hardware (of the i.MX28 at least) seems to add 2 additional
741          * clock cycles to the low_count and 7 cycles to the high_count.
742          * This is compensated for by subtracting the respective constants
743          * from the values written to the timing registers.
744          */
745         if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
746                 /* fast mode */
747                 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
748                 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
749                 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
750                 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
751         } else {
752                 /* normal mode */
753                 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
754                 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
755                 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
756                 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
757         }
758         rcv_count = high_count * 3 / 8;
759         xmit_count = low_count * 3 / 8;
760
761         dev_dbg(dev,
762                 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
763                 speed, clk / divider, divider, low_count, high_count,
764                 xmit_count, rcv_count, leadin, bus_free);
765
766         low_count -= 2;
767         high_count -= 7;
768         i2c->timing0 = (high_count << 16) | rcv_count;
769         i2c->timing1 = (low_count << 16) | xmit_count;
770         i2c->timing2 = (bus_free << 16 | leadin);
771 }
772
773 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
774 {
775         uint32_t speed;
776         struct device *dev = i2c->dev;
777         struct device_node *node = dev->of_node;
778         int ret;
779
780         ret = of_property_read_u32(node, "clock-frequency", &speed);
781         if (ret) {
782                 dev_warn(dev, "No I2C speed selected, using 100kHz\n");
783                 speed = I2C_MAX_STANDARD_MODE_FREQ;
784         }
785
786         mxs_i2c_derive_timing(i2c, speed);
787
788         return 0;
789 }
790
791 static const struct of_device_id mxs_i2c_dt_ids[] = {
792         { .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
793         { .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
794         { /* sentinel */ }
795 };
796 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
797
798 static int mxs_i2c_probe(struct platform_device *pdev)
799 {
800         struct device *dev = &pdev->dev;
801         struct mxs_i2c_dev *i2c;
802         struct i2c_adapter *adap;
803         int err, irq;
804
805         i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
806         if (!i2c)
807                 return -ENOMEM;
808
809         i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev);
810
811         i2c->regs = devm_platform_ioremap_resource(pdev, 0);
812         if (IS_ERR(i2c->regs))
813                 return PTR_ERR(i2c->regs);
814
815         irq = platform_get_irq(pdev, 0);
816         if (irq < 0)
817                 return irq;
818
819         err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
820         if (err)
821                 return err;
822
823         i2c->dev = dev;
824
825         init_completion(&i2c->cmd_complete);
826
827         if (dev->of_node) {
828                 err = mxs_i2c_get_ofdata(i2c);
829                 if (err)
830                         return err;
831         }
832
833         /* Setup the DMA */
834         i2c->dmach = dma_request_chan(dev, "rx-tx");
835         if (IS_ERR(i2c->dmach)) {
836                 return dev_err_probe(dev, PTR_ERR(i2c->dmach),
837                                      "Failed to request dma\n");
838         }
839
840         platform_set_drvdata(pdev, i2c);
841
842         /* Do reset to enforce correct startup after pinmuxing */
843         err = mxs_i2c_reset(i2c);
844         if (err)
845                 return err;
846
847         adap = &i2c->adapter;
848         strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
849         adap->owner = THIS_MODULE;
850         adap->algo = &mxs_i2c_algo;
851         adap->quirks = &mxs_i2c_quirks;
852         adap->dev.parent = dev;
853         adap->nr = pdev->id;
854         adap->dev.of_node = pdev->dev.of_node;
855         i2c_set_adapdata(adap, i2c);
856         err = i2c_add_numbered_adapter(adap);
857         if (err) {
858                 writel(MXS_I2C_CTRL0_SFTRST,
859                                 i2c->regs + MXS_I2C_CTRL0_SET);
860                 return err;
861         }
862
863         return 0;
864 }
865
866 static void mxs_i2c_remove(struct platform_device *pdev)
867 {
868         struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
869
870         i2c_del_adapter(&i2c->adapter);
871
872         if (i2c->dmach)
873                 dma_release_channel(i2c->dmach);
874
875         writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
876 }
877
878 static struct platform_driver mxs_i2c_driver = {
879         .driver = {
880                    .name = DRIVER_NAME,
881                    .of_match_table = mxs_i2c_dt_ids,
882                    },
883         .probe = mxs_i2c_probe,
884         .remove_new = mxs_i2c_remove,
885 };
886
887 static int __init mxs_i2c_init(void)
888 {
889         return platform_driver_register(&mxs_i2c_driver);
890 }
891 subsys_initcall(mxs_i2c_init);
892
893 static void __exit mxs_i2c_exit(void)
894 {
895         platform_driver_unregister(&mxs_i2c_driver);
896 }
897 module_exit(mxs_i2c_exit);
898
899 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
900 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
901 MODULE_DESCRIPTION("MXS I2C Bus Driver");
902 MODULE_LICENSE("GPL");
903 MODULE_ALIAS("platform:" DRIVER_NAME);