Merge tag 'driver-core-5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / hwmon / occ / common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright IBM Corp 2019
3
4 #include <linux/device.h>
5 #include <linux/export.h>
6 #include <linux/hwmon.h>
7 #include <linux/hwmon-sysfs.h>
8 #include <linux/jiffies.h>
9 #include <linux/kernel.h>
10 #include <linux/math64.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/sysfs.h>
14 #include <asm/unaligned.h>
15
16 #include "common.h"
17
18 #define EXTN_FLAG_SENSOR_ID             BIT(7)
19
20 #define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
21
22 #define OCC_STATE_SAFE                  4
23 #define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
24
25 #define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
26
27 #define OCC_TEMP_SENSOR_FAULT           0xFF
28
29 #define OCC_FRU_TYPE_VRM                3
30
31 /* OCC sensor type and version definitions */
32
33 struct temp_sensor_1 {
34         u16 sensor_id;
35         u16 value;
36 } __packed;
37
38 struct temp_sensor_2 {
39         u32 sensor_id;
40         u8 fru_type;
41         u8 value;
42 } __packed;
43
44 struct freq_sensor_1 {
45         u16 sensor_id;
46         u16 value;
47 } __packed;
48
49 struct freq_sensor_2 {
50         u32 sensor_id;
51         u16 value;
52 } __packed;
53
54 struct power_sensor_1 {
55         u16 sensor_id;
56         u32 update_tag;
57         u32 accumulator;
58         u16 value;
59 } __packed;
60
61 struct power_sensor_2 {
62         u32 sensor_id;
63         u8 function_id;
64         u8 apss_channel;
65         u16 reserved;
66         u32 update_tag;
67         u64 accumulator;
68         u16 value;
69 } __packed;
70
71 struct power_sensor_data {
72         u16 value;
73         u32 update_tag;
74         u64 accumulator;
75 } __packed;
76
77 struct power_sensor_data_and_time {
78         u16 update_time;
79         u16 value;
80         u32 update_tag;
81         u64 accumulator;
82 } __packed;
83
84 struct power_sensor_a0 {
85         u32 sensor_id;
86         struct power_sensor_data_and_time system;
87         u32 reserved;
88         struct power_sensor_data_and_time proc;
89         struct power_sensor_data vdd;
90         struct power_sensor_data vdn;
91 } __packed;
92
93 struct caps_sensor_2 {
94         u16 cap;
95         u16 system_power;
96         u16 n_cap;
97         u16 max;
98         u16 min;
99         u16 user;
100         u8 user_source;
101 } __packed;
102
103 struct caps_sensor_3 {
104         u16 cap;
105         u16 system_power;
106         u16 n_cap;
107         u16 max;
108         u16 hard_min;
109         u16 soft_min;
110         u16 user;
111         u8 user_source;
112 } __packed;
113
114 struct extended_sensor {
115         union {
116                 u8 name[4];
117                 u32 sensor_id;
118         };
119         u8 flags;
120         u8 reserved;
121         u8 data[6];
122 } __packed;
123
124 static int occ_poll(struct occ *occ)
125 {
126         int rc;
127         u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
128         u8 cmd[8];
129         struct occ_poll_response_header *header;
130
131         /* big endian */
132         cmd[0] = occ->seq_no++;         /* sequence number */
133         cmd[1] = 0;                     /* cmd type */
134         cmd[2] = 0;                     /* data length msb */
135         cmd[3] = 1;                     /* data length lsb */
136         cmd[4] = occ->poll_cmd_data;    /* data */
137         cmd[5] = checksum >> 8;         /* checksum msb */
138         cmd[6] = checksum & 0xFF;       /* checksum lsb */
139         cmd[7] = 0;
140
141         /* mutex should already be locked if necessary */
142         rc = occ->send_cmd(occ, cmd);
143         if (rc) {
144                 occ->last_error = rc;
145                 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
146                         occ->error = rc;
147
148                 goto done;
149         }
150
151         /* clear error since communication was successful */
152         occ->error_count = 0;
153         occ->last_error = 0;
154         occ->error = 0;
155
156         /* check for safe state */
157         header = (struct occ_poll_response_header *)occ->resp.data;
158         if (header->occ_state == OCC_STATE_SAFE) {
159                 if (occ->last_safe) {
160                         if (time_after(jiffies,
161                                        occ->last_safe + OCC_SAFE_TIMEOUT))
162                                 occ->error = -EHOSTDOWN;
163                 } else {
164                         occ->last_safe = jiffies;
165                 }
166         } else {
167                 occ->last_safe = 0;
168         }
169
170 done:
171         occ_sysfs_poll_done(occ);
172         return rc;
173 }
174
175 static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
176 {
177         int rc;
178         u8 cmd[8];
179         u16 checksum = 0x24;
180         __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
181
182         cmd[0] = 0;
183         cmd[1] = 0x22;
184         cmd[2] = 0;
185         cmd[3] = 2;
186
187         memcpy(&cmd[4], &user_power_cap_be, 2);
188
189         checksum += cmd[4] + cmd[5];
190         cmd[6] = checksum >> 8;
191         cmd[7] = checksum & 0xFF;
192
193         rc = mutex_lock_interruptible(&occ->lock);
194         if (rc)
195                 return rc;
196
197         rc = occ->send_cmd(occ, cmd);
198
199         mutex_unlock(&occ->lock);
200
201         return rc;
202 }
203
204 int occ_update_response(struct occ *occ)
205 {
206         int rc = mutex_lock_interruptible(&occ->lock);
207
208         if (rc)
209                 return rc;
210
211         /* limit the maximum rate of polling the OCC */
212         if (time_after(jiffies, occ->last_update + OCC_UPDATE_FREQUENCY)) {
213                 rc = occ_poll(occ);
214                 occ->last_update = jiffies;
215         } else {
216                 rc = occ->last_error;
217         }
218
219         mutex_unlock(&occ->lock);
220         return rc;
221 }
222
223 static ssize_t occ_show_temp_1(struct device *dev,
224                                struct device_attribute *attr, char *buf)
225 {
226         int rc;
227         u32 val = 0;
228         struct temp_sensor_1 *temp;
229         struct occ *occ = dev_get_drvdata(dev);
230         struct occ_sensors *sensors = &occ->sensors;
231         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
232
233         rc = occ_update_response(occ);
234         if (rc)
235                 return rc;
236
237         temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
238
239         switch (sattr->nr) {
240         case 0:
241                 val = get_unaligned_be16(&temp->sensor_id);
242                 break;
243         case 1:
244                 /*
245                  * If a sensor reading has expired and couldn't be refreshed,
246                  * OCC returns 0xFFFF for that sensor.
247                  */
248                 if (temp->value == 0xFFFF)
249                         return -EREMOTEIO;
250                 val = get_unaligned_be16(&temp->value) * 1000;
251                 break;
252         default:
253                 return -EINVAL;
254         }
255
256         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
257 }
258
259 static ssize_t occ_show_temp_2(struct device *dev,
260                                struct device_attribute *attr, char *buf)
261 {
262         int rc;
263         u32 val = 0;
264         struct temp_sensor_2 *temp;
265         struct occ *occ = dev_get_drvdata(dev);
266         struct occ_sensors *sensors = &occ->sensors;
267         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
268
269         rc = occ_update_response(occ);
270         if (rc)
271                 return rc;
272
273         temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
274
275         switch (sattr->nr) {
276         case 0:
277                 val = get_unaligned_be32(&temp->sensor_id);
278                 break;
279         case 1:
280                 val = temp->value;
281                 if (val == OCC_TEMP_SENSOR_FAULT)
282                         return -EREMOTEIO;
283
284                 /*
285                  * VRM doesn't return temperature, only alarm bit. This
286                  * attribute maps to tempX_alarm instead of tempX_input for
287                  * VRM
288                  */
289                 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
290                         /* sensor not ready */
291                         if (val == 0)
292                                 return -EAGAIN;
293
294                         val *= 1000;
295                 }
296                 break;
297         case 2:
298                 val = temp->fru_type;
299                 break;
300         case 3:
301                 val = temp->value == OCC_TEMP_SENSOR_FAULT;
302                 break;
303         default:
304                 return -EINVAL;
305         }
306
307         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
308 }
309
310 static ssize_t occ_show_freq_1(struct device *dev,
311                                struct device_attribute *attr, char *buf)
312 {
313         int rc;
314         u16 val = 0;
315         struct freq_sensor_1 *freq;
316         struct occ *occ = dev_get_drvdata(dev);
317         struct occ_sensors *sensors = &occ->sensors;
318         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
319
320         rc = occ_update_response(occ);
321         if (rc)
322                 return rc;
323
324         freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
325
326         switch (sattr->nr) {
327         case 0:
328                 val = get_unaligned_be16(&freq->sensor_id);
329                 break;
330         case 1:
331                 val = get_unaligned_be16(&freq->value);
332                 break;
333         default:
334                 return -EINVAL;
335         }
336
337         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
338 }
339
340 static ssize_t occ_show_freq_2(struct device *dev,
341                                struct device_attribute *attr, char *buf)
342 {
343         int rc;
344         u32 val = 0;
345         struct freq_sensor_2 *freq;
346         struct occ *occ = dev_get_drvdata(dev);
347         struct occ_sensors *sensors = &occ->sensors;
348         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
349
350         rc = occ_update_response(occ);
351         if (rc)
352                 return rc;
353
354         freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
355
356         switch (sattr->nr) {
357         case 0:
358                 val = get_unaligned_be32(&freq->sensor_id);
359                 break;
360         case 1:
361                 val = get_unaligned_be16(&freq->value);
362                 break;
363         default:
364                 return -EINVAL;
365         }
366
367         return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
368 }
369
370 static ssize_t occ_show_power_1(struct device *dev,
371                                 struct device_attribute *attr, char *buf)
372 {
373         int rc;
374         u64 val = 0;
375         struct power_sensor_1 *power;
376         struct occ *occ = dev_get_drvdata(dev);
377         struct occ_sensors *sensors = &occ->sensors;
378         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
379
380         rc = occ_update_response(occ);
381         if (rc)
382                 return rc;
383
384         power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
385
386         switch (sattr->nr) {
387         case 0:
388                 val = get_unaligned_be16(&power->sensor_id);
389                 break;
390         case 1:
391                 val = get_unaligned_be32(&power->accumulator) /
392                         get_unaligned_be32(&power->update_tag);
393                 val *= 1000000ULL;
394                 break;
395         case 2:
396                 val = (u64)get_unaligned_be32(&power->update_tag) *
397                            occ->powr_sample_time_us;
398                 break;
399         case 3:
400                 val = get_unaligned_be16(&power->value) * 1000000ULL;
401                 break;
402         default:
403                 return -EINVAL;
404         }
405
406         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
407 }
408
409 static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
410 {
411         return div64_u64(get_unaligned_be64(accum) * 1000000ULL,
412                          get_unaligned_be32(samples));
413 }
414
415 static ssize_t occ_show_power_2(struct device *dev,
416                                 struct device_attribute *attr, char *buf)
417 {
418         int rc;
419         u64 val = 0;
420         struct power_sensor_2 *power;
421         struct occ *occ = dev_get_drvdata(dev);
422         struct occ_sensors *sensors = &occ->sensors;
423         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
424
425         rc = occ_update_response(occ);
426         if (rc)
427                 return rc;
428
429         power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
430
431         switch (sattr->nr) {
432         case 0:
433                 return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
434                                 get_unaligned_be32(&power->sensor_id),
435                                 power->function_id, power->apss_channel);
436         case 1:
437                 val = occ_get_powr_avg(&power->accumulator,
438                                        &power->update_tag);
439                 break;
440         case 2:
441                 val = (u64)get_unaligned_be32(&power->update_tag) *
442                            occ->powr_sample_time_us;
443                 break;
444         case 3:
445                 val = get_unaligned_be16(&power->value) * 1000000ULL;
446                 break;
447         default:
448                 return -EINVAL;
449         }
450
451         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
452 }
453
454 static ssize_t occ_show_power_a0(struct device *dev,
455                                  struct device_attribute *attr, char *buf)
456 {
457         int rc;
458         u64 val = 0;
459         struct power_sensor_a0 *power;
460         struct occ *occ = dev_get_drvdata(dev);
461         struct occ_sensors *sensors = &occ->sensors;
462         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
463
464         rc = occ_update_response(occ);
465         if (rc)
466                 return rc;
467
468         power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
469
470         switch (sattr->nr) {
471         case 0:
472                 return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
473                                 get_unaligned_be32(&power->sensor_id));
474         case 1:
475                 val = occ_get_powr_avg(&power->system.accumulator,
476                                        &power->system.update_tag);
477                 break;
478         case 2:
479                 val = (u64)get_unaligned_be32(&power->system.update_tag) *
480                            occ->powr_sample_time_us;
481                 break;
482         case 3:
483                 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
484                 break;
485         case 4:
486                 return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
487                                 get_unaligned_be32(&power->sensor_id));
488         case 5:
489                 val = occ_get_powr_avg(&power->proc.accumulator,
490                                        &power->proc.update_tag);
491                 break;
492         case 6:
493                 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
494                            occ->powr_sample_time_us;
495                 break;
496         case 7:
497                 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
498                 break;
499         case 8:
500                 return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
501                                 get_unaligned_be32(&power->sensor_id));
502         case 9:
503                 val = occ_get_powr_avg(&power->vdd.accumulator,
504                                        &power->vdd.update_tag);
505                 break;
506         case 10:
507                 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
508                            occ->powr_sample_time_us;
509                 break;
510         case 11:
511                 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
512                 break;
513         case 12:
514                 return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
515                                 get_unaligned_be32(&power->sensor_id));
516         case 13:
517                 val = occ_get_powr_avg(&power->vdn.accumulator,
518                                        &power->vdn.update_tag);
519                 break;
520         case 14:
521                 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
522                            occ->powr_sample_time_us;
523                 break;
524         case 15:
525                 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
526                 break;
527         default:
528                 return -EINVAL;
529         }
530
531         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
532 }
533
534 static ssize_t occ_show_caps_1_2(struct device *dev,
535                                  struct device_attribute *attr, char *buf)
536 {
537         int rc;
538         u64 val = 0;
539         struct caps_sensor_2 *caps;
540         struct occ *occ = dev_get_drvdata(dev);
541         struct occ_sensors *sensors = &occ->sensors;
542         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
543
544         rc = occ_update_response(occ);
545         if (rc)
546                 return rc;
547
548         caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
549
550         switch (sattr->nr) {
551         case 0:
552                 return snprintf(buf, PAGE_SIZE - 1, "system\n");
553         case 1:
554                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
555                 break;
556         case 2:
557                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
558                 break;
559         case 3:
560                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
561                 break;
562         case 4:
563                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
564                 break;
565         case 5:
566                 val = get_unaligned_be16(&caps->min) * 1000000ULL;
567                 break;
568         case 6:
569                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
570                 break;
571         case 7:
572                 if (occ->sensors.caps.version == 1)
573                         return -EINVAL;
574
575                 val = caps->user_source;
576                 break;
577         default:
578                 return -EINVAL;
579         }
580
581         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
582 }
583
584 static ssize_t occ_show_caps_3(struct device *dev,
585                                struct device_attribute *attr, char *buf)
586 {
587         int rc;
588         u64 val = 0;
589         struct caps_sensor_3 *caps;
590         struct occ *occ = dev_get_drvdata(dev);
591         struct occ_sensors *sensors = &occ->sensors;
592         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
593
594         rc = occ_update_response(occ);
595         if (rc)
596                 return rc;
597
598         caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
599
600         switch (sattr->nr) {
601         case 0:
602                 return snprintf(buf, PAGE_SIZE - 1, "system\n");
603         case 1:
604                 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
605                 break;
606         case 2:
607                 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
608                 break;
609         case 3:
610                 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
611                 break;
612         case 4:
613                 val = get_unaligned_be16(&caps->max) * 1000000ULL;
614                 break;
615         case 5:
616                 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
617                 break;
618         case 6:
619                 val = get_unaligned_be16(&caps->user) * 1000000ULL;
620                 break;
621         case 7:
622                 val = caps->user_source;
623                 break;
624         default:
625                 return -EINVAL;
626         }
627
628         return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
629 }
630
631 static ssize_t occ_store_caps_user(struct device *dev,
632                                    struct device_attribute *attr,
633                                    const char *buf, size_t count)
634 {
635         int rc;
636         u16 user_power_cap;
637         unsigned long long value;
638         struct occ *occ = dev_get_drvdata(dev);
639
640         rc = kstrtoull(buf, 0, &value);
641         if (rc)
642                 return rc;
643
644         user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
645
646         rc = occ_set_user_power_cap(occ, user_power_cap);
647         if (rc)
648                 return rc;
649
650         return count;
651 }
652
653 static ssize_t occ_show_extended(struct device *dev,
654                                  struct device_attribute *attr, char *buf)
655 {
656         int rc;
657         struct extended_sensor *extn;
658         struct occ *occ = dev_get_drvdata(dev);
659         struct occ_sensors *sensors = &occ->sensors;
660         struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
661
662         rc = occ_update_response(occ);
663         if (rc)
664                 return rc;
665
666         extn = ((struct extended_sensor *)sensors->extended.data) +
667                 sattr->index;
668
669         switch (sattr->nr) {
670         case 0:
671                 if (extn->flags & EXTN_FLAG_SENSOR_ID)
672                         rc = snprintf(buf, PAGE_SIZE - 1, "%u",
673                                       get_unaligned_be32(&extn->sensor_id));
674                 else
675                         rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
676                                       extn->name[0], extn->name[1],
677                                       extn->name[2], extn->name[3]);
678                 break;
679         case 1:
680                 rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
681                 break;
682         case 2:
683                 rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
684                               extn->data[0], extn->data[1], extn->data[2],
685                               extn->data[3], extn->data[4], extn->data[5]);
686                 break;
687         default:
688                 return -EINVAL;
689         }
690
691         return rc;
692 }
693
694 /*
695  * Some helper macros to make it easier to define an occ_attribute. Since these
696  * are dynamically allocated, we shouldn't use the existing kernel macros which
697  * stringify the name argument.
698  */
699 #define ATTR_OCC(_name, _mode, _show, _store) {                         \
700         .attr   = {                                                     \
701                 .name = _name,                                          \
702                 .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
703         },                                                              \
704         .show   = _show,                                                \
705         .store  = _store,                                               \
706 }
707
708 #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
709         .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
710         .index          = _index,                                       \
711         .nr             = _nr,                                          \
712 }
713
714 #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
715         ((struct sensor_device_attribute_2)                             \
716                 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
717
718 /*
719  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
720  * use our own instead of the built-in hwmon attribute types.
721  */
722 static int occ_setup_sensor_attrs(struct occ *occ)
723 {
724         unsigned int i, s, num_attrs = 0;
725         struct device *dev = occ->bus_dev;
726         struct occ_sensors *sensors = &occ->sensors;
727         struct occ_attribute *attr;
728         struct temp_sensor_2 *temp;
729         ssize_t (*show_temp)(struct device *, struct device_attribute *,
730                              char *) = occ_show_temp_1;
731         ssize_t (*show_freq)(struct device *, struct device_attribute *,
732                              char *) = occ_show_freq_1;
733         ssize_t (*show_power)(struct device *, struct device_attribute *,
734                               char *) = occ_show_power_1;
735         ssize_t (*show_caps)(struct device *, struct device_attribute *,
736                              char *) = occ_show_caps_1_2;
737
738         switch (sensors->temp.version) {
739         case 1:
740                 num_attrs += (sensors->temp.num_sensors * 2);
741                 break;
742         case 2:
743                 num_attrs += (sensors->temp.num_sensors * 4);
744                 show_temp = occ_show_temp_2;
745                 break;
746         default:
747                 sensors->temp.num_sensors = 0;
748         }
749
750         switch (sensors->freq.version) {
751         case 2:
752                 show_freq = occ_show_freq_2;
753                 /* fall through */
754         case 1:
755                 num_attrs += (sensors->freq.num_sensors * 2);
756                 break;
757         default:
758                 sensors->freq.num_sensors = 0;
759         }
760
761         switch (sensors->power.version) {
762         case 2:
763                 show_power = occ_show_power_2;
764                 /* fall through */
765         case 1:
766                 num_attrs += (sensors->power.num_sensors * 4);
767                 break;
768         case 0xA0:
769                 num_attrs += (sensors->power.num_sensors * 16);
770                 show_power = occ_show_power_a0;
771                 break;
772         default:
773                 sensors->power.num_sensors = 0;
774         }
775
776         switch (sensors->caps.version) {
777         case 1:
778                 num_attrs += (sensors->caps.num_sensors * 7);
779                 break;
780         case 3:
781                 show_caps = occ_show_caps_3;
782                 /* fall through */
783         case 2:
784                 num_attrs += (sensors->caps.num_sensors * 8);
785                 break;
786         default:
787                 sensors->caps.num_sensors = 0;
788         }
789
790         switch (sensors->extended.version) {
791         case 1:
792                 num_attrs += (sensors->extended.num_sensors * 3);
793                 break;
794         default:
795                 sensors->extended.num_sensors = 0;
796         }
797
798         occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
799                                   GFP_KERNEL);
800         if (!occ->attrs)
801                 return -ENOMEM;
802
803         /* null-terminated list */
804         occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
805                                         num_attrs + 1, GFP_KERNEL);
806         if (!occ->group.attrs)
807                 return -ENOMEM;
808
809         attr = occ->attrs;
810
811         for (i = 0; i < sensors->temp.num_sensors; ++i) {
812                 s = i + 1;
813                 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
814
815                 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
816                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
817                                              0, i);
818                 attr++;
819
820                 if (sensors->temp.version > 1 &&
821                     temp->fru_type == OCC_FRU_TYPE_VRM) {
822                         snprintf(attr->name, sizeof(attr->name),
823                                  "temp%d_alarm", s);
824                 } else {
825                         snprintf(attr->name, sizeof(attr->name),
826                                  "temp%d_input", s);
827                 }
828
829                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
830                                              1, i);
831                 attr++;
832
833                 if (sensors->temp.version > 1) {
834                         snprintf(attr->name, sizeof(attr->name),
835                                  "temp%d_fru_type", s);
836                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
837                                                      show_temp, NULL, 2, i);
838                         attr++;
839
840                         snprintf(attr->name, sizeof(attr->name),
841                                  "temp%d_fault", s);
842                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
843                                                      show_temp, NULL, 3, i);
844                         attr++;
845                 }
846         }
847
848         for (i = 0; i < sensors->freq.num_sensors; ++i) {
849                 s = i + 1;
850
851                 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
852                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
853                                              0, i);
854                 attr++;
855
856                 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
857                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
858                                              1, i);
859                 attr++;
860         }
861
862         if (sensors->power.version == 0xA0) {
863                 /*
864                  * Special case for many-attribute power sensor. Split it into
865                  * a sensor number per power type, emulating several sensors.
866                  */
867                 for (i = 0; i < sensors->power.num_sensors; ++i) {
868                         unsigned int j;
869                         unsigned int nr = 0;
870
871                         s = (i * 4) + 1;
872
873                         for (j = 0; j < 4; ++j) {
874                                 snprintf(attr->name, sizeof(attr->name),
875                                          "power%d_label", s);
876                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
877                                                              show_power, NULL,
878                                                              nr++, i);
879                                 attr++;
880
881                                 snprintf(attr->name, sizeof(attr->name),
882                                          "power%d_average", s);
883                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
884                                                              show_power, NULL,
885                                                              nr++, i);
886                                 attr++;
887
888                                 snprintf(attr->name, sizeof(attr->name),
889                                          "power%d_average_interval", s);
890                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
891                                                              show_power, NULL,
892                                                              nr++, i);
893                                 attr++;
894
895                                 snprintf(attr->name, sizeof(attr->name),
896                                          "power%d_input", s);
897                                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
898                                                              show_power, NULL,
899                                                              nr++, i);
900                                 attr++;
901
902                                 s++;
903                         }
904                 }
905
906                 s = (sensors->power.num_sensors * 4) + 1;
907         } else {
908                 for (i = 0; i < sensors->power.num_sensors; ++i) {
909                         s = i + 1;
910
911                         snprintf(attr->name, sizeof(attr->name),
912                                  "power%d_label", s);
913                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
914                                                      show_power, NULL, 0, i);
915                         attr++;
916
917                         snprintf(attr->name, sizeof(attr->name),
918                                  "power%d_average", s);
919                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
920                                                      show_power, NULL, 1, i);
921                         attr++;
922
923                         snprintf(attr->name, sizeof(attr->name),
924                                  "power%d_average_interval", s);
925                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
926                                                      show_power, NULL, 2, i);
927                         attr++;
928
929                         snprintf(attr->name, sizeof(attr->name),
930                                  "power%d_input", s);
931                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
932                                                      show_power, NULL, 3, i);
933                         attr++;
934                 }
935
936                 s = sensors->power.num_sensors + 1;
937         }
938
939         if (sensors->caps.num_sensors >= 1) {
940                 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
941                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
942                                              0, 0);
943                 attr++;
944
945                 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
946                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
947                                              1, 0);
948                 attr++;
949
950                 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
951                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
952                                              2, 0);
953                 attr++;
954
955                 snprintf(attr->name, sizeof(attr->name),
956                          "power%d_cap_not_redundant", s);
957                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
958                                              3, 0);
959                 attr++;
960
961                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
962                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
963                                              4, 0);
964                 attr++;
965
966                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
967                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
968                                              5, 0);
969                 attr++;
970
971                 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
972                          s);
973                 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
974                                              occ_store_caps_user, 6, 0);
975                 attr++;
976
977                 if (sensors->caps.version > 1) {
978                         snprintf(attr->name, sizeof(attr->name),
979                                  "power%d_cap_user_source", s);
980                         attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
981                                                      show_caps, NULL, 7, 0);
982                         attr++;
983                 }
984         }
985
986         for (i = 0; i < sensors->extended.num_sensors; ++i) {
987                 s = i + 1;
988
989                 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
990                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
991                                              occ_show_extended, NULL, 0, i);
992                 attr++;
993
994                 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
995                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
996                                              occ_show_extended, NULL, 1, i);
997                 attr++;
998
999                 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1000                 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1001                                              occ_show_extended, NULL, 2, i);
1002                 attr++;
1003         }
1004
1005         /* put the sensors in the group */
1006         for (i = 0; i < num_attrs; ++i) {
1007                 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1008                 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1009         }
1010
1011         return 0;
1012 }
1013
1014 /* only need to do this once at startup, as OCC won't change sensors on us */
1015 static void occ_parse_poll_response(struct occ *occ)
1016 {
1017         unsigned int i, old_offset, offset = 0, size = 0;
1018         struct occ_sensor *sensor;
1019         struct occ_sensors *sensors = &occ->sensors;
1020         struct occ_response *resp = &occ->resp;
1021         struct occ_poll_response *poll =
1022                 (struct occ_poll_response *)&resp->data[0];
1023         struct occ_poll_response_header *header = &poll->header;
1024         struct occ_sensor_data_block *block = &poll->block;
1025
1026         dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1027                  header->occ_code_level);
1028
1029         for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1030                 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1031                 old_offset = offset;
1032                 offset = (block->header.num_sensors *
1033                           block->header.sensor_length) + sizeof(block->header);
1034                 size += offset;
1035
1036                 /* validate all the length/size fields */
1037                 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1038                         dev_warn(occ->bus_dev, "exceeded response buffer\n");
1039                         return;
1040                 }
1041
1042                 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1043                         old_offset, offset - 1, block->header.eye_catcher,
1044                         block->header.num_sensors);
1045
1046                 /* match sensor block type */
1047                 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1048                         sensor = &sensors->temp;
1049                 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1050                         sensor = &sensors->freq;
1051                 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1052                         sensor = &sensors->power;
1053                 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1054                         sensor = &sensors->caps;
1055                 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1056                         sensor = &sensors->extended;
1057                 else {
1058                         dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1059                                  block->header.eye_catcher);
1060                         continue;
1061                 }
1062
1063                 sensor->num_sensors = block->header.num_sensors;
1064                 sensor->version = block->header.sensor_format;
1065                 sensor->data = &block->data;
1066         }
1067
1068         dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1069                 sizeof(*header), size + sizeof(*header));
1070 }
1071
1072 int occ_setup(struct occ *occ, const char *name)
1073 {
1074         int rc;
1075
1076         mutex_init(&occ->lock);
1077         occ->groups[0] = &occ->group;
1078
1079         /* no need to lock */
1080         rc = occ_poll(occ);
1081         if (rc == -ESHUTDOWN) {
1082                 dev_info(occ->bus_dev, "host is not ready\n");
1083                 return rc;
1084         } else if (rc < 0) {
1085                 dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
1086                         rc);
1087                 return rc;
1088         }
1089
1090         occ_parse_poll_response(occ);
1091
1092         rc = occ_setup_sensor_attrs(occ);
1093         if (rc) {
1094                 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1095                         rc);
1096                 return rc;
1097         }
1098
1099         occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1100                                                             occ, occ->groups);
1101         if (IS_ERR(occ->hwmon)) {
1102                 rc = PTR_ERR(occ->hwmon);
1103                 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1104                         rc);
1105                 return rc;
1106         }
1107
1108         rc = occ_setup_sysfs(occ);
1109         if (rc)
1110                 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1111
1112         return rc;
1113 }
1114 EXPORT_SYMBOL_GPL(occ_setup);
1115
1116 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1117 MODULE_DESCRIPTION("Common OCC hwmon code");
1118 MODULE_LICENSE("GPL");