Merge branch 'for-6.3/hid-bpf' into for-linus
[linux-block.git] / drivers / hid / hid-core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10
11 /*
12  */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39  * Version Information
40  */
41
42 #define DRIVER_DESC "HID core driver"
43
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47
48 /*
49  * Register a new report for a device.
50  */
51
52 struct hid_report *hid_register_report(struct hid_device *device,
53                                        enum hid_report_type type, unsigned int id,
54                                        unsigned int application)
55 {
56         struct hid_report_enum *report_enum = device->report_enum + type;
57         struct hid_report *report;
58
59         if (id >= HID_MAX_IDS)
60                 return NULL;
61         if (report_enum->report_id_hash[id])
62                 return report_enum->report_id_hash[id];
63
64         report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65         if (!report)
66                 return NULL;
67
68         if (id != 0)
69                 report_enum->numbered = 1;
70
71         report->id = id;
72         report->type = type;
73         report->size = 0;
74         report->device = device;
75         report->application = application;
76         report_enum->report_id_hash[id] = report;
77
78         list_add_tail(&report->list, &report_enum->report_list);
79         INIT_LIST_HEAD(&report->field_entry_list);
80
81         return report;
82 }
83 EXPORT_SYMBOL_GPL(hid_register_report);
84
85 /*
86  * Register a new field for this report.
87  */
88
89 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
90 {
91         struct hid_field *field;
92
93         if (report->maxfield == HID_MAX_FIELDS) {
94                 hid_err(report->device, "too many fields in report\n");
95                 return NULL;
96         }
97
98         field = kzalloc((sizeof(struct hid_field) +
99                          usages * sizeof(struct hid_usage) +
100                          3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101         if (!field)
102                 return NULL;
103
104         field->index = report->maxfield++;
105         report->field[field->index] = field;
106         field->usage = (struct hid_usage *)(field + 1);
107         field->value = (s32 *)(field->usage + usages);
108         field->new_value = (s32 *)(field->value + usages);
109         field->usages_priorities = (s32 *)(field->new_value + usages);
110         field->report = report;
111
112         return field;
113 }
114
115 /*
116  * Open a collection. The type/usage is pushed on the stack.
117  */
118
119 static int open_collection(struct hid_parser *parser, unsigned type)
120 {
121         struct hid_collection *collection;
122         unsigned usage;
123         int collection_index;
124
125         usage = parser->local.usage[0];
126
127         if (parser->collection_stack_ptr == parser->collection_stack_size) {
128                 unsigned int *collection_stack;
129                 unsigned int new_size = parser->collection_stack_size +
130                                         HID_COLLECTION_STACK_SIZE;
131
132                 collection_stack = krealloc(parser->collection_stack,
133                                             new_size * sizeof(unsigned int),
134                                             GFP_KERNEL);
135                 if (!collection_stack)
136                         return -ENOMEM;
137
138                 parser->collection_stack = collection_stack;
139                 parser->collection_stack_size = new_size;
140         }
141
142         if (parser->device->maxcollection == parser->device->collection_size) {
143                 collection = kmalloc(
144                                 array3_size(sizeof(struct hid_collection),
145                                             parser->device->collection_size,
146                                             2),
147                                 GFP_KERNEL);
148                 if (collection == NULL) {
149                         hid_err(parser->device, "failed to reallocate collection array\n");
150                         return -ENOMEM;
151                 }
152                 memcpy(collection, parser->device->collection,
153                         sizeof(struct hid_collection) *
154                         parser->device->collection_size);
155                 memset(collection + parser->device->collection_size, 0,
156                         sizeof(struct hid_collection) *
157                         parser->device->collection_size);
158                 kfree(parser->device->collection);
159                 parser->device->collection = collection;
160                 parser->device->collection_size *= 2;
161         }
162
163         parser->collection_stack[parser->collection_stack_ptr++] =
164                 parser->device->maxcollection;
165
166         collection_index = parser->device->maxcollection++;
167         collection = parser->device->collection + collection_index;
168         collection->type = type;
169         collection->usage = usage;
170         collection->level = parser->collection_stack_ptr - 1;
171         collection->parent_idx = (collection->level == 0) ? -1 :
172                 parser->collection_stack[collection->level - 1];
173
174         if (type == HID_COLLECTION_APPLICATION)
175                 parser->device->maxapplication++;
176
177         return 0;
178 }
179
180 /*
181  * Close a collection.
182  */
183
184 static int close_collection(struct hid_parser *parser)
185 {
186         if (!parser->collection_stack_ptr) {
187                 hid_err(parser->device, "collection stack underflow\n");
188                 return -EINVAL;
189         }
190         parser->collection_stack_ptr--;
191         return 0;
192 }
193
194 /*
195  * Climb up the stack, search for the specified collection type
196  * and return the usage.
197  */
198
199 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
200 {
201         struct hid_collection *collection = parser->device->collection;
202         int n;
203
204         for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205                 unsigned index = parser->collection_stack[n];
206                 if (collection[index].type == type)
207                         return collection[index].usage;
208         }
209         return 0; /* we know nothing about this usage type */
210 }
211
212 /*
213  * Concatenate usage which defines 16 bits or less with the
214  * currently defined usage page to form a 32 bit usage
215  */
216
217 static void complete_usage(struct hid_parser *parser, unsigned int index)
218 {
219         parser->local.usage[index] &= 0xFFFF;
220         parser->local.usage[index] |=
221                 (parser->global.usage_page & 0xFFFF) << 16;
222 }
223
224 /*
225  * Add a usage to the temporary parser table.
226  */
227
228 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
229 {
230         if (parser->local.usage_index >= HID_MAX_USAGES) {
231                 hid_err(parser->device, "usage index exceeded\n");
232                 return -1;
233         }
234         parser->local.usage[parser->local.usage_index] = usage;
235
236         /*
237          * If Usage item only includes usage id, concatenate it with
238          * currently defined usage page
239          */
240         if (size <= 2)
241                 complete_usage(parser, parser->local.usage_index);
242
243         parser->local.usage_size[parser->local.usage_index] = size;
244         parser->local.collection_index[parser->local.usage_index] =
245                 parser->collection_stack_ptr ?
246                 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247         parser->local.usage_index++;
248         return 0;
249 }
250
251 /*
252  * Register a new field for this report.
253  */
254
255 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
256 {
257         struct hid_report *report;
258         struct hid_field *field;
259         unsigned int usages;
260         unsigned int offset;
261         unsigned int i;
262         unsigned int application;
263
264         application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
265
266         report = hid_register_report(parser->device, report_type,
267                                      parser->global.report_id, application);
268         if (!report) {
269                 hid_err(parser->device, "hid_register_report failed\n");
270                 return -1;
271         }
272
273         /* Handle both signed and unsigned cases properly */
274         if ((parser->global.logical_minimum < 0 &&
275                 parser->global.logical_maximum <
276                 parser->global.logical_minimum) ||
277                 (parser->global.logical_minimum >= 0 &&
278                 (__u32)parser->global.logical_maximum <
279                 (__u32)parser->global.logical_minimum)) {
280                 dbg_hid("logical range invalid 0x%x 0x%x\n",
281                         parser->global.logical_minimum,
282                         parser->global.logical_maximum);
283                 return -1;
284         }
285
286         offset = report->size;
287         report->size += parser->global.report_size * parser->global.report_count;
288
289         /* Total size check: Allow for possible report index byte */
290         if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
291                 hid_err(parser->device, "report is too long\n");
292                 return -1;
293         }
294
295         if (!parser->local.usage_index) /* Ignore padding fields */
296                 return 0;
297
298         usages = max_t(unsigned, parser->local.usage_index,
299                                  parser->global.report_count);
300
301         field = hid_register_field(report, usages);
302         if (!field)
303                 return 0;
304
305         field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
306         field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
307         field->application = application;
308
309         for (i = 0; i < usages; i++) {
310                 unsigned j = i;
311                 /* Duplicate the last usage we parsed if we have excess values */
312                 if (i >= parser->local.usage_index)
313                         j = parser->local.usage_index - 1;
314                 field->usage[i].hid = parser->local.usage[j];
315                 field->usage[i].collection_index =
316                         parser->local.collection_index[j];
317                 field->usage[i].usage_index = i;
318                 field->usage[i].resolution_multiplier = 1;
319         }
320
321         field->maxusage = usages;
322         field->flags = flags;
323         field->report_offset = offset;
324         field->report_type = report_type;
325         field->report_size = parser->global.report_size;
326         field->report_count = parser->global.report_count;
327         field->logical_minimum = parser->global.logical_minimum;
328         field->logical_maximum = parser->global.logical_maximum;
329         field->physical_minimum = parser->global.physical_minimum;
330         field->physical_maximum = parser->global.physical_maximum;
331         field->unit_exponent = parser->global.unit_exponent;
332         field->unit = parser->global.unit;
333
334         return 0;
335 }
336
337 /*
338  * Read data value from item.
339  */
340
341 static u32 item_udata(struct hid_item *item)
342 {
343         switch (item->size) {
344         case 1: return item->data.u8;
345         case 2: return item->data.u16;
346         case 4: return item->data.u32;
347         }
348         return 0;
349 }
350
351 static s32 item_sdata(struct hid_item *item)
352 {
353         switch (item->size) {
354         case 1: return item->data.s8;
355         case 2: return item->data.s16;
356         case 4: return item->data.s32;
357         }
358         return 0;
359 }
360
361 /*
362  * Process a global item.
363  */
364
365 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
366 {
367         __s32 raw_value;
368         switch (item->tag) {
369         case HID_GLOBAL_ITEM_TAG_PUSH:
370
371                 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
372                         hid_err(parser->device, "global environment stack overflow\n");
373                         return -1;
374                 }
375
376                 memcpy(parser->global_stack + parser->global_stack_ptr++,
377                         &parser->global, sizeof(struct hid_global));
378                 return 0;
379
380         case HID_GLOBAL_ITEM_TAG_POP:
381
382                 if (!parser->global_stack_ptr) {
383                         hid_err(parser->device, "global environment stack underflow\n");
384                         return -1;
385                 }
386
387                 memcpy(&parser->global, parser->global_stack +
388                         --parser->global_stack_ptr, sizeof(struct hid_global));
389                 return 0;
390
391         case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
392                 parser->global.usage_page = item_udata(item);
393                 return 0;
394
395         case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
396                 parser->global.logical_minimum = item_sdata(item);
397                 return 0;
398
399         case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
400                 if (parser->global.logical_minimum < 0)
401                         parser->global.logical_maximum = item_sdata(item);
402                 else
403                         parser->global.logical_maximum = item_udata(item);
404                 return 0;
405
406         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
407                 parser->global.physical_minimum = item_sdata(item);
408                 return 0;
409
410         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
411                 if (parser->global.physical_minimum < 0)
412                         parser->global.physical_maximum = item_sdata(item);
413                 else
414                         parser->global.physical_maximum = item_udata(item);
415                 return 0;
416
417         case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
418                 /* Many devices provide unit exponent as a two's complement
419                  * nibble due to the common misunderstanding of HID
420                  * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
421                  * both this and the standard encoding. */
422                 raw_value = item_sdata(item);
423                 if (!(raw_value & 0xfffffff0))
424                         parser->global.unit_exponent = hid_snto32(raw_value, 4);
425                 else
426                         parser->global.unit_exponent = raw_value;
427                 return 0;
428
429         case HID_GLOBAL_ITEM_TAG_UNIT:
430                 parser->global.unit = item_udata(item);
431                 return 0;
432
433         case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
434                 parser->global.report_size = item_udata(item);
435                 if (parser->global.report_size > 256) {
436                         hid_err(parser->device, "invalid report_size %d\n",
437                                         parser->global.report_size);
438                         return -1;
439                 }
440                 return 0;
441
442         case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
443                 parser->global.report_count = item_udata(item);
444                 if (parser->global.report_count > HID_MAX_USAGES) {
445                         hid_err(parser->device, "invalid report_count %d\n",
446                                         parser->global.report_count);
447                         return -1;
448                 }
449                 return 0;
450
451         case HID_GLOBAL_ITEM_TAG_REPORT_ID:
452                 parser->global.report_id = item_udata(item);
453                 if (parser->global.report_id == 0 ||
454                     parser->global.report_id >= HID_MAX_IDS) {
455                         hid_err(parser->device, "report_id %u is invalid\n",
456                                 parser->global.report_id);
457                         return -1;
458                 }
459                 return 0;
460
461         default:
462                 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
463                 return -1;
464         }
465 }
466
467 /*
468  * Process a local item.
469  */
470
471 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
472 {
473         __u32 data;
474         unsigned n;
475         __u32 count;
476
477         data = item_udata(item);
478
479         switch (item->tag) {
480         case HID_LOCAL_ITEM_TAG_DELIMITER:
481
482                 if (data) {
483                         /*
484                          * We treat items before the first delimiter
485                          * as global to all usage sets (branch 0).
486                          * In the moment we process only these global
487                          * items and the first delimiter set.
488                          */
489                         if (parser->local.delimiter_depth != 0) {
490                                 hid_err(parser->device, "nested delimiters\n");
491                                 return -1;
492                         }
493                         parser->local.delimiter_depth++;
494                         parser->local.delimiter_branch++;
495                 } else {
496                         if (parser->local.delimiter_depth < 1) {
497                                 hid_err(parser->device, "bogus close delimiter\n");
498                                 return -1;
499                         }
500                         parser->local.delimiter_depth--;
501                 }
502                 return 0;
503
504         case HID_LOCAL_ITEM_TAG_USAGE:
505
506                 if (parser->local.delimiter_branch > 1) {
507                         dbg_hid("alternative usage ignored\n");
508                         return 0;
509                 }
510
511                 return hid_add_usage(parser, data, item->size);
512
513         case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
514
515                 if (parser->local.delimiter_branch > 1) {
516                         dbg_hid("alternative usage ignored\n");
517                         return 0;
518                 }
519
520                 parser->local.usage_minimum = data;
521                 return 0;
522
523         case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
524
525                 if (parser->local.delimiter_branch > 1) {
526                         dbg_hid("alternative usage ignored\n");
527                         return 0;
528                 }
529
530                 count = data - parser->local.usage_minimum;
531                 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
532                         /*
533                          * We do not warn if the name is not set, we are
534                          * actually pre-scanning the device.
535                          */
536                         if (dev_name(&parser->device->dev))
537                                 hid_warn(parser->device,
538                                          "ignoring exceeding usage max\n");
539                         data = HID_MAX_USAGES - parser->local.usage_index +
540                                 parser->local.usage_minimum - 1;
541                         if (data <= 0) {
542                                 hid_err(parser->device,
543                                         "no more usage index available\n");
544                                 return -1;
545                         }
546                 }
547
548                 for (n = parser->local.usage_minimum; n <= data; n++)
549                         if (hid_add_usage(parser, n, item->size)) {
550                                 dbg_hid("hid_add_usage failed\n");
551                                 return -1;
552                         }
553                 return 0;
554
555         default:
556
557                 dbg_hid("unknown local item tag 0x%x\n", item->tag);
558                 return 0;
559         }
560         return 0;
561 }
562
563 /*
564  * Concatenate Usage Pages into Usages where relevant:
565  * As per specification, 6.2.2.8: "When the parser encounters a main item it
566  * concatenates the last declared Usage Page with a Usage to form a complete
567  * usage value."
568  */
569
570 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
571 {
572         int i;
573         unsigned int usage_page;
574         unsigned int current_page;
575
576         if (!parser->local.usage_index)
577                 return;
578
579         usage_page = parser->global.usage_page;
580
581         /*
582          * Concatenate usage page again only if last declared Usage Page
583          * has not been already used in previous usages concatenation
584          */
585         for (i = parser->local.usage_index - 1; i >= 0; i--) {
586                 if (parser->local.usage_size[i] > 2)
587                         /* Ignore extended usages */
588                         continue;
589
590                 current_page = parser->local.usage[i] >> 16;
591                 if (current_page == usage_page)
592                         break;
593
594                 complete_usage(parser, i);
595         }
596 }
597
598 /*
599  * Process a main item.
600  */
601
602 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
603 {
604         __u32 data;
605         int ret;
606
607         hid_concatenate_last_usage_page(parser);
608
609         data = item_udata(item);
610
611         switch (item->tag) {
612         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
613                 ret = open_collection(parser, data & 0xff);
614                 break;
615         case HID_MAIN_ITEM_TAG_END_COLLECTION:
616                 ret = close_collection(parser);
617                 break;
618         case HID_MAIN_ITEM_TAG_INPUT:
619                 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
620                 break;
621         case HID_MAIN_ITEM_TAG_OUTPUT:
622                 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
623                 break;
624         case HID_MAIN_ITEM_TAG_FEATURE:
625                 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
626                 break;
627         default:
628                 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
629                 ret = 0;
630         }
631
632         memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
633
634         return ret;
635 }
636
637 /*
638  * Process a reserved item.
639  */
640
641 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
642 {
643         dbg_hid("reserved item type, tag 0x%x\n", item->tag);
644         return 0;
645 }
646
647 /*
648  * Free a report and all registered fields. The field->usage and
649  * field->value table's are allocated behind the field, so we need
650  * only to free(field) itself.
651  */
652
653 static void hid_free_report(struct hid_report *report)
654 {
655         unsigned n;
656
657         kfree(report->field_entries);
658
659         for (n = 0; n < report->maxfield; n++)
660                 kfree(report->field[n]);
661         kfree(report);
662 }
663
664 /*
665  * Close report. This function returns the device
666  * state to the point prior to hid_open_report().
667  */
668 static void hid_close_report(struct hid_device *device)
669 {
670         unsigned i, j;
671
672         for (i = 0; i < HID_REPORT_TYPES; i++) {
673                 struct hid_report_enum *report_enum = device->report_enum + i;
674
675                 for (j = 0; j < HID_MAX_IDS; j++) {
676                         struct hid_report *report = report_enum->report_id_hash[j];
677                         if (report)
678                                 hid_free_report(report);
679                 }
680                 memset(report_enum, 0, sizeof(*report_enum));
681                 INIT_LIST_HEAD(&report_enum->report_list);
682         }
683
684         kfree(device->rdesc);
685         device->rdesc = NULL;
686         device->rsize = 0;
687
688         kfree(device->collection);
689         device->collection = NULL;
690         device->collection_size = 0;
691         device->maxcollection = 0;
692         device->maxapplication = 0;
693
694         device->status &= ~HID_STAT_PARSED;
695 }
696
697 /*
698  * Free a device structure, all reports, and all fields.
699  */
700
701 static void hid_device_release(struct device *dev)
702 {
703         struct hid_device *hid = to_hid_device(dev);
704
705         hid_close_report(hid);
706         kfree(hid->dev_rdesc);
707         kfree(hid);
708 }
709
710 /*
711  * Fetch a report description item from the data stream. We support long
712  * items, though they are not used yet.
713  */
714
715 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716 {
717         u8 b;
718
719         if ((end - start) <= 0)
720                 return NULL;
721
722         b = *start++;
723
724         item->type = (b >> 2) & 3;
725         item->tag  = (b >> 4) & 15;
726
727         if (item->tag == HID_ITEM_TAG_LONG) {
728
729                 item->format = HID_ITEM_FORMAT_LONG;
730
731                 if ((end - start) < 2)
732                         return NULL;
733
734                 item->size = *start++;
735                 item->tag  = *start++;
736
737                 if ((end - start) < item->size)
738                         return NULL;
739
740                 item->data.longdata = start;
741                 start += item->size;
742                 return start;
743         }
744
745         item->format = HID_ITEM_FORMAT_SHORT;
746         item->size = b & 3;
747
748         switch (item->size) {
749         case 0:
750                 return start;
751
752         case 1:
753                 if ((end - start) < 1)
754                         return NULL;
755                 item->data.u8 = *start++;
756                 return start;
757
758         case 2:
759                 if ((end - start) < 2)
760                         return NULL;
761                 item->data.u16 = get_unaligned_le16(start);
762                 start = (__u8 *)((__le16 *)start + 1);
763                 return start;
764
765         case 3:
766                 item->size++;
767                 if ((end - start) < 4)
768                         return NULL;
769                 item->data.u32 = get_unaligned_le32(start);
770                 start = (__u8 *)((__le32 *)start + 1);
771                 return start;
772         }
773
774         return NULL;
775 }
776
777 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778 {
779         struct hid_device *hid = parser->device;
780
781         if (usage == HID_DG_CONTACTID)
782                 hid->group = HID_GROUP_MULTITOUCH;
783 }
784
785 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786 {
787         if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
788             parser->global.report_size == 8)
789                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790
791         if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
792             parser->global.report_size == 8)
793                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 }
795
796 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797 {
798         struct hid_device *hid = parser->device;
799         int i;
800
801         if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
802             (type == HID_COLLECTION_PHYSICAL ||
803              type == HID_COLLECTION_APPLICATION))
804                 hid->group = HID_GROUP_SENSOR_HUB;
805
806         if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
807             hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
808             hid->group == HID_GROUP_MULTITOUCH)
809                 hid->group = HID_GROUP_GENERIC;
810
811         if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
812                 for (i = 0; i < parser->local.usage_index; i++)
813                         if (parser->local.usage[i] == HID_GD_POINTER)
814                                 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
815
816         if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
817                 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
818
819         if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
820                 for (i = 0; i < parser->local.usage_index; i++)
821                         if (parser->local.usage[i] ==
822                                         (HID_UP_GOOGLEVENDOR | 0x0001))
823                                 parser->device->group =
824                                         HID_GROUP_VIVALDI;
825 }
826
827 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
828 {
829         __u32 data;
830         int i;
831
832         hid_concatenate_last_usage_page(parser);
833
834         data = item_udata(item);
835
836         switch (item->tag) {
837         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
838                 hid_scan_collection(parser, data & 0xff);
839                 break;
840         case HID_MAIN_ITEM_TAG_END_COLLECTION:
841                 break;
842         case HID_MAIN_ITEM_TAG_INPUT:
843                 /* ignore constant inputs, they will be ignored by hid-input */
844                 if (data & HID_MAIN_ITEM_CONSTANT)
845                         break;
846                 for (i = 0; i < parser->local.usage_index; i++)
847                         hid_scan_input_usage(parser, parser->local.usage[i]);
848                 break;
849         case HID_MAIN_ITEM_TAG_OUTPUT:
850                 break;
851         case HID_MAIN_ITEM_TAG_FEATURE:
852                 for (i = 0; i < parser->local.usage_index; i++)
853                         hid_scan_feature_usage(parser, parser->local.usage[i]);
854                 break;
855         }
856
857         /* Reset the local parser environment */
858         memset(&parser->local, 0, sizeof(parser->local));
859
860         return 0;
861 }
862
863 /*
864  * Scan a report descriptor before the device is added to the bus.
865  * Sets device groups and other properties that determine what driver
866  * to load.
867  */
868 static int hid_scan_report(struct hid_device *hid)
869 {
870         struct hid_parser *parser;
871         struct hid_item item;
872         __u8 *start = hid->dev_rdesc;
873         __u8 *end = start + hid->dev_rsize;
874         static int (*dispatch_type[])(struct hid_parser *parser,
875                                       struct hid_item *item) = {
876                 hid_scan_main,
877                 hid_parser_global,
878                 hid_parser_local,
879                 hid_parser_reserved
880         };
881
882         parser = vzalloc(sizeof(struct hid_parser));
883         if (!parser)
884                 return -ENOMEM;
885
886         parser->device = hid;
887         hid->group = HID_GROUP_GENERIC;
888
889         /*
890          * The parsing is simpler than the one in hid_open_report() as we should
891          * be robust against hid errors. Those errors will be raised by
892          * hid_open_report() anyway.
893          */
894         while ((start = fetch_item(start, end, &item)) != NULL)
895                 dispatch_type[item.type](parser, &item);
896
897         /*
898          * Handle special flags set during scanning.
899          */
900         if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
901             (hid->group == HID_GROUP_MULTITOUCH))
902                 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
903
904         /*
905          * Vendor specific handlings
906          */
907         switch (hid->vendor) {
908         case USB_VENDOR_ID_WACOM:
909                 hid->group = HID_GROUP_WACOM;
910                 break;
911         case USB_VENDOR_ID_SYNAPTICS:
912                 if (hid->group == HID_GROUP_GENERIC)
913                         if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
914                             && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
915                                 /*
916                                  * hid-rmi should take care of them,
917                                  * not hid-generic
918                                  */
919                                 hid->group = HID_GROUP_RMI;
920                 break;
921         }
922
923         kfree(parser->collection_stack);
924         vfree(parser);
925         return 0;
926 }
927
928 /**
929  * hid_parse_report - parse device report
930  *
931  * @hid: hid device
932  * @start: report start
933  * @size: report size
934  *
935  * Allocate the device report as read by the bus driver. This function should
936  * only be called from parse() in ll drivers.
937  */
938 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
939 {
940         hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
941         if (!hid->dev_rdesc)
942                 return -ENOMEM;
943         hid->dev_rsize = size;
944         return 0;
945 }
946 EXPORT_SYMBOL_GPL(hid_parse_report);
947
948 static const char * const hid_report_names[] = {
949         "HID_INPUT_REPORT",
950         "HID_OUTPUT_REPORT",
951         "HID_FEATURE_REPORT",
952 };
953 /**
954  * hid_validate_values - validate existing device report's value indexes
955  *
956  * @hid: hid device
957  * @type: which report type to examine
958  * @id: which report ID to examine (0 for first)
959  * @field_index: which report field to examine
960  * @report_counts: expected number of values
961  *
962  * Validate the number of values in a given field of a given report, after
963  * parsing.
964  */
965 struct hid_report *hid_validate_values(struct hid_device *hid,
966                                        enum hid_report_type type, unsigned int id,
967                                        unsigned int field_index,
968                                        unsigned int report_counts)
969 {
970         struct hid_report *report;
971
972         if (type > HID_FEATURE_REPORT) {
973                 hid_err(hid, "invalid HID report type %u\n", type);
974                 return NULL;
975         }
976
977         if (id >= HID_MAX_IDS) {
978                 hid_err(hid, "invalid HID report id %u\n", id);
979                 return NULL;
980         }
981
982         /*
983          * Explicitly not using hid_get_report() here since it depends on
984          * ->numbered being checked, which may not always be the case when
985          * drivers go to access report values.
986          */
987         if (id == 0) {
988                 /*
989                  * Validating on id 0 means we should examine the first
990                  * report in the list.
991                  */
992                 report = list_first_entry_or_null(
993                                 &hid->report_enum[type].report_list,
994                                 struct hid_report, list);
995         } else {
996                 report = hid->report_enum[type].report_id_hash[id];
997         }
998         if (!report) {
999                 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1000                 return NULL;
1001         }
1002         if (report->maxfield <= field_index) {
1003                 hid_err(hid, "not enough fields in %s %u\n",
1004                         hid_report_names[type], id);
1005                 return NULL;
1006         }
1007         if (report->field[field_index]->report_count < report_counts) {
1008                 hid_err(hid, "not enough values in %s %u field %u\n",
1009                         hid_report_names[type], id, field_index);
1010                 return NULL;
1011         }
1012         return report;
1013 }
1014 EXPORT_SYMBOL_GPL(hid_validate_values);
1015
1016 static int hid_calculate_multiplier(struct hid_device *hid,
1017                                      struct hid_field *multiplier)
1018 {
1019         int m;
1020         __s32 v = *multiplier->value;
1021         __s32 lmin = multiplier->logical_minimum;
1022         __s32 lmax = multiplier->logical_maximum;
1023         __s32 pmin = multiplier->physical_minimum;
1024         __s32 pmax = multiplier->physical_maximum;
1025
1026         /*
1027          * "Because OS implementations will generally divide the control's
1028          * reported count by the Effective Resolution Multiplier, designers
1029          * should take care not to establish a potential Effective
1030          * Resolution Multiplier of zero."
1031          * HID Usage Table, v1.12, Section 4.3.1, p31
1032          */
1033         if (lmax - lmin == 0)
1034                 return 1;
1035         /*
1036          * Handling the unit exponent is left as an exercise to whoever
1037          * finds a device where that exponent is not 0.
1038          */
1039         m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1040         if (unlikely(multiplier->unit_exponent != 0)) {
1041                 hid_warn(hid,
1042                          "unsupported Resolution Multiplier unit exponent %d\n",
1043                          multiplier->unit_exponent);
1044         }
1045
1046         /* There are no devices with an effective multiplier > 255 */
1047         if (unlikely(m == 0 || m > 255 || m < -255)) {
1048                 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1049                 m = 1;
1050         }
1051
1052         return m;
1053 }
1054
1055 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1056                                           struct hid_field *field,
1057                                           struct hid_collection *multiplier_collection,
1058                                           int effective_multiplier)
1059 {
1060         struct hid_collection *collection;
1061         struct hid_usage *usage;
1062         int i;
1063
1064         /*
1065          * If multiplier_collection is NULL, the multiplier applies
1066          * to all fields in the report.
1067          * Otherwise, it is the Logical Collection the multiplier applies to
1068          * but our field may be in a subcollection of that collection.
1069          */
1070         for (i = 0; i < field->maxusage; i++) {
1071                 usage = &field->usage[i];
1072
1073                 collection = &hid->collection[usage->collection_index];
1074                 while (collection->parent_idx != -1 &&
1075                        collection != multiplier_collection)
1076                         collection = &hid->collection[collection->parent_idx];
1077
1078                 if (collection->parent_idx != -1 ||
1079                     multiplier_collection == NULL)
1080                         usage->resolution_multiplier = effective_multiplier;
1081
1082         }
1083 }
1084
1085 static void hid_apply_multiplier(struct hid_device *hid,
1086                                  struct hid_field *multiplier)
1087 {
1088         struct hid_report_enum *rep_enum;
1089         struct hid_report *rep;
1090         struct hid_field *field;
1091         struct hid_collection *multiplier_collection;
1092         int effective_multiplier;
1093         int i;
1094
1095         /*
1096          * "The Resolution Multiplier control must be contained in the same
1097          * Logical Collection as the control(s) to which it is to be applied.
1098          * If no Resolution Multiplier is defined, then the Resolution
1099          * Multiplier defaults to 1.  If more than one control exists in a
1100          * Logical Collection, the Resolution Multiplier is associated with
1101          * all controls in the collection. If no Logical Collection is
1102          * defined, the Resolution Multiplier is associated with all
1103          * controls in the report."
1104          * HID Usage Table, v1.12, Section 4.3.1, p30
1105          *
1106          * Thus, search from the current collection upwards until we find a
1107          * logical collection. Then search all fields for that same parent
1108          * collection. Those are the fields the multiplier applies to.
1109          *
1110          * If we have more than one multiplier, it will overwrite the
1111          * applicable fields later.
1112          */
1113         multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1114         while (multiplier_collection->parent_idx != -1 &&
1115                multiplier_collection->type != HID_COLLECTION_LOGICAL)
1116                 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1117
1118         effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1119
1120         rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1121         list_for_each_entry(rep, &rep_enum->report_list, list) {
1122                 for (i = 0; i < rep->maxfield; i++) {
1123                         field = rep->field[i];
1124                         hid_apply_multiplier_to_field(hid, field,
1125                                                       multiplier_collection,
1126                                                       effective_multiplier);
1127                 }
1128         }
1129 }
1130
1131 /*
1132  * hid_setup_resolution_multiplier - set up all resolution multipliers
1133  *
1134  * @device: hid device
1135  *
1136  * Search for all Resolution Multiplier Feature Reports and apply their
1137  * value to all matching Input items. This only updates the internal struct
1138  * fields.
1139  *
1140  * The Resolution Multiplier is applied by the hardware. If the multiplier
1141  * is anything other than 1, the hardware will send pre-multiplied events
1142  * so that the same physical interaction generates an accumulated
1143  *      accumulated_value = value * * multiplier
1144  * This may be achieved by sending
1145  * - "value * multiplier" for each event, or
1146  * - "value" but "multiplier" times as frequently, or
1147  * - a combination of the above
1148  * The only guarantee is that the same physical interaction always generates
1149  * an accumulated 'value * multiplier'.
1150  *
1151  * This function must be called before any event processing and after
1152  * any SetRequest to the Resolution Multiplier.
1153  */
1154 void hid_setup_resolution_multiplier(struct hid_device *hid)
1155 {
1156         struct hid_report_enum *rep_enum;
1157         struct hid_report *rep;
1158         struct hid_usage *usage;
1159         int i, j;
1160
1161         rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1162         list_for_each_entry(rep, &rep_enum->report_list, list) {
1163                 for (i = 0; i < rep->maxfield; i++) {
1164                         /* Ignore if report count is out of bounds. */
1165                         if (rep->field[i]->report_count < 1)
1166                                 continue;
1167
1168                         for (j = 0; j < rep->field[i]->maxusage; j++) {
1169                                 usage = &rep->field[i]->usage[j];
1170                                 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1171                                         hid_apply_multiplier(hid,
1172                                                              rep->field[i]);
1173                         }
1174                 }
1175         }
1176 }
1177 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1178
1179 /**
1180  * hid_open_report - open a driver-specific device report
1181  *
1182  * @device: hid device
1183  *
1184  * Parse a report description into a hid_device structure. Reports are
1185  * enumerated, fields are attached to these reports.
1186  * 0 returned on success, otherwise nonzero error value.
1187  *
1188  * This function (or the equivalent hid_parse() macro) should only be
1189  * called from probe() in drivers, before starting the device.
1190  */
1191 int hid_open_report(struct hid_device *device)
1192 {
1193         struct hid_parser *parser;
1194         struct hid_item item;
1195         unsigned int size;
1196         __u8 *start;
1197         __u8 *buf;
1198         __u8 *end;
1199         __u8 *next;
1200         int ret;
1201         int i;
1202         static int (*dispatch_type[])(struct hid_parser *parser,
1203                                       struct hid_item *item) = {
1204                 hid_parser_main,
1205                 hid_parser_global,
1206                 hid_parser_local,
1207                 hid_parser_reserved
1208         };
1209
1210         if (WARN_ON(device->status & HID_STAT_PARSED))
1211                 return -EBUSY;
1212
1213         start = device->dev_rdesc;
1214         if (WARN_ON(!start))
1215                 return -ENODEV;
1216         size = device->dev_rsize;
1217
1218         /* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1219         buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1220         if (buf == NULL)
1221                 return -ENOMEM;
1222
1223         if (device->driver->report_fixup)
1224                 start = device->driver->report_fixup(device, buf, &size);
1225         else
1226                 start = buf;
1227
1228         start = kmemdup(start, size, GFP_KERNEL);
1229         kfree(buf);
1230         if (start == NULL)
1231                 return -ENOMEM;
1232
1233         device->rdesc = start;
1234         device->rsize = size;
1235
1236         parser = vzalloc(sizeof(struct hid_parser));
1237         if (!parser) {
1238                 ret = -ENOMEM;
1239                 goto alloc_err;
1240         }
1241
1242         parser->device = device;
1243
1244         end = start + size;
1245
1246         device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1247                                      sizeof(struct hid_collection), GFP_KERNEL);
1248         if (!device->collection) {
1249                 ret = -ENOMEM;
1250                 goto err;
1251         }
1252         device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1253         for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1254                 device->collection[i].parent_idx = -1;
1255
1256         ret = -EINVAL;
1257         while ((next = fetch_item(start, end, &item)) != NULL) {
1258                 start = next;
1259
1260                 if (item.format != HID_ITEM_FORMAT_SHORT) {
1261                         hid_err(device, "unexpected long global item\n");
1262                         goto err;
1263                 }
1264
1265                 if (dispatch_type[item.type](parser, &item)) {
1266                         hid_err(device, "item %u %u %u %u parsing failed\n",
1267                                 item.format, (unsigned)item.size,
1268                                 (unsigned)item.type, (unsigned)item.tag);
1269                         goto err;
1270                 }
1271
1272                 if (start == end) {
1273                         if (parser->collection_stack_ptr) {
1274                                 hid_err(device, "unbalanced collection at end of report description\n");
1275                                 goto err;
1276                         }
1277                         if (parser->local.delimiter_depth) {
1278                                 hid_err(device, "unbalanced delimiter at end of report description\n");
1279                                 goto err;
1280                         }
1281
1282                         /*
1283                          * fetch initial values in case the device's
1284                          * default multiplier isn't the recommended 1
1285                          */
1286                         hid_setup_resolution_multiplier(device);
1287
1288                         kfree(parser->collection_stack);
1289                         vfree(parser);
1290                         device->status |= HID_STAT_PARSED;
1291
1292                         return 0;
1293                 }
1294         }
1295
1296         hid_err(device, "item fetching failed at offset %u/%u\n",
1297                 size - (unsigned int)(end - start), size);
1298 err:
1299         kfree(parser->collection_stack);
1300 alloc_err:
1301         vfree(parser);
1302         hid_close_report(device);
1303         return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(hid_open_report);
1306
1307 /*
1308  * Convert a signed n-bit integer to signed 32-bit integer. Common
1309  * cases are done through the compiler, the screwed things has to be
1310  * done by hand.
1311  */
1312
1313 static s32 snto32(__u32 value, unsigned n)
1314 {
1315         if (!value || !n)
1316                 return 0;
1317
1318         if (n > 32)
1319                 n = 32;
1320
1321         switch (n) {
1322         case 8:  return ((__s8)value);
1323         case 16: return ((__s16)value);
1324         case 32: return ((__s32)value);
1325         }
1326         return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1327 }
1328
1329 s32 hid_snto32(__u32 value, unsigned n)
1330 {
1331         return snto32(value, n);
1332 }
1333 EXPORT_SYMBOL_GPL(hid_snto32);
1334
1335 /*
1336  * Convert a signed 32-bit integer to a signed n-bit integer.
1337  */
1338
1339 static u32 s32ton(__s32 value, unsigned n)
1340 {
1341         s32 a = value >> (n - 1);
1342         if (a && a != -1)
1343                 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1344         return value & ((1 << n) - 1);
1345 }
1346
1347 /*
1348  * Extract/implement a data field from/to a little endian report (bit array).
1349  *
1350  * Code sort-of follows HID spec:
1351  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1352  *
1353  * While the USB HID spec allows unlimited length bit fields in "report
1354  * descriptors", most devices never use more than 16 bits.
1355  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1356  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1357  */
1358
1359 static u32 __extract(u8 *report, unsigned offset, int n)
1360 {
1361         unsigned int idx = offset / 8;
1362         unsigned int bit_nr = 0;
1363         unsigned int bit_shift = offset % 8;
1364         int bits_to_copy = 8 - bit_shift;
1365         u32 value = 0;
1366         u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1367
1368         while (n > 0) {
1369                 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1370                 n -= bits_to_copy;
1371                 bit_nr += bits_to_copy;
1372                 bits_to_copy = 8;
1373                 bit_shift = 0;
1374                 idx++;
1375         }
1376
1377         return value & mask;
1378 }
1379
1380 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1381                         unsigned offset, unsigned n)
1382 {
1383         if (n > 32) {
1384                 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1385                               __func__, n, current->comm);
1386                 n = 32;
1387         }
1388
1389         return __extract(report, offset, n);
1390 }
1391 EXPORT_SYMBOL_GPL(hid_field_extract);
1392
1393 /*
1394  * "implement" : set bits in a little endian bit stream.
1395  * Same concepts as "extract" (see comments above).
1396  * The data mangled in the bit stream remains in little endian
1397  * order the whole time. It make more sense to talk about
1398  * endianness of register values by considering a register
1399  * a "cached" copy of the little endian bit stream.
1400  */
1401
1402 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1403 {
1404         unsigned int idx = offset / 8;
1405         unsigned int bit_shift = offset % 8;
1406         int bits_to_set = 8 - bit_shift;
1407
1408         while (n - bits_to_set >= 0) {
1409                 report[idx] &= ~(0xff << bit_shift);
1410                 report[idx] |= value << bit_shift;
1411                 value >>= bits_to_set;
1412                 n -= bits_to_set;
1413                 bits_to_set = 8;
1414                 bit_shift = 0;
1415                 idx++;
1416         }
1417
1418         /* last nibble */
1419         if (n) {
1420                 u8 bit_mask = ((1U << n) - 1);
1421                 report[idx] &= ~(bit_mask << bit_shift);
1422                 report[idx] |= value << bit_shift;
1423         }
1424 }
1425
1426 static void implement(const struct hid_device *hid, u8 *report,
1427                       unsigned offset, unsigned n, u32 value)
1428 {
1429         if (unlikely(n > 32)) {
1430                 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1431                          __func__, n, current->comm);
1432                 n = 32;
1433         } else if (n < 32) {
1434                 u32 m = (1U << n) - 1;
1435
1436                 if (unlikely(value > m)) {
1437                         hid_warn(hid,
1438                                  "%s() called with too large value %d (n: %d)! (%s)\n",
1439                                  __func__, value, n, current->comm);
1440                         WARN_ON(1);
1441                         value &= m;
1442                 }
1443         }
1444
1445         __implement(report, offset, n, value);
1446 }
1447
1448 /*
1449  * Search an array for a value.
1450  */
1451
1452 static int search(__s32 *array, __s32 value, unsigned n)
1453 {
1454         while (n--) {
1455                 if (*array++ == value)
1456                         return 0;
1457         }
1458         return -1;
1459 }
1460
1461 /**
1462  * hid_match_report - check if driver's raw_event should be called
1463  *
1464  * @hid: hid device
1465  * @report: hid report to match against
1466  *
1467  * compare hid->driver->report_table->report_type to report->type
1468  */
1469 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1470 {
1471         const struct hid_report_id *id = hid->driver->report_table;
1472
1473         if (!id) /* NULL means all */
1474                 return 1;
1475
1476         for (; id->report_type != HID_TERMINATOR; id++)
1477                 if (id->report_type == HID_ANY_ID ||
1478                                 id->report_type == report->type)
1479                         return 1;
1480         return 0;
1481 }
1482
1483 /**
1484  * hid_match_usage - check if driver's event should be called
1485  *
1486  * @hid: hid device
1487  * @usage: usage to match against
1488  *
1489  * compare hid->driver->usage_table->usage_{type,code} to
1490  * usage->usage_{type,code}
1491  */
1492 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1493 {
1494         const struct hid_usage_id *id = hid->driver->usage_table;
1495
1496         if (!id) /* NULL means all */
1497                 return 1;
1498
1499         for (; id->usage_type != HID_ANY_ID - 1; id++)
1500                 if ((id->usage_hid == HID_ANY_ID ||
1501                                 id->usage_hid == usage->hid) &&
1502                                 (id->usage_type == HID_ANY_ID ||
1503                                 id->usage_type == usage->type) &&
1504                                 (id->usage_code == HID_ANY_ID ||
1505                                  id->usage_code == usage->code))
1506                         return 1;
1507         return 0;
1508 }
1509
1510 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1511                 struct hid_usage *usage, __s32 value, int interrupt)
1512 {
1513         struct hid_driver *hdrv = hid->driver;
1514         int ret;
1515
1516         if (!list_empty(&hid->debug_list))
1517                 hid_dump_input(hid, usage, value);
1518
1519         if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1520                 ret = hdrv->event(hid, field, usage, value);
1521                 if (ret != 0) {
1522                         if (ret < 0)
1523                                 hid_err(hid, "%s's event failed with %d\n",
1524                                                 hdrv->name, ret);
1525                         return;
1526                 }
1527         }
1528
1529         if (hid->claimed & HID_CLAIMED_INPUT)
1530                 hidinput_hid_event(hid, field, usage, value);
1531         if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1532                 hid->hiddev_hid_event(hid, field, usage, value);
1533 }
1534
1535 /*
1536  * Checks if the given value is valid within this field
1537  */
1538 static inline int hid_array_value_is_valid(struct hid_field *field,
1539                                            __s32 value)
1540 {
1541         __s32 min = field->logical_minimum;
1542
1543         /*
1544          * Value needs to be between logical min and max, and
1545          * (value - min) is used as an index in the usage array.
1546          * This array is of size field->maxusage
1547          */
1548         return value >= min &&
1549                value <= field->logical_maximum &&
1550                value - min < field->maxusage;
1551 }
1552
1553 /*
1554  * Fetch the field from the data. The field content is stored for next
1555  * report processing (we do differential reporting to the layer).
1556  */
1557 static void hid_input_fetch_field(struct hid_device *hid,
1558                                   struct hid_field *field,
1559                                   __u8 *data)
1560 {
1561         unsigned n;
1562         unsigned count = field->report_count;
1563         unsigned offset = field->report_offset;
1564         unsigned size = field->report_size;
1565         __s32 min = field->logical_minimum;
1566         __s32 *value;
1567
1568         value = field->new_value;
1569         memset(value, 0, count * sizeof(__s32));
1570         field->ignored = false;
1571
1572         for (n = 0; n < count; n++) {
1573
1574                 value[n] = min < 0 ?
1575                         snto32(hid_field_extract(hid, data, offset + n * size,
1576                                size), size) :
1577                         hid_field_extract(hid, data, offset + n * size, size);
1578
1579                 /* Ignore report if ErrorRollOver */
1580                 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1581                     hid_array_value_is_valid(field, value[n]) &&
1582                     field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1583                         field->ignored = true;
1584                         return;
1585                 }
1586         }
1587 }
1588
1589 /*
1590  * Process a received variable field.
1591  */
1592
1593 static void hid_input_var_field(struct hid_device *hid,
1594                                 struct hid_field *field,
1595                                 int interrupt)
1596 {
1597         unsigned int count = field->report_count;
1598         __s32 *value = field->new_value;
1599         unsigned int n;
1600
1601         for (n = 0; n < count; n++)
1602                 hid_process_event(hid,
1603                                   field,
1604                                   &field->usage[n],
1605                                   value[n],
1606                                   interrupt);
1607
1608         memcpy(field->value, value, count * sizeof(__s32));
1609 }
1610
1611 /*
1612  * Process a received array field. The field content is stored for
1613  * next report processing (we do differential reporting to the layer).
1614  */
1615
1616 static void hid_input_array_field(struct hid_device *hid,
1617                                   struct hid_field *field,
1618                                   int interrupt)
1619 {
1620         unsigned int n;
1621         unsigned int count = field->report_count;
1622         __s32 min = field->logical_minimum;
1623         __s32 *value;
1624
1625         value = field->new_value;
1626
1627         /* ErrorRollOver */
1628         if (field->ignored)
1629                 return;
1630
1631         for (n = 0; n < count; n++) {
1632                 if (hid_array_value_is_valid(field, field->value[n]) &&
1633                     search(value, field->value[n], count))
1634                         hid_process_event(hid,
1635                                           field,
1636                                           &field->usage[field->value[n] - min],
1637                                           0,
1638                                           interrupt);
1639
1640                 if (hid_array_value_is_valid(field, value[n]) &&
1641                     search(field->value, value[n], count))
1642                         hid_process_event(hid,
1643                                           field,
1644                                           &field->usage[value[n] - min],
1645                                           1,
1646                                           interrupt);
1647         }
1648
1649         memcpy(field->value, value, count * sizeof(__s32));
1650 }
1651
1652 /*
1653  * Analyse a received report, and fetch the data from it. The field
1654  * content is stored for next report processing (we do differential
1655  * reporting to the layer).
1656  */
1657 static void hid_process_report(struct hid_device *hid,
1658                                struct hid_report *report,
1659                                __u8 *data,
1660                                int interrupt)
1661 {
1662         unsigned int a;
1663         struct hid_field_entry *entry;
1664         struct hid_field *field;
1665
1666         /* first retrieve all incoming values in data */
1667         for (a = 0; a < report->maxfield; a++)
1668                 hid_input_fetch_field(hid, report->field[a], data);
1669
1670         if (!list_empty(&report->field_entry_list)) {
1671                 /* INPUT_REPORT, we have a priority list of fields */
1672                 list_for_each_entry(entry,
1673                                     &report->field_entry_list,
1674                                     list) {
1675                         field = entry->field;
1676
1677                         if (field->flags & HID_MAIN_ITEM_VARIABLE)
1678                                 hid_process_event(hid,
1679                                                   field,
1680                                                   &field->usage[entry->index],
1681                                                   field->new_value[entry->index],
1682                                                   interrupt);
1683                         else
1684                                 hid_input_array_field(hid, field, interrupt);
1685                 }
1686
1687                 /* we need to do the memcpy at the end for var items */
1688                 for (a = 0; a < report->maxfield; a++) {
1689                         field = report->field[a];
1690
1691                         if (field->flags & HID_MAIN_ITEM_VARIABLE)
1692                                 memcpy(field->value, field->new_value,
1693                                        field->report_count * sizeof(__s32));
1694                 }
1695         } else {
1696                 /* FEATURE_REPORT, regular processing */
1697                 for (a = 0; a < report->maxfield; a++) {
1698                         field = report->field[a];
1699
1700                         if (field->flags & HID_MAIN_ITEM_VARIABLE)
1701                                 hid_input_var_field(hid, field, interrupt);
1702                         else
1703                                 hid_input_array_field(hid, field, interrupt);
1704                 }
1705         }
1706 }
1707
1708 /*
1709  * Insert a given usage_index in a field in the list
1710  * of processed usages in the report.
1711  *
1712  * The elements of lower priority score are processed
1713  * first.
1714  */
1715 static void __hid_insert_field_entry(struct hid_device *hid,
1716                                      struct hid_report *report,
1717                                      struct hid_field_entry *entry,
1718                                      struct hid_field *field,
1719                                      unsigned int usage_index)
1720 {
1721         struct hid_field_entry *next;
1722
1723         entry->field = field;
1724         entry->index = usage_index;
1725         entry->priority = field->usages_priorities[usage_index];
1726
1727         /* insert the element at the correct position */
1728         list_for_each_entry(next,
1729                             &report->field_entry_list,
1730                             list) {
1731                 /*
1732                  * the priority of our element is strictly higher
1733                  * than the next one, insert it before
1734                  */
1735                 if (entry->priority > next->priority) {
1736                         list_add_tail(&entry->list, &next->list);
1737                         return;
1738                 }
1739         }
1740
1741         /* lowest priority score: insert at the end */
1742         list_add_tail(&entry->list, &report->field_entry_list);
1743 }
1744
1745 static void hid_report_process_ordering(struct hid_device *hid,
1746                                         struct hid_report *report)
1747 {
1748         struct hid_field *field;
1749         struct hid_field_entry *entries;
1750         unsigned int a, u, usages;
1751         unsigned int count = 0;
1752
1753         /* count the number of individual fields in the report */
1754         for (a = 0; a < report->maxfield; a++) {
1755                 field = report->field[a];
1756
1757                 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1758                         count += field->report_count;
1759                 else
1760                         count++;
1761         }
1762
1763         /* allocate the memory to process the fields */
1764         entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1765         if (!entries)
1766                 return;
1767
1768         report->field_entries = entries;
1769
1770         /*
1771          * walk through all fields in the report and
1772          * store them by priority order in report->field_entry_list
1773          *
1774          * - Var elements are individualized (field + usage_index)
1775          * - Arrays are taken as one, we can not chose an order for them
1776          */
1777         usages = 0;
1778         for (a = 0; a < report->maxfield; a++) {
1779                 field = report->field[a];
1780
1781                 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1782                         for (u = 0; u < field->report_count; u++) {
1783                                 __hid_insert_field_entry(hid, report,
1784                                                          &entries[usages],
1785                                                          field, u);
1786                                 usages++;
1787                         }
1788                 } else {
1789                         __hid_insert_field_entry(hid, report, &entries[usages],
1790                                                  field, 0);
1791                         usages++;
1792                 }
1793         }
1794 }
1795
1796 static void hid_process_ordering(struct hid_device *hid)
1797 {
1798         struct hid_report *report;
1799         struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1800
1801         list_for_each_entry(report, &report_enum->report_list, list)
1802                 hid_report_process_ordering(hid, report);
1803 }
1804
1805 /*
1806  * Output the field into the report.
1807  */
1808
1809 static void hid_output_field(const struct hid_device *hid,
1810                              struct hid_field *field, __u8 *data)
1811 {
1812         unsigned count = field->report_count;
1813         unsigned offset = field->report_offset;
1814         unsigned size = field->report_size;
1815         unsigned n;
1816
1817         for (n = 0; n < count; n++) {
1818                 if (field->logical_minimum < 0) /* signed values */
1819                         implement(hid, data, offset + n * size, size,
1820                                   s32ton(field->value[n], size));
1821                 else                            /* unsigned values */
1822                         implement(hid, data, offset + n * size, size,
1823                                   field->value[n]);
1824         }
1825 }
1826
1827 /*
1828  * Compute the size of a report.
1829  */
1830 static size_t hid_compute_report_size(struct hid_report *report)
1831 {
1832         if (report->size)
1833                 return ((report->size - 1) >> 3) + 1;
1834
1835         return 0;
1836 }
1837
1838 /*
1839  * Create a report. 'data' has to be allocated using
1840  * hid_alloc_report_buf() so that it has proper size.
1841  */
1842
1843 void hid_output_report(struct hid_report *report, __u8 *data)
1844 {
1845         unsigned n;
1846
1847         if (report->id > 0)
1848                 *data++ = report->id;
1849
1850         memset(data, 0, hid_compute_report_size(report));
1851         for (n = 0; n < report->maxfield; n++)
1852                 hid_output_field(report->device, report->field[n], data);
1853 }
1854 EXPORT_SYMBOL_GPL(hid_output_report);
1855
1856 /*
1857  * Allocator for buffer that is going to be passed to hid_output_report()
1858  */
1859 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1860 {
1861         /*
1862          * 7 extra bytes are necessary to achieve proper functionality
1863          * of implement() working on 8 byte chunks
1864          */
1865
1866         u32 len = hid_report_len(report) + 7;
1867
1868         return kmalloc(len, flags);
1869 }
1870 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1871
1872 /*
1873  * Set a field value. The report this field belongs to has to be
1874  * created and transferred to the device, to set this value in the
1875  * device.
1876  */
1877
1878 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1879 {
1880         unsigned size;
1881
1882         if (!field)
1883                 return -1;
1884
1885         size = field->report_size;
1886
1887         hid_dump_input(field->report->device, field->usage + offset, value);
1888
1889         if (offset >= field->report_count) {
1890                 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1891                                 offset, field->report_count);
1892                 return -1;
1893         }
1894         if (field->logical_minimum < 0) {
1895                 if (value != snto32(s32ton(value, size), size)) {
1896                         hid_err(field->report->device, "value %d is out of range\n", value);
1897                         return -1;
1898                 }
1899         }
1900         field->value[offset] = value;
1901         return 0;
1902 }
1903 EXPORT_SYMBOL_GPL(hid_set_field);
1904
1905 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1906                 const u8 *data)
1907 {
1908         struct hid_report *report;
1909         unsigned int n = 0;     /* Normally report number is 0 */
1910
1911         /* Device uses numbered reports, data[0] is report number */
1912         if (report_enum->numbered)
1913                 n = *data;
1914
1915         report = report_enum->report_id_hash[n];
1916         if (report == NULL)
1917                 dbg_hid("undefined report_id %u received\n", n);
1918
1919         return report;
1920 }
1921
1922 /*
1923  * Implement a generic .request() callback, using .raw_request()
1924  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1925  */
1926 int __hid_request(struct hid_device *hid, struct hid_report *report,
1927                 enum hid_class_request reqtype)
1928 {
1929         char *buf;
1930         int ret;
1931         u32 len;
1932
1933         buf = hid_alloc_report_buf(report, GFP_KERNEL);
1934         if (!buf)
1935                 return -ENOMEM;
1936
1937         len = hid_report_len(report);
1938
1939         if (reqtype == HID_REQ_SET_REPORT)
1940                 hid_output_report(report, buf);
1941
1942         ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1943                                           report->type, reqtype);
1944         if (ret < 0) {
1945                 dbg_hid("unable to complete request: %d\n", ret);
1946                 goto out;
1947         }
1948
1949         if (reqtype == HID_REQ_GET_REPORT)
1950                 hid_input_report(hid, report->type, buf, ret, 0);
1951
1952         ret = 0;
1953
1954 out:
1955         kfree(buf);
1956         return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(__hid_request);
1959
1960 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1961                          int interrupt)
1962 {
1963         struct hid_report_enum *report_enum = hid->report_enum + type;
1964         struct hid_report *report;
1965         struct hid_driver *hdrv;
1966         u32 rsize, csize = size;
1967         u8 *cdata = data;
1968         int ret = 0;
1969
1970         report = hid_get_report(report_enum, data);
1971         if (!report)
1972                 goto out;
1973
1974         if (report_enum->numbered) {
1975                 cdata++;
1976                 csize--;
1977         }
1978
1979         rsize = hid_compute_report_size(report);
1980
1981         if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1982                 rsize = HID_MAX_BUFFER_SIZE - 1;
1983         else if (rsize > HID_MAX_BUFFER_SIZE)
1984                 rsize = HID_MAX_BUFFER_SIZE;
1985
1986         if (csize < rsize) {
1987                 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1988                                 csize, rsize);
1989                 memset(cdata + csize, 0, rsize - csize);
1990         }
1991
1992         if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1993                 hid->hiddev_report_event(hid, report);
1994         if (hid->claimed & HID_CLAIMED_HIDRAW) {
1995                 ret = hidraw_report_event(hid, data, size);
1996                 if (ret)
1997                         goto out;
1998         }
1999
2000         if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2001                 hid_process_report(hid, report, cdata, interrupt);
2002                 hdrv = hid->driver;
2003                 if (hdrv && hdrv->report)
2004                         hdrv->report(hid, report);
2005         }
2006
2007         if (hid->claimed & HID_CLAIMED_INPUT)
2008                 hidinput_report_event(hid, report);
2009 out:
2010         return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2013
2014 /**
2015  * hid_input_report - report data from lower layer (usb, bt...)
2016  *
2017  * @hid: hid device
2018  * @type: HID report type (HID_*_REPORT)
2019  * @data: report contents
2020  * @size: size of data parameter
2021  * @interrupt: distinguish between interrupt and control transfers
2022  *
2023  * This is data entry for lower layers.
2024  */
2025 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2026                      int interrupt)
2027 {
2028         struct hid_report_enum *report_enum;
2029         struct hid_driver *hdrv;
2030         struct hid_report *report;
2031         int ret = 0;
2032
2033         if (!hid)
2034                 return -ENODEV;
2035
2036         if (down_trylock(&hid->driver_input_lock))
2037                 return -EBUSY;
2038
2039         if (!hid->driver) {
2040                 ret = -ENODEV;
2041                 goto unlock;
2042         }
2043         report_enum = hid->report_enum + type;
2044         hdrv = hid->driver;
2045
2046         data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2047         if (IS_ERR(data)) {
2048                 ret = PTR_ERR(data);
2049                 goto unlock;
2050         }
2051
2052         if (!size) {
2053                 dbg_hid("empty report\n");
2054                 ret = -1;
2055                 goto unlock;
2056         }
2057
2058         /* Avoid unnecessary overhead if debugfs is disabled */
2059         if (!list_empty(&hid->debug_list))
2060                 hid_dump_report(hid, type, data, size);
2061
2062         report = hid_get_report(report_enum, data);
2063
2064         if (!report) {
2065                 ret = -1;
2066                 goto unlock;
2067         }
2068
2069         if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2070                 ret = hdrv->raw_event(hid, report, data, size);
2071                 if (ret < 0)
2072                         goto unlock;
2073         }
2074
2075         ret = hid_report_raw_event(hid, type, data, size, interrupt);
2076
2077 unlock:
2078         up(&hid->driver_input_lock);
2079         return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(hid_input_report);
2082
2083 bool hid_match_one_id(const struct hid_device *hdev,
2084                       const struct hid_device_id *id)
2085 {
2086         return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2087                 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2088                 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2089                 (id->product == HID_ANY_ID || id->product == hdev->product);
2090 }
2091
2092 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2093                 const struct hid_device_id *id)
2094 {
2095         for (; id->bus; id++)
2096                 if (hid_match_one_id(hdev, id))
2097                         return id;
2098
2099         return NULL;
2100 }
2101 EXPORT_SYMBOL_GPL(hid_match_id);
2102
2103 static const struct hid_device_id hid_hiddev_list[] = {
2104         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2105         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2106         { }
2107 };
2108
2109 static bool hid_hiddev(struct hid_device *hdev)
2110 {
2111         return !!hid_match_id(hdev, hid_hiddev_list);
2112 }
2113
2114
2115 static ssize_t
2116 read_report_descriptor(struct file *filp, struct kobject *kobj,
2117                 struct bin_attribute *attr,
2118                 char *buf, loff_t off, size_t count)
2119 {
2120         struct device *dev = kobj_to_dev(kobj);
2121         struct hid_device *hdev = to_hid_device(dev);
2122
2123         if (off >= hdev->rsize)
2124                 return 0;
2125
2126         if (off + count > hdev->rsize)
2127                 count = hdev->rsize - off;
2128
2129         memcpy(buf, hdev->rdesc + off, count);
2130
2131         return count;
2132 }
2133
2134 static ssize_t
2135 show_country(struct device *dev, struct device_attribute *attr,
2136                 char *buf)
2137 {
2138         struct hid_device *hdev = to_hid_device(dev);
2139
2140         return sprintf(buf, "%02x\n", hdev->country & 0xff);
2141 }
2142
2143 static struct bin_attribute dev_bin_attr_report_desc = {
2144         .attr = { .name = "report_descriptor", .mode = 0444 },
2145         .read = read_report_descriptor,
2146         .size = HID_MAX_DESCRIPTOR_SIZE,
2147 };
2148
2149 static const struct device_attribute dev_attr_country = {
2150         .attr = { .name = "country", .mode = 0444 },
2151         .show = show_country,
2152 };
2153
2154 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2155 {
2156         static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2157                 "Joystick", "Gamepad", "Keyboard", "Keypad",
2158                 "Multi-Axis Controller"
2159         };
2160         const char *type, *bus;
2161         char buf[64] = "";
2162         unsigned int i;
2163         int len;
2164         int ret;
2165
2166         ret = hid_bpf_connect_device(hdev);
2167         if (ret)
2168                 return ret;
2169
2170         if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2171                 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2172         if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2173                 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2174         if (hdev->bus != BUS_USB)
2175                 connect_mask &= ~HID_CONNECT_HIDDEV;
2176         if (hid_hiddev(hdev))
2177                 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2178
2179         if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2180                                 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2181                 hdev->claimed |= HID_CLAIMED_INPUT;
2182
2183         if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2184                         !hdev->hiddev_connect(hdev,
2185                                 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2186                 hdev->claimed |= HID_CLAIMED_HIDDEV;
2187         if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2188                 hdev->claimed |= HID_CLAIMED_HIDRAW;
2189
2190         if (connect_mask & HID_CONNECT_DRIVER)
2191                 hdev->claimed |= HID_CLAIMED_DRIVER;
2192
2193         /* Drivers with the ->raw_event callback set are not required to connect
2194          * to any other listener. */
2195         if (!hdev->claimed && !hdev->driver->raw_event) {
2196                 hid_err(hdev, "device has no listeners, quitting\n");
2197                 return -ENODEV;
2198         }
2199
2200         hid_process_ordering(hdev);
2201
2202         if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2203                         (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2204                 hdev->ff_init(hdev);
2205
2206         len = 0;
2207         if (hdev->claimed & HID_CLAIMED_INPUT)
2208                 len += sprintf(buf + len, "input");
2209         if (hdev->claimed & HID_CLAIMED_HIDDEV)
2210                 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2211                                 ((struct hiddev *)hdev->hiddev)->minor);
2212         if (hdev->claimed & HID_CLAIMED_HIDRAW)
2213                 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2214                                 ((struct hidraw *)hdev->hidraw)->minor);
2215
2216         type = "Device";
2217         for (i = 0; i < hdev->maxcollection; i++) {
2218                 struct hid_collection *col = &hdev->collection[i];
2219                 if (col->type == HID_COLLECTION_APPLICATION &&
2220                    (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2221                    (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2222                         type = types[col->usage & 0xffff];
2223                         break;
2224                 }
2225         }
2226
2227         switch (hdev->bus) {
2228         case BUS_USB:
2229                 bus = "USB";
2230                 break;
2231         case BUS_BLUETOOTH:
2232                 bus = "BLUETOOTH";
2233                 break;
2234         case BUS_I2C:
2235                 bus = "I2C";
2236                 break;
2237         case BUS_VIRTUAL:
2238                 bus = "VIRTUAL";
2239                 break;
2240         case BUS_INTEL_ISHTP:
2241         case BUS_AMD_SFH:
2242                 bus = "SENSOR HUB";
2243                 break;
2244         default:
2245                 bus = "<UNKNOWN>";
2246         }
2247
2248         ret = device_create_file(&hdev->dev, &dev_attr_country);
2249         if (ret)
2250                 hid_warn(hdev,
2251                          "can't create sysfs country code attribute err: %d\n", ret);
2252
2253         hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2254                  buf, bus, hdev->version >> 8, hdev->version & 0xff,
2255                  type, hdev->name, hdev->phys);
2256
2257         return 0;
2258 }
2259 EXPORT_SYMBOL_GPL(hid_connect);
2260
2261 void hid_disconnect(struct hid_device *hdev)
2262 {
2263         device_remove_file(&hdev->dev, &dev_attr_country);
2264         if (hdev->claimed & HID_CLAIMED_INPUT)
2265                 hidinput_disconnect(hdev);
2266         if (hdev->claimed & HID_CLAIMED_HIDDEV)
2267                 hdev->hiddev_disconnect(hdev);
2268         if (hdev->claimed & HID_CLAIMED_HIDRAW)
2269                 hidraw_disconnect(hdev);
2270         hdev->claimed = 0;
2271
2272         hid_bpf_disconnect_device(hdev);
2273 }
2274 EXPORT_SYMBOL_GPL(hid_disconnect);
2275
2276 /**
2277  * hid_hw_start - start underlying HW
2278  * @hdev: hid device
2279  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2280  *
2281  * Call this in probe function *after* hid_parse. This will setup HW
2282  * buffers and start the device (if not defeirred to device open).
2283  * hid_hw_stop must be called if this was successful.
2284  */
2285 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2286 {
2287         int error;
2288
2289         error = hdev->ll_driver->start(hdev);
2290         if (error)
2291                 return error;
2292
2293         if (connect_mask) {
2294                 error = hid_connect(hdev, connect_mask);
2295                 if (error) {
2296                         hdev->ll_driver->stop(hdev);
2297                         return error;
2298                 }
2299         }
2300
2301         return 0;
2302 }
2303 EXPORT_SYMBOL_GPL(hid_hw_start);
2304
2305 /**
2306  * hid_hw_stop - stop underlying HW
2307  * @hdev: hid device
2308  *
2309  * This is usually called from remove function or from probe when something
2310  * failed and hid_hw_start was called already.
2311  */
2312 void hid_hw_stop(struct hid_device *hdev)
2313 {
2314         hid_disconnect(hdev);
2315         hdev->ll_driver->stop(hdev);
2316 }
2317 EXPORT_SYMBOL_GPL(hid_hw_stop);
2318
2319 /**
2320  * hid_hw_open - signal underlying HW to start delivering events
2321  * @hdev: hid device
2322  *
2323  * Tell underlying HW to start delivering events from the device.
2324  * This function should be called sometime after successful call
2325  * to hid_hw_start().
2326  */
2327 int hid_hw_open(struct hid_device *hdev)
2328 {
2329         int ret;
2330
2331         ret = mutex_lock_killable(&hdev->ll_open_lock);
2332         if (ret)
2333                 return ret;
2334
2335         if (!hdev->ll_open_count++) {
2336                 ret = hdev->ll_driver->open(hdev);
2337                 if (ret)
2338                         hdev->ll_open_count--;
2339         }
2340
2341         mutex_unlock(&hdev->ll_open_lock);
2342         return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(hid_hw_open);
2345
2346 /**
2347  * hid_hw_close - signal underlaying HW to stop delivering events
2348  *
2349  * @hdev: hid device
2350  *
2351  * This function indicates that we are not interested in the events
2352  * from this device anymore. Delivery of events may or may not stop,
2353  * depending on the number of users still outstanding.
2354  */
2355 void hid_hw_close(struct hid_device *hdev)
2356 {
2357         mutex_lock(&hdev->ll_open_lock);
2358         if (!--hdev->ll_open_count)
2359                 hdev->ll_driver->close(hdev);
2360         mutex_unlock(&hdev->ll_open_lock);
2361 }
2362 EXPORT_SYMBOL_GPL(hid_hw_close);
2363
2364 /**
2365  * hid_hw_request - send report request to device
2366  *
2367  * @hdev: hid device
2368  * @report: report to send
2369  * @reqtype: hid request type
2370  */
2371 void hid_hw_request(struct hid_device *hdev,
2372                     struct hid_report *report, enum hid_class_request reqtype)
2373 {
2374         if (hdev->ll_driver->request)
2375                 return hdev->ll_driver->request(hdev, report, reqtype);
2376
2377         __hid_request(hdev, report, reqtype);
2378 }
2379 EXPORT_SYMBOL_GPL(hid_hw_request);
2380
2381 /**
2382  * hid_hw_raw_request - send report request to device
2383  *
2384  * @hdev: hid device
2385  * @reportnum: report ID
2386  * @buf: in/out data to transfer
2387  * @len: length of buf
2388  * @rtype: HID report type
2389  * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2390  *
2391  * Return: count of data transferred, negative if error
2392  *
2393  * Same behavior as hid_hw_request, but with raw buffers instead.
2394  */
2395 int hid_hw_raw_request(struct hid_device *hdev,
2396                        unsigned char reportnum, __u8 *buf,
2397                        size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2398 {
2399         if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2400                 return -EINVAL;
2401
2402         return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2403                                             rtype, reqtype);
2404 }
2405 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2406
2407 /**
2408  * hid_hw_output_report - send output report to device
2409  *
2410  * @hdev: hid device
2411  * @buf: raw data to transfer
2412  * @len: length of buf
2413  *
2414  * Return: count of data transferred, negative if error
2415  */
2416 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2417 {
2418         if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2419                 return -EINVAL;
2420
2421         if (hdev->ll_driver->output_report)
2422                 return hdev->ll_driver->output_report(hdev, buf, len);
2423
2424         return -ENOSYS;
2425 }
2426 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2427
2428 #ifdef CONFIG_PM
2429 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2430 {
2431         if (hdev->driver && hdev->driver->suspend)
2432                 return hdev->driver->suspend(hdev, state);
2433
2434         return 0;
2435 }
2436 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2437
2438 int hid_driver_reset_resume(struct hid_device *hdev)
2439 {
2440         if (hdev->driver && hdev->driver->reset_resume)
2441                 return hdev->driver->reset_resume(hdev);
2442
2443         return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2446
2447 int hid_driver_resume(struct hid_device *hdev)
2448 {
2449         if (hdev->driver && hdev->driver->resume)
2450                 return hdev->driver->resume(hdev);
2451
2452         return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(hid_driver_resume);
2455 #endif /* CONFIG_PM */
2456
2457 struct hid_dynid {
2458         struct list_head list;
2459         struct hid_device_id id;
2460 };
2461
2462 /**
2463  * new_id_store - add a new HID device ID to this driver and re-probe devices
2464  * @drv: target device driver
2465  * @buf: buffer for scanning device ID data
2466  * @count: input size
2467  *
2468  * Adds a new dynamic hid device ID to this driver,
2469  * and causes the driver to probe for all devices again.
2470  */
2471 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2472                 size_t count)
2473 {
2474         struct hid_driver *hdrv = to_hid_driver(drv);
2475         struct hid_dynid *dynid;
2476         __u32 bus, vendor, product;
2477         unsigned long driver_data = 0;
2478         int ret;
2479
2480         ret = sscanf(buf, "%x %x %x %lx",
2481                         &bus, &vendor, &product, &driver_data);
2482         if (ret < 3)
2483                 return -EINVAL;
2484
2485         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2486         if (!dynid)
2487                 return -ENOMEM;
2488
2489         dynid->id.bus = bus;
2490         dynid->id.group = HID_GROUP_ANY;
2491         dynid->id.vendor = vendor;
2492         dynid->id.product = product;
2493         dynid->id.driver_data = driver_data;
2494
2495         spin_lock(&hdrv->dyn_lock);
2496         list_add_tail(&dynid->list, &hdrv->dyn_list);
2497         spin_unlock(&hdrv->dyn_lock);
2498
2499         ret = driver_attach(&hdrv->driver);
2500
2501         return ret ? : count;
2502 }
2503 static DRIVER_ATTR_WO(new_id);
2504
2505 static struct attribute *hid_drv_attrs[] = {
2506         &driver_attr_new_id.attr,
2507         NULL,
2508 };
2509 ATTRIBUTE_GROUPS(hid_drv);
2510
2511 static void hid_free_dynids(struct hid_driver *hdrv)
2512 {
2513         struct hid_dynid *dynid, *n;
2514
2515         spin_lock(&hdrv->dyn_lock);
2516         list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2517                 list_del(&dynid->list);
2518                 kfree(dynid);
2519         }
2520         spin_unlock(&hdrv->dyn_lock);
2521 }
2522
2523 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2524                                              struct hid_driver *hdrv)
2525 {
2526         struct hid_dynid *dynid;
2527
2528         spin_lock(&hdrv->dyn_lock);
2529         list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2530                 if (hid_match_one_id(hdev, &dynid->id)) {
2531                         spin_unlock(&hdrv->dyn_lock);
2532                         return &dynid->id;
2533                 }
2534         }
2535         spin_unlock(&hdrv->dyn_lock);
2536
2537         return hid_match_id(hdev, hdrv->id_table);
2538 }
2539 EXPORT_SYMBOL_GPL(hid_match_device);
2540
2541 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2542 {
2543         struct hid_driver *hdrv = to_hid_driver(drv);
2544         struct hid_device *hdev = to_hid_device(dev);
2545
2546         return hid_match_device(hdev, hdrv) != NULL;
2547 }
2548
2549 /**
2550  * hid_compare_device_paths - check if both devices share the same path
2551  * @hdev_a: hid device
2552  * @hdev_b: hid device
2553  * @separator: char to use as separator
2554  *
2555  * Check if two devices share the same path up to the last occurrence of
2556  * the separator char. Both paths must exist (i.e., zero-length paths
2557  * don't match).
2558  */
2559 bool hid_compare_device_paths(struct hid_device *hdev_a,
2560                               struct hid_device *hdev_b, char separator)
2561 {
2562         int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2563         int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2564
2565         if (n1 != n2 || n1 <= 0 || n2 <= 0)
2566                 return false;
2567
2568         return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2569 }
2570 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2571
2572 static int hid_device_probe(struct device *dev)
2573 {
2574         struct hid_driver *hdrv = to_hid_driver(dev->driver);
2575         struct hid_device *hdev = to_hid_device(dev);
2576         const struct hid_device_id *id;
2577         int ret = 0;
2578
2579         if (down_interruptible(&hdev->driver_input_lock)) {
2580                 ret = -EINTR;
2581                 goto end;
2582         }
2583         hdev->io_started = false;
2584
2585         clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2586
2587         if (!hdev->driver) {
2588                 id = hid_match_device(hdev, hdrv);
2589                 if (id == NULL) {
2590                         ret = -ENODEV;
2591                         goto unlock;
2592                 }
2593
2594                 if (hdrv->match) {
2595                         if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2596                                 ret = -ENODEV;
2597                                 goto unlock;
2598                         }
2599                 } else {
2600                         /*
2601                          * hid-generic implements .match(), so if
2602                          * hid_ignore_special_drivers is set, we can safely
2603                          * return.
2604                          */
2605                         if (hid_ignore_special_drivers) {
2606                                 ret = -ENODEV;
2607                                 goto unlock;
2608                         }
2609                 }
2610
2611                 /* reset the quirks that has been previously set */
2612                 hdev->quirks = hid_lookup_quirk(hdev);
2613                 hdev->driver = hdrv;
2614                 if (hdrv->probe) {
2615                         ret = hdrv->probe(hdev, id);
2616                 } else { /* default probe */
2617                         ret = hid_open_report(hdev);
2618                         if (!ret)
2619                                 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2620                 }
2621                 if (ret) {
2622                         hid_close_report(hdev);
2623                         hdev->driver = NULL;
2624                 }
2625         }
2626 unlock:
2627         if (!hdev->io_started)
2628                 up(&hdev->driver_input_lock);
2629 end:
2630         return ret;
2631 }
2632
2633 static void hid_device_remove(struct device *dev)
2634 {
2635         struct hid_device *hdev = to_hid_device(dev);
2636         struct hid_driver *hdrv;
2637
2638         down(&hdev->driver_input_lock);
2639         hdev->io_started = false;
2640
2641         hdrv = hdev->driver;
2642         if (hdrv) {
2643                 if (hdrv->remove)
2644                         hdrv->remove(hdev);
2645                 else /* default remove */
2646                         hid_hw_stop(hdev);
2647                 hid_close_report(hdev);
2648                 hdev->driver = NULL;
2649         }
2650
2651         if (!hdev->io_started)
2652                 up(&hdev->driver_input_lock);
2653 }
2654
2655 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2656                              char *buf)
2657 {
2658         struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2659
2660         return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2661                          hdev->bus, hdev->group, hdev->vendor, hdev->product);
2662 }
2663 static DEVICE_ATTR_RO(modalias);
2664
2665 static struct attribute *hid_dev_attrs[] = {
2666         &dev_attr_modalias.attr,
2667         NULL,
2668 };
2669 static struct bin_attribute *hid_dev_bin_attrs[] = {
2670         &dev_bin_attr_report_desc,
2671         NULL
2672 };
2673 static const struct attribute_group hid_dev_group = {
2674         .attrs = hid_dev_attrs,
2675         .bin_attrs = hid_dev_bin_attrs,
2676 };
2677 __ATTRIBUTE_GROUPS(hid_dev);
2678
2679 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2680 {
2681         struct hid_device *hdev = to_hid_device(dev);
2682
2683         if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2684                         hdev->bus, hdev->vendor, hdev->product))
2685                 return -ENOMEM;
2686
2687         if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2688                 return -ENOMEM;
2689
2690         if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2691                 return -ENOMEM;
2692
2693         if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2694                 return -ENOMEM;
2695
2696         if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2697                            hdev->bus, hdev->group, hdev->vendor, hdev->product))
2698                 return -ENOMEM;
2699
2700         return 0;
2701 }
2702
2703 struct bus_type hid_bus_type = {
2704         .name           = "hid",
2705         .dev_groups     = hid_dev_groups,
2706         .drv_groups     = hid_drv_groups,
2707         .match          = hid_bus_match,
2708         .probe          = hid_device_probe,
2709         .remove         = hid_device_remove,
2710         .uevent         = hid_uevent,
2711 };
2712 EXPORT_SYMBOL(hid_bus_type);
2713
2714 int hid_add_device(struct hid_device *hdev)
2715 {
2716         static atomic_t id = ATOMIC_INIT(0);
2717         int ret;
2718
2719         if (WARN_ON(hdev->status & HID_STAT_ADDED))
2720                 return -EBUSY;
2721
2722         hdev->quirks = hid_lookup_quirk(hdev);
2723
2724         /* we need to kill them here, otherwise they will stay allocated to
2725          * wait for coming driver */
2726         if (hid_ignore(hdev))
2727                 return -ENODEV;
2728
2729         /*
2730          * Check for the mandatory transport channel.
2731          */
2732          if (!hdev->ll_driver->raw_request) {
2733                 hid_err(hdev, "transport driver missing .raw_request()\n");
2734                 return -EINVAL;
2735          }
2736
2737         /*
2738          * Read the device report descriptor once and use as template
2739          * for the driver-specific modifications.
2740          */
2741         ret = hdev->ll_driver->parse(hdev);
2742         if (ret)
2743                 return ret;
2744         if (!hdev->dev_rdesc)
2745                 return -ENODEV;
2746
2747         /*
2748          * Scan generic devices for group information
2749          */
2750         if (hid_ignore_special_drivers) {
2751                 hdev->group = HID_GROUP_GENERIC;
2752         } else if (!hdev->group &&
2753                    !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2754                 ret = hid_scan_report(hdev);
2755                 if (ret)
2756                         hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2757         }
2758
2759         hdev->id = atomic_inc_return(&id);
2760
2761         /* XXX hack, any other cleaner solution after the driver core
2762          * is converted to allow more than 20 bytes as the device name? */
2763         dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2764                      hdev->vendor, hdev->product, hdev->id);
2765
2766         hid_debug_register(hdev, dev_name(&hdev->dev));
2767         ret = device_add(&hdev->dev);
2768         if (!ret)
2769                 hdev->status |= HID_STAT_ADDED;
2770         else
2771                 hid_debug_unregister(hdev);
2772
2773         return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(hid_add_device);
2776
2777 /**
2778  * hid_allocate_device - allocate new hid device descriptor
2779  *
2780  * Allocate and initialize hid device, so that hid_destroy_device might be
2781  * used to free it.
2782  *
2783  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2784  * error value.
2785  */
2786 struct hid_device *hid_allocate_device(void)
2787 {
2788         struct hid_device *hdev;
2789         int ret = -ENOMEM;
2790
2791         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2792         if (hdev == NULL)
2793                 return ERR_PTR(ret);
2794
2795         device_initialize(&hdev->dev);
2796         hdev->dev.release = hid_device_release;
2797         hdev->dev.bus = &hid_bus_type;
2798         device_enable_async_suspend(&hdev->dev);
2799
2800         hid_close_report(hdev);
2801
2802         init_waitqueue_head(&hdev->debug_wait);
2803         INIT_LIST_HEAD(&hdev->debug_list);
2804         spin_lock_init(&hdev->debug_list_lock);
2805         sema_init(&hdev->driver_input_lock, 1);
2806         mutex_init(&hdev->ll_open_lock);
2807
2808         hid_bpf_device_init(hdev);
2809
2810         return hdev;
2811 }
2812 EXPORT_SYMBOL_GPL(hid_allocate_device);
2813
2814 static void hid_remove_device(struct hid_device *hdev)
2815 {
2816         if (hdev->status & HID_STAT_ADDED) {
2817                 device_del(&hdev->dev);
2818                 hid_debug_unregister(hdev);
2819                 hdev->status &= ~HID_STAT_ADDED;
2820         }
2821         kfree(hdev->dev_rdesc);
2822         hdev->dev_rdesc = NULL;
2823         hdev->dev_rsize = 0;
2824 }
2825
2826 /**
2827  * hid_destroy_device - free previously allocated device
2828  *
2829  * @hdev: hid device
2830  *
2831  * If you allocate hid_device through hid_allocate_device, you should ever
2832  * free by this function.
2833  */
2834 void hid_destroy_device(struct hid_device *hdev)
2835 {
2836         hid_bpf_destroy_device(hdev);
2837         hid_remove_device(hdev);
2838         put_device(&hdev->dev);
2839 }
2840 EXPORT_SYMBOL_GPL(hid_destroy_device);
2841
2842
2843 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2844 {
2845         struct hid_driver *hdrv = data;
2846         struct hid_device *hdev = to_hid_device(dev);
2847
2848         if (hdev->driver == hdrv &&
2849             !hdrv->match(hdev, hid_ignore_special_drivers) &&
2850             !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2851                 return device_reprobe(dev);
2852
2853         return 0;
2854 }
2855
2856 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2857 {
2858         struct hid_driver *hdrv = to_hid_driver(drv);
2859
2860         if (hdrv->match) {
2861                 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2862                                  __hid_bus_reprobe_drivers);
2863         }
2864
2865         return 0;
2866 }
2867
2868 static int __bus_removed_driver(struct device_driver *drv, void *data)
2869 {
2870         return bus_rescan_devices(&hid_bus_type);
2871 }
2872
2873 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2874                 const char *mod_name)
2875 {
2876         int ret;
2877
2878         hdrv->driver.name = hdrv->name;
2879         hdrv->driver.bus = &hid_bus_type;
2880         hdrv->driver.owner = owner;
2881         hdrv->driver.mod_name = mod_name;
2882
2883         INIT_LIST_HEAD(&hdrv->dyn_list);
2884         spin_lock_init(&hdrv->dyn_lock);
2885
2886         ret = driver_register(&hdrv->driver);
2887
2888         if (ret == 0)
2889                 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2890                                  __hid_bus_driver_added);
2891
2892         return ret;
2893 }
2894 EXPORT_SYMBOL_GPL(__hid_register_driver);
2895
2896 void hid_unregister_driver(struct hid_driver *hdrv)
2897 {
2898         driver_unregister(&hdrv->driver);
2899         hid_free_dynids(hdrv);
2900
2901         bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2902 }
2903 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2904
2905 int hid_check_keys_pressed(struct hid_device *hid)
2906 {
2907         struct hid_input *hidinput;
2908         int i;
2909
2910         if (!(hid->claimed & HID_CLAIMED_INPUT))
2911                 return 0;
2912
2913         list_for_each_entry(hidinput, &hid->inputs, list) {
2914                 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2915                         if (hidinput->input->key[i])
2916                                 return 1;
2917         }
2918
2919         return 0;
2920 }
2921 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2922
2923 #ifdef CONFIG_HID_BPF
2924 static struct hid_bpf_ops hid_ops = {
2925         .hid_get_report = hid_get_report,
2926         .hid_hw_raw_request = hid_hw_raw_request,
2927         .owner = THIS_MODULE,
2928         .bus_type = &hid_bus_type,
2929 };
2930 #endif
2931
2932 static int __init hid_init(void)
2933 {
2934         int ret;
2935
2936         ret = bus_register(&hid_bus_type);
2937         if (ret) {
2938                 pr_err("can't register hid bus\n");
2939                 goto err;
2940         }
2941
2942 #ifdef CONFIG_HID_BPF
2943         hid_bpf_ops = &hid_ops;
2944 #endif
2945
2946         ret = hidraw_init();
2947         if (ret)
2948                 goto err_bus;
2949
2950         hid_debug_init();
2951
2952         return 0;
2953 err_bus:
2954         bus_unregister(&hid_bus_type);
2955 err:
2956         return ret;
2957 }
2958
2959 static void __exit hid_exit(void)
2960 {
2961 #ifdef CONFIG_HID_BPF
2962         hid_bpf_ops = NULL;
2963 #endif
2964         hid_debug_exit();
2965         hidraw_exit();
2966         bus_unregister(&hid_bus_type);
2967         hid_quirks_exit(HID_BUS_ANY);
2968 }
2969
2970 module_init(hid_init);
2971 module_exit(hid_exit);
2972
2973 MODULE_AUTHOR("Andreas Gal");
2974 MODULE_AUTHOR("Vojtech Pavlik");
2975 MODULE_AUTHOR("Jiri Kosina");
2976 MODULE_LICENSE("GPL");