Merge drm/drm-next into drm-misc-next
[linux-block.git] / drivers / gpu / drm / vmwgfx / vmwgfx_kms.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34 /* Might need a hrtimer here? */
35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
36
37 void vmw_du_cleanup(struct vmw_display_unit *du)
38 {
39         drm_plane_cleanup(&du->primary);
40         drm_plane_cleanup(&du->cursor);
41
42         drm_connector_unregister(&du->connector);
43         drm_crtc_cleanup(&du->crtc);
44         drm_encoder_cleanup(&du->encoder);
45         drm_connector_cleanup(&du->connector);
46 }
47
48 /*
49  * Display Unit Cursor functions
50  */
51
52 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
53                                    u32 *image, u32 width, u32 height,
54                                    u32 hotspotX, u32 hotspotY)
55 {
56         struct {
57                 u32 cmd;
58                 SVGAFifoCmdDefineAlphaCursor cursor;
59         } *cmd;
60         u32 image_size = width * height * 4;
61         u32 cmd_size = sizeof(*cmd) + image_size;
62
63         if (!image)
64                 return -EINVAL;
65
66         cmd = vmw_fifo_reserve(dev_priv, cmd_size);
67         if (unlikely(cmd == NULL)) {
68                 DRM_ERROR("Fifo reserve failed.\n");
69                 return -ENOMEM;
70         }
71
72         memset(cmd, 0, sizeof(*cmd));
73
74         memcpy(&cmd[1], image, image_size);
75
76         cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
77         cmd->cursor.id = 0;
78         cmd->cursor.width = width;
79         cmd->cursor.height = height;
80         cmd->cursor.hotspotX = hotspotX;
81         cmd->cursor.hotspotY = hotspotY;
82
83         vmw_fifo_commit_flush(dev_priv, cmd_size);
84
85         return 0;
86 }
87
88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
89                                 struct vmw_buffer_object *bo,
90                                 u32 width, u32 height,
91                                 u32 hotspotX, u32 hotspotY)
92 {
93         struct ttm_bo_kmap_obj map;
94         unsigned long kmap_offset;
95         unsigned long kmap_num;
96         void *virtual;
97         bool dummy;
98         int ret;
99
100         kmap_offset = 0;
101         kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
102
103         ret = ttm_bo_reserve(&bo->base, true, false, NULL);
104         if (unlikely(ret != 0)) {
105                 DRM_ERROR("reserve failed\n");
106                 return -EINVAL;
107         }
108
109         ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
110         if (unlikely(ret != 0))
111                 goto err_unreserve;
112
113         virtual = ttm_kmap_obj_virtual(&map, &dummy);
114         ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
115                                       hotspotX, hotspotY);
116
117         ttm_bo_kunmap(&map);
118 err_unreserve:
119         ttm_bo_unreserve(&bo->base);
120
121         return ret;
122 }
123
124
125 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
126                                        bool show, int x, int y)
127 {
128         u32 *fifo_mem = dev_priv->mmio_virt;
129         uint32_t count;
130
131         spin_lock(&dev_priv->cursor_lock);
132         vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
133         vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
134         vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
135         count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
136         vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137         spin_unlock(&dev_priv->cursor_lock);
138 }
139
140
141 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
142                           struct ttm_object_file *tfile,
143                           struct ttm_buffer_object *bo,
144                           SVGA3dCmdHeader *header)
145 {
146         struct ttm_bo_kmap_obj map;
147         unsigned long kmap_offset;
148         unsigned long kmap_num;
149         SVGA3dCopyBox *box;
150         unsigned box_count;
151         void *virtual;
152         bool dummy;
153         struct vmw_dma_cmd {
154                 SVGA3dCmdHeader header;
155                 SVGA3dCmdSurfaceDMA dma;
156         } *cmd;
157         int i, ret;
158
159         cmd = container_of(header, struct vmw_dma_cmd, header);
160
161         /* No snooper installed */
162         if (!srf->snooper.image)
163                 return;
164
165         if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
166                 DRM_ERROR("face and mipmap for cursors should never != 0\n");
167                 return;
168         }
169
170         if (cmd->header.size < 64) {
171                 DRM_ERROR("at least one full copy box must be given\n");
172                 return;
173         }
174
175         box = (SVGA3dCopyBox *)&cmd[1];
176         box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
177                         sizeof(SVGA3dCopyBox);
178
179         if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
180             box->x != 0    || box->y != 0    || box->z != 0    ||
181             box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
182             box->d != 1    || box_count != 1) {
183                 /* TODO handle none page aligned offsets */
184                 /* TODO handle more dst & src != 0 */
185                 /* TODO handle more then one copy */
186                 DRM_ERROR("Cant snoop dma request for cursor!\n");
187                 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
188                           box->srcx, box->srcy, box->srcz,
189                           box->x, box->y, box->z,
190                           box->w, box->h, box->d, box_count,
191                           cmd->dma.guest.ptr.offset);
192                 return;
193         }
194
195         kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
196         kmap_num = (64*64*4) >> PAGE_SHIFT;
197
198         ret = ttm_bo_reserve(bo, true, false, NULL);
199         if (unlikely(ret != 0)) {
200                 DRM_ERROR("reserve failed\n");
201                 return;
202         }
203
204         ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
205         if (unlikely(ret != 0))
206                 goto err_unreserve;
207
208         virtual = ttm_kmap_obj_virtual(&map, &dummy);
209
210         if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
211                 memcpy(srf->snooper.image, virtual, 64*64*4);
212         } else {
213                 /* Image is unsigned pointer. */
214                 for (i = 0; i < box->h; i++)
215                         memcpy(srf->snooper.image + i * 64,
216                                virtual + i * cmd->dma.guest.pitch,
217                                box->w * 4);
218         }
219
220         srf->snooper.age++;
221
222         ttm_bo_kunmap(&map);
223 err_unreserve:
224         ttm_bo_unreserve(bo);
225 }
226
227 /**
228  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
229  *
230  * @dev_priv: Pointer to the device private struct.
231  *
232  * Clears all legacy hotspots.
233  */
234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
235 {
236         struct drm_device *dev = dev_priv->dev;
237         struct vmw_display_unit *du;
238         struct drm_crtc *crtc;
239
240         drm_modeset_lock_all(dev);
241         drm_for_each_crtc(crtc, dev) {
242                 du = vmw_crtc_to_du(crtc);
243
244                 du->hotspot_x = 0;
245                 du->hotspot_y = 0;
246         }
247         drm_modeset_unlock_all(dev);
248 }
249
250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
251 {
252         struct drm_device *dev = dev_priv->dev;
253         struct vmw_display_unit *du;
254         struct drm_crtc *crtc;
255
256         mutex_lock(&dev->mode_config.mutex);
257
258         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
259                 du = vmw_crtc_to_du(crtc);
260                 if (!du->cursor_surface ||
261                     du->cursor_age == du->cursor_surface->snooper.age)
262                         continue;
263
264                 du->cursor_age = du->cursor_surface->snooper.age;
265                 vmw_cursor_update_image(dev_priv,
266                                         du->cursor_surface->snooper.image,
267                                         64, 64,
268                                         du->hotspot_x + du->core_hotspot_x,
269                                         du->hotspot_y + du->core_hotspot_y);
270         }
271
272         mutex_unlock(&dev->mode_config.mutex);
273 }
274
275
276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
277 {
278         vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
279
280         drm_plane_cleanup(plane);
281 }
282
283
284 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
285 {
286         drm_plane_cleanup(plane);
287
288         /* Planes are static in our case so we don't free it */
289 }
290
291
292 /**
293  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
294  *
295  * @vps: plane state associated with the display surface
296  * @unreference: true if we also want to unreference the display.
297  */
298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
299                              bool unreference)
300 {
301         if (vps->surf) {
302                 if (vps->pinned) {
303                         vmw_resource_unpin(&vps->surf->res);
304                         vps->pinned--;
305                 }
306
307                 if (unreference) {
308                         if (vps->pinned)
309                                 DRM_ERROR("Surface still pinned\n");
310                         vmw_surface_unreference(&vps->surf);
311                 }
312         }
313 }
314
315
316 /**
317  * vmw_du_plane_cleanup_fb - Unpins the cursor
318  *
319  * @plane:  display plane
320  * @old_state: Contains the FB to clean up
321  *
322  * Unpins the framebuffer surface
323  *
324  * Returns 0 on success
325  */
326 void
327 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
328                         struct drm_plane_state *old_state)
329 {
330         struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
331
332         vmw_du_plane_unpin_surf(vps, false);
333 }
334
335
336 /**
337  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
338  *
339  * @plane:  display plane
340  * @new_state: info on the new plane state, including the FB
341  *
342  * Returns 0 on success
343  */
344 int
345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
346                                struct drm_plane_state *new_state)
347 {
348         struct drm_framebuffer *fb = new_state->fb;
349         struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
350
351
352         if (vps->surf)
353                 vmw_surface_unreference(&vps->surf);
354
355         if (vps->bo)
356                 vmw_bo_unreference(&vps->bo);
357
358         if (fb) {
359                 if (vmw_framebuffer_to_vfb(fb)->bo) {
360                         vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
361                         vmw_bo_reference(vps->bo);
362                 } else {
363                         vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
364                         vmw_surface_reference(vps->surf);
365                 }
366         }
367
368         return 0;
369 }
370
371
372 void
373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
374                                   struct drm_plane_state *old_state)
375 {
376         struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
377         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
378         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
379         struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
380         s32 hotspot_x, hotspot_y;
381         int ret = 0;
382
383
384         hotspot_x = du->hotspot_x;
385         hotspot_y = du->hotspot_y;
386
387         if (plane->state->fb) {
388                 hotspot_x += plane->state->fb->hot_x;
389                 hotspot_y += plane->state->fb->hot_y;
390         }
391
392         du->cursor_surface = vps->surf;
393         du->cursor_bo = vps->bo;
394
395         if (vps->surf) {
396                 du->cursor_age = du->cursor_surface->snooper.age;
397
398                 ret = vmw_cursor_update_image(dev_priv,
399                                               vps->surf->snooper.image,
400                                               64, 64, hotspot_x,
401                                               hotspot_y);
402         } else if (vps->bo) {
403                 ret = vmw_cursor_update_bo(dev_priv, vps->bo,
404                                            plane->state->crtc_w,
405                                            plane->state->crtc_h,
406                                            hotspot_x, hotspot_y);
407         } else {
408                 vmw_cursor_update_position(dev_priv, false, 0, 0);
409                 return;
410         }
411
412         if (!ret) {
413                 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
414                 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
415
416                 vmw_cursor_update_position(dev_priv, true,
417                                            du->cursor_x + hotspot_x,
418                                            du->cursor_y + hotspot_y);
419
420                 du->core_hotspot_x = hotspot_x - du->hotspot_x;
421                 du->core_hotspot_y = hotspot_y - du->hotspot_y;
422         } else {
423                 DRM_ERROR("Failed to update cursor image\n");
424         }
425 }
426
427
428 /**
429  * vmw_du_primary_plane_atomic_check - check if the new state is okay
430  *
431  * @plane: display plane
432  * @state: info on the new plane state, including the FB
433  *
434  * Check if the new state is settable given the current state.  Other
435  * than what the atomic helper checks, we care about crtc fitting
436  * the FB and maintaining one active framebuffer.
437  *
438  * Returns 0 on success
439  */
440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
441                                       struct drm_plane_state *state)
442 {
443         struct drm_crtc_state *crtc_state = NULL;
444         struct drm_framebuffer *new_fb = state->fb;
445         int ret;
446
447         if (state->crtc)
448                 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
449
450         ret = drm_atomic_helper_check_plane_state(state, crtc_state,
451                                                   DRM_PLANE_HELPER_NO_SCALING,
452                                                   DRM_PLANE_HELPER_NO_SCALING,
453                                                   false, true);
454
455         if (!ret && new_fb) {
456                 struct drm_crtc *crtc = state->crtc;
457                 struct vmw_connector_state *vcs;
458                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
459                 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
460                 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
461
462                 vcs = vmw_connector_state_to_vcs(du->connector.state);
463
464                 /* Only one active implicit framebuffer at a time. */
465                 mutex_lock(&dev_priv->global_kms_state_mutex);
466                 if (vcs->is_implicit && dev_priv->implicit_fb &&
467                     !(dev_priv->num_implicit == 1 && du->active_implicit)
468                     && dev_priv->implicit_fb != vfb) {
469                         DRM_ERROR("Multiple implicit framebuffers "
470                                   "not supported.\n");
471                         ret = -EINVAL;
472                 }
473                 mutex_unlock(&dev_priv->global_kms_state_mutex);
474         }
475
476
477         return ret;
478 }
479
480
481 /**
482  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483  *
484  * @plane: cursor plane
485  * @state: info on the new plane state
486  *
487  * This is a chance to fail if the new cursor state does not fit
488  * our requirements.
489  *
490  * Returns 0 on success
491  */
492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493                                      struct drm_plane_state *new_state)
494 {
495         int ret = 0;
496         struct vmw_surface *surface = NULL;
497         struct drm_framebuffer *fb = new_state->fb;
498
499         struct drm_rect src = drm_plane_state_src(new_state);
500         struct drm_rect dest = drm_plane_state_dest(new_state);
501
502         /* Turning off */
503         if (!fb)
504                 return ret;
505
506         ret = drm_plane_helper_check_update(plane, new_state->crtc, fb,
507                                             &src, &dest,
508                                             DRM_MODE_ROTATE_0,
509                                             DRM_PLANE_HELPER_NO_SCALING,
510                                             DRM_PLANE_HELPER_NO_SCALING,
511                                             true, true, &new_state->visible);
512         if (!ret)
513                 return ret;
514
515         /* A lot of the code assumes this */
516         if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
517                 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
518                           new_state->crtc_w, new_state->crtc_h);
519                 ret = -EINVAL;
520         }
521
522         if (!vmw_framebuffer_to_vfb(fb)->bo)
523                 surface = vmw_framebuffer_to_vfbs(fb)->surface;
524
525         if (surface && !surface->snooper.image) {
526                 DRM_ERROR("surface not suitable for cursor\n");
527                 ret = -EINVAL;
528         }
529
530         return ret;
531 }
532
533
534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
535                              struct drm_crtc_state *new_state)
536 {
537         struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
538         int connector_mask = drm_connector_mask(&du->connector);
539         bool has_primary = new_state->plane_mask &
540                            drm_plane_mask(crtc->primary);
541
542         /* We always want to have an active plane with an active CRTC */
543         if (has_primary != new_state->enable)
544                 return -EINVAL;
545
546
547         if (new_state->connector_mask != connector_mask &&
548             new_state->connector_mask != 0) {
549                 DRM_ERROR("Invalid connectors configuration\n");
550                 return -EINVAL;
551         }
552
553         /*
554          * Our virtual device does not have a dot clock, so use the logical
555          * clock value as the dot clock.
556          */
557         if (new_state->mode.crtc_clock == 0)
558                 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
559
560         return 0;
561 }
562
563
564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
565                               struct drm_crtc_state *old_crtc_state)
566 {
567 }
568
569
570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
571                               struct drm_crtc_state *old_crtc_state)
572 {
573         struct drm_pending_vblank_event *event = crtc->state->event;
574
575         if (event) {
576                 crtc->state->event = NULL;
577
578                 spin_lock_irq(&crtc->dev->event_lock);
579                 drm_crtc_send_vblank_event(crtc, event);
580                 spin_unlock_irq(&crtc->dev->event_lock);
581         }
582 }
583
584
585 /**
586  * vmw_du_crtc_duplicate_state - duplicate crtc state
587  * @crtc: DRM crtc
588  *
589  * Allocates and returns a copy of the crtc state (both common and
590  * vmw-specific) for the specified crtc.
591  *
592  * Returns: The newly allocated crtc state, or NULL on failure.
593  */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597         struct drm_crtc_state *state;
598         struct vmw_crtc_state *vcs;
599
600         if (WARN_ON(!crtc->state))
601                 return NULL;
602
603         vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604
605         if (!vcs)
606                 return NULL;
607
608         state = &vcs->base;
609
610         __drm_atomic_helper_crtc_duplicate_state(crtc, state);
611
612         return state;
613 }
614
615
616 /**
617  * vmw_du_crtc_reset - creates a blank vmw crtc state
618  * @crtc: DRM crtc
619  *
620  * Resets the atomic state for @crtc by freeing the state pointer (which
621  * might be NULL, e.g. at driver load time) and allocating a new empty state
622  * object.
623  */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626         struct vmw_crtc_state *vcs;
627
628
629         if (crtc->state) {
630                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
631
632                 kfree(vmw_crtc_state_to_vcs(crtc->state));
633         }
634
635         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636
637         if (!vcs) {
638                 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639                 return;
640         }
641
642         crtc->state = &vcs->base;
643         crtc->state->crtc = crtc;
644 }
645
646
647 /**
648  * vmw_du_crtc_destroy_state - destroy crtc state
649  * @crtc: DRM crtc
650  * @state: state object to destroy
651  *
652  * Destroys the crtc state (both common and vmw-specific) for the
653  * specified plane.
654  */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657                           struct drm_crtc_state *state)
658 {
659         drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661
662
663 /**
664  * vmw_du_plane_duplicate_state - duplicate plane state
665  * @plane: drm plane
666  *
667  * Allocates and returns a copy of the plane state (both common and
668  * vmw-specific) for the specified plane.
669  *
670  * Returns: The newly allocated plane state, or NULL on failure.
671  */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675         struct drm_plane_state *state;
676         struct vmw_plane_state *vps;
677
678         vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679
680         if (!vps)
681                 return NULL;
682
683         vps->pinned = 0;
684         vps->cpp = 0;
685
686         /* Each ref counted resource needs to be acquired again */
687         if (vps->surf)
688                 (void) vmw_surface_reference(vps->surf);
689
690         if (vps->bo)
691                 (void) vmw_bo_reference(vps->bo);
692
693         state = &vps->base;
694
695         __drm_atomic_helper_plane_duplicate_state(plane, state);
696
697         return state;
698 }
699
700
701 /**
702  * vmw_du_plane_reset - creates a blank vmw plane state
703  * @plane: drm plane
704  *
705  * Resets the atomic state for @plane by freeing the state pointer (which might
706  * be NULL, e.g. at driver load time) and allocating a new empty state object.
707  */
708 void vmw_du_plane_reset(struct drm_plane *plane)
709 {
710         struct vmw_plane_state *vps;
711
712
713         if (plane->state)
714                 vmw_du_plane_destroy_state(plane, plane->state);
715
716         vps = kzalloc(sizeof(*vps), GFP_KERNEL);
717
718         if (!vps) {
719                 DRM_ERROR("Cannot allocate vmw_plane_state\n");
720                 return;
721         }
722
723         __drm_atomic_helper_plane_reset(plane, &vps->base);
724 }
725
726
727 /**
728  * vmw_du_plane_destroy_state - destroy plane state
729  * @plane: DRM plane
730  * @state: state object to destroy
731  *
732  * Destroys the plane state (both common and vmw-specific) for the
733  * specified plane.
734  */
735 void
736 vmw_du_plane_destroy_state(struct drm_plane *plane,
737                            struct drm_plane_state *state)
738 {
739         struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
740
741
742         /* Should have been freed by cleanup_fb */
743         if (vps->surf)
744                 vmw_surface_unreference(&vps->surf);
745
746         if (vps->bo)
747                 vmw_bo_unreference(&vps->bo);
748
749         drm_atomic_helper_plane_destroy_state(plane, state);
750 }
751
752
753 /**
754  * vmw_du_connector_duplicate_state - duplicate connector state
755  * @connector: DRM connector
756  *
757  * Allocates and returns a copy of the connector state (both common and
758  * vmw-specific) for the specified connector.
759  *
760  * Returns: The newly allocated connector state, or NULL on failure.
761  */
762 struct drm_connector_state *
763 vmw_du_connector_duplicate_state(struct drm_connector *connector)
764 {
765         struct drm_connector_state *state;
766         struct vmw_connector_state *vcs;
767
768         if (WARN_ON(!connector->state))
769                 return NULL;
770
771         vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
772
773         if (!vcs)
774                 return NULL;
775
776         state = &vcs->base;
777
778         __drm_atomic_helper_connector_duplicate_state(connector, state);
779
780         return state;
781 }
782
783
784 /**
785  * vmw_du_connector_reset - creates a blank vmw connector state
786  * @connector: DRM connector
787  *
788  * Resets the atomic state for @connector by freeing the state pointer (which
789  * might be NULL, e.g. at driver load time) and allocating a new empty state
790  * object.
791  */
792 void vmw_du_connector_reset(struct drm_connector *connector)
793 {
794         struct vmw_connector_state *vcs;
795
796
797         if (connector->state) {
798                 __drm_atomic_helper_connector_destroy_state(connector->state);
799
800                 kfree(vmw_connector_state_to_vcs(connector->state));
801         }
802
803         vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
804
805         if (!vcs) {
806                 DRM_ERROR("Cannot allocate vmw_connector_state\n");
807                 return;
808         }
809
810         __drm_atomic_helper_connector_reset(connector, &vcs->base);
811 }
812
813
814 /**
815  * vmw_du_connector_destroy_state - destroy connector state
816  * @connector: DRM connector
817  * @state: state object to destroy
818  *
819  * Destroys the connector state (both common and vmw-specific) for the
820  * specified plane.
821  */
822 void
823 vmw_du_connector_destroy_state(struct drm_connector *connector,
824                           struct drm_connector_state *state)
825 {
826         drm_atomic_helper_connector_destroy_state(connector, state);
827 }
828 /*
829  * Generic framebuffer code
830  */
831
832 /*
833  * Surface framebuffer code
834  */
835
836 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
837 {
838         struct vmw_framebuffer_surface *vfbs =
839                 vmw_framebuffer_to_vfbs(framebuffer);
840
841         drm_framebuffer_cleanup(framebuffer);
842         vmw_surface_unreference(&vfbs->surface);
843         if (vfbs->base.user_obj)
844                 ttm_base_object_unref(&vfbs->base.user_obj);
845
846         kfree(vfbs);
847 }
848
849 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
850                                   struct drm_file *file_priv,
851                                   unsigned flags, unsigned color,
852                                   struct drm_clip_rect *clips,
853                                   unsigned num_clips)
854 {
855         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
856         struct vmw_framebuffer_surface *vfbs =
857                 vmw_framebuffer_to_vfbs(framebuffer);
858         struct drm_clip_rect norect;
859         int ret, inc = 1;
860
861         /* Legacy Display Unit does not support 3D */
862         if (dev_priv->active_display_unit == vmw_du_legacy)
863                 return -EINVAL;
864
865         drm_modeset_lock_all(dev_priv->dev);
866
867         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
868         if (unlikely(ret != 0)) {
869                 drm_modeset_unlock_all(dev_priv->dev);
870                 return ret;
871         }
872
873         if (!num_clips) {
874                 num_clips = 1;
875                 clips = &norect;
876                 norect.x1 = norect.y1 = 0;
877                 norect.x2 = framebuffer->width;
878                 norect.y2 = framebuffer->height;
879         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
880                 num_clips /= 2;
881                 inc = 2; /* skip source rects */
882         }
883
884         if (dev_priv->active_display_unit == vmw_du_screen_object)
885                 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
886                                                    clips, NULL, NULL, 0, 0,
887                                                    num_clips, inc, NULL, NULL);
888         else
889                 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
890                                                  clips, NULL, NULL, 0, 0,
891                                                  num_clips, inc, NULL, NULL);
892
893         vmw_fifo_flush(dev_priv, false);
894         ttm_read_unlock(&dev_priv->reservation_sem);
895
896         drm_modeset_unlock_all(dev_priv->dev);
897
898         return 0;
899 }
900
901 /**
902  * vmw_kms_readback - Perform a readback from the screen system to
903  * a buffer-object backed framebuffer.
904  *
905  * @dev_priv: Pointer to the device private structure.
906  * @file_priv: Pointer to a struct drm_file identifying the caller.
907  * Must be set to NULL if @user_fence_rep is NULL.
908  * @vfb: Pointer to the buffer-object backed framebuffer.
909  * @user_fence_rep: User-space provided structure for fence information.
910  * Must be set to non-NULL if @file_priv is non-NULL.
911  * @vclips: Array of clip rects.
912  * @num_clips: Number of clip rects in @vclips.
913  *
914  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
915  * interrupted.
916  */
917 int vmw_kms_readback(struct vmw_private *dev_priv,
918                      struct drm_file *file_priv,
919                      struct vmw_framebuffer *vfb,
920                      struct drm_vmw_fence_rep __user *user_fence_rep,
921                      struct drm_vmw_rect *vclips,
922                      uint32_t num_clips)
923 {
924         switch (dev_priv->active_display_unit) {
925         case vmw_du_screen_object:
926                 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
927                                             user_fence_rep, vclips, num_clips,
928                                             NULL);
929         case vmw_du_screen_target:
930                 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
931                                         user_fence_rep, NULL, vclips, num_clips,
932                                         1, false, true, NULL);
933         default:
934                 WARN_ONCE(true,
935                           "Readback called with invalid display system.\n");
936 }
937
938         return -ENOSYS;
939 }
940
941
942 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
943         .destroy = vmw_framebuffer_surface_destroy,
944         .dirty = vmw_framebuffer_surface_dirty,
945 };
946
947 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
948                                            struct vmw_surface *surface,
949                                            struct vmw_framebuffer **out,
950                                            const struct drm_mode_fb_cmd2
951                                            *mode_cmd,
952                                            bool is_bo_proxy)
953
954 {
955         struct drm_device *dev = dev_priv->dev;
956         struct vmw_framebuffer_surface *vfbs;
957         enum SVGA3dSurfaceFormat format;
958         int ret;
959         struct drm_format_name_buf format_name;
960
961         /* 3D is only supported on HWv8 and newer hosts */
962         if (dev_priv->active_display_unit == vmw_du_legacy)
963                 return -ENOSYS;
964
965         /*
966          * Sanity checks.
967          */
968
969         /* Surface must be marked as a scanout. */
970         if (unlikely(!surface->scanout))
971                 return -EINVAL;
972
973         if (unlikely(surface->mip_levels[0] != 1 ||
974                      surface->num_sizes != 1 ||
975                      surface->base_size.width < mode_cmd->width ||
976                      surface->base_size.height < mode_cmd->height ||
977                      surface->base_size.depth != 1)) {
978                 DRM_ERROR("Incompatible surface dimensions "
979                           "for requested mode.\n");
980                 return -EINVAL;
981         }
982
983         switch (mode_cmd->pixel_format) {
984         case DRM_FORMAT_ARGB8888:
985                 format = SVGA3D_A8R8G8B8;
986                 break;
987         case DRM_FORMAT_XRGB8888:
988                 format = SVGA3D_X8R8G8B8;
989                 break;
990         case DRM_FORMAT_RGB565:
991                 format = SVGA3D_R5G6B5;
992                 break;
993         case DRM_FORMAT_XRGB1555:
994                 format = SVGA3D_A1R5G5B5;
995                 break;
996         default:
997                 DRM_ERROR("Invalid pixel format: %s\n",
998                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
999                 return -EINVAL;
1000         }
1001
1002         /*
1003          * For DX, surface format validation is done when surface->scanout
1004          * is set.
1005          */
1006         if (!dev_priv->has_dx && format != surface->format) {
1007                 DRM_ERROR("Invalid surface format for requested mode.\n");
1008                 return -EINVAL;
1009         }
1010
1011         vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1012         if (!vfbs) {
1013                 ret = -ENOMEM;
1014                 goto out_err1;
1015         }
1016
1017         drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1018         vfbs->surface = vmw_surface_reference(surface);
1019         vfbs->base.user_handle = mode_cmd->handles[0];
1020         vfbs->is_bo_proxy = is_bo_proxy;
1021
1022         *out = &vfbs->base;
1023
1024         ret = drm_framebuffer_init(dev, &vfbs->base.base,
1025                                    &vmw_framebuffer_surface_funcs);
1026         if (ret)
1027                 goto out_err2;
1028
1029         return 0;
1030
1031 out_err2:
1032         vmw_surface_unreference(&surface);
1033         kfree(vfbs);
1034 out_err1:
1035         return ret;
1036 }
1037
1038 /*
1039  * Buffer-object framebuffer code
1040  */
1041
1042 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1043 {
1044         struct vmw_framebuffer_bo *vfbd =
1045                 vmw_framebuffer_to_vfbd(framebuffer);
1046
1047         drm_framebuffer_cleanup(framebuffer);
1048         vmw_bo_unreference(&vfbd->buffer);
1049         if (vfbd->base.user_obj)
1050                 ttm_base_object_unref(&vfbd->base.user_obj);
1051
1052         kfree(vfbd);
1053 }
1054
1055 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
1056                                     struct drm_file *file_priv,
1057                                     unsigned int flags, unsigned int color,
1058                                     struct drm_clip_rect *clips,
1059                                     unsigned int num_clips)
1060 {
1061         struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1062         struct vmw_framebuffer_bo *vfbd =
1063                 vmw_framebuffer_to_vfbd(framebuffer);
1064         struct drm_clip_rect norect;
1065         int ret, increment = 1;
1066
1067         drm_modeset_lock_all(dev_priv->dev);
1068
1069         ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1070         if (unlikely(ret != 0)) {
1071                 drm_modeset_unlock_all(dev_priv->dev);
1072                 return ret;
1073         }
1074
1075         if (!num_clips) {
1076                 num_clips = 1;
1077                 clips = &norect;
1078                 norect.x1 = norect.y1 = 0;
1079                 norect.x2 = framebuffer->width;
1080                 norect.y2 = framebuffer->height;
1081         } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1082                 num_clips /= 2;
1083                 increment = 2;
1084         }
1085
1086         switch (dev_priv->active_display_unit) {
1087         case vmw_du_screen_target:
1088                 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1089                                        clips, NULL, num_clips, increment,
1090                                        true, true, NULL);
1091                 break;
1092         case vmw_du_screen_object:
1093                 ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base,
1094                                               clips, NULL, num_clips,
1095                                               increment, true, NULL, NULL);
1096                 break;
1097         case vmw_du_legacy:
1098                 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1099                                               clips, num_clips, increment);
1100                 break;
1101         default:
1102                 ret = -EINVAL;
1103                 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1104                 break;
1105         }
1106
1107         vmw_fifo_flush(dev_priv, false);
1108         ttm_read_unlock(&dev_priv->reservation_sem);
1109
1110         drm_modeset_unlock_all(dev_priv->dev);
1111
1112         return ret;
1113 }
1114
1115 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1116         .destroy = vmw_framebuffer_bo_destroy,
1117         .dirty = vmw_framebuffer_bo_dirty,
1118 };
1119
1120 /**
1121  * Pin the bofer in a location suitable for access by the
1122  * display system.
1123  */
1124 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1125 {
1126         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1127         struct vmw_buffer_object *buf;
1128         struct ttm_placement *placement;
1129         int ret;
1130
1131         buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1132                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1133
1134         if (!buf)
1135                 return 0;
1136
1137         switch (dev_priv->active_display_unit) {
1138         case vmw_du_legacy:
1139                 vmw_overlay_pause_all(dev_priv);
1140                 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1141                 vmw_overlay_resume_all(dev_priv);
1142                 break;
1143         case vmw_du_screen_object:
1144         case vmw_du_screen_target:
1145                 if (vfb->bo) {
1146                         if (dev_priv->capabilities & SVGA_CAP_3D) {
1147                                 /*
1148                                  * Use surface DMA to get content to
1149                                  * sreen target surface.
1150                                  */
1151                                 placement = &vmw_vram_gmr_placement;
1152                         } else {
1153                                 /* Use CPU blit. */
1154                                 placement = &vmw_sys_placement;
1155                         }
1156                 } else {
1157                         /* Use surface / image update */
1158                         placement = &vmw_mob_placement;
1159                 }
1160
1161                 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1162         default:
1163                 return -EINVAL;
1164         }
1165
1166         return ret;
1167 }
1168
1169 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1170 {
1171         struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1172         struct vmw_buffer_object *buf;
1173
1174         buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1175                 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1176
1177         if (WARN_ON(!buf))
1178                 return 0;
1179
1180         return vmw_bo_unpin(dev_priv, buf, false);
1181 }
1182
1183 /**
1184  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1185  *
1186  * @dev: DRM device
1187  * @mode_cmd: parameters for the new surface
1188  * @bo_mob: MOB backing the buffer object
1189  * @srf_out: newly created surface
1190  *
1191  * When the content FB is a buffer object, we create a surface as a proxy to the
1192  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1193  * This is a more efficient approach
1194  *
1195  * RETURNS:
1196  * 0 on success, error code otherwise
1197  */
1198 static int vmw_create_bo_proxy(struct drm_device *dev,
1199                                const struct drm_mode_fb_cmd2 *mode_cmd,
1200                                struct vmw_buffer_object *bo_mob,
1201                                struct vmw_surface **srf_out)
1202 {
1203         uint32_t format;
1204         struct drm_vmw_size content_base_size = {0};
1205         struct vmw_resource *res;
1206         unsigned int bytes_pp;
1207         struct drm_format_name_buf format_name;
1208         int ret;
1209
1210         switch (mode_cmd->pixel_format) {
1211         case DRM_FORMAT_ARGB8888:
1212         case DRM_FORMAT_XRGB8888:
1213                 format = SVGA3D_X8R8G8B8;
1214                 bytes_pp = 4;
1215                 break;
1216
1217         case DRM_FORMAT_RGB565:
1218         case DRM_FORMAT_XRGB1555:
1219                 format = SVGA3D_R5G6B5;
1220                 bytes_pp = 2;
1221                 break;
1222
1223         case 8:
1224                 format = SVGA3D_P8;
1225                 bytes_pp = 1;
1226                 break;
1227
1228         default:
1229                 DRM_ERROR("Invalid framebuffer format %s\n",
1230                           drm_get_format_name(mode_cmd->pixel_format, &format_name));
1231                 return -EINVAL;
1232         }
1233
1234         content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1235         content_base_size.height = mode_cmd->height;
1236         content_base_size.depth  = 1;
1237
1238         ret = vmw_surface_gb_priv_define(dev,
1239                                          0, /* kernel visible only */
1240                                          0, /* flags */
1241                                          format,
1242                                          true, /* can be a scanout buffer */
1243                                          1, /* num of mip levels */
1244                                          0,
1245                                          0,
1246                                          content_base_size,
1247                                          SVGA3D_MS_PATTERN_NONE,
1248                                          SVGA3D_MS_QUALITY_NONE,
1249                                          srf_out);
1250         if (ret) {
1251                 DRM_ERROR("Failed to allocate proxy content buffer\n");
1252                 return ret;
1253         }
1254
1255         res = &(*srf_out)->res;
1256
1257         /* Reserve and switch the backing mob. */
1258         mutex_lock(&res->dev_priv->cmdbuf_mutex);
1259         (void) vmw_resource_reserve(res, false, true);
1260         vmw_bo_unreference(&res->backup);
1261         res->backup = vmw_bo_reference(bo_mob);
1262         res->backup_offset = 0;
1263         vmw_resource_unreserve(res, false, NULL, 0);
1264         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1265
1266         return 0;
1267 }
1268
1269
1270
1271 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1272                                       struct vmw_buffer_object *bo,
1273                                       struct vmw_framebuffer **out,
1274                                       const struct drm_mode_fb_cmd2
1275                                       *mode_cmd)
1276
1277 {
1278         struct drm_device *dev = dev_priv->dev;
1279         struct vmw_framebuffer_bo *vfbd;
1280         unsigned int requested_size;
1281         struct drm_format_name_buf format_name;
1282         int ret;
1283
1284         requested_size = mode_cmd->height * mode_cmd->pitches[0];
1285         if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1286                 DRM_ERROR("Screen buffer object size is too small "
1287                           "for requested mode.\n");
1288                 return -EINVAL;
1289         }
1290
1291         /* Limited framebuffer color depth support for screen objects */
1292         if (dev_priv->active_display_unit == vmw_du_screen_object) {
1293                 switch (mode_cmd->pixel_format) {
1294                 case DRM_FORMAT_XRGB8888:
1295                 case DRM_FORMAT_ARGB8888:
1296                         break;
1297                 case DRM_FORMAT_XRGB1555:
1298                 case DRM_FORMAT_RGB565:
1299                         break;
1300                 default:
1301                         DRM_ERROR("Invalid pixel format: %s\n",
1302                                   drm_get_format_name(mode_cmd->pixel_format, &format_name));
1303                         return -EINVAL;
1304                 }
1305         }
1306
1307         vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1308         if (!vfbd) {
1309                 ret = -ENOMEM;
1310                 goto out_err1;
1311         }
1312
1313         drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1314         vfbd->base.bo = true;
1315         vfbd->buffer = vmw_bo_reference(bo);
1316         vfbd->base.user_handle = mode_cmd->handles[0];
1317         *out = &vfbd->base;
1318
1319         ret = drm_framebuffer_init(dev, &vfbd->base.base,
1320                                    &vmw_framebuffer_bo_funcs);
1321         if (ret)
1322                 goto out_err2;
1323
1324         return 0;
1325
1326 out_err2:
1327         vmw_bo_unreference(&bo);
1328         kfree(vfbd);
1329 out_err1:
1330         return ret;
1331 }
1332
1333
1334 /**
1335  * vmw_kms_srf_ok - check if a surface can be created
1336  *
1337  * @width: requested width
1338  * @height: requested height
1339  *
1340  * Surfaces need to be less than texture size
1341  */
1342 static bool
1343 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1344 {
1345         if (width  > dev_priv->texture_max_width ||
1346             height > dev_priv->texture_max_height)
1347                 return false;
1348
1349         return true;
1350 }
1351
1352 /**
1353  * vmw_kms_new_framebuffer - Create a new framebuffer.
1354  *
1355  * @dev_priv: Pointer to device private struct.
1356  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1357  * Either @bo or @surface must be NULL.
1358  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1359  * Either @bo or @surface must be NULL.
1360  * @only_2d: No presents will occur to this buffer object based framebuffer.
1361  * This helps the code to do some important optimizations.
1362  * @mode_cmd: Frame-buffer metadata.
1363  */
1364 struct vmw_framebuffer *
1365 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1366                         struct vmw_buffer_object *bo,
1367                         struct vmw_surface *surface,
1368                         bool only_2d,
1369                         const struct drm_mode_fb_cmd2 *mode_cmd)
1370 {
1371         struct vmw_framebuffer *vfb = NULL;
1372         bool is_bo_proxy = false;
1373         int ret;
1374
1375         /*
1376          * We cannot use the SurfaceDMA command in an non-accelerated VM,
1377          * therefore, wrap the buffer object in a surface so we can use the
1378          * SurfaceCopy command.
1379          */
1380         if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1381             bo && only_2d &&
1382             mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1383             dev_priv->active_display_unit == vmw_du_screen_target) {
1384                 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1385                                           bo, &surface);
1386                 if (ret)
1387                         return ERR_PTR(ret);
1388
1389                 is_bo_proxy = true;
1390         }
1391
1392         /* Create the new framebuffer depending one what we have */
1393         if (surface) {
1394                 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1395                                                       mode_cmd,
1396                                                       is_bo_proxy);
1397
1398                 /*
1399                  * vmw_create_bo_proxy() adds a reference that is no longer
1400                  * needed
1401                  */
1402                 if (is_bo_proxy)
1403                         vmw_surface_unreference(&surface);
1404         } else if (bo) {
1405                 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1406                                                  mode_cmd);
1407         } else {
1408                 BUG();
1409         }
1410
1411         if (ret)
1412                 return ERR_PTR(ret);
1413
1414         vfb->pin = vmw_framebuffer_pin;
1415         vfb->unpin = vmw_framebuffer_unpin;
1416
1417         return vfb;
1418 }
1419
1420 /*
1421  * Generic Kernel modesetting functions
1422  */
1423
1424 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1425                                                  struct drm_file *file_priv,
1426                                                  const struct drm_mode_fb_cmd2 *mode_cmd)
1427 {
1428         struct vmw_private *dev_priv = vmw_priv(dev);
1429         struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1430         struct vmw_framebuffer *vfb = NULL;
1431         struct vmw_surface *surface = NULL;
1432         struct vmw_buffer_object *bo = NULL;
1433         struct ttm_base_object *user_obj;
1434         int ret;
1435
1436         /*
1437          * Take a reference on the user object of the resource
1438          * backing the kms fb. This ensures that user-space handle
1439          * lookups on that resource will always work as long as
1440          * it's registered with a kms framebuffer. This is important,
1441          * since vmw_execbuf_process identifies resources in the
1442          * command stream using user-space handles.
1443          */
1444
1445         user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1446         if (unlikely(user_obj == NULL)) {
1447                 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1448                 return ERR_PTR(-ENOENT);
1449         }
1450
1451         /**
1452          * End conditioned code.
1453          */
1454
1455         /* returns either a bo or surface */
1456         ret = vmw_user_lookup_handle(dev_priv, tfile,
1457                                      mode_cmd->handles[0],
1458                                      &surface, &bo);
1459         if (ret)
1460                 goto err_out;
1461
1462
1463         if (!bo &&
1464             !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1465                 DRM_ERROR("Surface size cannot exceed %dx%d",
1466                         dev_priv->texture_max_width,
1467                         dev_priv->texture_max_height);
1468                 goto err_out;
1469         }
1470
1471
1472         vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1473                                       !(dev_priv->capabilities & SVGA_CAP_3D),
1474                                       mode_cmd);
1475         if (IS_ERR(vfb)) {
1476                 ret = PTR_ERR(vfb);
1477                 goto err_out;
1478         }
1479
1480 err_out:
1481         /* vmw_user_lookup_handle takes one ref so does new_fb */
1482         if (bo)
1483                 vmw_bo_unreference(&bo);
1484         if (surface)
1485                 vmw_surface_unreference(&surface);
1486
1487         if (ret) {
1488                 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1489                 ttm_base_object_unref(&user_obj);
1490                 return ERR_PTR(ret);
1491         } else
1492                 vfb->user_obj = user_obj;
1493
1494         return &vfb->base;
1495 }
1496
1497 /**
1498  * vmw_kms_check_display_memory - Validates display memory required for a
1499  * topology
1500  * @dev: DRM device
1501  * @num_rects: number of drm_rect in rects
1502  * @rects: array of drm_rect representing the topology to validate indexed by
1503  * crtc index.
1504  *
1505  * Returns:
1506  * 0 on success otherwise negative error code
1507  */
1508 static int vmw_kms_check_display_memory(struct drm_device *dev,
1509                                         uint32_t num_rects,
1510                                         struct drm_rect *rects)
1511 {
1512         struct vmw_private *dev_priv = vmw_priv(dev);
1513         struct drm_mode_config *mode_config = &dev->mode_config;
1514         struct drm_rect bounding_box = {0};
1515         u64 total_pixels = 0, pixel_mem, bb_mem;
1516         int i;
1517
1518         for (i = 0; i < num_rects; i++) {
1519                 /*
1520                  * Currently this check is limiting the topology within max
1521                  * texture/screentarget size. This should change in future when
1522                  * user-space support multiple fb with topology.
1523                  */
1524                 if (rects[i].x1 < 0 ||  rects[i].y1 < 0 ||
1525                     rects[i].x2 > mode_config->max_width ||
1526                     rects[i].y2 > mode_config->max_height) {
1527                         DRM_ERROR("Invalid GUI layout.\n");
1528                         return -EINVAL;
1529                 }
1530
1531                 /* Bounding box upper left is at (0,0). */
1532                 if (rects[i].x2 > bounding_box.x2)
1533                         bounding_box.x2 = rects[i].x2;
1534
1535                 if (rects[i].y2 > bounding_box.y2)
1536                         bounding_box.y2 = rects[i].y2;
1537
1538                 total_pixels += (u64) drm_rect_width(&rects[i]) *
1539                         (u64) drm_rect_height(&rects[i]);
1540         }
1541
1542         /* Virtual svga device primary limits are always in 32-bpp. */
1543         pixel_mem = total_pixels * 4;
1544
1545         /*
1546          * For HV10 and below prim_bb_mem is vram size. When
1547          * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1548          * limit on primary bounding box
1549          */
1550         if (pixel_mem > dev_priv->prim_bb_mem) {
1551                 DRM_ERROR("Combined output size too large.\n");
1552                 return -EINVAL;
1553         }
1554
1555         /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1556         if (dev_priv->active_display_unit != vmw_du_screen_target ||
1557             !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1558                 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1559
1560                 if (bb_mem > dev_priv->prim_bb_mem) {
1561                         DRM_ERROR("Topology is beyond supported limits.\n");
1562                         return -EINVAL;
1563                 }
1564         }
1565
1566         return 0;
1567 }
1568
1569 /**
1570  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1571  * @dev: DRM device
1572  * @state: the driver state object
1573  *
1574  * Returns:
1575  * 0 on success otherwise negative error code
1576  */
1577 static int vmw_kms_check_topology(struct drm_device *dev,
1578                                   struct drm_atomic_state *state)
1579 {
1580         struct vmw_private *dev_priv = vmw_priv(dev);
1581         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1582         struct drm_rect *rects;
1583         struct drm_crtc *crtc;
1584         uint32_t i;
1585         int ret = 0;
1586
1587         rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1588                         GFP_KERNEL);
1589         if (!rects)
1590                 return -ENOMEM;
1591
1592         mutex_lock(&dev_priv->requested_layout_mutex);
1593
1594         drm_for_each_crtc(crtc, dev) {
1595                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1596                 struct drm_crtc_state *crtc_state = crtc->state;
1597
1598                 i = drm_crtc_index(crtc);
1599
1600                 if (crtc_state && crtc_state->enable) {
1601                         rects[i].x1 = du->gui_x;
1602                         rects[i].y1 = du->gui_y;
1603                         rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1604                         rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1605                 }
1606         }
1607
1608         /* Determine change to topology due to new atomic state */
1609         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1610                                       new_crtc_state, i) {
1611                 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1612                 struct drm_connector *connector;
1613                 struct drm_connector_state *conn_state;
1614                 struct vmw_connector_state *vmw_conn_state;
1615
1616                 if (!new_crtc_state->enable && old_crtc_state->enable) {
1617                         rects[i].x1 = 0;
1618                         rects[i].y1 = 0;
1619                         rects[i].x2 = 0;
1620                         rects[i].y2 = 0;
1621                         continue;
1622                 }
1623
1624                 if (!du->pref_active) {
1625                         ret = -EINVAL;
1626                         goto clean;
1627                 }
1628
1629                 /*
1630                  * For vmwgfx each crtc has only one connector attached and it
1631                  * is not changed so don't really need to check the
1632                  * crtc->connector_mask and iterate over it.
1633                  */
1634                 connector = &du->connector;
1635                 conn_state = drm_atomic_get_connector_state(state, connector);
1636                 if (IS_ERR(conn_state)) {
1637                         ret = PTR_ERR(conn_state);
1638                         goto clean;
1639                 }
1640
1641                 vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1642                 vmw_conn_state->gui_x = du->gui_x;
1643                 vmw_conn_state->gui_y = du->gui_y;
1644
1645                 rects[i].x1 = du->gui_x;
1646                 rects[i].y1 = du->gui_y;
1647                 rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay;
1648                 rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay;
1649         }
1650
1651         ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1652                                            rects);
1653
1654 clean:
1655         mutex_unlock(&dev_priv->requested_layout_mutex);
1656         kfree(rects);
1657         return ret;
1658 }
1659
1660 /**
1661  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1662  *
1663  * @dev: DRM device
1664  * @state: the driver state object
1665  *
1666  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1667  * us to assign a value to mode->crtc_clock so that
1668  * drm_calc_timestamping_constants() won't throw an error message
1669  *
1670  * Returns:
1671  * Zero for success or -errno
1672  */
1673 static int
1674 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1675                              struct drm_atomic_state *state)
1676 {
1677         struct drm_crtc *crtc;
1678         struct drm_crtc_state *crtc_state;
1679         bool need_modeset = false;
1680         int i, ret;
1681
1682         ret = drm_atomic_helper_check(dev, state);
1683         if (ret)
1684                 return ret;
1685
1686         if (!state->allow_modeset)
1687                 return ret;
1688
1689         /*
1690          * Legacy path do not set allow_modeset properly like
1691          * @drm_atomic_helper_update_plane, This will result in unnecessary call
1692          * to vmw_kms_check_topology. So extra set of check.
1693          */
1694         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1695                 if (drm_atomic_crtc_needs_modeset(crtc_state))
1696                         need_modeset = true;
1697         }
1698
1699         if (need_modeset)
1700                 return vmw_kms_check_topology(dev, state);
1701
1702         return ret;
1703 }
1704
1705 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1706         .fb_create = vmw_kms_fb_create,
1707         .atomic_check = vmw_kms_atomic_check_modeset,
1708         .atomic_commit = drm_atomic_helper_commit,
1709 };
1710
1711 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1712                                    struct drm_file *file_priv,
1713                                    struct vmw_framebuffer *vfb,
1714                                    struct vmw_surface *surface,
1715                                    uint32_t sid,
1716                                    int32_t destX, int32_t destY,
1717                                    struct drm_vmw_rect *clips,
1718                                    uint32_t num_clips)
1719 {
1720         return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1721                                             &surface->res, destX, destY,
1722                                             num_clips, 1, NULL, NULL);
1723 }
1724
1725
1726 int vmw_kms_present(struct vmw_private *dev_priv,
1727                     struct drm_file *file_priv,
1728                     struct vmw_framebuffer *vfb,
1729                     struct vmw_surface *surface,
1730                     uint32_t sid,
1731                     int32_t destX, int32_t destY,
1732                     struct drm_vmw_rect *clips,
1733                     uint32_t num_clips)
1734 {
1735         int ret;
1736
1737         switch (dev_priv->active_display_unit) {
1738         case vmw_du_screen_target:
1739                 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1740                                                  &surface->res, destX, destY,
1741                                                  num_clips, 1, NULL, NULL);
1742                 break;
1743         case vmw_du_screen_object:
1744                 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1745                                               sid, destX, destY, clips,
1746                                               num_clips);
1747                 break;
1748         default:
1749                 WARN_ONCE(true,
1750                           "Present called with invalid display system.\n");
1751                 ret = -ENOSYS;
1752                 break;
1753         }
1754         if (ret)
1755                 return ret;
1756
1757         vmw_fifo_flush(dev_priv, false);
1758
1759         return 0;
1760 }
1761
1762 static void
1763 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1764 {
1765         if (dev_priv->hotplug_mode_update_property)
1766                 return;
1767
1768         dev_priv->hotplug_mode_update_property =
1769                 drm_property_create_range(dev_priv->dev,
1770                                           DRM_MODE_PROP_IMMUTABLE,
1771                                           "hotplug_mode_update", 0, 1);
1772
1773         if (!dev_priv->hotplug_mode_update_property)
1774                 return;
1775
1776 }
1777
1778 int vmw_kms_init(struct vmw_private *dev_priv)
1779 {
1780         struct drm_device *dev = dev_priv->dev;
1781         int ret;
1782
1783         drm_mode_config_init(dev);
1784         dev->mode_config.funcs = &vmw_kms_funcs;
1785         dev->mode_config.min_width = 1;
1786         dev->mode_config.min_height = 1;
1787         dev->mode_config.max_width = dev_priv->texture_max_width;
1788         dev->mode_config.max_height = dev_priv->texture_max_height;
1789
1790         drm_mode_create_suggested_offset_properties(dev);
1791         vmw_kms_create_hotplug_mode_update_property(dev_priv);
1792
1793         ret = vmw_kms_stdu_init_display(dev_priv);
1794         if (ret) {
1795                 ret = vmw_kms_sou_init_display(dev_priv);
1796                 if (ret) /* Fallback */
1797                         ret = vmw_kms_ldu_init_display(dev_priv);
1798         }
1799
1800         return ret;
1801 }
1802
1803 int vmw_kms_close(struct vmw_private *dev_priv)
1804 {
1805         int ret = 0;
1806
1807         /*
1808          * Docs says we should take the lock before calling this function
1809          * but since it destroys encoders and our destructor calls
1810          * drm_encoder_cleanup which takes the lock we deadlock.
1811          */
1812         drm_mode_config_cleanup(dev_priv->dev);
1813         if (dev_priv->active_display_unit == vmw_du_legacy)
1814                 ret = vmw_kms_ldu_close_display(dev_priv);
1815
1816         return ret;
1817 }
1818
1819 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1820                                 struct drm_file *file_priv)
1821 {
1822         struct drm_vmw_cursor_bypass_arg *arg = data;
1823         struct vmw_display_unit *du;
1824         struct drm_crtc *crtc;
1825         int ret = 0;
1826
1827
1828         mutex_lock(&dev->mode_config.mutex);
1829         if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1830
1831                 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1832                         du = vmw_crtc_to_du(crtc);
1833                         du->hotspot_x = arg->xhot;
1834                         du->hotspot_y = arg->yhot;
1835                 }
1836
1837                 mutex_unlock(&dev->mode_config.mutex);
1838                 return 0;
1839         }
1840
1841         crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1842         if (!crtc) {
1843                 ret = -ENOENT;
1844                 goto out;
1845         }
1846
1847         du = vmw_crtc_to_du(crtc);
1848
1849         du->hotspot_x = arg->xhot;
1850         du->hotspot_y = arg->yhot;
1851
1852 out:
1853         mutex_unlock(&dev->mode_config.mutex);
1854
1855         return ret;
1856 }
1857
1858 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1859                         unsigned width, unsigned height, unsigned pitch,
1860                         unsigned bpp, unsigned depth)
1861 {
1862         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1863                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1864         else if (vmw_fifo_have_pitchlock(vmw_priv))
1865                 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1866                                SVGA_FIFO_PITCHLOCK);
1867         vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1868         vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1869         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1870
1871         if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1872                 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1873                           depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1874                 return -EINVAL;
1875         }
1876
1877         return 0;
1878 }
1879
1880 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1881 {
1882         struct vmw_vga_topology_state *save;
1883         uint32_t i;
1884
1885         vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1886         vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1887         vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1888         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1889                 vmw_priv->vga_pitchlock =
1890                   vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1891         else if (vmw_fifo_have_pitchlock(vmw_priv))
1892                 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1893                                                         SVGA_FIFO_PITCHLOCK);
1894
1895         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1896                 return 0;
1897
1898         vmw_priv->num_displays = vmw_read(vmw_priv,
1899                                           SVGA_REG_NUM_GUEST_DISPLAYS);
1900
1901         if (vmw_priv->num_displays == 0)
1902                 vmw_priv->num_displays = 1;
1903
1904         for (i = 0; i < vmw_priv->num_displays; ++i) {
1905                 save = &vmw_priv->vga_save[i];
1906                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1907                 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1908                 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1909                 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1910                 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1911                 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1912                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1913                 if (i == 0 && vmw_priv->num_displays == 1 &&
1914                     save->width == 0 && save->height == 0) {
1915
1916                         /*
1917                          * It should be fairly safe to assume that these
1918                          * values are uninitialized.
1919                          */
1920
1921                         save->width = vmw_priv->vga_width - save->pos_x;
1922                         save->height = vmw_priv->vga_height - save->pos_y;
1923                 }
1924         }
1925
1926         return 0;
1927 }
1928
1929 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1930 {
1931         struct vmw_vga_topology_state *save;
1932         uint32_t i;
1933
1934         vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1935         vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1936         vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1937         if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1938                 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1939                           vmw_priv->vga_pitchlock);
1940         else if (vmw_fifo_have_pitchlock(vmw_priv))
1941                 vmw_mmio_write(vmw_priv->vga_pitchlock,
1942                                vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1943
1944         if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1945                 return 0;
1946
1947         for (i = 0; i < vmw_priv->num_displays; ++i) {
1948                 save = &vmw_priv->vga_save[i];
1949                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1950                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1951                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1952                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1953                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1954                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1955                 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1956         }
1957
1958         return 0;
1959 }
1960
1961 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1962                                 uint32_t pitch,
1963                                 uint32_t height)
1964 {
1965         return ((u64) pitch * (u64) height) < (u64)
1966                 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1967                  dev_priv->prim_bb_mem : dev_priv->vram_size);
1968 }
1969
1970
1971 /**
1972  * Function called by DRM code called with vbl_lock held.
1973  */
1974 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1975 {
1976         return 0;
1977 }
1978
1979 /**
1980  * Function called by DRM code called with vbl_lock held.
1981  */
1982 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1983 {
1984         return -EINVAL;
1985 }
1986
1987 /**
1988  * Function called by DRM code called with vbl_lock held.
1989  */
1990 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1991 {
1992 }
1993
1994 /**
1995  * vmw_du_update_layout - Update the display unit with topology from resolution
1996  * plugin and generate DRM uevent
1997  * @dev_priv: device private
1998  * @num_rects: number of drm_rect in rects
1999  * @rects: toplogy to update
2000  */
2001 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2002                                 unsigned int num_rects, struct drm_rect *rects)
2003 {
2004         struct drm_device *dev = dev_priv->dev;
2005         struct vmw_display_unit *du;
2006         struct drm_connector *con;
2007         struct drm_connector_list_iter conn_iter;
2008
2009         /*
2010          * Currently only gui_x/y is protected with requested_layout_mutex.
2011          */
2012         mutex_lock(&dev_priv->requested_layout_mutex);
2013         drm_connector_list_iter_begin(dev, &conn_iter);
2014         drm_for_each_connector_iter(con, &conn_iter) {
2015                 du = vmw_connector_to_du(con);
2016                 if (num_rects > du->unit) {
2017                         du->pref_width = drm_rect_width(&rects[du->unit]);
2018                         du->pref_height = drm_rect_height(&rects[du->unit]);
2019                         du->pref_active = true;
2020                         du->gui_x = rects[du->unit].x1;
2021                         du->gui_y = rects[du->unit].y1;
2022                 } else {
2023                         du->pref_width = 800;
2024                         du->pref_height = 600;
2025                         du->pref_active = false;
2026                         du->gui_x = 0;
2027                         du->gui_y = 0;
2028                 }
2029         }
2030         drm_connector_list_iter_end(&conn_iter);
2031         mutex_unlock(&dev_priv->requested_layout_mutex);
2032
2033         mutex_lock(&dev->mode_config.mutex);
2034         list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2035                 du = vmw_connector_to_du(con);
2036                 if (num_rects > du->unit) {
2037                         drm_object_property_set_value
2038                           (&con->base, dev->mode_config.suggested_x_property,
2039                            du->gui_x);
2040                         drm_object_property_set_value
2041                           (&con->base, dev->mode_config.suggested_y_property,
2042                            du->gui_y);
2043                 } else {
2044                         drm_object_property_set_value
2045                           (&con->base, dev->mode_config.suggested_x_property,
2046                            0);
2047                         drm_object_property_set_value
2048                           (&con->base, dev->mode_config.suggested_y_property,
2049                            0);
2050                 }
2051                 con->status = vmw_du_connector_detect(con, true);
2052         }
2053         mutex_unlock(&dev->mode_config.mutex);
2054
2055         drm_sysfs_hotplug_event(dev);
2056
2057         return 0;
2058 }
2059
2060 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2061                           u16 *r, u16 *g, u16 *b,
2062                           uint32_t size,
2063                           struct drm_modeset_acquire_ctx *ctx)
2064 {
2065         struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2066         int i;
2067
2068         for (i = 0; i < size; i++) {
2069                 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2070                           r[i], g[i], b[i]);
2071                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2072                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2073                 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2074         }
2075
2076         return 0;
2077 }
2078
2079 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2080 {
2081         return 0;
2082 }
2083
2084 enum drm_connector_status
2085 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2086 {
2087         uint32_t num_displays;
2088         struct drm_device *dev = connector->dev;
2089         struct vmw_private *dev_priv = vmw_priv(dev);
2090         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2091
2092         num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2093
2094         return ((vmw_connector_to_du(connector)->unit < num_displays &&
2095                  du->pref_active) ?
2096                 connector_status_connected : connector_status_disconnected);
2097 }
2098
2099 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2100         /* 640x480@60Hz */
2101         { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2102                    752, 800, 0, 480, 489, 492, 525, 0,
2103                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2104         /* 800x600@60Hz */
2105         { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2106                    968, 1056, 0, 600, 601, 605, 628, 0,
2107                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2108         /* 1024x768@60Hz */
2109         { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2110                    1184, 1344, 0, 768, 771, 777, 806, 0,
2111                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2112         /* 1152x864@75Hz */
2113         { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2114                    1344, 1600, 0, 864, 865, 868, 900, 0,
2115                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2116         /* 1280x768@60Hz */
2117         { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2118                    1472, 1664, 0, 768, 771, 778, 798, 0,
2119                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2120         /* 1280x800@60Hz */
2121         { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2122                    1480, 1680, 0, 800, 803, 809, 831, 0,
2123                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2124         /* 1280x960@60Hz */
2125         { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2126                    1488, 1800, 0, 960, 961, 964, 1000, 0,
2127                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2128         /* 1280x1024@60Hz */
2129         { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2130                    1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2131                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2132         /* 1360x768@60Hz */
2133         { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2134                    1536, 1792, 0, 768, 771, 777, 795, 0,
2135                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2136         /* 1440x1050@60Hz */
2137         { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2138                    1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2139                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2140         /* 1440x900@60Hz */
2141         { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2142                    1672, 1904, 0, 900, 903, 909, 934, 0,
2143                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2144         /* 1600x1200@60Hz */
2145         { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2146                    1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2147                    DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2148         /* 1680x1050@60Hz */
2149         { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2150                    1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2151                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2152         /* 1792x1344@60Hz */
2153         { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2154                    2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2155                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2156         /* 1853x1392@60Hz */
2157         { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2158                    2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2159                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2160         /* 1920x1200@60Hz */
2161         { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2162                    2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2163                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2164         /* 1920x1440@60Hz */
2165         { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2166                    2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2167                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2168         /* 2560x1600@60Hz */
2169         { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2170                    3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2171                    DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2172         /* Terminate */
2173         { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2174 };
2175
2176 /**
2177  * vmw_guess_mode_timing - Provide fake timings for a
2178  * 60Hz vrefresh mode.
2179  *
2180  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2181  * members filled in.
2182  */
2183 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2184 {
2185         mode->hsync_start = mode->hdisplay + 50;
2186         mode->hsync_end = mode->hsync_start + 50;
2187         mode->htotal = mode->hsync_end + 50;
2188
2189         mode->vsync_start = mode->vdisplay + 50;
2190         mode->vsync_end = mode->vsync_start + 50;
2191         mode->vtotal = mode->vsync_end + 50;
2192
2193         mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2194         mode->vrefresh = drm_mode_vrefresh(mode);
2195 }
2196
2197
2198 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2199                                 uint32_t max_width, uint32_t max_height)
2200 {
2201         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2202         struct drm_device *dev = connector->dev;
2203         struct vmw_private *dev_priv = vmw_priv(dev);
2204         struct drm_display_mode *mode = NULL;
2205         struct drm_display_mode *bmode;
2206         struct drm_display_mode prefmode = { DRM_MODE("preferred",
2207                 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2208                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2209                 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2210         };
2211         int i;
2212         u32 assumed_bpp = 4;
2213
2214         if (dev_priv->assume_16bpp)
2215                 assumed_bpp = 2;
2216
2217         if (dev_priv->active_display_unit == vmw_du_screen_target) {
2218                 max_width  = min(max_width,  dev_priv->stdu_max_width);
2219                 max_width  = min(max_width,  dev_priv->texture_max_width);
2220
2221                 max_height = min(max_height, dev_priv->stdu_max_height);
2222                 max_height = min(max_height, dev_priv->texture_max_height);
2223         }
2224
2225         /* Add preferred mode */
2226         mode = drm_mode_duplicate(dev, &prefmode);
2227         if (!mode)
2228                 return 0;
2229         mode->hdisplay = du->pref_width;
2230         mode->vdisplay = du->pref_height;
2231         vmw_guess_mode_timing(mode);
2232
2233         if (vmw_kms_validate_mode_vram(dev_priv,
2234                                         mode->hdisplay * assumed_bpp,
2235                                         mode->vdisplay)) {
2236                 drm_mode_probed_add(connector, mode);
2237         } else {
2238                 drm_mode_destroy(dev, mode);
2239                 mode = NULL;
2240         }
2241
2242         if (du->pref_mode) {
2243                 list_del_init(&du->pref_mode->head);
2244                 drm_mode_destroy(dev, du->pref_mode);
2245         }
2246
2247         /* mode might be null here, this is intended */
2248         du->pref_mode = mode;
2249
2250         for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2251                 bmode = &vmw_kms_connector_builtin[i];
2252                 if (bmode->hdisplay > max_width ||
2253                     bmode->vdisplay > max_height)
2254                         continue;
2255
2256                 if (!vmw_kms_validate_mode_vram(dev_priv,
2257                                                 bmode->hdisplay * assumed_bpp,
2258                                                 bmode->vdisplay))
2259                         continue;
2260
2261                 mode = drm_mode_duplicate(dev, bmode);
2262                 if (!mode)
2263                         return 0;
2264                 mode->vrefresh = drm_mode_vrefresh(mode);
2265
2266                 drm_mode_probed_add(connector, mode);
2267         }
2268
2269         drm_connector_list_update(connector);
2270         /* Move the prefered mode first, help apps pick the right mode. */
2271         drm_mode_sort(&connector->modes);
2272
2273         return 1;
2274 }
2275
2276 int vmw_du_connector_set_property(struct drm_connector *connector,
2277                                   struct drm_property *property,
2278                                   uint64_t val)
2279 {
2280         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2281         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2282
2283         if (property == dev_priv->implicit_placement_property)
2284                 du->is_implicit = val;
2285
2286         return 0;
2287 }
2288
2289
2290
2291 /**
2292  * vmw_du_connector_atomic_set_property - Atomic version of get property
2293  *
2294  * @crtc - crtc the property is associated with
2295  *
2296  * Returns:
2297  * Zero on success, negative errno on failure.
2298  */
2299 int
2300 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2301                                      struct drm_connector_state *state,
2302                                      struct drm_property *property,
2303                                      uint64_t val)
2304 {
2305         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2306         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2307         struct vmw_display_unit *du = vmw_connector_to_du(connector);
2308
2309
2310         if (property == dev_priv->implicit_placement_property) {
2311                 vcs->is_implicit = val;
2312
2313                 /*
2314                  * We should really be doing a drm_atomic_commit() to
2315                  * commit the new state, but since this doesn't cause
2316                  * an immedate state change, this is probably ok
2317                  */
2318                 du->is_implicit = vcs->is_implicit;
2319         } else {
2320                 return -EINVAL;
2321         }
2322
2323         return 0;
2324 }
2325
2326
2327 /**
2328  * vmw_du_connector_atomic_get_property - Atomic version of get property
2329  *
2330  * @connector - connector the property is associated with
2331  *
2332  * Returns:
2333  * Zero on success, negative errno on failure.
2334  */
2335 int
2336 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2337                                      const struct drm_connector_state *state,
2338                                      struct drm_property *property,
2339                                      uint64_t *val)
2340 {
2341         struct vmw_private *dev_priv = vmw_priv(connector->dev);
2342         struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2343
2344         if (property == dev_priv->implicit_placement_property)
2345                 *val = vcs->is_implicit;
2346         else {
2347                 DRM_ERROR("Invalid Property %s\n", property->name);
2348                 return -EINVAL;
2349         }
2350
2351         return 0;
2352 }
2353
2354 /**
2355  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2356  * @dev: drm device for the ioctl
2357  * @data: data pointer for the ioctl
2358  * @file_priv: drm file for the ioctl call
2359  *
2360  * Update preferred topology of display unit as per ioctl request. The topology
2361  * is expressed as array of drm_vmw_rect.
2362  * e.g.
2363  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2364  *
2365  * NOTE:
2366  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2367  * device limit on topology, x + w and y + h (lower right) cannot be greater
2368  * than INT_MAX. So topology beyond these limits will return with error.
2369  *
2370  * Returns:
2371  * Zero on success, negative errno on failure.
2372  */
2373 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2374                                 struct drm_file *file_priv)
2375 {
2376         struct vmw_private *dev_priv = vmw_priv(dev);
2377         struct drm_vmw_update_layout_arg *arg =
2378                 (struct drm_vmw_update_layout_arg *)data;
2379         void __user *user_rects;
2380         struct drm_vmw_rect *rects;
2381         struct drm_rect *drm_rects;
2382         unsigned rects_size;
2383         int ret, i;
2384
2385         if (!arg->num_outputs) {
2386                 struct drm_rect def_rect = {0, 0, 800, 600};
2387                 vmw_du_update_layout(dev_priv, 1, &def_rect);
2388                 return 0;
2389         }
2390
2391         rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2392         rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2393                         GFP_KERNEL);
2394         if (unlikely(!rects))
2395                 return -ENOMEM;
2396
2397         user_rects = (void __user *)(unsigned long)arg->rects;
2398         ret = copy_from_user(rects, user_rects, rects_size);
2399         if (unlikely(ret != 0)) {
2400                 DRM_ERROR("Failed to get rects.\n");
2401                 ret = -EFAULT;
2402                 goto out_free;
2403         }
2404
2405         drm_rects = (struct drm_rect *)rects;
2406
2407         for (i = 0; i < arg->num_outputs; i++) {
2408                 struct drm_vmw_rect curr_rect;
2409
2410                 /* Verify user-space for overflow as kernel use drm_rect */
2411                 if ((rects[i].x + rects[i].w > INT_MAX) ||
2412                     (rects[i].y + rects[i].h > INT_MAX)) {
2413                         ret = -ERANGE;
2414                         goto out_free;
2415                 }
2416
2417                 curr_rect = rects[i];
2418                 drm_rects[i].x1 = curr_rect.x;
2419                 drm_rects[i].y1 = curr_rect.y;
2420                 drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2421                 drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2422         }
2423
2424         ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2425
2426         if (ret == 0)
2427                 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2428
2429 out_free:
2430         kfree(rects);
2431         return ret;
2432 }
2433
2434 /**
2435  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2436  * on a set of cliprects and a set of display units.
2437  *
2438  * @dev_priv: Pointer to a device private structure.
2439  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2440  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2441  * Cliprects are given in framebuffer coordinates.
2442  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2443  * be NULL. Cliprects are given in source coordinates.
2444  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2445  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2446  * @num_clips: Number of cliprects in the @clips or @vclips array.
2447  * @increment: Integer with which to increment the clip counter when looping.
2448  * Used to skip a predetermined number of clip rects.
2449  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2450  */
2451 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2452                          struct vmw_framebuffer *framebuffer,
2453                          const struct drm_clip_rect *clips,
2454                          const struct drm_vmw_rect *vclips,
2455                          s32 dest_x, s32 dest_y,
2456                          int num_clips,
2457                          int increment,
2458                          struct vmw_kms_dirty *dirty)
2459 {
2460         struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2461         struct drm_crtc *crtc;
2462         u32 num_units = 0;
2463         u32 i, k;
2464
2465         dirty->dev_priv = dev_priv;
2466
2467         /* If crtc is passed, no need to iterate over other display units */
2468         if (dirty->crtc) {
2469                 units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2470         } else {
2471                 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2472                                     head) {
2473                         struct drm_plane *plane = crtc->primary;
2474
2475                         if (plane->state->fb == &framebuffer->base)
2476                                 units[num_units++] = vmw_crtc_to_du(crtc);
2477                 }
2478         }
2479
2480         for (k = 0; k < num_units; k++) {
2481                 struct vmw_display_unit *unit = units[k];
2482                 s32 crtc_x = unit->crtc.x;
2483                 s32 crtc_y = unit->crtc.y;
2484                 s32 crtc_width = unit->crtc.mode.hdisplay;
2485                 s32 crtc_height = unit->crtc.mode.vdisplay;
2486                 const struct drm_clip_rect *clips_ptr = clips;
2487                 const struct drm_vmw_rect *vclips_ptr = vclips;
2488
2489                 dirty->unit = unit;
2490                 if (dirty->fifo_reserve_size > 0) {
2491                         dirty->cmd = vmw_fifo_reserve(dev_priv,
2492                                                       dirty->fifo_reserve_size);
2493                         if (!dirty->cmd) {
2494                                 DRM_ERROR("Couldn't reserve fifo space "
2495                                           "for dirty blits.\n");
2496                                 return -ENOMEM;
2497                         }
2498                         memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2499                 }
2500                 dirty->num_hits = 0;
2501                 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2502                        vclips_ptr += increment) {
2503                         s32 clip_left;
2504                         s32 clip_top;
2505
2506                         /*
2507                          * Select clip array type. Note that integer type
2508                          * in @clips is unsigned short, whereas in @vclips
2509                          * it's 32-bit.
2510                          */
2511                         if (clips) {
2512                                 dirty->fb_x = (s32) clips_ptr->x1;
2513                                 dirty->fb_y = (s32) clips_ptr->y1;
2514                                 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2515                                         crtc_x;
2516                                 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2517                                         crtc_y;
2518                         } else {
2519                                 dirty->fb_x = vclips_ptr->x;
2520                                 dirty->fb_y = vclips_ptr->y;
2521                                 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2522                                         dest_x - crtc_x;
2523                                 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2524                                         dest_y - crtc_y;
2525                         }
2526
2527                         dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2528                         dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2529
2530                         /* Skip this clip if it's outside the crtc region */
2531                         if (dirty->unit_x1 >= crtc_width ||
2532                             dirty->unit_y1 >= crtc_height ||
2533                             dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2534                                 continue;
2535
2536                         /* Clip right and bottom to crtc limits */
2537                         dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2538                                                crtc_width);
2539                         dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2540                                                crtc_height);
2541
2542                         /* Clip left and top to crtc limits */
2543                         clip_left = min_t(s32, dirty->unit_x1, 0);
2544                         clip_top = min_t(s32, dirty->unit_y1, 0);
2545                         dirty->unit_x1 -= clip_left;
2546                         dirty->unit_y1 -= clip_top;
2547                         dirty->fb_x -= clip_left;
2548                         dirty->fb_y -= clip_top;
2549
2550                         dirty->clip(dirty);
2551                 }
2552
2553                 dirty->fifo_commit(dirty);
2554         }
2555
2556         return 0;
2557 }
2558
2559 /**
2560  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2561  * command submission.
2562  *
2563  * @dev_priv. Pointer to a device private structure.
2564  * @buf: The buffer object
2565  * @interruptible: Whether to perform waits as interruptible.
2566  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2567  * The buffer will be validated as a GMR. Already pinned buffers will not be
2568  * validated.
2569  *
2570  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2571  * interrupted by a signal.
2572  */
2573 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2574                                   struct vmw_buffer_object *buf,
2575                                   bool interruptible,
2576                                   bool validate_as_mob,
2577                                   bool for_cpu_blit)
2578 {
2579         struct ttm_operation_ctx ctx = {
2580                 .interruptible = interruptible,
2581                 .no_wait_gpu = false};
2582         struct ttm_buffer_object *bo = &buf->base;
2583         int ret;
2584
2585         ttm_bo_reserve(bo, false, false, NULL);
2586         if (for_cpu_blit)
2587                 ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx);
2588         else
2589                 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2590                                                  validate_as_mob);
2591         if (ret)
2592                 ttm_bo_unreserve(bo);
2593
2594         return ret;
2595 }
2596
2597 /**
2598  * vmw_kms_helper_buffer_revert - Undo the actions of
2599  * vmw_kms_helper_buffer_prepare.
2600  *
2601  * @res: Pointer to the buffer object.
2602  *
2603  * Helper to be used if an error forces the caller to undo the actions of
2604  * vmw_kms_helper_buffer_prepare.
2605  */
2606 void vmw_kms_helper_buffer_revert(struct vmw_buffer_object *buf)
2607 {
2608         if (buf)
2609                 ttm_bo_unreserve(&buf->base);
2610 }
2611
2612 /**
2613  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2614  * kms command submission.
2615  *
2616  * @dev_priv: Pointer to a device private structure.
2617  * @file_priv: Pointer to a struct drm_file representing the caller's
2618  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2619  * if non-NULL, @user_fence_rep must be non-NULL.
2620  * @buf: The buffer object.
2621  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2622  * ref-counted fence pointer is returned here.
2623  * @user_fence_rep: Optional pointer to a user-space provided struct
2624  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2625  * function copies fence data to user-space in a fail-safe manner.
2626  */
2627 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2628                                   struct drm_file *file_priv,
2629                                   struct vmw_buffer_object *buf,
2630                                   struct vmw_fence_obj **out_fence,
2631                                   struct drm_vmw_fence_rep __user *
2632                                   user_fence_rep)
2633 {
2634         struct vmw_fence_obj *fence;
2635         uint32_t handle;
2636         int ret;
2637
2638         ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2639                                          file_priv ? &handle : NULL);
2640         if (buf)
2641                 vmw_bo_fence_single(&buf->base, fence);
2642         if (file_priv)
2643                 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2644                                             ret, user_fence_rep, fence,
2645                                             handle, -1, NULL);
2646         if (out_fence)
2647                 *out_fence = fence;
2648         else
2649                 vmw_fence_obj_unreference(&fence);
2650
2651         vmw_kms_helper_buffer_revert(buf);
2652 }
2653
2654
2655 /**
2656  * vmw_kms_helper_resource_revert - Undo the actions of
2657  * vmw_kms_helper_resource_prepare.
2658  *
2659  * @res: Pointer to the resource. Typically a surface.
2660  *
2661  * Helper to be used if an error forces the caller to undo the actions of
2662  * vmw_kms_helper_resource_prepare.
2663  */
2664 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx)
2665 {
2666         struct vmw_resource *res = ctx->res;
2667
2668         vmw_kms_helper_buffer_revert(ctx->buf);
2669         vmw_bo_unreference(&ctx->buf);
2670         vmw_resource_unreserve(res, false, NULL, 0);
2671         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2672 }
2673
2674 /**
2675  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2676  * command submission.
2677  *
2678  * @res: Pointer to the resource. Typically a surface.
2679  * @interruptible: Whether to perform waits as interruptible.
2680  *
2681  * Reserves and validates also the backup buffer if a guest-backed resource.
2682  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2683  * interrupted by a signal.
2684  */
2685 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2686                                     bool interruptible,
2687                                     struct vmw_validation_ctx *ctx)
2688 {
2689         int ret = 0;
2690
2691         ctx->buf = NULL;
2692         ctx->res = res;
2693
2694         if (interruptible)
2695                 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2696         else
2697                 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2698
2699         if (unlikely(ret != 0))
2700                 return -ERESTARTSYS;
2701
2702         ret = vmw_resource_reserve(res, interruptible, false);
2703         if (ret)
2704                 goto out_unlock;
2705
2706         if (res->backup) {
2707                 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2708                                                     interruptible,
2709                                                     res->dev_priv->has_mob,
2710                                                     false);
2711                 if (ret)
2712                         goto out_unreserve;
2713
2714                 ctx->buf = vmw_bo_reference(res->backup);
2715         }
2716         ret = vmw_resource_validate(res);
2717         if (ret)
2718                 goto out_revert;
2719         return 0;
2720
2721 out_revert:
2722         vmw_kms_helper_buffer_revert(ctx->buf);
2723 out_unreserve:
2724         vmw_resource_unreserve(res, false, NULL, 0);
2725 out_unlock:
2726         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2727         return ret;
2728 }
2729
2730 /**
2731  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2732  * kms command submission.
2733  *
2734  * @res: Pointer to the resource. Typically a surface.
2735  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2736  * ref-counted fence pointer is returned here.
2737  */
2738 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx,
2739                                     struct vmw_fence_obj **out_fence)
2740 {
2741         struct vmw_resource *res = ctx->res;
2742
2743         if (ctx->buf || out_fence)
2744                 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf,
2745                                              out_fence, NULL);
2746
2747         vmw_bo_unreference(&ctx->buf);
2748         vmw_resource_unreserve(res, false, NULL, 0);
2749         mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2750 }
2751
2752 /**
2753  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2754  * its backing MOB.
2755  *
2756  * @res: Pointer to the surface resource
2757  * @clips: Clip rects in framebuffer (surface) space.
2758  * @num_clips: Number of clips in @clips.
2759  * @increment: Integer with which to increment the clip counter when looping.
2760  * Used to skip a predetermined number of clip rects.
2761  *
2762  * This function makes sure the proxy surface is updated from its backing MOB
2763  * using the region given by @clips. The surface resource @res and its backing
2764  * MOB needs to be reserved and validated on call.
2765  */
2766 int vmw_kms_update_proxy(struct vmw_resource *res,
2767                          const struct drm_clip_rect *clips,
2768                          unsigned num_clips,
2769                          int increment)
2770 {
2771         struct vmw_private *dev_priv = res->dev_priv;
2772         struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2773         struct {
2774                 SVGA3dCmdHeader header;
2775                 SVGA3dCmdUpdateGBImage body;
2776         } *cmd;
2777         SVGA3dBox *box;
2778         size_t copy_size = 0;
2779         int i;
2780
2781         if (!clips)
2782                 return 0;
2783
2784         cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2785         if (!cmd) {
2786                 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2787                           "update.\n");
2788                 return -ENOMEM;
2789         }
2790
2791         for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2792                 box = &cmd->body.box;
2793
2794                 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2795                 cmd->header.size = sizeof(cmd->body);
2796                 cmd->body.image.sid = res->id;
2797                 cmd->body.image.face = 0;
2798                 cmd->body.image.mipmap = 0;
2799
2800                 if (clips->x1 > size->width || clips->x2 > size->width ||
2801                     clips->y1 > size->height || clips->y2 > size->height) {
2802                         DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2803                         return -EINVAL;
2804                 }
2805
2806                 box->x = clips->x1;
2807                 box->y = clips->y1;
2808                 box->z = 0;
2809                 box->w = clips->x2 - clips->x1;
2810                 box->h = clips->y2 - clips->y1;
2811                 box->d = 1;
2812
2813                 copy_size += sizeof(*cmd);
2814         }
2815
2816         vmw_fifo_commit(dev_priv, copy_size);
2817
2818         return 0;
2819 }
2820
2821 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2822                             unsigned unit,
2823                             u32 max_width,
2824                             u32 max_height,
2825                             struct drm_connector **p_con,
2826                             struct drm_crtc **p_crtc,
2827                             struct drm_display_mode **p_mode)
2828 {
2829         struct drm_connector *con;
2830         struct vmw_display_unit *du;
2831         struct drm_display_mode *mode;
2832         int i = 0;
2833         int ret = 0;
2834
2835         mutex_lock(&dev_priv->dev->mode_config.mutex);
2836         list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2837                             head) {
2838                 if (i == unit)
2839                         break;
2840
2841                 ++i;
2842         }
2843
2844         if (i != unit) {
2845                 DRM_ERROR("Could not find initial display unit.\n");
2846                 ret = -EINVAL;
2847                 goto out_unlock;
2848         }
2849
2850         if (list_empty(&con->modes))
2851                 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2852
2853         if (list_empty(&con->modes)) {
2854                 DRM_ERROR("Could not find initial display mode.\n");
2855                 ret = -EINVAL;
2856                 goto out_unlock;
2857         }
2858
2859         du = vmw_connector_to_du(con);
2860         *p_con = con;
2861         *p_crtc = &du->crtc;
2862
2863         list_for_each_entry(mode, &con->modes, head) {
2864                 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2865                         break;
2866         }
2867
2868         if (mode->type & DRM_MODE_TYPE_PREFERRED)
2869                 *p_mode = mode;
2870         else {
2871                 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2872                 *p_mode = list_first_entry(&con->modes,
2873                                            struct drm_display_mode,
2874                                            head);
2875         }
2876
2877  out_unlock:
2878         mutex_unlock(&dev_priv->dev->mode_config.mutex);
2879
2880         return ret;
2881 }
2882
2883 /**
2884  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2885  *
2886  * @dev_priv: Pointer to a device private struct.
2887  * @du: The display unit of the crtc.
2888  */
2889 void vmw_kms_del_active(struct vmw_private *dev_priv,
2890                         struct vmw_display_unit *du)
2891 {
2892         mutex_lock(&dev_priv->global_kms_state_mutex);
2893         if (du->active_implicit) {
2894                 if (--(dev_priv->num_implicit) == 0)
2895                         dev_priv->implicit_fb = NULL;
2896                 du->active_implicit = false;
2897         }
2898         mutex_unlock(&dev_priv->global_kms_state_mutex);
2899 }
2900
2901 /**
2902  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2903  *
2904  * @vmw_priv: Pointer to a device private struct.
2905  * @du: The display unit of the crtc.
2906  * @vfb: The implicit framebuffer
2907  *
2908  * Registers a binding to an implicit framebuffer.
2909  */
2910 void vmw_kms_add_active(struct vmw_private *dev_priv,
2911                         struct vmw_display_unit *du,
2912                         struct vmw_framebuffer *vfb)
2913 {
2914         mutex_lock(&dev_priv->global_kms_state_mutex);
2915         WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2916
2917         if (!du->active_implicit && du->is_implicit) {
2918                 dev_priv->implicit_fb = vfb;
2919                 du->active_implicit = true;
2920                 dev_priv->num_implicit++;
2921         }
2922         mutex_unlock(&dev_priv->global_kms_state_mutex);
2923 }
2924
2925 /**
2926  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2927  *
2928  * @dev_priv: Pointer to device-private struct.
2929  * @crtc: The crtc we want to flip.
2930  *
2931  * Returns true or false depending whether it's OK to flip this crtc
2932  * based on the criterion that we must not have more than one implicit
2933  * frame-buffer at any one time.
2934  */
2935 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2936                             struct drm_crtc *crtc)
2937 {
2938         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2939         bool ret;
2940
2941         mutex_lock(&dev_priv->global_kms_state_mutex);
2942         ret = !du->is_implicit || dev_priv->num_implicit == 1;
2943         mutex_unlock(&dev_priv->global_kms_state_mutex);
2944
2945         return ret;
2946 }
2947
2948 /**
2949  * vmw_kms_update_implicit_fb - Update the implicit fb.
2950  *
2951  * @dev_priv: Pointer to device-private struct.
2952  * @crtc: The crtc the new implicit frame-buffer is bound to.
2953  */
2954 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2955                                 struct drm_crtc *crtc)
2956 {
2957         struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2958         struct drm_plane *plane = crtc->primary;
2959         struct vmw_framebuffer *vfb;
2960
2961         mutex_lock(&dev_priv->global_kms_state_mutex);
2962
2963         if (!du->is_implicit)
2964                 goto out_unlock;
2965
2966         vfb = vmw_framebuffer_to_vfb(plane->state->fb);
2967         WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2968                      dev_priv->implicit_fb != vfb);
2969
2970         dev_priv->implicit_fb = vfb;
2971 out_unlock:
2972         mutex_unlock(&dev_priv->global_kms_state_mutex);
2973 }
2974
2975 /**
2976  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2977  * property.
2978  *
2979  * @dev_priv: Pointer to a device private struct.
2980  * @immutable: Whether the property is immutable.
2981  *
2982  * Sets up the implicit placement property unless it's already set up.
2983  */
2984 void
2985 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2986                                            bool immutable)
2987 {
2988         if (dev_priv->implicit_placement_property)
2989                 return;
2990
2991         dev_priv->implicit_placement_property =
2992                 drm_property_create_range(dev_priv->dev,
2993                                           immutable ?
2994                                           DRM_MODE_PROP_IMMUTABLE : 0,
2995                                           "implicit_placement", 0, 1);
2996
2997 }
2998
2999
3000 /**
3001  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
3002  *
3003  * @set: The configuration to set.
3004  *
3005  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
3006  * when drm_mode_set_crtcinfo is called as part of the configuration setting
3007  * causes it to return incorrect crtc dimensions causing severe problems in
3008  * the vmwgfx modesetting. So explicitly clear that member before calling
3009  * into drm_atomic_helper_set_config.
3010  */
3011 int vmw_kms_set_config(struct drm_mode_set *set,
3012                        struct drm_modeset_acquire_ctx *ctx)
3013 {
3014         if (set && set->mode)
3015                 set->mode->type = 0;
3016
3017         return drm_atomic_helper_set_config(set, ctx);
3018 }
3019
3020
3021 /**
3022  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
3023  *
3024  * @dev: Pointer to the drm device
3025  * Return: 0 on success. Negative error code on failure.
3026  */
3027 int vmw_kms_suspend(struct drm_device *dev)
3028 {
3029         struct vmw_private *dev_priv = vmw_priv(dev);
3030
3031         dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
3032         if (IS_ERR(dev_priv->suspend_state)) {
3033                 int ret = PTR_ERR(dev_priv->suspend_state);
3034
3035                 DRM_ERROR("Failed kms suspend: %d\n", ret);
3036                 dev_priv->suspend_state = NULL;
3037
3038                 return ret;
3039         }
3040
3041         return 0;
3042 }
3043
3044
3045 /**
3046  * vmw_kms_resume - Re-enable modesetting and restore state
3047  *
3048  * @dev: Pointer to the drm device
3049  * Return: 0 on success. Negative error code on failure.
3050  *
3051  * State is resumed from a previous vmw_kms_suspend(). It's illegal
3052  * to call this function without a previous vmw_kms_suspend().
3053  */
3054 int vmw_kms_resume(struct drm_device *dev)
3055 {
3056         struct vmw_private *dev_priv = vmw_priv(dev);
3057         int ret;
3058
3059         if (WARN_ON(!dev_priv->suspend_state))
3060                 return 0;
3061
3062         ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
3063         dev_priv->suspend_state = NULL;
3064
3065         return ret;
3066 }
3067
3068 /**
3069  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
3070  *
3071  * @dev: Pointer to the drm device
3072  */
3073 void vmw_kms_lost_device(struct drm_device *dev)
3074 {
3075         drm_atomic_helper_shutdown(dev);
3076 }