ca688115381e248abbbd7f332faeafa8fefd6cef
[linux-block.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/clk.h>
15
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26
27 #define HVS_NUM_CHANNELS 3
28
29 struct vc4_ctm_state {
30         struct drm_private_state base;
31         struct drm_color_ctm *ctm;
32         int fifo;
33 };
34
35 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
36 {
37         return container_of(priv, struct vc4_ctm_state, base);
38 }
39
40 struct vc4_hvs_state {
41         struct drm_private_state base;
42
43         struct {
44                 unsigned in_use: 1;
45                 struct drm_crtc_commit *pending_commit;
46         } fifo_state[HVS_NUM_CHANNELS];
47 };
48
49 static struct vc4_hvs_state *
50 to_vc4_hvs_state(struct drm_private_state *priv)
51 {
52         return container_of(priv, struct vc4_hvs_state, base);
53 }
54
55 struct vc4_load_tracker_state {
56         struct drm_private_state base;
57         u64 hvs_load;
58         u64 membus_load;
59 };
60
61 static struct vc4_load_tracker_state *
62 to_vc4_load_tracker_state(struct drm_private_state *priv)
63 {
64         return container_of(priv, struct vc4_load_tracker_state, base);
65 }
66
67 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
68                                                struct drm_private_obj *manager)
69 {
70         struct drm_device *dev = state->dev;
71         struct vc4_dev *vc4 = to_vc4_dev(dev);
72         struct drm_private_state *priv_state;
73         int ret;
74
75         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
76         if (ret)
77                 return ERR_PTR(ret);
78
79         priv_state = drm_atomic_get_private_obj_state(state, manager);
80         if (IS_ERR(priv_state))
81                 return ERR_CAST(priv_state);
82
83         return to_vc4_ctm_state(priv_state);
84 }
85
86 static struct drm_private_state *
87 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
88 {
89         struct vc4_ctm_state *state;
90
91         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
92         if (!state)
93                 return NULL;
94
95         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
96
97         return &state->base;
98 }
99
100 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
101                                   struct drm_private_state *state)
102 {
103         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
104
105         kfree(ctm_state);
106 }
107
108 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
109         .atomic_duplicate_state = vc4_ctm_duplicate_state,
110         .atomic_destroy_state = vc4_ctm_destroy_state,
111 };
112
113 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
114 {
115         struct vc4_dev *vc4 = to_vc4_dev(dev);
116
117         drm_atomic_private_obj_fini(&vc4->ctm_manager);
118 }
119
120 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
121 {
122         struct vc4_ctm_state *ctm_state;
123
124         drm_modeset_lock_init(&vc4->ctm_state_lock);
125
126         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
127         if (!ctm_state)
128                 return -ENOMEM;
129
130         drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
131                                     &vc4_ctm_state_funcs);
132
133         return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
134 }
135
136 /* Converts a DRM S31.32 value to the HW S0.9 format. */
137 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
138 {
139         u16 r;
140
141         /* Sign bit. */
142         r = in & BIT_ULL(63) ? BIT(9) : 0;
143
144         if ((in & GENMASK_ULL(62, 32)) > 0) {
145                 /* We have zero integer bits so we can only saturate here. */
146                 r |= GENMASK(8, 0);
147         } else {
148                 /* Otherwise take the 9 most important fractional bits. */
149                 r |= (in >> 23) & GENMASK(8, 0);
150         }
151
152         return r;
153 }
154
155 static void
156 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
157 {
158         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
159         struct drm_color_ctm *ctm = ctm_state->ctm;
160
161         if (ctm_state->fifo) {
162                 HVS_WRITE(SCALER_OLEDCOEF2,
163                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
164                                         SCALER_OLEDCOEF2_R_TO_R) |
165                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
166                                         SCALER_OLEDCOEF2_R_TO_G) |
167                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
168                                         SCALER_OLEDCOEF2_R_TO_B));
169                 HVS_WRITE(SCALER_OLEDCOEF1,
170                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
171                                         SCALER_OLEDCOEF1_G_TO_R) |
172                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
173                                         SCALER_OLEDCOEF1_G_TO_G) |
174                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
175                                         SCALER_OLEDCOEF1_G_TO_B));
176                 HVS_WRITE(SCALER_OLEDCOEF0,
177                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
178                                         SCALER_OLEDCOEF0_B_TO_R) |
179                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
180                                         SCALER_OLEDCOEF0_B_TO_G) |
181                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
182                                         SCALER_OLEDCOEF0_B_TO_B));
183         }
184
185         HVS_WRITE(SCALER_OLEDOFFS,
186                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
187 }
188
189 static struct vc4_hvs_state *
190 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
191 {
192         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
193         struct drm_private_state *priv_state;
194
195         priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
196         if (IS_ERR(priv_state))
197                 return ERR_CAST(priv_state);
198
199         return to_vc4_hvs_state(priv_state);
200 }
201
202 static struct vc4_hvs_state *
203 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
204 {
205         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
206         struct drm_private_state *priv_state;
207
208         priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
209         if (IS_ERR(priv_state))
210                 return ERR_CAST(priv_state);
211
212         return to_vc4_hvs_state(priv_state);
213 }
214
215 static struct vc4_hvs_state *
216 vc4_hvs_get_global_state(struct drm_atomic_state *state)
217 {
218         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
219         struct drm_private_state *priv_state;
220
221         priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
222         if (IS_ERR(priv_state))
223                 return ERR_CAST(priv_state);
224
225         return to_vc4_hvs_state(priv_state);
226 }
227
228 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
229                                      struct drm_atomic_state *state)
230 {
231         struct drm_crtc_state *crtc_state;
232         struct drm_crtc *crtc;
233         unsigned int i;
234
235         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
236                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
237                 u32 dispctrl;
238                 u32 dsp3_mux;
239
240                 if (!crtc_state->active)
241                         continue;
242
243                 if (vc4_state->assigned_channel != 2)
244                         continue;
245
246                 /*
247                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
248                  * FIFO X'.
249                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
250                  *
251                  * DSP3 is connected to FIFO2 unless the transposer is
252                  * enabled. In this case, FIFO 2 is directly accessed by the
253                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
254                  * route.
255                  */
256                 if (vc4_state->feed_txp)
257                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
258                 else
259                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
260
261                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
262                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
263                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
264         }
265 }
266
267 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
268                                      struct drm_atomic_state *state)
269 {
270         struct drm_crtc_state *crtc_state;
271         struct drm_crtc *crtc;
272         unsigned char mux;
273         unsigned int i;
274         u32 reg;
275
276         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
277                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
278                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
279
280                 if (!vc4_state->update_muxing)
281                         continue;
282
283                 switch (vc4_crtc->data->hvs_output) {
284                 case 2:
285                         mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
286                         reg = HVS_READ(SCALER_DISPECTRL);
287                         HVS_WRITE(SCALER_DISPECTRL,
288                                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
289                                   VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
290                         break;
291
292                 case 3:
293                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
294                                 mux = 3;
295                         else
296                                 mux = vc4_state->assigned_channel;
297
298                         reg = HVS_READ(SCALER_DISPCTRL);
299                         HVS_WRITE(SCALER_DISPCTRL,
300                                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
301                                   VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
302                         break;
303
304                 case 4:
305                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
306                                 mux = 3;
307                         else
308                                 mux = vc4_state->assigned_channel;
309
310                         reg = HVS_READ(SCALER_DISPEOLN);
311                         HVS_WRITE(SCALER_DISPEOLN,
312                                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
313                                   VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
314
315                         break;
316
317                 case 5:
318                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
319                                 mux = 3;
320                         else
321                                 mux = vc4_state->assigned_channel;
322
323                         reg = HVS_READ(SCALER_DISPDITHER);
324                         HVS_WRITE(SCALER_DISPDITHER,
325                                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
326                                   VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
327                         break;
328
329                 default:
330                         break;
331                 }
332         }
333 }
334
335 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
336 {
337         struct drm_device *dev = state->dev;
338         struct vc4_dev *vc4 = to_vc4_dev(dev);
339         struct vc4_hvs *hvs = vc4->hvs;
340         struct drm_crtc_state *old_crtc_state;
341         struct drm_crtc_state *new_crtc_state;
342         struct drm_crtc *crtc;
343         struct vc4_hvs_state *old_hvs_state;
344         int i;
345
346         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
347                 struct vc4_crtc_state *vc4_crtc_state;
348
349                 if (!new_crtc_state->commit)
350                         continue;
351
352                 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
353                 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
354         }
355
356         if (vc4->hvs->hvs5)
357                 clk_set_min_rate(hvs->core_clk, 500000000);
358
359         old_hvs_state = vc4_hvs_get_old_global_state(state);
360         if (!old_hvs_state)
361                 return;
362
363         for_each_old_crtc_in_state(state, crtc, old_crtc_state, i) {
364                 struct vc4_crtc_state *vc4_crtc_state =
365                         to_vc4_crtc_state(old_crtc_state);
366                 unsigned int channel = vc4_crtc_state->assigned_channel;
367                 int ret;
368
369                 if (channel == VC4_HVS_CHANNEL_DISABLED)
370                         continue;
371
372                 if (!old_hvs_state->fifo_state[channel].in_use)
373                         continue;
374
375                 ret = drm_crtc_commit_wait(old_hvs_state->fifo_state[channel].pending_commit);
376                 if (ret)
377                         drm_err(dev, "Timed out waiting for commit\n");
378         }
379
380         drm_atomic_helper_commit_modeset_disables(dev, state);
381
382         vc4_ctm_commit(vc4, state);
383
384         if (vc4->hvs->hvs5)
385                 vc5_hvs_pv_muxing_commit(vc4, state);
386         else
387                 vc4_hvs_pv_muxing_commit(vc4, state);
388
389         drm_atomic_helper_commit_planes(dev, state, 0);
390
391         drm_atomic_helper_commit_modeset_enables(dev, state);
392
393         drm_atomic_helper_fake_vblank(state);
394
395         drm_atomic_helper_commit_hw_done(state);
396
397         drm_atomic_helper_wait_for_flip_done(dev, state);
398
399         drm_atomic_helper_cleanup_planes(dev, state);
400
401         if (vc4->hvs->hvs5)
402                 clk_set_min_rate(hvs->core_clk, 0);
403 }
404
405 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
406 {
407         struct drm_crtc_state *crtc_state;
408         struct vc4_hvs_state *hvs_state;
409         struct drm_crtc *crtc;
410         unsigned int i;
411
412         hvs_state = vc4_hvs_get_new_global_state(state);
413         if (!hvs_state)
414                 return -EINVAL;
415
416         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
417                 struct vc4_crtc_state *vc4_crtc_state =
418                         to_vc4_crtc_state(crtc_state);
419                 unsigned int channel =
420                         vc4_crtc_state->assigned_channel;
421
422                 if (channel == VC4_HVS_CHANNEL_DISABLED)
423                         continue;
424
425                 if (!hvs_state->fifo_state[channel].in_use)
426                         continue;
427
428                 hvs_state->fifo_state[channel].pending_commit =
429                         drm_crtc_commit_get(crtc_state->commit);
430         }
431
432         return 0;
433 }
434
435 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
436                                              struct drm_file *file_priv,
437                                              const struct drm_mode_fb_cmd2 *mode_cmd)
438 {
439         struct drm_mode_fb_cmd2 mode_cmd_local;
440
441         /* If the user didn't specify a modifier, use the
442          * vc4_set_tiling_ioctl() state for the BO.
443          */
444         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
445                 struct drm_gem_object *gem_obj;
446                 struct vc4_bo *bo;
447
448                 gem_obj = drm_gem_object_lookup(file_priv,
449                                                 mode_cmd->handles[0]);
450                 if (!gem_obj) {
451                         DRM_DEBUG("Failed to look up GEM BO %d\n",
452                                   mode_cmd->handles[0]);
453                         return ERR_PTR(-ENOENT);
454                 }
455                 bo = to_vc4_bo(gem_obj);
456
457                 mode_cmd_local = *mode_cmd;
458
459                 if (bo->t_format) {
460                         mode_cmd_local.modifier[0] =
461                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
462                 } else {
463                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
464                 }
465
466                 drm_gem_object_put(gem_obj);
467
468                 mode_cmd = &mode_cmd_local;
469         }
470
471         return drm_gem_fb_create(dev, file_priv, mode_cmd);
472 }
473
474 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
475  * at a time and the HW only supports S0.9 scalars. To account for the latter,
476  * we don't allow userland to set a CTM that we have no hope of approximating.
477  */
478 static int
479 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
480 {
481         struct vc4_dev *vc4 = to_vc4_dev(dev);
482         struct vc4_ctm_state *ctm_state = NULL;
483         struct drm_crtc *crtc;
484         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
485         struct drm_color_ctm *ctm;
486         int i;
487
488         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
489                 /* CTM is being disabled. */
490                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
491                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
492                         if (IS_ERR(ctm_state))
493                                 return PTR_ERR(ctm_state);
494                         ctm_state->fifo = 0;
495                 }
496         }
497
498         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
499                 if (new_crtc_state->ctm == old_crtc_state->ctm)
500                         continue;
501
502                 if (!ctm_state) {
503                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
504                         if (IS_ERR(ctm_state))
505                                 return PTR_ERR(ctm_state);
506                 }
507
508                 /* CTM is being enabled or the matrix changed. */
509                 if (new_crtc_state->ctm) {
510                         struct vc4_crtc_state *vc4_crtc_state =
511                                 to_vc4_crtc_state(new_crtc_state);
512
513                         /* fifo is 1-based since 0 disables CTM. */
514                         int fifo = vc4_crtc_state->assigned_channel + 1;
515
516                         /* Check userland isn't trying to turn on CTM for more
517                          * than one CRTC at a time.
518                          */
519                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
520                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
521                                 return -EINVAL;
522                         }
523
524                         /* Check we can approximate the specified CTM.
525                          * We disallow scalars |c| > 1.0 since the HW has
526                          * no integer bits.
527                          */
528                         ctm = new_crtc_state->ctm->data;
529                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
530                                 u64 val = ctm->matrix[i];
531
532                                 val &= ~BIT_ULL(63);
533                                 if (val > BIT_ULL(32))
534                                         return -EINVAL;
535                         }
536
537                         ctm_state->fifo = fifo;
538                         ctm_state->ctm = ctm;
539                 }
540         }
541
542         return 0;
543 }
544
545 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
546 {
547         struct drm_plane_state *old_plane_state, *new_plane_state;
548         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
549         struct vc4_load_tracker_state *load_state;
550         struct drm_private_state *priv_state;
551         struct drm_plane *plane;
552         int i;
553
554         priv_state = drm_atomic_get_private_obj_state(state,
555                                                       &vc4->load_tracker);
556         if (IS_ERR(priv_state))
557                 return PTR_ERR(priv_state);
558
559         load_state = to_vc4_load_tracker_state(priv_state);
560         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
561                                        new_plane_state, i) {
562                 struct vc4_plane_state *vc4_plane_state;
563
564                 if (old_plane_state->fb && old_plane_state->crtc) {
565                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
566                         load_state->membus_load -= vc4_plane_state->membus_load;
567                         load_state->hvs_load -= vc4_plane_state->hvs_load;
568                 }
569
570                 if (new_plane_state->fb && new_plane_state->crtc) {
571                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
572                         load_state->membus_load += vc4_plane_state->membus_load;
573                         load_state->hvs_load += vc4_plane_state->hvs_load;
574                 }
575         }
576
577         /* Don't check the load when the tracker is disabled. */
578         if (!vc4->load_tracker_enabled)
579                 return 0;
580
581         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
582          * the system work when other blocks are accessing the memory.
583          */
584         if (load_state->membus_load > SZ_1G + SZ_512M)
585                 return -ENOSPC;
586
587         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
588          * consider the maximum number of cycles is 240M.
589          */
590         if (load_state->hvs_load > 240000000ULL)
591                 return -ENOSPC;
592
593         return 0;
594 }
595
596 static struct drm_private_state *
597 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
598 {
599         struct vc4_load_tracker_state *state;
600
601         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
602         if (!state)
603                 return NULL;
604
605         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
606
607         return &state->base;
608 }
609
610 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
611                                            struct drm_private_state *state)
612 {
613         struct vc4_load_tracker_state *load_state;
614
615         load_state = to_vc4_load_tracker_state(state);
616         kfree(load_state);
617 }
618
619 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
620         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
621         .atomic_destroy_state = vc4_load_tracker_destroy_state,
622 };
623
624 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
625 {
626         struct vc4_dev *vc4 = to_vc4_dev(dev);
627
628         drm_atomic_private_obj_fini(&vc4->load_tracker);
629 }
630
631 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
632 {
633         struct vc4_load_tracker_state *load_state;
634
635         load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
636         if (!load_state)
637                 return -ENOMEM;
638
639         drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
640                                     &load_state->base,
641                                     &vc4_load_tracker_state_funcs);
642
643         return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
644 }
645
646 static struct drm_private_state *
647 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
648 {
649         struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
650         struct vc4_hvs_state *state;
651         unsigned int i;
652
653         state = kzalloc(sizeof(*state), GFP_KERNEL);
654         if (!state)
655                 return NULL;
656
657         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
658
659
660         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
661                 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
662
663                 if (!old_state->fifo_state[i].pending_commit)
664                         continue;
665
666                 state->fifo_state[i].pending_commit =
667                         drm_crtc_commit_get(old_state->fifo_state[i].pending_commit);
668         }
669
670         return &state->base;
671 }
672
673 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
674                                            struct drm_private_state *state)
675 {
676         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
677         unsigned int i;
678
679         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
680                 if (!hvs_state->fifo_state[i].pending_commit)
681                         continue;
682
683                 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
684         }
685
686         kfree(hvs_state);
687 }
688
689 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
690         .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
691         .atomic_destroy_state = vc4_hvs_channels_destroy_state,
692 };
693
694 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
695 {
696         struct vc4_dev *vc4 = to_vc4_dev(dev);
697
698         drm_atomic_private_obj_fini(&vc4->hvs_channels);
699 }
700
701 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
702 {
703         struct vc4_hvs_state *state;
704
705         state = kzalloc(sizeof(*state), GFP_KERNEL);
706         if (!state)
707                 return -ENOMEM;
708
709         drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
710                                     &state->base,
711                                     &vc4_hvs_state_funcs);
712
713         return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
714 }
715
716 /*
717  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
718  * the TXP (and therefore all the CRTCs found on that platform).
719  *
720  * The naive (and our initial) implementation would just iterate over
721  * all the active CRTCs, try to find a suitable FIFO, and then remove it
722  * from the pool of available FIFOs. However, there are a few corner
723  * cases that need to be considered:
724  *
725  * - When running in a dual-display setup (so with two CRTCs involved),
726  *   we can update the state of a single CRTC (for example by changing
727  *   its mode using xrandr under X11) without affecting the other. In
728  *   this case, the other CRTC wouldn't be in the state at all, so we
729  *   need to consider all the running CRTCs in the DRM device to assign
730  *   a FIFO, not just the one in the state.
731  *
732  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
733  *   enabled CRTCs to pull their CRTC state into the global state, since
734  *   a page flip would start considering their vblank to complete. Since
735  *   we don't have a guarantee that they are actually active, that
736  *   vblank might never happen, and shouldn't even be considered if we
737  *   want to do a page flip on a single CRTC. That can be tested by
738  *   doing a modetest -v first on HDMI1 and then on HDMI0.
739  *
740  * - Since we need the pixelvalve to be disabled and enabled back when
741  *   the FIFO is changed, we should keep the FIFO assigned for as long
742  *   as the CRTC is enabled, only considering it free again once that
743  *   CRTC has been disabled. This can be tested by booting X11 on a
744  *   single display, and changing the resolution down and then back up.
745  */
746 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
747                                       struct drm_atomic_state *state)
748 {
749         struct vc4_hvs_state *hvs_new_state;
750         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
751         struct drm_crtc *crtc;
752         unsigned int unassigned_channels = 0;
753         unsigned int i;
754
755         hvs_new_state = vc4_hvs_get_global_state(state);
756         if (!hvs_new_state)
757                 return -EINVAL;
758
759         for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
760                 if (!hvs_new_state->fifo_state[i].in_use)
761                         unassigned_channels |= BIT(i);
762
763         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
764                 struct vc4_crtc_state *old_vc4_crtc_state =
765                         to_vc4_crtc_state(old_crtc_state);
766                 struct vc4_crtc_state *new_vc4_crtc_state =
767                         to_vc4_crtc_state(new_crtc_state);
768                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
769                 unsigned int matching_channels;
770                 unsigned int channel;
771
772                 /* Nothing to do here, let's skip it */
773                 if (old_crtc_state->enable == new_crtc_state->enable)
774                         continue;
775
776                 /* Muxing will need to be modified, mark it as such */
777                 new_vc4_crtc_state->update_muxing = true;
778
779                 /* If we're disabling our CRTC, we put back our channel */
780                 if (!new_crtc_state->enable) {
781                         channel = old_vc4_crtc_state->assigned_channel;
782                         hvs_new_state->fifo_state[channel].in_use = false;
783                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
784                         continue;
785                 }
786
787                 /*
788                  * The problem we have to solve here is that we have
789                  * up to 7 encoders, connected to up to 6 CRTCs.
790                  *
791                  * Those CRTCs, depending on the instance, can be
792                  * routed to 1, 2 or 3 HVS FIFOs, and we need to set
793                  * the change the muxing between FIFOs and outputs in
794                  * the HVS accordingly.
795                  *
796                  * It would be pretty hard to come up with an
797                  * algorithm that would generically solve
798                  * this. However, the current routing trees we support
799                  * allow us to simplify a bit the problem.
800                  *
801                  * Indeed, with the current supported layouts, if we
802                  * try to assign in the ascending crtc index order the
803                  * FIFOs, we can't fall into the situation where an
804                  * earlier CRTC that had multiple routes is assigned
805                  * one that was the only option for a later CRTC.
806                  *
807                  * If the layout changes and doesn't give us that in
808                  * the future, we will need to have something smarter,
809                  * but it works so far.
810                  */
811                 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
812                 if (!matching_channels)
813                         return -EINVAL;
814
815                 channel = ffs(matching_channels) - 1;
816                 new_vc4_crtc_state->assigned_channel = channel;
817                 unassigned_channels &= ~BIT(channel);
818                 hvs_new_state->fifo_state[channel].in_use = true;
819         }
820
821         return 0;
822 }
823
824 static int
825 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
826 {
827         int ret;
828
829         ret = vc4_pv_muxing_atomic_check(dev, state);
830         if (ret)
831                 return ret;
832
833         ret = vc4_ctm_atomic_check(dev, state);
834         if (ret < 0)
835                 return ret;
836
837         ret = drm_atomic_helper_check(dev, state);
838         if (ret)
839                 return ret;
840
841         return vc4_load_tracker_atomic_check(state);
842 }
843
844 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
845         .atomic_commit_setup    = vc4_atomic_commit_setup,
846         .atomic_commit_tail     = vc4_atomic_commit_tail,
847 };
848
849 static const struct drm_mode_config_funcs vc4_mode_funcs = {
850         .atomic_check = vc4_atomic_check,
851         .atomic_commit = drm_atomic_helper_commit,
852         .fb_create = vc4_fb_create,
853 };
854
855 int vc4_kms_load(struct drm_device *dev)
856 {
857         struct vc4_dev *vc4 = to_vc4_dev(dev);
858         bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
859                                               "brcm,bcm2711-vc5");
860         int ret;
861
862         /*
863          * The limits enforced by the load tracker aren't relevant for
864          * the BCM2711, but the load tracker computations are used for
865          * the core clock rate calculation.
866          */
867         if (!is_vc5) {
868                 /* Start with the load tracker enabled. Can be
869                  * disabled through the debugfs load_tracker file.
870                  */
871                 vc4->load_tracker_enabled = true;
872         }
873
874         /* Set support for vblank irq fast disable, before drm_vblank_init() */
875         dev->vblank_disable_immediate = true;
876
877         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
878         if (ret < 0) {
879                 dev_err(dev->dev, "failed to initialize vblank\n");
880                 return ret;
881         }
882
883         if (is_vc5) {
884                 dev->mode_config.max_width = 7680;
885                 dev->mode_config.max_height = 7680;
886         } else {
887                 dev->mode_config.max_width = 2048;
888                 dev->mode_config.max_height = 2048;
889         }
890
891         dev->mode_config.funcs = &vc4_mode_funcs;
892         dev->mode_config.helper_private = &vc4_mode_config_helpers;
893         dev->mode_config.preferred_depth = 24;
894         dev->mode_config.async_page_flip = true;
895
896         ret = vc4_ctm_obj_init(vc4);
897         if (ret)
898                 return ret;
899
900         ret = vc4_load_tracker_obj_init(vc4);
901         if (ret)
902                 return ret;
903
904         ret = vc4_hvs_channels_obj_init(vc4);
905         if (ret)
906                 return ret;
907
908         drm_mode_config_reset(dev);
909
910         drm_kms_helper_poll_init(dev);
911
912         return 0;
913 }