drm/vc4: Constify private state accessors
[linux-2.6-block.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/clk.h>
15
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26
27 #define HVS_NUM_CHANNELS 3
28
29 struct vc4_ctm_state {
30         struct drm_private_state base;
31         struct drm_color_ctm *ctm;
32         int fifo;
33 };
34
35 static struct vc4_ctm_state *
36 to_vc4_ctm_state(const struct drm_private_state *priv)
37 {
38         return container_of(priv, struct vc4_ctm_state, base);
39 }
40
41 struct vc4_hvs_state {
42         struct drm_private_state base;
43         unsigned long core_clock_rate;
44
45         struct {
46                 unsigned in_use: 1;
47                 unsigned long fifo_load;
48                 struct drm_crtc_commit *pending_commit;
49         } fifo_state[HVS_NUM_CHANNELS];
50 };
51
52 static struct vc4_hvs_state *
53 to_vc4_hvs_state(const struct drm_private_state *priv)
54 {
55         return container_of(priv, struct vc4_hvs_state, base);
56 }
57
58 struct vc4_load_tracker_state {
59         struct drm_private_state base;
60         u64 hvs_load;
61         u64 membus_load;
62 };
63
64 static struct vc4_load_tracker_state *
65 to_vc4_load_tracker_state(const struct drm_private_state *priv)
66 {
67         return container_of(priv, struct vc4_load_tracker_state, base);
68 }
69
70 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
71                                                struct drm_private_obj *manager)
72 {
73         struct drm_device *dev = state->dev;
74         struct vc4_dev *vc4 = to_vc4_dev(dev);
75         struct drm_private_state *priv_state;
76         int ret;
77
78         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
79         if (ret)
80                 return ERR_PTR(ret);
81
82         priv_state = drm_atomic_get_private_obj_state(state, manager);
83         if (IS_ERR(priv_state))
84                 return ERR_CAST(priv_state);
85
86         return to_vc4_ctm_state(priv_state);
87 }
88
89 static struct drm_private_state *
90 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
91 {
92         struct vc4_ctm_state *state;
93
94         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
95         if (!state)
96                 return NULL;
97
98         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
99
100         return &state->base;
101 }
102
103 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
104                                   struct drm_private_state *state)
105 {
106         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
107
108         kfree(ctm_state);
109 }
110
111 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
112         .atomic_duplicate_state = vc4_ctm_duplicate_state,
113         .atomic_destroy_state = vc4_ctm_destroy_state,
114 };
115
116 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
117 {
118         struct vc4_dev *vc4 = to_vc4_dev(dev);
119
120         drm_atomic_private_obj_fini(&vc4->ctm_manager);
121 }
122
123 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
124 {
125         struct vc4_ctm_state *ctm_state;
126
127         drm_modeset_lock_init(&vc4->ctm_state_lock);
128
129         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
130         if (!ctm_state)
131                 return -ENOMEM;
132
133         drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
134                                     &vc4_ctm_state_funcs);
135
136         return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
137 }
138
139 /* Converts a DRM S31.32 value to the HW S0.9 format. */
140 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
141 {
142         u16 r;
143
144         /* Sign bit. */
145         r = in & BIT_ULL(63) ? BIT(9) : 0;
146
147         if ((in & GENMASK_ULL(62, 32)) > 0) {
148                 /* We have zero integer bits so we can only saturate here. */
149                 r |= GENMASK(8, 0);
150         } else {
151                 /* Otherwise take the 9 most important fractional bits. */
152                 r |= (in >> 23) & GENMASK(8, 0);
153         }
154
155         return r;
156 }
157
158 static void
159 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
160 {
161         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
162         struct drm_color_ctm *ctm = ctm_state->ctm;
163
164         if (ctm_state->fifo) {
165                 HVS_WRITE(SCALER_OLEDCOEF2,
166                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
167                                         SCALER_OLEDCOEF2_R_TO_R) |
168                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
169                                         SCALER_OLEDCOEF2_R_TO_G) |
170                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
171                                         SCALER_OLEDCOEF2_R_TO_B));
172                 HVS_WRITE(SCALER_OLEDCOEF1,
173                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
174                                         SCALER_OLEDCOEF1_G_TO_R) |
175                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
176                                         SCALER_OLEDCOEF1_G_TO_G) |
177                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
178                                         SCALER_OLEDCOEF1_G_TO_B));
179                 HVS_WRITE(SCALER_OLEDCOEF0,
180                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
181                                         SCALER_OLEDCOEF0_B_TO_R) |
182                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
183                                         SCALER_OLEDCOEF0_B_TO_G) |
184                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
185                                         SCALER_OLEDCOEF0_B_TO_B));
186         }
187
188         HVS_WRITE(SCALER_OLEDOFFS,
189                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
190 }
191
192 static struct vc4_hvs_state *
193 vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
194 {
195         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
196         struct drm_private_state *priv_state;
197
198         priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
199         if (IS_ERR(priv_state))
200                 return ERR_CAST(priv_state);
201
202         return to_vc4_hvs_state(priv_state);
203 }
204
205 static struct vc4_hvs_state *
206 vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
207 {
208         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
209         struct drm_private_state *priv_state;
210
211         priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
212         if (IS_ERR(priv_state))
213                 return ERR_CAST(priv_state);
214
215         return to_vc4_hvs_state(priv_state);
216 }
217
218 static struct vc4_hvs_state *
219 vc4_hvs_get_global_state(struct drm_atomic_state *state)
220 {
221         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
222         struct drm_private_state *priv_state;
223
224         priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
225         if (IS_ERR(priv_state))
226                 return ERR_CAST(priv_state);
227
228         return to_vc4_hvs_state(priv_state);
229 }
230
231 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
232                                      struct drm_atomic_state *state)
233 {
234         struct drm_crtc_state *crtc_state;
235         struct drm_crtc *crtc;
236         unsigned int i;
237
238         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
239                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
240                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
241                 u32 dispctrl;
242                 u32 dsp3_mux;
243
244                 if (!crtc_state->active)
245                         continue;
246
247                 if (vc4_state->assigned_channel != 2)
248                         continue;
249
250                 /*
251                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
252                  * FIFO X'.
253                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
254                  *
255                  * DSP3 is connected to FIFO2 unless the transposer is
256                  * enabled. In this case, FIFO 2 is directly accessed by the
257                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
258                  * route.
259                  */
260                 if (vc4_crtc->feeds_txp)
261                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
262                 else
263                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
264
265                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
266                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
267                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
268         }
269 }
270
271 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
272                                      struct drm_atomic_state *state)
273 {
274         struct drm_crtc_state *crtc_state;
275         struct drm_crtc *crtc;
276         unsigned char mux;
277         unsigned int i;
278         u32 reg;
279
280         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
281                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
282                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
283
284                 if (!vc4_state->update_muxing)
285                         continue;
286
287                 switch (vc4_crtc->data->hvs_output) {
288                 case 2:
289                         mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
290                         reg = HVS_READ(SCALER_DISPECTRL);
291                         HVS_WRITE(SCALER_DISPECTRL,
292                                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
293                                   VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
294                         break;
295
296                 case 3:
297                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
298                                 mux = 3;
299                         else
300                                 mux = vc4_state->assigned_channel;
301
302                         reg = HVS_READ(SCALER_DISPCTRL);
303                         HVS_WRITE(SCALER_DISPCTRL,
304                                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
305                                   VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
306                         break;
307
308                 case 4:
309                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
310                                 mux = 3;
311                         else
312                                 mux = vc4_state->assigned_channel;
313
314                         reg = HVS_READ(SCALER_DISPEOLN);
315                         HVS_WRITE(SCALER_DISPEOLN,
316                                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
317                                   VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
318
319                         break;
320
321                 case 5:
322                         if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
323                                 mux = 3;
324                         else
325                                 mux = vc4_state->assigned_channel;
326
327                         reg = HVS_READ(SCALER_DISPDITHER);
328                         HVS_WRITE(SCALER_DISPDITHER,
329                                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
330                                   VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
331                         break;
332
333                 default:
334                         break;
335                 }
336         }
337 }
338
339 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
340 {
341         struct drm_device *dev = state->dev;
342         struct vc4_dev *vc4 = to_vc4_dev(dev);
343         struct vc4_hvs *hvs = vc4->hvs;
344         struct drm_crtc_state *new_crtc_state;
345         struct vc4_hvs_state *new_hvs_state;
346         struct drm_crtc *crtc;
347         struct vc4_hvs_state *old_hvs_state;
348         unsigned int channel;
349         int i;
350
351         old_hvs_state = vc4_hvs_get_old_global_state(state);
352         if (WARN_ON(IS_ERR(old_hvs_state)))
353                 return;
354
355         new_hvs_state = vc4_hvs_get_new_global_state(state);
356         if (WARN_ON(IS_ERR(new_hvs_state)))
357                 return;
358
359         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
360                 struct vc4_crtc_state *vc4_crtc_state;
361
362                 if (!new_crtc_state->commit)
363                         continue;
364
365                 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
366                 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
367         }
368
369         for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
370                 struct drm_crtc_commit *commit;
371                 int ret;
372
373                 if (!old_hvs_state->fifo_state[channel].in_use)
374                         continue;
375
376                 commit = old_hvs_state->fifo_state[channel].pending_commit;
377                 if (!commit)
378                         continue;
379
380                 ret = drm_crtc_commit_wait(commit);
381                 if (ret)
382                         drm_err(dev, "Timed out waiting for commit\n");
383
384                 drm_crtc_commit_put(commit);
385                 old_hvs_state->fifo_state[channel].pending_commit = NULL;
386         }
387
388         if (vc4->hvs->hvs5) {
389                 unsigned long core_rate = max_t(unsigned long,
390                                                 500000000,
391                                                 new_hvs_state->core_clock_rate);
392
393                 clk_set_min_rate(hvs->core_clk, core_rate);
394         }
395         drm_atomic_helper_commit_modeset_disables(dev, state);
396
397         vc4_ctm_commit(vc4, state);
398
399         if (vc4->hvs->hvs5)
400                 vc5_hvs_pv_muxing_commit(vc4, state);
401         else
402                 vc4_hvs_pv_muxing_commit(vc4, state);
403
404         drm_atomic_helper_commit_planes(dev, state, 0);
405
406         drm_atomic_helper_commit_modeset_enables(dev, state);
407
408         drm_atomic_helper_fake_vblank(state);
409
410         drm_atomic_helper_commit_hw_done(state);
411
412         drm_atomic_helper_wait_for_flip_done(dev, state);
413
414         drm_atomic_helper_cleanup_planes(dev, state);
415
416         if (vc4->hvs->hvs5) {
417                 drm_dbg(dev, "Running the core clock at %lu Hz\n",
418                         new_hvs_state->core_clock_rate);
419
420                 clk_set_min_rate(hvs->core_clk, new_hvs_state->core_clock_rate);
421         }
422 }
423
424 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
425 {
426         struct drm_crtc_state *crtc_state;
427         struct vc4_hvs_state *hvs_state;
428         struct drm_crtc *crtc;
429         unsigned int i;
430
431         hvs_state = vc4_hvs_get_new_global_state(state);
432         if (WARN_ON(IS_ERR(hvs_state)))
433                 return PTR_ERR(hvs_state);
434
435         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
436                 struct vc4_crtc_state *vc4_crtc_state =
437                         to_vc4_crtc_state(crtc_state);
438                 unsigned int channel =
439                         vc4_crtc_state->assigned_channel;
440
441                 if (channel == VC4_HVS_CHANNEL_DISABLED)
442                         continue;
443
444                 if (!hvs_state->fifo_state[channel].in_use)
445                         continue;
446
447                 hvs_state->fifo_state[channel].pending_commit =
448                         drm_crtc_commit_get(crtc_state->commit);
449         }
450
451         return 0;
452 }
453
454 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
455                                              struct drm_file *file_priv,
456                                              const struct drm_mode_fb_cmd2 *mode_cmd)
457 {
458         struct drm_mode_fb_cmd2 mode_cmd_local;
459
460         /* If the user didn't specify a modifier, use the
461          * vc4_set_tiling_ioctl() state for the BO.
462          */
463         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
464                 struct drm_gem_object *gem_obj;
465                 struct vc4_bo *bo;
466
467                 gem_obj = drm_gem_object_lookup(file_priv,
468                                                 mode_cmd->handles[0]);
469                 if (!gem_obj) {
470                         DRM_DEBUG("Failed to look up GEM BO %d\n",
471                                   mode_cmd->handles[0]);
472                         return ERR_PTR(-ENOENT);
473                 }
474                 bo = to_vc4_bo(gem_obj);
475
476                 mode_cmd_local = *mode_cmd;
477
478                 if (bo->t_format) {
479                         mode_cmd_local.modifier[0] =
480                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
481                 } else {
482                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
483                 }
484
485                 drm_gem_object_put(gem_obj);
486
487                 mode_cmd = &mode_cmd_local;
488         }
489
490         return drm_gem_fb_create(dev, file_priv, mode_cmd);
491 }
492
493 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
494  * at a time and the HW only supports S0.9 scalars. To account for the latter,
495  * we don't allow userland to set a CTM that we have no hope of approximating.
496  */
497 static int
498 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
499 {
500         struct vc4_dev *vc4 = to_vc4_dev(dev);
501         struct vc4_ctm_state *ctm_state = NULL;
502         struct drm_crtc *crtc;
503         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
504         struct drm_color_ctm *ctm;
505         int i;
506
507         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
508                 /* CTM is being disabled. */
509                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
510                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
511                         if (IS_ERR(ctm_state))
512                                 return PTR_ERR(ctm_state);
513                         ctm_state->fifo = 0;
514                 }
515         }
516
517         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
518                 if (new_crtc_state->ctm == old_crtc_state->ctm)
519                         continue;
520
521                 if (!ctm_state) {
522                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
523                         if (IS_ERR(ctm_state))
524                                 return PTR_ERR(ctm_state);
525                 }
526
527                 /* CTM is being enabled or the matrix changed. */
528                 if (new_crtc_state->ctm) {
529                         struct vc4_crtc_state *vc4_crtc_state =
530                                 to_vc4_crtc_state(new_crtc_state);
531
532                         /* fifo is 1-based since 0 disables CTM. */
533                         int fifo = vc4_crtc_state->assigned_channel + 1;
534
535                         /* Check userland isn't trying to turn on CTM for more
536                          * than one CRTC at a time.
537                          */
538                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
539                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
540                                 return -EINVAL;
541                         }
542
543                         /* Check we can approximate the specified CTM.
544                          * We disallow scalars |c| > 1.0 since the HW has
545                          * no integer bits.
546                          */
547                         ctm = new_crtc_state->ctm->data;
548                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
549                                 u64 val = ctm->matrix[i];
550
551                                 val &= ~BIT_ULL(63);
552                                 if (val > BIT_ULL(32))
553                                         return -EINVAL;
554                         }
555
556                         ctm_state->fifo = fifo;
557                         ctm_state->ctm = ctm;
558                 }
559         }
560
561         return 0;
562 }
563
564 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
565 {
566         struct drm_plane_state *old_plane_state, *new_plane_state;
567         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
568         struct vc4_load_tracker_state *load_state;
569         struct drm_private_state *priv_state;
570         struct drm_plane *plane;
571         int i;
572
573         priv_state = drm_atomic_get_private_obj_state(state,
574                                                       &vc4->load_tracker);
575         if (IS_ERR(priv_state))
576                 return PTR_ERR(priv_state);
577
578         load_state = to_vc4_load_tracker_state(priv_state);
579         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
580                                        new_plane_state, i) {
581                 struct vc4_plane_state *vc4_plane_state;
582
583                 if (old_plane_state->fb && old_plane_state->crtc) {
584                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
585                         load_state->membus_load -= vc4_plane_state->membus_load;
586                         load_state->hvs_load -= vc4_plane_state->hvs_load;
587                 }
588
589                 if (new_plane_state->fb && new_plane_state->crtc) {
590                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
591                         load_state->membus_load += vc4_plane_state->membus_load;
592                         load_state->hvs_load += vc4_plane_state->hvs_load;
593                 }
594         }
595
596         /* Don't check the load when the tracker is disabled. */
597         if (!vc4->load_tracker_enabled)
598                 return 0;
599
600         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
601          * the system work when other blocks are accessing the memory.
602          */
603         if (load_state->membus_load > SZ_1G + SZ_512M)
604                 return -ENOSPC;
605
606         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
607          * consider the maximum number of cycles is 240M.
608          */
609         if (load_state->hvs_load > 240000000ULL)
610                 return -ENOSPC;
611
612         return 0;
613 }
614
615 static struct drm_private_state *
616 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
617 {
618         struct vc4_load_tracker_state *state;
619
620         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
621         if (!state)
622                 return NULL;
623
624         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
625
626         return &state->base;
627 }
628
629 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
630                                            struct drm_private_state *state)
631 {
632         struct vc4_load_tracker_state *load_state;
633
634         load_state = to_vc4_load_tracker_state(state);
635         kfree(load_state);
636 }
637
638 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
639         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
640         .atomic_destroy_state = vc4_load_tracker_destroy_state,
641 };
642
643 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
644 {
645         struct vc4_dev *vc4 = to_vc4_dev(dev);
646
647         drm_atomic_private_obj_fini(&vc4->load_tracker);
648 }
649
650 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
651 {
652         struct vc4_load_tracker_state *load_state;
653
654         load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
655         if (!load_state)
656                 return -ENOMEM;
657
658         drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
659                                     &load_state->base,
660                                     &vc4_load_tracker_state_funcs);
661
662         return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
663 }
664
665 static struct drm_private_state *
666 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
667 {
668         struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
669         struct vc4_hvs_state *state;
670         unsigned int i;
671
672         state = kzalloc(sizeof(*state), GFP_KERNEL);
673         if (!state)
674                 return NULL;
675
676         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
677
678         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
679                 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
680                 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
681         }
682
683         state->core_clock_rate = old_state->core_clock_rate;
684
685         return &state->base;
686 }
687
688 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
689                                            struct drm_private_state *state)
690 {
691         struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
692         unsigned int i;
693
694         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
695                 if (!hvs_state->fifo_state[i].pending_commit)
696                         continue;
697
698                 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
699         }
700
701         kfree(hvs_state);
702 }
703
704 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
705         .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
706         .atomic_destroy_state = vc4_hvs_channels_destroy_state,
707 };
708
709 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
710 {
711         struct vc4_dev *vc4 = to_vc4_dev(dev);
712
713         drm_atomic_private_obj_fini(&vc4->hvs_channels);
714 }
715
716 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
717 {
718         struct vc4_hvs_state *state;
719
720         state = kzalloc(sizeof(*state), GFP_KERNEL);
721         if (!state)
722                 return -ENOMEM;
723
724         drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
725                                     &state->base,
726                                     &vc4_hvs_state_funcs);
727
728         return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
729 }
730
731 /*
732  * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
733  * the TXP (and therefore all the CRTCs found on that platform).
734  *
735  * The naive (and our initial) implementation would just iterate over
736  * all the active CRTCs, try to find a suitable FIFO, and then remove it
737  * from the pool of available FIFOs. However, there are a few corner
738  * cases that need to be considered:
739  *
740  * - When running in a dual-display setup (so with two CRTCs involved),
741  *   we can update the state of a single CRTC (for example by changing
742  *   its mode using xrandr under X11) without affecting the other. In
743  *   this case, the other CRTC wouldn't be in the state at all, so we
744  *   need to consider all the running CRTCs in the DRM device to assign
745  *   a FIFO, not just the one in the state.
746  *
747  * - To fix the above, we can't use drm_atomic_get_crtc_state on all
748  *   enabled CRTCs to pull their CRTC state into the global state, since
749  *   a page flip would start considering their vblank to complete. Since
750  *   we don't have a guarantee that they are actually active, that
751  *   vblank might never happen, and shouldn't even be considered if we
752  *   want to do a page flip on a single CRTC. That can be tested by
753  *   doing a modetest -v first on HDMI1 and then on HDMI0.
754  *
755  * - Since we need the pixelvalve to be disabled and enabled back when
756  *   the FIFO is changed, we should keep the FIFO assigned for as long
757  *   as the CRTC is enabled, only considering it free again once that
758  *   CRTC has been disabled. This can be tested by booting X11 on a
759  *   single display, and changing the resolution down and then back up.
760  */
761 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
762                                       struct drm_atomic_state *state)
763 {
764         struct vc4_hvs_state *hvs_new_state;
765         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
766         struct drm_crtc *crtc;
767         unsigned int unassigned_channels = 0;
768         unsigned int i;
769
770         hvs_new_state = vc4_hvs_get_global_state(state);
771         if (IS_ERR(hvs_new_state))
772                 return PTR_ERR(hvs_new_state);
773
774         for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
775                 if (!hvs_new_state->fifo_state[i].in_use)
776                         unassigned_channels |= BIT(i);
777
778         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
779                 struct vc4_crtc_state *old_vc4_crtc_state =
780                         to_vc4_crtc_state(old_crtc_state);
781                 struct vc4_crtc_state *new_vc4_crtc_state =
782                         to_vc4_crtc_state(new_crtc_state);
783                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
784                 unsigned int matching_channels;
785                 unsigned int channel;
786
787                 /* Nothing to do here, let's skip it */
788                 if (old_crtc_state->enable == new_crtc_state->enable)
789                         continue;
790
791                 /* Muxing will need to be modified, mark it as such */
792                 new_vc4_crtc_state->update_muxing = true;
793
794                 /* If we're disabling our CRTC, we put back our channel */
795                 if (!new_crtc_state->enable) {
796                         channel = old_vc4_crtc_state->assigned_channel;
797                         hvs_new_state->fifo_state[channel].in_use = false;
798                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
799                         continue;
800                 }
801
802                 /*
803                  * The problem we have to solve here is that we have
804                  * up to 7 encoders, connected to up to 6 CRTCs.
805                  *
806                  * Those CRTCs, depending on the instance, can be
807                  * routed to 1, 2 or 3 HVS FIFOs, and we need to set
808                  * the change the muxing between FIFOs and outputs in
809                  * the HVS accordingly.
810                  *
811                  * It would be pretty hard to come up with an
812                  * algorithm that would generically solve
813                  * this. However, the current routing trees we support
814                  * allow us to simplify a bit the problem.
815                  *
816                  * Indeed, with the current supported layouts, if we
817                  * try to assign in the ascending crtc index order the
818                  * FIFOs, we can't fall into the situation where an
819                  * earlier CRTC that had multiple routes is assigned
820                  * one that was the only option for a later CRTC.
821                  *
822                  * If the layout changes and doesn't give us that in
823                  * the future, we will need to have something smarter,
824                  * but it works so far.
825                  */
826                 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
827                 if (!matching_channels)
828                         return -EINVAL;
829
830                 channel = ffs(matching_channels) - 1;
831                 new_vc4_crtc_state->assigned_channel = channel;
832                 unassigned_channels &= ~BIT(channel);
833                 hvs_new_state->fifo_state[channel].in_use = true;
834         }
835
836         return 0;
837 }
838
839 static int
840 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
841 {
842         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
843         struct drm_private_state *priv_state;
844         struct vc4_hvs_state *hvs_new_state;
845         struct vc4_load_tracker_state *load_state;
846         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
847         struct drm_crtc *crtc;
848         unsigned int num_outputs;
849         unsigned long pixel_rate;
850         unsigned long cob_rate;
851         unsigned int i;
852
853         priv_state = drm_atomic_get_private_obj_state(state,
854                                                       &vc4->load_tracker);
855         if (IS_ERR(priv_state))
856                 return PTR_ERR(priv_state);
857
858         load_state = to_vc4_load_tracker_state(priv_state);
859
860         hvs_new_state = vc4_hvs_get_global_state(state);
861         if (IS_ERR(hvs_new_state))
862                 return PTR_ERR(hvs_new_state);
863
864         for_each_oldnew_crtc_in_state(state, crtc,
865                                       old_crtc_state,
866                                       new_crtc_state,
867                                       i) {
868                 if (old_crtc_state->active) {
869                         struct vc4_crtc_state *old_vc4_state =
870                                 to_vc4_crtc_state(old_crtc_state);
871                         unsigned int channel = old_vc4_state->assigned_channel;
872
873                         hvs_new_state->fifo_state[channel].fifo_load = 0;
874                 }
875
876                 if (new_crtc_state->active) {
877                         struct vc4_crtc_state *new_vc4_state =
878                                 to_vc4_crtc_state(new_crtc_state);
879                         unsigned int channel = new_vc4_state->assigned_channel;
880
881                         hvs_new_state->fifo_state[channel].fifo_load =
882                                 new_vc4_state->hvs_load;
883                 }
884         }
885
886         cob_rate = 0;
887         num_outputs = 0;
888         for (i = 0; i < HVS_NUM_CHANNELS; i++) {
889                 if (!hvs_new_state->fifo_state[i].in_use)
890                         continue;
891
892                 num_outputs++;
893                 cob_rate += hvs_new_state->fifo_state[i].fifo_load;
894         }
895
896         pixel_rate = load_state->hvs_load;
897         if (num_outputs > 1) {
898                 pixel_rate = (pixel_rate * 40) / 100;
899         } else {
900                 pixel_rate = (pixel_rate * 60) / 100;
901         }
902
903         hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
904
905         return 0;
906 }
907
908
909 static int
910 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
911 {
912         int ret;
913
914         ret = vc4_pv_muxing_atomic_check(dev, state);
915         if (ret)
916                 return ret;
917
918         ret = vc4_ctm_atomic_check(dev, state);
919         if (ret < 0)
920                 return ret;
921
922         ret = drm_atomic_helper_check(dev, state);
923         if (ret)
924                 return ret;
925
926         ret = vc4_load_tracker_atomic_check(state);
927         if (ret)
928                 return ret;
929
930         return vc4_core_clock_atomic_check(state);
931 }
932
933 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
934         .atomic_commit_setup    = vc4_atomic_commit_setup,
935         .atomic_commit_tail     = vc4_atomic_commit_tail,
936 };
937
938 static const struct drm_mode_config_funcs vc4_mode_funcs = {
939         .atomic_check = vc4_atomic_check,
940         .atomic_commit = drm_atomic_helper_commit,
941         .fb_create = vc4_fb_create,
942 };
943
944 int vc4_kms_load(struct drm_device *dev)
945 {
946         struct vc4_dev *vc4 = to_vc4_dev(dev);
947         bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
948                                               "brcm,bcm2711-vc5");
949         int ret;
950
951         /*
952          * The limits enforced by the load tracker aren't relevant for
953          * the BCM2711, but the load tracker computations are used for
954          * the core clock rate calculation.
955          */
956         if (!is_vc5) {
957                 /* Start with the load tracker enabled. Can be
958                  * disabled through the debugfs load_tracker file.
959                  */
960                 vc4->load_tracker_enabled = true;
961         }
962
963         /* Set support for vblank irq fast disable, before drm_vblank_init() */
964         dev->vblank_disable_immediate = true;
965
966         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
967         if (ret < 0) {
968                 dev_err(dev->dev, "failed to initialize vblank\n");
969                 return ret;
970         }
971
972         if (is_vc5) {
973                 dev->mode_config.max_width = 7680;
974                 dev->mode_config.max_height = 7680;
975         } else {
976                 dev->mode_config.max_width = 2048;
977                 dev->mode_config.max_height = 2048;
978         }
979
980         dev->mode_config.funcs = &vc4_mode_funcs;
981         dev->mode_config.helper_private = &vc4_mode_config_helpers;
982         dev->mode_config.preferred_depth = 24;
983         dev->mode_config.async_page_flip = true;
984
985         ret = vc4_ctm_obj_init(vc4);
986         if (ret)
987                 return ret;
988
989         ret = vc4_load_tracker_obj_init(vc4);
990         if (ret)
991                 return ret;
992
993         ret = vc4_hvs_channels_obj_init(vc4);
994         if (ret)
995                 return ret;
996
997         drm_mode_config_reset(dev);
998
999         drm_kms_helper_poll_init(dev);
1000
1001         return 0;
1002 }