bd90404ea609ca2615418d45b6e07f6a5c4ab937
[linux-2.6-block.git] / drivers / gpu / drm / ttm / ttm_bo_util.c
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 #include <linux/swap.h>
32 #include <linux/vmalloc.h>
33
34 #include <drm/ttm/ttm_bo.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <drm/ttm/ttm_tt.h>
37
38 #include <drm/drm_cache.h>
39
40 struct ttm_transfer_obj {
41         struct ttm_buffer_object base;
42         struct ttm_buffer_object *bo;
43 };
44
45 int ttm_mem_io_reserve(struct ttm_device *bdev,
46                        struct ttm_resource *mem)
47 {
48         if (mem->bus.offset || mem->bus.addr)
49                 return 0;
50
51         mem->bus.is_iomem = false;
52         if (!bdev->funcs->io_mem_reserve)
53                 return 0;
54
55         return bdev->funcs->io_mem_reserve(bdev, mem);
56 }
57
58 void ttm_mem_io_free(struct ttm_device *bdev,
59                      struct ttm_resource *mem)
60 {
61         if (!mem)
62                 return;
63
64         if (!mem->bus.offset && !mem->bus.addr)
65                 return;
66
67         if (bdev->funcs->io_mem_free)
68                 bdev->funcs->io_mem_free(bdev, mem);
69
70         mem->bus.offset = 0;
71         mem->bus.addr = NULL;
72 }
73
74 /**
75  * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
76  * @clear: Whether to clear rather than copy.
77  * @num_pages: Number of pages of the operation.
78  * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
79  * @src_iter: A struct ttm_kmap_iter representing the source resource.
80  *
81  * This function is intended to be able to move out async under a
82  * dma-fence if desired.
83  */
84 void ttm_move_memcpy(bool clear,
85                      u32 num_pages,
86                      struct ttm_kmap_iter *dst_iter,
87                      struct ttm_kmap_iter *src_iter)
88 {
89         const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
90         const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
91         struct iosys_map src_map, dst_map;
92         pgoff_t i;
93
94         /* Single TTM move. NOP */
95         if (dst_ops->maps_tt && src_ops->maps_tt)
96                 return;
97
98         /* Don't move nonexistent data. Clear destination instead. */
99         if (clear) {
100                 for (i = 0; i < num_pages; ++i) {
101                         dst_ops->map_local(dst_iter, &dst_map, i);
102                         if (dst_map.is_iomem)
103                                 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
104                         else
105                                 memset(dst_map.vaddr, 0, PAGE_SIZE);
106                         if (dst_ops->unmap_local)
107                                 dst_ops->unmap_local(dst_iter, &dst_map);
108                 }
109                 return;
110         }
111
112         for (i = 0; i < num_pages; ++i) {
113                 dst_ops->map_local(dst_iter, &dst_map, i);
114                 src_ops->map_local(src_iter, &src_map, i);
115
116                 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
117
118                 if (src_ops->unmap_local)
119                         src_ops->unmap_local(src_iter, &src_map);
120                 if (dst_ops->unmap_local)
121                         dst_ops->unmap_local(dst_iter, &dst_map);
122         }
123 }
124 EXPORT_SYMBOL(ttm_move_memcpy);
125
126 /**
127  * ttm_bo_move_memcpy
128  *
129  * @bo: A pointer to a struct ttm_buffer_object.
130  * @ctx: operation context
131  * @dst_mem: struct ttm_resource indicating where to move.
132  *
133  * Fallback move function for a mappable buffer object in mappable memory.
134  * The function will, if successful,
135  * free any old aperture space, and set (@new_mem)->mm_node to NULL,
136  * and update the (@bo)->mem placement flags. If unsuccessful, the old
137  * data remains untouched, and it's up to the caller to free the
138  * memory space indicated by @new_mem.
139  * Returns:
140  * !0: Failure.
141  */
142 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
143                        struct ttm_operation_ctx *ctx,
144                        struct ttm_resource *dst_mem)
145 {
146         struct ttm_device *bdev = bo->bdev;
147         struct ttm_resource_manager *dst_man =
148                 ttm_manager_type(bo->bdev, dst_mem->mem_type);
149         struct ttm_tt *ttm = bo->ttm;
150         struct ttm_resource *src_mem = bo->resource;
151         struct ttm_resource_manager *src_man;
152         union {
153                 struct ttm_kmap_iter_tt tt;
154                 struct ttm_kmap_iter_linear_io io;
155         } _dst_iter, _src_iter;
156         struct ttm_kmap_iter *dst_iter, *src_iter;
157         bool clear;
158         int ret = 0;
159
160         if (WARN_ON(!src_mem))
161                 return -EINVAL;
162
163         src_man = ttm_manager_type(bdev, src_mem->mem_type);
164         if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
165                     dst_man->use_tt)) {
166                 ret = ttm_bo_populate(bo, ctx);
167                 if (ret)
168                         return ret;
169         }
170
171         dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
172         if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
173                 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
174         if (IS_ERR(dst_iter))
175                 return PTR_ERR(dst_iter);
176
177         src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
178         if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
179                 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
180         if (IS_ERR(src_iter)) {
181                 ret = PTR_ERR(src_iter);
182                 goto out_src_iter;
183         }
184
185         clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
186         if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
187                 ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
188
189         if (!src_iter->ops->maps_tt)
190                 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
191         ttm_bo_move_sync_cleanup(bo, dst_mem);
192
193 out_src_iter:
194         if (!dst_iter->ops->maps_tt)
195                 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
196
197         return ret;
198 }
199 EXPORT_SYMBOL(ttm_bo_move_memcpy);
200
201 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
202 {
203         struct ttm_transfer_obj *fbo;
204
205         fbo = container_of(bo, struct ttm_transfer_obj, base);
206         dma_resv_fini(&fbo->base.base._resv);
207         ttm_bo_put(fbo->bo);
208         kfree(fbo);
209 }
210
211 /**
212  * ttm_buffer_object_transfer
213  *
214  * @bo: A pointer to a struct ttm_buffer_object.
215  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
216  * holding the data of @bo with the old placement.
217  *
218  * This is a utility function that may be called after an accelerated move
219  * has been scheduled. A new buffer object is created as a placeholder for
220  * the old data while it's being copied. When that buffer object is idle,
221  * it can be destroyed, releasing the space of the old placement.
222  * Returns:
223  * !0: Failure.
224  */
225
226 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
227                                       struct ttm_buffer_object **new_obj)
228 {
229         struct ttm_transfer_obj *fbo;
230         int ret;
231
232         fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
233         if (!fbo)
234                 return -ENOMEM;
235
236         fbo->base = *bo;
237
238         /**
239          * Fix up members that we shouldn't copy directly:
240          * TODO: Explicit member copy would probably be better here.
241          */
242
243         atomic_inc(&ttm_glob.bo_count);
244         drm_vma_node_reset(&fbo->base.base.vma_node);
245
246         kref_init(&fbo->base.kref);
247         fbo->base.destroy = &ttm_transfered_destroy;
248         fbo->base.pin_count = 0;
249         if (bo->type != ttm_bo_type_sg)
250                 fbo->base.base.resv = &fbo->base.base._resv;
251
252         dma_resv_init(&fbo->base.base._resv);
253         fbo->base.base.dev = NULL;
254         ret = dma_resv_trylock(&fbo->base.base._resv);
255         WARN_ON(!ret);
256
257         ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
258         if (ret) {
259                 dma_resv_unlock(&fbo->base.base._resv);
260                 kfree(fbo);
261                 return ret;
262         }
263
264         if (fbo->base.resource) {
265                 ttm_resource_set_bo(fbo->base.resource, &fbo->base);
266                 bo->resource = NULL;
267                 ttm_bo_set_bulk_move(&fbo->base, NULL);
268         } else {
269                 fbo->base.bulk_move = NULL;
270         }
271
272         ttm_bo_get(bo);
273         fbo->bo = bo;
274
275         ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
276
277         *new_obj = &fbo->base;
278         return 0;
279 }
280
281 /**
282  * ttm_io_prot
283  *
284  * @bo: ttm buffer object
285  * @res: ttm resource object
286  * @tmp: Page protection flag for a normal, cached mapping.
287  *
288  * Utility function that returns the pgprot_t that should be used for
289  * setting up a PTE with the caching model indicated by @c_state.
290  */
291 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
292                      pgprot_t tmp)
293 {
294         struct ttm_resource_manager *man;
295         enum ttm_caching caching;
296
297         man = ttm_manager_type(bo->bdev, res->mem_type);
298         if (man->use_tt) {
299                 caching = bo->ttm->caching;
300                 if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED)
301                         tmp = pgprot_decrypted(tmp);
302         } else  {
303                 caching = res->bus.caching;
304         }
305
306         return ttm_prot_from_caching(caching, tmp);
307 }
308 EXPORT_SYMBOL(ttm_io_prot);
309
310 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
311                           unsigned long offset,
312                           unsigned long size,
313                           struct ttm_bo_kmap_obj *map)
314 {
315         struct ttm_resource *mem = bo->resource;
316
317         if (bo->resource->bus.addr) {
318                 map->bo_kmap_type = ttm_bo_map_premapped;
319                 map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
320         } else {
321                 resource_size_t res = bo->resource->bus.offset + offset;
322
323                 map->bo_kmap_type = ttm_bo_map_iomap;
324                 if (mem->bus.caching == ttm_write_combined)
325                         map->virtual = ioremap_wc(res, size);
326 #ifdef CONFIG_X86
327                 else if (mem->bus.caching == ttm_cached)
328                         map->virtual = ioremap_cache(res, size);
329 #endif
330                 else
331                         map->virtual = ioremap(res, size);
332         }
333         return (!map->virtual) ? -ENOMEM : 0;
334 }
335
336 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
337                            unsigned long start_page,
338                            unsigned long num_pages,
339                            struct ttm_bo_kmap_obj *map)
340 {
341         struct ttm_resource *mem = bo->resource;
342         struct ttm_operation_ctx ctx = {
343                 .interruptible = false,
344                 .no_wait_gpu = false
345         };
346         struct ttm_tt *ttm = bo->ttm;
347         struct ttm_resource_manager *man =
348                         ttm_manager_type(bo->bdev, bo->resource->mem_type);
349         pgprot_t prot;
350         int ret;
351
352         BUG_ON(!ttm);
353
354         ret = ttm_bo_populate(bo, &ctx);
355         if (ret)
356                 return ret;
357
358         if (num_pages == 1 && ttm->caching == ttm_cached &&
359             !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) {
360                 /*
361                  * We're mapping a single page, and the desired
362                  * page protection is consistent with the bo.
363                  */
364
365                 map->bo_kmap_type = ttm_bo_map_kmap;
366                 map->page = ttm->pages[start_page];
367                 map->virtual = kmap(map->page);
368         } else {
369                 /*
370                  * We need to use vmap to get the desired page protection
371                  * or to make the buffer object look contiguous.
372                  */
373                 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
374                 map->bo_kmap_type = ttm_bo_map_vmap;
375                 map->virtual = vmap(ttm->pages + start_page, num_pages,
376                                     0, prot);
377         }
378         return (!map->virtual) ? -ENOMEM : 0;
379 }
380
381 /**
382  * ttm_bo_kmap
383  *
384  * @bo: The buffer object.
385  * @start_page: The first page to map.
386  * @num_pages: Number of pages to map.
387  * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
388  *
389  * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
390  * data in the buffer object. The ttm_kmap_obj_virtual function can then be
391  * used to obtain a virtual address to the data.
392  *
393  * Returns
394  * -ENOMEM: Out of memory.
395  * -EINVAL: Invalid range.
396  */
397 int ttm_bo_kmap(struct ttm_buffer_object *bo,
398                 unsigned long start_page, unsigned long num_pages,
399                 struct ttm_bo_kmap_obj *map)
400 {
401         unsigned long offset, size;
402         int ret;
403
404         map->virtual = NULL;
405         map->bo = bo;
406         if (num_pages > PFN_UP(bo->resource->size))
407                 return -EINVAL;
408         if ((start_page + num_pages) > PFN_UP(bo->resource->size))
409                 return -EINVAL;
410
411         ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
412         if (ret)
413                 return ret;
414         if (!bo->resource->bus.is_iomem) {
415                 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
416         } else {
417                 offset = start_page << PAGE_SHIFT;
418                 size = num_pages << PAGE_SHIFT;
419                 return ttm_bo_ioremap(bo, offset, size, map);
420         }
421 }
422 EXPORT_SYMBOL(ttm_bo_kmap);
423
424 /**
425  * ttm_bo_kunmap
426  *
427  * @map: Object describing the map to unmap.
428  *
429  * Unmaps a kernel map set up by ttm_bo_kmap.
430  */
431 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
432 {
433         if (!map->virtual)
434                 return;
435         switch (map->bo_kmap_type) {
436         case ttm_bo_map_iomap:
437                 iounmap(map->virtual);
438                 break;
439         case ttm_bo_map_vmap:
440                 vunmap(map->virtual);
441                 break;
442         case ttm_bo_map_kmap:
443                 kunmap(map->page);
444                 break;
445         case ttm_bo_map_premapped:
446                 break;
447         default:
448                 BUG();
449         }
450         ttm_mem_io_free(map->bo->bdev, map->bo->resource);
451         map->virtual = NULL;
452         map->page = NULL;
453 }
454 EXPORT_SYMBOL(ttm_bo_kunmap);
455
456 /**
457  * ttm_bo_vmap
458  *
459  * @bo: The buffer object.
460  * @map: pointer to a struct iosys_map representing the map.
461  *
462  * Sets up a kernel virtual mapping, using ioremap or vmap to the
463  * data in the buffer object. The parameter @map returns the virtual
464  * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
465  *
466  * Returns
467  * -ENOMEM: Out of memory.
468  * -EINVAL: Invalid range.
469  */
470 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
471 {
472         struct ttm_resource *mem = bo->resource;
473         int ret;
474
475         dma_resv_assert_held(bo->base.resv);
476
477         ret = ttm_mem_io_reserve(bo->bdev, mem);
478         if (ret)
479                 return ret;
480
481         if (mem->bus.is_iomem) {
482                 void __iomem *vaddr_iomem;
483
484                 if (mem->bus.addr)
485                         vaddr_iomem = (void __iomem *)mem->bus.addr;
486                 else if (mem->bus.caching == ttm_write_combined)
487                         vaddr_iomem = ioremap_wc(mem->bus.offset,
488                                                  bo->base.size);
489 #ifdef CONFIG_X86
490                 else if (mem->bus.caching == ttm_cached)
491                         vaddr_iomem = ioremap_cache(mem->bus.offset,
492                                                   bo->base.size);
493 #endif
494                 else
495                         vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
496
497                 if (!vaddr_iomem)
498                         return -ENOMEM;
499
500                 iosys_map_set_vaddr_iomem(map, vaddr_iomem);
501
502         } else {
503                 struct ttm_operation_ctx ctx = {
504                         .interruptible = false,
505                         .no_wait_gpu = false
506                 };
507                 struct ttm_tt *ttm = bo->ttm;
508                 pgprot_t prot;
509                 void *vaddr;
510
511                 ret = ttm_bo_populate(bo, &ctx);
512                 if (ret)
513                         return ret;
514
515                 /*
516                  * We need to use vmap to get the desired page protection
517                  * or to make the buffer object look contiguous.
518                  */
519                 prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
520                 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
521                 if (!vaddr)
522                         return -ENOMEM;
523
524                 iosys_map_set_vaddr(map, vaddr);
525         }
526
527         return 0;
528 }
529 EXPORT_SYMBOL(ttm_bo_vmap);
530
531 /**
532  * ttm_bo_vunmap
533  *
534  * @bo: The buffer object.
535  * @map: Object describing the map to unmap.
536  *
537  * Unmaps a kernel map set up by ttm_bo_vmap().
538  */
539 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
540 {
541         struct ttm_resource *mem = bo->resource;
542
543         dma_resv_assert_held(bo->base.resv);
544
545         if (iosys_map_is_null(map))
546                 return;
547
548         if (!map->is_iomem)
549                 vunmap(map->vaddr);
550         else if (!mem->bus.addr)
551                 iounmap(map->vaddr_iomem);
552         iosys_map_clear(map);
553
554         ttm_mem_io_free(bo->bdev, bo->resource);
555 }
556 EXPORT_SYMBOL(ttm_bo_vunmap);
557
558 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
559                                  bool dst_use_tt)
560 {
561         long ret;
562
563         ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
564                                     false, 15 * HZ);
565         if (ret == 0)
566                 return -EBUSY;
567         if (ret < 0)
568                 return ret;
569
570         if (!dst_use_tt)
571                 ttm_bo_tt_destroy(bo);
572         ttm_resource_free(bo, &bo->resource);
573         return 0;
574 }
575
576 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
577                                 struct dma_fence *fence,
578                                 bool dst_use_tt)
579 {
580         struct ttm_buffer_object *ghost_obj;
581         int ret;
582
583         /**
584          * This should help pipeline ordinary buffer moves.
585          *
586          * Hang old buffer memory on a new buffer object,
587          * and leave it to be released when the GPU
588          * operation has completed.
589          */
590
591         ret = ttm_buffer_object_transfer(bo, &ghost_obj);
592         if (ret)
593                 return ret;
594
595         dma_resv_add_fence(&ghost_obj->base._resv, fence,
596                            DMA_RESV_USAGE_KERNEL);
597
598         /**
599          * If we're not moving to fixed memory, the TTM object
600          * needs to stay alive. Otherwhise hang it on the ghost
601          * bo to be unbound and destroyed.
602          */
603
604         if (dst_use_tt)
605                 ghost_obj->ttm = NULL;
606         else
607                 bo->ttm = NULL;
608
609         dma_resv_unlock(&ghost_obj->base._resv);
610         ttm_bo_put(ghost_obj);
611         return 0;
612 }
613
614 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
615                                        struct dma_fence *fence)
616 {
617         struct ttm_device *bdev = bo->bdev;
618         struct ttm_resource_manager *from;
619
620         from = ttm_manager_type(bdev, bo->resource->mem_type);
621
622         /**
623          * BO doesn't have a TTM we need to bind/unbind. Just remember
624          * this eviction and free up the allocation
625          */
626         spin_lock(&from->move_lock);
627         if (!from->move || dma_fence_is_later(fence, from->move)) {
628                 dma_fence_put(from->move);
629                 from->move = dma_fence_get(fence);
630         }
631         spin_unlock(&from->move_lock);
632
633         ttm_resource_free(bo, &bo->resource);
634 }
635
636 /**
637  * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
638  *
639  * @bo: A pointer to a struct ttm_buffer_object.
640  * @fence: A fence object that signals when moving is complete.
641  * @evict: This is an evict move. Don't return until the buffer is idle.
642  * @pipeline: evictions are to be pipelined.
643  * @new_mem: struct ttm_resource indicating where to move.
644  *
645  * Accelerated move function to be called when an accelerated move
646  * has been scheduled. The function will create a new temporary buffer object
647  * representing the old placement, and put the sync object on both buffer
648  * objects. After that the newly created buffer object is unref'd to be
649  * destroyed when the move is complete. This will help pipeline
650  * buffer moves.
651  */
652 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
653                               struct dma_fence *fence,
654                               bool evict,
655                               bool pipeline,
656                               struct ttm_resource *new_mem)
657 {
658         struct ttm_device *bdev = bo->bdev;
659         struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
660         struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
661         int ret = 0;
662
663         dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
664         if (!evict)
665                 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
666         else if (!from->use_tt && pipeline)
667                 ttm_bo_move_pipeline_evict(bo, fence);
668         else
669                 ret = ttm_bo_wait_free_node(bo, man->use_tt);
670
671         if (ret)
672                 return ret;
673
674         ttm_bo_assign_mem(bo, new_mem);
675
676         return 0;
677 }
678 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
679
680 /**
681  * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
682  *
683  * @bo: A pointer to a struct ttm_buffer_object.
684  * @new_mem: struct ttm_resource indicating where to move.
685  *
686  * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
687  * by the caller to be idle. Typically used after memcpy buffer moves.
688  */
689 void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
690                               struct ttm_resource *new_mem)
691 {
692         struct ttm_device *bdev = bo->bdev;
693         struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
694         int ret;
695
696         ret = ttm_bo_wait_free_node(bo, man->use_tt);
697         if (WARN_ON(ret))
698                 return;
699
700         ttm_bo_assign_mem(bo, new_mem);
701 }
702 EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
703
704 /**
705  * ttm_bo_pipeline_gutting - purge the contents of a bo
706  * @bo: The buffer object
707  *
708  * Purge the contents of a bo, async if the bo is not idle.
709  * After a successful call, the bo is left unpopulated in
710  * system placement. The function may wait uninterruptible
711  * for idle on OOM.
712  *
713  * Return: 0 if successful, negative error code on failure.
714  */
715 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
716 {
717         struct ttm_buffer_object *ghost;
718         struct ttm_tt *ttm;
719         int ret;
720
721         /* If already idle, no need for ghost object dance. */
722         if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
723                 if (!bo->ttm) {
724                         /* See comment below about clearing. */
725                         ret = ttm_tt_create(bo, true);
726                         if (ret)
727                                 return ret;
728                 } else {
729                         ttm_tt_unpopulate(bo->bdev, bo->ttm);
730                         if (bo->type == ttm_bo_type_device)
731                                 ttm_tt_mark_for_clear(bo->ttm);
732                 }
733                 ttm_resource_free(bo, &bo->resource);
734                 return 0;
735         }
736
737         /*
738          * We need an unpopulated ttm_tt after giving our current one,
739          * if any, to the ghost object. And we can't afford to fail
740          * creating one *after* the operation. If the bo subsequently gets
741          * resurrected, make sure it's cleared (if ttm_bo_type_device)
742          * to avoid leaking sensitive information to user-space.
743          */
744
745         ttm = bo->ttm;
746         bo->ttm = NULL;
747         ret = ttm_tt_create(bo, true);
748         swap(bo->ttm, ttm);
749         if (ret)
750                 return ret;
751
752         ret = ttm_buffer_object_transfer(bo, &ghost);
753         if (ret)
754                 goto error_destroy_tt;
755
756         ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
757         /* Last resort, wait for the BO to be idle when we are OOM */
758         if (ret) {
759                 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
760                                       false, MAX_SCHEDULE_TIMEOUT);
761         }
762
763         dma_resv_unlock(&ghost->base._resv);
764         ttm_bo_put(ghost);
765         bo->ttm = ttm;
766         return 0;
767
768 error_destroy_tt:
769         ttm_tt_destroy(bo->bdev, ttm);
770         return ret;
771 }
772
773 static bool ttm_lru_walk_trylock(struct ttm_operation_ctx *ctx,
774                                  struct ttm_buffer_object *bo,
775                                  bool *needs_unlock)
776 {
777         *needs_unlock = false;
778
779         if (dma_resv_trylock(bo->base.resv)) {
780                 *needs_unlock = true;
781                 return true;
782         }
783
784         if (bo->base.resv == ctx->resv && ctx->allow_res_evict) {
785                 dma_resv_assert_held(bo->base.resv);
786                 return true;
787         }
788
789         return false;
790 }
791
792 static int ttm_lru_walk_ticketlock(struct ttm_lru_walk *walk,
793                                    struct ttm_buffer_object *bo,
794                                    bool *needs_unlock)
795 {
796         struct dma_resv *resv = bo->base.resv;
797         int ret;
798
799         if (walk->ctx->interruptible)
800                 ret = dma_resv_lock_interruptible(resv, walk->ticket);
801         else
802                 ret = dma_resv_lock(resv, walk->ticket);
803
804         if (!ret) {
805                 *needs_unlock = true;
806                 /*
807                  * Only a single ticketlock per loop. Ticketlocks are prone
808                  * to return -EDEADLK causing the eviction to fail, so
809                  * after waiting for the ticketlock, revert back to
810                  * trylocking for this walk.
811                  */
812                 walk->ticket = NULL;
813         } else if (ret == -EDEADLK) {
814                 /* Caller needs to exit the ww transaction. */
815                 ret = -ENOSPC;
816         }
817
818         return ret;
819 }
820
821 static void ttm_lru_walk_unlock(struct ttm_buffer_object *bo, bool locked)
822 {
823         if (locked)
824                 dma_resv_unlock(bo->base.resv);
825 }
826
827 /**
828  * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on
829  * valid items.
830  * @walk: describe the walks and actions taken
831  * @bdev: The TTM device.
832  * @man: The struct ttm_resource manager whose LRU lists we're walking.
833  * @target: The end condition for the walk.
834  *
835  * The LRU lists of @man are walk, and for each struct ttm_resource encountered,
836  * the corresponding ttm_buffer_object is locked and taken a reference on, and
837  * the LRU lock is dropped. the LRU lock may be dropped before locking and, in
838  * that case, it's verified that the item actually remains on the LRU list after
839  * the lock, and that the buffer object didn't switch resource in between.
840  *
841  * With a locked object, the actions indicated by @walk->process_bo are
842  * performed, and after that, the bo is unlocked, the refcount dropped and the
843  * next struct ttm_resource is processed. Here, the walker relies on
844  * TTM's restartable LRU list implementation.
845  *
846  * Typically @walk->process_bo() would return the number of pages evicted,
847  * swapped or shrunken, so that when the total exceeds @target, or when the
848  * LRU list has been walked in full, iteration is terminated. It's also terminated
849  * on error. Note that the definition of @target is done by the caller, it
850  * could have a different meaning than the number of pages.
851  *
852  * Note that the way dma_resv individualization is done, locking needs to be done
853  * either with the LRU lock held (trylocking only) or with a reference on the
854  * object.
855  *
856  * Return: The progress made towards target or negative error code on error.
857  */
858 s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev,
859                            struct ttm_resource_manager *man, s64 target)
860 {
861         struct ttm_resource_cursor cursor;
862         struct ttm_resource *res;
863         s64 progress = 0;
864         s64 lret;
865
866         spin_lock(&bdev->lru_lock);
867         ttm_resource_cursor_init(&cursor, man);
868         ttm_resource_manager_for_each_res(&cursor, res) {
869                 struct ttm_buffer_object *bo = res->bo;
870                 bool bo_needs_unlock = false;
871                 bool bo_locked = false;
872                 int mem_type;
873
874                 /*
875                  * Attempt a trylock before taking a reference on the bo,
876                  * since if we do it the other way around, and the trylock fails,
877                  * we need to drop the lru lock to put the bo.
878                  */
879                 if (ttm_lru_walk_trylock(walk->ctx, bo, &bo_needs_unlock))
880                         bo_locked = true;
881                 else if (!walk->ticket || walk->ctx->no_wait_gpu ||
882                          walk->trylock_only)
883                         continue;
884
885                 if (!ttm_bo_get_unless_zero(bo)) {
886                         ttm_lru_walk_unlock(bo, bo_needs_unlock);
887                         continue;
888                 }
889
890                 mem_type = res->mem_type;
891                 spin_unlock(&bdev->lru_lock);
892
893                 lret = 0;
894                 if (!bo_locked)
895                         lret = ttm_lru_walk_ticketlock(walk, bo, &bo_needs_unlock);
896
897                 /*
898                  * Note that in between the release of the lru lock and the
899                  * ticketlock, the bo may have switched resource,
900                  * and also memory type, since the resource may have been
901                  * freed and allocated again with a different memory type.
902                  * In that case, just skip it.
903                  */
904                 if (!lret && bo->resource && bo->resource->mem_type == mem_type)
905                         lret = walk->ops->process_bo(walk, bo);
906
907                 ttm_lru_walk_unlock(bo, bo_needs_unlock);
908                 ttm_bo_put(bo);
909                 if (lret == -EBUSY || lret == -EALREADY)
910                         lret = 0;
911                 progress = (lret < 0) ? lret : progress + lret;
912
913                 spin_lock(&bdev->lru_lock);
914                 if (progress < 0 || progress >= target)
915                         break;
916         }
917         ttm_resource_cursor_fini(&cursor);
918         spin_unlock(&bdev->lru_lock);
919
920         return progress;
921 }
922 EXPORT_SYMBOL(ttm_lru_walk_for_evict);
923
924 static void ttm_bo_lru_cursor_cleanup_bo(struct ttm_bo_lru_cursor *curs)
925 {
926         struct ttm_buffer_object *bo = curs->bo;
927
928         if (bo) {
929                 if (curs->needs_unlock)
930                         dma_resv_unlock(bo->base.resv);
931                 ttm_bo_put(bo);
932                 curs->bo = NULL;
933         }
934 }
935
936 /**
937  * ttm_bo_lru_cursor_fini() - Stop using a struct ttm_bo_lru_cursor
938  * and clean up any iteration it was used for.
939  * @curs: The cursor.
940  */
941 void ttm_bo_lru_cursor_fini(struct ttm_bo_lru_cursor *curs)
942 {
943         spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
944
945         ttm_bo_lru_cursor_cleanup_bo(curs);
946         spin_lock(lru_lock);
947         ttm_resource_cursor_fini(&curs->res_curs);
948         spin_unlock(lru_lock);
949 }
950 EXPORT_SYMBOL(ttm_bo_lru_cursor_fini);
951
952 /**
953  * ttm_bo_lru_cursor_init() - Initialize a struct ttm_bo_lru_cursor
954  * @curs: The ttm_bo_lru_cursor to initialize.
955  * @man: The ttm resource_manager whose LRU lists to iterate over.
956  * @ctx: The ttm_operation_ctx to govern the locking.
957  *
958  * Initialize a struct ttm_bo_lru_cursor. Currently only trylocking
959  * or prelocked buffer objects are available as detailed by
960  * @ctx::resv and @ctx::allow_res_evict. Ticketlocking is not
961  * supported.
962  *
963  * Return: Pointer to @curs. The function does not fail.
964  */
965 struct ttm_bo_lru_cursor *
966 ttm_bo_lru_cursor_init(struct ttm_bo_lru_cursor *curs,
967                        struct ttm_resource_manager *man,
968                        struct ttm_operation_ctx *ctx)
969 {
970         memset(curs, 0, sizeof(*curs));
971         ttm_resource_cursor_init(&curs->res_curs, man);
972         curs->ctx = ctx;
973
974         return curs;
975 }
976 EXPORT_SYMBOL(ttm_bo_lru_cursor_init);
977
978 static struct ttm_buffer_object *
979 ttm_bo_from_res_reserved(struct ttm_resource *res, struct ttm_bo_lru_cursor *curs)
980 {
981         struct ttm_buffer_object *bo = res->bo;
982
983         if (!ttm_lru_walk_trylock(curs->ctx, bo, &curs->needs_unlock))
984                 return NULL;
985
986         if (!ttm_bo_get_unless_zero(bo)) {
987                 if (curs->needs_unlock)
988                         dma_resv_unlock(bo->base.resv);
989                 return NULL;
990         }
991
992         curs->bo = bo;
993         return bo;
994 }
995
996 /**
997  * ttm_bo_lru_cursor_next() - Continue iterating a manager's LRU lists
998  * to find and lock buffer object.
999  * @curs: The cursor initialized using ttm_bo_lru_cursor_init() and
1000  * ttm_bo_lru_cursor_first().
1001  *
1002  * Return: A pointer to a locked and reference-counted buffer object,
1003  * or NULL if none could be found and looping should be terminated.
1004  */
1005 struct ttm_buffer_object *ttm_bo_lru_cursor_next(struct ttm_bo_lru_cursor *curs)
1006 {
1007         spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
1008         struct ttm_resource *res = NULL;
1009         struct ttm_buffer_object *bo;
1010
1011         ttm_bo_lru_cursor_cleanup_bo(curs);
1012
1013         spin_lock(lru_lock);
1014         for (;;) {
1015                 res = ttm_resource_manager_next(&curs->res_curs);
1016                 if (!res)
1017                         break;
1018
1019                 bo = ttm_bo_from_res_reserved(res, curs);
1020                 if (bo)
1021                         break;
1022         }
1023
1024         spin_unlock(lru_lock);
1025         return res ? bo : NULL;
1026 }
1027 EXPORT_SYMBOL(ttm_bo_lru_cursor_next);
1028
1029 /**
1030  * ttm_bo_lru_cursor_first() - Start iterating a manager's LRU lists
1031  * to find and lock buffer object.
1032  * @curs: The cursor initialized using ttm_bo_lru_cursor_init().
1033  *
1034  * Return: A pointer to a locked and reference-counted buffer object,
1035  * or NULL if none could be found and looping should be terminated.
1036  */
1037 struct ttm_buffer_object *ttm_bo_lru_cursor_first(struct ttm_bo_lru_cursor *curs)
1038 {
1039         spinlock_t *lru_lock = &curs->res_curs.man->bdev->lru_lock;
1040         struct ttm_buffer_object *bo;
1041         struct ttm_resource *res;
1042
1043         spin_lock(lru_lock);
1044         res = ttm_resource_manager_first(&curs->res_curs);
1045         if (!res) {
1046                 spin_unlock(lru_lock);
1047                 return NULL;
1048         }
1049
1050         bo = ttm_bo_from_res_reserved(res, curs);
1051         spin_unlock(lru_lock);
1052
1053         return bo ? bo : ttm_bo_lru_cursor_next(curs);
1054 }
1055 EXPORT_SYMBOL(ttm_bo_lru_cursor_first);
1056
1057 /**
1058  * ttm_bo_shrink() - Helper to shrink a ttm buffer object.
1059  * @ctx: The struct ttm_operation_ctx used for the shrinking operation.
1060  * @bo: The buffer object.
1061  * @flags: Flags governing the shrinking behaviour.
1062  *
1063  * The function uses the ttm_tt_back_up functionality to back up or
1064  * purge a struct ttm_tt. If the bo is not in system, it's first
1065  * moved there.
1066  *
1067  * Return: The number of pages shrunken or purged, or
1068  * negative error code on failure.
1069  */
1070 long ttm_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
1071                    const struct ttm_bo_shrink_flags flags)
1072 {
1073         static const struct ttm_place sys_placement_flags = {
1074                 .fpfn = 0,
1075                 .lpfn = 0,
1076                 .mem_type = TTM_PL_SYSTEM,
1077                 .flags = 0,
1078         };
1079         static struct ttm_placement sys_placement = {
1080                 .num_placement = 1,
1081                 .placement = &sys_placement_flags,
1082         };
1083         struct ttm_tt *tt = bo->ttm;
1084         long lret;
1085
1086         dma_resv_assert_held(bo->base.resv);
1087
1088         if (flags.allow_move && bo->resource->mem_type != TTM_PL_SYSTEM) {
1089                 int ret = ttm_bo_validate(bo, &sys_placement, ctx);
1090
1091                 /* Consider -ENOMEM and -ENOSPC non-fatal. */
1092                 if (ret) {
1093                         if (ret == -ENOMEM || ret == -ENOSPC)
1094                                 ret = -EBUSY;
1095                         return ret;
1096                 }
1097         }
1098
1099         ttm_bo_unmap_virtual(bo);
1100         lret = ttm_bo_wait_ctx(bo, ctx);
1101         if (lret < 0)
1102                 return lret;
1103
1104         if (bo->bulk_move) {
1105                 spin_lock(&bo->bdev->lru_lock);
1106                 ttm_resource_del_bulk_move(bo->resource, bo);
1107                 spin_unlock(&bo->bdev->lru_lock);
1108         }
1109
1110         lret = ttm_tt_backup(bo->bdev, tt, (struct ttm_backup_flags)
1111                              {.purge = flags.purge,
1112                               .writeback = flags.writeback});
1113
1114         if (lret <= 0 && bo->bulk_move) {
1115                 spin_lock(&bo->bdev->lru_lock);
1116                 ttm_resource_add_bulk_move(bo->resource, bo);
1117                 spin_unlock(&bo->bdev->lru_lock);
1118         }
1119
1120         if (lret < 0 && lret != -EINTR)
1121                 return -EBUSY;
1122
1123         return lret;
1124 }
1125 EXPORT_SYMBOL(ttm_bo_shrink);
1126
1127 /**
1128  * ttm_bo_shrink_suitable() - Whether a bo is suitable for shinking
1129  * @ctx: The struct ttm_operation_ctx governing the shrinking.
1130  * @bo: The candidate for shrinking.
1131  *
1132  * Check whether the object, given the information available to TTM,
1133  * is suitable for shinking, This function can and should be used
1134  * before attempting to shrink an object.
1135  *
1136  * Return: true if suitable. false if not.
1137  */
1138 bool ttm_bo_shrink_suitable(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1139 {
1140         return bo->ttm && ttm_tt_is_populated(bo->ttm) && !bo->pin_count &&
1141                 (!ctx->no_wait_gpu ||
1142                  dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP));
1143 }
1144 EXPORT_SYMBOL(ttm_bo_shrink_suitable);
1145
1146 /**
1147  * ttm_bo_shrink_avoid_wait() - Whether to avoid waiting for GPU
1148  * during shrinking
1149  *
1150  * In some situations, like direct reclaim, waiting (in particular gpu waiting)
1151  * should be avoided since it may stall a system that could otherwise make progress
1152  * shrinking something else less time consuming.
1153  *
1154  * Return: true if gpu waiting should be avoided, false if not.
1155  */
1156 bool ttm_bo_shrink_avoid_wait(void)
1157 {
1158         return !current_is_kswapd();
1159 }
1160 EXPORT_SYMBOL(ttm_bo_shrink_avoid_wait);