12be2d3fcc8134ed024c1a1ac2145c403d3b3f06
[linux-block.git] / drivers / gpu / drm / ttm / ttm_bo_util.c
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
35 #include <linux/io.h>
36 #include <linux/highmem.h>
37 #include <linux/wait.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 #include <linux/module.h>
41 #include <linux/dma-resv.h>
42
43 struct ttm_transfer_obj {
44         struct ttm_buffer_object base;
45         struct ttm_buffer_object *bo;
46 };
47
48 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
49 {
50         ttm_resource_free(bo, &bo->mem);
51 }
52
53 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
54                    struct ttm_operation_ctx *ctx,
55                     struct ttm_resource *new_mem)
56 {
57         struct ttm_tt *ttm = bo->ttm;
58         struct ttm_resource *old_mem = &bo->mem;
59         int ret;
60
61         if (old_mem->mem_type != TTM_PL_SYSTEM) {
62                 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
63
64                 if (unlikely(ret != 0)) {
65                         if (ret != -ERESTARTSYS)
66                                 pr_err("Failed to expire sync object before unbinding TTM\n");
67                         return ret;
68                 }
69
70                 ttm_tt_unbind(ttm);
71                 ttm_bo_free_old_node(bo);
72                 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
73                                 TTM_PL_MASK_MEM);
74                 old_mem->mem_type = TTM_PL_SYSTEM;
75         }
76
77         ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
78         if (unlikely(ret != 0))
79                 return ret;
80
81         if (new_mem->mem_type != TTM_PL_SYSTEM) {
82                 ret = ttm_tt_bind(ttm, new_mem, ctx);
83                 if (unlikely(ret != 0))
84                         return ret;
85         }
86
87         *old_mem = *new_mem;
88         new_mem->mm_node = NULL;
89
90         return 0;
91 }
92 EXPORT_SYMBOL(ttm_bo_move_ttm);
93
94 int ttm_mem_io_lock(struct ttm_resource_manager *man, bool interruptible)
95 {
96         if (likely(!man->use_io_reserve_lru))
97                 return 0;
98
99         if (interruptible)
100                 return mutex_lock_interruptible(&man->io_reserve_mutex);
101
102         mutex_lock(&man->io_reserve_mutex);
103         return 0;
104 }
105
106 void ttm_mem_io_unlock(struct ttm_resource_manager *man)
107 {
108         if (likely(!man->use_io_reserve_lru))
109                 return;
110
111         mutex_unlock(&man->io_reserve_mutex);
112 }
113
114 static int ttm_mem_io_evict(struct ttm_resource_manager *man)
115 {
116         struct ttm_buffer_object *bo;
117
118         bo = list_first_entry_or_null(&man->io_reserve_lru,
119                                       struct ttm_buffer_object,
120                                       io_reserve_lru);
121         if (!bo)
122                 return -ENOSPC;
123
124         list_del_init(&bo->io_reserve_lru);
125         ttm_bo_unmap_virtual_locked(bo);
126         return 0;
127 }
128
129 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
130                        struct ttm_resource *mem)
131 {
132         struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type);
133         int ret;
134
135         if (mem->bus.io_reserved_count++)
136                 return 0;
137
138         if (!bdev->driver->io_mem_reserve)
139                 return 0;
140
141 retry:
142         ret = bdev->driver->io_mem_reserve(bdev, mem);
143         if (ret == -ENOSPC) {
144                 ret = ttm_mem_io_evict(man);
145                 if (ret == 0)
146                         goto retry;
147         }
148         return ret;
149 }
150
151 void ttm_mem_io_free(struct ttm_bo_device *bdev,
152                      struct ttm_resource *mem)
153 {
154         if (--mem->bus.io_reserved_count)
155                 return;
156
157         if (!bdev->driver->io_mem_free)
158                 return;
159
160         bdev->driver->io_mem_free(bdev, mem);
161 }
162
163 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
164 {
165         struct ttm_resource_manager *man = ttm_manager_type(bo->bdev, bo->mem.mem_type);
166         struct ttm_resource *mem = &bo->mem;
167         int ret;
168
169         if (mem->bus.io_reserved_vm)
170                 return 0;
171
172         ret = ttm_mem_io_reserve(bo->bdev, mem);
173         if (unlikely(ret != 0))
174                 return ret;
175         mem->bus.io_reserved_vm = true;
176         if (man->use_io_reserve_lru)
177                 list_add_tail(&bo->io_reserve_lru,
178                               &man->io_reserve_lru);
179         return 0;
180 }
181
182 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
183 {
184         struct ttm_resource *mem = &bo->mem;
185
186         if (!mem->bus.io_reserved_vm)
187                 return;
188
189         mem->bus.io_reserved_vm = false;
190         list_del_init(&bo->io_reserve_lru);
191         ttm_mem_io_free(bo->bdev, mem);
192 }
193
194 static int ttm_resource_ioremap(struct ttm_bo_device *bdev,
195                                struct ttm_resource *mem,
196                                void **virtual)
197 {
198         struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type);
199         int ret;
200         void *addr;
201
202         *virtual = NULL;
203         (void) ttm_mem_io_lock(man, false);
204         ret = ttm_mem_io_reserve(bdev, mem);
205         ttm_mem_io_unlock(man);
206         if (ret || !mem->bus.is_iomem)
207                 return ret;
208
209         if (mem->bus.addr) {
210                 addr = mem->bus.addr;
211         } else {
212                 if (mem->placement & TTM_PL_FLAG_WC)
213                         addr = ioremap_wc(mem->bus.base + mem->bus.offset,
214                                           mem->bus.size);
215                 else
216                         addr = ioremap(mem->bus.base + mem->bus.offset,
217                                        mem->bus.size);
218                 if (!addr) {
219                         (void) ttm_mem_io_lock(man, false);
220                         ttm_mem_io_free(bdev, mem);
221                         ttm_mem_io_unlock(man);
222                         return -ENOMEM;
223                 }
224         }
225         *virtual = addr;
226         return 0;
227 }
228
229 static void ttm_resource_iounmap(struct ttm_bo_device *bdev,
230                                 struct ttm_resource *mem,
231                                 void *virtual)
232 {
233         struct ttm_resource_manager *man;
234
235         man = ttm_manager_type(bdev, mem->mem_type);
236
237         if (virtual && mem->bus.addr == NULL)
238                 iounmap(virtual);
239         (void) ttm_mem_io_lock(man, false);
240         ttm_mem_io_free(bdev, mem);
241         ttm_mem_io_unlock(man);
242 }
243
244 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
245 {
246         uint32_t *dstP =
247             (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
248         uint32_t *srcP =
249             (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
250
251         int i;
252         for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
253                 iowrite32(ioread32(srcP++), dstP++);
254         return 0;
255 }
256
257 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
258                                 unsigned long page,
259                                 pgprot_t prot)
260 {
261         struct page *d = ttm->pages[page];
262         void *dst;
263
264         if (!d)
265                 return -ENOMEM;
266
267         src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
268         dst = kmap_atomic_prot(d, prot);
269         if (!dst)
270                 return -ENOMEM;
271
272         memcpy_fromio(dst, src, PAGE_SIZE);
273
274         kunmap_atomic(dst);
275
276         return 0;
277 }
278
279 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
280                                 unsigned long page,
281                                 pgprot_t prot)
282 {
283         struct page *s = ttm->pages[page];
284         void *src;
285
286         if (!s)
287                 return -ENOMEM;
288
289         dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
290         src = kmap_atomic_prot(s, prot);
291         if (!src)
292                 return -ENOMEM;
293
294         memcpy_toio(dst, src, PAGE_SIZE);
295
296         kunmap_atomic(src);
297
298         return 0;
299 }
300
301 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
302                        struct ttm_operation_ctx *ctx,
303                        struct ttm_resource *new_mem)
304 {
305         struct ttm_bo_device *bdev = bo->bdev;
306         struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
307         struct ttm_tt *ttm = bo->ttm;
308         struct ttm_resource *old_mem = &bo->mem;
309         struct ttm_resource old_copy = *old_mem;
310         void *old_iomap;
311         void *new_iomap;
312         int ret;
313         unsigned long i;
314         unsigned long page;
315         unsigned long add = 0;
316         int dir;
317
318         ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
319         if (ret)
320                 return ret;
321
322         ret = ttm_resource_ioremap(bdev, old_mem, &old_iomap);
323         if (ret)
324                 return ret;
325         ret = ttm_resource_ioremap(bdev, new_mem, &new_iomap);
326         if (ret)
327                 goto out;
328
329         /*
330          * Single TTM move. NOP.
331          */
332         if (old_iomap == NULL && new_iomap == NULL)
333                 goto out2;
334
335         /*
336          * Don't move nonexistent data. Clear destination instead.
337          */
338         if (old_iomap == NULL &&
339             (ttm == NULL || (ttm->state == tt_unpopulated &&
340                              !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
341                 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
342                 goto out2;
343         }
344
345         /*
346          * TTM might be null for moves within the same region.
347          */
348         if (ttm) {
349                 ret = ttm_tt_populate(ttm, ctx);
350                 if (ret)
351                         goto out1;
352         }
353
354         add = 0;
355         dir = 1;
356
357         if ((old_mem->mem_type == new_mem->mem_type) &&
358             (new_mem->start < old_mem->start + old_mem->size)) {
359                 dir = -1;
360                 add = new_mem->num_pages - 1;
361         }
362
363         for (i = 0; i < new_mem->num_pages; ++i) {
364                 page = i * dir + add;
365                 if (old_iomap == NULL) {
366                         pgprot_t prot = ttm_io_prot(old_mem->placement,
367                                                     PAGE_KERNEL);
368                         ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
369                                                    prot);
370                 } else if (new_iomap == NULL) {
371                         pgprot_t prot = ttm_io_prot(new_mem->placement,
372                                                     PAGE_KERNEL);
373                         ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
374                                                    prot);
375                 } else {
376                         ret = ttm_copy_io_page(new_iomap, old_iomap, page);
377                 }
378                 if (ret)
379                         goto out1;
380         }
381         mb();
382 out2:
383         old_copy = *old_mem;
384         *old_mem = *new_mem;
385         new_mem->mm_node = NULL;
386
387         if (!man->use_tt) {
388                 ttm_tt_destroy(ttm);
389                 bo->ttm = NULL;
390         }
391
392 out1:
393         ttm_resource_iounmap(bdev, old_mem, new_iomap);
394 out:
395         ttm_resource_iounmap(bdev, &old_copy, old_iomap);
396
397         /*
398          * On error, keep the mm node!
399          */
400         if (!ret)
401                 ttm_resource_free(bo, &old_copy);
402         return ret;
403 }
404 EXPORT_SYMBOL(ttm_bo_move_memcpy);
405
406 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
407 {
408         struct ttm_transfer_obj *fbo;
409
410         fbo = container_of(bo, struct ttm_transfer_obj, base);
411         ttm_bo_put(fbo->bo);
412         kfree(fbo);
413 }
414
415 /**
416  * ttm_buffer_object_transfer
417  *
418  * @bo: A pointer to a struct ttm_buffer_object.
419  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
420  * holding the data of @bo with the old placement.
421  *
422  * This is a utility function that may be called after an accelerated move
423  * has been scheduled. A new buffer object is created as a placeholder for
424  * the old data while it's being copied. When that buffer object is idle,
425  * it can be destroyed, releasing the space of the old placement.
426  * Returns:
427  * !0: Failure.
428  */
429
430 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
431                                       struct ttm_buffer_object **new_obj)
432 {
433         struct ttm_transfer_obj *fbo;
434         int ret;
435
436         fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
437         if (!fbo)
438                 return -ENOMEM;
439
440         fbo->base = *bo;
441         fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT;
442
443         ttm_bo_get(bo);
444         fbo->bo = bo;
445
446         /**
447          * Fix up members that we shouldn't copy directly:
448          * TODO: Explicit member copy would probably be better here.
449          */
450
451         atomic_inc(&ttm_bo_glob.bo_count);
452         INIT_LIST_HEAD(&fbo->base.ddestroy);
453         INIT_LIST_HEAD(&fbo->base.lru);
454         INIT_LIST_HEAD(&fbo->base.swap);
455         INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
456         fbo->base.moving = NULL;
457         drm_vma_node_reset(&fbo->base.base.vma_node);
458
459         kref_init(&fbo->base.kref);
460         fbo->base.destroy = &ttm_transfered_destroy;
461         fbo->base.acc_size = 0;
462         if (bo->type != ttm_bo_type_sg)
463                 fbo->base.base.resv = &fbo->base.base._resv;
464
465         dma_resv_init(&fbo->base.base._resv);
466         fbo->base.base.dev = NULL;
467         ret = dma_resv_trylock(&fbo->base.base._resv);
468         WARN_ON(!ret);
469
470         *new_obj = &fbo->base;
471         return 0;
472 }
473
474 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
475 {
476         /* Cached mappings need no adjustment */
477         if (caching_flags & TTM_PL_FLAG_CACHED)
478                 return tmp;
479
480 #if defined(__i386__) || defined(__x86_64__)
481         if (caching_flags & TTM_PL_FLAG_WC)
482                 tmp = pgprot_writecombine(tmp);
483         else if (boot_cpu_data.x86 > 3)
484                 tmp = pgprot_noncached(tmp);
485 #endif
486 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
487     defined(__powerpc__) || defined(__mips__)
488         if (caching_flags & TTM_PL_FLAG_WC)
489                 tmp = pgprot_writecombine(tmp);
490         else
491                 tmp = pgprot_noncached(tmp);
492 #endif
493 #if defined(__sparc__)
494         tmp = pgprot_noncached(tmp);
495 #endif
496         return tmp;
497 }
498 EXPORT_SYMBOL(ttm_io_prot);
499
500 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
501                           unsigned long offset,
502                           unsigned long size,
503                           struct ttm_bo_kmap_obj *map)
504 {
505         struct ttm_resource *mem = &bo->mem;
506
507         if (bo->mem.bus.addr) {
508                 map->bo_kmap_type = ttm_bo_map_premapped;
509                 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
510         } else {
511                 map->bo_kmap_type = ttm_bo_map_iomap;
512                 if (mem->placement & TTM_PL_FLAG_WC)
513                         map->virtual = ioremap_wc(bo->mem.bus.base +
514                                                   bo->mem.bus.offset + offset,
515                                                   size);
516                 else
517                         map->virtual = ioremap(bo->mem.bus.base +
518                                                bo->mem.bus.offset + offset,
519                                                size);
520         }
521         return (!map->virtual) ? -ENOMEM : 0;
522 }
523
524 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
525                            unsigned long start_page,
526                            unsigned long num_pages,
527                            struct ttm_bo_kmap_obj *map)
528 {
529         struct ttm_resource *mem = &bo->mem;
530         struct ttm_operation_ctx ctx = {
531                 .interruptible = false,
532                 .no_wait_gpu = false
533         };
534         struct ttm_tt *ttm;
535         pgprot_t prot;
536         int ret;
537
538         ret = ttm_tt_create(bo, true);
539         if (ret)
540                 return ret;
541
542         ttm = bo->ttm;
543         ret = ttm_tt_populate(ttm, &ctx);
544         if (ret)
545                 return ret;
546
547         if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
548                 /*
549                  * We're mapping a single page, and the desired
550                  * page protection is consistent with the bo.
551                  */
552
553                 map->bo_kmap_type = ttm_bo_map_kmap;
554                 map->page = ttm->pages[start_page];
555                 map->virtual = kmap(map->page);
556         } else {
557                 /*
558                  * We need to use vmap to get the desired page protection
559                  * or to make the buffer object look contiguous.
560                  */
561                 prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
562                 map->bo_kmap_type = ttm_bo_map_vmap;
563                 map->virtual = vmap(ttm->pages + start_page, num_pages,
564                                     0, prot);
565         }
566         return (!map->virtual) ? -ENOMEM : 0;
567 }
568
569 int ttm_bo_kmap(struct ttm_buffer_object *bo,
570                 unsigned long start_page, unsigned long num_pages,
571                 struct ttm_bo_kmap_obj *map)
572 {
573         struct ttm_resource_manager *man =
574                 ttm_manager_type(bo->bdev, bo->mem.mem_type);
575         unsigned long offset, size;
576         int ret;
577
578         map->virtual = NULL;
579         map->bo = bo;
580         if (num_pages > bo->num_pages)
581                 return -EINVAL;
582         if (start_page > bo->num_pages)
583                 return -EINVAL;
584
585         (void) ttm_mem_io_lock(man, false);
586         ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
587         ttm_mem_io_unlock(man);
588         if (ret)
589                 return ret;
590         if (!bo->mem.bus.is_iomem) {
591                 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
592         } else {
593                 offset = start_page << PAGE_SHIFT;
594                 size = num_pages << PAGE_SHIFT;
595                 return ttm_bo_ioremap(bo, offset, size, map);
596         }
597 }
598 EXPORT_SYMBOL(ttm_bo_kmap);
599
600 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
601 {
602         struct ttm_buffer_object *bo = map->bo;
603         struct ttm_resource_manager *man =
604                 ttm_manager_type(bo->bdev, bo->mem.mem_type);
605
606         if (!map->virtual)
607                 return;
608         switch (map->bo_kmap_type) {
609         case ttm_bo_map_iomap:
610                 iounmap(map->virtual);
611                 break;
612         case ttm_bo_map_vmap:
613                 vunmap(map->virtual);
614                 break;
615         case ttm_bo_map_kmap:
616                 kunmap(map->page);
617                 break;
618         case ttm_bo_map_premapped:
619                 break;
620         default:
621                 BUG();
622         }
623         (void) ttm_mem_io_lock(man, false);
624         ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
625         ttm_mem_io_unlock(man);
626         map->virtual = NULL;
627         map->page = NULL;
628 }
629 EXPORT_SYMBOL(ttm_bo_kunmap);
630
631 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
632                               struct dma_fence *fence,
633                               bool evict,
634                               struct ttm_resource *new_mem)
635 {
636         struct ttm_bo_device *bdev = bo->bdev;
637         struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
638         struct ttm_resource *old_mem = &bo->mem;
639         int ret;
640         struct ttm_buffer_object *ghost_obj;
641
642         dma_resv_add_excl_fence(bo->base.resv, fence);
643         if (evict) {
644                 ret = ttm_bo_wait(bo, false, false);
645                 if (ret)
646                         return ret;
647
648                 if (!man->use_tt) {
649                         ttm_tt_destroy(bo->ttm);
650                         bo->ttm = NULL;
651                 }
652                 ttm_bo_free_old_node(bo);
653         } else {
654                 /**
655                  * This should help pipeline ordinary buffer moves.
656                  *
657                  * Hang old buffer memory on a new buffer object,
658                  * and leave it to be released when the GPU
659                  * operation has completed.
660                  */
661
662                 dma_fence_put(bo->moving);
663                 bo->moving = dma_fence_get(fence);
664
665                 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
666                 if (ret)
667                         return ret;
668
669                 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
670
671                 /**
672                  * If we're not moving to fixed memory, the TTM object
673                  * needs to stay alive. Otherwhise hang it on the ghost
674                  * bo to be unbound and destroyed.
675                  */
676
677                 if (man->use_tt)
678                         ghost_obj->ttm = NULL;
679                 else
680                         bo->ttm = NULL;
681
682                 dma_resv_unlock(&ghost_obj->base._resv);
683                 ttm_bo_put(ghost_obj);
684         }
685
686         *old_mem = *new_mem;
687         new_mem->mm_node = NULL;
688
689         return 0;
690 }
691 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
692
693 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
694                          struct dma_fence *fence, bool evict,
695                          struct ttm_resource *new_mem)
696 {
697         struct ttm_bo_device *bdev = bo->bdev;
698         struct ttm_resource *old_mem = &bo->mem;
699
700         struct ttm_resource_manager *from = ttm_manager_type(bdev, old_mem->mem_type);
701         struct ttm_resource_manager *to = ttm_manager_type(bdev, new_mem->mem_type);
702
703         int ret;
704
705         dma_resv_add_excl_fence(bo->base.resv, fence);
706
707         if (!evict) {
708                 struct ttm_buffer_object *ghost_obj;
709
710                 /**
711                  * This should help pipeline ordinary buffer moves.
712                  *
713                  * Hang old buffer memory on a new buffer object,
714                  * and leave it to be released when the GPU
715                  * operation has completed.
716                  */
717
718                 dma_fence_put(bo->moving);
719                 bo->moving = dma_fence_get(fence);
720
721                 ret = ttm_buffer_object_transfer(bo, &ghost_obj);
722                 if (ret)
723                         return ret;
724
725                 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
726
727                 /**
728                  * If we're not moving to fixed memory, the TTM object
729                  * needs to stay alive. Otherwhise hang it on the ghost
730                  * bo to be unbound and destroyed.
731                  */
732
733                 if (to->use_tt)
734                         ghost_obj->ttm = NULL;
735                 else
736                         bo->ttm = NULL;
737
738                 dma_resv_unlock(&ghost_obj->base._resv);
739                 ttm_bo_put(ghost_obj);
740
741         } else if (!from->use_tt) {
742
743                 /**
744                  * BO doesn't have a TTM we need to bind/unbind. Just remember
745                  * this eviction and free up the allocation
746                  */
747
748                 spin_lock(&from->move_lock);
749                 if (!from->move || dma_fence_is_later(fence, from->move)) {
750                         dma_fence_put(from->move);
751                         from->move = dma_fence_get(fence);
752                 }
753                 spin_unlock(&from->move_lock);
754
755                 ttm_bo_free_old_node(bo);
756
757                 dma_fence_put(bo->moving);
758                 bo->moving = dma_fence_get(fence);
759
760         } else {
761                 /**
762                  * Last resort, wait for the move to be completed.
763                  *
764                  * Should never happen in pratice.
765                  */
766
767                 ret = ttm_bo_wait(bo, false, false);
768                 if (ret)
769                         return ret;
770
771                 if (!to->use_tt) {
772                         ttm_tt_destroy(bo->ttm);
773                         bo->ttm = NULL;
774                 }
775                 ttm_bo_free_old_node(bo);
776         }
777
778         *old_mem = *new_mem;
779         new_mem->mm_node = NULL;
780
781         return 0;
782 }
783 EXPORT_SYMBOL(ttm_bo_pipeline_move);
784
785 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
786 {
787         struct ttm_buffer_object *ghost;
788         int ret;
789
790         ret = ttm_buffer_object_transfer(bo, &ghost);
791         if (ret)
792                 return ret;
793
794         ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
795         /* Last resort, wait for the BO to be idle when we are OOM */
796         if (ret)
797                 ttm_bo_wait(bo, false, false);
798
799         memset(&bo->mem, 0, sizeof(bo->mem));
800         bo->mem.mem_type = TTM_PL_SYSTEM;
801         bo->ttm = NULL;
802
803         dma_resv_unlock(&ghost->base._resv);
804         ttm_bo_put(ghost);
805
806         return 0;
807 }