Merge drm/drm-next into drm-misc-next
[linux-block.git] / drivers / gpu / drm / msm / disp / dpu1 / dpu_hw_top.c
1 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  */
12
13 #include "dpu_hwio.h"
14 #include "dpu_hw_catalog.h"
15 #include "dpu_hw_top.h"
16 #include "dpu_kms.h"
17
18 #define SSPP_SPARE                        0x28
19 #define UBWC_STATIC                       0x144
20
21 #define FLD_SPLIT_DISPLAY_CMD             BIT(1)
22 #define FLD_SMART_PANEL_FREE_RUN          BIT(2)
23 #define FLD_INTF_1_SW_TRG_MUX             BIT(4)
24 #define FLD_INTF_2_SW_TRG_MUX             BIT(8)
25 #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
26
27 #define DANGER_STATUS                     0x360
28 #define SAFE_STATUS                       0x364
29
30 #define TE_LINE_INTERVAL                  0x3F4
31
32 #define TRAFFIC_SHAPER_EN                 BIT(31)
33 #define TRAFFIC_SHAPER_RD_CLIENT(num)     (0x030 + (num * 4))
34 #define TRAFFIC_SHAPER_WR_CLIENT(num)     (0x060 + (num * 4))
35 #define TRAFFIC_SHAPER_FIXPOINT_FACTOR    4
36
37 #define MDP_WD_TIMER_0_CTL                0x380
38 #define MDP_WD_TIMER_0_CTL2               0x384
39 #define MDP_WD_TIMER_0_LOAD_VALUE         0x388
40 #define MDP_WD_TIMER_1_CTL                0x390
41 #define MDP_WD_TIMER_1_CTL2               0x394
42 #define MDP_WD_TIMER_1_LOAD_VALUE         0x398
43 #define MDP_WD_TIMER_2_CTL                0x420
44 #define MDP_WD_TIMER_2_CTL2               0x424
45 #define MDP_WD_TIMER_2_LOAD_VALUE         0x428
46 #define MDP_WD_TIMER_3_CTL                0x430
47 #define MDP_WD_TIMER_3_CTL2               0x434
48 #define MDP_WD_TIMER_3_LOAD_VALUE         0x438
49 #define MDP_WD_TIMER_4_CTL                0x440
50 #define MDP_WD_TIMER_4_CTL2               0x444
51 #define MDP_WD_TIMER_4_LOAD_VALUE         0x448
52
53 #define MDP_TICK_COUNT                    16
54 #define XO_CLK_RATE                       19200
55 #define MS_TICKS_IN_SEC                   1000
56
57 #define CALCULATE_WD_LOAD_VALUE(fps) \
58         ((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
59
60 #define DCE_SEL                           0x450
61
62 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
63                 struct split_pipe_cfg *cfg)
64 {
65         struct dpu_hw_blk_reg_map *c;
66         u32 upper_pipe = 0;
67         u32 lower_pipe = 0;
68
69         if (!mdp || !cfg)
70                 return;
71
72         c = &mdp->hw;
73
74         if (cfg->en) {
75                 if (cfg->mode == INTF_MODE_CMD) {
76                         lower_pipe = FLD_SPLIT_DISPLAY_CMD;
77                         /* interface controlling sw trigger */
78                         if (cfg->intf == INTF_2)
79                                 lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
80                         else
81                                 lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
82                         upper_pipe = lower_pipe;
83                 } else {
84                         if (cfg->intf == INTF_2) {
85                                 lower_pipe = FLD_INTF_1_SW_TRG_MUX;
86                                 upper_pipe = FLD_INTF_2_SW_TRG_MUX;
87                         } else {
88                                 lower_pipe = FLD_INTF_2_SW_TRG_MUX;
89                                 upper_pipe = FLD_INTF_1_SW_TRG_MUX;
90                         }
91                 }
92         }
93
94         DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
95         DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
96         DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
97         DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
98 }
99
100 static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
101                 enum dpu_clk_ctrl_type clk_ctrl, bool enable)
102 {
103         struct dpu_hw_blk_reg_map *c;
104         u32 reg_off, bit_off;
105         u32 reg_val, new_val;
106         bool clk_forced_on;
107
108         if (!mdp)
109                 return false;
110
111         c = &mdp->hw;
112
113         if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
114                 return false;
115
116         reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
117         bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
118
119         reg_val = DPU_REG_READ(c, reg_off);
120
121         if (enable)
122                 new_val = reg_val | BIT(bit_off);
123         else
124                 new_val = reg_val & ~BIT(bit_off);
125
126         DPU_REG_WRITE(c, reg_off, new_val);
127
128         clk_forced_on = !(reg_val & BIT(bit_off));
129
130         return clk_forced_on;
131 }
132
133
134 static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
135                 struct dpu_danger_safe_status *status)
136 {
137         struct dpu_hw_blk_reg_map *c;
138         u32 value;
139
140         if (!mdp || !status)
141                 return;
142
143         c = &mdp->hw;
144
145         value = DPU_REG_READ(c, DANGER_STATUS);
146         status->mdp = (value >> 0) & 0x3;
147         status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
148         status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
149         status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
150         status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
151         status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
152         status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
153         status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
154         status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
155         status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
156         status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
157         status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
158         status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
159         status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
160         status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
161 }
162
163 static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
164                 struct dpu_vsync_source_cfg *cfg)
165 {
166         struct dpu_hw_blk_reg_map *c;
167         u32 reg, wd_load_value, wd_ctl, wd_ctl2, i;
168         static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
169
170         if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
171                 return;
172
173         c = &mdp->hw;
174         reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
175         for (i = 0; i < cfg->pp_count; i++) {
176                 int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
177
178                 if (pp_idx >= ARRAY_SIZE(pp_offset))
179                         continue;
180
181                 reg &= ~(0xf << pp_offset[pp_idx]);
182                 reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
183         }
184         DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
185
186         if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
187                         cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
188                 switch (cfg->vsync_source) {
189                 case DPU_VSYNC_SOURCE_WD_TIMER_4:
190                         wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
191                         wd_ctl = MDP_WD_TIMER_4_CTL;
192                         wd_ctl2 = MDP_WD_TIMER_4_CTL2;
193                         break;
194                 case DPU_VSYNC_SOURCE_WD_TIMER_3:
195                         wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
196                         wd_ctl = MDP_WD_TIMER_3_CTL;
197                         wd_ctl2 = MDP_WD_TIMER_3_CTL2;
198                         break;
199                 case DPU_VSYNC_SOURCE_WD_TIMER_2:
200                         wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
201                         wd_ctl = MDP_WD_TIMER_2_CTL;
202                         wd_ctl2 = MDP_WD_TIMER_2_CTL2;
203                         break;
204                 case DPU_VSYNC_SOURCE_WD_TIMER_1:
205                         wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
206                         wd_ctl = MDP_WD_TIMER_1_CTL;
207                         wd_ctl2 = MDP_WD_TIMER_1_CTL2;
208                         break;
209                 case DPU_VSYNC_SOURCE_WD_TIMER_0:
210                 default:
211                         wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
212                         wd_ctl = MDP_WD_TIMER_0_CTL;
213                         wd_ctl2 = MDP_WD_TIMER_0_CTL2;
214                         break;
215                 }
216
217                 DPU_REG_WRITE(c, wd_load_value,
218                         CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
219
220                 DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
221                 reg = DPU_REG_READ(c, wd_ctl2);
222                 reg |= BIT(8);          /* enable heartbeat timer */
223                 reg |= BIT(0);          /* enable WD timer */
224                 DPU_REG_WRITE(c, wd_ctl2, reg);
225
226                 /* make sure that timers are enabled/disabled for vsync state */
227                 wmb();
228         }
229 }
230
231 static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
232                 struct dpu_danger_safe_status *status)
233 {
234         struct dpu_hw_blk_reg_map *c;
235         u32 value;
236
237         if (!mdp || !status)
238                 return;
239
240         c = &mdp->hw;
241
242         value = DPU_REG_READ(c, SAFE_STATUS);
243         status->mdp = (value >> 0) & 0x1;
244         status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
245         status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
246         status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
247         status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
248         status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
249         status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
250         status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
251         status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
252         status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
253         status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
254         status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
255         status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
256         status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
257         status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
258 }
259
260 static void dpu_hw_reset_ubwc(struct dpu_hw_mdp *mdp, struct dpu_mdss_cfg *m)
261 {
262         struct dpu_hw_blk_reg_map c;
263
264         if (!mdp || !m)
265                 return;
266
267         if (!IS_UBWC_20_SUPPORTED(m->caps->ubwc_version))
268                 return;
269
270         /* force blk offset to zero to access beginning of register region */
271         c = mdp->hw;
272         c.blk_off = 0x0;
273         DPU_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
274 }
275
276 static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
277 {
278         struct dpu_hw_blk_reg_map *c;
279
280         if (!mdp)
281                 return;
282
283         c = &mdp->hw;
284
285         DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
286 }
287
288 static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
289                 unsigned long cap)
290 {
291         ops->setup_split_pipe = dpu_hw_setup_split_pipe;
292         ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
293         ops->get_danger_status = dpu_hw_get_danger_status;
294         ops->setup_vsync_source = dpu_hw_setup_vsync_source;
295         ops->get_safe_status = dpu_hw_get_safe_status;
296         ops->reset_ubwc = dpu_hw_reset_ubwc;
297         ops->intf_audio_select = dpu_hw_intf_audio_select;
298 }
299
300 static const struct dpu_mdp_cfg *_top_offset(enum dpu_mdp mdp,
301                 const struct dpu_mdss_cfg *m,
302                 void __iomem *addr,
303                 struct dpu_hw_blk_reg_map *b)
304 {
305         int i;
306
307         if (!m || !addr || !b)
308                 return ERR_PTR(-EINVAL);
309
310         for (i = 0; i < m->mdp_count; i++) {
311                 if (mdp == m->mdp[i].id) {
312                         b->base_off = addr;
313                         b->blk_off = m->mdp[i].base;
314                         b->length = m->mdp[i].len;
315                         b->hwversion = m->hwversion;
316                         b->log_mask = DPU_DBG_MASK_TOP;
317                         return &m->mdp[i];
318                 }
319         }
320
321         return ERR_PTR(-EINVAL);
322 }
323
324 static struct dpu_hw_blk_ops dpu_hw_ops;
325
326 struct dpu_hw_mdp *dpu_hw_mdptop_init(enum dpu_mdp idx,
327                 void __iomem *addr,
328                 const struct dpu_mdss_cfg *m)
329 {
330         struct dpu_hw_mdp *mdp;
331         const struct dpu_mdp_cfg *cfg;
332
333         if (!addr || !m)
334                 return ERR_PTR(-EINVAL);
335
336         mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
337         if (!mdp)
338                 return ERR_PTR(-ENOMEM);
339
340         cfg = _top_offset(idx, m, addr, &mdp->hw);
341         if (IS_ERR_OR_NULL(cfg)) {
342                 kfree(mdp);
343                 return ERR_PTR(-EINVAL);
344         }
345
346         /*
347          * Assign ops
348          */
349         mdp->idx = idx;
350         mdp->caps = cfg;
351         _setup_mdp_ops(&mdp->ops, mdp->caps->features);
352
353         dpu_hw_blk_init(&mdp->base, DPU_HW_BLK_TOP, idx, &dpu_hw_ops);
354
355         return mdp;
356 }
357
358 void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp)
359 {
360         if (mdp)
361                 dpu_hw_blk_destroy(&mdp->base);
362         kfree(mdp);
363 }
364