drm/i915: Remove the enabling of VS_TIMER_DISPATCH bit in MI MODE reg
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39         if (space < 0)
40                 space += ring->size;
41         return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46         struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48         ring->tail &= ring->size - 1;
49         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50                 return;
51         ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         u32 scratch_addr = ring->scratch.gtt_offset + 128;
179         int ret;
180
181
182         ret = intel_ring_begin(ring, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(ring, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212                          u32 invalidate_domains, u32 flush_domains)
213 {
214         u32 flags = 0;
215         u32 scratch_addr = ring->scratch.gtt_offset + 128;
216         int ret;
217
218         /* Force SNB workarounds for PIPE_CONTROL flushes */
219         ret = intel_emit_post_sync_nonzero_flush(ring);
220         if (ret)
221                 return ret;
222
223         /* Just flush everything.  Experiments have shown that reducing the
224          * number of bits based on the write domains has little performance
225          * impact.
226          */
227         if (flush_domains) {
228                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230                 /*
231                  * Ensure that any following seqno writes only happen
232                  * when the render cache is indeed flushed.
233                  */
234                 flags |= PIPE_CONTROL_CS_STALL;
235         }
236         if (invalidate_domains) {
237                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243                 /*
244                  * TLB invalidate requires a post-sync write.
245                  */
246                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247         }
248
249         ret = intel_ring_begin(ring, 4);
250         if (ret)
251                 return ret;
252
253         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254         intel_ring_emit(ring, flags);
255         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256         intel_ring_emit(ring, 0);
257         intel_ring_advance(ring);
258
259         return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265         int ret;
266
267         ret = intel_ring_begin(ring, 4);
268         if (ret)
269                 return ret;
270
271         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
274         intel_ring_emit(ring, 0);
275         intel_ring_emit(ring, 0);
276         intel_ring_advance(ring);
277
278         return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283         int ret;
284
285         if (!ring->fbc_dirty)
286                 return 0;
287
288         ret = intel_ring_begin(ring, 6);
289         if (ret)
290                 return ret;
291         /* WaFbcNukeOn3DBlt:ivb/hsw */
292         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293         intel_ring_emit(ring, MSG_FBC_REND_STATE);
294         intel_ring_emit(ring, value);
295         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         u32 scratch_addr = ring->scratch.gtt_offset + 128;
310         int ret;
311
312         /*
313          * Ensure that any following seqno writes only happen when the render
314          * cache is indeed flushed.
315          *
316          * Workaround: 4th PIPE_CONTROL command (except the ones with only
317          * read-cache invalidate bits set) must have the CS_STALL bit set. We
318          * don't try to be clever and just set it unconditionally.
319          */
320         flags |= PIPE_CONTROL_CS_STALL;
321
322         /* Just flush everything.  Experiments have shown that reducing the
323          * number of bits based on the write domains has little performance
324          * impact.
325          */
326         if (flush_domains) {
327                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329         }
330         if (invalidate_domains) {
331                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337                 /*
338                  * TLB invalidate requires a post-sync write.
339                  */
340                 flags |= PIPE_CONTROL_QW_WRITE;
341                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343                 /* Workaround: we must issue a pipe_control with CS-stall bit
344                  * set before a pipe_control command that has the state cache
345                  * invalidate bit set. */
346                 gen7_render_ring_cs_stall_wa(ring);
347         }
348
349         ret = intel_ring_begin(ring, 4);
350         if (ret)
351                 return ret;
352
353         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354         intel_ring_emit(ring, flags);
355         intel_ring_emit(ring, scratch_addr);
356         intel_ring_emit(ring, 0);
357         intel_ring_advance(ring);
358
359         if (!invalidate_domains && flush_domains)
360                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362         return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367                        u32 invalidate_domains, u32 flush_domains)
368 {
369         u32 flags = 0;
370         u32 scratch_addr = ring->scratch.gtt_offset + 128;
371         int ret;
372
373         flags |= PIPE_CONTROL_CS_STALL;
374
375         if (flush_domains) {
376                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378         }
379         if (invalidate_domains) {
380                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386                 flags |= PIPE_CONTROL_QW_WRITE;
387                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388         }
389
390         ret = intel_ring_begin(ring, 6);
391         if (ret)
392                 return ret;
393
394         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395         intel_ring_emit(ring, flags);
396         intel_ring_emit(ring, scratch_addr);
397         intel_ring_emit(ring, 0);
398         intel_ring_emit(ring, 0);
399         intel_ring_emit(ring, 0);
400         intel_ring_advance(ring);
401
402         return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407                             u32 value)
408 {
409         drm_i915_private_t *dev_priv = ring->dev->dev_private;
410         I915_WRITE_TAIL(ring, value);
411 }
412
413 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415         drm_i915_private_t *dev_priv = ring->dev->dev_private;
416         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
417                         RING_ACTHD(ring->mmio_base) : ACTHD;
418
419         return I915_READ(acthd_reg);
420 }
421
422 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
423 {
424         struct drm_i915_private *dev_priv = ring->dev->dev_private;
425         u32 addr;
426
427         addr = dev_priv->status_page_dmah->busaddr;
428         if (INTEL_INFO(ring->dev)->gen >= 4)
429                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
430         I915_WRITE(HWS_PGA, addr);
431 }
432
433 static int init_ring_common(struct intel_ring_buffer *ring)
434 {
435         struct drm_device *dev = ring->dev;
436         drm_i915_private_t *dev_priv = dev->dev_private;
437         struct drm_i915_gem_object *obj = ring->obj;
438         int ret = 0;
439         u32 head;
440
441         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
442
443         /* Stop the ring if it's running. */
444         I915_WRITE_CTL(ring, 0);
445         I915_WRITE_HEAD(ring, 0);
446         ring->write_tail(ring, 0);
447         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000))
448                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
449
450         if (I915_NEED_GFX_HWS(dev))
451                 intel_ring_setup_status_page(ring);
452         else
453                 ring_setup_phys_status_page(ring);
454
455         head = I915_READ_HEAD(ring) & HEAD_ADDR;
456
457         /* G45 ring initialization fails to reset head to zero */
458         if (head != 0) {
459                 DRM_DEBUG_KMS("%s head not reset to zero "
460                               "ctl %08x head %08x tail %08x start %08x\n",
461                               ring->name,
462                               I915_READ_CTL(ring),
463                               I915_READ_HEAD(ring),
464                               I915_READ_TAIL(ring),
465                               I915_READ_START(ring));
466
467                 I915_WRITE_HEAD(ring, 0);
468
469                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
470                         DRM_ERROR("failed to set %s head to zero "
471                                   "ctl %08x head %08x tail %08x start %08x\n",
472                                   ring->name,
473                                   I915_READ_CTL(ring),
474                                   I915_READ_HEAD(ring),
475                                   I915_READ_TAIL(ring),
476                                   I915_READ_START(ring));
477                 }
478         }
479
480         /* Initialize the ring. This must happen _after_ we've cleared the ring
481          * registers with the above sequence (the readback of the HEAD registers
482          * also enforces ordering), otherwise the hw might lose the new ring
483          * register values. */
484         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
485         I915_WRITE_CTL(ring,
486                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
487                         | RING_VALID);
488
489         /* If the head is still not zero, the ring is dead */
490         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
491                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
492                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
493                 DRM_ERROR("%s initialization failed "
494                                 "ctl %08x head %08x tail %08x start %08x\n",
495                                 ring->name,
496                                 I915_READ_CTL(ring),
497                                 I915_READ_HEAD(ring),
498                                 I915_READ_TAIL(ring),
499                                 I915_READ_START(ring));
500                 ret = -EIO;
501                 goto out;
502         }
503
504         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
505                 i915_kernel_lost_context(ring->dev);
506         else {
507                 ring->head = I915_READ_HEAD(ring);
508                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
509                 ring->space = ring_space(ring);
510                 ring->last_retired_head = -1;
511         }
512
513         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
514
515 out:
516         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
517
518         return ret;
519 }
520
521 static int
522 init_pipe_control(struct intel_ring_buffer *ring)
523 {
524         int ret;
525
526         if (ring->scratch.obj)
527                 return 0;
528
529         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
530         if (ring->scratch.obj == NULL) {
531                 DRM_ERROR("Failed to allocate seqno page\n");
532                 ret = -ENOMEM;
533                 goto err;
534         }
535
536         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
537         if (ret)
538                 goto err_unref;
539
540         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
541         if (ret)
542                 goto err_unref;
543
544         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
545         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
546         if (ring->scratch.cpu_page == NULL) {
547                 ret = -ENOMEM;
548                 goto err_unpin;
549         }
550
551         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
552                          ring->name, ring->scratch.gtt_offset);
553         return 0;
554
555 err_unpin:
556         i915_gem_object_ggtt_unpin(ring->scratch.obj);
557 err_unref:
558         drm_gem_object_unreference(&ring->scratch.obj->base);
559 err:
560         return ret;
561 }
562
563 static int init_render_ring(struct intel_ring_buffer *ring)
564 {
565         struct drm_device *dev = ring->dev;
566         struct drm_i915_private *dev_priv = dev->dev_private;
567         int ret = init_ring_common(ring);
568
569         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
570         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
571                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
572
573         /* We need to disable the AsyncFlip performance optimisations in order
574          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
575          * programmed to '1' on all products.
576          *
577          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
578          */
579         if (INTEL_INFO(dev)->gen >= 6)
580                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
581
582         /* Required for the hardware to program scanline values for waiting */
583         if (INTEL_INFO(dev)->gen == 6)
584                 I915_WRITE(GFX_MODE,
585                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
586
587         if (IS_GEN7(dev))
588                 I915_WRITE(GFX_MODE_GEN7,
589                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
590                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
591
592         if (INTEL_INFO(dev)->gen >= 5) {
593                 ret = init_pipe_control(ring);
594                 if (ret)
595                         return ret;
596         }
597
598         if (IS_GEN6(dev)) {
599                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
600                  * "If this bit is set, STCunit will have LRA as replacement
601                  *  policy. [...] This bit must be reset.  LRA replacement
602                  *  policy is not supported."
603                  */
604                 I915_WRITE(CACHE_MODE_0,
605                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
606
607                 /* This is not explicitly set for GEN6, so read the register.
608                  * see intel_ring_mi_set_context() for why we care.
609                  * TODO: consider explicitly setting the bit for GEN5
610                  */
611                 ring->itlb_before_ctx_switch =
612                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
613         }
614
615         if (INTEL_INFO(dev)->gen >= 6)
616                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
617
618         if (HAS_L3_DPF(dev))
619                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
620
621         return ret;
622 }
623
624 static void render_ring_cleanup(struct intel_ring_buffer *ring)
625 {
626         struct drm_device *dev = ring->dev;
627
628         if (ring->scratch.obj == NULL)
629                 return;
630
631         if (INTEL_INFO(dev)->gen >= 5) {
632                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
633                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
634         }
635
636         drm_gem_object_unreference(&ring->scratch.obj->base);
637         ring->scratch.obj = NULL;
638 }
639
640 static void
641 update_mboxes(struct intel_ring_buffer *ring,
642               u32 mmio_offset)
643 {
644 /* NB: In order to be able to do semaphore MBOX updates for varying number
645  * of rings, it's easiest if we round up each individual update to a
646  * multiple of 2 (since ring updates must always be a multiple of 2)
647  * even though the actual update only requires 3 dwords.
648  */
649 #define MBOX_UPDATE_DWORDS 4
650         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
651         intel_ring_emit(ring, mmio_offset);
652         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
653         intel_ring_emit(ring, MI_NOOP);
654 }
655
656 /**
657  * gen6_add_request - Update the semaphore mailbox registers
658  * 
659  * @ring - ring that is adding a request
660  * @seqno - return seqno stuck into the ring
661  *
662  * Update the mailbox registers in the *other* rings with the current seqno.
663  * This acts like a signal in the canonical semaphore.
664  */
665 static int
666 gen6_add_request(struct intel_ring_buffer *ring)
667 {
668         struct drm_device *dev = ring->dev;
669         struct drm_i915_private *dev_priv = dev->dev_private;
670         struct intel_ring_buffer *useless;
671         int i, ret, num_dwords = 4;
672
673         if (i915_semaphore_is_enabled(dev))
674                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
675 #undef MBOX_UPDATE_DWORDS
676
677         ret = intel_ring_begin(ring, num_dwords);
678         if (ret)
679                 return ret;
680
681         if (i915_semaphore_is_enabled(dev)) {
682                 for_each_ring(useless, dev_priv, i) {
683                         u32 mbox_reg = ring->signal_mbox[i];
684                         if (mbox_reg != GEN6_NOSYNC)
685                                 update_mboxes(ring, mbox_reg);
686                 }
687         }
688
689         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
690         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
691         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
692         intel_ring_emit(ring, MI_USER_INTERRUPT);
693         __intel_ring_advance(ring);
694
695         return 0;
696 }
697
698 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
699                                               u32 seqno)
700 {
701         struct drm_i915_private *dev_priv = dev->dev_private;
702         return dev_priv->last_seqno < seqno;
703 }
704
705 /**
706  * intel_ring_sync - sync the waiter to the signaller on seqno
707  *
708  * @waiter - ring that is waiting
709  * @signaller - ring which has, or will signal
710  * @seqno - seqno which the waiter will block on
711  */
712 static int
713 gen6_ring_sync(struct intel_ring_buffer *waiter,
714                struct intel_ring_buffer *signaller,
715                u32 seqno)
716 {
717         int ret;
718         u32 dw1 = MI_SEMAPHORE_MBOX |
719                   MI_SEMAPHORE_COMPARE |
720                   MI_SEMAPHORE_REGISTER;
721
722         /* Throughout all of the GEM code, seqno passed implies our current
723          * seqno is >= the last seqno executed. However for hardware the
724          * comparison is strictly greater than.
725          */
726         seqno -= 1;
727
728         WARN_ON(signaller->semaphore_register[waiter->id] ==
729                 MI_SEMAPHORE_SYNC_INVALID);
730
731         ret = intel_ring_begin(waiter, 4);
732         if (ret)
733                 return ret;
734
735         /* If seqno wrap happened, omit the wait with no-ops */
736         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
737                 intel_ring_emit(waiter,
738                                 dw1 |
739                                 signaller->semaphore_register[waiter->id]);
740                 intel_ring_emit(waiter, seqno);
741                 intel_ring_emit(waiter, 0);
742                 intel_ring_emit(waiter, MI_NOOP);
743         } else {
744                 intel_ring_emit(waiter, MI_NOOP);
745                 intel_ring_emit(waiter, MI_NOOP);
746                 intel_ring_emit(waiter, MI_NOOP);
747                 intel_ring_emit(waiter, MI_NOOP);
748         }
749         intel_ring_advance(waiter);
750
751         return 0;
752 }
753
754 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
755 do {                                                                    \
756         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
757                  PIPE_CONTROL_DEPTH_STALL);                             \
758         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
759         intel_ring_emit(ring__, 0);                                                     \
760         intel_ring_emit(ring__, 0);                                                     \
761 } while (0)
762
763 static int
764 pc_render_add_request(struct intel_ring_buffer *ring)
765 {
766         u32 scratch_addr = ring->scratch.gtt_offset + 128;
767         int ret;
768
769         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
770          * incoherent with writes to memory, i.e. completely fubar,
771          * so we need to use PIPE_NOTIFY instead.
772          *
773          * However, we also need to workaround the qword write
774          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
775          * memory before requesting an interrupt.
776          */
777         ret = intel_ring_begin(ring, 32);
778         if (ret)
779                 return ret;
780
781         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
782                         PIPE_CONTROL_WRITE_FLUSH |
783                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
784         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
785         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
786         intel_ring_emit(ring, 0);
787         PIPE_CONTROL_FLUSH(ring, scratch_addr);
788         scratch_addr += 128; /* write to separate cachelines */
789         PIPE_CONTROL_FLUSH(ring, scratch_addr);
790         scratch_addr += 128;
791         PIPE_CONTROL_FLUSH(ring, scratch_addr);
792         scratch_addr += 128;
793         PIPE_CONTROL_FLUSH(ring, scratch_addr);
794         scratch_addr += 128;
795         PIPE_CONTROL_FLUSH(ring, scratch_addr);
796         scratch_addr += 128;
797         PIPE_CONTROL_FLUSH(ring, scratch_addr);
798
799         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
800                         PIPE_CONTROL_WRITE_FLUSH |
801                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
802                         PIPE_CONTROL_NOTIFY);
803         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
804         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
805         intel_ring_emit(ring, 0);
806         __intel_ring_advance(ring);
807
808         return 0;
809 }
810
811 static u32
812 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
813 {
814         /* Workaround to force correct ordering between irq and seqno writes on
815          * ivb (and maybe also on snb) by reading from a CS register (like
816          * ACTHD) before reading the status page. */
817         if (!lazy_coherency)
818                 intel_ring_get_active_head(ring);
819         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
820 }
821
822 static u32
823 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
824 {
825         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
826 }
827
828 static void
829 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
830 {
831         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
832 }
833
834 static u32
835 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
836 {
837         return ring->scratch.cpu_page[0];
838 }
839
840 static void
841 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
842 {
843         ring->scratch.cpu_page[0] = seqno;
844 }
845
846 static bool
847 gen5_ring_get_irq(struct intel_ring_buffer *ring)
848 {
849         struct drm_device *dev = ring->dev;
850         drm_i915_private_t *dev_priv = dev->dev_private;
851         unsigned long flags;
852
853         if (!dev->irq_enabled)
854                 return false;
855
856         spin_lock_irqsave(&dev_priv->irq_lock, flags);
857         if (ring->irq_refcount++ == 0)
858                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
859         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
860
861         return true;
862 }
863
864 static void
865 gen5_ring_put_irq(struct intel_ring_buffer *ring)
866 {
867         struct drm_device *dev = ring->dev;
868         drm_i915_private_t *dev_priv = dev->dev_private;
869         unsigned long flags;
870
871         spin_lock_irqsave(&dev_priv->irq_lock, flags);
872         if (--ring->irq_refcount == 0)
873                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
874         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
875 }
876
877 static bool
878 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
879 {
880         struct drm_device *dev = ring->dev;
881         drm_i915_private_t *dev_priv = dev->dev_private;
882         unsigned long flags;
883
884         if (!dev->irq_enabled)
885                 return false;
886
887         spin_lock_irqsave(&dev_priv->irq_lock, flags);
888         if (ring->irq_refcount++ == 0) {
889                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
890                 I915_WRITE(IMR, dev_priv->irq_mask);
891                 POSTING_READ(IMR);
892         }
893         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
894
895         return true;
896 }
897
898 static void
899 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
900 {
901         struct drm_device *dev = ring->dev;
902         drm_i915_private_t *dev_priv = dev->dev_private;
903         unsigned long flags;
904
905         spin_lock_irqsave(&dev_priv->irq_lock, flags);
906         if (--ring->irq_refcount == 0) {
907                 dev_priv->irq_mask |= ring->irq_enable_mask;
908                 I915_WRITE(IMR, dev_priv->irq_mask);
909                 POSTING_READ(IMR);
910         }
911         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
912 }
913
914 static bool
915 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
916 {
917         struct drm_device *dev = ring->dev;
918         drm_i915_private_t *dev_priv = dev->dev_private;
919         unsigned long flags;
920
921         if (!dev->irq_enabled)
922                 return false;
923
924         spin_lock_irqsave(&dev_priv->irq_lock, flags);
925         if (ring->irq_refcount++ == 0) {
926                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
927                 I915_WRITE16(IMR, dev_priv->irq_mask);
928                 POSTING_READ16(IMR);
929         }
930         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
931
932         return true;
933 }
934
935 static void
936 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
937 {
938         struct drm_device *dev = ring->dev;
939         drm_i915_private_t *dev_priv = dev->dev_private;
940         unsigned long flags;
941
942         spin_lock_irqsave(&dev_priv->irq_lock, flags);
943         if (--ring->irq_refcount == 0) {
944                 dev_priv->irq_mask |= ring->irq_enable_mask;
945                 I915_WRITE16(IMR, dev_priv->irq_mask);
946                 POSTING_READ16(IMR);
947         }
948         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
949 }
950
951 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
952 {
953         struct drm_device *dev = ring->dev;
954         drm_i915_private_t *dev_priv = ring->dev->dev_private;
955         u32 mmio = 0;
956
957         /* The ring status page addresses are no longer next to the rest of
958          * the ring registers as of gen7.
959          */
960         if (IS_GEN7(dev)) {
961                 switch (ring->id) {
962                 case RCS:
963                         mmio = RENDER_HWS_PGA_GEN7;
964                         break;
965                 case BCS:
966                         mmio = BLT_HWS_PGA_GEN7;
967                         break;
968                 case VCS:
969                         mmio = BSD_HWS_PGA_GEN7;
970                         break;
971                 case VECS:
972                         mmio = VEBOX_HWS_PGA_GEN7;
973                         break;
974                 }
975         } else if (IS_GEN6(ring->dev)) {
976                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
977         } else {
978                 /* XXX: gen8 returns to sanity */
979                 mmio = RING_HWS_PGA(ring->mmio_base);
980         }
981
982         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
983         POSTING_READ(mmio);
984
985         /*
986          * Flush the TLB for this page
987          *
988          * FIXME: These two bits have disappeared on gen8, so a question
989          * arises: do we still need this and if so how should we go about
990          * invalidating the TLB?
991          */
992         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
993                 u32 reg = RING_INSTPM(ring->mmio_base);
994
995                 /* ring should be idle before issuing a sync flush*/
996                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
997
998                 I915_WRITE(reg,
999                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1000                                               INSTPM_SYNC_FLUSH));
1001                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1002                              1000))
1003                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1004                                   ring->name);
1005         }
1006 }
1007
1008 static int
1009 bsd_ring_flush(struct intel_ring_buffer *ring,
1010                u32     invalidate_domains,
1011                u32     flush_domains)
1012 {
1013         int ret;
1014
1015         ret = intel_ring_begin(ring, 2);
1016         if (ret)
1017                 return ret;
1018
1019         intel_ring_emit(ring, MI_FLUSH);
1020         intel_ring_emit(ring, MI_NOOP);
1021         intel_ring_advance(ring);
1022         return 0;
1023 }
1024
1025 static int
1026 i9xx_add_request(struct intel_ring_buffer *ring)
1027 {
1028         int ret;
1029
1030         ret = intel_ring_begin(ring, 4);
1031         if (ret)
1032                 return ret;
1033
1034         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1035         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1036         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1037         intel_ring_emit(ring, MI_USER_INTERRUPT);
1038         __intel_ring_advance(ring);
1039
1040         return 0;
1041 }
1042
1043 static bool
1044 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1045 {
1046         struct drm_device *dev = ring->dev;
1047         drm_i915_private_t *dev_priv = dev->dev_private;
1048         unsigned long flags;
1049
1050         if (!dev->irq_enabled)
1051                return false;
1052
1053         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1054         if (ring->irq_refcount++ == 0) {
1055                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1056                         I915_WRITE_IMR(ring,
1057                                        ~(ring->irq_enable_mask |
1058                                          GT_PARITY_ERROR(dev)));
1059                 else
1060                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1061                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1062         }
1063         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1064
1065         return true;
1066 }
1067
1068 static void
1069 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1070 {
1071         struct drm_device *dev = ring->dev;
1072         drm_i915_private_t *dev_priv = dev->dev_private;
1073         unsigned long flags;
1074
1075         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1076         if (--ring->irq_refcount == 0) {
1077                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1078                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1079                 else
1080                         I915_WRITE_IMR(ring, ~0);
1081                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1082         }
1083         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1084 }
1085
1086 static bool
1087 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1088 {
1089         struct drm_device *dev = ring->dev;
1090         struct drm_i915_private *dev_priv = dev->dev_private;
1091         unsigned long flags;
1092
1093         if (!dev->irq_enabled)
1094                 return false;
1095
1096         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1097         if (ring->irq_refcount++ == 0) {
1098                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1099                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1100         }
1101         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1102
1103         return true;
1104 }
1105
1106 static void
1107 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1108 {
1109         struct drm_device *dev = ring->dev;
1110         struct drm_i915_private *dev_priv = dev->dev_private;
1111         unsigned long flags;
1112
1113         if (!dev->irq_enabled)
1114                 return;
1115
1116         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1117         if (--ring->irq_refcount == 0) {
1118                 I915_WRITE_IMR(ring, ~0);
1119                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1120         }
1121         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1122 }
1123
1124 static bool
1125 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1126 {
1127         struct drm_device *dev = ring->dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         unsigned long flags;
1130
1131         if (!dev->irq_enabled)
1132                 return false;
1133
1134         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1135         if (ring->irq_refcount++ == 0) {
1136                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1137                         I915_WRITE_IMR(ring,
1138                                        ~(ring->irq_enable_mask |
1139                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1140                 } else {
1141                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1142                 }
1143                 POSTING_READ(RING_IMR(ring->mmio_base));
1144         }
1145         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1146
1147         return true;
1148 }
1149
1150 static void
1151 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1152 {
1153         struct drm_device *dev = ring->dev;
1154         struct drm_i915_private *dev_priv = dev->dev_private;
1155         unsigned long flags;
1156
1157         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1158         if (--ring->irq_refcount == 0) {
1159                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1160                         I915_WRITE_IMR(ring,
1161                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1162                 } else {
1163                         I915_WRITE_IMR(ring, ~0);
1164                 }
1165                 POSTING_READ(RING_IMR(ring->mmio_base));
1166         }
1167         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1168 }
1169
1170 static int
1171 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1172                          u32 offset, u32 length,
1173                          unsigned flags)
1174 {
1175         int ret;
1176
1177         ret = intel_ring_begin(ring, 2);
1178         if (ret)
1179                 return ret;
1180
1181         intel_ring_emit(ring,
1182                         MI_BATCH_BUFFER_START |
1183                         MI_BATCH_GTT |
1184                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1185         intel_ring_emit(ring, offset);
1186         intel_ring_advance(ring);
1187
1188         return 0;
1189 }
1190
1191 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1192 #define I830_BATCH_LIMIT (256*1024)
1193 static int
1194 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1195                                 u32 offset, u32 len,
1196                                 unsigned flags)
1197 {
1198         int ret;
1199
1200         if (flags & I915_DISPATCH_PINNED) {
1201                 ret = intel_ring_begin(ring, 4);
1202                 if (ret)
1203                         return ret;
1204
1205                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1206                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1207                 intel_ring_emit(ring, offset + len - 8);
1208                 intel_ring_emit(ring, MI_NOOP);
1209                 intel_ring_advance(ring);
1210         } else {
1211                 u32 cs_offset = ring->scratch.gtt_offset;
1212
1213                 if (len > I830_BATCH_LIMIT)
1214                         return -ENOSPC;
1215
1216                 ret = intel_ring_begin(ring, 9+3);
1217                 if (ret)
1218                         return ret;
1219                 /* Blit the batch (which has now all relocs applied) to the stable batch
1220                  * scratch bo area (so that the CS never stumbles over its tlb
1221                  * invalidation bug) ... */
1222                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1223                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1224                                 XY_SRC_COPY_BLT_WRITE_RGB);
1225                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1226                 intel_ring_emit(ring, 0);
1227                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1228                 intel_ring_emit(ring, cs_offset);
1229                 intel_ring_emit(ring, 0);
1230                 intel_ring_emit(ring, 4096);
1231                 intel_ring_emit(ring, offset);
1232                 intel_ring_emit(ring, MI_FLUSH);
1233
1234                 /* ... and execute it. */
1235                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1236                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1237                 intel_ring_emit(ring, cs_offset + len - 8);
1238                 intel_ring_advance(ring);
1239         }
1240
1241         return 0;
1242 }
1243
1244 static int
1245 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1246                          u32 offset, u32 len,
1247                          unsigned flags)
1248 {
1249         int ret;
1250
1251         ret = intel_ring_begin(ring, 2);
1252         if (ret)
1253                 return ret;
1254
1255         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1256         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1257         intel_ring_advance(ring);
1258
1259         return 0;
1260 }
1261
1262 static void cleanup_status_page(struct intel_ring_buffer *ring)
1263 {
1264         struct drm_i915_gem_object *obj;
1265
1266         obj = ring->status_page.obj;
1267         if (obj == NULL)
1268                 return;
1269
1270         kunmap(sg_page(obj->pages->sgl));
1271         i915_gem_object_ggtt_unpin(obj);
1272         drm_gem_object_unreference(&obj->base);
1273         ring->status_page.obj = NULL;
1274 }
1275
1276 static int init_status_page(struct intel_ring_buffer *ring)
1277 {
1278         struct drm_device *dev = ring->dev;
1279         struct drm_i915_gem_object *obj;
1280         int ret;
1281
1282         obj = i915_gem_alloc_object(dev, 4096);
1283         if (obj == NULL) {
1284                 DRM_ERROR("Failed to allocate status page\n");
1285                 ret = -ENOMEM;
1286                 goto err;
1287         }
1288
1289         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1290         if (ret)
1291                 goto err_unref;
1292
1293         ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1294         if (ret)
1295                 goto err_unref;
1296
1297         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1298         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1299         if (ring->status_page.page_addr == NULL) {
1300                 ret = -ENOMEM;
1301                 goto err_unpin;
1302         }
1303         ring->status_page.obj = obj;
1304         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1305
1306         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1307                         ring->name, ring->status_page.gfx_addr);
1308
1309         return 0;
1310
1311 err_unpin:
1312         i915_gem_object_ggtt_unpin(obj);
1313 err_unref:
1314         drm_gem_object_unreference(&obj->base);
1315 err:
1316         return ret;
1317 }
1318
1319 static int init_phys_status_page(struct intel_ring_buffer *ring)
1320 {
1321         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1322
1323         if (!dev_priv->status_page_dmah) {
1324                 dev_priv->status_page_dmah =
1325                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1326                 if (!dev_priv->status_page_dmah)
1327                         return -ENOMEM;
1328         }
1329
1330         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1331         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1332
1333         return 0;
1334 }
1335
1336 static int intel_init_ring_buffer(struct drm_device *dev,
1337                                   struct intel_ring_buffer *ring)
1338 {
1339         struct drm_i915_gem_object *obj;
1340         struct drm_i915_private *dev_priv = dev->dev_private;
1341         int ret;
1342
1343         ring->dev = dev;
1344         INIT_LIST_HEAD(&ring->active_list);
1345         INIT_LIST_HEAD(&ring->request_list);
1346         ring->size = 32 * PAGE_SIZE;
1347         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1348
1349         init_waitqueue_head(&ring->irq_queue);
1350
1351         if (I915_NEED_GFX_HWS(dev)) {
1352                 ret = init_status_page(ring);
1353                 if (ret)
1354                         return ret;
1355         } else {
1356                 BUG_ON(ring->id != RCS);
1357                 ret = init_phys_status_page(ring);
1358                 if (ret)
1359                         return ret;
1360         }
1361
1362         obj = NULL;
1363         if (!HAS_LLC(dev))
1364                 obj = i915_gem_object_create_stolen(dev, ring->size);
1365         if (obj == NULL)
1366                 obj = i915_gem_alloc_object(dev, ring->size);
1367         if (obj == NULL) {
1368                 DRM_ERROR("Failed to allocate ringbuffer\n");
1369                 ret = -ENOMEM;
1370                 goto err_hws;
1371         }
1372
1373         ring->obj = obj;
1374
1375         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1376         if (ret)
1377                 goto err_unref;
1378
1379         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1380         if (ret)
1381                 goto err_unpin;
1382
1383         ring->virtual_start =
1384                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1385                            ring->size);
1386         if (ring->virtual_start == NULL) {
1387                 DRM_ERROR("Failed to map ringbuffer.\n");
1388                 ret = -EINVAL;
1389                 goto err_unpin;
1390         }
1391
1392         ret = ring->init(ring);
1393         if (ret)
1394                 goto err_unmap;
1395
1396         /* Workaround an erratum on the i830 which causes a hang if
1397          * the TAIL pointer points to within the last 2 cachelines
1398          * of the buffer.
1399          */
1400         ring->effective_size = ring->size;
1401         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1402                 ring->effective_size -= 128;
1403
1404         i915_cmd_parser_init_ring(ring);
1405
1406         return 0;
1407
1408 err_unmap:
1409         iounmap(ring->virtual_start);
1410 err_unpin:
1411         i915_gem_object_ggtt_unpin(obj);
1412 err_unref:
1413         drm_gem_object_unreference(&obj->base);
1414         ring->obj = NULL;
1415 err_hws:
1416         cleanup_status_page(ring);
1417         return ret;
1418 }
1419
1420 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1421 {
1422         struct drm_i915_private *dev_priv;
1423         int ret;
1424
1425         if (ring->obj == NULL)
1426                 return;
1427
1428         /* Disable the ring buffer. The ring must be idle at this point */
1429         dev_priv = ring->dev->dev_private;
1430         ret = intel_ring_idle(ring);
1431         if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1432                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1433                           ring->name, ret);
1434
1435         I915_WRITE_CTL(ring, 0);
1436
1437         iounmap(ring->virtual_start);
1438
1439         i915_gem_object_ggtt_unpin(ring->obj);
1440         drm_gem_object_unreference(&ring->obj->base);
1441         ring->obj = NULL;
1442         ring->preallocated_lazy_request = NULL;
1443         ring->outstanding_lazy_seqno = 0;
1444
1445         if (ring->cleanup)
1446                 ring->cleanup(ring);
1447
1448         cleanup_status_page(ring);
1449 }
1450
1451 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1452 {
1453         struct drm_i915_gem_request *request;
1454         u32 seqno = 0, tail;
1455         int ret;
1456
1457         if (ring->last_retired_head != -1) {
1458                 ring->head = ring->last_retired_head;
1459                 ring->last_retired_head = -1;
1460
1461                 ring->space = ring_space(ring);
1462                 if (ring->space >= n)
1463                         return 0;
1464         }
1465
1466         list_for_each_entry(request, &ring->request_list, list) {
1467                 int space;
1468
1469                 if (request->tail == -1)
1470                         continue;
1471
1472                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1473                 if (space < 0)
1474                         space += ring->size;
1475                 if (space >= n) {
1476                         seqno = request->seqno;
1477                         tail = request->tail;
1478                         break;
1479                 }
1480
1481                 /* Consume this request in case we need more space than
1482                  * is available and so need to prevent a race between
1483                  * updating last_retired_head and direct reads of
1484                  * I915_RING_HEAD. It also provides a nice sanity check.
1485                  */
1486                 request->tail = -1;
1487         }
1488
1489         if (seqno == 0)
1490                 return -ENOSPC;
1491
1492         ret = i915_wait_seqno(ring, seqno);
1493         if (ret)
1494                 return ret;
1495
1496         ring->head = tail;
1497         ring->space = ring_space(ring);
1498         if (WARN_ON(ring->space < n))
1499                 return -ENOSPC;
1500
1501         return 0;
1502 }
1503
1504 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1505 {
1506         struct drm_device *dev = ring->dev;
1507         struct drm_i915_private *dev_priv = dev->dev_private;
1508         unsigned long end;
1509         int ret;
1510
1511         ret = intel_ring_wait_request(ring, n);
1512         if (ret != -ENOSPC)
1513                 return ret;
1514
1515         /* force the tail write in case we have been skipping them */
1516         __intel_ring_advance(ring);
1517
1518         trace_i915_ring_wait_begin(ring);
1519         /* With GEM the hangcheck timer should kick us out of the loop,
1520          * leaving it early runs the risk of corrupting GEM state (due
1521          * to running on almost untested codepaths). But on resume
1522          * timers don't work yet, so prevent a complete hang in that
1523          * case by choosing an insanely large timeout. */
1524         end = jiffies + 60 * HZ;
1525
1526         do {
1527                 ring->head = I915_READ_HEAD(ring);
1528                 ring->space = ring_space(ring);
1529                 if (ring->space >= n) {
1530                         trace_i915_ring_wait_end(ring);
1531                         return 0;
1532                 }
1533
1534                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1535                     dev->primary->master) {
1536                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1537                         if (master_priv->sarea_priv)
1538                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1539                 }
1540
1541                 msleep(1);
1542
1543                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1544                                            dev_priv->mm.interruptible);
1545                 if (ret)
1546                         return ret;
1547         } while (!time_after(jiffies, end));
1548         trace_i915_ring_wait_end(ring);
1549         return -EBUSY;
1550 }
1551
1552 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1553 {
1554         uint32_t __iomem *virt;
1555         int rem = ring->size - ring->tail;
1556
1557         if (ring->space < rem) {
1558                 int ret = ring_wait_for_space(ring, rem);
1559                 if (ret)
1560                         return ret;
1561         }
1562
1563         virt = ring->virtual_start + ring->tail;
1564         rem /= 4;
1565         while (rem--)
1566                 iowrite32(MI_NOOP, virt++);
1567
1568         ring->tail = 0;
1569         ring->space = ring_space(ring);
1570
1571         return 0;
1572 }
1573
1574 int intel_ring_idle(struct intel_ring_buffer *ring)
1575 {
1576         u32 seqno;
1577         int ret;
1578
1579         /* We need to add any requests required to flush the objects and ring */
1580         if (ring->outstanding_lazy_seqno) {
1581                 ret = i915_add_request(ring, NULL);
1582                 if (ret)
1583                         return ret;
1584         }
1585
1586         /* Wait upon the last request to be completed */
1587         if (list_empty(&ring->request_list))
1588                 return 0;
1589
1590         seqno = list_entry(ring->request_list.prev,
1591                            struct drm_i915_gem_request,
1592                            list)->seqno;
1593
1594         return i915_wait_seqno(ring, seqno);
1595 }
1596
1597 static int
1598 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1599 {
1600         if (ring->outstanding_lazy_seqno)
1601                 return 0;
1602
1603         if (ring->preallocated_lazy_request == NULL) {
1604                 struct drm_i915_gem_request *request;
1605
1606                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1607                 if (request == NULL)
1608                         return -ENOMEM;
1609
1610                 ring->preallocated_lazy_request = request;
1611         }
1612
1613         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1614 }
1615
1616 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1617                                 int bytes)
1618 {
1619         int ret;
1620
1621         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1622                 ret = intel_wrap_ring_buffer(ring);
1623                 if (unlikely(ret))
1624                         return ret;
1625         }
1626
1627         if (unlikely(ring->space < bytes)) {
1628                 ret = ring_wait_for_space(ring, bytes);
1629                 if (unlikely(ret))
1630                         return ret;
1631         }
1632
1633         return 0;
1634 }
1635
1636 int intel_ring_begin(struct intel_ring_buffer *ring,
1637                      int num_dwords)
1638 {
1639         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1640         int ret;
1641
1642         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1643                                    dev_priv->mm.interruptible);
1644         if (ret)
1645                 return ret;
1646
1647         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1648         if (ret)
1649                 return ret;
1650
1651         /* Preallocate the olr before touching the ring */
1652         ret = intel_ring_alloc_seqno(ring);
1653         if (ret)
1654                 return ret;
1655
1656         ring->space -= num_dwords * sizeof(uint32_t);
1657         return 0;
1658 }
1659
1660 /* Align the ring tail to a cacheline boundary */
1661 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1662 {
1663         int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1664         int ret;
1665
1666         if (num_dwords == 0)
1667                 return 0;
1668
1669         ret = intel_ring_begin(ring, num_dwords);
1670         if (ret)
1671                 return ret;
1672
1673         while (num_dwords--)
1674                 intel_ring_emit(ring, MI_NOOP);
1675
1676         intel_ring_advance(ring);
1677
1678         return 0;
1679 }
1680
1681 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1682 {
1683         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1684
1685         BUG_ON(ring->outstanding_lazy_seqno);
1686
1687         if (INTEL_INFO(ring->dev)->gen >= 6) {
1688                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1689                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1690                 if (HAS_VEBOX(ring->dev))
1691                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1692         }
1693
1694         ring->set_seqno(ring, seqno);
1695         ring->hangcheck.seqno = seqno;
1696 }
1697
1698 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1699                                      u32 value)
1700 {
1701         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1702
1703        /* Every tail move must follow the sequence below */
1704
1705         /* Disable notification that the ring is IDLE. The GT
1706          * will then assume that it is busy and bring it out of rc6.
1707          */
1708         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1709                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1710
1711         /* Clear the context id. Here be magic! */
1712         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1713
1714         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1715         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1716                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1717                      50))
1718                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1719
1720         /* Now that the ring is fully powered up, update the tail */
1721         I915_WRITE_TAIL(ring, value);
1722         POSTING_READ(RING_TAIL(ring->mmio_base));
1723
1724         /* Let the ring send IDLE messages to the GT again,
1725          * and so let it sleep to conserve power when idle.
1726          */
1727         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1728                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1729 }
1730
1731 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1732                                u32 invalidate, u32 flush)
1733 {
1734         uint32_t cmd;
1735         int ret;
1736
1737         ret = intel_ring_begin(ring, 4);
1738         if (ret)
1739                 return ret;
1740
1741         cmd = MI_FLUSH_DW;
1742         if (INTEL_INFO(ring->dev)->gen >= 8)
1743                 cmd += 1;
1744         /*
1745          * Bspec vol 1c.5 - video engine command streamer:
1746          * "If ENABLED, all TLBs will be invalidated once the flush
1747          * operation is complete. This bit is only valid when the
1748          * Post-Sync Operation field is a value of 1h or 3h."
1749          */
1750         if (invalidate & I915_GEM_GPU_DOMAINS)
1751                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1752                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1753         intel_ring_emit(ring, cmd);
1754         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1755         if (INTEL_INFO(ring->dev)->gen >= 8) {
1756                 intel_ring_emit(ring, 0); /* upper addr */
1757                 intel_ring_emit(ring, 0); /* value */
1758         } else  {
1759                 intel_ring_emit(ring, 0);
1760                 intel_ring_emit(ring, MI_NOOP);
1761         }
1762         intel_ring_advance(ring);
1763         return 0;
1764 }
1765
1766 static int
1767 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1768                               u32 offset, u32 len,
1769                               unsigned flags)
1770 {
1771         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1772         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1773                 !(flags & I915_DISPATCH_SECURE);
1774         int ret;
1775
1776         ret = intel_ring_begin(ring, 4);
1777         if (ret)
1778                 return ret;
1779
1780         /* FIXME(BDW): Address space and security selectors. */
1781         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1782         intel_ring_emit(ring, offset);
1783         intel_ring_emit(ring, 0);
1784         intel_ring_emit(ring, MI_NOOP);
1785         intel_ring_advance(ring);
1786
1787         return 0;
1788 }
1789
1790 static int
1791 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1792                               u32 offset, u32 len,
1793                               unsigned flags)
1794 {
1795         int ret;
1796
1797         ret = intel_ring_begin(ring, 2);
1798         if (ret)
1799                 return ret;
1800
1801         intel_ring_emit(ring,
1802                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1803                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1804         /* bit0-7 is the length on GEN6+ */
1805         intel_ring_emit(ring, offset);
1806         intel_ring_advance(ring);
1807
1808         return 0;
1809 }
1810
1811 static int
1812 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1813                               u32 offset, u32 len,
1814                               unsigned flags)
1815 {
1816         int ret;
1817
1818         ret = intel_ring_begin(ring, 2);
1819         if (ret)
1820                 return ret;
1821
1822         intel_ring_emit(ring,
1823                         MI_BATCH_BUFFER_START |
1824                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1825         /* bit0-7 is the length on GEN6+ */
1826         intel_ring_emit(ring, offset);
1827         intel_ring_advance(ring);
1828
1829         return 0;
1830 }
1831
1832 /* Blitter support (SandyBridge+) */
1833
1834 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1835                            u32 invalidate, u32 flush)
1836 {
1837         struct drm_device *dev = ring->dev;
1838         uint32_t cmd;
1839         int ret;
1840
1841         ret = intel_ring_begin(ring, 4);
1842         if (ret)
1843                 return ret;
1844
1845         cmd = MI_FLUSH_DW;
1846         if (INTEL_INFO(ring->dev)->gen >= 8)
1847                 cmd += 1;
1848         /*
1849          * Bspec vol 1c.3 - blitter engine command streamer:
1850          * "If ENABLED, all TLBs will be invalidated once the flush
1851          * operation is complete. This bit is only valid when the
1852          * Post-Sync Operation field is a value of 1h or 3h."
1853          */
1854         if (invalidate & I915_GEM_DOMAIN_RENDER)
1855                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1856                         MI_FLUSH_DW_OP_STOREDW;
1857         intel_ring_emit(ring, cmd);
1858         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1859         if (INTEL_INFO(ring->dev)->gen >= 8) {
1860                 intel_ring_emit(ring, 0); /* upper addr */
1861                 intel_ring_emit(ring, 0); /* value */
1862         } else  {
1863                 intel_ring_emit(ring, 0);
1864                 intel_ring_emit(ring, MI_NOOP);
1865         }
1866         intel_ring_advance(ring);
1867
1868         if (IS_GEN7(dev) && !invalidate && flush)
1869                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1870
1871         return 0;
1872 }
1873
1874 int intel_init_render_ring_buffer(struct drm_device *dev)
1875 {
1876         drm_i915_private_t *dev_priv = dev->dev_private;
1877         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1878
1879         ring->name = "render ring";
1880         ring->id = RCS;
1881         ring->mmio_base = RENDER_RING_BASE;
1882
1883         if (INTEL_INFO(dev)->gen >= 6) {
1884                 ring->add_request = gen6_add_request;
1885                 ring->flush = gen7_render_ring_flush;
1886                 if (INTEL_INFO(dev)->gen == 6)
1887                         ring->flush = gen6_render_ring_flush;
1888                 if (INTEL_INFO(dev)->gen >= 8) {
1889                         ring->flush = gen8_render_ring_flush;
1890                         ring->irq_get = gen8_ring_get_irq;
1891                         ring->irq_put = gen8_ring_put_irq;
1892                 } else {
1893                         ring->irq_get = gen6_ring_get_irq;
1894                         ring->irq_put = gen6_ring_put_irq;
1895                 }
1896                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1897                 ring->get_seqno = gen6_ring_get_seqno;
1898                 ring->set_seqno = ring_set_seqno;
1899                 ring->sync_to = gen6_ring_sync;
1900                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1901                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1902                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1903                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1904                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1905                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1906                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1907                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1908         } else if (IS_GEN5(dev)) {
1909                 ring->add_request = pc_render_add_request;
1910                 ring->flush = gen4_render_ring_flush;
1911                 ring->get_seqno = pc_render_get_seqno;
1912                 ring->set_seqno = pc_render_set_seqno;
1913                 ring->irq_get = gen5_ring_get_irq;
1914                 ring->irq_put = gen5_ring_put_irq;
1915                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1916                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1917         } else {
1918                 ring->add_request = i9xx_add_request;
1919                 if (INTEL_INFO(dev)->gen < 4)
1920                         ring->flush = gen2_render_ring_flush;
1921                 else
1922                         ring->flush = gen4_render_ring_flush;
1923                 ring->get_seqno = ring_get_seqno;
1924                 ring->set_seqno = ring_set_seqno;
1925                 if (IS_GEN2(dev)) {
1926                         ring->irq_get = i8xx_ring_get_irq;
1927                         ring->irq_put = i8xx_ring_put_irq;
1928                 } else {
1929                         ring->irq_get = i9xx_ring_get_irq;
1930                         ring->irq_put = i9xx_ring_put_irq;
1931                 }
1932                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1933         }
1934         ring->write_tail = ring_write_tail;
1935         if (IS_HASWELL(dev))
1936                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1937         else if (IS_GEN8(dev))
1938                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1939         else if (INTEL_INFO(dev)->gen >= 6)
1940                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1941         else if (INTEL_INFO(dev)->gen >= 4)
1942                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1943         else if (IS_I830(dev) || IS_845G(dev))
1944                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1945         else
1946                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1947         ring->init = init_render_ring;
1948         ring->cleanup = render_ring_cleanup;
1949
1950         /* Workaround batchbuffer to combat CS tlb bug. */
1951         if (HAS_BROKEN_CS_TLB(dev)) {
1952                 struct drm_i915_gem_object *obj;
1953                 int ret;
1954
1955                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1956                 if (obj == NULL) {
1957                         DRM_ERROR("Failed to allocate batch bo\n");
1958                         return -ENOMEM;
1959                 }
1960
1961                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1962                 if (ret != 0) {
1963                         drm_gem_object_unreference(&obj->base);
1964                         DRM_ERROR("Failed to ping batch bo\n");
1965                         return ret;
1966                 }
1967
1968                 ring->scratch.obj = obj;
1969                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1970         }
1971
1972         return intel_init_ring_buffer(dev, ring);
1973 }
1974
1975 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1976 {
1977         drm_i915_private_t *dev_priv = dev->dev_private;
1978         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1979         int ret;
1980
1981         ring->name = "render ring";
1982         ring->id = RCS;
1983         ring->mmio_base = RENDER_RING_BASE;
1984
1985         if (INTEL_INFO(dev)->gen >= 6) {
1986                 /* non-kms not supported on gen6+ */
1987                 return -ENODEV;
1988         }
1989
1990         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1991          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1992          * the special gen5 functions. */
1993         ring->add_request = i9xx_add_request;
1994         if (INTEL_INFO(dev)->gen < 4)
1995                 ring->flush = gen2_render_ring_flush;
1996         else
1997                 ring->flush = gen4_render_ring_flush;
1998         ring->get_seqno = ring_get_seqno;
1999         ring->set_seqno = ring_set_seqno;
2000         if (IS_GEN2(dev)) {
2001                 ring->irq_get = i8xx_ring_get_irq;
2002                 ring->irq_put = i8xx_ring_put_irq;
2003         } else {
2004                 ring->irq_get = i9xx_ring_get_irq;
2005                 ring->irq_put = i9xx_ring_put_irq;
2006         }
2007         ring->irq_enable_mask = I915_USER_INTERRUPT;
2008         ring->write_tail = ring_write_tail;
2009         if (INTEL_INFO(dev)->gen >= 4)
2010                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2011         else if (IS_I830(dev) || IS_845G(dev))
2012                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2013         else
2014                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2015         ring->init = init_render_ring;
2016         ring->cleanup = render_ring_cleanup;
2017
2018         ring->dev = dev;
2019         INIT_LIST_HEAD(&ring->active_list);
2020         INIT_LIST_HEAD(&ring->request_list);
2021
2022         ring->size = size;
2023         ring->effective_size = ring->size;
2024         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2025                 ring->effective_size -= 128;
2026
2027         ring->virtual_start = ioremap_wc(start, size);
2028         if (ring->virtual_start == NULL) {
2029                 DRM_ERROR("can not ioremap virtual address for"
2030                           " ring buffer\n");
2031                 return -ENOMEM;
2032         }
2033
2034         if (!I915_NEED_GFX_HWS(dev)) {
2035                 ret = init_phys_status_page(ring);
2036                 if (ret)
2037                         return ret;
2038         }
2039
2040         return 0;
2041 }
2042
2043 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2044 {
2045         drm_i915_private_t *dev_priv = dev->dev_private;
2046         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2047
2048         ring->name = "bsd ring";
2049         ring->id = VCS;
2050
2051         ring->write_tail = ring_write_tail;
2052         if (INTEL_INFO(dev)->gen >= 6) {
2053                 ring->mmio_base = GEN6_BSD_RING_BASE;
2054                 /* gen6 bsd needs a special wa for tail updates */
2055                 if (IS_GEN6(dev))
2056                         ring->write_tail = gen6_bsd_ring_write_tail;
2057                 ring->flush = gen6_bsd_ring_flush;
2058                 ring->add_request = gen6_add_request;
2059                 ring->get_seqno = gen6_ring_get_seqno;
2060                 ring->set_seqno = ring_set_seqno;
2061                 if (INTEL_INFO(dev)->gen >= 8) {
2062                         ring->irq_enable_mask =
2063                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2064                         ring->irq_get = gen8_ring_get_irq;
2065                         ring->irq_put = gen8_ring_put_irq;
2066                         ring->dispatch_execbuffer =
2067                                 gen8_ring_dispatch_execbuffer;
2068                 } else {
2069                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2070                         ring->irq_get = gen6_ring_get_irq;
2071                         ring->irq_put = gen6_ring_put_irq;
2072                         ring->dispatch_execbuffer =
2073                                 gen6_ring_dispatch_execbuffer;
2074                 }
2075                 ring->sync_to = gen6_ring_sync;
2076                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2077                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2078                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2079                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2080                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2081                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2082                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2083                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2084         } else {
2085                 ring->mmio_base = BSD_RING_BASE;
2086                 ring->flush = bsd_ring_flush;
2087                 ring->add_request = i9xx_add_request;
2088                 ring->get_seqno = ring_get_seqno;
2089                 ring->set_seqno = ring_set_seqno;
2090                 if (IS_GEN5(dev)) {
2091                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2092                         ring->irq_get = gen5_ring_get_irq;
2093                         ring->irq_put = gen5_ring_put_irq;
2094                 } else {
2095                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2096                         ring->irq_get = i9xx_ring_get_irq;
2097                         ring->irq_put = i9xx_ring_put_irq;
2098                 }
2099                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2100         }
2101         ring->init = init_ring_common;
2102
2103         return intel_init_ring_buffer(dev, ring);
2104 }
2105
2106 int intel_init_blt_ring_buffer(struct drm_device *dev)
2107 {
2108         drm_i915_private_t *dev_priv = dev->dev_private;
2109         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2110
2111         ring->name = "blitter ring";
2112         ring->id = BCS;
2113
2114         ring->mmio_base = BLT_RING_BASE;
2115         ring->write_tail = ring_write_tail;
2116         ring->flush = gen6_ring_flush;
2117         ring->add_request = gen6_add_request;
2118         ring->get_seqno = gen6_ring_get_seqno;
2119         ring->set_seqno = ring_set_seqno;
2120         if (INTEL_INFO(dev)->gen >= 8) {
2121                 ring->irq_enable_mask =
2122                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2123                 ring->irq_get = gen8_ring_get_irq;
2124                 ring->irq_put = gen8_ring_put_irq;
2125                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2126         } else {
2127                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2128                 ring->irq_get = gen6_ring_get_irq;
2129                 ring->irq_put = gen6_ring_put_irq;
2130                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2131         }
2132         ring->sync_to = gen6_ring_sync;
2133         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2134         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2135         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2136         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2137         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2138         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2139         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2140         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2141         ring->init = init_ring_common;
2142
2143         return intel_init_ring_buffer(dev, ring);
2144 }
2145
2146 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2147 {
2148         drm_i915_private_t *dev_priv = dev->dev_private;
2149         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2150
2151         ring->name = "video enhancement ring";
2152         ring->id = VECS;
2153
2154         ring->mmio_base = VEBOX_RING_BASE;
2155         ring->write_tail = ring_write_tail;
2156         ring->flush = gen6_ring_flush;
2157         ring->add_request = gen6_add_request;
2158         ring->get_seqno = gen6_ring_get_seqno;
2159         ring->set_seqno = ring_set_seqno;
2160
2161         if (INTEL_INFO(dev)->gen >= 8) {
2162                 ring->irq_enable_mask =
2163                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2164                 ring->irq_get = gen8_ring_get_irq;
2165                 ring->irq_put = gen8_ring_put_irq;
2166                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2167         } else {
2168                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2169                 ring->irq_get = hsw_vebox_get_irq;
2170                 ring->irq_put = hsw_vebox_put_irq;
2171                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2172         }
2173         ring->sync_to = gen6_ring_sync;
2174         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2175         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2176         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2177         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2178         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2179         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2180         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2181         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2182         ring->init = init_ring_common;
2183
2184         return intel_init_ring_buffer(dev, ring);
2185 }
2186
2187 int
2188 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2189 {
2190         int ret;
2191
2192         if (!ring->gpu_caches_dirty)
2193                 return 0;
2194
2195         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2196         if (ret)
2197                 return ret;
2198
2199         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2200
2201         ring->gpu_caches_dirty = false;
2202         return 0;
2203 }
2204
2205 int
2206 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2207 {
2208         uint32_t flush_domains;
2209         int ret;
2210
2211         flush_domains = 0;
2212         if (ring->gpu_caches_dirty)
2213                 flush_domains = I915_GEM_GPU_DOMAINS;
2214
2215         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2216         if (ret)
2217                 return ret;
2218
2219         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2220
2221         ring->gpu_caches_dirty = false;
2222         return 0;
2223 }