drm/i915: warn if ring is active before sync flush
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39         if (space < 0)
40                 space += ring->size;
41         return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46         struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48         ring->tail &= ring->size - 1;
49         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50                 return;
51         ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         u32 scratch_addr = ring->scratch.gtt_offset + 128;
179         int ret;
180
181
182         ret = intel_ring_begin(ring, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(ring, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212                          u32 invalidate_domains, u32 flush_domains)
213 {
214         u32 flags = 0;
215         u32 scratch_addr = ring->scratch.gtt_offset + 128;
216         int ret;
217
218         /* Force SNB workarounds for PIPE_CONTROL flushes */
219         ret = intel_emit_post_sync_nonzero_flush(ring);
220         if (ret)
221                 return ret;
222
223         /* Just flush everything.  Experiments have shown that reducing the
224          * number of bits based on the write domains has little performance
225          * impact.
226          */
227         if (flush_domains) {
228                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230                 /*
231                  * Ensure that any following seqno writes only happen
232                  * when the render cache is indeed flushed.
233                  */
234                 flags |= PIPE_CONTROL_CS_STALL;
235         }
236         if (invalidate_domains) {
237                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243                 /*
244                  * TLB invalidate requires a post-sync write.
245                  */
246                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247         }
248
249         ret = intel_ring_begin(ring, 4);
250         if (ret)
251                 return ret;
252
253         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254         intel_ring_emit(ring, flags);
255         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256         intel_ring_emit(ring, 0);
257         intel_ring_advance(ring);
258
259         return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265         int ret;
266
267         ret = intel_ring_begin(ring, 4);
268         if (ret)
269                 return ret;
270
271         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
274         intel_ring_emit(ring, 0);
275         intel_ring_emit(ring, 0);
276         intel_ring_advance(ring);
277
278         return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283         int ret;
284
285         if (!ring->fbc_dirty)
286                 return 0;
287
288         ret = intel_ring_begin(ring, 6);
289         if (ret)
290                 return ret;
291         /* WaFbcNukeOn3DBlt:ivb/hsw */
292         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293         intel_ring_emit(ring, MSG_FBC_REND_STATE);
294         intel_ring_emit(ring, value);
295         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         u32 scratch_addr = ring->scratch.gtt_offset + 128;
310         int ret;
311
312         /*
313          * Ensure that any following seqno writes only happen when the render
314          * cache is indeed flushed.
315          *
316          * Workaround: 4th PIPE_CONTROL command (except the ones with only
317          * read-cache invalidate bits set) must have the CS_STALL bit set. We
318          * don't try to be clever and just set it unconditionally.
319          */
320         flags |= PIPE_CONTROL_CS_STALL;
321
322         /* Just flush everything.  Experiments have shown that reducing the
323          * number of bits based on the write domains has little performance
324          * impact.
325          */
326         if (flush_domains) {
327                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329         }
330         if (invalidate_domains) {
331                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337                 /*
338                  * TLB invalidate requires a post-sync write.
339                  */
340                 flags |= PIPE_CONTROL_QW_WRITE;
341                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343                 /* Workaround: we must issue a pipe_control with CS-stall bit
344                  * set before a pipe_control command that has the state cache
345                  * invalidate bit set. */
346                 gen7_render_ring_cs_stall_wa(ring);
347         }
348
349         ret = intel_ring_begin(ring, 4);
350         if (ret)
351                 return ret;
352
353         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354         intel_ring_emit(ring, flags);
355         intel_ring_emit(ring, scratch_addr);
356         intel_ring_emit(ring, 0);
357         intel_ring_advance(ring);
358
359         if (!invalidate_domains && flush_domains)
360                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362         return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367                        u32 invalidate_domains, u32 flush_domains)
368 {
369         u32 flags = 0;
370         u32 scratch_addr = ring->scratch.gtt_offset + 128;
371         int ret;
372
373         flags |= PIPE_CONTROL_CS_STALL;
374
375         if (flush_domains) {
376                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378         }
379         if (invalidate_domains) {
380                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386                 flags |= PIPE_CONTROL_QW_WRITE;
387                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388         }
389
390         ret = intel_ring_begin(ring, 6);
391         if (ret)
392                 return ret;
393
394         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395         intel_ring_emit(ring, flags);
396         intel_ring_emit(ring, scratch_addr);
397         intel_ring_emit(ring, 0);
398         intel_ring_emit(ring, 0);
399         intel_ring_emit(ring, 0);
400         intel_ring_advance(ring);
401
402         return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407                             u32 value)
408 {
409         drm_i915_private_t *dev_priv = ring->dev->dev_private;
410         I915_WRITE_TAIL(ring, value);
411 }
412
413 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415         drm_i915_private_t *dev_priv = ring->dev->dev_private;
416         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
417                         RING_ACTHD(ring->mmio_base) : ACTHD;
418
419         return I915_READ(acthd_reg);
420 }
421
422 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
423 {
424         struct drm_i915_private *dev_priv = ring->dev->dev_private;
425         u32 addr;
426
427         addr = dev_priv->status_page_dmah->busaddr;
428         if (INTEL_INFO(ring->dev)->gen >= 4)
429                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
430         I915_WRITE(HWS_PGA, addr);
431 }
432
433 static int init_ring_common(struct intel_ring_buffer *ring)
434 {
435         struct drm_device *dev = ring->dev;
436         drm_i915_private_t *dev_priv = dev->dev_private;
437         struct drm_i915_gem_object *obj = ring->obj;
438         int ret = 0;
439         u32 head;
440
441         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
442
443         /* Stop the ring if it's running. */
444         I915_WRITE_CTL(ring, 0);
445         I915_WRITE_HEAD(ring, 0);
446         ring->write_tail(ring, 0);
447         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000))
448                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
449
450         if (I915_NEED_GFX_HWS(dev))
451                 intel_ring_setup_status_page(ring);
452         else
453                 ring_setup_phys_status_page(ring);
454
455         head = I915_READ_HEAD(ring) & HEAD_ADDR;
456
457         /* G45 ring initialization fails to reset head to zero */
458         if (head != 0) {
459                 DRM_DEBUG_KMS("%s head not reset to zero "
460                               "ctl %08x head %08x tail %08x start %08x\n",
461                               ring->name,
462                               I915_READ_CTL(ring),
463                               I915_READ_HEAD(ring),
464                               I915_READ_TAIL(ring),
465                               I915_READ_START(ring));
466
467                 I915_WRITE_HEAD(ring, 0);
468
469                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
470                         DRM_ERROR("failed to set %s head to zero "
471                                   "ctl %08x head %08x tail %08x start %08x\n",
472                                   ring->name,
473                                   I915_READ_CTL(ring),
474                                   I915_READ_HEAD(ring),
475                                   I915_READ_TAIL(ring),
476                                   I915_READ_START(ring));
477                 }
478         }
479
480         /* Initialize the ring. This must happen _after_ we've cleared the ring
481          * registers with the above sequence (the readback of the HEAD registers
482          * also enforces ordering), otherwise the hw might lose the new ring
483          * register values. */
484         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
485         I915_WRITE_CTL(ring,
486                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
487                         | RING_VALID);
488
489         /* If the head is still not zero, the ring is dead */
490         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
491                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
492                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
493                 DRM_ERROR("%s initialization failed "
494                                 "ctl %08x head %08x tail %08x start %08x\n",
495                                 ring->name,
496                                 I915_READ_CTL(ring),
497                                 I915_READ_HEAD(ring),
498                                 I915_READ_TAIL(ring),
499                                 I915_READ_START(ring));
500                 ret = -EIO;
501                 goto out;
502         }
503
504         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
505                 i915_kernel_lost_context(ring->dev);
506         else {
507                 ring->head = I915_READ_HEAD(ring);
508                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
509                 ring->space = ring_space(ring);
510                 ring->last_retired_head = -1;
511         }
512
513         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
514
515 out:
516         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
517
518         return ret;
519 }
520
521 static int
522 init_pipe_control(struct intel_ring_buffer *ring)
523 {
524         int ret;
525
526         if (ring->scratch.obj)
527                 return 0;
528
529         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
530         if (ring->scratch.obj == NULL) {
531                 DRM_ERROR("Failed to allocate seqno page\n");
532                 ret = -ENOMEM;
533                 goto err;
534         }
535
536         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
537         if (ret)
538                 goto err_unref;
539
540         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
541         if (ret)
542                 goto err_unref;
543
544         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
545         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
546         if (ring->scratch.cpu_page == NULL) {
547                 ret = -ENOMEM;
548                 goto err_unpin;
549         }
550
551         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
552                          ring->name, ring->scratch.gtt_offset);
553         return 0;
554
555 err_unpin:
556         i915_gem_object_ggtt_unpin(ring->scratch.obj);
557 err_unref:
558         drm_gem_object_unreference(&ring->scratch.obj->base);
559 err:
560         return ret;
561 }
562
563 static int init_render_ring(struct intel_ring_buffer *ring)
564 {
565         struct drm_device *dev = ring->dev;
566         struct drm_i915_private *dev_priv = dev->dev_private;
567         int ret = init_ring_common(ring);
568
569         if (INTEL_INFO(dev)->gen > 3)
570                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
571
572         /* We need to disable the AsyncFlip performance optimisations in order
573          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
574          * programmed to '1' on all products.
575          *
576          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
577          */
578         if (INTEL_INFO(dev)->gen >= 6)
579                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
580
581         /* Required for the hardware to program scanline values for waiting */
582         if (INTEL_INFO(dev)->gen == 6)
583                 I915_WRITE(GFX_MODE,
584                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
585
586         if (IS_GEN7(dev))
587                 I915_WRITE(GFX_MODE_GEN7,
588                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
589                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
590
591         if (INTEL_INFO(dev)->gen >= 5) {
592                 ret = init_pipe_control(ring);
593                 if (ret)
594                         return ret;
595         }
596
597         if (IS_GEN6(dev)) {
598                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
599                  * "If this bit is set, STCunit will have LRA as replacement
600                  *  policy. [...] This bit must be reset.  LRA replacement
601                  *  policy is not supported."
602                  */
603                 I915_WRITE(CACHE_MODE_0,
604                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
605
606                 /* This is not explicitly set for GEN6, so read the register.
607                  * see intel_ring_mi_set_context() for why we care.
608                  * TODO: consider explicitly setting the bit for GEN5
609                  */
610                 ring->itlb_before_ctx_switch =
611                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
612         }
613
614         if (INTEL_INFO(dev)->gen >= 6)
615                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
616
617         if (HAS_L3_DPF(dev))
618                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
619
620         return ret;
621 }
622
623 static void render_ring_cleanup(struct intel_ring_buffer *ring)
624 {
625         struct drm_device *dev = ring->dev;
626
627         if (ring->scratch.obj == NULL)
628                 return;
629
630         if (INTEL_INFO(dev)->gen >= 5) {
631                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
632                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
633         }
634
635         drm_gem_object_unreference(&ring->scratch.obj->base);
636         ring->scratch.obj = NULL;
637 }
638
639 static void
640 update_mboxes(struct intel_ring_buffer *ring,
641               u32 mmio_offset)
642 {
643 /* NB: In order to be able to do semaphore MBOX updates for varying number
644  * of rings, it's easiest if we round up each individual update to a
645  * multiple of 2 (since ring updates must always be a multiple of 2)
646  * even though the actual update only requires 3 dwords.
647  */
648 #define MBOX_UPDATE_DWORDS 4
649         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
650         intel_ring_emit(ring, mmio_offset);
651         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
652         intel_ring_emit(ring, MI_NOOP);
653 }
654
655 /**
656  * gen6_add_request - Update the semaphore mailbox registers
657  * 
658  * @ring - ring that is adding a request
659  * @seqno - return seqno stuck into the ring
660  *
661  * Update the mailbox registers in the *other* rings with the current seqno.
662  * This acts like a signal in the canonical semaphore.
663  */
664 static int
665 gen6_add_request(struct intel_ring_buffer *ring)
666 {
667         struct drm_device *dev = ring->dev;
668         struct drm_i915_private *dev_priv = dev->dev_private;
669         struct intel_ring_buffer *useless;
670         int i, ret, num_dwords = 4;
671
672         if (i915_semaphore_is_enabled(dev))
673                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
674 #undef MBOX_UPDATE_DWORDS
675
676         ret = intel_ring_begin(ring, num_dwords);
677         if (ret)
678                 return ret;
679
680         if (i915_semaphore_is_enabled(dev)) {
681                 for_each_ring(useless, dev_priv, i) {
682                         u32 mbox_reg = ring->signal_mbox[i];
683                         if (mbox_reg != GEN6_NOSYNC)
684                                 update_mboxes(ring, mbox_reg);
685                 }
686         }
687
688         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
689         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
690         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
691         intel_ring_emit(ring, MI_USER_INTERRUPT);
692         __intel_ring_advance(ring);
693
694         return 0;
695 }
696
697 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
698                                               u32 seqno)
699 {
700         struct drm_i915_private *dev_priv = dev->dev_private;
701         return dev_priv->last_seqno < seqno;
702 }
703
704 /**
705  * intel_ring_sync - sync the waiter to the signaller on seqno
706  *
707  * @waiter - ring that is waiting
708  * @signaller - ring which has, or will signal
709  * @seqno - seqno which the waiter will block on
710  */
711 static int
712 gen6_ring_sync(struct intel_ring_buffer *waiter,
713                struct intel_ring_buffer *signaller,
714                u32 seqno)
715 {
716         int ret;
717         u32 dw1 = MI_SEMAPHORE_MBOX |
718                   MI_SEMAPHORE_COMPARE |
719                   MI_SEMAPHORE_REGISTER;
720
721         /* Throughout all of the GEM code, seqno passed implies our current
722          * seqno is >= the last seqno executed. However for hardware the
723          * comparison is strictly greater than.
724          */
725         seqno -= 1;
726
727         WARN_ON(signaller->semaphore_register[waiter->id] ==
728                 MI_SEMAPHORE_SYNC_INVALID);
729
730         ret = intel_ring_begin(waiter, 4);
731         if (ret)
732                 return ret;
733
734         /* If seqno wrap happened, omit the wait with no-ops */
735         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
736                 intel_ring_emit(waiter,
737                                 dw1 |
738                                 signaller->semaphore_register[waiter->id]);
739                 intel_ring_emit(waiter, seqno);
740                 intel_ring_emit(waiter, 0);
741                 intel_ring_emit(waiter, MI_NOOP);
742         } else {
743                 intel_ring_emit(waiter, MI_NOOP);
744                 intel_ring_emit(waiter, MI_NOOP);
745                 intel_ring_emit(waiter, MI_NOOP);
746                 intel_ring_emit(waiter, MI_NOOP);
747         }
748         intel_ring_advance(waiter);
749
750         return 0;
751 }
752
753 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
754 do {                                                                    \
755         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
756                  PIPE_CONTROL_DEPTH_STALL);                             \
757         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
758         intel_ring_emit(ring__, 0);                                                     \
759         intel_ring_emit(ring__, 0);                                                     \
760 } while (0)
761
762 static int
763 pc_render_add_request(struct intel_ring_buffer *ring)
764 {
765         u32 scratch_addr = ring->scratch.gtt_offset + 128;
766         int ret;
767
768         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
769          * incoherent with writes to memory, i.e. completely fubar,
770          * so we need to use PIPE_NOTIFY instead.
771          *
772          * However, we also need to workaround the qword write
773          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
774          * memory before requesting an interrupt.
775          */
776         ret = intel_ring_begin(ring, 32);
777         if (ret)
778                 return ret;
779
780         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
781                         PIPE_CONTROL_WRITE_FLUSH |
782                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
783         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
784         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
785         intel_ring_emit(ring, 0);
786         PIPE_CONTROL_FLUSH(ring, scratch_addr);
787         scratch_addr += 128; /* write to separate cachelines */
788         PIPE_CONTROL_FLUSH(ring, scratch_addr);
789         scratch_addr += 128;
790         PIPE_CONTROL_FLUSH(ring, scratch_addr);
791         scratch_addr += 128;
792         PIPE_CONTROL_FLUSH(ring, scratch_addr);
793         scratch_addr += 128;
794         PIPE_CONTROL_FLUSH(ring, scratch_addr);
795         scratch_addr += 128;
796         PIPE_CONTROL_FLUSH(ring, scratch_addr);
797
798         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
799                         PIPE_CONTROL_WRITE_FLUSH |
800                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
801                         PIPE_CONTROL_NOTIFY);
802         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
803         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
804         intel_ring_emit(ring, 0);
805         __intel_ring_advance(ring);
806
807         return 0;
808 }
809
810 static u32
811 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
812 {
813         /* Workaround to force correct ordering between irq and seqno writes on
814          * ivb (and maybe also on snb) by reading from a CS register (like
815          * ACTHD) before reading the status page. */
816         if (!lazy_coherency)
817                 intel_ring_get_active_head(ring);
818         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
819 }
820
821 static u32
822 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
823 {
824         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
825 }
826
827 static void
828 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
829 {
830         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
831 }
832
833 static u32
834 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
835 {
836         return ring->scratch.cpu_page[0];
837 }
838
839 static void
840 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
841 {
842         ring->scratch.cpu_page[0] = seqno;
843 }
844
845 static bool
846 gen5_ring_get_irq(struct intel_ring_buffer *ring)
847 {
848         struct drm_device *dev = ring->dev;
849         drm_i915_private_t *dev_priv = dev->dev_private;
850         unsigned long flags;
851
852         if (!dev->irq_enabled)
853                 return false;
854
855         spin_lock_irqsave(&dev_priv->irq_lock, flags);
856         if (ring->irq_refcount++ == 0)
857                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
858         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
859
860         return true;
861 }
862
863 static void
864 gen5_ring_put_irq(struct intel_ring_buffer *ring)
865 {
866         struct drm_device *dev = ring->dev;
867         drm_i915_private_t *dev_priv = dev->dev_private;
868         unsigned long flags;
869
870         spin_lock_irqsave(&dev_priv->irq_lock, flags);
871         if (--ring->irq_refcount == 0)
872                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
873         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
874 }
875
876 static bool
877 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
878 {
879         struct drm_device *dev = ring->dev;
880         drm_i915_private_t *dev_priv = dev->dev_private;
881         unsigned long flags;
882
883         if (!dev->irq_enabled)
884                 return false;
885
886         spin_lock_irqsave(&dev_priv->irq_lock, flags);
887         if (ring->irq_refcount++ == 0) {
888                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
889                 I915_WRITE(IMR, dev_priv->irq_mask);
890                 POSTING_READ(IMR);
891         }
892         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
893
894         return true;
895 }
896
897 static void
898 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
899 {
900         struct drm_device *dev = ring->dev;
901         drm_i915_private_t *dev_priv = dev->dev_private;
902         unsigned long flags;
903
904         spin_lock_irqsave(&dev_priv->irq_lock, flags);
905         if (--ring->irq_refcount == 0) {
906                 dev_priv->irq_mask |= ring->irq_enable_mask;
907                 I915_WRITE(IMR, dev_priv->irq_mask);
908                 POSTING_READ(IMR);
909         }
910         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
911 }
912
913 static bool
914 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
915 {
916         struct drm_device *dev = ring->dev;
917         drm_i915_private_t *dev_priv = dev->dev_private;
918         unsigned long flags;
919
920         if (!dev->irq_enabled)
921                 return false;
922
923         spin_lock_irqsave(&dev_priv->irq_lock, flags);
924         if (ring->irq_refcount++ == 0) {
925                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
926                 I915_WRITE16(IMR, dev_priv->irq_mask);
927                 POSTING_READ16(IMR);
928         }
929         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
930
931         return true;
932 }
933
934 static void
935 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
936 {
937         struct drm_device *dev = ring->dev;
938         drm_i915_private_t *dev_priv = dev->dev_private;
939         unsigned long flags;
940
941         spin_lock_irqsave(&dev_priv->irq_lock, flags);
942         if (--ring->irq_refcount == 0) {
943                 dev_priv->irq_mask |= ring->irq_enable_mask;
944                 I915_WRITE16(IMR, dev_priv->irq_mask);
945                 POSTING_READ16(IMR);
946         }
947         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
948 }
949
950 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
951 {
952         struct drm_device *dev = ring->dev;
953         drm_i915_private_t *dev_priv = ring->dev->dev_private;
954         u32 mmio = 0;
955
956         /* The ring status page addresses are no longer next to the rest of
957          * the ring registers as of gen7.
958          */
959         if (IS_GEN7(dev)) {
960                 switch (ring->id) {
961                 case RCS:
962                         mmio = RENDER_HWS_PGA_GEN7;
963                         break;
964                 case BCS:
965                         mmio = BLT_HWS_PGA_GEN7;
966                         break;
967                 case VCS:
968                         mmio = BSD_HWS_PGA_GEN7;
969                         break;
970                 case VECS:
971                         mmio = VEBOX_HWS_PGA_GEN7;
972                         break;
973                 }
974         } else if (IS_GEN6(ring->dev)) {
975                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
976         } else {
977                 /* XXX: gen8 returns to sanity */
978                 mmio = RING_HWS_PGA(ring->mmio_base);
979         }
980
981         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
982         POSTING_READ(mmio);
983
984         /* Flush the TLB for this page */
985         if (INTEL_INFO(dev)->gen >= 6) {
986                 u32 reg = RING_INSTPM(ring->mmio_base);
987
988                 /* ring should be idle before issuing a sync flush*/
989                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
990
991                 I915_WRITE(reg,
992                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
993                                               INSTPM_SYNC_FLUSH));
994                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
995                              1000))
996                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
997                                   ring->name);
998         }
999 }
1000
1001 static int
1002 bsd_ring_flush(struct intel_ring_buffer *ring,
1003                u32     invalidate_domains,
1004                u32     flush_domains)
1005 {
1006         int ret;
1007
1008         ret = intel_ring_begin(ring, 2);
1009         if (ret)
1010                 return ret;
1011
1012         intel_ring_emit(ring, MI_FLUSH);
1013         intel_ring_emit(ring, MI_NOOP);
1014         intel_ring_advance(ring);
1015         return 0;
1016 }
1017
1018 static int
1019 i9xx_add_request(struct intel_ring_buffer *ring)
1020 {
1021         int ret;
1022
1023         ret = intel_ring_begin(ring, 4);
1024         if (ret)
1025                 return ret;
1026
1027         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1028         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1029         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1030         intel_ring_emit(ring, MI_USER_INTERRUPT);
1031         __intel_ring_advance(ring);
1032
1033         return 0;
1034 }
1035
1036 static bool
1037 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1038 {
1039         struct drm_device *dev = ring->dev;
1040         drm_i915_private_t *dev_priv = dev->dev_private;
1041         unsigned long flags;
1042
1043         if (!dev->irq_enabled)
1044                return false;
1045
1046         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1047         if (ring->irq_refcount++ == 0) {
1048                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1049                         I915_WRITE_IMR(ring,
1050                                        ~(ring->irq_enable_mask |
1051                                          GT_PARITY_ERROR(dev)));
1052                 else
1053                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1054                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1055         }
1056         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1057
1058         return true;
1059 }
1060
1061 static void
1062 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1063 {
1064         struct drm_device *dev = ring->dev;
1065         drm_i915_private_t *dev_priv = dev->dev_private;
1066         unsigned long flags;
1067
1068         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1069         if (--ring->irq_refcount == 0) {
1070                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1071                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1072                 else
1073                         I915_WRITE_IMR(ring, ~0);
1074                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1075         }
1076         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1077 }
1078
1079 static bool
1080 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1081 {
1082         struct drm_device *dev = ring->dev;
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         unsigned long flags;
1085
1086         if (!dev->irq_enabled)
1087                 return false;
1088
1089         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1090         if (ring->irq_refcount++ == 0) {
1091                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1092                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1093         }
1094         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1095
1096         return true;
1097 }
1098
1099 static void
1100 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1101 {
1102         struct drm_device *dev = ring->dev;
1103         struct drm_i915_private *dev_priv = dev->dev_private;
1104         unsigned long flags;
1105
1106         if (!dev->irq_enabled)
1107                 return;
1108
1109         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1110         if (--ring->irq_refcount == 0) {
1111                 I915_WRITE_IMR(ring, ~0);
1112                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1113         }
1114         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1115 }
1116
1117 static bool
1118 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1119 {
1120         struct drm_device *dev = ring->dev;
1121         struct drm_i915_private *dev_priv = dev->dev_private;
1122         unsigned long flags;
1123
1124         if (!dev->irq_enabled)
1125                 return false;
1126
1127         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1128         if (ring->irq_refcount++ == 0) {
1129                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1130                         I915_WRITE_IMR(ring,
1131                                        ~(ring->irq_enable_mask |
1132                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1133                 } else {
1134                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1135                 }
1136                 POSTING_READ(RING_IMR(ring->mmio_base));
1137         }
1138         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1139
1140         return true;
1141 }
1142
1143 static void
1144 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1145 {
1146         struct drm_device *dev = ring->dev;
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148         unsigned long flags;
1149
1150         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1151         if (--ring->irq_refcount == 0) {
1152                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1153                         I915_WRITE_IMR(ring,
1154                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1155                 } else {
1156                         I915_WRITE_IMR(ring, ~0);
1157                 }
1158                 POSTING_READ(RING_IMR(ring->mmio_base));
1159         }
1160         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1161 }
1162
1163 static int
1164 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1165                          u32 offset, u32 length,
1166                          unsigned flags)
1167 {
1168         int ret;
1169
1170         ret = intel_ring_begin(ring, 2);
1171         if (ret)
1172                 return ret;
1173
1174         intel_ring_emit(ring,
1175                         MI_BATCH_BUFFER_START |
1176                         MI_BATCH_GTT |
1177                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1178         intel_ring_emit(ring, offset);
1179         intel_ring_advance(ring);
1180
1181         return 0;
1182 }
1183
1184 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1185 #define I830_BATCH_LIMIT (256*1024)
1186 static int
1187 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1188                                 u32 offset, u32 len,
1189                                 unsigned flags)
1190 {
1191         int ret;
1192
1193         if (flags & I915_DISPATCH_PINNED) {
1194                 ret = intel_ring_begin(ring, 4);
1195                 if (ret)
1196                         return ret;
1197
1198                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1199                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1200                 intel_ring_emit(ring, offset + len - 8);
1201                 intel_ring_emit(ring, MI_NOOP);
1202                 intel_ring_advance(ring);
1203         } else {
1204                 u32 cs_offset = ring->scratch.gtt_offset;
1205
1206                 if (len > I830_BATCH_LIMIT)
1207                         return -ENOSPC;
1208
1209                 ret = intel_ring_begin(ring, 9+3);
1210                 if (ret)
1211                         return ret;
1212                 /* Blit the batch (which has now all relocs applied) to the stable batch
1213                  * scratch bo area (so that the CS never stumbles over its tlb
1214                  * invalidation bug) ... */
1215                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1216                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1217                                 XY_SRC_COPY_BLT_WRITE_RGB);
1218                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1219                 intel_ring_emit(ring, 0);
1220                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1221                 intel_ring_emit(ring, cs_offset);
1222                 intel_ring_emit(ring, 0);
1223                 intel_ring_emit(ring, 4096);
1224                 intel_ring_emit(ring, offset);
1225                 intel_ring_emit(ring, MI_FLUSH);
1226
1227                 /* ... and execute it. */
1228                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1229                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1230                 intel_ring_emit(ring, cs_offset + len - 8);
1231                 intel_ring_advance(ring);
1232         }
1233
1234         return 0;
1235 }
1236
1237 static int
1238 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1239                          u32 offset, u32 len,
1240                          unsigned flags)
1241 {
1242         int ret;
1243
1244         ret = intel_ring_begin(ring, 2);
1245         if (ret)
1246                 return ret;
1247
1248         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1249         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1250         intel_ring_advance(ring);
1251
1252         return 0;
1253 }
1254
1255 static void cleanup_status_page(struct intel_ring_buffer *ring)
1256 {
1257         struct drm_i915_gem_object *obj;
1258
1259         obj = ring->status_page.obj;
1260         if (obj == NULL)
1261                 return;
1262
1263         kunmap(sg_page(obj->pages->sgl));
1264         i915_gem_object_ggtt_unpin(obj);
1265         drm_gem_object_unreference(&obj->base);
1266         ring->status_page.obj = NULL;
1267 }
1268
1269 static int init_status_page(struct intel_ring_buffer *ring)
1270 {
1271         struct drm_device *dev = ring->dev;
1272         struct drm_i915_gem_object *obj;
1273         int ret;
1274
1275         obj = i915_gem_alloc_object(dev, 4096);
1276         if (obj == NULL) {
1277                 DRM_ERROR("Failed to allocate status page\n");
1278                 ret = -ENOMEM;
1279                 goto err;
1280         }
1281
1282         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1283         if (ret)
1284                 goto err_unref;
1285
1286         ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1287         if (ret)
1288                 goto err_unref;
1289
1290         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1291         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1292         if (ring->status_page.page_addr == NULL) {
1293                 ret = -ENOMEM;
1294                 goto err_unpin;
1295         }
1296         ring->status_page.obj = obj;
1297         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1298
1299         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1300                         ring->name, ring->status_page.gfx_addr);
1301
1302         return 0;
1303
1304 err_unpin:
1305         i915_gem_object_ggtt_unpin(obj);
1306 err_unref:
1307         drm_gem_object_unreference(&obj->base);
1308 err:
1309         return ret;
1310 }
1311
1312 static int init_phys_status_page(struct intel_ring_buffer *ring)
1313 {
1314         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1315
1316         if (!dev_priv->status_page_dmah) {
1317                 dev_priv->status_page_dmah =
1318                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1319                 if (!dev_priv->status_page_dmah)
1320                         return -ENOMEM;
1321         }
1322
1323         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1324         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1325
1326         return 0;
1327 }
1328
1329 static int intel_init_ring_buffer(struct drm_device *dev,
1330                                   struct intel_ring_buffer *ring)
1331 {
1332         struct drm_i915_gem_object *obj;
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         int ret;
1335
1336         ring->dev = dev;
1337         INIT_LIST_HEAD(&ring->active_list);
1338         INIT_LIST_HEAD(&ring->request_list);
1339         ring->size = 32 * PAGE_SIZE;
1340         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1341
1342         init_waitqueue_head(&ring->irq_queue);
1343
1344         if (I915_NEED_GFX_HWS(dev)) {
1345                 ret = init_status_page(ring);
1346                 if (ret)
1347                         return ret;
1348         } else {
1349                 BUG_ON(ring->id != RCS);
1350                 ret = init_phys_status_page(ring);
1351                 if (ret)
1352                         return ret;
1353         }
1354
1355         obj = NULL;
1356         if (!HAS_LLC(dev))
1357                 obj = i915_gem_object_create_stolen(dev, ring->size);
1358         if (obj == NULL)
1359                 obj = i915_gem_alloc_object(dev, ring->size);
1360         if (obj == NULL) {
1361                 DRM_ERROR("Failed to allocate ringbuffer\n");
1362                 ret = -ENOMEM;
1363                 goto err_hws;
1364         }
1365
1366         ring->obj = obj;
1367
1368         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1369         if (ret)
1370                 goto err_unref;
1371
1372         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1373         if (ret)
1374                 goto err_unpin;
1375
1376         ring->virtual_start =
1377                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1378                            ring->size);
1379         if (ring->virtual_start == NULL) {
1380                 DRM_ERROR("Failed to map ringbuffer.\n");
1381                 ret = -EINVAL;
1382                 goto err_unpin;
1383         }
1384
1385         ret = ring->init(ring);
1386         if (ret)
1387                 goto err_unmap;
1388
1389         /* Workaround an erratum on the i830 which causes a hang if
1390          * the TAIL pointer points to within the last 2 cachelines
1391          * of the buffer.
1392          */
1393         ring->effective_size = ring->size;
1394         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1395                 ring->effective_size -= 128;
1396
1397         i915_cmd_parser_init_ring(ring);
1398
1399         return 0;
1400
1401 err_unmap:
1402         iounmap(ring->virtual_start);
1403 err_unpin:
1404         i915_gem_object_ggtt_unpin(obj);
1405 err_unref:
1406         drm_gem_object_unreference(&obj->base);
1407         ring->obj = NULL;
1408 err_hws:
1409         cleanup_status_page(ring);
1410         return ret;
1411 }
1412
1413 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1414 {
1415         struct drm_i915_private *dev_priv;
1416         int ret;
1417
1418         if (ring->obj == NULL)
1419                 return;
1420
1421         /* Disable the ring buffer. The ring must be idle at this point */
1422         dev_priv = ring->dev->dev_private;
1423         ret = intel_ring_idle(ring);
1424         if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1425                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1426                           ring->name, ret);
1427
1428         I915_WRITE_CTL(ring, 0);
1429
1430         iounmap(ring->virtual_start);
1431
1432         i915_gem_object_ggtt_unpin(ring->obj);
1433         drm_gem_object_unreference(&ring->obj->base);
1434         ring->obj = NULL;
1435         ring->preallocated_lazy_request = NULL;
1436         ring->outstanding_lazy_seqno = 0;
1437
1438         if (ring->cleanup)
1439                 ring->cleanup(ring);
1440
1441         cleanup_status_page(ring);
1442 }
1443
1444 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1445 {
1446         struct drm_i915_gem_request *request;
1447         u32 seqno = 0, tail;
1448         int ret;
1449
1450         if (ring->last_retired_head != -1) {
1451                 ring->head = ring->last_retired_head;
1452                 ring->last_retired_head = -1;
1453
1454                 ring->space = ring_space(ring);
1455                 if (ring->space >= n)
1456                         return 0;
1457         }
1458
1459         list_for_each_entry(request, &ring->request_list, list) {
1460                 int space;
1461
1462                 if (request->tail == -1)
1463                         continue;
1464
1465                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1466                 if (space < 0)
1467                         space += ring->size;
1468                 if (space >= n) {
1469                         seqno = request->seqno;
1470                         tail = request->tail;
1471                         break;
1472                 }
1473
1474                 /* Consume this request in case we need more space than
1475                  * is available and so need to prevent a race between
1476                  * updating last_retired_head and direct reads of
1477                  * I915_RING_HEAD. It also provides a nice sanity check.
1478                  */
1479                 request->tail = -1;
1480         }
1481
1482         if (seqno == 0)
1483                 return -ENOSPC;
1484
1485         ret = i915_wait_seqno(ring, seqno);
1486         if (ret)
1487                 return ret;
1488
1489         ring->head = tail;
1490         ring->space = ring_space(ring);
1491         if (WARN_ON(ring->space < n))
1492                 return -ENOSPC;
1493
1494         return 0;
1495 }
1496
1497 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1498 {
1499         struct drm_device *dev = ring->dev;
1500         struct drm_i915_private *dev_priv = dev->dev_private;
1501         unsigned long end;
1502         int ret;
1503
1504         ret = intel_ring_wait_request(ring, n);
1505         if (ret != -ENOSPC)
1506                 return ret;
1507
1508         /* force the tail write in case we have been skipping them */
1509         __intel_ring_advance(ring);
1510
1511         trace_i915_ring_wait_begin(ring);
1512         /* With GEM the hangcheck timer should kick us out of the loop,
1513          * leaving it early runs the risk of corrupting GEM state (due
1514          * to running on almost untested codepaths). But on resume
1515          * timers don't work yet, so prevent a complete hang in that
1516          * case by choosing an insanely large timeout. */
1517         end = jiffies + 60 * HZ;
1518
1519         do {
1520                 ring->head = I915_READ_HEAD(ring);
1521                 ring->space = ring_space(ring);
1522                 if (ring->space >= n) {
1523                         trace_i915_ring_wait_end(ring);
1524                         return 0;
1525                 }
1526
1527                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1528                     dev->primary->master) {
1529                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1530                         if (master_priv->sarea_priv)
1531                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1532                 }
1533
1534                 msleep(1);
1535
1536                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1537                                            dev_priv->mm.interruptible);
1538                 if (ret)
1539                         return ret;
1540         } while (!time_after(jiffies, end));
1541         trace_i915_ring_wait_end(ring);
1542         return -EBUSY;
1543 }
1544
1545 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1546 {
1547         uint32_t __iomem *virt;
1548         int rem = ring->size - ring->tail;
1549
1550         if (ring->space < rem) {
1551                 int ret = ring_wait_for_space(ring, rem);
1552                 if (ret)
1553                         return ret;
1554         }
1555
1556         virt = ring->virtual_start + ring->tail;
1557         rem /= 4;
1558         while (rem--)
1559                 iowrite32(MI_NOOP, virt++);
1560
1561         ring->tail = 0;
1562         ring->space = ring_space(ring);
1563
1564         return 0;
1565 }
1566
1567 int intel_ring_idle(struct intel_ring_buffer *ring)
1568 {
1569         u32 seqno;
1570         int ret;
1571
1572         /* We need to add any requests required to flush the objects and ring */
1573         if (ring->outstanding_lazy_seqno) {
1574                 ret = i915_add_request(ring, NULL);
1575                 if (ret)
1576                         return ret;
1577         }
1578
1579         /* Wait upon the last request to be completed */
1580         if (list_empty(&ring->request_list))
1581                 return 0;
1582
1583         seqno = list_entry(ring->request_list.prev,
1584                            struct drm_i915_gem_request,
1585                            list)->seqno;
1586
1587         return i915_wait_seqno(ring, seqno);
1588 }
1589
1590 static int
1591 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1592 {
1593         if (ring->outstanding_lazy_seqno)
1594                 return 0;
1595
1596         if (ring->preallocated_lazy_request == NULL) {
1597                 struct drm_i915_gem_request *request;
1598
1599                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1600                 if (request == NULL)
1601                         return -ENOMEM;
1602
1603                 ring->preallocated_lazy_request = request;
1604         }
1605
1606         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1607 }
1608
1609 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1610                                 int bytes)
1611 {
1612         int ret;
1613
1614         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1615                 ret = intel_wrap_ring_buffer(ring);
1616                 if (unlikely(ret))
1617                         return ret;
1618         }
1619
1620         if (unlikely(ring->space < bytes)) {
1621                 ret = ring_wait_for_space(ring, bytes);
1622                 if (unlikely(ret))
1623                         return ret;
1624         }
1625
1626         return 0;
1627 }
1628
1629 int intel_ring_begin(struct intel_ring_buffer *ring,
1630                      int num_dwords)
1631 {
1632         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1633         int ret;
1634
1635         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1636                                    dev_priv->mm.interruptible);
1637         if (ret)
1638                 return ret;
1639
1640         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1641         if (ret)
1642                 return ret;
1643
1644         /* Preallocate the olr before touching the ring */
1645         ret = intel_ring_alloc_seqno(ring);
1646         if (ret)
1647                 return ret;
1648
1649         ring->space -= num_dwords * sizeof(uint32_t);
1650         return 0;
1651 }
1652
1653 /* Align the ring tail to a cacheline boundary */
1654 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1655 {
1656         int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1657         int ret;
1658
1659         if (num_dwords == 0)
1660                 return 0;
1661
1662         ret = intel_ring_begin(ring, num_dwords);
1663         if (ret)
1664                 return ret;
1665
1666         while (num_dwords--)
1667                 intel_ring_emit(ring, MI_NOOP);
1668
1669         intel_ring_advance(ring);
1670
1671         return 0;
1672 }
1673
1674 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1675 {
1676         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1677
1678         BUG_ON(ring->outstanding_lazy_seqno);
1679
1680         if (INTEL_INFO(ring->dev)->gen >= 6) {
1681                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1682                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1683                 if (HAS_VEBOX(ring->dev))
1684                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1685         }
1686
1687         ring->set_seqno(ring, seqno);
1688         ring->hangcheck.seqno = seqno;
1689 }
1690
1691 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1692                                      u32 value)
1693 {
1694         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1695
1696        /* Every tail move must follow the sequence below */
1697
1698         /* Disable notification that the ring is IDLE. The GT
1699          * will then assume that it is busy and bring it out of rc6.
1700          */
1701         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1702                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1703
1704         /* Clear the context id. Here be magic! */
1705         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1706
1707         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1708         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1709                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1710                      50))
1711                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1712
1713         /* Now that the ring is fully powered up, update the tail */
1714         I915_WRITE_TAIL(ring, value);
1715         POSTING_READ(RING_TAIL(ring->mmio_base));
1716
1717         /* Let the ring send IDLE messages to the GT again,
1718          * and so let it sleep to conserve power when idle.
1719          */
1720         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1721                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1722 }
1723
1724 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1725                                u32 invalidate, u32 flush)
1726 {
1727         uint32_t cmd;
1728         int ret;
1729
1730         ret = intel_ring_begin(ring, 4);
1731         if (ret)
1732                 return ret;
1733
1734         cmd = MI_FLUSH_DW;
1735         if (INTEL_INFO(ring->dev)->gen >= 8)
1736                 cmd += 1;
1737         /*
1738          * Bspec vol 1c.5 - video engine command streamer:
1739          * "If ENABLED, all TLBs will be invalidated once the flush
1740          * operation is complete. This bit is only valid when the
1741          * Post-Sync Operation field is a value of 1h or 3h."
1742          */
1743         if (invalidate & I915_GEM_GPU_DOMAINS)
1744                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1745                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1746         intel_ring_emit(ring, cmd);
1747         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1748         if (INTEL_INFO(ring->dev)->gen >= 8) {
1749                 intel_ring_emit(ring, 0); /* upper addr */
1750                 intel_ring_emit(ring, 0); /* value */
1751         } else  {
1752                 intel_ring_emit(ring, 0);
1753                 intel_ring_emit(ring, MI_NOOP);
1754         }
1755         intel_ring_advance(ring);
1756         return 0;
1757 }
1758
1759 static int
1760 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1761                               u32 offset, u32 len,
1762                               unsigned flags)
1763 {
1764         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1765         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1766                 !(flags & I915_DISPATCH_SECURE);
1767         int ret;
1768
1769         ret = intel_ring_begin(ring, 4);
1770         if (ret)
1771                 return ret;
1772
1773         /* FIXME(BDW): Address space and security selectors. */
1774         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1775         intel_ring_emit(ring, offset);
1776         intel_ring_emit(ring, 0);
1777         intel_ring_emit(ring, MI_NOOP);
1778         intel_ring_advance(ring);
1779
1780         return 0;
1781 }
1782
1783 static int
1784 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1785                               u32 offset, u32 len,
1786                               unsigned flags)
1787 {
1788         int ret;
1789
1790         ret = intel_ring_begin(ring, 2);
1791         if (ret)
1792                 return ret;
1793
1794         intel_ring_emit(ring,
1795                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1796                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1797         /* bit0-7 is the length on GEN6+ */
1798         intel_ring_emit(ring, offset);
1799         intel_ring_advance(ring);
1800
1801         return 0;
1802 }
1803
1804 static int
1805 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1806                               u32 offset, u32 len,
1807                               unsigned flags)
1808 {
1809         int ret;
1810
1811         ret = intel_ring_begin(ring, 2);
1812         if (ret)
1813                 return ret;
1814
1815         intel_ring_emit(ring,
1816                         MI_BATCH_BUFFER_START |
1817                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1818         /* bit0-7 is the length on GEN6+ */
1819         intel_ring_emit(ring, offset);
1820         intel_ring_advance(ring);
1821
1822         return 0;
1823 }
1824
1825 /* Blitter support (SandyBridge+) */
1826
1827 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1828                            u32 invalidate, u32 flush)
1829 {
1830         struct drm_device *dev = ring->dev;
1831         uint32_t cmd;
1832         int ret;
1833
1834         ret = intel_ring_begin(ring, 4);
1835         if (ret)
1836                 return ret;
1837
1838         cmd = MI_FLUSH_DW;
1839         if (INTEL_INFO(ring->dev)->gen >= 8)
1840                 cmd += 1;
1841         /*
1842          * Bspec vol 1c.3 - blitter engine command streamer:
1843          * "If ENABLED, all TLBs will be invalidated once the flush
1844          * operation is complete. This bit is only valid when the
1845          * Post-Sync Operation field is a value of 1h or 3h."
1846          */
1847         if (invalidate & I915_GEM_DOMAIN_RENDER)
1848                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1849                         MI_FLUSH_DW_OP_STOREDW;
1850         intel_ring_emit(ring, cmd);
1851         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1852         if (INTEL_INFO(ring->dev)->gen >= 8) {
1853                 intel_ring_emit(ring, 0); /* upper addr */
1854                 intel_ring_emit(ring, 0); /* value */
1855         } else  {
1856                 intel_ring_emit(ring, 0);
1857                 intel_ring_emit(ring, MI_NOOP);
1858         }
1859         intel_ring_advance(ring);
1860
1861         if (IS_GEN7(dev) && !invalidate && flush)
1862                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1863
1864         return 0;
1865 }
1866
1867 int intel_init_render_ring_buffer(struct drm_device *dev)
1868 {
1869         drm_i915_private_t *dev_priv = dev->dev_private;
1870         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1871
1872         ring->name = "render ring";
1873         ring->id = RCS;
1874         ring->mmio_base = RENDER_RING_BASE;
1875
1876         if (INTEL_INFO(dev)->gen >= 6) {
1877                 ring->add_request = gen6_add_request;
1878                 ring->flush = gen7_render_ring_flush;
1879                 if (INTEL_INFO(dev)->gen == 6)
1880                         ring->flush = gen6_render_ring_flush;
1881                 if (INTEL_INFO(dev)->gen >= 8) {
1882                         ring->flush = gen8_render_ring_flush;
1883                         ring->irq_get = gen8_ring_get_irq;
1884                         ring->irq_put = gen8_ring_put_irq;
1885                 } else {
1886                         ring->irq_get = gen6_ring_get_irq;
1887                         ring->irq_put = gen6_ring_put_irq;
1888                 }
1889                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1890                 ring->get_seqno = gen6_ring_get_seqno;
1891                 ring->set_seqno = ring_set_seqno;
1892                 ring->sync_to = gen6_ring_sync;
1893                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1894                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1895                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1896                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1897                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1898                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1899                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1900                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1901         } else if (IS_GEN5(dev)) {
1902                 ring->add_request = pc_render_add_request;
1903                 ring->flush = gen4_render_ring_flush;
1904                 ring->get_seqno = pc_render_get_seqno;
1905                 ring->set_seqno = pc_render_set_seqno;
1906                 ring->irq_get = gen5_ring_get_irq;
1907                 ring->irq_put = gen5_ring_put_irq;
1908                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1909                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1910         } else {
1911                 ring->add_request = i9xx_add_request;
1912                 if (INTEL_INFO(dev)->gen < 4)
1913                         ring->flush = gen2_render_ring_flush;
1914                 else
1915                         ring->flush = gen4_render_ring_flush;
1916                 ring->get_seqno = ring_get_seqno;
1917                 ring->set_seqno = ring_set_seqno;
1918                 if (IS_GEN2(dev)) {
1919                         ring->irq_get = i8xx_ring_get_irq;
1920                         ring->irq_put = i8xx_ring_put_irq;
1921                 } else {
1922                         ring->irq_get = i9xx_ring_get_irq;
1923                         ring->irq_put = i9xx_ring_put_irq;
1924                 }
1925                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1926         }
1927         ring->write_tail = ring_write_tail;
1928         if (IS_HASWELL(dev))
1929                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1930         else if (IS_GEN8(dev))
1931                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1932         else if (INTEL_INFO(dev)->gen >= 6)
1933                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1934         else if (INTEL_INFO(dev)->gen >= 4)
1935                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1936         else if (IS_I830(dev) || IS_845G(dev))
1937                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1938         else
1939                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1940         ring->init = init_render_ring;
1941         ring->cleanup = render_ring_cleanup;
1942
1943         /* Workaround batchbuffer to combat CS tlb bug. */
1944         if (HAS_BROKEN_CS_TLB(dev)) {
1945                 struct drm_i915_gem_object *obj;
1946                 int ret;
1947
1948                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1949                 if (obj == NULL) {
1950                         DRM_ERROR("Failed to allocate batch bo\n");
1951                         return -ENOMEM;
1952                 }
1953
1954                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1955                 if (ret != 0) {
1956                         drm_gem_object_unreference(&obj->base);
1957                         DRM_ERROR("Failed to ping batch bo\n");
1958                         return ret;
1959                 }
1960
1961                 ring->scratch.obj = obj;
1962                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1963         }
1964
1965         return intel_init_ring_buffer(dev, ring);
1966 }
1967
1968 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1969 {
1970         drm_i915_private_t *dev_priv = dev->dev_private;
1971         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1972         int ret;
1973
1974         ring->name = "render ring";
1975         ring->id = RCS;
1976         ring->mmio_base = RENDER_RING_BASE;
1977
1978         if (INTEL_INFO(dev)->gen >= 6) {
1979                 /* non-kms not supported on gen6+ */
1980                 return -ENODEV;
1981         }
1982
1983         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1984          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1985          * the special gen5 functions. */
1986         ring->add_request = i9xx_add_request;
1987         if (INTEL_INFO(dev)->gen < 4)
1988                 ring->flush = gen2_render_ring_flush;
1989         else
1990                 ring->flush = gen4_render_ring_flush;
1991         ring->get_seqno = ring_get_seqno;
1992         ring->set_seqno = ring_set_seqno;
1993         if (IS_GEN2(dev)) {
1994                 ring->irq_get = i8xx_ring_get_irq;
1995                 ring->irq_put = i8xx_ring_put_irq;
1996         } else {
1997                 ring->irq_get = i9xx_ring_get_irq;
1998                 ring->irq_put = i9xx_ring_put_irq;
1999         }
2000         ring->irq_enable_mask = I915_USER_INTERRUPT;
2001         ring->write_tail = ring_write_tail;
2002         if (INTEL_INFO(dev)->gen >= 4)
2003                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2004         else if (IS_I830(dev) || IS_845G(dev))
2005                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2006         else
2007                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2008         ring->init = init_render_ring;
2009         ring->cleanup = render_ring_cleanup;
2010
2011         ring->dev = dev;
2012         INIT_LIST_HEAD(&ring->active_list);
2013         INIT_LIST_HEAD(&ring->request_list);
2014
2015         ring->size = size;
2016         ring->effective_size = ring->size;
2017         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2018                 ring->effective_size -= 128;
2019
2020         ring->virtual_start = ioremap_wc(start, size);
2021         if (ring->virtual_start == NULL) {
2022                 DRM_ERROR("can not ioremap virtual address for"
2023                           " ring buffer\n");
2024                 return -ENOMEM;
2025         }
2026
2027         if (!I915_NEED_GFX_HWS(dev)) {
2028                 ret = init_phys_status_page(ring);
2029                 if (ret)
2030                         return ret;
2031         }
2032
2033         return 0;
2034 }
2035
2036 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2037 {
2038         drm_i915_private_t *dev_priv = dev->dev_private;
2039         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2040
2041         ring->name = "bsd ring";
2042         ring->id = VCS;
2043
2044         ring->write_tail = ring_write_tail;
2045         if (INTEL_INFO(dev)->gen >= 6) {
2046                 ring->mmio_base = GEN6_BSD_RING_BASE;
2047                 /* gen6 bsd needs a special wa for tail updates */
2048                 if (IS_GEN6(dev))
2049                         ring->write_tail = gen6_bsd_ring_write_tail;
2050                 ring->flush = gen6_bsd_ring_flush;
2051                 ring->add_request = gen6_add_request;
2052                 ring->get_seqno = gen6_ring_get_seqno;
2053                 ring->set_seqno = ring_set_seqno;
2054                 if (INTEL_INFO(dev)->gen >= 8) {
2055                         ring->irq_enable_mask =
2056                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2057                         ring->irq_get = gen8_ring_get_irq;
2058                         ring->irq_put = gen8_ring_put_irq;
2059                         ring->dispatch_execbuffer =
2060                                 gen8_ring_dispatch_execbuffer;
2061                 } else {
2062                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2063                         ring->irq_get = gen6_ring_get_irq;
2064                         ring->irq_put = gen6_ring_put_irq;
2065                         ring->dispatch_execbuffer =
2066                                 gen6_ring_dispatch_execbuffer;
2067                 }
2068                 ring->sync_to = gen6_ring_sync;
2069                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2070                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2071                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2072                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2073                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2074                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2075                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2076                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2077         } else {
2078                 ring->mmio_base = BSD_RING_BASE;
2079                 ring->flush = bsd_ring_flush;
2080                 ring->add_request = i9xx_add_request;
2081                 ring->get_seqno = ring_get_seqno;
2082                 ring->set_seqno = ring_set_seqno;
2083                 if (IS_GEN5(dev)) {
2084                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2085                         ring->irq_get = gen5_ring_get_irq;
2086                         ring->irq_put = gen5_ring_put_irq;
2087                 } else {
2088                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2089                         ring->irq_get = i9xx_ring_get_irq;
2090                         ring->irq_put = i9xx_ring_put_irq;
2091                 }
2092                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2093         }
2094         ring->init = init_ring_common;
2095
2096         return intel_init_ring_buffer(dev, ring);
2097 }
2098
2099 int intel_init_blt_ring_buffer(struct drm_device *dev)
2100 {
2101         drm_i915_private_t *dev_priv = dev->dev_private;
2102         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2103
2104         ring->name = "blitter ring";
2105         ring->id = BCS;
2106
2107         ring->mmio_base = BLT_RING_BASE;
2108         ring->write_tail = ring_write_tail;
2109         ring->flush = gen6_ring_flush;
2110         ring->add_request = gen6_add_request;
2111         ring->get_seqno = gen6_ring_get_seqno;
2112         ring->set_seqno = ring_set_seqno;
2113         if (INTEL_INFO(dev)->gen >= 8) {
2114                 ring->irq_enable_mask =
2115                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2116                 ring->irq_get = gen8_ring_get_irq;
2117                 ring->irq_put = gen8_ring_put_irq;
2118                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2119         } else {
2120                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2121                 ring->irq_get = gen6_ring_get_irq;
2122                 ring->irq_put = gen6_ring_put_irq;
2123                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2124         }
2125         ring->sync_to = gen6_ring_sync;
2126         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2127         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2128         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2129         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2130         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2131         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2132         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2133         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2134         ring->init = init_ring_common;
2135
2136         return intel_init_ring_buffer(dev, ring);
2137 }
2138
2139 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2140 {
2141         drm_i915_private_t *dev_priv = dev->dev_private;
2142         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2143
2144         ring->name = "video enhancement ring";
2145         ring->id = VECS;
2146
2147         ring->mmio_base = VEBOX_RING_BASE;
2148         ring->write_tail = ring_write_tail;
2149         ring->flush = gen6_ring_flush;
2150         ring->add_request = gen6_add_request;
2151         ring->get_seqno = gen6_ring_get_seqno;
2152         ring->set_seqno = ring_set_seqno;
2153
2154         if (INTEL_INFO(dev)->gen >= 8) {
2155                 ring->irq_enable_mask =
2156                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2157                 ring->irq_get = gen8_ring_get_irq;
2158                 ring->irq_put = gen8_ring_put_irq;
2159                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2160         } else {
2161                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2162                 ring->irq_get = hsw_vebox_get_irq;
2163                 ring->irq_put = hsw_vebox_put_irq;
2164                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2165         }
2166         ring->sync_to = gen6_ring_sync;
2167         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2168         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2169         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2170         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2171         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2172         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2173         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2174         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2175         ring->init = init_ring_common;
2176
2177         return intel_init_ring_buffer(dev, ring);
2178 }
2179
2180 int
2181 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2182 {
2183         int ret;
2184
2185         if (!ring->gpu_caches_dirty)
2186                 return 0;
2187
2188         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2189         if (ret)
2190                 return ret;
2191
2192         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2193
2194         ring->gpu_caches_dirty = false;
2195         return 0;
2196 }
2197
2198 int
2199 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2200 {
2201         uint32_t flush_domains;
2202         int ret;
2203
2204         flush_domains = 0;
2205         if (ring->gpu_caches_dirty)
2206                 flush_domains = I915_GEM_GPU_DOMAINS;
2207
2208         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2209         if (ret)
2210                 return ret;
2211
2212         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2213
2214         ring->gpu_caches_dirty = false;
2215         return 0;
2216 }