drm/i915: We implement WaFbcWaitForVBlankBeforeEnable for ilk and snb
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 #define FORCEWAKE_ACK_TIMEOUT_MS 2
36
37 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
38  * framebuffer contents in-memory, aiming at reducing the required bandwidth
39  * during in-memory transfers and, therefore, reduce the power packet.
40  *
41  * The benefits of FBC are mostly visible with solid backgrounds and
42  * variation-less patterns.
43  *
44  * FBC-related functionality can be enabled by the means of the
45  * i915.i915_enable_fbc parameter
46  */
47
48 static bool intel_crtc_active(struct drm_crtc *crtc)
49 {
50         /* Be paranoid as we can arrive here with only partial
51          * state retrieved from the hardware during setup.
52          */
53         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
54 }
55
56 static void i8xx_disable_fbc(struct drm_device *dev)
57 {
58         struct drm_i915_private *dev_priv = dev->dev_private;
59         u32 fbc_ctl;
60
61         /* Disable compression */
62         fbc_ctl = I915_READ(FBC_CONTROL);
63         if ((fbc_ctl & FBC_CTL_EN) == 0)
64                 return;
65
66         fbc_ctl &= ~FBC_CTL_EN;
67         I915_WRITE(FBC_CONTROL, fbc_ctl);
68
69         /* Wait for compressing bit to clear */
70         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
71                 DRM_DEBUG_KMS("FBC idle timed out\n");
72                 return;
73         }
74
75         DRM_DEBUG_KMS("disabled FBC\n");
76 }
77
78 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
79 {
80         struct drm_device *dev = crtc->dev;
81         struct drm_i915_private *dev_priv = dev->dev_private;
82         struct drm_framebuffer *fb = crtc->fb;
83         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
84         struct drm_i915_gem_object *obj = intel_fb->obj;
85         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
86         int cfb_pitch;
87         int plane, i;
88         u32 fbc_ctl, fbc_ctl2;
89
90         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
91         if (fb->pitches[0] < cfb_pitch)
92                 cfb_pitch = fb->pitches[0];
93
94         /* FBC_CTL wants 64B units */
95         cfb_pitch = (cfb_pitch / 64) - 1;
96         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
97
98         /* Clear old tags */
99         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
100                 I915_WRITE(FBC_TAG + (i * 4), 0);
101
102         /* Set it up... */
103         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
104         fbc_ctl2 |= plane;
105         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
106         I915_WRITE(FBC_FENCE_OFF, crtc->y);
107
108         /* enable it... */
109         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
110         if (IS_I945GM(dev))
111                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
112         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
113         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
114         fbc_ctl |= obj->fence_reg;
115         I915_WRITE(FBC_CONTROL, fbc_ctl);
116
117         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
118                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
119 }
120
121 static bool i8xx_fbc_enabled(struct drm_device *dev)
122 {
123         struct drm_i915_private *dev_priv = dev->dev_private;
124
125         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
126 }
127
128 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
129 {
130         struct drm_device *dev = crtc->dev;
131         struct drm_i915_private *dev_priv = dev->dev_private;
132         struct drm_framebuffer *fb = crtc->fb;
133         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
134         struct drm_i915_gem_object *obj = intel_fb->obj;
135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
136         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
137         unsigned long stall_watermark = 200;
138         u32 dpfc_ctl;
139
140         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
141         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
142         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
143
144         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
145                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
146                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
147         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
148
149         /* enable it... */
150         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
151
152         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
153 }
154
155 static void g4x_disable_fbc(struct drm_device *dev)
156 {
157         struct drm_i915_private *dev_priv = dev->dev_private;
158         u32 dpfc_ctl;
159
160         /* Disable compression */
161         dpfc_ctl = I915_READ(DPFC_CONTROL);
162         if (dpfc_ctl & DPFC_CTL_EN) {
163                 dpfc_ctl &= ~DPFC_CTL_EN;
164                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
165
166                 DRM_DEBUG_KMS("disabled FBC\n");
167         }
168 }
169
170 static bool g4x_fbc_enabled(struct drm_device *dev)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173
174         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
175 }
176
177 static void sandybridge_blit_fbc_update(struct drm_device *dev)
178 {
179         struct drm_i915_private *dev_priv = dev->dev_private;
180         u32 blt_ecoskpd;
181
182         /* Make sure blitter notifies FBC of writes */
183         gen6_gt_force_wake_get(dev_priv);
184         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
185         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
186                 GEN6_BLITTER_LOCK_SHIFT;
187         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
189         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
190         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
191                          GEN6_BLITTER_LOCK_SHIFT);
192         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
193         POSTING_READ(GEN6_BLITTER_ECOSKPD);
194         gen6_gt_force_wake_put(dev_priv);
195 }
196
197 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
198 {
199         struct drm_device *dev = crtc->dev;
200         struct drm_i915_private *dev_priv = dev->dev_private;
201         struct drm_framebuffer *fb = crtc->fb;
202         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
203         struct drm_i915_gem_object *obj = intel_fb->obj;
204         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
205         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
206         unsigned long stall_watermark = 200;
207         u32 dpfc_ctl;
208
209         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
210         dpfc_ctl &= DPFC_RESERVED;
211         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
212         /* Set persistent mode for front-buffer rendering, ala X. */
213         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
214         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
215         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
216
217         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
218                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
219                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
220         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
221         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
222         /* enable it... */
223         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
224
225         if (IS_GEN6(dev)) {
226                 I915_WRITE(SNB_DPFC_CTL_SA,
227                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
228                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
229                 sandybridge_blit_fbc_update(dev);
230         }
231
232         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
233 }
234
235 static void ironlake_disable_fbc(struct drm_device *dev)
236 {
237         struct drm_i915_private *dev_priv = dev->dev_private;
238         u32 dpfc_ctl;
239
240         /* Disable compression */
241         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
242         if (dpfc_ctl & DPFC_CTL_EN) {
243                 dpfc_ctl &= ~DPFC_CTL_EN;
244                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
245
246                 if (IS_IVYBRIDGE(dev))
247                         /* WaFbcDisableDpfcClockGating:ivb */
248                         I915_WRITE(ILK_DSPCLK_GATE_D,
249                                    I915_READ(ILK_DSPCLK_GATE_D) &
250                                    ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
251
252                 if (IS_HASWELL(dev))
253                         /* WaFbcDisableDpfcClockGating:hsw */
254                         I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
255                                    I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
256                                    ~HSW_DPFC_GATING_DISABLE);
257
258                 DRM_DEBUG_KMS("disabled FBC\n");
259         }
260 }
261
262 static bool ironlake_fbc_enabled(struct drm_device *dev)
263 {
264         struct drm_i915_private *dev_priv = dev->dev_private;
265
266         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
267 }
268
269 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
270 {
271         struct drm_device *dev = crtc->dev;
272         struct drm_i915_private *dev_priv = dev->dev_private;
273         struct drm_framebuffer *fb = crtc->fb;
274         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
275         struct drm_i915_gem_object *obj = intel_fb->obj;
276         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
277
278         I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
279
280         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
281                    IVB_DPFC_CTL_FENCE_EN |
282                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
283
284         if (IS_IVYBRIDGE(dev)) {
285                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
286                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
287                 /* WaFbcDisableDpfcClockGating:ivb */
288                 I915_WRITE(ILK_DSPCLK_GATE_D,
289                            I915_READ(ILK_DSPCLK_GATE_D) |
290                            ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
291         } else {
292                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
293                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
294                            HSW_BYPASS_FBC_QUEUE);
295                 /* WaFbcDisableDpfcClockGating:hsw */
296                 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
297                            I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
298                            HSW_DPFC_GATING_DISABLE);
299         }
300
301         I915_WRITE(SNB_DPFC_CTL_SA,
302                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
303         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
304
305         sandybridge_blit_fbc_update(dev);
306
307         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
308 }
309
310 bool intel_fbc_enabled(struct drm_device *dev)
311 {
312         struct drm_i915_private *dev_priv = dev->dev_private;
313
314         if (!dev_priv->display.fbc_enabled)
315                 return false;
316
317         return dev_priv->display.fbc_enabled(dev);
318 }
319
320 static void intel_fbc_work_fn(struct work_struct *__work)
321 {
322         struct intel_fbc_work *work =
323                 container_of(to_delayed_work(__work),
324                              struct intel_fbc_work, work);
325         struct drm_device *dev = work->crtc->dev;
326         struct drm_i915_private *dev_priv = dev->dev_private;
327
328         mutex_lock(&dev->struct_mutex);
329         if (work == dev_priv->fbc.fbc_work) {
330                 /* Double check that we haven't switched fb without cancelling
331                  * the prior work.
332                  */
333                 if (work->crtc->fb == work->fb) {
334                         dev_priv->display.enable_fbc(work->crtc,
335                                                      work->interval);
336
337                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
338                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
339                         dev_priv->fbc.y = work->crtc->y;
340                 }
341
342                 dev_priv->fbc.fbc_work = NULL;
343         }
344         mutex_unlock(&dev->struct_mutex);
345
346         kfree(work);
347 }
348
349 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
350 {
351         if (dev_priv->fbc.fbc_work == NULL)
352                 return;
353
354         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
355
356         /* Synchronisation is provided by struct_mutex and checking of
357          * dev_priv->fbc.fbc_work, so we can perform the cancellation
358          * entirely asynchronously.
359          */
360         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
361                 /* tasklet was killed before being run, clean up */
362                 kfree(dev_priv->fbc.fbc_work);
363
364         /* Mark the work as no longer wanted so that if it does
365          * wake-up (because the work was already running and waiting
366          * for our mutex), it will discover that is no longer
367          * necessary to run.
368          */
369         dev_priv->fbc.fbc_work = NULL;
370 }
371
372 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
373 {
374         struct intel_fbc_work *work;
375         struct drm_device *dev = crtc->dev;
376         struct drm_i915_private *dev_priv = dev->dev_private;
377
378         if (!dev_priv->display.enable_fbc)
379                 return;
380
381         intel_cancel_fbc_work(dev_priv);
382
383         work = kzalloc(sizeof *work, GFP_KERNEL);
384         if (work == NULL) {
385                 DRM_ERROR("Failed to allocate FBC work structure\n");
386                 dev_priv->display.enable_fbc(crtc, interval);
387                 return;
388         }
389
390         work->crtc = crtc;
391         work->fb = crtc->fb;
392         work->interval = interval;
393         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
394
395         dev_priv->fbc.fbc_work = work;
396
397         /* Delay the actual enabling to let pageflipping cease and the
398          * display to settle before starting the compression. Note that
399          * this delay also serves a second purpose: it allows for a
400          * vblank to pass after disabling the FBC before we attempt
401          * to modify the control registers.
402          *
403          * A more complicated solution would involve tracking vblanks
404          * following the termination of the page-flipping sequence
405          * and indeed performing the enable as a co-routine and not
406          * waiting synchronously upon the vblank.
407          *
408          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
409          */
410         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
411 }
412
413 void intel_disable_fbc(struct drm_device *dev)
414 {
415         struct drm_i915_private *dev_priv = dev->dev_private;
416
417         intel_cancel_fbc_work(dev_priv);
418
419         if (!dev_priv->display.disable_fbc)
420                 return;
421
422         dev_priv->display.disable_fbc(dev);
423         dev_priv->fbc.plane = -1;
424 }
425
426 /**
427  * intel_update_fbc - enable/disable FBC as needed
428  * @dev: the drm_device
429  *
430  * Set up the framebuffer compression hardware at mode set time.  We
431  * enable it if possible:
432  *   - plane A only (on pre-965)
433  *   - no pixel mulitply/line duplication
434  *   - no alpha buffer discard
435  *   - no dual wide
436  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
437  *
438  * We can't assume that any compression will take place (worst case),
439  * so the compressed buffer has to be the same size as the uncompressed
440  * one.  It also must reside (along with the line length buffer) in
441  * stolen memory.
442  *
443  * We need to enable/disable FBC on a global basis.
444  */
445 void intel_update_fbc(struct drm_device *dev)
446 {
447         struct drm_i915_private *dev_priv = dev->dev_private;
448         struct drm_crtc *crtc = NULL, *tmp_crtc;
449         struct intel_crtc *intel_crtc;
450         struct drm_framebuffer *fb;
451         struct intel_framebuffer *intel_fb;
452         struct drm_i915_gem_object *obj;
453         unsigned int max_hdisplay, max_vdisplay;
454
455         if (!i915_powersave)
456                 return;
457
458         if (!I915_HAS_FBC(dev))
459                 return;
460
461         /*
462          * If FBC is already on, we just have to verify that we can
463          * keep it that way...
464          * Need to disable if:
465          *   - more than one pipe is active
466          *   - changing FBC params (stride, fence, mode)
467          *   - new fb is too large to fit in compressed buffer
468          *   - going to an unsupported config (interlace, pixel multiply, etc.)
469          */
470         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
471                 if (intel_crtc_active(tmp_crtc) &&
472                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
473                         if (crtc) {
474                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
475                                 dev_priv->fbc.no_fbc_reason =
476                                         FBC_MULTIPLE_PIPES;
477                                 goto out_disable;
478                         }
479                         crtc = tmp_crtc;
480                 }
481         }
482
483         if (!crtc || crtc->fb == NULL) {
484                 DRM_DEBUG_KMS("no output, disabling\n");
485                 dev_priv->fbc.no_fbc_reason = FBC_NO_OUTPUT;
486                 goto out_disable;
487         }
488
489         intel_crtc = to_intel_crtc(crtc);
490         fb = crtc->fb;
491         intel_fb = to_intel_framebuffer(fb);
492         obj = intel_fb->obj;
493
494         if (i915_enable_fbc < 0 &&
495             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
496                 DRM_DEBUG_KMS("disabled per chip default\n");
497                 dev_priv->fbc.no_fbc_reason = FBC_CHIP_DEFAULT;
498                 goto out_disable;
499         }
500         if (!i915_enable_fbc) {
501                 DRM_DEBUG_KMS("fbc disabled per module param\n");
502                 dev_priv->fbc.no_fbc_reason = FBC_MODULE_PARAM;
503                 goto out_disable;
504         }
505         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
506             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
507                 DRM_DEBUG_KMS("mode incompatible with compression, "
508                               "disabling\n");
509                 dev_priv->fbc.no_fbc_reason = FBC_UNSUPPORTED_MODE;
510                 goto out_disable;
511         }
512
513         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
514                 max_hdisplay = 4096;
515                 max_vdisplay = 2048;
516         } else {
517                 max_hdisplay = 2048;
518                 max_vdisplay = 1536;
519         }
520         if ((crtc->mode.hdisplay > max_hdisplay) ||
521             (crtc->mode.vdisplay > max_vdisplay)) {
522                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
523                 dev_priv->fbc.no_fbc_reason = FBC_MODE_TOO_LARGE;
524                 goto out_disable;
525         }
526         if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
527             intel_crtc->plane != 0) {
528                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
529                 dev_priv->fbc.no_fbc_reason = FBC_BAD_PLANE;
530                 goto out_disable;
531         }
532
533         /* The use of a CPU fence is mandatory in order to detect writes
534          * by the CPU to the scanout and trigger updates to the FBC.
535          */
536         if (obj->tiling_mode != I915_TILING_X ||
537             obj->fence_reg == I915_FENCE_REG_NONE) {
538                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
539                 dev_priv->fbc.no_fbc_reason = FBC_NOT_TILED;
540                 goto out_disable;
541         }
542
543         /* If the kernel debugger is active, always disable compression */
544         if (in_dbg_master())
545                 goto out_disable;
546
547         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
548                 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
549                 dev_priv->fbc.no_fbc_reason = FBC_STOLEN_TOO_SMALL;
550                 goto out_disable;
551         }
552
553         /* If the scanout has not changed, don't modify the FBC settings.
554          * Note that we make the fundamental assumption that the fb->obj
555          * cannot be unpinned (and have its GTT offset and fence revoked)
556          * without first being decoupled from the scanout and FBC disabled.
557          */
558         if (dev_priv->fbc.plane == intel_crtc->plane &&
559             dev_priv->fbc.fb_id == fb->base.id &&
560             dev_priv->fbc.y == crtc->y)
561                 return;
562
563         if (intel_fbc_enabled(dev)) {
564                 /* We update FBC along two paths, after changing fb/crtc
565                  * configuration (modeswitching) and after page-flipping
566                  * finishes. For the latter, we know that not only did
567                  * we disable the FBC at the start of the page-flip
568                  * sequence, but also more than one vblank has passed.
569                  *
570                  * For the former case of modeswitching, it is possible
571                  * to switch between two FBC valid configurations
572                  * instantaneously so we do need to disable the FBC
573                  * before we can modify its control registers. We also
574                  * have to wait for the next vblank for that to take
575                  * effect. However, since we delay enabling FBC we can
576                  * assume that a vblank has passed since disabling and
577                  * that we can safely alter the registers in the deferred
578                  * callback.
579                  *
580                  * In the scenario that we go from a valid to invalid
581                  * and then back to valid FBC configuration we have
582                  * no strict enforcement that a vblank occurred since
583                  * disabling the FBC. However, along all current pipe
584                  * disabling paths we do need to wait for a vblank at
585                  * some point. And we wait before enabling FBC anyway.
586                  */
587                 DRM_DEBUG_KMS("disabling active FBC for update\n");
588                 intel_disable_fbc(dev);
589         }
590
591         intel_enable_fbc(crtc, 500);
592         return;
593
594 out_disable:
595         /* Multiple disables should be harmless */
596         if (intel_fbc_enabled(dev)) {
597                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
598                 intel_disable_fbc(dev);
599         }
600         i915_gem_stolen_cleanup_compression(dev);
601 }
602
603 static void i915_pineview_get_mem_freq(struct drm_device *dev)
604 {
605         drm_i915_private_t *dev_priv = dev->dev_private;
606         u32 tmp;
607
608         tmp = I915_READ(CLKCFG);
609
610         switch (tmp & CLKCFG_FSB_MASK) {
611         case CLKCFG_FSB_533:
612                 dev_priv->fsb_freq = 533; /* 133*4 */
613                 break;
614         case CLKCFG_FSB_800:
615                 dev_priv->fsb_freq = 800; /* 200*4 */
616                 break;
617         case CLKCFG_FSB_667:
618                 dev_priv->fsb_freq =  667; /* 167*4 */
619                 break;
620         case CLKCFG_FSB_400:
621                 dev_priv->fsb_freq = 400; /* 100*4 */
622                 break;
623         }
624
625         switch (tmp & CLKCFG_MEM_MASK) {
626         case CLKCFG_MEM_533:
627                 dev_priv->mem_freq = 533;
628                 break;
629         case CLKCFG_MEM_667:
630                 dev_priv->mem_freq = 667;
631                 break;
632         case CLKCFG_MEM_800:
633                 dev_priv->mem_freq = 800;
634                 break;
635         }
636
637         /* detect pineview DDR3 setting */
638         tmp = I915_READ(CSHRDDR3CTL);
639         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
640 }
641
642 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
643 {
644         drm_i915_private_t *dev_priv = dev->dev_private;
645         u16 ddrpll, csipll;
646
647         ddrpll = I915_READ16(DDRMPLL1);
648         csipll = I915_READ16(CSIPLL0);
649
650         switch (ddrpll & 0xff) {
651         case 0xc:
652                 dev_priv->mem_freq = 800;
653                 break;
654         case 0x10:
655                 dev_priv->mem_freq = 1066;
656                 break;
657         case 0x14:
658                 dev_priv->mem_freq = 1333;
659                 break;
660         case 0x18:
661                 dev_priv->mem_freq = 1600;
662                 break;
663         default:
664                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
665                                  ddrpll & 0xff);
666                 dev_priv->mem_freq = 0;
667                 break;
668         }
669
670         dev_priv->ips.r_t = dev_priv->mem_freq;
671
672         switch (csipll & 0x3ff) {
673         case 0x00c:
674                 dev_priv->fsb_freq = 3200;
675                 break;
676         case 0x00e:
677                 dev_priv->fsb_freq = 3733;
678                 break;
679         case 0x010:
680                 dev_priv->fsb_freq = 4266;
681                 break;
682         case 0x012:
683                 dev_priv->fsb_freq = 4800;
684                 break;
685         case 0x014:
686                 dev_priv->fsb_freq = 5333;
687                 break;
688         case 0x016:
689                 dev_priv->fsb_freq = 5866;
690                 break;
691         case 0x018:
692                 dev_priv->fsb_freq = 6400;
693                 break;
694         default:
695                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
696                                  csipll & 0x3ff);
697                 dev_priv->fsb_freq = 0;
698                 break;
699         }
700
701         if (dev_priv->fsb_freq == 3200) {
702                 dev_priv->ips.c_m = 0;
703         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
704                 dev_priv->ips.c_m = 1;
705         } else {
706                 dev_priv->ips.c_m = 2;
707         }
708 }
709
710 static const struct cxsr_latency cxsr_latency_table[] = {
711         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
712         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
713         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
714         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
715         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
716
717         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
718         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
719         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
720         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
721         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
722
723         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
724         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
725         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
726         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
727         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
728
729         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
730         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
731         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
732         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
733         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
734
735         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
736         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
737         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
738         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
739         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
740
741         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
742         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
743         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
744         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
745         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
746 };
747
748 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
749                                                          int is_ddr3,
750                                                          int fsb,
751                                                          int mem)
752 {
753         const struct cxsr_latency *latency;
754         int i;
755
756         if (fsb == 0 || mem == 0)
757                 return NULL;
758
759         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
760                 latency = &cxsr_latency_table[i];
761                 if (is_desktop == latency->is_desktop &&
762                     is_ddr3 == latency->is_ddr3 &&
763                     fsb == latency->fsb_freq && mem == latency->mem_freq)
764                         return latency;
765         }
766
767         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
768
769         return NULL;
770 }
771
772 static void pineview_disable_cxsr(struct drm_device *dev)
773 {
774         struct drm_i915_private *dev_priv = dev->dev_private;
775
776         /* deactivate cxsr */
777         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
778 }
779
780 /*
781  * Latency for FIFO fetches is dependent on several factors:
782  *   - memory configuration (speed, channels)
783  *   - chipset
784  *   - current MCH state
785  * It can be fairly high in some situations, so here we assume a fairly
786  * pessimal value.  It's a tradeoff between extra memory fetches (if we
787  * set this value too high, the FIFO will fetch frequently to stay full)
788  * and power consumption (set it too low to save power and we might see
789  * FIFO underruns and display "flicker").
790  *
791  * A value of 5us seems to be a good balance; safe for very low end
792  * platforms but not overly aggressive on lower latency configs.
793  */
794 static const int latency_ns = 5000;
795
796 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         uint32_t dsparb = I915_READ(DSPARB);
800         int size;
801
802         size = dsparb & 0x7f;
803         if (plane)
804                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
805
806         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
807                       plane ? "B" : "A", size);
808
809         return size;
810 }
811
812 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
813 {
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         uint32_t dsparb = I915_READ(DSPARB);
816         int size;
817
818         size = dsparb & 0x1ff;
819         if (plane)
820                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
821         size >>= 1; /* Convert to cachelines */
822
823         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
824                       plane ? "B" : "A", size);
825
826         return size;
827 }
828
829 static int i845_get_fifo_size(struct drm_device *dev, int plane)
830 {
831         struct drm_i915_private *dev_priv = dev->dev_private;
832         uint32_t dsparb = I915_READ(DSPARB);
833         int size;
834
835         size = dsparb & 0x7f;
836         size >>= 2; /* Convert to cachelines */
837
838         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
839                       plane ? "B" : "A",
840                       size);
841
842         return size;
843 }
844
845 static int i830_get_fifo_size(struct drm_device *dev, int plane)
846 {
847         struct drm_i915_private *dev_priv = dev->dev_private;
848         uint32_t dsparb = I915_READ(DSPARB);
849         int size;
850
851         size = dsparb & 0x7f;
852         size >>= 1; /* Convert to cachelines */
853
854         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
855                       plane ? "B" : "A", size);
856
857         return size;
858 }
859
860 /* Pineview has different values for various configs */
861 static const struct intel_watermark_params pineview_display_wm = {
862         PINEVIEW_DISPLAY_FIFO,
863         PINEVIEW_MAX_WM,
864         PINEVIEW_DFT_WM,
865         PINEVIEW_GUARD_WM,
866         PINEVIEW_FIFO_LINE_SIZE
867 };
868 static const struct intel_watermark_params pineview_display_hplloff_wm = {
869         PINEVIEW_DISPLAY_FIFO,
870         PINEVIEW_MAX_WM,
871         PINEVIEW_DFT_HPLLOFF_WM,
872         PINEVIEW_GUARD_WM,
873         PINEVIEW_FIFO_LINE_SIZE
874 };
875 static const struct intel_watermark_params pineview_cursor_wm = {
876         PINEVIEW_CURSOR_FIFO,
877         PINEVIEW_CURSOR_MAX_WM,
878         PINEVIEW_CURSOR_DFT_WM,
879         PINEVIEW_CURSOR_GUARD_WM,
880         PINEVIEW_FIFO_LINE_SIZE,
881 };
882 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
883         PINEVIEW_CURSOR_FIFO,
884         PINEVIEW_CURSOR_MAX_WM,
885         PINEVIEW_CURSOR_DFT_WM,
886         PINEVIEW_CURSOR_GUARD_WM,
887         PINEVIEW_FIFO_LINE_SIZE
888 };
889 static const struct intel_watermark_params g4x_wm_info = {
890         G4X_FIFO_SIZE,
891         G4X_MAX_WM,
892         G4X_MAX_WM,
893         2,
894         G4X_FIFO_LINE_SIZE,
895 };
896 static const struct intel_watermark_params g4x_cursor_wm_info = {
897         I965_CURSOR_FIFO,
898         I965_CURSOR_MAX_WM,
899         I965_CURSOR_DFT_WM,
900         2,
901         G4X_FIFO_LINE_SIZE,
902 };
903 static const struct intel_watermark_params valleyview_wm_info = {
904         VALLEYVIEW_FIFO_SIZE,
905         VALLEYVIEW_MAX_WM,
906         VALLEYVIEW_MAX_WM,
907         2,
908         G4X_FIFO_LINE_SIZE,
909 };
910 static const struct intel_watermark_params valleyview_cursor_wm_info = {
911         I965_CURSOR_FIFO,
912         VALLEYVIEW_CURSOR_MAX_WM,
913         I965_CURSOR_DFT_WM,
914         2,
915         G4X_FIFO_LINE_SIZE,
916 };
917 static const struct intel_watermark_params i965_cursor_wm_info = {
918         I965_CURSOR_FIFO,
919         I965_CURSOR_MAX_WM,
920         I965_CURSOR_DFT_WM,
921         2,
922         I915_FIFO_LINE_SIZE,
923 };
924 static const struct intel_watermark_params i945_wm_info = {
925         I945_FIFO_SIZE,
926         I915_MAX_WM,
927         1,
928         2,
929         I915_FIFO_LINE_SIZE
930 };
931 static const struct intel_watermark_params i915_wm_info = {
932         I915_FIFO_SIZE,
933         I915_MAX_WM,
934         1,
935         2,
936         I915_FIFO_LINE_SIZE
937 };
938 static const struct intel_watermark_params i855_wm_info = {
939         I855GM_FIFO_SIZE,
940         I915_MAX_WM,
941         1,
942         2,
943         I830_FIFO_LINE_SIZE
944 };
945 static const struct intel_watermark_params i830_wm_info = {
946         I830_FIFO_SIZE,
947         I915_MAX_WM,
948         1,
949         2,
950         I830_FIFO_LINE_SIZE
951 };
952
953 static const struct intel_watermark_params ironlake_display_wm_info = {
954         ILK_DISPLAY_FIFO,
955         ILK_DISPLAY_MAXWM,
956         ILK_DISPLAY_DFTWM,
957         2,
958         ILK_FIFO_LINE_SIZE
959 };
960 static const struct intel_watermark_params ironlake_cursor_wm_info = {
961         ILK_CURSOR_FIFO,
962         ILK_CURSOR_MAXWM,
963         ILK_CURSOR_DFTWM,
964         2,
965         ILK_FIFO_LINE_SIZE
966 };
967 static const struct intel_watermark_params ironlake_display_srwm_info = {
968         ILK_DISPLAY_SR_FIFO,
969         ILK_DISPLAY_MAX_SRWM,
970         ILK_DISPLAY_DFT_SRWM,
971         2,
972         ILK_FIFO_LINE_SIZE
973 };
974 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
975         ILK_CURSOR_SR_FIFO,
976         ILK_CURSOR_MAX_SRWM,
977         ILK_CURSOR_DFT_SRWM,
978         2,
979         ILK_FIFO_LINE_SIZE
980 };
981
982 static const struct intel_watermark_params sandybridge_display_wm_info = {
983         SNB_DISPLAY_FIFO,
984         SNB_DISPLAY_MAXWM,
985         SNB_DISPLAY_DFTWM,
986         2,
987         SNB_FIFO_LINE_SIZE
988 };
989 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
990         SNB_CURSOR_FIFO,
991         SNB_CURSOR_MAXWM,
992         SNB_CURSOR_DFTWM,
993         2,
994         SNB_FIFO_LINE_SIZE
995 };
996 static const struct intel_watermark_params sandybridge_display_srwm_info = {
997         SNB_DISPLAY_SR_FIFO,
998         SNB_DISPLAY_MAX_SRWM,
999         SNB_DISPLAY_DFT_SRWM,
1000         2,
1001         SNB_FIFO_LINE_SIZE
1002 };
1003 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1004         SNB_CURSOR_SR_FIFO,
1005         SNB_CURSOR_MAX_SRWM,
1006         SNB_CURSOR_DFT_SRWM,
1007         2,
1008         SNB_FIFO_LINE_SIZE
1009 };
1010
1011
1012 /**
1013  * intel_calculate_wm - calculate watermark level
1014  * @clock_in_khz: pixel clock
1015  * @wm: chip FIFO params
1016  * @pixel_size: display pixel size
1017  * @latency_ns: memory latency for the platform
1018  *
1019  * Calculate the watermark level (the level at which the display plane will
1020  * start fetching from memory again).  Each chip has a different display
1021  * FIFO size and allocation, so the caller needs to figure that out and pass
1022  * in the correct intel_watermark_params structure.
1023  *
1024  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1025  * on the pixel size.  When it reaches the watermark level, it'll start
1026  * fetching FIFO line sized based chunks from memory until the FIFO fills
1027  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1028  * will occur, and a display engine hang could result.
1029  */
1030 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1031                                         const struct intel_watermark_params *wm,
1032                                         int fifo_size,
1033                                         int pixel_size,
1034                                         unsigned long latency_ns)
1035 {
1036         long entries_required, wm_size;
1037
1038         /*
1039          * Note: we need to make sure we don't overflow for various clock &
1040          * latency values.
1041          * clocks go from a few thousand to several hundred thousand.
1042          * latency is usually a few thousand
1043          */
1044         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1045                 1000;
1046         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1047
1048         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1049
1050         wm_size = fifo_size - (entries_required + wm->guard_size);
1051
1052         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1053
1054         /* Don't promote wm_size to unsigned... */
1055         if (wm_size > (long)wm->max_wm)
1056                 wm_size = wm->max_wm;
1057         if (wm_size <= 0)
1058                 wm_size = wm->default_wm;
1059         return wm_size;
1060 }
1061
1062 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1063 {
1064         struct drm_crtc *crtc, *enabled = NULL;
1065
1066         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1067                 if (intel_crtc_active(crtc)) {
1068                         if (enabled)
1069                                 return NULL;
1070                         enabled = crtc;
1071                 }
1072         }
1073
1074         return enabled;
1075 }
1076
1077 static void pineview_update_wm(struct drm_device *dev)
1078 {
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         struct drm_crtc *crtc;
1081         const struct cxsr_latency *latency;
1082         u32 reg;
1083         unsigned long wm;
1084
1085         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1086                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1087         if (!latency) {
1088                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1089                 pineview_disable_cxsr(dev);
1090                 return;
1091         }
1092
1093         crtc = single_enabled_crtc(dev);
1094         if (crtc) {
1095                 int clock = crtc->mode.clock;
1096                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098                 /* Display SR */
1099                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1100                                         pineview_display_wm.fifo_size,
1101                                         pixel_size, latency->display_sr);
1102                 reg = I915_READ(DSPFW1);
1103                 reg &= ~DSPFW_SR_MASK;
1104                 reg |= wm << DSPFW_SR_SHIFT;
1105                 I915_WRITE(DSPFW1, reg);
1106                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1107
1108                 /* cursor SR */
1109                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1110                                         pineview_display_wm.fifo_size,
1111                                         pixel_size, latency->cursor_sr);
1112                 reg = I915_READ(DSPFW3);
1113                 reg &= ~DSPFW_CURSOR_SR_MASK;
1114                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1115                 I915_WRITE(DSPFW3, reg);
1116
1117                 /* Display HPLL off SR */
1118                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1119                                         pineview_display_hplloff_wm.fifo_size,
1120                                         pixel_size, latency->display_hpll_disable);
1121                 reg = I915_READ(DSPFW3);
1122                 reg &= ~DSPFW_HPLL_SR_MASK;
1123                 reg |= wm & DSPFW_HPLL_SR_MASK;
1124                 I915_WRITE(DSPFW3, reg);
1125
1126                 /* cursor HPLL off SR */
1127                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1128                                         pineview_display_hplloff_wm.fifo_size,
1129                                         pixel_size, latency->cursor_hpll_disable);
1130                 reg = I915_READ(DSPFW3);
1131                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1132                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1133                 I915_WRITE(DSPFW3, reg);
1134                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1135
1136                 /* activate cxsr */
1137                 I915_WRITE(DSPFW3,
1138                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1139                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1140         } else {
1141                 pineview_disable_cxsr(dev);
1142                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1143         }
1144 }
1145
1146 static bool g4x_compute_wm0(struct drm_device *dev,
1147                             int plane,
1148                             const struct intel_watermark_params *display,
1149                             int display_latency_ns,
1150                             const struct intel_watermark_params *cursor,
1151                             int cursor_latency_ns,
1152                             int *plane_wm,
1153                             int *cursor_wm)
1154 {
1155         struct drm_crtc *crtc;
1156         int htotal, hdisplay, clock, pixel_size;
1157         int line_time_us, line_count;
1158         int entries, tlb_miss;
1159
1160         crtc = intel_get_crtc_for_plane(dev, plane);
1161         if (!intel_crtc_active(crtc)) {
1162                 *cursor_wm = cursor->guard_size;
1163                 *plane_wm = display->guard_size;
1164                 return false;
1165         }
1166
1167         htotal = crtc->mode.htotal;
1168         hdisplay = crtc->mode.hdisplay;
1169         clock = crtc->mode.clock;
1170         pixel_size = crtc->fb->bits_per_pixel / 8;
1171
1172         /* Use the small buffer method to calculate plane watermark */
1173         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1174         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1175         if (tlb_miss > 0)
1176                 entries += tlb_miss;
1177         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1178         *plane_wm = entries + display->guard_size;
1179         if (*plane_wm > (int)display->max_wm)
1180                 *plane_wm = display->max_wm;
1181
1182         /* Use the large buffer method to calculate cursor watermark */
1183         line_time_us = ((htotal * 1000) / clock);
1184         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1185         entries = line_count * 64 * pixel_size;
1186         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1187         if (tlb_miss > 0)
1188                 entries += tlb_miss;
1189         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1190         *cursor_wm = entries + cursor->guard_size;
1191         if (*cursor_wm > (int)cursor->max_wm)
1192                 *cursor_wm = (int)cursor->max_wm;
1193
1194         return true;
1195 }
1196
1197 /*
1198  * Check the wm result.
1199  *
1200  * If any calculated watermark values is larger than the maximum value that
1201  * can be programmed into the associated watermark register, that watermark
1202  * must be disabled.
1203  */
1204 static bool g4x_check_srwm(struct drm_device *dev,
1205                            int display_wm, int cursor_wm,
1206                            const struct intel_watermark_params *display,
1207                            const struct intel_watermark_params *cursor)
1208 {
1209         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1210                       display_wm, cursor_wm);
1211
1212         if (display_wm > display->max_wm) {
1213                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1214                               display_wm, display->max_wm);
1215                 return false;
1216         }
1217
1218         if (cursor_wm > cursor->max_wm) {
1219                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1220                               cursor_wm, cursor->max_wm);
1221                 return false;
1222         }
1223
1224         if (!(display_wm || cursor_wm)) {
1225                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1226                 return false;
1227         }
1228
1229         return true;
1230 }
1231
1232 static bool g4x_compute_srwm(struct drm_device *dev,
1233                              int plane,
1234                              int latency_ns,
1235                              const struct intel_watermark_params *display,
1236                              const struct intel_watermark_params *cursor,
1237                              int *display_wm, int *cursor_wm)
1238 {
1239         struct drm_crtc *crtc;
1240         int hdisplay, htotal, pixel_size, clock;
1241         unsigned long line_time_us;
1242         int line_count, line_size;
1243         int small, large;
1244         int entries;
1245
1246         if (!latency_ns) {
1247                 *display_wm = *cursor_wm = 0;
1248                 return false;
1249         }
1250
1251         crtc = intel_get_crtc_for_plane(dev, plane);
1252         hdisplay = crtc->mode.hdisplay;
1253         htotal = crtc->mode.htotal;
1254         clock = crtc->mode.clock;
1255         pixel_size = crtc->fb->bits_per_pixel / 8;
1256
1257         line_time_us = (htotal * 1000) / clock;
1258         line_count = (latency_ns / line_time_us + 1000) / 1000;
1259         line_size = hdisplay * pixel_size;
1260
1261         /* Use the minimum of the small and large buffer method for primary */
1262         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1263         large = line_count * line_size;
1264
1265         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1266         *display_wm = entries + display->guard_size;
1267
1268         /* calculate the self-refresh watermark for display cursor */
1269         entries = line_count * pixel_size * 64;
1270         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1271         *cursor_wm = entries + cursor->guard_size;
1272
1273         return g4x_check_srwm(dev,
1274                               *display_wm, *cursor_wm,
1275                               display, cursor);
1276 }
1277
1278 static bool vlv_compute_drain_latency(struct drm_device *dev,
1279                                      int plane,
1280                                      int *plane_prec_mult,
1281                                      int *plane_dl,
1282                                      int *cursor_prec_mult,
1283                                      int *cursor_dl)
1284 {
1285         struct drm_crtc *crtc;
1286         int clock, pixel_size;
1287         int entries;
1288
1289         crtc = intel_get_crtc_for_plane(dev, plane);
1290         if (!intel_crtc_active(crtc))
1291                 return false;
1292
1293         clock = crtc->mode.clock;       /* VESA DOT Clock */
1294         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1295
1296         entries = (clock / 1000) * pixel_size;
1297         *plane_prec_mult = (entries > 256) ?
1298                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1299         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1300                                                      pixel_size);
1301
1302         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1303         *cursor_prec_mult = (entries > 256) ?
1304                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1305         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1306
1307         return true;
1308 }
1309
1310 /*
1311  * Update drain latency registers of memory arbiter
1312  *
1313  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1314  * to be programmed. Each plane has a drain latency multiplier and a drain
1315  * latency value.
1316  */
1317
1318 static void vlv_update_drain_latency(struct drm_device *dev)
1319 {
1320         struct drm_i915_private *dev_priv = dev->dev_private;
1321         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1322         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1323         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1324                                                         either 16 or 32 */
1325
1326         /* For plane A, Cursor A */
1327         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1328                                       &cursor_prec_mult, &cursora_dl)) {
1329                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1330                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1331                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1332                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1333
1334                 I915_WRITE(VLV_DDL1, cursora_prec |
1335                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1336                                 planea_prec | planea_dl);
1337         }
1338
1339         /* For plane B, Cursor B */
1340         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1341                                       &cursor_prec_mult, &cursorb_dl)) {
1342                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1344                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1346
1347                 I915_WRITE(VLV_DDL2, cursorb_prec |
1348                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1349                                 planeb_prec | planeb_dl);
1350         }
1351 }
1352
1353 #define single_plane_enabled(mask) is_power_of_2(mask)
1354
1355 static void valleyview_update_wm(struct drm_device *dev)
1356 {
1357         static const int sr_latency_ns = 12000;
1358         struct drm_i915_private *dev_priv = dev->dev_private;
1359         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1360         int plane_sr, cursor_sr;
1361         int ignore_plane_sr, ignore_cursor_sr;
1362         unsigned int enabled = 0;
1363
1364         vlv_update_drain_latency(dev);
1365
1366         if (g4x_compute_wm0(dev, PIPE_A,
1367                             &valleyview_wm_info, latency_ns,
1368                             &valleyview_cursor_wm_info, latency_ns,
1369                             &planea_wm, &cursora_wm))
1370                 enabled |= 1 << PIPE_A;
1371
1372         if (g4x_compute_wm0(dev, PIPE_B,
1373                             &valleyview_wm_info, latency_ns,
1374                             &valleyview_cursor_wm_info, latency_ns,
1375                             &planeb_wm, &cursorb_wm))
1376                 enabled |= 1 << PIPE_B;
1377
1378         if (single_plane_enabled(enabled) &&
1379             g4x_compute_srwm(dev, ffs(enabled) - 1,
1380                              sr_latency_ns,
1381                              &valleyview_wm_info,
1382                              &valleyview_cursor_wm_info,
1383                              &plane_sr, &ignore_cursor_sr) &&
1384             g4x_compute_srwm(dev, ffs(enabled) - 1,
1385                              2*sr_latency_ns,
1386                              &valleyview_wm_info,
1387                              &valleyview_cursor_wm_info,
1388                              &ignore_plane_sr, &cursor_sr)) {
1389                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1390         } else {
1391                 I915_WRITE(FW_BLC_SELF_VLV,
1392                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1393                 plane_sr = cursor_sr = 0;
1394         }
1395
1396         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1397                       planea_wm, cursora_wm,
1398                       planeb_wm, cursorb_wm,
1399                       plane_sr, cursor_sr);
1400
1401         I915_WRITE(DSPFW1,
1402                    (plane_sr << DSPFW_SR_SHIFT) |
1403                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1404                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1405                    planea_wm);
1406         I915_WRITE(DSPFW2,
1407                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1408                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1409         I915_WRITE(DSPFW3,
1410                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1411                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1412 }
1413
1414 static void g4x_update_wm(struct drm_device *dev)
1415 {
1416         static const int sr_latency_ns = 12000;
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1419         int plane_sr, cursor_sr;
1420         unsigned int enabled = 0;
1421
1422         if (g4x_compute_wm0(dev, PIPE_A,
1423                             &g4x_wm_info, latency_ns,
1424                             &g4x_cursor_wm_info, latency_ns,
1425                             &planea_wm, &cursora_wm))
1426                 enabled |= 1 << PIPE_A;
1427
1428         if (g4x_compute_wm0(dev, PIPE_B,
1429                             &g4x_wm_info, latency_ns,
1430                             &g4x_cursor_wm_info, latency_ns,
1431                             &planeb_wm, &cursorb_wm))
1432                 enabled |= 1 << PIPE_B;
1433
1434         if (single_plane_enabled(enabled) &&
1435             g4x_compute_srwm(dev, ffs(enabled) - 1,
1436                              sr_latency_ns,
1437                              &g4x_wm_info,
1438                              &g4x_cursor_wm_info,
1439                              &plane_sr, &cursor_sr)) {
1440                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1441         } else {
1442                 I915_WRITE(FW_BLC_SELF,
1443                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1444                 plane_sr = cursor_sr = 0;
1445         }
1446
1447         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1448                       planea_wm, cursora_wm,
1449                       planeb_wm, cursorb_wm,
1450                       plane_sr, cursor_sr);
1451
1452         I915_WRITE(DSPFW1,
1453                    (plane_sr << DSPFW_SR_SHIFT) |
1454                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1455                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1456                    planea_wm);
1457         I915_WRITE(DSPFW2,
1458                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1459                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1460         /* HPLL off in SR has some issues on G4x... disable it */
1461         I915_WRITE(DSPFW3,
1462                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1463                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1464 }
1465
1466 static void i965_update_wm(struct drm_device *dev)
1467 {
1468         struct drm_i915_private *dev_priv = dev->dev_private;
1469         struct drm_crtc *crtc;
1470         int srwm = 1;
1471         int cursor_sr = 16;
1472
1473         /* Calc sr entries for one plane configs */
1474         crtc = single_enabled_crtc(dev);
1475         if (crtc) {
1476                 /* self-refresh has much higher latency */
1477                 static const int sr_latency_ns = 12000;
1478                 int clock = crtc->mode.clock;
1479                 int htotal = crtc->mode.htotal;
1480                 int hdisplay = crtc->mode.hdisplay;
1481                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1482                 unsigned long line_time_us;
1483                 int entries;
1484
1485                 line_time_us = ((htotal * 1000) / clock);
1486
1487                 /* Use ns/us then divide to preserve precision */
1488                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1489                         pixel_size * hdisplay;
1490                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1491                 srwm = I965_FIFO_SIZE - entries;
1492                 if (srwm < 0)
1493                         srwm = 1;
1494                 srwm &= 0x1ff;
1495                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1496                               entries, srwm);
1497
1498                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1499                         pixel_size * 64;
1500                 entries = DIV_ROUND_UP(entries,
1501                                           i965_cursor_wm_info.cacheline_size);
1502                 cursor_sr = i965_cursor_wm_info.fifo_size -
1503                         (entries + i965_cursor_wm_info.guard_size);
1504
1505                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1506                         cursor_sr = i965_cursor_wm_info.max_wm;
1507
1508                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1509                               "cursor %d\n", srwm, cursor_sr);
1510
1511                 if (IS_CRESTLINE(dev))
1512                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1513         } else {
1514                 /* Turn off self refresh if both pipes are enabled */
1515                 if (IS_CRESTLINE(dev))
1516                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1517                                    & ~FW_BLC_SELF_EN);
1518         }
1519
1520         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1521                       srwm);
1522
1523         /* 965 has limitations... */
1524         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1525                    (8 << 16) | (8 << 8) | (8 << 0));
1526         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1527         /* update cursor SR watermark */
1528         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1529 }
1530
1531 static void i9xx_update_wm(struct drm_device *dev)
1532 {
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         const struct intel_watermark_params *wm_info;
1535         uint32_t fwater_lo;
1536         uint32_t fwater_hi;
1537         int cwm, srwm = 1;
1538         int fifo_size;
1539         int planea_wm, planeb_wm;
1540         struct drm_crtc *crtc, *enabled = NULL;
1541
1542         if (IS_I945GM(dev))
1543                 wm_info = &i945_wm_info;
1544         else if (!IS_GEN2(dev))
1545                 wm_info = &i915_wm_info;
1546         else
1547                 wm_info = &i855_wm_info;
1548
1549         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1550         crtc = intel_get_crtc_for_plane(dev, 0);
1551         if (intel_crtc_active(crtc)) {
1552                 int cpp = crtc->fb->bits_per_pixel / 8;
1553                 if (IS_GEN2(dev))
1554                         cpp = 4;
1555
1556                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1557                                                wm_info, fifo_size, cpp,
1558                                                latency_ns);
1559                 enabled = crtc;
1560         } else
1561                 planea_wm = fifo_size - wm_info->guard_size;
1562
1563         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1564         crtc = intel_get_crtc_for_plane(dev, 1);
1565         if (intel_crtc_active(crtc)) {
1566                 int cpp = crtc->fb->bits_per_pixel / 8;
1567                 if (IS_GEN2(dev))
1568                         cpp = 4;
1569
1570                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1571                                                wm_info, fifo_size, cpp,
1572                                                latency_ns);
1573                 if (enabled == NULL)
1574                         enabled = crtc;
1575                 else
1576                         enabled = NULL;
1577         } else
1578                 planeb_wm = fifo_size - wm_info->guard_size;
1579
1580         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1581
1582         /*
1583          * Overlay gets an aggressive default since video jitter is bad.
1584          */
1585         cwm = 2;
1586
1587         /* Play safe and disable self-refresh before adjusting watermarks. */
1588         if (IS_I945G(dev) || IS_I945GM(dev))
1589                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1590         else if (IS_I915GM(dev))
1591                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1592
1593         /* Calc sr entries for one plane configs */
1594         if (HAS_FW_BLC(dev) && enabled) {
1595                 /* self-refresh has much higher latency */
1596                 static const int sr_latency_ns = 6000;
1597                 int clock = enabled->mode.clock;
1598                 int htotal = enabled->mode.htotal;
1599                 int hdisplay = enabled->mode.hdisplay;
1600                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1601                 unsigned long line_time_us;
1602                 int entries;
1603
1604                 line_time_us = (htotal * 1000) / clock;
1605
1606                 /* Use ns/us then divide to preserve precision */
1607                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1608                         pixel_size * hdisplay;
1609                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1610                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1611                 srwm = wm_info->fifo_size - entries;
1612                 if (srwm < 0)
1613                         srwm = 1;
1614
1615                 if (IS_I945G(dev) || IS_I945GM(dev))
1616                         I915_WRITE(FW_BLC_SELF,
1617                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1618                 else if (IS_I915GM(dev))
1619                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1620         }
1621
1622         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1623                       planea_wm, planeb_wm, cwm, srwm);
1624
1625         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1626         fwater_hi = (cwm & 0x1f);
1627
1628         /* Set request length to 8 cachelines per fetch */
1629         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1630         fwater_hi = fwater_hi | (1 << 8);
1631
1632         I915_WRITE(FW_BLC, fwater_lo);
1633         I915_WRITE(FW_BLC2, fwater_hi);
1634
1635         if (HAS_FW_BLC(dev)) {
1636                 if (enabled) {
1637                         if (IS_I945G(dev) || IS_I945GM(dev))
1638                                 I915_WRITE(FW_BLC_SELF,
1639                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1640                         else if (IS_I915GM(dev))
1641                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1642                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1643                 } else
1644                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1645         }
1646 }
1647
1648 static void i830_update_wm(struct drm_device *dev)
1649 {
1650         struct drm_i915_private *dev_priv = dev->dev_private;
1651         struct drm_crtc *crtc;
1652         uint32_t fwater_lo;
1653         int planea_wm;
1654
1655         crtc = single_enabled_crtc(dev);
1656         if (crtc == NULL)
1657                 return;
1658
1659         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1660                                        dev_priv->display.get_fifo_size(dev, 0),
1661                                        4, latency_ns);
1662         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1663         fwater_lo |= (3<<8) | planea_wm;
1664
1665         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1666
1667         I915_WRITE(FW_BLC, fwater_lo);
1668 }
1669
1670 #define ILK_LP0_PLANE_LATENCY           700
1671 #define ILK_LP0_CURSOR_LATENCY          1300
1672
1673 /*
1674  * Check the wm result.
1675  *
1676  * If any calculated watermark values is larger than the maximum value that
1677  * can be programmed into the associated watermark register, that watermark
1678  * must be disabled.
1679  */
1680 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1681                                 int fbc_wm, int display_wm, int cursor_wm,
1682                                 const struct intel_watermark_params *display,
1683                                 const struct intel_watermark_params *cursor)
1684 {
1685         struct drm_i915_private *dev_priv = dev->dev_private;
1686
1687         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1688                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1689
1690         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1691                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1692                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1693
1694                 /* fbc has it's own way to disable FBC WM */
1695                 I915_WRITE(DISP_ARB_CTL,
1696                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1697                 return false;
1698         } else if (INTEL_INFO(dev)->gen >= 6) {
1699                 /* enable FBC WM (except on ILK, where it must remain off) */
1700                 I915_WRITE(DISP_ARB_CTL,
1701                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1702         }
1703
1704         if (display_wm > display->max_wm) {
1705                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1706                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1707                 return false;
1708         }
1709
1710         if (cursor_wm > cursor->max_wm) {
1711                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1712                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1713                 return false;
1714         }
1715
1716         if (!(fbc_wm || display_wm || cursor_wm)) {
1717                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1718                 return false;
1719         }
1720
1721         return true;
1722 }
1723
1724 /*
1725  * Compute watermark values of WM[1-3],
1726  */
1727 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1728                                   int latency_ns,
1729                                   const struct intel_watermark_params *display,
1730                                   const struct intel_watermark_params *cursor,
1731                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1732 {
1733         struct drm_crtc *crtc;
1734         unsigned long line_time_us;
1735         int hdisplay, htotal, pixel_size, clock;
1736         int line_count, line_size;
1737         int small, large;
1738         int entries;
1739
1740         if (!latency_ns) {
1741                 *fbc_wm = *display_wm = *cursor_wm = 0;
1742                 return false;
1743         }
1744
1745         crtc = intel_get_crtc_for_plane(dev, plane);
1746         hdisplay = crtc->mode.hdisplay;
1747         htotal = crtc->mode.htotal;
1748         clock = crtc->mode.clock;
1749         pixel_size = crtc->fb->bits_per_pixel / 8;
1750
1751         line_time_us = (htotal * 1000) / clock;
1752         line_count = (latency_ns / line_time_us + 1000) / 1000;
1753         line_size = hdisplay * pixel_size;
1754
1755         /* Use the minimum of the small and large buffer method for primary */
1756         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1757         large = line_count * line_size;
1758
1759         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1760         *display_wm = entries + display->guard_size;
1761
1762         /*
1763          * Spec says:
1764          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1765          */
1766         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1767
1768         /* calculate the self-refresh watermark for display cursor */
1769         entries = line_count * pixel_size * 64;
1770         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1771         *cursor_wm = entries + cursor->guard_size;
1772
1773         return ironlake_check_srwm(dev, level,
1774                                    *fbc_wm, *display_wm, *cursor_wm,
1775                                    display, cursor);
1776 }
1777
1778 static void ironlake_update_wm(struct drm_device *dev)
1779 {
1780         struct drm_i915_private *dev_priv = dev->dev_private;
1781         int fbc_wm, plane_wm, cursor_wm;
1782         unsigned int enabled;
1783
1784         enabled = 0;
1785         if (g4x_compute_wm0(dev, PIPE_A,
1786                             &ironlake_display_wm_info,
1787                             ILK_LP0_PLANE_LATENCY,
1788                             &ironlake_cursor_wm_info,
1789                             ILK_LP0_CURSOR_LATENCY,
1790                             &plane_wm, &cursor_wm)) {
1791                 I915_WRITE(WM0_PIPEA_ILK,
1792                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1793                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1794                               " plane %d, " "cursor: %d\n",
1795                               plane_wm, cursor_wm);
1796                 enabled |= 1 << PIPE_A;
1797         }
1798
1799         if (g4x_compute_wm0(dev, PIPE_B,
1800                             &ironlake_display_wm_info,
1801                             ILK_LP0_PLANE_LATENCY,
1802                             &ironlake_cursor_wm_info,
1803                             ILK_LP0_CURSOR_LATENCY,
1804                             &plane_wm, &cursor_wm)) {
1805                 I915_WRITE(WM0_PIPEB_ILK,
1806                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1807                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1808                               " plane %d, cursor: %d\n",
1809                               plane_wm, cursor_wm);
1810                 enabled |= 1 << PIPE_B;
1811         }
1812
1813         /*
1814          * Calculate and update the self-refresh watermark only when one
1815          * display plane is used.
1816          */
1817         I915_WRITE(WM3_LP_ILK, 0);
1818         I915_WRITE(WM2_LP_ILK, 0);
1819         I915_WRITE(WM1_LP_ILK, 0);
1820
1821         if (!single_plane_enabled(enabled))
1822                 return;
1823         enabled = ffs(enabled) - 1;
1824
1825         /* WM1 */
1826         if (!ironlake_compute_srwm(dev, 1, enabled,
1827                                    ILK_READ_WM1_LATENCY() * 500,
1828                                    &ironlake_display_srwm_info,
1829                                    &ironlake_cursor_srwm_info,
1830                                    &fbc_wm, &plane_wm, &cursor_wm))
1831                 return;
1832
1833         I915_WRITE(WM1_LP_ILK,
1834                    WM1_LP_SR_EN |
1835                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1836                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1837                    (plane_wm << WM1_LP_SR_SHIFT) |
1838                    cursor_wm);
1839
1840         /* WM2 */
1841         if (!ironlake_compute_srwm(dev, 2, enabled,
1842                                    ILK_READ_WM2_LATENCY() * 500,
1843                                    &ironlake_display_srwm_info,
1844                                    &ironlake_cursor_srwm_info,
1845                                    &fbc_wm, &plane_wm, &cursor_wm))
1846                 return;
1847
1848         I915_WRITE(WM2_LP_ILK,
1849                    WM2_LP_EN |
1850                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1851                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1852                    (plane_wm << WM1_LP_SR_SHIFT) |
1853                    cursor_wm);
1854
1855         /*
1856          * WM3 is unsupported on ILK, probably because we don't have latency
1857          * data for that power state
1858          */
1859 }
1860
1861 static void sandybridge_update_wm(struct drm_device *dev)
1862 {
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1865         u32 val;
1866         int fbc_wm, plane_wm, cursor_wm;
1867         unsigned int enabled;
1868
1869         enabled = 0;
1870         if (g4x_compute_wm0(dev, PIPE_A,
1871                             &sandybridge_display_wm_info, latency,
1872                             &sandybridge_cursor_wm_info, latency,
1873                             &plane_wm, &cursor_wm)) {
1874                 val = I915_READ(WM0_PIPEA_ILK);
1875                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1876                 I915_WRITE(WM0_PIPEA_ILK, val |
1877                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1878                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1879                               " plane %d, " "cursor: %d\n",
1880                               plane_wm, cursor_wm);
1881                 enabled |= 1 << PIPE_A;
1882         }
1883
1884         if (g4x_compute_wm0(dev, PIPE_B,
1885                             &sandybridge_display_wm_info, latency,
1886                             &sandybridge_cursor_wm_info, latency,
1887                             &plane_wm, &cursor_wm)) {
1888                 val = I915_READ(WM0_PIPEB_ILK);
1889                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1890                 I915_WRITE(WM0_PIPEB_ILK, val |
1891                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1892                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1893                               " plane %d, cursor: %d\n",
1894                               plane_wm, cursor_wm);
1895                 enabled |= 1 << PIPE_B;
1896         }
1897
1898         /*
1899          * Calculate and update the self-refresh watermark only when one
1900          * display plane is used.
1901          *
1902          * SNB support 3 levels of watermark.
1903          *
1904          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1905          * and disabled in the descending order
1906          *
1907          */
1908         I915_WRITE(WM3_LP_ILK, 0);
1909         I915_WRITE(WM2_LP_ILK, 0);
1910         I915_WRITE(WM1_LP_ILK, 0);
1911
1912         if (!single_plane_enabled(enabled) ||
1913             dev_priv->sprite_scaling_enabled)
1914                 return;
1915         enabled = ffs(enabled) - 1;
1916
1917         /* WM1 */
1918         if (!ironlake_compute_srwm(dev, 1, enabled,
1919                                    SNB_READ_WM1_LATENCY() * 500,
1920                                    &sandybridge_display_srwm_info,
1921                                    &sandybridge_cursor_srwm_info,
1922                                    &fbc_wm, &plane_wm, &cursor_wm))
1923                 return;
1924
1925         I915_WRITE(WM1_LP_ILK,
1926                    WM1_LP_SR_EN |
1927                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1928                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1929                    (plane_wm << WM1_LP_SR_SHIFT) |
1930                    cursor_wm);
1931
1932         /* WM2 */
1933         if (!ironlake_compute_srwm(dev, 2, enabled,
1934                                    SNB_READ_WM2_LATENCY() * 500,
1935                                    &sandybridge_display_srwm_info,
1936                                    &sandybridge_cursor_srwm_info,
1937                                    &fbc_wm, &plane_wm, &cursor_wm))
1938                 return;
1939
1940         I915_WRITE(WM2_LP_ILK,
1941                    WM2_LP_EN |
1942                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1943                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1944                    (plane_wm << WM1_LP_SR_SHIFT) |
1945                    cursor_wm);
1946
1947         /* WM3 */
1948         if (!ironlake_compute_srwm(dev, 3, enabled,
1949                                    SNB_READ_WM3_LATENCY() * 500,
1950                                    &sandybridge_display_srwm_info,
1951                                    &sandybridge_cursor_srwm_info,
1952                                    &fbc_wm, &plane_wm, &cursor_wm))
1953                 return;
1954
1955         I915_WRITE(WM3_LP_ILK,
1956                    WM3_LP_EN |
1957                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1958                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1959                    (plane_wm << WM1_LP_SR_SHIFT) |
1960                    cursor_wm);
1961 }
1962
1963 static void ivybridge_update_wm(struct drm_device *dev)
1964 {
1965         struct drm_i915_private *dev_priv = dev->dev_private;
1966         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1967         u32 val;
1968         int fbc_wm, plane_wm, cursor_wm;
1969         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1970         unsigned int enabled;
1971
1972         enabled = 0;
1973         if (g4x_compute_wm0(dev, PIPE_A,
1974                             &sandybridge_display_wm_info, latency,
1975                             &sandybridge_cursor_wm_info, latency,
1976                             &plane_wm, &cursor_wm)) {
1977                 val = I915_READ(WM0_PIPEA_ILK);
1978                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1979                 I915_WRITE(WM0_PIPEA_ILK, val |
1980                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1981                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1982                               " plane %d, " "cursor: %d\n",
1983                               plane_wm, cursor_wm);
1984                 enabled |= 1 << PIPE_A;
1985         }
1986
1987         if (g4x_compute_wm0(dev, PIPE_B,
1988                             &sandybridge_display_wm_info, latency,
1989                             &sandybridge_cursor_wm_info, latency,
1990                             &plane_wm, &cursor_wm)) {
1991                 val = I915_READ(WM0_PIPEB_ILK);
1992                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1993                 I915_WRITE(WM0_PIPEB_ILK, val |
1994                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1995                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1996                               " plane %d, cursor: %d\n",
1997                               plane_wm, cursor_wm);
1998                 enabled |= 1 << PIPE_B;
1999         }
2000
2001         if (g4x_compute_wm0(dev, PIPE_C,
2002                             &sandybridge_display_wm_info, latency,
2003                             &sandybridge_cursor_wm_info, latency,
2004                             &plane_wm, &cursor_wm)) {
2005                 val = I915_READ(WM0_PIPEC_IVB);
2006                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2007                 I915_WRITE(WM0_PIPEC_IVB, val |
2008                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2009                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2010                               " plane %d, cursor: %d\n",
2011                               plane_wm, cursor_wm);
2012                 enabled |= 1 << PIPE_C;
2013         }
2014
2015         /*
2016          * Calculate and update the self-refresh watermark only when one
2017          * display plane is used.
2018          *
2019          * SNB support 3 levels of watermark.
2020          *
2021          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2022          * and disabled in the descending order
2023          *
2024          */
2025         I915_WRITE(WM3_LP_ILK, 0);
2026         I915_WRITE(WM2_LP_ILK, 0);
2027         I915_WRITE(WM1_LP_ILK, 0);
2028
2029         if (!single_plane_enabled(enabled) ||
2030             dev_priv->sprite_scaling_enabled)
2031                 return;
2032         enabled = ffs(enabled) - 1;
2033
2034         /* WM1 */
2035         if (!ironlake_compute_srwm(dev, 1, enabled,
2036                                    SNB_READ_WM1_LATENCY() * 500,
2037                                    &sandybridge_display_srwm_info,
2038                                    &sandybridge_cursor_srwm_info,
2039                                    &fbc_wm, &plane_wm, &cursor_wm))
2040                 return;
2041
2042         I915_WRITE(WM1_LP_ILK,
2043                    WM1_LP_SR_EN |
2044                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2045                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2046                    (plane_wm << WM1_LP_SR_SHIFT) |
2047                    cursor_wm);
2048
2049         /* WM2 */
2050         if (!ironlake_compute_srwm(dev, 2, enabled,
2051                                    SNB_READ_WM2_LATENCY() * 500,
2052                                    &sandybridge_display_srwm_info,
2053                                    &sandybridge_cursor_srwm_info,
2054                                    &fbc_wm, &plane_wm, &cursor_wm))
2055                 return;
2056
2057         I915_WRITE(WM2_LP_ILK,
2058                    WM2_LP_EN |
2059                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2060                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2061                    (plane_wm << WM1_LP_SR_SHIFT) |
2062                    cursor_wm);
2063
2064         /* WM3, note we have to correct the cursor latency */
2065         if (!ironlake_compute_srwm(dev, 3, enabled,
2066                                    SNB_READ_WM3_LATENCY() * 500,
2067                                    &sandybridge_display_srwm_info,
2068                                    &sandybridge_cursor_srwm_info,
2069                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2070             !ironlake_compute_srwm(dev, 3, enabled,
2071                                    2 * SNB_READ_WM3_LATENCY() * 500,
2072                                    &sandybridge_display_srwm_info,
2073                                    &sandybridge_cursor_srwm_info,
2074                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2075                 return;
2076
2077         I915_WRITE(WM3_LP_ILK,
2078                    WM3_LP_EN |
2079                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2080                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2081                    (plane_wm << WM1_LP_SR_SHIFT) |
2082                    cursor_wm);
2083 }
2084
2085 static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
2086                                       struct drm_crtc *crtc)
2087 {
2088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2089         uint32_t pixel_rate, pfit_size;
2090
2091         pixel_rate = intel_crtc->config.adjusted_mode.clock;
2092
2093         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2094          * adjust the pixel_rate here. */
2095
2096         pfit_size = intel_crtc->config.pch_pfit.size;
2097         if (pfit_size) {
2098                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2099
2100                 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2101                 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2102                 pfit_w = (pfit_size >> 16) & 0xFFFF;
2103                 pfit_h = pfit_size & 0xFFFF;
2104                 if (pipe_w < pfit_w)
2105                         pipe_w = pfit_w;
2106                 if (pipe_h < pfit_h)
2107                         pipe_h = pfit_h;
2108
2109                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2110                                      pfit_w * pfit_h);
2111         }
2112
2113         return pixel_rate;
2114 }
2115
2116 static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2117                                uint32_t latency)
2118 {
2119         uint64_t ret;
2120
2121         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2122         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2123
2124         return ret;
2125 }
2126
2127 static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2128                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2129                                uint32_t latency)
2130 {
2131         uint32_t ret;
2132
2133         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2134         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2135         ret = DIV_ROUND_UP(ret, 64) + 2;
2136         return ret;
2137 }
2138
2139 static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2140                            uint8_t bytes_per_pixel)
2141 {
2142         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2143 }
2144
2145 struct hsw_pipe_wm_parameters {
2146         bool active;
2147         bool sprite_enabled;
2148         uint8_t pri_bytes_per_pixel;
2149         uint8_t spr_bytes_per_pixel;
2150         uint8_t cur_bytes_per_pixel;
2151         uint32_t pri_horiz_pixels;
2152         uint32_t spr_horiz_pixels;
2153         uint32_t cur_horiz_pixels;
2154         uint32_t pipe_htotal;
2155         uint32_t pixel_rate;
2156 };
2157
2158 struct hsw_wm_maximums {
2159         uint16_t pri;
2160         uint16_t spr;
2161         uint16_t cur;
2162         uint16_t fbc;
2163 };
2164
2165 struct hsw_lp_wm_result {
2166         bool enable;
2167         bool fbc_enable;
2168         uint32_t pri_val;
2169         uint32_t spr_val;
2170         uint32_t cur_val;
2171         uint32_t fbc_val;
2172 };
2173
2174 struct hsw_wm_values {
2175         uint32_t wm_pipe[3];
2176         uint32_t wm_lp[3];
2177         uint32_t wm_lp_spr[3];
2178         uint32_t wm_linetime[3];
2179         bool enable_fbc_wm;
2180 };
2181
2182 enum hsw_data_buf_partitioning {
2183         HSW_DATA_BUF_PART_1_2,
2184         HSW_DATA_BUF_PART_5_6,
2185 };
2186
2187 /* For both WM_PIPE and WM_LP. */
2188 static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2189                                    uint32_t mem_value,
2190                                    bool is_lp)
2191 {
2192         uint32_t method1, method2;
2193
2194         /* TODO: for now, assume the primary plane is always enabled. */
2195         if (!params->active)
2196                 return 0;
2197
2198         method1 = hsw_wm_method1(params->pixel_rate,
2199                                  params->pri_bytes_per_pixel,
2200                                  mem_value);
2201
2202         if (!is_lp)
2203                 return method1;
2204
2205         method2 = hsw_wm_method2(params->pixel_rate,
2206                                  params->pipe_htotal,
2207                                  params->pri_horiz_pixels,
2208                                  params->pri_bytes_per_pixel,
2209                                  mem_value);
2210
2211         return min(method1, method2);
2212 }
2213
2214 /* For both WM_PIPE and WM_LP. */
2215 static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2216                                    uint32_t mem_value)
2217 {
2218         uint32_t method1, method2;
2219
2220         if (!params->active || !params->sprite_enabled)
2221                 return 0;
2222
2223         method1 = hsw_wm_method1(params->pixel_rate,
2224                                  params->spr_bytes_per_pixel,
2225                                  mem_value);
2226         method2 = hsw_wm_method2(params->pixel_rate,
2227                                  params->pipe_htotal,
2228                                  params->spr_horiz_pixels,
2229                                  params->spr_bytes_per_pixel,
2230                                  mem_value);
2231         return min(method1, method2);
2232 }
2233
2234 /* For both WM_PIPE and WM_LP. */
2235 static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2236                                    uint32_t mem_value)
2237 {
2238         if (!params->active)
2239                 return 0;
2240
2241         return hsw_wm_method2(params->pixel_rate,
2242                               params->pipe_htotal,
2243                               params->cur_horiz_pixels,
2244                               params->cur_bytes_per_pixel,
2245                               mem_value);
2246 }
2247
2248 /* Only for WM_LP. */
2249 static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2250                                    uint32_t pri_val,
2251                                    uint32_t mem_value)
2252 {
2253         if (!params->active)
2254                 return 0;
2255
2256         return hsw_wm_fbc(pri_val,
2257                           params->pri_horiz_pixels,
2258                           params->pri_bytes_per_pixel);
2259 }
2260
2261 static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
2262                               struct hsw_pipe_wm_parameters *params,
2263                               struct hsw_lp_wm_result *result)
2264 {
2265         enum pipe pipe;
2266         uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];
2267
2268         for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
2269                 struct hsw_pipe_wm_parameters *p = &params[pipe];
2270
2271                 pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
2272                 spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
2273                 cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
2274                 fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
2275         }
2276
2277         result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
2278         result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
2279         result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
2280         result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);
2281
2282         if (result->fbc_val > max->fbc) {
2283                 result->fbc_enable = false;
2284                 result->fbc_val = 0;
2285         } else {
2286                 result->fbc_enable = true;
2287         }
2288
2289         result->enable = result->pri_val <= max->pri &&
2290                          result->spr_val <= max->spr &&
2291                          result->cur_val <= max->cur;
2292         return result->enable;
2293 }
2294
2295 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2296                                     uint32_t mem_value, enum pipe pipe,
2297                                     struct hsw_pipe_wm_parameters *params)
2298 {
2299         uint32_t pri_val, cur_val, spr_val;
2300
2301         pri_val = hsw_compute_pri_wm(params, mem_value, false);
2302         spr_val = hsw_compute_spr_wm(params, mem_value);
2303         cur_val = hsw_compute_cur_wm(params, mem_value);
2304
2305         WARN(pri_val > 127,
2306              "Primary WM error, mode not supported for pipe %c\n",
2307              pipe_name(pipe));
2308         WARN(spr_val > 127,
2309              "Sprite WM error, mode not supported for pipe %c\n",
2310              pipe_name(pipe));
2311         WARN(cur_val > 63,
2312              "Cursor WM error, mode not supported for pipe %c\n",
2313              pipe_name(pipe));
2314
2315         return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2316                (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2317                cur_val;
2318 }
2319
2320 static uint32_t
2321 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2322 {
2323         struct drm_i915_private *dev_priv = dev->dev_private;
2324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2325         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2326         u32 linetime, ips_linetime;
2327
2328         if (!intel_crtc_active(crtc))
2329                 return 0;
2330
2331         /* The WM are computed with base on how long it takes to fill a single
2332          * row at the given clock rate, multiplied by 8.
2333          * */
2334         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2335         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2336                                          intel_ddi_get_cdclk_freq(dev_priv));
2337
2338         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2339                PIPE_WM_LINETIME_TIME(linetime);
2340 }
2341
2342 static void hsw_compute_wm_parameters(struct drm_device *dev,
2343                                       struct hsw_pipe_wm_parameters *params,
2344                                       uint32_t *wm,
2345                                       struct hsw_wm_maximums *lp_max_1_2,
2346                                       struct hsw_wm_maximums *lp_max_5_6)
2347 {
2348         struct drm_i915_private *dev_priv = dev->dev_private;
2349         struct drm_crtc *crtc;
2350         struct drm_plane *plane;
2351         uint64_t sskpd = I915_READ64(MCH_SSKPD);
2352         enum pipe pipe;
2353         int pipes_active = 0, sprites_enabled = 0;
2354
2355         if ((sskpd >> 56) & 0xFF)
2356                 wm[0] = (sskpd >> 56) & 0xFF;
2357         else
2358                 wm[0] = sskpd & 0xF;
2359         wm[1] = ((sskpd >> 4) & 0xFF) * 5;
2360         wm[2] = ((sskpd >> 12) & 0xFF) * 5;
2361         wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
2362         wm[4] = ((sskpd >> 32) & 0x1FF) * 5;
2363
2364         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2365                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2366                 struct hsw_pipe_wm_parameters *p;
2367
2368                 pipe = intel_crtc->pipe;
2369                 p = &params[pipe];
2370
2371                 p->active = intel_crtc_active(crtc);
2372                 if (!p->active)
2373                         continue;
2374
2375                 pipes_active++;
2376
2377                 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2378                 p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
2379                 p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2380                 p->cur_bytes_per_pixel = 4;
2381                 p->pri_horiz_pixels =
2382                         intel_crtc->config.requested_mode.hdisplay;
2383                 p->cur_horiz_pixels = 64;
2384         }
2385
2386         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2387                 struct intel_plane *intel_plane = to_intel_plane(plane);
2388                 struct hsw_pipe_wm_parameters *p;
2389
2390                 pipe = intel_plane->pipe;
2391                 p = &params[pipe];
2392
2393                 p->sprite_enabled = intel_plane->wm.enable;
2394                 p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
2395                 p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2396
2397                 if (p->sprite_enabled)
2398                         sprites_enabled++;
2399         }
2400
2401         if (pipes_active > 1) {
2402                 lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
2403                 lp_max_1_2->spr = lp_max_5_6->spr = 128;
2404                 lp_max_1_2->cur = lp_max_5_6->cur = 64;
2405         } else {
2406                 lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2407                 lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2408                 lp_max_1_2->spr = 384;
2409                 lp_max_5_6->spr = 640;
2410                 lp_max_1_2->cur = lp_max_5_6->cur = 255;
2411         }
2412         lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2413 }
2414
2415 static void hsw_compute_wm_results(struct drm_device *dev,
2416                                    struct hsw_pipe_wm_parameters *params,
2417                                    uint32_t *wm,
2418                                    struct hsw_wm_maximums *lp_maximums,
2419                                    struct hsw_wm_values *results)
2420 {
2421         struct drm_i915_private *dev_priv = dev->dev_private;
2422         struct drm_crtc *crtc;
2423         struct hsw_lp_wm_result lp_results[4] = {};
2424         enum pipe pipe;
2425         int level, max_level, wm_lp;
2426
2427         for (level = 1; level <= 4; level++)
2428                 if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
2429                                        &lp_results[level - 1]))
2430                         break;
2431         max_level = level - 1;
2432
2433         /* The spec says it is preferred to disable FBC WMs instead of disabling
2434          * a WM level. */
2435         results->enable_fbc_wm = true;
2436         for (level = 1; level <= max_level; level++) {
2437                 if (!lp_results[level - 1].fbc_enable) {
2438                         results->enable_fbc_wm = false;
2439                         break;
2440                 }
2441         }
2442
2443         memset(results, 0, sizeof(*results));
2444         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2445                 const struct hsw_lp_wm_result *r;
2446
2447                 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2448                 if (level > max_level)
2449                         break;
2450
2451                 r = &lp_results[level - 1];
2452                 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2453                                                           r->fbc_val,
2454                                                           r->pri_val,
2455                                                           r->cur_val);
2456                 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2457         }
2458
2459         for_each_pipe(pipe)
2460                 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
2461                                                              pipe,
2462                                                              &params[pipe]);
2463
2464         for_each_pipe(pipe) {
2465                 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2466                 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2467         }
2468 }
2469
2470 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2471  * case both are at the same level. Prefer r1 in case they're the same. */
2472 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2473                                                   struct hsw_wm_values *r2)
2474 {
2475         int i, val_r1 = 0, val_r2 = 0;
2476
2477         for (i = 0; i < 3; i++) {
2478                 if (r1->wm_lp[i] & WM3_LP_EN)
2479                         val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2480                 if (r2->wm_lp[i] & WM3_LP_EN)
2481                         val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2482         }
2483
2484         if (val_r1 == val_r2) {
2485                 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2486                         return r2;
2487                 else
2488                         return r1;
2489         } else if (val_r1 > val_r2) {
2490                 return r1;
2491         } else {
2492                 return r2;
2493         }
2494 }
2495
2496 /*
2497  * The spec says we shouldn't write when we don't need, because every write
2498  * causes WMs to be re-evaluated, expending some power.
2499  */
2500 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2501                                 struct hsw_wm_values *results,
2502                                 enum hsw_data_buf_partitioning partitioning)
2503 {
2504         struct hsw_wm_values previous;
2505         uint32_t val;
2506         enum hsw_data_buf_partitioning prev_partitioning;
2507         bool prev_enable_fbc_wm;
2508
2509         previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2510         previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2511         previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2512         previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2513         previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2514         previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2515         previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2516         previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2517         previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2518         previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2519         previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2520         previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2521
2522         prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2523                             HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;
2524
2525         prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2526
2527         if (memcmp(results->wm_pipe, previous.wm_pipe,
2528                    sizeof(results->wm_pipe)) == 0 &&
2529             memcmp(results->wm_lp, previous.wm_lp,
2530                    sizeof(results->wm_lp)) == 0 &&
2531             memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2532                    sizeof(results->wm_lp_spr)) == 0 &&
2533             memcmp(results->wm_linetime, previous.wm_linetime,
2534                    sizeof(results->wm_linetime)) == 0 &&
2535             partitioning == prev_partitioning &&
2536             results->enable_fbc_wm == prev_enable_fbc_wm)
2537                 return;
2538
2539         if (previous.wm_lp[2] != 0)
2540                 I915_WRITE(WM3_LP_ILK, 0);
2541         if (previous.wm_lp[1] != 0)
2542                 I915_WRITE(WM2_LP_ILK, 0);
2543         if (previous.wm_lp[0] != 0)
2544                 I915_WRITE(WM1_LP_ILK, 0);
2545
2546         if (previous.wm_pipe[0] != results->wm_pipe[0])
2547                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2548         if (previous.wm_pipe[1] != results->wm_pipe[1])
2549                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2550         if (previous.wm_pipe[2] != results->wm_pipe[2])
2551                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2552
2553         if (previous.wm_linetime[0] != results->wm_linetime[0])
2554                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2555         if (previous.wm_linetime[1] != results->wm_linetime[1])
2556                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2557         if (previous.wm_linetime[2] != results->wm_linetime[2])
2558                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2559
2560         if (prev_partitioning != partitioning) {
2561                 val = I915_READ(WM_MISC);
2562                 if (partitioning == HSW_DATA_BUF_PART_1_2)
2563                         val &= ~WM_MISC_DATA_PARTITION_5_6;
2564                 else
2565                         val |= WM_MISC_DATA_PARTITION_5_6;
2566                 I915_WRITE(WM_MISC, val);
2567         }
2568
2569         if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2570                 val = I915_READ(DISP_ARB_CTL);
2571                 if (results->enable_fbc_wm)
2572                         val &= ~DISP_FBC_WM_DIS;
2573                 else
2574                         val |= DISP_FBC_WM_DIS;
2575                 I915_WRITE(DISP_ARB_CTL, val);
2576         }
2577
2578         if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2579                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2580         if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2581                 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2582         if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2583                 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2584
2585         if (results->wm_lp[0] != 0)
2586                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2587         if (results->wm_lp[1] != 0)
2588                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2589         if (results->wm_lp[2] != 0)
2590                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2591 }
2592
2593 static void haswell_update_wm(struct drm_device *dev)
2594 {
2595         struct drm_i915_private *dev_priv = dev->dev_private;
2596         struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2597         struct hsw_pipe_wm_parameters params[3];
2598         struct hsw_wm_values results_1_2, results_5_6, *best_results;
2599         uint32_t wm[5];
2600         enum hsw_data_buf_partitioning partitioning;
2601
2602         hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);
2603
2604         hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
2605         if (lp_max_1_2.pri != lp_max_5_6.pri) {
2606                 hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
2607                                        &results_5_6);
2608                 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2609         } else {
2610                 best_results = &results_1_2;
2611         }
2612
2613         partitioning = (best_results == &results_1_2) ?
2614                        HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2615
2616         hsw_write_wm_values(dev_priv, best_results, partitioning);
2617 }
2618
2619 static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
2620                                      uint32_t sprite_width, int pixel_size,
2621                                      bool enable)
2622 {
2623         struct drm_plane *plane;
2624
2625         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2626                 struct intel_plane *intel_plane = to_intel_plane(plane);
2627
2628                 if (intel_plane->pipe == pipe) {
2629                         intel_plane->wm.enable = enable;
2630                         intel_plane->wm.horiz_pixels = sprite_width + 1;
2631                         intel_plane->wm.bytes_per_pixel = pixel_size;
2632                         break;
2633                 }
2634         }
2635
2636         haswell_update_wm(dev);
2637 }
2638
2639 static bool
2640 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2641                               uint32_t sprite_width, int pixel_size,
2642                               const struct intel_watermark_params *display,
2643                               int display_latency_ns, int *sprite_wm)
2644 {
2645         struct drm_crtc *crtc;
2646         int clock;
2647         int entries, tlb_miss;
2648
2649         crtc = intel_get_crtc_for_plane(dev, plane);
2650         if (!intel_crtc_active(crtc)) {
2651                 *sprite_wm = display->guard_size;
2652                 return false;
2653         }
2654
2655         clock = crtc->mode.clock;
2656
2657         /* Use the small buffer method to calculate the sprite watermark */
2658         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2659         tlb_miss = display->fifo_size*display->cacheline_size -
2660                 sprite_width * 8;
2661         if (tlb_miss > 0)
2662                 entries += tlb_miss;
2663         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2664         *sprite_wm = entries + display->guard_size;
2665         if (*sprite_wm > (int)display->max_wm)
2666                 *sprite_wm = display->max_wm;
2667
2668         return true;
2669 }
2670
2671 static bool
2672 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2673                                 uint32_t sprite_width, int pixel_size,
2674                                 const struct intel_watermark_params *display,
2675                                 int latency_ns, int *sprite_wm)
2676 {
2677         struct drm_crtc *crtc;
2678         unsigned long line_time_us;
2679         int clock;
2680         int line_count, line_size;
2681         int small, large;
2682         int entries;
2683
2684         if (!latency_ns) {
2685                 *sprite_wm = 0;
2686                 return false;
2687         }
2688
2689         crtc = intel_get_crtc_for_plane(dev, plane);
2690         clock = crtc->mode.clock;
2691         if (!clock) {
2692                 *sprite_wm = 0;
2693                 return false;
2694         }
2695
2696         line_time_us = (sprite_width * 1000) / clock;
2697         if (!line_time_us) {
2698                 *sprite_wm = 0;
2699                 return false;
2700         }
2701
2702         line_count = (latency_ns / line_time_us + 1000) / 1000;
2703         line_size = sprite_width * pixel_size;
2704
2705         /* Use the minimum of the small and large buffer method for primary */
2706         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2707         large = line_count * line_size;
2708
2709         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2710         *sprite_wm = entries + display->guard_size;
2711
2712         return *sprite_wm > 0x3ff ? false : true;
2713 }
2714
2715 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2716                                          uint32_t sprite_width, int pixel_size,
2717                                          bool enable)
2718 {
2719         struct drm_i915_private *dev_priv = dev->dev_private;
2720         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2721         u32 val;
2722         int sprite_wm, reg;
2723         int ret;
2724
2725         if (!enable)
2726                 return;
2727
2728         switch (pipe) {
2729         case 0:
2730                 reg = WM0_PIPEA_ILK;
2731                 break;
2732         case 1:
2733                 reg = WM0_PIPEB_ILK;
2734                 break;
2735         case 2:
2736                 reg = WM0_PIPEC_IVB;
2737                 break;
2738         default:
2739                 return; /* bad pipe */
2740         }
2741
2742         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2743                                             &sandybridge_display_wm_info,
2744                                             latency, &sprite_wm);
2745         if (!ret) {
2746                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2747                               pipe_name(pipe));
2748                 return;
2749         }
2750
2751         val = I915_READ(reg);
2752         val &= ~WM0_PIPE_SPRITE_MASK;
2753         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2754         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2755
2756
2757         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2758                                               pixel_size,
2759                                               &sandybridge_display_srwm_info,
2760                                               SNB_READ_WM1_LATENCY() * 500,
2761                                               &sprite_wm);
2762         if (!ret) {
2763                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2764                               pipe_name(pipe));
2765                 return;
2766         }
2767         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2768
2769         /* Only IVB has two more LP watermarks for sprite */
2770         if (!IS_IVYBRIDGE(dev))
2771                 return;
2772
2773         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2774                                               pixel_size,
2775                                               &sandybridge_display_srwm_info,
2776                                               SNB_READ_WM2_LATENCY() * 500,
2777                                               &sprite_wm);
2778         if (!ret) {
2779                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2780                               pipe_name(pipe));
2781                 return;
2782         }
2783         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2784
2785         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2786                                               pixel_size,
2787                                               &sandybridge_display_srwm_info,
2788                                               SNB_READ_WM3_LATENCY() * 500,
2789                                               &sprite_wm);
2790         if (!ret) {
2791                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2792                               pipe_name(pipe));
2793                 return;
2794         }
2795         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2796 }
2797
2798 /**
2799  * intel_update_watermarks - update FIFO watermark values based on current modes
2800  *
2801  * Calculate watermark values for the various WM regs based on current mode
2802  * and plane configuration.
2803  *
2804  * There are several cases to deal with here:
2805  *   - normal (i.e. non-self-refresh)
2806  *   - self-refresh (SR) mode
2807  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2808  *   - lines are small relative to FIFO size (buffer can hold more than 2
2809  *     lines), so need to account for TLB latency
2810  *
2811  *   The normal calculation is:
2812  *     watermark = dotclock * bytes per pixel * latency
2813  *   where latency is platform & configuration dependent (we assume pessimal
2814  *   values here).
2815  *
2816  *   The SR calculation is:
2817  *     watermark = (trunc(latency/line time)+1) * surface width *
2818  *       bytes per pixel
2819  *   where
2820  *     line time = htotal / dotclock
2821  *     surface width = hdisplay for normal plane and 64 for cursor
2822  *   and latency is assumed to be high, as above.
2823  *
2824  * The final value programmed to the register should always be rounded up,
2825  * and include an extra 2 entries to account for clock crossings.
2826  *
2827  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2828  * to set the non-SR watermarks to 8.
2829  */
2830 void intel_update_watermarks(struct drm_device *dev)
2831 {
2832         struct drm_i915_private *dev_priv = dev->dev_private;
2833
2834         if (dev_priv->display.update_wm)
2835                 dev_priv->display.update_wm(dev);
2836 }
2837
2838 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2839                                     uint32_t sprite_width, int pixel_size,
2840                                     bool enable)
2841 {
2842         struct drm_i915_private *dev_priv = dev->dev_private;
2843
2844         if (dev_priv->display.update_sprite_wm)
2845                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2846                                                    pixel_size, enable);
2847 }
2848
2849 static struct drm_i915_gem_object *
2850 intel_alloc_context_page(struct drm_device *dev)
2851 {
2852         struct drm_i915_gem_object *ctx;
2853         int ret;
2854
2855         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2856
2857         ctx = i915_gem_alloc_object(dev, 4096);
2858         if (!ctx) {
2859                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2860                 return NULL;
2861         }
2862
2863         ret = i915_gem_object_pin(ctx, 4096, true, false);
2864         if (ret) {
2865                 DRM_ERROR("failed to pin power context: %d\n", ret);
2866                 goto err_unref;
2867         }
2868
2869         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2870         if (ret) {
2871                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2872                 goto err_unpin;
2873         }
2874
2875         return ctx;
2876
2877 err_unpin:
2878         i915_gem_object_unpin(ctx);
2879 err_unref:
2880         drm_gem_object_unreference(&ctx->base);
2881         return NULL;
2882 }
2883
2884 /**
2885  * Lock protecting IPS related data structures
2886  */
2887 DEFINE_SPINLOCK(mchdev_lock);
2888
2889 /* Global for IPS driver to get at the current i915 device. Protected by
2890  * mchdev_lock. */
2891 static struct drm_i915_private *i915_mch_dev;
2892
2893 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2894 {
2895         struct drm_i915_private *dev_priv = dev->dev_private;
2896         u16 rgvswctl;
2897
2898         assert_spin_locked(&mchdev_lock);
2899
2900         rgvswctl = I915_READ16(MEMSWCTL);
2901         if (rgvswctl & MEMCTL_CMD_STS) {
2902                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2903                 return false; /* still busy with another command */
2904         }
2905
2906         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2907                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2908         I915_WRITE16(MEMSWCTL, rgvswctl);
2909         POSTING_READ16(MEMSWCTL);
2910
2911         rgvswctl |= MEMCTL_CMD_STS;
2912         I915_WRITE16(MEMSWCTL, rgvswctl);
2913
2914         return true;
2915 }
2916
2917 static void ironlake_enable_drps(struct drm_device *dev)
2918 {
2919         struct drm_i915_private *dev_priv = dev->dev_private;
2920         u32 rgvmodectl = I915_READ(MEMMODECTL);
2921         u8 fmax, fmin, fstart, vstart;
2922
2923         spin_lock_irq(&mchdev_lock);
2924
2925         /* Enable temp reporting */
2926         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2927         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2928
2929         /* 100ms RC evaluation intervals */
2930         I915_WRITE(RCUPEI, 100000);
2931         I915_WRITE(RCDNEI, 100000);
2932
2933         /* Set max/min thresholds to 90ms and 80ms respectively */
2934         I915_WRITE(RCBMAXAVG, 90000);
2935         I915_WRITE(RCBMINAVG, 80000);
2936
2937         I915_WRITE(MEMIHYST, 1);
2938
2939         /* Set up min, max, and cur for interrupt handling */
2940         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2941         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2942         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2943                 MEMMODE_FSTART_SHIFT;
2944
2945         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2946                 PXVFREQ_PX_SHIFT;
2947
2948         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2949         dev_priv->ips.fstart = fstart;
2950
2951         dev_priv->ips.max_delay = fstart;
2952         dev_priv->ips.min_delay = fmin;
2953         dev_priv->ips.cur_delay = fstart;
2954
2955         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2956                          fmax, fmin, fstart);
2957
2958         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2959
2960         /*
2961          * Interrupts will be enabled in ironlake_irq_postinstall
2962          */
2963
2964         I915_WRITE(VIDSTART, vstart);
2965         POSTING_READ(VIDSTART);
2966
2967         rgvmodectl |= MEMMODE_SWMODE_EN;
2968         I915_WRITE(MEMMODECTL, rgvmodectl);
2969
2970         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2971                 DRM_ERROR("stuck trying to change perf mode\n");
2972         mdelay(1);
2973
2974         ironlake_set_drps(dev, fstart);
2975
2976         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2977                 I915_READ(0x112e0);
2978         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2979         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2980         getrawmonotonic(&dev_priv->ips.last_time2);
2981
2982         spin_unlock_irq(&mchdev_lock);
2983 }
2984
2985 static void ironlake_disable_drps(struct drm_device *dev)
2986 {
2987         struct drm_i915_private *dev_priv = dev->dev_private;
2988         u16 rgvswctl;
2989
2990         spin_lock_irq(&mchdev_lock);
2991
2992         rgvswctl = I915_READ16(MEMSWCTL);
2993
2994         /* Ack interrupts, disable EFC interrupt */
2995         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2996         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2997         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2998         I915_WRITE(DEIIR, DE_PCU_EVENT);
2999         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3000
3001         /* Go back to the starting frequency */
3002         ironlake_set_drps(dev, dev_priv->ips.fstart);
3003         mdelay(1);
3004         rgvswctl |= MEMCTL_CMD_STS;
3005         I915_WRITE(MEMSWCTL, rgvswctl);
3006         mdelay(1);
3007
3008         spin_unlock_irq(&mchdev_lock);
3009 }
3010
3011 /* There's a funny hw issue where the hw returns all 0 when reading from
3012  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3013  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3014  * all limits and the gpu stuck at whatever frequency it is at atm).
3015  */
3016 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3017 {
3018         u32 limits;
3019
3020         limits = 0;
3021
3022         if (*val >= dev_priv->rps.max_delay)
3023                 *val = dev_priv->rps.max_delay;
3024         limits |= dev_priv->rps.max_delay << 24;
3025
3026         /* Only set the down limit when we've reached the lowest level to avoid
3027          * getting more interrupts, otherwise leave this clear. This prevents a
3028          * race in the hw when coming out of rc6: There's a tiny window where
3029          * the hw runs at the minimal clock before selecting the desired
3030          * frequency, if the down threshold expires in that window we will not
3031          * receive a down interrupt. */
3032         if (*val <= dev_priv->rps.min_delay) {
3033                 *val = dev_priv->rps.min_delay;
3034                 limits |= dev_priv->rps.min_delay << 16;
3035         }
3036
3037         return limits;
3038 }
3039
3040 void gen6_set_rps(struct drm_device *dev, u8 val)
3041 {
3042         struct drm_i915_private *dev_priv = dev->dev_private;
3043         u32 limits = gen6_rps_limits(dev_priv, &val);
3044
3045         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3046         WARN_ON(val > dev_priv->rps.max_delay);
3047         WARN_ON(val < dev_priv->rps.min_delay);
3048
3049         if (val == dev_priv->rps.cur_delay)
3050                 return;
3051
3052         if (IS_HASWELL(dev))
3053                 I915_WRITE(GEN6_RPNSWREQ,
3054                            HSW_FREQUENCY(val));
3055         else
3056                 I915_WRITE(GEN6_RPNSWREQ,
3057                            GEN6_FREQUENCY(val) |
3058                            GEN6_OFFSET(0) |
3059                            GEN6_AGGRESSIVE_TURBO);
3060
3061         /* Make sure we continue to get interrupts
3062          * until we hit the minimum or maximum frequencies.
3063          */
3064         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3065
3066         POSTING_READ(GEN6_RPNSWREQ);
3067
3068         dev_priv->rps.cur_delay = val;
3069
3070         trace_intel_gpu_freq_change(val * 50);
3071 }
3072
3073 /*
3074  * Wait until the previous freq change has completed,
3075  * or the timeout elapsed, and then update our notion
3076  * of the current GPU frequency.
3077  */
3078 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3079 {
3080         u32 pval;
3081
3082         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3083
3084         if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3085                 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3086
3087         pval >>= 8;
3088
3089         if (pval != dev_priv->rps.cur_delay)
3090                 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3091                                  vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3092                                  dev_priv->rps.cur_delay,
3093                                  vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3094
3095         dev_priv->rps.cur_delay = pval;
3096 }
3097
3098 void valleyview_set_rps(struct drm_device *dev, u8 val)
3099 {
3100         struct drm_i915_private *dev_priv = dev->dev_private;
3101
3102         gen6_rps_limits(dev_priv, &val);
3103
3104         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3105         WARN_ON(val > dev_priv->rps.max_delay);
3106         WARN_ON(val < dev_priv->rps.min_delay);
3107
3108         vlv_update_rps_cur_delay(dev_priv);
3109
3110         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3111                          vlv_gpu_freq(dev_priv->mem_freq,
3112                                       dev_priv->rps.cur_delay),
3113                          dev_priv->rps.cur_delay,
3114                          vlv_gpu_freq(dev_priv->mem_freq, val), val);
3115
3116         if (val == dev_priv->rps.cur_delay)
3117                 return;
3118
3119         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3120
3121         dev_priv->rps.cur_delay = val;
3122
3123         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3124 }
3125
3126 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3127 {
3128         struct drm_i915_private *dev_priv = dev->dev_private;
3129
3130         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3131         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3132         /* Complete PM interrupt masking here doesn't race with the rps work
3133          * item again unmasking PM interrupts because that is using a different
3134          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3135          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3136
3137         spin_lock_irq(&dev_priv->irq_lock);
3138         dev_priv->rps.pm_iir = 0;
3139         spin_unlock_irq(&dev_priv->irq_lock);
3140
3141         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3142 }
3143
3144 static void gen6_disable_rps(struct drm_device *dev)
3145 {
3146         struct drm_i915_private *dev_priv = dev->dev_private;
3147
3148         I915_WRITE(GEN6_RC_CONTROL, 0);
3149         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3150
3151         gen6_disable_rps_interrupts(dev);
3152 }
3153
3154 static void valleyview_disable_rps(struct drm_device *dev)
3155 {
3156         struct drm_i915_private *dev_priv = dev->dev_private;
3157
3158         I915_WRITE(GEN6_RC_CONTROL, 0);
3159
3160         gen6_disable_rps_interrupts(dev);
3161
3162         if (dev_priv->vlv_pctx) {
3163                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3164                 dev_priv->vlv_pctx = NULL;
3165         }
3166 }
3167
3168 int intel_enable_rc6(const struct drm_device *dev)
3169 {
3170         /* Respect the kernel parameter if it is set */
3171         if (i915_enable_rc6 >= 0)
3172                 return i915_enable_rc6;
3173
3174         /* Disable RC6 on Ironlake */
3175         if (INTEL_INFO(dev)->gen == 5)
3176                 return 0;
3177
3178         if (IS_HASWELL(dev)) {
3179                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3180                 return INTEL_RC6_ENABLE;
3181         }
3182
3183         /* snb/ivb have more than one rc6 state. */
3184         if (INTEL_INFO(dev)->gen == 6) {
3185                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3186                 return INTEL_RC6_ENABLE;
3187         }
3188
3189         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3190         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3191 }
3192
3193 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3194 {
3195         struct drm_i915_private *dev_priv = dev->dev_private;
3196
3197         spin_lock_irq(&dev_priv->irq_lock);
3198         WARN_ON(dev_priv->rps.pm_iir);
3199         I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
3200         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3201         spin_unlock_irq(&dev_priv->irq_lock);
3202         /* unmask all PM interrupts */
3203         I915_WRITE(GEN6_PMINTRMSK, 0);
3204 }
3205
3206 static void gen6_enable_rps(struct drm_device *dev)
3207 {
3208         struct drm_i915_private *dev_priv = dev->dev_private;
3209         struct intel_ring_buffer *ring;
3210         u32 rp_state_cap;
3211         u32 gt_perf_status;
3212         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3213         u32 gtfifodbg;
3214         int rc6_mode;
3215         int i, ret;
3216
3217         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3218
3219         /* Here begins a magic sequence of register writes to enable
3220          * auto-downclocking.
3221          *
3222          * Perhaps there might be some value in exposing these to
3223          * userspace...
3224          */
3225         I915_WRITE(GEN6_RC_STATE, 0);
3226
3227         /* Clear the DBG now so we don't confuse earlier errors */
3228         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3229                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3230                 I915_WRITE(GTFIFODBG, gtfifodbg);
3231         }
3232
3233         gen6_gt_force_wake_get(dev_priv);
3234
3235         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3236         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3237
3238         /* In units of 50MHz */
3239         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3240         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3241         dev_priv->rps.cur_delay = 0;
3242
3243         /* disable the counters and set deterministic thresholds */
3244         I915_WRITE(GEN6_RC_CONTROL, 0);
3245
3246         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3247         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3248         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3249         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3250         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3251
3252         for_each_ring(ring, dev_priv, i)
3253                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3254
3255         I915_WRITE(GEN6_RC_SLEEP, 0);
3256         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3257         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3258         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3259         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3260
3261         /* Check if we are enabling RC6 */
3262         rc6_mode = intel_enable_rc6(dev_priv->dev);
3263         if (rc6_mode & INTEL_RC6_ENABLE)
3264                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3265
3266         /* We don't use those on Haswell */
3267         if (!IS_HASWELL(dev)) {
3268                 if (rc6_mode & INTEL_RC6p_ENABLE)
3269                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3270
3271                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3272                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3273         }
3274
3275         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3276                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3277                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3278                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3279
3280         I915_WRITE(GEN6_RC_CONTROL,
3281                    rc6_mask |
3282                    GEN6_RC_CTL_EI_MODE(1) |
3283                    GEN6_RC_CTL_HW_ENABLE);
3284
3285         if (IS_HASWELL(dev)) {
3286                 I915_WRITE(GEN6_RPNSWREQ,
3287                            HSW_FREQUENCY(10));
3288                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3289                            HSW_FREQUENCY(12));
3290         } else {
3291                 I915_WRITE(GEN6_RPNSWREQ,
3292                            GEN6_FREQUENCY(10) |
3293                            GEN6_OFFSET(0) |
3294                            GEN6_AGGRESSIVE_TURBO);
3295                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3296                            GEN6_FREQUENCY(12));
3297         }
3298
3299         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3300         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3301                    dev_priv->rps.max_delay << 24 |
3302                    dev_priv->rps.min_delay << 16);
3303
3304         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3305         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3306         I915_WRITE(GEN6_RP_UP_EI, 66000);
3307         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3308
3309         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3310         I915_WRITE(GEN6_RP_CONTROL,
3311                    GEN6_RP_MEDIA_TURBO |
3312                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3313                    GEN6_RP_MEDIA_IS_GFX |
3314                    GEN6_RP_ENABLE |
3315                    GEN6_RP_UP_BUSY_AVG |
3316                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3317
3318         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3319         if (!ret) {
3320                 pcu_mbox = 0;
3321                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3322                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3323                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3324                                          (dev_priv->rps.max_delay & 0xff) * 50,
3325                                          (pcu_mbox & 0xff) * 50);
3326                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3327                 }
3328         } else {
3329                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3330         }
3331
3332         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3333
3334         gen6_enable_rps_interrupts(dev);
3335
3336         rc6vids = 0;
3337         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3338         if (IS_GEN6(dev) && ret) {
3339                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3340         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3341                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3342                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3343                 rc6vids &= 0xffff00;
3344                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3345                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3346                 if (ret)
3347                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3348         }
3349
3350         gen6_gt_force_wake_put(dev_priv);
3351 }
3352
3353 static void gen6_update_ring_freq(struct drm_device *dev)
3354 {
3355         struct drm_i915_private *dev_priv = dev->dev_private;
3356         int min_freq = 15;
3357         unsigned int gpu_freq;
3358         unsigned int max_ia_freq, min_ring_freq;
3359         int scaling_factor = 180;
3360
3361         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3362
3363         max_ia_freq = cpufreq_quick_get_max(0);
3364         /*
3365          * Default to measured freq if none found, PCU will ensure we don't go
3366          * over
3367          */
3368         if (!max_ia_freq)
3369                 max_ia_freq = tsc_khz;
3370
3371         /* Convert from kHz to MHz */
3372         max_ia_freq /= 1000;
3373
3374         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3375         /* convert DDR frequency from units of 133.3MHz to bandwidth */
3376         min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3377
3378         /*
3379          * For each potential GPU frequency, load a ring frequency we'd like
3380          * to use for memory access.  We do this by specifying the IA frequency
3381          * the PCU should use as a reference to determine the ring frequency.
3382          */
3383         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3384              gpu_freq--) {
3385                 int diff = dev_priv->rps.max_delay - gpu_freq;
3386                 unsigned int ia_freq = 0, ring_freq = 0;
3387
3388                 if (IS_HASWELL(dev)) {
3389                         ring_freq = (gpu_freq * 5 + 3) / 4;
3390                         ring_freq = max(min_ring_freq, ring_freq);
3391                         /* leave ia_freq as the default, chosen by cpufreq */
3392                 } else {
3393                         /* On older processors, there is no separate ring
3394                          * clock domain, so in order to boost the bandwidth
3395                          * of the ring, we need to upclock the CPU (ia_freq).
3396                          *
3397                          * For GPU frequencies less than 750MHz,
3398                          * just use the lowest ring freq.
3399                          */
3400                         if (gpu_freq < min_freq)
3401                                 ia_freq = 800;
3402                         else
3403                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3404                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3405                 }
3406
3407                 sandybridge_pcode_write(dev_priv,
3408                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3409                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3410                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3411                                         gpu_freq);
3412         }
3413 }
3414
3415 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3416 {
3417         u32 val, rp0;
3418
3419         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3420
3421         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3422         /* Clamp to max */
3423         rp0 = min_t(u32, rp0, 0xea);
3424
3425         return rp0;
3426 }
3427
3428 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3429 {
3430         u32 val, rpe;
3431
3432         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3433         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3434         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3435         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3436
3437         return rpe;
3438 }
3439
3440 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3441 {
3442         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3443 }
3444
3445 static void vlv_rps_timer_work(struct work_struct *work)
3446 {
3447         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3448                                                     rps.vlv_work.work);
3449
3450         /*
3451          * Timer fired, we must be idle.  Drop to min voltage state.
3452          * Note: we use RPe here since it should match the
3453          * Vmin we were shooting for.  That should give us better
3454          * perf when we come back out of RC6 than if we used the
3455          * min freq available.
3456          */
3457         mutex_lock(&dev_priv->rps.hw_lock);
3458         if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3459                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3460         mutex_unlock(&dev_priv->rps.hw_lock);
3461 }
3462
3463 static void valleyview_setup_pctx(struct drm_device *dev)
3464 {
3465         struct drm_i915_private *dev_priv = dev->dev_private;
3466         struct drm_i915_gem_object *pctx;
3467         unsigned long pctx_paddr;
3468         u32 pcbr;
3469         int pctx_size = 24*1024;
3470
3471         pcbr = I915_READ(VLV_PCBR);
3472         if (pcbr) {
3473                 /* BIOS set it up already, grab the pre-alloc'd space */
3474                 int pcbr_offset;
3475
3476                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3477                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3478                                                                       pcbr_offset,
3479                                                                       I915_GTT_OFFSET_NONE,
3480                                                                       pctx_size);
3481                 goto out;
3482         }
3483
3484         /*
3485          * From the Gunit register HAS:
3486          * The Gfx driver is expected to program this register and ensure
3487          * proper allocation within Gfx stolen memory.  For example, this
3488          * register should be programmed such than the PCBR range does not
3489          * overlap with other ranges, such as the frame buffer, protected
3490          * memory, or any other relevant ranges.
3491          */
3492         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3493         if (!pctx) {
3494                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3495                 return;
3496         }
3497
3498         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3499         I915_WRITE(VLV_PCBR, pctx_paddr);
3500
3501 out:
3502         dev_priv->vlv_pctx = pctx;
3503 }
3504
3505 static void valleyview_enable_rps(struct drm_device *dev)
3506 {
3507         struct drm_i915_private *dev_priv = dev->dev_private;
3508         struct intel_ring_buffer *ring;
3509         u32 gtfifodbg, val;
3510         int i;
3511
3512         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3513
3514         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3515                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3516                 I915_WRITE(GTFIFODBG, gtfifodbg);
3517         }
3518
3519         valleyview_setup_pctx(dev);
3520
3521         gen6_gt_force_wake_get(dev_priv);
3522
3523         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3524         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3525         I915_WRITE(GEN6_RP_UP_EI, 66000);
3526         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3527
3528         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3529
3530         I915_WRITE(GEN6_RP_CONTROL,
3531                    GEN6_RP_MEDIA_TURBO |
3532                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3533                    GEN6_RP_MEDIA_IS_GFX |
3534                    GEN6_RP_ENABLE |
3535                    GEN6_RP_UP_BUSY_AVG |
3536                    GEN6_RP_DOWN_IDLE_CONT);
3537
3538         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3539         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3540         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3541
3542         for_each_ring(ring, dev_priv, i)
3543                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3544
3545         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3546
3547         /* allows RC6 residency counter to work */
3548         I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3549         I915_WRITE(GEN6_RC_CONTROL,
3550                    GEN7_RC_CTL_TO_MODE);
3551
3552         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3553         switch ((val >> 6) & 3) {
3554         case 0:
3555         case 1:
3556                 dev_priv->mem_freq = 800;
3557                 break;
3558         case 2:
3559                 dev_priv->mem_freq = 1066;
3560                 break;
3561         case 3:
3562                 dev_priv->mem_freq = 1333;
3563                 break;
3564         }
3565         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3566
3567         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3568         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3569
3570         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3571         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3572                          vlv_gpu_freq(dev_priv->mem_freq,
3573                                       dev_priv->rps.cur_delay),
3574                          dev_priv->rps.cur_delay);
3575
3576         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3577         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3578         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3579                          vlv_gpu_freq(dev_priv->mem_freq,
3580                                       dev_priv->rps.max_delay),
3581                          dev_priv->rps.max_delay);
3582
3583         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3584         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3585                          vlv_gpu_freq(dev_priv->mem_freq,
3586                                       dev_priv->rps.rpe_delay),
3587                          dev_priv->rps.rpe_delay);
3588
3589         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3590         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3591                          vlv_gpu_freq(dev_priv->mem_freq,
3592                                       dev_priv->rps.min_delay),
3593                          dev_priv->rps.min_delay);
3594
3595         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3596                          vlv_gpu_freq(dev_priv->mem_freq,
3597                                       dev_priv->rps.rpe_delay),
3598                          dev_priv->rps.rpe_delay);
3599
3600         INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3601
3602         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3603
3604         gen6_enable_rps_interrupts(dev);
3605
3606         gen6_gt_force_wake_put(dev_priv);
3607 }
3608
3609 void ironlake_teardown_rc6(struct drm_device *dev)
3610 {
3611         struct drm_i915_private *dev_priv = dev->dev_private;
3612
3613         if (dev_priv->ips.renderctx) {
3614                 i915_gem_object_unpin(dev_priv->ips.renderctx);
3615                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3616                 dev_priv->ips.renderctx = NULL;
3617         }
3618
3619         if (dev_priv->ips.pwrctx) {
3620                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3621                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3622                 dev_priv->ips.pwrctx = NULL;
3623         }
3624 }
3625
3626 static void ironlake_disable_rc6(struct drm_device *dev)
3627 {
3628         struct drm_i915_private *dev_priv = dev->dev_private;
3629
3630         if (I915_READ(PWRCTXA)) {
3631                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3632                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3633                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3634                          50);
3635
3636                 I915_WRITE(PWRCTXA, 0);
3637                 POSTING_READ(PWRCTXA);
3638
3639                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3640                 POSTING_READ(RSTDBYCTL);
3641         }
3642 }
3643
3644 static int ironlake_setup_rc6(struct drm_device *dev)
3645 {
3646         struct drm_i915_private *dev_priv = dev->dev_private;
3647
3648         if (dev_priv->ips.renderctx == NULL)
3649                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3650         if (!dev_priv->ips.renderctx)
3651                 return -ENOMEM;
3652
3653         if (dev_priv->ips.pwrctx == NULL)
3654                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3655         if (!dev_priv->ips.pwrctx) {
3656                 ironlake_teardown_rc6(dev);
3657                 return -ENOMEM;
3658         }
3659
3660         return 0;
3661 }
3662
3663 static void ironlake_enable_rc6(struct drm_device *dev)
3664 {
3665         struct drm_i915_private *dev_priv = dev->dev_private;
3666         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3667         bool was_interruptible;
3668         int ret;
3669
3670         /* rc6 disabled by default due to repeated reports of hanging during
3671          * boot and resume.
3672          */
3673         if (!intel_enable_rc6(dev))
3674                 return;
3675
3676         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3677
3678         ret = ironlake_setup_rc6(dev);
3679         if (ret)
3680                 return;
3681
3682         was_interruptible = dev_priv->mm.interruptible;
3683         dev_priv->mm.interruptible = false;
3684
3685         /*
3686          * GPU can automatically power down the render unit if given a page
3687          * to save state.
3688          */
3689         ret = intel_ring_begin(ring, 6);
3690         if (ret) {
3691                 ironlake_teardown_rc6(dev);
3692                 dev_priv->mm.interruptible = was_interruptible;
3693                 return;
3694         }
3695
3696         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3697         intel_ring_emit(ring, MI_SET_CONTEXT);
3698         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3699                         MI_MM_SPACE_GTT |
3700                         MI_SAVE_EXT_STATE_EN |
3701                         MI_RESTORE_EXT_STATE_EN |
3702                         MI_RESTORE_INHIBIT);
3703         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3704         intel_ring_emit(ring, MI_NOOP);
3705         intel_ring_emit(ring, MI_FLUSH);
3706         intel_ring_advance(ring);
3707
3708         /*
3709          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3710          * does an implicit flush, combined with MI_FLUSH above, it should be
3711          * safe to assume that renderctx is valid
3712          */
3713         ret = intel_ring_idle(ring);
3714         dev_priv->mm.interruptible = was_interruptible;
3715         if (ret) {
3716                 DRM_ERROR("failed to enable ironlake power savings\n");
3717                 ironlake_teardown_rc6(dev);
3718                 return;
3719         }
3720
3721         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3722         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3723 }
3724
3725 static unsigned long intel_pxfreq(u32 vidfreq)
3726 {
3727         unsigned long freq;
3728         int div = (vidfreq & 0x3f0000) >> 16;
3729         int post = (vidfreq & 0x3000) >> 12;
3730         int pre = (vidfreq & 0x7);
3731
3732         if (!pre)
3733                 return 0;
3734
3735         freq = ((div * 133333) / ((1<<post) * pre));
3736
3737         return freq;
3738 }
3739
3740 static const struct cparams {
3741         u16 i;
3742         u16 t;
3743         u16 m;
3744         u16 c;
3745 } cparams[] = {
3746         { 1, 1333, 301, 28664 },
3747         { 1, 1066, 294, 24460 },
3748         { 1, 800, 294, 25192 },
3749         { 0, 1333, 276, 27605 },
3750         { 0, 1066, 276, 27605 },
3751         { 0, 800, 231, 23784 },
3752 };
3753
3754 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3755 {
3756         u64 total_count, diff, ret;
3757         u32 count1, count2, count3, m = 0, c = 0;
3758         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3759         int i;
3760
3761         assert_spin_locked(&mchdev_lock);
3762
3763         diff1 = now - dev_priv->ips.last_time1;
3764
3765         /* Prevent division-by-zero if we are asking too fast.
3766          * Also, we don't get interesting results if we are polling
3767          * faster than once in 10ms, so just return the saved value
3768          * in such cases.
3769          */
3770         if (diff1 <= 10)
3771                 return dev_priv->ips.chipset_power;
3772
3773         count1 = I915_READ(DMIEC);
3774         count2 = I915_READ(DDREC);
3775         count3 = I915_READ(CSIEC);
3776
3777         total_count = count1 + count2 + count3;
3778
3779         /* FIXME: handle per-counter overflow */
3780         if (total_count < dev_priv->ips.last_count1) {
3781                 diff = ~0UL - dev_priv->ips.last_count1;
3782                 diff += total_count;
3783         } else {
3784                 diff = total_count - dev_priv->ips.last_count1;
3785         }
3786
3787         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3788                 if (cparams[i].i == dev_priv->ips.c_m &&
3789                     cparams[i].t == dev_priv->ips.r_t) {
3790                         m = cparams[i].m;
3791                         c = cparams[i].c;
3792                         break;
3793                 }
3794         }
3795
3796         diff = div_u64(diff, diff1);
3797         ret = ((m * diff) + c);
3798         ret = div_u64(ret, 10);
3799
3800         dev_priv->ips.last_count1 = total_count;
3801         dev_priv->ips.last_time1 = now;
3802
3803         dev_priv->ips.chipset_power = ret;
3804
3805         return ret;
3806 }
3807
3808 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3809 {
3810         unsigned long val;
3811
3812         if (dev_priv->info->gen != 5)
3813                 return 0;
3814
3815         spin_lock_irq(&mchdev_lock);
3816
3817         val = __i915_chipset_val(dev_priv);
3818
3819         spin_unlock_irq(&mchdev_lock);
3820
3821         return val;
3822 }
3823
3824 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3825 {
3826         unsigned long m, x, b;
3827         u32 tsfs;
3828
3829         tsfs = I915_READ(TSFS);
3830
3831         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3832         x = I915_READ8(TR1);
3833
3834         b = tsfs & TSFS_INTR_MASK;
3835
3836         return ((m * x) / 127) - b;
3837 }
3838
3839 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3840 {
3841         static const struct v_table {
3842                 u16 vd; /* in .1 mil */
3843                 u16 vm; /* in .1 mil */
3844         } v_table[] = {
3845                 { 0, 0, },
3846                 { 375, 0, },
3847                 { 500, 0, },
3848                 { 625, 0, },
3849                 { 750, 0, },
3850                 { 875, 0, },
3851                 { 1000, 0, },
3852                 { 1125, 0, },
3853                 { 4125, 3000, },
3854                 { 4125, 3000, },
3855                 { 4125, 3000, },
3856                 { 4125, 3000, },
3857                 { 4125, 3000, },
3858                 { 4125, 3000, },
3859                 { 4125, 3000, },
3860                 { 4125, 3000, },
3861                 { 4125, 3000, },
3862                 { 4125, 3000, },
3863                 { 4125, 3000, },
3864                 { 4125, 3000, },
3865                 { 4125, 3000, },
3866                 { 4125, 3000, },
3867                 { 4125, 3000, },
3868                 { 4125, 3000, },
3869                 { 4125, 3000, },
3870                 { 4125, 3000, },
3871                 { 4125, 3000, },
3872                 { 4125, 3000, },
3873                 { 4125, 3000, },
3874                 { 4125, 3000, },
3875                 { 4125, 3000, },
3876                 { 4125, 3000, },
3877                 { 4250, 3125, },
3878                 { 4375, 3250, },
3879                 { 4500, 3375, },
3880                 { 4625, 3500, },
3881                 { 4750, 3625, },
3882                 { 4875, 3750, },
3883                 { 5000, 3875, },
3884                 { 5125, 4000, },
3885                 { 5250, 4125, },
3886                 { 5375, 4250, },
3887                 { 5500, 4375, },
3888                 { 5625, 4500, },
3889                 { 5750, 4625, },
3890                 { 5875, 4750, },
3891                 { 6000, 4875, },
3892                 { 6125, 5000, },
3893                 { 6250, 5125, },
3894                 { 6375, 5250, },
3895                 { 6500, 5375, },
3896                 { 6625, 5500, },
3897                 { 6750, 5625, },
3898                 { 6875, 5750, },
3899                 { 7000, 5875, },
3900                 { 7125, 6000, },
3901                 { 7250, 6125, },
3902                 { 7375, 6250, },
3903                 { 7500, 6375, },
3904                 { 7625, 6500, },
3905                 { 7750, 6625, },
3906                 { 7875, 6750, },
3907                 { 8000, 6875, },
3908                 { 8125, 7000, },
3909                 { 8250, 7125, },
3910                 { 8375, 7250, },
3911                 { 8500, 7375, },
3912                 { 8625, 7500, },
3913                 { 8750, 7625, },
3914                 { 8875, 7750, },
3915                 { 9000, 7875, },
3916                 { 9125, 8000, },
3917                 { 9250, 8125, },
3918                 { 9375, 8250, },
3919                 { 9500, 8375, },
3920                 { 9625, 8500, },
3921                 { 9750, 8625, },
3922                 { 9875, 8750, },
3923                 { 10000, 8875, },
3924                 { 10125, 9000, },
3925                 { 10250, 9125, },
3926                 { 10375, 9250, },
3927                 { 10500, 9375, },
3928                 { 10625, 9500, },
3929                 { 10750, 9625, },
3930                 { 10875, 9750, },
3931                 { 11000, 9875, },
3932                 { 11125, 10000, },
3933                 { 11250, 10125, },
3934                 { 11375, 10250, },
3935                 { 11500, 10375, },
3936                 { 11625, 10500, },
3937                 { 11750, 10625, },
3938                 { 11875, 10750, },
3939                 { 12000, 10875, },
3940                 { 12125, 11000, },
3941                 { 12250, 11125, },
3942                 { 12375, 11250, },
3943                 { 12500, 11375, },
3944                 { 12625, 11500, },
3945                 { 12750, 11625, },
3946                 { 12875, 11750, },
3947                 { 13000, 11875, },
3948                 { 13125, 12000, },
3949                 { 13250, 12125, },
3950                 { 13375, 12250, },
3951                 { 13500, 12375, },
3952                 { 13625, 12500, },
3953                 { 13750, 12625, },
3954                 { 13875, 12750, },
3955                 { 14000, 12875, },
3956                 { 14125, 13000, },
3957                 { 14250, 13125, },
3958                 { 14375, 13250, },
3959                 { 14500, 13375, },
3960                 { 14625, 13500, },
3961                 { 14750, 13625, },
3962                 { 14875, 13750, },
3963                 { 15000, 13875, },
3964                 { 15125, 14000, },
3965                 { 15250, 14125, },
3966                 { 15375, 14250, },
3967                 { 15500, 14375, },
3968                 { 15625, 14500, },
3969                 { 15750, 14625, },
3970                 { 15875, 14750, },
3971                 { 16000, 14875, },
3972                 { 16125, 15000, },
3973         };
3974         if (dev_priv->info->is_mobile)
3975                 return v_table[pxvid].vm;
3976         else
3977                 return v_table[pxvid].vd;
3978 }
3979
3980 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3981 {
3982         struct timespec now, diff1;
3983         u64 diff;
3984         unsigned long diffms;
3985         u32 count;
3986
3987         assert_spin_locked(&mchdev_lock);
3988
3989         getrawmonotonic(&now);
3990         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3991
3992         /* Don't divide by 0 */
3993         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3994         if (!diffms)
3995                 return;
3996
3997         count = I915_READ(GFXEC);
3998
3999         if (count < dev_priv->ips.last_count2) {
4000                 diff = ~0UL - dev_priv->ips.last_count2;
4001                 diff += count;
4002         } else {
4003                 diff = count - dev_priv->ips.last_count2;
4004         }
4005
4006         dev_priv->ips.last_count2 = count;
4007         dev_priv->ips.last_time2 = now;
4008
4009         /* More magic constants... */
4010         diff = diff * 1181;
4011         diff = div_u64(diff, diffms * 10);
4012         dev_priv->ips.gfx_power = diff;
4013 }
4014
4015 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4016 {
4017         if (dev_priv->info->gen != 5)
4018                 return;
4019
4020         spin_lock_irq(&mchdev_lock);
4021
4022         __i915_update_gfx_val(dev_priv);
4023
4024         spin_unlock_irq(&mchdev_lock);
4025 }
4026
4027 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4028 {
4029         unsigned long t, corr, state1, corr2, state2;
4030         u32 pxvid, ext_v;
4031
4032         assert_spin_locked(&mchdev_lock);
4033
4034         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4035         pxvid = (pxvid >> 24) & 0x7f;
4036         ext_v = pvid_to_extvid(dev_priv, pxvid);
4037
4038         state1 = ext_v;
4039
4040         t = i915_mch_val(dev_priv);
4041
4042         /* Revel in the empirically derived constants */
4043
4044         /* Correction factor in 1/100000 units */
4045         if (t > 80)
4046                 corr = ((t * 2349) + 135940);
4047         else if (t >= 50)
4048                 corr = ((t * 964) + 29317);
4049         else /* < 50 */
4050                 corr = ((t * 301) + 1004);
4051
4052         corr = corr * ((150142 * state1) / 10000 - 78642);
4053         corr /= 100000;
4054         corr2 = (corr * dev_priv->ips.corr);
4055
4056         state2 = (corr2 * state1) / 10000;
4057         state2 /= 100; /* convert to mW */
4058
4059         __i915_update_gfx_val(dev_priv);
4060
4061         return dev_priv->ips.gfx_power + state2;
4062 }
4063
4064 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4065 {
4066         unsigned long val;
4067
4068         if (dev_priv->info->gen != 5)
4069                 return 0;
4070
4071         spin_lock_irq(&mchdev_lock);
4072
4073         val = __i915_gfx_val(dev_priv);
4074
4075         spin_unlock_irq(&mchdev_lock);
4076
4077         return val;
4078 }
4079
4080 /**
4081  * i915_read_mch_val - return value for IPS use
4082  *
4083  * Calculate and return a value for the IPS driver to use when deciding whether
4084  * we have thermal and power headroom to increase CPU or GPU power budget.
4085  */
4086 unsigned long i915_read_mch_val(void)
4087 {
4088         struct drm_i915_private *dev_priv;
4089         unsigned long chipset_val, graphics_val, ret = 0;
4090
4091         spin_lock_irq(&mchdev_lock);
4092         if (!i915_mch_dev)
4093                 goto out_unlock;
4094         dev_priv = i915_mch_dev;
4095
4096         chipset_val = __i915_chipset_val(dev_priv);
4097         graphics_val = __i915_gfx_val(dev_priv);
4098
4099         ret = chipset_val + graphics_val;
4100
4101 out_unlock:
4102         spin_unlock_irq(&mchdev_lock);
4103
4104         return ret;
4105 }
4106 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4107
4108 /**
4109  * i915_gpu_raise - raise GPU frequency limit
4110  *
4111  * Raise the limit; IPS indicates we have thermal headroom.
4112  */
4113 bool i915_gpu_raise(void)
4114 {
4115         struct drm_i915_private *dev_priv;
4116         bool ret = true;
4117
4118         spin_lock_irq(&mchdev_lock);
4119         if (!i915_mch_dev) {
4120                 ret = false;
4121                 goto out_unlock;
4122         }
4123         dev_priv = i915_mch_dev;
4124
4125         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4126                 dev_priv->ips.max_delay--;
4127
4128 out_unlock:
4129         spin_unlock_irq(&mchdev_lock);
4130
4131         return ret;
4132 }
4133 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4134
4135 /**
4136  * i915_gpu_lower - lower GPU frequency limit
4137  *
4138  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4139  * frequency maximum.
4140  */
4141 bool i915_gpu_lower(void)
4142 {
4143         struct drm_i915_private *dev_priv;
4144         bool ret = true;
4145
4146         spin_lock_irq(&mchdev_lock);
4147         if (!i915_mch_dev) {
4148                 ret = false;
4149                 goto out_unlock;
4150         }
4151         dev_priv = i915_mch_dev;
4152
4153         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4154                 dev_priv->ips.max_delay++;
4155
4156 out_unlock:
4157         spin_unlock_irq(&mchdev_lock);
4158
4159         return ret;
4160 }
4161 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4162
4163 /**
4164  * i915_gpu_busy - indicate GPU business to IPS
4165  *
4166  * Tell the IPS driver whether or not the GPU is busy.
4167  */
4168 bool i915_gpu_busy(void)
4169 {
4170         struct drm_i915_private *dev_priv;
4171         struct intel_ring_buffer *ring;
4172         bool ret = false;
4173         int i;
4174
4175         spin_lock_irq(&mchdev_lock);
4176         if (!i915_mch_dev)
4177                 goto out_unlock;
4178         dev_priv = i915_mch_dev;
4179
4180         for_each_ring(ring, dev_priv, i)
4181                 ret |= !list_empty(&ring->request_list);
4182
4183 out_unlock:
4184         spin_unlock_irq(&mchdev_lock);
4185
4186         return ret;
4187 }
4188 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4189
4190 /**
4191  * i915_gpu_turbo_disable - disable graphics turbo
4192  *
4193  * Disable graphics turbo by resetting the max frequency and setting the
4194  * current frequency to the default.
4195  */
4196 bool i915_gpu_turbo_disable(void)
4197 {
4198         struct drm_i915_private *dev_priv;
4199         bool ret = true;
4200
4201         spin_lock_irq(&mchdev_lock);
4202         if (!i915_mch_dev) {
4203                 ret = false;
4204                 goto out_unlock;
4205         }
4206         dev_priv = i915_mch_dev;
4207
4208         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4209
4210         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4211                 ret = false;
4212
4213 out_unlock:
4214         spin_unlock_irq(&mchdev_lock);
4215
4216         return ret;
4217 }
4218 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4219
4220 /**
4221  * Tells the intel_ips driver that the i915 driver is now loaded, if
4222  * IPS got loaded first.
4223  *
4224  * This awkward dance is so that neither module has to depend on the
4225  * other in order for IPS to do the appropriate communication of
4226  * GPU turbo limits to i915.
4227  */
4228 static void
4229 ips_ping_for_i915_load(void)
4230 {
4231         void (*link)(void);
4232
4233         link = symbol_get(ips_link_to_i915_driver);
4234         if (link) {
4235                 link();
4236                 symbol_put(ips_link_to_i915_driver);
4237         }
4238 }
4239
4240 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4241 {
4242         /* We only register the i915 ips part with intel-ips once everything is
4243          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4244         spin_lock_irq(&mchdev_lock);
4245         i915_mch_dev = dev_priv;
4246         spin_unlock_irq(&mchdev_lock);
4247
4248         ips_ping_for_i915_load();
4249 }
4250
4251 void intel_gpu_ips_teardown(void)
4252 {
4253         spin_lock_irq(&mchdev_lock);
4254         i915_mch_dev = NULL;
4255         spin_unlock_irq(&mchdev_lock);
4256 }
4257 static void intel_init_emon(struct drm_device *dev)
4258 {
4259         struct drm_i915_private *dev_priv = dev->dev_private;
4260         u32 lcfuse;
4261         u8 pxw[16];
4262         int i;
4263
4264         /* Disable to program */
4265         I915_WRITE(ECR, 0);
4266         POSTING_READ(ECR);
4267
4268         /* Program energy weights for various events */
4269         I915_WRITE(SDEW, 0x15040d00);
4270         I915_WRITE(CSIEW0, 0x007f0000);
4271         I915_WRITE(CSIEW1, 0x1e220004);
4272         I915_WRITE(CSIEW2, 0x04000004);
4273
4274         for (i = 0; i < 5; i++)
4275                 I915_WRITE(PEW + (i * 4), 0);
4276         for (i = 0; i < 3; i++)
4277                 I915_WRITE(DEW + (i * 4), 0);
4278
4279         /* Program P-state weights to account for frequency power adjustment */
4280         for (i = 0; i < 16; i++) {
4281                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4282                 unsigned long freq = intel_pxfreq(pxvidfreq);
4283                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4284                         PXVFREQ_PX_SHIFT;
4285                 unsigned long val;
4286
4287                 val = vid * vid;
4288                 val *= (freq / 1000);
4289                 val *= 255;
4290                 val /= (127*127*900);
4291                 if (val > 0xff)
4292                         DRM_ERROR("bad pxval: %ld\n", val);
4293                 pxw[i] = val;
4294         }
4295         /* Render standby states get 0 weight */
4296         pxw[14] = 0;
4297         pxw[15] = 0;
4298
4299         for (i = 0; i < 4; i++) {
4300                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4301                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4302                 I915_WRITE(PXW + (i * 4), val);
4303         }
4304
4305         /* Adjust magic regs to magic values (more experimental results) */
4306         I915_WRITE(OGW0, 0);
4307         I915_WRITE(OGW1, 0);
4308         I915_WRITE(EG0, 0x00007f00);
4309         I915_WRITE(EG1, 0x0000000e);
4310         I915_WRITE(EG2, 0x000e0000);
4311         I915_WRITE(EG3, 0x68000300);
4312         I915_WRITE(EG4, 0x42000000);
4313         I915_WRITE(EG5, 0x00140031);
4314         I915_WRITE(EG6, 0);
4315         I915_WRITE(EG7, 0);
4316
4317         for (i = 0; i < 8; i++)
4318                 I915_WRITE(PXWL + (i * 4), 0);
4319
4320         /* Enable PMON + select events */
4321         I915_WRITE(ECR, 0x80000019);
4322
4323         lcfuse = I915_READ(LCFUSE02);
4324
4325         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4326 }
4327
4328 void intel_disable_gt_powersave(struct drm_device *dev)
4329 {
4330         struct drm_i915_private *dev_priv = dev->dev_private;
4331
4332         /* Interrupts should be disabled already to avoid re-arming. */
4333         WARN_ON(dev->irq_enabled);
4334
4335         if (IS_IRONLAKE_M(dev)) {
4336                 ironlake_disable_drps(dev);
4337                 ironlake_disable_rc6(dev);
4338         } else if (INTEL_INFO(dev)->gen >= 6) {
4339                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4340                 cancel_work_sync(&dev_priv->rps.work);
4341                 if (IS_VALLEYVIEW(dev))
4342                         cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4343                 mutex_lock(&dev_priv->rps.hw_lock);
4344                 if (IS_VALLEYVIEW(dev))
4345                         valleyview_disable_rps(dev);
4346                 else
4347                         gen6_disable_rps(dev);
4348                 mutex_unlock(&dev_priv->rps.hw_lock);
4349         }
4350 }
4351
4352 static void intel_gen6_powersave_work(struct work_struct *work)
4353 {
4354         struct drm_i915_private *dev_priv =
4355                 container_of(work, struct drm_i915_private,
4356                              rps.delayed_resume_work.work);
4357         struct drm_device *dev = dev_priv->dev;
4358
4359         mutex_lock(&dev_priv->rps.hw_lock);
4360
4361         if (IS_VALLEYVIEW(dev)) {
4362                 valleyview_enable_rps(dev);
4363         } else {
4364                 gen6_enable_rps(dev);
4365                 gen6_update_ring_freq(dev);
4366         }
4367         mutex_unlock(&dev_priv->rps.hw_lock);
4368 }
4369
4370 void intel_enable_gt_powersave(struct drm_device *dev)
4371 {
4372         struct drm_i915_private *dev_priv = dev->dev_private;
4373
4374         if (IS_IRONLAKE_M(dev)) {
4375                 ironlake_enable_drps(dev);
4376                 ironlake_enable_rc6(dev);
4377                 intel_init_emon(dev);
4378         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4379                 /*
4380                  * PCU communication is slow and this doesn't need to be
4381                  * done at any specific time, so do this out of our fast path
4382                  * to make resume and init faster.
4383                  */
4384                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4385                                       round_jiffies_up_relative(HZ));
4386         }
4387 }
4388
4389 static void ibx_init_clock_gating(struct drm_device *dev)
4390 {
4391         struct drm_i915_private *dev_priv = dev->dev_private;
4392
4393         /*
4394          * On Ibex Peak and Cougar Point, we need to disable clock
4395          * gating for the panel power sequencer or it will fail to
4396          * start up when no ports are active.
4397          */
4398         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4399 }
4400
4401 static void g4x_disable_trickle_feed(struct drm_device *dev)
4402 {
4403         struct drm_i915_private *dev_priv = dev->dev_private;
4404         int pipe;
4405
4406         for_each_pipe(pipe) {
4407                 I915_WRITE(DSPCNTR(pipe),
4408                            I915_READ(DSPCNTR(pipe)) |
4409                            DISPPLANE_TRICKLE_FEED_DISABLE);
4410                 intel_flush_display_plane(dev_priv, pipe);
4411         }
4412 }
4413
4414 static void ironlake_init_clock_gating(struct drm_device *dev)
4415 {
4416         struct drm_i915_private *dev_priv = dev->dev_private;
4417         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4418
4419         /* Required for FBC */
4420         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4421                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4422                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4423
4424         I915_WRITE(PCH_3DCGDIS0,
4425                    MARIUNIT_CLOCK_GATE_DISABLE |
4426                    SVSMUNIT_CLOCK_GATE_DISABLE);
4427         I915_WRITE(PCH_3DCGDIS1,
4428                    VFMUNIT_CLOCK_GATE_DISABLE);
4429
4430         /*
4431          * According to the spec the following bits should be set in
4432          * order to enable memory self-refresh
4433          * The bit 22/21 of 0x42004
4434          * The bit 5 of 0x42020
4435          * The bit 15 of 0x45000
4436          */
4437         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4438                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4439                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4440         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4441         I915_WRITE(DISP_ARB_CTL,
4442                    (I915_READ(DISP_ARB_CTL) |
4443                     DISP_FBC_WM_DIS));
4444         I915_WRITE(WM3_LP_ILK, 0);
4445         I915_WRITE(WM2_LP_ILK, 0);
4446         I915_WRITE(WM1_LP_ILK, 0);
4447
4448         /*
4449          * Based on the document from hardware guys the following bits
4450          * should be set unconditionally in order to enable FBC.
4451          * The bit 22 of 0x42000
4452          * The bit 22 of 0x42004
4453          * The bit 7,8,9 of 0x42020.
4454          */
4455         if (IS_IRONLAKE_M(dev)) {
4456                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4457                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4458                            ILK_FBCQ_DIS);
4459                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4460                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4461                            ILK_DPARB_GATE);
4462         }
4463
4464         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4465
4466         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4467                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4468                    ILK_ELPIN_409_SELECT);
4469         I915_WRITE(_3D_CHICKEN2,
4470                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4471                    _3D_CHICKEN2_WM_READ_PIPELINED);
4472
4473         /* WaDisableRenderCachePipelinedFlush:ilk */
4474         I915_WRITE(CACHE_MODE_0,
4475                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4476
4477         g4x_disable_trickle_feed(dev);
4478
4479         ibx_init_clock_gating(dev);
4480 }
4481
4482 static void cpt_init_clock_gating(struct drm_device *dev)
4483 {
4484         struct drm_i915_private *dev_priv = dev->dev_private;
4485         int pipe;
4486         uint32_t val;
4487
4488         /*
4489          * On Ibex Peak and Cougar Point, we need to disable clock
4490          * gating for the panel power sequencer or it will fail to
4491          * start up when no ports are active.
4492          */
4493         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4494         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4495                    DPLS_EDP_PPS_FIX_DIS);
4496         /* The below fixes the weird display corruption, a few pixels shifted
4497          * downward, on (only) LVDS of some HP laptops with IVY.
4498          */
4499         for_each_pipe(pipe) {
4500                 val = I915_READ(TRANS_CHICKEN2(pipe));
4501                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4502                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4503                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4504                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4505                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4506                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4507                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4508                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4509         }
4510         /* WADP0ClockGatingDisable */
4511         for_each_pipe(pipe) {
4512                 I915_WRITE(TRANS_CHICKEN1(pipe),
4513                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4514         }
4515 }
4516
4517 static void gen6_check_mch_setup(struct drm_device *dev)
4518 {
4519         struct drm_i915_private *dev_priv = dev->dev_private;
4520         uint32_t tmp;
4521
4522         tmp = I915_READ(MCH_SSKPD);
4523         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4524                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4525                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4526                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4527         }
4528 }
4529
4530 static void gen6_init_clock_gating(struct drm_device *dev)
4531 {
4532         struct drm_i915_private *dev_priv = dev->dev_private;
4533         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4534
4535         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4536
4537         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4538                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4539                    ILK_ELPIN_409_SELECT);
4540
4541         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4542         I915_WRITE(_3D_CHICKEN,
4543                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4544
4545         /* WaSetupGtModeTdRowDispatch:snb */
4546         if (IS_SNB_GT1(dev))
4547                 I915_WRITE(GEN6_GT_MODE,
4548                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4549
4550         I915_WRITE(WM3_LP_ILK, 0);
4551         I915_WRITE(WM2_LP_ILK, 0);
4552         I915_WRITE(WM1_LP_ILK, 0);
4553
4554         I915_WRITE(CACHE_MODE_0,
4555                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4556
4557         I915_WRITE(GEN6_UCGCTL1,
4558                    I915_READ(GEN6_UCGCTL1) |
4559                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4560                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4561
4562         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4563          * gating disable must be set.  Failure to set it results in
4564          * flickering pixels due to Z write ordering failures after
4565          * some amount of runtime in the Mesa "fire" demo, and Unigine
4566          * Sanctuary and Tropics, and apparently anything else with
4567          * alpha test or pixel discard.
4568          *
4569          * According to the spec, bit 11 (RCCUNIT) must also be set,
4570          * but we didn't debug actual testcases to find it out.
4571          *
4572          * Also apply WaDisableVDSUnitClockGating:snb and
4573          * WaDisableRCPBUnitClockGating:snb.
4574          */
4575         I915_WRITE(GEN6_UCGCTL2,
4576                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4577                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4578                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4579
4580         /* Bspec says we need to always set all mask bits. */
4581         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4582                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4583
4584         /*
4585          * According to the spec the following bits should be
4586          * set in order to enable memory self-refresh and fbc:
4587          * The bit21 and bit22 of 0x42000
4588          * The bit21 and bit22 of 0x42004
4589          * The bit5 and bit7 of 0x42020
4590          * The bit14 of 0x70180
4591          * The bit14 of 0x71180
4592          */
4593         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4594                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4595                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4596         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4597                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4598                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4599         I915_WRITE(ILK_DSPCLK_GATE_D,
4600                    I915_READ(ILK_DSPCLK_GATE_D) |
4601                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4602                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4603
4604         /* WaMbcDriverBootEnable:snb */
4605         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4606                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4607
4608         g4x_disable_trickle_feed(dev);
4609
4610         /* The default value should be 0x200 according to docs, but the two
4611          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4612         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4613         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4614
4615         cpt_init_clock_gating(dev);
4616
4617         gen6_check_mch_setup(dev);
4618 }
4619
4620 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4621 {
4622         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4623
4624         reg &= ~GEN7_FF_SCHED_MASK;
4625         reg |= GEN7_FF_TS_SCHED_HW;
4626         reg |= GEN7_FF_VS_SCHED_HW;
4627         reg |= GEN7_FF_DS_SCHED_HW;
4628
4629         if (IS_HASWELL(dev_priv->dev))
4630                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4631
4632         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4633 }
4634
4635 static void lpt_init_clock_gating(struct drm_device *dev)
4636 {
4637         struct drm_i915_private *dev_priv = dev->dev_private;
4638
4639         /*
4640          * TODO: this bit should only be enabled when really needed, then
4641          * disabled when not needed anymore in order to save power.
4642          */
4643         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4644                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4645                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4646                            PCH_LP_PARTITION_LEVEL_DISABLE);
4647
4648         /* WADPOClockGatingDisable:hsw */
4649         I915_WRITE(_TRANSA_CHICKEN1,
4650                    I915_READ(_TRANSA_CHICKEN1) |
4651                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4652 }
4653
4654 static void lpt_suspend_hw(struct drm_device *dev)
4655 {
4656         struct drm_i915_private *dev_priv = dev->dev_private;
4657
4658         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4659                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4660
4661                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4662                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4663         }
4664 }
4665
4666 static void haswell_init_clock_gating(struct drm_device *dev)
4667 {
4668         struct drm_i915_private *dev_priv = dev->dev_private;
4669
4670         I915_WRITE(WM3_LP_ILK, 0);
4671         I915_WRITE(WM2_LP_ILK, 0);
4672         I915_WRITE(WM1_LP_ILK, 0);
4673
4674         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4675          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4676          */
4677         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4678
4679         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4680         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4681                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4682
4683         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4684         I915_WRITE(GEN7_L3CNTLREG1,
4685                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4686         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4687                         GEN7_WA_L3_CHICKEN_MODE);
4688
4689         /* This is required by WaCatErrorRejectionIssue:hsw */
4690         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4691                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4692                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4693
4694         g4x_disable_trickle_feed(dev);
4695
4696         /* WaVSRefCountFullforceMissDisable:hsw */
4697         gen7_setup_fixed_func_scheduler(dev_priv);
4698
4699         /* WaDisable4x2SubspanOptimization:hsw */
4700         I915_WRITE(CACHE_MODE_1,
4701                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4702
4703         /* WaMbcDriverBootEnable:hsw */
4704         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4705                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4706
4707         /* WaSwitchSolVfFArbitrationPriority:hsw */
4708         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4709
4710         /* WaRsPkgCStateDisplayPMReq:hsw */
4711         I915_WRITE(CHICKEN_PAR1_1,
4712                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4713
4714         lpt_init_clock_gating(dev);
4715 }
4716
4717 static void ivybridge_init_clock_gating(struct drm_device *dev)
4718 {
4719         struct drm_i915_private *dev_priv = dev->dev_private;
4720         uint32_t snpcr;
4721
4722         I915_WRITE(WM3_LP_ILK, 0);
4723         I915_WRITE(WM2_LP_ILK, 0);
4724         I915_WRITE(WM1_LP_ILK, 0);
4725
4726         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4727
4728         /* WaDisableEarlyCull:ivb */
4729         I915_WRITE(_3D_CHICKEN3,
4730                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4731
4732         /* WaDisableBackToBackFlipFix:ivb */
4733         I915_WRITE(IVB_CHICKEN3,
4734                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4735                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4736
4737         /* WaDisablePSDDualDispatchEnable:ivb */
4738         if (IS_IVB_GT1(dev))
4739                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4740                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4741         else
4742                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4743                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4744
4745         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4746         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4747                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4748
4749         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4750         I915_WRITE(GEN7_L3CNTLREG1,
4751                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4752         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4753                    GEN7_WA_L3_CHICKEN_MODE);
4754         if (IS_IVB_GT1(dev))
4755                 I915_WRITE(GEN7_ROW_CHICKEN2,
4756                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4757         else
4758                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4759                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4760
4761
4762         /* WaForceL3Serialization:ivb */
4763         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4764                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4765
4766         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4767          * gating disable must be set.  Failure to set it results in
4768          * flickering pixels due to Z write ordering failures after
4769          * some amount of runtime in the Mesa "fire" demo, and Unigine
4770          * Sanctuary and Tropics, and apparently anything else with
4771          * alpha test or pixel discard.
4772          *
4773          * According to the spec, bit 11 (RCCUNIT) must also be set,
4774          * but we didn't debug actual testcases to find it out.
4775          *
4776          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4777          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4778          */
4779         I915_WRITE(GEN6_UCGCTL2,
4780                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4781                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4782
4783         /* This is required by WaCatErrorRejectionIssue:ivb */
4784         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4785                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4786                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4787
4788         g4x_disable_trickle_feed(dev);
4789
4790         /* WaMbcDriverBootEnable:ivb */
4791         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4792                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4793
4794         /* WaVSRefCountFullforceMissDisable:ivb */
4795         gen7_setup_fixed_func_scheduler(dev_priv);
4796
4797         /* WaDisable4x2SubspanOptimization:ivb */
4798         I915_WRITE(CACHE_MODE_1,
4799                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4800
4801         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4802         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4803         snpcr |= GEN6_MBC_SNPCR_MED;
4804         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4805
4806         if (!HAS_PCH_NOP(dev))
4807                 cpt_init_clock_gating(dev);
4808
4809         gen6_check_mch_setup(dev);
4810 }
4811
4812 static void valleyview_init_clock_gating(struct drm_device *dev)
4813 {
4814         struct drm_i915_private *dev_priv = dev->dev_private;
4815
4816         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4817
4818         /* WaDisableEarlyCull:vlv */
4819         I915_WRITE(_3D_CHICKEN3,
4820                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4821
4822         /* WaDisableBackToBackFlipFix:vlv */
4823         I915_WRITE(IVB_CHICKEN3,
4824                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4825                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4826
4827         /* WaDisablePSDDualDispatchEnable:vlv */
4828         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4829                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4830                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4831
4832         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4833         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4834                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4835
4836         /* WaApplyL3ControlAndL3ChickenMode:vlv */
4837         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4838         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4839
4840         /* WaForceL3Serialization:vlv */
4841         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4842                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4843
4844         /* WaDisableDopClockGating:vlv */
4845         I915_WRITE(GEN7_ROW_CHICKEN2,
4846                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4847
4848         /* This is required by WaCatErrorRejectionIssue:vlv */
4849         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4850                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4851                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4852
4853         /* WaMbcDriverBootEnable:vlv */
4854         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4855                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4856
4857
4858         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4859          * gating disable must be set.  Failure to set it results in
4860          * flickering pixels due to Z write ordering failures after
4861          * some amount of runtime in the Mesa "fire" demo, and Unigine
4862          * Sanctuary and Tropics, and apparently anything else with
4863          * alpha test or pixel discard.
4864          *
4865          * According to the spec, bit 11 (RCCUNIT) must also be set,
4866          * but we didn't debug actual testcases to find it out.
4867          *
4868          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4869          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4870          *
4871          * Also apply WaDisableVDSUnitClockGating:vlv and
4872          * WaDisableRCPBUnitClockGating:vlv.
4873          */
4874         I915_WRITE(GEN6_UCGCTL2,
4875                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4876                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4877                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4878                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4879                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4880
4881         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4882
4883         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
4884
4885         I915_WRITE(CACHE_MODE_1,
4886                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4887
4888         /*
4889          * WaDisableVLVClockGating_VBIIssue:vlv
4890          * Disable clock gating on th GCFG unit to prevent a delay
4891          * in the reporting of vblank events.
4892          */
4893         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4894
4895         /* Conservative clock gating settings for now */
4896         I915_WRITE(0x9400, 0xffffffff);
4897         I915_WRITE(0x9404, 0xffffffff);
4898         I915_WRITE(0x9408, 0xffffffff);
4899         I915_WRITE(0x940c, 0xffffffff);
4900         I915_WRITE(0x9410, 0xffffffff);
4901         I915_WRITE(0x9414, 0xffffffff);
4902         I915_WRITE(0x9418, 0xffffffff);
4903 }
4904
4905 static void g4x_init_clock_gating(struct drm_device *dev)
4906 {
4907         struct drm_i915_private *dev_priv = dev->dev_private;
4908         uint32_t dspclk_gate;
4909
4910         I915_WRITE(RENCLK_GATE_D1, 0);
4911         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4912                    GS_UNIT_CLOCK_GATE_DISABLE |
4913                    CL_UNIT_CLOCK_GATE_DISABLE);
4914         I915_WRITE(RAMCLK_GATE_D, 0);
4915         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4916                 OVRUNIT_CLOCK_GATE_DISABLE |
4917                 OVCUNIT_CLOCK_GATE_DISABLE;
4918         if (IS_GM45(dev))
4919                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4920         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4921
4922         /* WaDisableRenderCachePipelinedFlush */
4923         I915_WRITE(CACHE_MODE_0,
4924                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4925
4926         g4x_disable_trickle_feed(dev);
4927 }
4928
4929 static void crestline_init_clock_gating(struct drm_device *dev)
4930 {
4931         struct drm_i915_private *dev_priv = dev->dev_private;
4932
4933         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4934         I915_WRITE(RENCLK_GATE_D2, 0);
4935         I915_WRITE(DSPCLK_GATE_D, 0);
4936         I915_WRITE(RAMCLK_GATE_D, 0);
4937         I915_WRITE16(DEUC, 0);
4938         I915_WRITE(MI_ARB_STATE,
4939                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4940 }
4941
4942 static void broadwater_init_clock_gating(struct drm_device *dev)
4943 {
4944         struct drm_i915_private *dev_priv = dev->dev_private;
4945
4946         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4947                    I965_RCC_CLOCK_GATE_DISABLE |
4948                    I965_RCPB_CLOCK_GATE_DISABLE |
4949                    I965_ISC_CLOCK_GATE_DISABLE |
4950                    I965_FBC_CLOCK_GATE_DISABLE);
4951         I915_WRITE(RENCLK_GATE_D2, 0);
4952         I915_WRITE(MI_ARB_STATE,
4953                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4954 }
4955
4956 static void gen3_init_clock_gating(struct drm_device *dev)
4957 {
4958         struct drm_i915_private *dev_priv = dev->dev_private;
4959         u32 dstate = I915_READ(D_STATE);
4960
4961         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4962                 DSTATE_DOT_CLOCK_GATING;
4963         I915_WRITE(D_STATE, dstate);
4964
4965         if (IS_PINEVIEW(dev))
4966                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4967
4968         /* IIR "flip pending" means done if this bit is set */
4969         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4970 }
4971
4972 static void i85x_init_clock_gating(struct drm_device *dev)
4973 {
4974         struct drm_i915_private *dev_priv = dev->dev_private;
4975
4976         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4977 }
4978
4979 static void i830_init_clock_gating(struct drm_device *dev)
4980 {
4981         struct drm_i915_private *dev_priv = dev->dev_private;
4982
4983         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4984 }
4985
4986 void intel_init_clock_gating(struct drm_device *dev)
4987 {
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989
4990         dev_priv->display.init_clock_gating(dev);
4991 }
4992
4993 void intel_suspend_hw(struct drm_device *dev)
4994 {
4995         if (HAS_PCH_LPT(dev))
4996                 lpt_suspend_hw(dev);
4997 }
4998
4999 /**
5000  * We should only use the power well if we explicitly asked the hardware to
5001  * enable it, so check if it's enabled and also check if we've requested it to
5002  * be enabled.
5003  */
5004 bool intel_display_power_enabled(struct drm_device *dev,
5005                                  enum intel_display_power_domain domain)
5006 {
5007         struct drm_i915_private *dev_priv = dev->dev_private;
5008
5009         if (!HAS_POWER_WELL(dev))
5010                 return true;
5011
5012         switch (domain) {
5013         case POWER_DOMAIN_PIPE_A:
5014         case POWER_DOMAIN_TRANSCODER_EDP:
5015                 return true;
5016         case POWER_DOMAIN_PIPE_B:
5017         case POWER_DOMAIN_PIPE_C:
5018         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5019         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5020         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5021         case POWER_DOMAIN_TRANSCODER_A:
5022         case POWER_DOMAIN_TRANSCODER_B:
5023         case POWER_DOMAIN_TRANSCODER_C:
5024                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5025                        (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5026         default:
5027                 BUG();
5028         }
5029 }
5030
5031 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5032 {
5033         struct drm_i915_private *dev_priv = dev->dev_private;
5034         bool is_enabled, enable_requested;
5035         uint32_t tmp;
5036
5037         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5038         is_enabled = tmp & HSW_PWR_WELL_STATE;
5039         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5040
5041         if (enable) {
5042                 if (!enable_requested)
5043                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5044
5045                 if (!is_enabled) {
5046                         DRM_DEBUG_KMS("Enabling power well\n");
5047                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5048                                       HSW_PWR_WELL_STATE), 20))
5049                                 DRM_ERROR("Timeout enabling power well\n");
5050                 }
5051         } else {
5052                 if (enable_requested) {
5053                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5054                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5055                 }
5056         }
5057 }
5058
5059 static struct i915_power_well *hsw_pwr;
5060
5061 /* Display audio driver power well request */
5062 void i915_request_power_well(void)
5063 {
5064         if (WARN_ON(!hsw_pwr))
5065                 return;
5066
5067         spin_lock_irq(&hsw_pwr->lock);
5068         if (!hsw_pwr->count++ &&
5069                         !hsw_pwr->i915_request)
5070                 __intel_set_power_well(hsw_pwr->device, true);
5071         spin_unlock_irq(&hsw_pwr->lock);
5072 }
5073 EXPORT_SYMBOL_GPL(i915_request_power_well);
5074
5075 /* Display audio driver power well release */
5076 void i915_release_power_well(void)
5077 {
5078         if (WARN_ON(!hsw_pwr))
5079                 return;
5080
5081         spin_lock_irq(&hsw_pwr->lock);
5082         WARN_ON(!hsw_pwr->count);
5083         if (!--hsw_pwr->count &&
5084                        !hsw_pwr->i915_request)
5085                 __intel_set_power_well(hsw_pwr->device, false);
5086         spin_unlock_irq(&hsw_pwr->lock);
5087 }
5088 EXPORT_SYMBOL_GPL(i915_release_power_well);
5089
5090 int i915_init_power_well(struct drm_device *dev)
5091 {
5092         struct drm_i915_private *dev_priv = dev->dev_private;
5093
5094         hsw_pwr = &dev_priv->power_well;
5095
5096         hsw_pwr->device = dev;
5097         spin_lock_init(&hsw_pwr->lock);
5098         hsw_pwr->count = 0;
5099
5100         return 0;
5101 }
5102
5103 void i915_remove_power_well(struct drm_device *dev)
5104 {
5105         hsw_pwr = NULL;
5106 }
5107
5108 void intel_set_power_well(struct drm_device *dev, bool enable)
5109 {
5110         struct drm_i915_private *dev_priv = dev->dev_private;
5111         struct i915_power_well *power_well = &dev_priv->power_well;
5112
5113         if (!HAS_POWER_WELL(dev))
5114                 return;
5115
5116         if (!i915_disable_power_well && !enable)
5117                 return;
5118
5119         spin_lock_irq(&power_well->lock);
5120         power_well->i915_request = enable;
5121
5122         /* only reject "disable" power well request */
5123         if (power_well->count && !enable) {
5124                 spin_unlock_irq(&power_well->lock);
5125                 return;
5126         }
5127
5128         __intel_set_power_well(dev, enable);
5129         spin_unlock_irq(&power_well->lock);
5130 }
5131
5132 /*
5133  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5134  * when not needed anymore. We have 4 registers that can request the power well
5135  * to be enabled, and it will only be disabled if none of the registers is
5136  * requesting it to be enabled.
5137  */
5138 void intel_init_power_well(struct drm_device *dev)
5139 {
5140         struct drm_i915_private *dev_priv = dev->dev_private;
5141
5142         if (!HAS_POWER_WELL(dev))
5143                 return;
5144
5145         /* For now, we need the power well to be always enabled. */
5146         intel_set_power_well(dev, true);
5147
5148         /* We're taking over the BIOS, so clear any requests made by it since
5149          * the driver is in charge now. */
5150         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
5151                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5152 }
5153
5154 /* Set up chip specific power management-related functions */
5155 void intel_init_pm(struct drm_device *dev)
5156 {
5157         struct drm_i915_private *dev_priv = dev->dev_private;
5158
5159         if (I915_HAS_FBC(dev)) {
5160                 if (HAS_PCH_SPLIT(dev)) {
5161                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5162                         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5163                                 dev_priv->display.enable_fbc =
5164                                         gen7_enable_fbc;
5165                         else
5166                                 dev_priv->display.enable_fbc =
5167                                         ironlake_enable_fbc;
5168                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5169                 } else if (IS_GM45(dev)) {
5170                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5171                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5172                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5173                 } else if (IS_CRESTLINE(dev)) {
5174                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5175                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5176                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5177                 }
5178                 /* 855GM needs testing */
5179         }
5180
5181         /* For cxsr */
5182         if (IS_PINEVIEW(dev))
5183                 i915_pineview_get_mem_freq(dev);
5184         else if (IS_GEN5(dev))
5185                 i915_ironlake_get_mem_freq(dev);
5186
5187         /* For FIFO watermark updates */
5188         if (HAS_PCH_SPLIT(dev)) {
5189                 if (IS_GEN5(dev)) {
5190                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5191                                 dev_priv->display.update_wm = ironlake_update_wm;
5192                         else {
5193                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5194                                               "Disable CxSR\n");
5195                                 dev_priv->display.update_wm = NULL;
5196                         }
5197                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5198                 } else if (IS_GEN6(dev)) {
5199                         if (SNB_READ_WM0_LATENCY()) {
5200                                 dev_priv->display.update_wm = sandybridge_update_wm;
5201                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5202                         } else {
5203                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5204                                               "Disable CxSR\n");
5205                                 dev_priv->display.update_wm = NULL;
5206                         }
5207                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5208                 } else if (IS_IVYBRIDGE(dev)) {
5209                         if (SNB_READ_WM0_LATENCY()) {
5210                                 dev_priv->display.update_wm = ivybridge_update_wm;
5211                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5212                         } else {
5213                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5214                                               "Disable CxSR\n");
5215                                 dev_priv->display.update_wm = NULL;
5216                         }
5217                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5218                 } else if (IS_HASWELL(dev)) {
5219                         if (I915_READ64(MCH_SSKPD)) {
5220                                 dev_priv->display.update_wm = haswell_update_wm;
5221                                 dev_priv->display.update_sprite_wm =
5222                                         haswell_update_sprite_wm;
5223                         } else {
5224                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5225                                               "Disable CxSR\n");
5226                                 dev_priv->display.update_wm = NULL;
5227                         }
5228                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5229                 } else
5230                         dev_priv->display.update_wm = NULL;
5231         } else if (IS_VALLEYVIEW(dev)) {
5232                 dev_priv->display.update_wm = valleyview_update_wm;
5233                 dev_priv->display.init_clock_gating =
5234                         valleyview_init_clock_gating;
5235         } else if (IS_PINEVIEW(dev)) {
5236                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5237                                             dev_priv->is_ddr3,
5238                                             dev_priv->fsb_freq,
5239                                             dev_priv->mem_freq)) {
5240                         DRM_INFO("failed to find known CxSR latency "
5241                                  "(found ddr%s fsb freq %d, mem freq %d), "
5242                                  "disabling CxSR\n",
5243                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5244                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5245                         /* Disable CxSR and never update its watermark again */
5246                         pineview_disable_cxsr(dev);
5247                         dev_priv->display.update_wm = NULL;
5248                 } else
5249                         dev_priv->display.update_wm = pineview_update_wm;
5250                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5251         } else if (IS_G4X(dev)) {
5252                 dev_priv->display.update_wm = g4x_update_wm;
5253                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5254         } else if (IS_GEN4(dev)) {
5255                 dev_priv->display.update_wm = i965_update_wm;
5256                 if (IS_CRESTLINE(dev))
5257                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5258                 else if (IS_BROADWATER(dev))
5259                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5260         } else if (IS_GEN3(dev)) {
5261                 dev_priv->display.update_wm = i9xx_update_wm;
5262                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5263                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5264         } else if (IS_I865G(dev)) {
5265                 dev_priv->display.update_wm = i830_update_wm;
5266                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5267                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5268         } else if (IS_I85X(dev)) {
5269                 dev_priv->display.update_wm = i9xx_update_wm;
5270                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5271                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5272         } else {
5273                 dev_priv->display.update_wm = i830_update_wm;
5274                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5275                 if (IS_845G(dev))
5276                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5277                 else
5278                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5279         }
5280 }
5281
5282 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
5283 {
5284         u32 gt_thread_status_mask;
5285
5286         if (IS_HASWELL(dev_priv->dev))
5287                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
5288         else
5289                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
5290
5291         /* w/a for a sporadic read returning 0 by waiting for the GT
5292          * thread to wake up.
5293          */
5294         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
5295                 DRM_ERROR("GT thread status wait timed out\n");
5296 }
5297
5298 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
5299 {
5300         I915_WRITE_NOTRACE(FORCEWAKE, 0);
5301         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5302 }
5303
5304 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5305 {
5306         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
5307                             FORCEWAKE_ACK_TIMEOUT_MS))
5308                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5309
5310         I915_WRITE_NOTRACE(FORCEWAKE, 1);
5311         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5312
5313         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
5314                             FORCEWAKE_ACK_TIMEOUT_MS))
5315                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5316
5317         /* WaRsForcewakeWaitTC0:snb */
5318         __gen6_gt_wait_for_thread_c0(dev_priv);
5319 }
5320
5321 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
5322 {
5323         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
5324         /* something from same cacheline, but !FORCEWAKE_MT */
5325         POSTING_READ(ECOBUS);
5326 }
5327
5328 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
5329 {
5330         u32 forcewake_ack;
5331
5332         if (IS_HASWELL(dev_priv->dev))
5333                 forcewake_ack = FORCEWAKE_ACK_HSW;
5334         else
5335                 forcewake_ack = FORCEWAKE_MT_ACK;
5336
5337         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
5338                             FORCEWAKE_ACK_TIMEOUT_MS))
5339                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5340
5341         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5342         /* something from same cacheline, but !FORCEWAKE_MT */
5343         POSTING_READ(ECOBUS);
5344
5345         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
5346                             FORCEWAKE_ACK_TIMEOUT_MS))
5347                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5348
5349         /* WaRsForcewakeWaitTC0:ivb,hsw */
5350         __gen6_gt_wait_for_thread_c0(dev_priv);
5351 }
5352
5353 /*
5354  * Generally this is called implicitly by the register read function. However,
5355  * if some sequence requires the GT to not power down then this function should
5356  * be called at the beginning of the sequence followed by a call to
5357  * gen6_gt_force_wake_put() at the end of the sequence.
5358  */
5359 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5360 {
5361         unsigned long irqflags;
5362
5363         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5364         if (dev_priv->forcewake_count++ == 0)
5365                 dev_priv->gt.force_wake_get(dev_priv);
5366         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5367 }
5368
5369 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
5370 {
5371         u32 gtfifodbg;
5372         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
5373         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
5374              "MMIO read or write has been dropped %x\n", gtfifodbg))
5375                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
5376 }
5377
5378 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5379 {
5380         I915_WRITE_NOTRACE(FORCEWAKE, 0);
5381         /* something from same cacheline, but !FORCEWAKE */
5382         POSTING_READ(ECOBUS);
5383         gen6_gt_check_fifodbg(dev_priv);
5384 }
5385
5386 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
5387 {
5388         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5389         /* something from same cacheline, but !FORCEWAKE_MT */
5390         POSTING_READ(ECOBUS);
5391         gen6_gt_check_fifodbg(dev_priv);
5392 }
5393
5394 /*
5395  * see gen6_gt_force_wake_get()
5396  */
5397 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5398 {
5399         unsigned long irqflags;
5400
5401         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
5402         if (--dev_priv->forcewake_count == 0)
5403                 dev_priv->gt.force_wake_put(dev_priv);
5404         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
5405 }
5406
5407 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
5408 {
5409         int ret = 0;
5410
5411         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
5412                 int loop = 500;
5413                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5414                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
5415                         udelay(10);
5416                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5417                 }
5418                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
5419                         ++ret;
5420                 dev_priv->gt_fifo_count = fifo;
5421         }
5422         dev_priv->gt_fifo_count--;
5423
5424         return ret;
5425 }
5426
5427 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
5428 {
5429         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
5430         /* something from same cacheline, but !FORCEWAKE_VLV */
5431         POSTING_READ(FORCEWAKE_ACK_VLV);
5432 }
5433
5434 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
5435 {
5436         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
5437                             FORCEWAKE_ACK_TIMEOUT_MS))
5438                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5439
5440         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5441         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5442                            _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5443
5444         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
5445                             FORCEWAKE_ACK_TIMEOUT_MS))
5446                 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
5447
5448         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
5449                              FORCEWAKE_KERNEL),
5450                             FORCEWAKE_ACK_TIMEOUT_MS))
5451                 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
5452
5453         /* WaRsForcewakeWaitTC0:vlv */
5454         __gen6_gt_wait_for_thread_c0(dev_priv);
5455 }
5456
5457 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
5458 {
5459         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5460         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5461                            _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5462         /* The below doubles as a POSTING_READ */
5463         gen6_gt_check_fifodbg(dev_priv);
5464 }
5465
5466 void intel_gt_reset(struct drm_device *dev)
5467 {
5468         struct drm_i915_private *dev_priv = dev->dev_private;
5469
5470         if (IS_VALLEYVIEW(dev)) {
5471                 vlv_force_wake_reset(dev_priv);
5472         } else if (INTEL_INFO(dev)->gen >= 6) {
5473                 __gen6_gt_force_wake_reset(dev_priv);
5474                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5475                         __gen6_gt_force_wake_mt_reset(dev_priv);
5476         }
5477 }
5478
5479 void intel_gt_init(struct drm_device *dev)
5480 {
5481         struct drm_i915_private *dev_priv = dev->dev_private;
5482
5483         spin_lock_init(&dev_priv->gt_lock);
5484
5485         intel_gt_reset(dev);
5486
5487         if (IS_VALLEYVIEW(dev)) {
5488                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
5489                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
5490         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5491                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
5492                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
5493         } else if (IS_GEN6(dev)) {
5494                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
5495                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
5496         }
5497         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5498                           intel_gen6_powersave_work);
5499 }
5500
5501 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5502 {
5503         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5504
5505         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5506                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5507                 return -EAGAIN;
5508         }
5509
5510         I915_WRITE(GEN6_PCODE_DATA, *val);
5511         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5512
5513         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5514                      500)) {
5515                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5516                 return -ETIMEDOUT;
5517         }
5518
5519         *val = I915_READ(GEN6_PCODE_DATA);
5520         I915_WRITE(GEN6_PCODE_DATA, 0);
5521
5522         return 0;
5523 }
5524
5525 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5526 {
5527         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5528
5529         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5530                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5531                 return -EAGAIN;
5532         }
5533
5534         I915_WRITE(GEN6_PCODE_DATA, val);
5535         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5536
5537         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5538                      500)) {
5539                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5540                 return -ETIMEDOUT;
5541         }
5542
5543         I915_WRITE(GEN6_PCODE_DATA, 0);
5544
5545         return 0;
5546 }
5547
5548 int vlv_gpu_freq(int ddr_freq, int val)
5549 {
5550         int mult, base;
5551
5552         switch (ddr_freq) {
5553         case 800:
5554                 mult = 20;
5555                 base = 120;
5556                 break;
5557         case 1066:
5558                 mult = 22;
5559                 base = 133;
5560                 break;
5561         case 1333:
5562                 mult = 21;
5563                 base = 125;
5564                 break;
5565         default:
5566                 return -1;
5567         }
5568
5569         return ((val - 0xbd) * mult) + base;
5570 }
5571
5572 int vlv_freq_opcode(int ddr_freq, int val)
5573 {
5574         int mult, base;
5575
5576         switch (ddr_freq) {
5577         case 800:
5578                 mult = 20;
5579                 base = 120;
5580                 break;
5581         case 1066:
5582                 mult = 22;
5583                 base = 133;
5584                 break;
5585         case 1333:
5586                 mult = 21;
5587                 base = 125;
5588                 break;
5589         default:
5590                 return -1;
5591         }
5592
5593         val /= mult;
5594         val -= base / mult;
5595         val += 0xbd;
5596
5597         if (val > 0xea)
5598                 val = 0xea;
5599
5600         return val;
5601 }
5602