drm/i915: Pass the actual sprite width to watermarks functions
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36  * framebuffer contents in-memory, aiming at reducing the required bandwidth
37  * during in-memory transfers and, therefore, reduce the power packet.
38  *
39  * The benefits of FBC are mostly visible with solid backgrounds and
40  * variation-less patterns.
41  *
42  * FBC-related functionality can be enabled by the means of the
43  * i915.i915_enable_fbc parameter
44  */
45
46 static bool intel_crtc_active(struct drm_crtc *crtc)
47 {
48         /* Be paranoid as we can arrive here with only partial
49          * state retrieved from the hardware during setup.
50          */
51         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
52 }
53
54 static void i8xx_disable_fbc(struct drm_device *dev)
55 {
56         struct drm_i915_private *dev_priv = dev->dev_private;
57         u32 fbc_ctl;
58
59         /* Disable compression */
60         fbc_ctl = I915_READ(FBC_CONTROL);
61         if ((fbc_ctl & FBC_CTL_EN) == 0)
62                 return;
63
64         fbc_ctl &= ~FBC_CTL_EN;
65         I915_WRITE(FBC_CONTROL, fbc_ctl);
66
67         /* Wait for compressing bit to clear */
68         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69                 DRM_DEBUG_KMS("FBC idle timed out\n");
70                 return;
71         }
72
73         DRM_DEBUG_KMS("disabled FBC\n");
74 }
75
76 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
77 {
78         struct drm_device *dev = crtc->dev;
79         struct drm_i915_private *dev_priv = dev->dev_private;
80         struct drm_framebuffer *fb = crtc->fb;
81         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82         struct drm_i915_gem_object *obj = intel_fb->obj;
83         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84         int cfb_pitch;
85         int plane, i;
86         u32 fbc_ctl, fbc_ctl2;
87
88         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
89         if (fb->pitches[0] < cfb_pitch)
90                 cfb_pitch = fb->pitches[0];
91
92         /* FBC_CTL wants 64B units */
93         cfb_pitch = (cfb_pitch / 64) - 1;
94         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
95
96         /* Clear old tags */
97         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98                 I915_WRITE(FBC_TAG + (i * 4), 0);
99
100         /* Set it up... */
101         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
102         fbc_ctl2 |= plane;
103         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104         I915_WRITE(FBC_FENCE_OFF, crtc->y);
105
106         /* enable it... */
107         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
108         if (IS_I945GM(dev))
109                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112         fbc_ctl |= obj->fence_reg;
113         I915_WRITE(FBC_CONTROL, fbc_ctl);
114
115         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
116                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
117 }
118
119 static bool i8xx_fbc_enabled(struct drm_device *dev)
120 {
121         struct drm_i915_private *dev_priv = dev->dev_private;
122
123         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
124 }
125
126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
127 {
128         struct drm_device *dev = crtc->dev;
129         struct drm_i915_private *dev_priv = dev->dev_private;
130         struct drm_framebuffer *fb = crtc->fb;
131         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132         struct drm_i915_gem_object *obj = intel_fb->obj;
133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135         unsigned long stall_watermark = 200;
136         u32 dpfc_ctl;
137
138         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
141
142         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
146
147         /* enable it... */
148         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
149
150         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
151 }
152
153 static void g4x_disable_fbc(struct drm_device *dev)
154 {
155         struct drm_i915_private *dev_priv = dev->dev_private;
156         u32 dpfc_ctl;
157
158         /* Disable compression */
159         dpfc_ctl = I915_READ(DPFC_CONTROL);
160         if (dpfc_ctl & DPFC_CTL_EN) {
161                 dpfc_ctl &= ~DPFC_CTL_EN;
162                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
163
164                 DRM_DEBUG_KMS("disabled FBC\n");
165         }
166 }
167
168 static bool g4x_fbc_enabled(struct drm_device *dev)
169 {
170         struct drm_i915_private *dev_priv = dev->dev_private;
171
172         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
173 }
174
175 static void sandybridge_blit_fbc_update(struct drm_device *dev)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         u32 blt_ecoskpd;
179
180         /* Make sure blitter notifies FBC of writes */
181         gen6_gt_force_wake_get(dev_priv);
182         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184                 GEN6_BLITTER_LOCK_SHIFT;
185         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189                          GEN6_BLITTER_LOCK_SHIFT);
190         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191         POSTING_READ(GEN6_BLITTER_ECOSKPD);
192         gen6_gt_force_wake_put(dev_priv);
193 }
194
195 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
196 {
197         struct drm_device *dev = crtc->dev;
198         struct drm_i915_private *dev_priv = dev->dev_private;
199         struct drm_framebuffer *fb = crtc->fb;
200         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201         struct drm_i915_gem_object *obj = intel_fb->obj;
202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204         unsigned long stall_watermark = 200;
205         u32 dpfc_ctl;
206
207         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208         dpfc_ctl &= DPFC_RESERVED;
209         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210         /* Set persistent mode for front-buffer rendering, ala X. */
211         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
214
215         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
220         /* enable it... */
221         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
222
223         if (IS_GEN6(dev)) {
224                 I915_WRITE(SNB_DPFC_CTL_SA,
225                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227                 sandybridge_blit_fbc_update(dev);
228         }
229
230         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
231 }
232
233 static void ironlake_disable_fbc(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         u32 dpfc_ctl;
237
238         /* Disable compression */
239         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240         if (dpfc_ctl & DPFC_CTL_EN) {
241                 dpfc_ctl &= ~DPFC_CTL_EN;
242                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
243
244                 if (IS_IVYBRIDGE(dev))
245                         /* WaFbcDisableDpfcClockGating:ivb */
246                         I915_WRITE(ILK_DSPCLK_GATE_D,
247                                    I915_READ(ILK_DSPCLK_GATE_D) &
248                                    ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
249
250                 if (IS_HASWELL(dev))
251                         /* WaFbcDisableDpfcClockGating:hsw */
252                         I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
253                                    I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
254                                    ~HSW_DPFC_GATING_DISABLE);
255
256                 DRM_DEBUG_KMS("disabled FBC\n");
257         }
258 }
259
260 static bool ironlake_fbc_enabled(struct drm_device *dev)
261 {
262         struct drm_i915_private *dev_priv = dev->dev_private;
263
264         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
265 }
266
267 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
268 {
269         struct drm_device *dev = crtc->dev;
270         struct drm_i915_private *dev_priv = dev->dev_private;
271         struct drm_framebuffer *fb = crtc->fb;
272         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
273         struct drm_i915_gem_object *obj = intel_fb->obj;
274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
275
276         I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
277
278         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
279                    IVB_DPFC_CTL_FENCE_EN |
280                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
281
282         if (IS_IVYBRIDGE(dev)) {
283                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
284                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
285                 /* WaFbcDisableDpfcClockGating:ivb */
286                 I915_WRITE(ILK_DSPCLK_GATE_D,
287                            I915_READ(ILK_DSPCLK_GATE_D) |
288                            ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
289         } else {
290                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
291                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
292                            HSW_BYPASS_FBC_QUEUE);
293                 /* WaFbcDisableDpfcClockGating:hsw */
294                 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
295                            I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
296                            HSW_DPFC_GATING_DISABLE);
297         }
298
299         I915_WRITE(SNB_DPFC_CTL_SA,
300                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
301         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
302
303         sandybridge_blit_fbc_update(dev);
304
305         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
306 }
307
308 bool intel_fbc_enabled(struct drm_device *dev)
309 {
310         struct drm_i915_private *dev_priv = dev->dev_private;
311
312         if (!dev_priv->display.fbc_enabled)
313                 return false;
314
315         return dev_priv->display.fbc_enabled(dev);
316 }
317
318 static void intel_fbc_work_fn(struct work_struct *__work)
319 {
320         struct intel_fbc_work *work =
321                 container_of(to_delayed_work(__work),
322                              struct intel_fbc_work, work);
323         struct drm_device *dev = work->crtc->dev;
324         struct drm_i915_private *dev_priv = dev->dev_private;
325
326         mutex_lock(&dev->struct_mutex);
327         if (work == dev_priv->fbc.fbc_work) {
328                 /* Double check that we haven't switched fb without cancelling
329                  * the prior work.
330                  */
331                 if (work->crtc->fb == work->fb) {
332                         dev_priv->display.enable_fbc(work->crtc,
333                                                      work->interval);
334
335                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
336                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
337                         dev_priv->fbc.y = work->crtc->y;
338                 }
339
340                 dev_priv->fbc.fbc_work = NULL;
341         }
342         mutex_unlock(&dev->struct_mutex);
343
344         kfree(work);
345 }
346
347 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
348 {
349         if (dev_priv->fbc.fbc_work == NULL)
350                 return;
351
352         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
353
354         /* Synchronisation is provided by struct_mutex and checking of
355          * dev_priv->fbc.fbc_work, so we can perform the cancellation
356          * entirely asynchronously.
357          */
358         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
359                 /* tasklet was killed before being run, clean up */
360                 kfree(dev_priv->fbc.fbc_work);
361
362         /* Mark the work as no longer wanted so that if it does
363          * wake-up (because the work was already running and waiting
364          * for our mutex), it will discover that is no longer
365          * necessary to run.
366          */
367         dev_priv->fbc.fbc_work = NULL;
368 }
369
370 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
371 {
372         struct intel_fbc_work *work;
373         struct drm_device *dev = crtc->dev;
374         struct drm_i915_private *dev_priv = dev->dev_private;
375
376         if (!dev_priv->display.enable_fbc)
377                 return;
378
379         intel_cancel_fbc_work(dev_priv);
380
381         work = kzalloc(sizeof *work, GFP_KERNEL);
382         if (work == NULL) {
383                 DRM_ERROR("Failed to allocate FBC work structure\n");
384                 dev_priv->display.enable_fbc(crtc, interval);
385                 return;
386         }
387
388         work->crtc = crtc;
389         work->fb = crtc->fb;
390         work->interval = interval;
391         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
392
393         dev_priv->fbc.fbc_work = work;
394
395         /* Delay the actual enabling to let pageflipping cease and the
396          * display to settle before starting the compression. Note that
397          * this delay also serves a second purpose: it allows for a
398          * vblank to pass after disabling the FBC before we attempt
399          * to modify the control registers.
400          *
401          * A more complicated solution would involve tracking vblanks
402          * following the termination of the page-flipping sequence
403          * and indeed performing the enable as a co-routine and not
404          * waiting synchronously upon the vblank.
405          *
406          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
407          */
408         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
409 }
410
411 void intel_disable_fbc(struct drm_device *dev)
412 {
413         struct drm_i915_private *dev_priv = dev->dev_private;
414
415         intel_cancel_fbc_work(dev_priv);
416
417         if (!dev_priv->display.disable_fbc)
418                 return;
419
420         dev_priv->display.disable_fbc(dev);
421         dev_priv->fbc.plane = -1;
422 }
423
424 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
425                               enum no_fbc_reason reason)
426 {
427         if (dev_priv->fbc.no_fbc_reason == reason)
428                 return false;
429
430         dev_priv->fbc.no_fbc_reason = reason;
431         return true;
432 }
433
434 /**
435  * intel_update_fbc - enable/disable FBC as needed
436  * @dev: the drm_device
437  *
438  * Set up the framebuffer compression hardware at mode set time.  We
439  * enable it if possible:
440  *   - plane A only (on pre-965)
441  *   - no pixel mulitply/line duplication
442  *   - no alpha buffer discard
443  *   - no dual wide
444  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
445  *
446  * We can't assume that any compression will take place (worst case),
447  * so the compressed buffer has to be the same size as the uncompressed
448  * one.  It also must reside (along with the line length buffer) in
449  * stolen memory.
450  *
451  * We need to enable/disable FBC on a global basis.
452  */
453 void intel_update_fbc(struct drm_device *dev)
454 {
455         struct drm_i915_private *dev_priv = dev->dev_private;
456         struct drm_crtc *crtc = NULL, *tmp_crtc;
457         struct intel_crtc *intel_crtc;
458         struct drm_framebuffer *fb;
459         struct intel_framebuffer *intel_fb;
460         struct drm_i915_gem_object *obj;
461         unsigned int max_hdisplay, max_vdisplay;
462
463         if (!I915_HAS_FBC(dev)) {
464                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
465                 return;
466         }
467
468         if (!i915_powersave) {
469                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
470                         DRM_DEBUG_KMS("fbc disabled per module param\n");
471                 return;
472         }
473
474         /*
475          * If FBC is already on, we just have to verify that we can
476          * keep it that way...
477          * Need to disable if:
478          *   - more than one pipe is active
479          *   - changing FBC params (stride, fence, mode)
480          *   - new fb is too large to fit in compressed buffer
481          *   - going to an unsupported config (interlace, pixel multiply, etc.)
482          */
483         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
484                 if (intel_crtc_active(tmp_crtc) &&
485                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
486                         if (crtc) {
487                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
488                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
489                                 goto out_disable;
490                         }
491                         crtc = tmp_crtc;
492                 }
493         }
494
495         if (!crtc || crtc->fb == NULL) {
496                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
497                         DRM_DEBUG_KMS("no output, disabling\n");
498                 goto out_disable;
499         }
500
501         intel_crtc = to_intel_crtc(crtc);
502         fb = crtc->fb;
503         intel_fb = to_intel_framebuffer(fb);
504         obj = intel_fb->obj;
505
506         if (i915_enable_fbc < 0 &&
507             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
508                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
509                         DRM_DEBUG_KMS("disabled per chip default\n");
510                 goto out_disable;
511         }
512         if (!i915_enable_fbc) {
513                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
514                         DRM_DEBUG_KMS("fbc disabled per module param\n");
515                 goto out_disable;
516         }
517         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
518             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
519                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
520                         DRM_DEBUG_KMS("mode incompatible with compression, "
521                                       "disabling\n");
522                 goto out_disable;
523         }
524
525         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
526                 max_hdisplay = 4096;
527                 max_vdisplay = 2048;
528         } else {
529                 max_hdisplay = 2048;
530                 max_vdisplay = 1536;
531         }
532         if ((crtc->mode.hdisplay > max_hdisplay) ||
533             (crtc->mode.vdisplay > max_vdisplay)) {
534                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
535                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
536                 goto out_disable;
537         }
538         if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
539             intel_crtc->plane != 0) {
540                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
541                         DRM_DEBUG_KMS("plane not 0, disabling compression\n");
542                 goto out_disable;
543         }
544
545         /* The use of a CPU fence is mandatory in order to detect writes
546          * by the CPU to the scanout and trigger updates to the FBC.
547          */
548         if (obj->tiling_mode != I915_TILING_X ||
549             obj->fence_reg == I915_FENCE_REG_NONE) {
550                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
551                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
552                 goto out_disable;
553         }
554
555         /* If the kernel debugger is active, always disable compression */
556         if (in_dbg_master())
557                 goto out_disable;
558
559         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
560                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
561                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
562                 goto out_disable;
563         }
564
565         /* If the scanout has not changed, don't modify the FBC settings.
566          * Note that we make the fundamental assumption that the fb->obj
567          * cannot be unpinned (and have its GTT offset and fence revoked)
568          * without first being decoupled from the scanout and FBC disabled.
569          */
570         if (dev_priv->fbc.plane == intel_crtc->plane &&
571             dev_priv->fbc.fb_id == fb->base.id &&
572             dev_priv->fbc.y == crtc->y)
573                 return;
574
575         if (intel_fbc_enabled(dev)) {
576                 /* We update FBC along two paths, after changing fb/crtc
577                  * configuration (modeswitching) and after page-flipping
578                  * finishes. For the latter, we know that not only did
579                  * we disable the FBC at the start of the page-flip
580                  * sequence, but also more than one vblank has passed.
581                  *
582                  * For the former case of modeswitching, it is possible
583                  * to switch between two FBC valid configurations
584                  * instantaneously so we do need to disable the FBC
585                  * before we can modify its control registers. We also
586                  * have to wait for the next vblank for that to take
587                  * effect. However, since we delay enabling FBC we can
588                  * assume that a vblank has passed since disabling and
589                  * that we can safely alter the registers in the deferred
590                  * callback.
591                  *
592                  * In the scenario that we go from a valid to invalid
593                  * and then back to valid FBC configuration we have
594                  * no strict enforcement that a vblank occurred since
595                  * disabling the FBC. However, along all current pipe
596                  * disabling paths we do need to wait for a vblank at
597                  * some point. And we wait before enabling FBC anyway.
598                  */
599                 DRM_DEBUG_KMS("disabling active FBC for update\n");
600                 intel_disable_fbc(dev);
601         }
602
603         intel_enable_fbc(crtc, 500);
604         dev_priv->fbc.no_fbc_reason = FBC_OK;
605         return;
606
607 out_disable:
608         /* Multiple disables should be harmless */
609         if (intel_fbc_enabled(dev)) {
610                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
611                 intel_disable_fbc(dev);
612         }
613         i915_gem_stolen_cleanup_compression(dev);
614 }
615
616 static void i915_pineview_get_mem_freq(struct drm_device *dev)
617 {
618         drm_i915_private_t *dev_priv = dev->dev_private;
619         u32 tmp;
620
621         tmp = I915_READ(CLKCFG);
622
623         switch (tmp & CLKCFG_FSB_MASK) {
624         case CLKCFG_FSB_533:
625                 dev_priv->fsb_freq = 533; /* 133*4 */
626                 break;
627         case CLKCFG_FSB_800:
628                 dev_priv->fsb_freq = 800; /* 200*4 */
629                 break;
630         case CLKCFG_FSB_667:
631                 dev_priv->fsb_freq =  667; /* 167*4 */
632                 break;
633         case CLKCFG_FSB_400:
634                 dev_priv->fsb_freq = 400; /* 100*4 */
635                 break;
636         }
637
638         switch (tmp & CLKCFG_MEM_MASK) {
639         case CLKCFG_MEM_533:
640                 dev_priv->mem_freq = 533;
641                 break;
642         case CLKCFG_MEM_667:
643                 dev_priv->mem_freq = 667;
644                 break;
645         case CLKCFG_MEM_800:
646                 dev_priv->mem_freq = 800;
647                 break;
648         }
649
650         /* detect pineview DDR3 setting */
651         tmp = I915_READ(CSHRDDR3CTL);
652         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
653 }
654
655 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
656 {
657         drm_i915_private_t *dev_priv = dev->dev_private;
658         u16 ddrpll, csipll;
659
660         ddrpll = I915_READ16(DDRMPLL1);
661         csipll = I915_READ16(CSIPLL0);
662
663         switch (ddrpll & 0xff) {
664         case 0xc:
665                 dev_priv->mem_freq = 800;
666                 break;
667         case 0x10:
668                 dev_priv->mem_freq = 1066;
669                 break;
670         case 0x14:
671                 dev_priv->mem_freq = 1333;
672                 break;
673         case 0x18:
674                 dev_priv->mem_freq = 1600;
675                 break;
676         default:
677                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
678                                  ddrpll & 0xff);
679                 dev_priv->mem_freq = 0;
680                 break;
681         }
682
683         dev_priv->ips.r_t = dev_priv->mem_freq;
684
685         switch (csipll & 0x3ff) {
686         case 0x00c:
687                 dev_priv->fsb_freq = 3200;
688                 break;
689         case 0x00e:
690                 dev_priv->fsb_freq = 3733;
691                 break;
692         case 0x010:
693                 dev_priv->fsb_freq = 4266;
694                 break;
695         case 0x012:
696                 dev_priv->fsb_freq = 4800;
697                 break;
698         case 0x014:
699                 dev_priv->fsb_freq = 5333;
700                 break;
701         case 0x016:
702                 dev_priv->fsb_freq = 5866;
703                 break;
704         case 0x018:
705                 dev_priv->fsb_freq = 6400;
706                 break;
707         default:
708                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
709                                  csipll & 0x3ff);
710                 dev_priv->fsb_freq = 0;
711                 break;
712         }
713
714         if (dev_priv->fsb_freq == 3200) {
715                 dev_priv->ips.c_m = 0;
716         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
717                 dev_priv->ips.c_m = 1;
718         } else {
719                 dev_priv->ips.c_m = 2;
720         }
721 }
722
723 static const struct cxsr_latency cxsr_latency_table[] = {
724         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
725         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
726         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
727         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
728         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
729
730         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
731         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
732         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
733         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
734         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
735
736         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
737         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
738         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
739         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
740         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
741
742         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
743         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
744         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
745         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
746         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
747
748         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
749         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
750         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
751         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
752         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
753
754         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
755         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
756         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
757         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
758         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
759 };
760
761 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
762                                                          int is_ddr3,
763                                                          int fsb,
764                                                          int mem)
765 {
766         const struct cxsr_latency *latency;
767         int i;
768
769         if (fsb == 0 || mem == 0)
770                 return NULL;
771
772         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
773                 latency = &cxsr_latency_table[i];
774                 if (is_desktop == latency->is_desktop &&
775                     is_ddr3 == latency->is_ddr3 &&
776                     fsb == latency->fsb_freq && mem == latency->mem_freq)
777                         return latency;
778         }
779
780         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
781
782         return NULL;
783 }
784
785 static void pineview_disable_cxsr(struct drm_device *dev)
786 {
787         struct drm_i915_private *dev_priv = dev->dev_private;
788
789         /* deactivate cxsr */
790         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
791 }
792
793 /*
794  * Latency for FIFO fetches is dependent on several factors:
795  *   - memory configuration (speed, channels)
796  *   - chipset
797  *   - current MCH state
798  * It can be fairly high in some situations, so here we assume a fairly
799  * pessimal value.  It's a tradeoff between extra memory fetches (if we
800  * set this value too high, the FIFO will fetch frequently to stay full)
801  * and power consumption (set it too low to save power and we might see
802  * FIFO underruns and display "flicker").
803  *
804  * A value of 5us seems to be a good balance; safe for very low end
805  * platforms but not overly aggressive on lower latency configs.
806  */
807 static const int latency_ns = 5000;
808
809 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
810 {
811         struct drm_i915_private *dev_priv = dev->dev_private;
812         uint32_t dsparb = I915_READ(DSPARB);
813         int size;
814
815         size = dsparb & 0x7f;
816         if (plane)
817                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
818
819         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
820                       plane ? "B" : "A", size);
821
822         return size;
823 }
824
825 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
826 {
827         struct drm_i915_private *dev_priv = dev->dev_private;
828         uint32_t dsparb = I915_READ(DSPARB);
829         int size;
830
831         size = dsparb & 0x1ff;
832         if (plane)
833                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
834         size >>= 1; /* Convert to cachelines */
835
836         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
837                       plane ? "B" : "A", size);
838
839         return size;
840 }
841
842 static int i845_get_fifo_size(struct drm_device *dev, int plane)
843 {
844         struct drm_i915_private *dev_priv = dev->dev_private;
845         uint32_t dsparb = I915_READ(DSPARB);
846         int size;
847
848         size = dsparb & 0x7f;
849         size >>= 2; /* Convert to cachelines */
850
851         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
852                       plane ? "B" : "A",
853                       size);
854
855         return size;
856 }
857
858 static int i830_get_fifo_size(struct drm_device *dev, int plane)
859 {
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         uint32_t dsparb = I915_READ(DSPARB);
862         int size;
863
864         size = dsparb & 0x7f;
865         size >>= 1; /* Convert to cachelines */
866
867         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
868                       plane ? "B" : "A", size);
869
870         return size;
871 }
872
873 /* Pineview has different values for various configs */
874 static const struct intel_watermark_params pineview_display_wm = {
875         PINEVIEW_DISPLAY_FIFO,
876         PINEVIEW_MAX_WM,
877         PINEVIEW_DFT_WM,
878         PINEVIEW_GUARD_WM,
879         PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_display_hplloff_wm = {
882         PINEVIEW_DISPLAY_FIFO,
883         PINEVIEW_MAX_WM,
884         PINEVIEW_DFT_HPLLOFF_WM,
885         PINEVIEW_GUARD_WM,
886         PINEVIEW_FIFO_LINE_SIZE
887 };
888 static const struct intel_watermark_params pineview_cursor_wm = {
889         PINEVIEW_CURSOR_FIFO,
890         PINEVIEW_CURSOR_MAX_WM,
891         PINEVIEW_CURSOR_DFT_WM,
892         PINEVIEW_CURSOR_GUARD_WM,
893         PINEVIEW_FIFO_LINE_SIZE,
894 };
895 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
896         PINEVIEW_CURSOR_FIFO,
897         PINEVIEW_CURSOR_MAX_WM,
898         PINEVIEW_CURSOR_DFT_WM,
899         PINEVIEW_CURSOR_GUARD_WM,
900         PINEVIEW_FIFO_LINE_SIZE
901 };
902 static const struct intel_watermark_params g4x_wm_info = {
903         G4X_FIFO_SIZE,
904         G4X_MAX_WM,
905         G4X_MAX_WM,
906         2,
907         G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params g4x_cursor_wm_info = {
910         I965_CURSOR_FIFO,
911         I965_CURSOR_MAX_WM,
912         I965_CURSOR_DFT_WM,
913         2,
914         G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_wm_info = {
917         VALLEYVIEW_FIFO_SIZE,
918         VALLEYVIEW_MAX_WM,
919         VALLEYVIEW_MAX_WM,
920         2,
921         G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params valleyview_cursor_wm_info = {
924         I965_CURSOR_FIFO,
925         VALLEYVIEW_CURSOR_MAX_WM,
926         I965_CURSOR_DFT_WM,
927         2,
928         G4X_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i965_cursor_wm_info = {
931         I965_CURSOR_FIFO,
932         I965_CURSOR_MAX_WM,
933         I965_CURSOR_DFT_WM,
934         2,
935         I915_FIFO_LINE_SIZE,
936 };
937 static const struct intel_watermark_params i945_wm_info = {
938         I945_FIFO_SIZE,
939         I915_MAX_WM,
940         1,
941         2,
942         I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i915_wm_info = {
945         I915_FIFO_SIZE,
946         I915_MAX_WM,
947         1,
948         2,
949         I915_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i855_wm_info = {
952         I855GM_FIFO_SIZE,
953         I915_MAX_WM,
954         1,
955         2,
956         I830_FIFO_LINE_SIZE
957 };
958 static const struct intel_watermark_params i830_wm_info = {
959         I830_FIFO_SIZE,
960         I915_MAX_WM,
961         1,
962         2,
963         I830_FIFO_LINE_SIZE
964 };
965
966 static const struct intel_watermark_params ironlake_display_wm_info = {
967         ILK_DISPLAY_FIFO,
968         ILK_DISPLAY_MAXWM,
969         ILK_DISPLAY_DFTWM,
970         2,
971         ILK_FIFO_LINE_SIZE
972 };
973 static const struct intel_watermark_params ironlake_cursor_wm_info = {
974         ILK_CURSOR_FIFO,
975         ILK_CURSOR_MAXWM,
976         ILK_CURSOR_DFTWM,
977         2,
978         ILK_FIFO_LINE_SIZE
979 };
980 static const struct intel_watermark_params ironlake_display_srwm_info = {
981         ILK_DISPLAY_SR_FIFO,
982         ILK_DISPLAY_MAX_SRWM,
983         ILK_DISPLAY_DFT_SRWM,
984         2,
985         ILK_FIFO_LINE_SIZE
986 };
987 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
988         ILK_CURSOR_SR_FIFO,
989         ILK_CURSOR_MAX_SRWM,
990         ILK_CURSOR_DFT_SRWM,
991         2,
992         ILK_FIFO_LINE_SIZE
993 };
994
995 static const struct intel_watermark_params sandybridge_display_wm_info = {
996         SNB_DISPLAY_FIFO,
997         SNB_DISPLAY_MAXWM,
998         SNB_DISPLAY_DFTWM,
999         2,
1000         SNB_FIFO_LINE_SIZE
1001 };
1002 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1003         SNB_CURSOR_FIFO,
1004         SNB_CURSOR_MAXWM,
1005         SNB_CURSOR_DFTWM,
1006         2,
1007         SNB_FIFO_LINE_SIZE
1008 };
1009 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1010         SNB_DISPLAY_SR_FIFO,
1011         SNB_DISPLAY_MAX_SRWM,
1012         SNB_DISPLAY_DFT_SRWM,
1013         2,
1014         SNB_FIFO_LINE_SIZE
1015 };
1016 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1017         SNB_CURSOR_SR_FIFO,
1018         SNB_CURSOR_MAX_SRWM,
1019         SNB_CURSOR_DFT_SRWM,
1020         2,
1021         SNB_FIFO_LINE_SIZE
1022 };
1023
1024
1025 /**
1026  * intel_calculate_wm - calculate watermark level
1027  * @clock_in_khz: pixel clock
1028  * @wm: chip FIFO params
1029  * @pixel_size: display pixel size
1030  * @latency_ns: memory latency for the platform
1031  *
1032  * Calculate the watermark level (the level at which the display plane will
1033  * start fetching from memory again).  Each chip has a different display
1034  * FIFO size and allocation, so the caller needs to figure that out and pass
1035  * in the correct intel_watermark_params structure.
1036  *
1037  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1038  * on the pixel size.  When it reaches the watermark level, it'll start
1039  * fetching FIFO line sized based chunks from memory until the FIFO fills
1040  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1041  * will occur, and a display engine hang could result.
1042  */
1043 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1044                                         const struct intel_watermark_params *wm,
1045                                         int fifo_size,
1046                                         int pixel_size,
1047                                         unsigned long latency_ns)
1048 {
1049         long entries_required, wm_size;
1050
1051         /*
1052          * Note: we need to make sure we don't overflow for various clock &
1053          * latency values.
1054          * clocks go from a few thousand to several hundred thousand.
1055          * latency is usually a few thousand
1056          */
1057         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1058                 1000;
1059         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1060
1061         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1062
1063         wm_size = fifo_size - (entries_required + wm->guard_size);
1064
1065         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1066
1067         /* Don't promote wm_size to unsigned... */
1068         if (wm_size > (long)wm->max_wm)
1069                 wm_size = wm->max_wm;
1070         if (wm_size <= 0)
1071                 wm_size = wm->default_wm;
1072         return wm_size;
1073 }
1074
1075 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1076 {
1077         struct drm_crtc *crtc, *enabled = NULL;
1078
1079         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1080                 if (intel_crtc_active(crtc)) {
1081                         if (enabled)
1082                                 return NULL;
1083                         enabled = crtc;
1084                 }
1085         }
1086
1087         return enabled;
1088 }
1089
1090 static void pineview_update_wm(struct drm_device *dev)
1091 {
1092         struct drm_i915_private *dev_priv = dev->dev_private;
1093         struct drm_crtc *crtc;
1094         const struct cxsr_latency *latency;
1095         u32 reg;
1096         unsigned long wm;
1097
1098         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1099                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1100         if (!latency) {
1101                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1102                 pineview_disable_cxsr(dev);
1103                 return;
1104         }
1105
1106         crtc = single_enabled_crtc(dev);
1107         if (crtc) {
1108                 int clock = crtc->mode.clock;
1109                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1110
1111                 /* Display SR */
1112                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1113                                         pineview_display_wm.fifo_size,
1114                                         pixel_size, latency->display_sr);
1115                 reg = I915_READ(DSPFW1);
1116                 reg &= ~DSPFW_SR_MASK;
1117                 reg |= wm << DSPFW_SR_SHIFT;
1118                 I915_WRITE(DSPFW1, reg);
1119                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1120
1121                 /* cursor SR */
1122                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1123                                         pineview_display_wm.fifo_size,
1124                                         pixel_size, latency->cursor_sr);
1125                 reg = I915_READ(DSPFW3);
1126                 reg &= ~DSPFW_CURSOR_SR_MASK;
1127                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1128                 I915_WRITE(DSPFW3, reg);
1129
1130                 /* Display HPLL off SR */
1131                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1132                                         pineview_display_hplloff_wm.fifo_size,
1133                                         pixel_size, latency->display_hpll_disable);
1134                 reg = I915_READ(DSPFW3);
1135                 reg &= ~DSPFW_HPLL_SR_MASK;
1136                 reg |= wm & DSPFW_HPLL_SR_MASK;
1137                 I915_WRITE(DSPFW3, reg);
1138
1139                 /* cursor HPLL off SR */
1140                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1141                                         pineview_display_hplloff_wm.fifo_size,
1142                                         pixel_size, latency->cursor_hpll_disable);
1143                 reg = I915_READ(DSPFW3);
1144                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1145                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1146                 I915_WRITE(DSPFW3, reg);
1147                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1148
1149                 /* activate cxsr */
1150                 I915_WRITE(DSPFW3,
1151                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1152                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1153         } else {
1154                 pineview_disable_cxsr(dev);
1155                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1156         }
1157 }
1158
1159 static bool g4x_compute_wm0(struct drm_device *dev,
1160                             int plane,
1161                             const struct intel_watermark_params *display,
1162                             int display_latency_ns,
1163                             const struct intel_watermark_params *cursor,
1164                             int cursor_latency_ns,
1165                             int *plane_wm,
1166                             int *cursor_wm)
1167 {
1168         struct drm_crtc *crtc;
1169         int htotal, hdisplay, clock, pixel_size;
1170         int line_time_us, line_count;
1171         int entries, tlb_miss;
1172
1173         crtc = intel_get_crtc_for_plane(dev, plane);
1174         if (!intel_crtc_active(crtc)) {
1175                 *cursor_wm = cursor->guard_size;
1176                 *plane_wm = display->guard_size;
1177                 return false;
1178         }
1179
1180         htotal = crtc->mode.htotal;
1181         hdisplay = crtc->mode.hdisplay;
1182         clock = crtc->mode.clock;
1183         pixel_size = crtc->fb->bits_per_pixel / 8;
1184
1185         /* Use the small buffer method to calculate plane watermark */
1186         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1187         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1188         if (tlb_miss > 0)
1189                 entries += tlb_miss;
1190         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1191         *plane_wm = entries + display->guard_size;
1192         if (*plane_wm > (int)display->max_wm)
1193                 *plane_wm = display->max_wm;
1194
1195         /* Use the large buffer method to calculate cursor watermark */
1196         line_time_us = ((htotal * 1000) / clock);
1197         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1198         entries = line_count * 64 * pixel_size;
1199         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1200         if (tlb_miss > 0)
1201                 entries += tlb_miss;
1202         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1203         *cursor_wm = entries + cursor->guard_size;
1204         if (*cursor_wm > (int)cursor->max_wm)
1205                 *cursor_wm = (int)cursor->max_wm;
1206
1207         return true;
1208 }
1209
1210 /*
1211  * Check the wm result.
1212  *
1213  * If any calculated watermark values is larger than the maximum value that
1214  * can be programmed into the associated watermark register, that watermark
1215  * must be disabled.
1216  */
1217 static bool g4x_check_srwm(struct drm_device *dev,
1218                            int display_wm, int cursor_wm,
1219                            const struct intel_watermark_params *display,
1220                            const struct intel_watermark_params *cursor)
1221 {
1222         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1223                       display_wm, cursor_wm);
1224
1225         if (display_wm > display->max_wm) {
1226                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1227                               display_wm, display->max_wm);
1228                 return false;
1229         }
1230
1231         if (cursor_wm > cursor->max_wm) {
1232                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1233                               cursor_wm, cursor->max_wm);
1234                 return false;
1235         }
1236
1237         if (!(display_wm || cursor_wm)) {
1238                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1239                 return false;
1240         }
1241
1242         return true;
1243 }
1244
1245 static bool g4x_compute_srwm(struct drm_device *dev,
1246                              int plane,
1247                              int latency_ns,
1248                              const struct intel_watermark_params *display,
1249                              const struct intel_watermark_params *cursor,
1250                              int *display_wm, int *cursor_wm)
1251 {
1252         struct drm_crtc *crtc;
1253         int hdisplay, htotal, pixel_size, clock;
1254         unsigned long line_time_us;
1255         int line_count, line_size;
1256         int small, large;
1257         int entries;
1258
1259         if (!latency_ns) {
1260                 *display_wm = *cursor_wm = 0;
1261                 return false;
1262         }
1263
1264         crtc = intel_get_crtc_for_plane(dev, plane);
1265         hdisplay = crtc->mode.hdisplay;
1266         htotal = crtc->mode.htotal;
1267         clock = crtc->mode.clock;
1268         pixel_size = crtc->fb->bits_per_pixel / 8;
1269
1270         line_time_us = (htotal * 1000) / clock;
1271         line_count = (latency_ns / line_time_us + 1000) / 1000;
1272         line_size = hdisplay * pixel_size;
1273
1274         /* Use the minimum of the small and large buffer method for primary */
1275         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1276         large = line_count * line_size;
1277
1278         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1279         *display_wm = entries + display->guard_size;
1280
1281         /* calculate the self-refresh watermark for display cursor */
1282         entries = line_count * pixel_size * 64;
1283         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1284         *cursor_wm = entries + cursor->guard_size;
1285
1286         return g4x_check_srwm(dev,
1287                               *display_wm, *cursor_wm,
1288                               display, cursor);
1289 }
1290
1291 static bool vlv_compute_drain_latency(struct drm_device *dev,
1292                                      int plane,
1293                                      int *plane_prec_mult,
1294                                      int *plane_dl,
1295                                      int *cursor_prec_mult,
1296                                      int *cursor_dl)
1297 {
1298         struct drm_crtc *crtc;
1299         int clock, pixel_size;
1300         int entries;
1301
1302         crtc = intel_get_crtc_for_plane(dev, plane);
1303         if (!intel_crtc_active(crtc))
1304                 return false;
1305
1306         clock = crtc->mode.clock;       /* VESA DOT Clock */
1307         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1308
1309         entries = (clock / 1000) * pixel_size;
1310         *plane_prec_mult = (entries > 256) ?
1311                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1312         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1313                                                      pixel_size);
1314
1315         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1316         *cursor_prec_mult = (entries > 256) ?
1317                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1318         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1319
1320         return true;
1321 }
1322
1323 /*
1324  * Update drain latency registers of memory arbiter
1325  *
1326  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1327  * to be programmed. Each plane has a drain latency multiplier and a drain
1328  * latency value.
1329  */
1330
1331 static void vlv_update_drain_latency(struct drm_device *dev)
1332 {
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1335         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1336         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1337                                                         either 16 or 32 */
1338
1339         /* For plane A, Cursor A */
1340         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1341                                       &cursor_prec_mult, &cursora_dl)) {
1342                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1344                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1346
1347                 I915_WRITE(VLV_DDL1, cursora_prec |
1348                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1349                                 planea_prec | planea_dl);
1350         }
1351
1352         /* For plane B, Cursor B */
1353         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1354                                       &cursor_prec_mult, &cursorb_dl)) {
1355                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1356                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1357                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1358                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1359
1360                 I915_WRITE(VLV_DDL2, cursorb_prec |
1361                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1362                                 planeb_prec | planeb_dl);
1363         }
1364 }
1365
1366 #define single_plane_enabled(mask) is_power_of_2(mask)
1367
1368 static void valleyview_update_wm(struct drm_device *dev)
1369 {
1370         static const int sr_latency_ns = 12000;
1371         struct drm_i915_private *dev_priv = dev->dev_private;
1372         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1373         int plane_sr, cursor_sr;
1374         int ignore_plane_sr, ignore_cursor_sr;
1375         unsigned int enabled = 0;
1376
1377         vlv_update_drain_latency(dev);
1378
1379         if (g4x_compute_wm0(dev, PIPE_A,
1380                             &valleyview_wm_info, latency_ns,
1381                             &valleyview_cursor_wm_info, latency_ns,
1382                             &planea_wm, &cursora_wm))
1383                 enabled |= 1 << PIPE_A;
1384
1385         if (g4x_compute_wm0(dev, PIPE_B,
1386                             &valleyview_wm_info, latency_ns,
1387                             &valleyview_cursor_wm_info, latency_ns,
1388                             &planeb_wm, &cursorb_wm))
1389                 enabled |= 1 << PIPE_B;
1390
1391         if (single_plane_enabled(enabled) &&
1392             g4x_compute_srwm(dev, ffs(enabled) - 1,
1393                              sr_latency_ns,
1394                              &valleyview_wm_info,
1395                              &valleyview_cursor_wm_info,
1396                              &plane_sr, &ignore_cursor_sr) &&
1397             g4x_compute_srwm(dev, ffs(enabled) - 1,
1398                              2*sr_latency_ns,
1399                              &valleyview_wm_info,
1400                              &valleyview_cursor_wm_info,
1401                              &ignore_plane_sr, &cursor_sr)) {
1402                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1403         } else {
1404                 I915_WRITE(FW_BLC_SELF_VLV,
1405                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1406                 plane_sr = cursor_sr = 0;
1407         }
1408
1409         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1410                       planea_wm, cursora_wm,
1411                       planeb_wm, cursorb_wm,
1412                       plane_sr, cursor_sr);
1413
1414         I915_WRITE(DSPFW1,
1415                    (plane_sr << DSPFW_SR_SHIFT) |
1416                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1417                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1418                    planea_wm);
1419         I915_WRITE(DSPFW2,
1420                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1421                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1422         I915_WRITE(DSPFW3,
1423                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1424                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1425 }
1426
1427 static void g4x_update_wm(struct drm_device *dev)
1428 {
1429         static const int sr_latency_ns = 12000;
1430         struct drm_i915_private *dev_priv = dev->dev_private;
1431         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1432         int plane_sr, cursor_sr;
1433         unsigned int enabled = 0;
1434
1435         if (g4x_compute_wm0(dev, PIPE_A,
1436                             &g4x_wm_info, latency_ns,
1437                             &g4x_cursor_wm_info, latency_ns,
1438                             &planea_wm, &cursora_wm))
1439                 enabled |= 1 << PIPE_A;
1440
1441         if (g4x_compute_wm0(dev, PIPE_B,
1442                             &g4x_wm_info, latency_ns,
1443                             &g4x_cursor_wm_info, latency_ns,
1444                             &planeb_wm, &cursorb_wm))
1445                 enabled |= 1 << PIPE_B;
1446
1447         if (single_plane_enabled(enabled) &&
1448             g4x_compute_srwm(dev, ffs(enabled) - 1,
1449                              sr_latency_ns,
1450                              &g4x_wm_info,
1451                              &g4x_cursor_wm_info,
1452                              &plane_sr, &cursor_sr)) {
1453                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1454         } else {
1455                 I915_WRITE(FW_BLC_SELF,
1456                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1457                 plane_sr = cursor_sr = 0;
1458         }
1459
1460         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1461                       planea_wm, cursora_wm,
1462                       planeb_wm, cursorb_wm,
1463                       plane_sr, cursor_sr);
1464
1465         I915_WRITE(DSPFW1,
1466                    (plane_sr << DSPFW_SR_SHIFT) |
1467                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1468                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1469                    planea_wm);
1470         I915_WRITE(DSPFW2,
1471                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1472                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1473         /* HPLL off in SR has some issues on G4x... disable it */
1474         I915_WRITE(DSPFW3,
1475                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1476                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1477 }
1478
1479 static void i965_update_wm(struct drm_device *dev)
1480 {
1481         struct drm_i915_private *dev_priv = dev->dev_private;
1482         struct drm_crtc *crtc;
1483         int srwm = 1;
1484         int cursor_sr = 16;
1485
1486         /* Calc sr entries for one plane configs */
1487         crtc = single_enabled_crtc(dev);
1488         if (crtc) {
1489                 /* self-refresh has much higher latency */
1490                 static const int sr_latency_ns = 12000;
1491                 int clock = crtc->mode.clock;
1492                 int htotal = crtc->mode.htotal;
1493                 int hdisplay = crtc->mode.hdisplay;
1494                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1495                 unsigned long line_time_us;
1496                 int entries;
1497
1498                 line_time_us = ((htotal * 1000) / clock);
1499
1500                 /* Use ns/us then divide to preserve precision */
1501                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1502                         pixel_size * hdisplay;
1503                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1504                 srwm = I965_FIFO_SIZE - entries;
1505                 if (srwm < 0)
1506                         srwm = 1;
1507                 srwm &= 0x1ff;
1508                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1509                               entries, srwm);
1510
1511                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1512                         pixel_size * 64;
1513                 entries = DIV_ROUND_UP(entries,
1514                                           i965_cursor_wm_info.cacheline_size);
1515                 cursor_sr = i965_cursor_wm_info.fifo_size -
1516                         (entries + i965_cursor_wm_info.guard_size);
1517
1518                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1519                         cursor_sr = i965_cursor_wm_info.max_wm;
1520
1521                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1522                               "cursor %d\n", srwm, cursor_sr);
1523
1524                 if (IS_CRESTLINE(dev))
1525                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1526         } else {
1527                 /* Turn off self refresh if both pipes are enabled */
1528                 if (IS_CRESTLINE(dev))
1529                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1530                                    & ~FW_BLC_SELF_EN);
1531         }
1532
1533         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1534                       srwm);
1535
1536         /* 965 has limitations... */
1537         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1538                    (8 << 16) | (8 << 8) | (8 << 0));
1539         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1540         /* update cursor SR watermark */
1541         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1542 }
1543
1544 static void i9xx_update_wm(struct drm_device *dev)
1545 {
1546         struct drm_i915_private *dev_priv = dev->dev_private;
1547         const struct intel_watermark_params *wm_info;
1548         uint32_t fwater_lo;
1549         uint32_t fwater_hi;
1550         int cwm, srwm = 1;
1551         int fifo_size;
1552         int planea_wm, planeb_wm;
1553         struct drm_crtc *crtc, *enabled = NULL;
1554
1555         if (IS_I945GM(dev))
1556                 wm_info = &i945_wm_info;
1557         else if (!IS_GEN2(dev))
1558                 wm_info = &i915_wm_info;
1559         else
1560                 wm_info = &i855_wm_info;
1561
1562         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1563         crtc = intel_get_crtc_for_plane(dev, 0);
1564         if (intel_crtc_active(crtc)) {
1565                 int cpp = crtc->fb->bits_per_pixel / 8;
1566                 if (IS_GEN2(dev))
1567                         cpp = 4;
1568
1569                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1570                                                wm_info, fifo_size, cpp,
1571                                                latency_ns);
1572                 enabled = crtc;
1573         } else
1574                 planea_wm = fifo_size - wm_info->guard_size;
1575
1576         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1577         crtc = intel_get_crtc_for_plane(dev, 1);
1578         if (intel_crtc_active(crtc)) {
1579                 int cpp = crtc->fb->bits_per_pixel / 8;
1580                 if (IS_GEN2(dev))
1581                         cpp = 4;
1582
1583                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1584                                                wm_info, fifo_size, cpp,
1585                                                latency_ns);
1586                 if (enabled == NULL)
1587                         enabled = crtc;
1588                 else
1589                         enabled = NULL;
1590         } else
1591                 planeb_wm = fifo_size - wm_info->guard_size;
1592
1593         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1594
1595         /*
1596          * Overlay gets an aggressive default since video jitter is bad.
1597          */
1598         cwm = 2;
1599
1600         /* Play safe and disable self-refresh before adjusting watermarks. */
1601         if (IS_I945G(dev) || IS_I945GM(dev))
1602                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1603         else if (IS_I915GM(dev))
1604                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1605
1606         /* Calc sr entries for one plane configs */
1607         if (HAS_FW_BLC(dev) && enabled) {
1608                 /* self-refresh has much higher latency */
1609                 static const int sr_latency_ns = 6000;
1610                 int clock = enabled->mode.clock;
1611                 int htotal = enabled->mode.htotal;
1612                 int hdisplay = enabled->mode.hdisplay;
1613                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1614                 unsigned long line_time_us;
1615                 int entries;
1616
1617                 line_time_us = (htotal * 1000) / clock;
1618
1619                 /* Use ns/us then divide to preserve precision */
1620                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1621                         pixel_size * hdisplay;
1622                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1623                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1624                 srwm = wm_info->fifo_size - entries;
1625                 if (srwm < 0)
1626                         srwm = 1;
1627
1628                 if (IS_I945G(dev) || IS_I945GM(dev))
1629                         I915_WRITE(FW_BLC_SELF,
1630                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1631                 else if (IS_I915GM(dev))
1632                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1633         }
1634
1635         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1636                       planea_wm, planeb_wm, cwm, srwm);
1637
1638         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1639         fwater_hi = (cwm & 0x1f);
1640
1641         /* Set request length to 8 cachelines per fetch */
1642         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1643         fwater_hi = fwater_hi | (1 << 8);
1644
1645         I915_WRITE(FW_BLC, fwater_lo);
1646         I915_WRITE(FW_BLC2, fwater_hi);
1647
1648         if (HAS_FW_BLC(dev)) {
1649                 if (enabled) {
1650                         if (IS_I945G(dev) || IS_I945GM(dev))
1651                                 I915_WRITE(FW_BLC_SELF,
1652                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1653                         else if (IS_I915GM(dev))
1654                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1655                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1656                 } else
1657                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1658         }
1659 }
1660
1661 static void i830_update_wm(struct drm_device *dev)
1662 {
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664         struct drm_crtc *crtc;
1665         uint32_t fwater_lo;
1666         int planea_wm;
1667
1668         crtc = single_enabled_crtc(dev);
1669         if (crtc == NULL)
1670                 return;
1671
1672         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1673                                        dev_priv->display.get_fifo_size(dev, 0),
1674                                        4, latency_ns);
1675         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1676         fwater_lo |= (3<<8) | planea_wm;
1677
1678         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1679
1680         I915_WRITE(FW_BLC, fwater_lo);
1681 }
1682
1683 #define ILK_LP0_PLANE_LATENCY           700
1684 #define ILK_LP0_CURSOR_LATENCY          1300
1685
1686 /*
1687  * Check the wm result.
1688  *
1689  * If any calculated watermark values is larger than the maximum value that
1690  * can be programmed into the associated watermark register, that watermark
1691  * must be disabled.
1692  */
1693 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1694                                 int fbc_wm, int display_wm, int cursor_wm,
1695                                 const struct intel_watermark_params *display,
1696                                 const struct intel_watermark_params *cursor)
1697 {
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699
1700         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1701                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1702
1703         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1704                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1705                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1706
1707                 /* fbc has it's own way to disable FBC WM */
1708                 I915_WRITE(DISP_ARB_CTL,
1709                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1710                 return false;
1711         } else if (INTEL_INFO(dev)->gen >= 6) {
1712                 /* enable FBC WM (except on ILK, where it must remain off) */
1713                 I915_WRITE(DISP_ARB_CTL,
1714                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1715         }
1716
1717         if (display_wm > display->max_wm) {
1718                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1719                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1720                 return false;
1721         }
1722
1723         if (cursor_wm > cursor->max_wm) {
1724                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1725                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1726                 return false;
1727         }
1728
1729         if (!(fbc_wm || display_wm || cursor_wm)) {
1730                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1731                 return false;
1732         }
1733
1734         return true;
1735 }
1736
1737 /*
1738  * Compute watermark values of WM[1-3],
1739  */
1740 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1741                                   int latency_ns,
1742                                   const struct intel_watermark_params *display,
1743                                   const struct intel_watermark_params *cursor,
1744                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1745 {
1746         struct drm_crtc *crtc;
1747         unsigned long line_time_us;
1748         int hdisplay, htotal, pixel_size, clock;
1749         int line_count, line_size;
1750         int small, large;
1751         int entries;
1752
1753         if (!latency_ns) {
1754                 *fbc_wm = *display_wm = *cursor_wm = 0;
1755                 return false;
1756         }
1757
1758         crtc = intel_get_crtc_for_plane(dev, plane);
1759         hdisplay = crtc->mode.hdisplay;
1760         htotal = crtc->mode.htotal;
1761         clock = crtc->mode.clock;
1762         pixel_size = crtc->fb->bits_per_pixel / 8;
1763
1764         line_time_us = (htotal * 1000) / clock;
1765         line_count = (latency_ns / line_time_us + 1000) / 1000;
1766         line_size = hdisplay * pixel_size;
1767
1768         /* Use the minimum of the small and large buffer method for primary */
1769         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1770         large = line_count * line_size;
1771
1772         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1773         *display_wm = entries + display->guard_size;
1774
1775         /*
1776          * Spec says:
1777          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1778          */
1779         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1780
1781         /* calculate the self-refresh watermark for display cursor */
1782         entries = line_count * pixel_size * 64;
1783         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1784         *cursor_wm = entries + cursor->guard_size;
1785
1786         return ironlake_check_srwm(dev, level,
1787                                    *fbc_wm, *display_wm, *cursor_wm,
1788                                    display, cursor);
1789 }
1790
1791 static void ironlake_update_wm(struct drm_device *dev)
1792 {
1793         struct drm_i915_private *dev_priv = dev->dev_private;
1794         int fbc_wm, plane_wm, cursor_wm;
1795         unsigned int enabled;
1796
1797         enabled = 0;
1798         if (g4x_compute_wm0(dev, PIPE_A,
1799                             &ironlake_display_wm_info,
1800                             ILK_LP0_PLANE_LATENCY,
1801                             &ironlake_cursor_wm_info,
1802                             ILK_LP0_CURSOR_LATENCY,
1803                             &plane_wm, &cursor_wm)) {
1804                 I915_WRITE(WM0_PIPEA_ILK,
1805                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1806                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1807                               " plane %d, " "cursor: %d\n",
1808                               plane_wm, cursor_wm);
1809                 enabled |= 1 << PIPE_A;
1810         }
1811
1812         if (g4x_compute_wm0(dev, PIPE_B,
1813                             &ironlake_display_wm_info,
1814                             ILK_LP0_PLANE_LATENCY,
1815                             &ironlake_cursor_wm_info,
1816                             ILK_LP0_CURSOR_LATENCY,
1817                             &plane_wm, &cursor_wm)) {
1818                 I915_WRITE(WM0_PIPEB_ILK,
1819                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1820                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1821                               " plane %d, cursor: %d\n",
1822                               plane_wm, cursor_wm);
1823                 enabled |= 1 << PIPE_B;
1824         }
1825
1826         /*
1827          * Calculate and update the self-refresh watermark only when one
1828          * display plane is used.
1829          */
1830         I915_WRITE(WM3_LP_ILK, 0);
1831         I915_WRITE(WM2_LP_ILK, 0);
1832         I915_WRITE(WM1_LP_ILK, 0);
1833
1834         if (!single_plane_enabled(enabled))
1835                 return;
1836         enabled = ffs(enabled) - 1;
1837
1838         /* WM1 */
1839         if (!ironlake_compute_srwm(dev, 1, enabled,
1840                                    ILK_READ_WM1_LATENCY() * 500,
1841                                    &ironlake_display_srwm_info,
1842                                    &ironlake_cursor_srwm_info,
1843                                    &fbc_wm, &plane_wm, &cursor_wm))
1844                 return;
1845
1846         I915_WRITE(WM1_LP_ILK,
1847                    WM1_LP_SR_EN |
1848                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1849                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1850                    (plane_wm << WM1_LP_SR_SHIFT) |
1851                    cursor_wm);
1852
1853         /* WM2 */
1854         if (!ironlake_compute_srwm(dev, 2, enabled,
1855                                    ILK_READ_WM2_LATENCY() * 500,
1856                                    &ironlake_display_srwm_info,
1857                                    &ironlake_cursor_srwm_info,
1858                                    &fbc_wm, &plane_wm, &cursor_wm))
1859                 return;
1860
1861         I915_WRITE(WM2_LP_ILK,
1862                    WM2_LP_EN |
1863                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1864                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1865                    (plane_wm << WM1_LP_SR_SHIFT) |
1866                    cursor_wm);
1867
1868         /*
1869          * WM3 is unsupported on ILK, probably because we don't have latency
1870          * data for that power state
1871          */
1872 }
1873
1874 static void sandybridge_update_wm(struct drm_device *dev)
1875 {
1876         struct drm_i915_private *dev_priv = dev->dev_private;
1877         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1878         u32 val;
1879         int fbc_wm, plane_wm, cursor_wm;
1880         unsigned int enabled;
1881
1882         enabled = 0;
1883         if (g4x_compute_wm0(dev, PIPE_A,
1884                             &sandybridge_display_wm_info, latency,
1885                             &sandybridge_cursor_wm_info, latency,
1886                             &plane_wm, &cursor_wm)) {
1887                 val = I915_READ(WM0_PIPEA_ILK);
1888                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1889                 I915_WRITE(WM0_PIPEA_ILK, val |
1890                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1891                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1892                               " plane %d, " "cursor: %d\n",
1893                               plane_wm, cursor_wm);
1894                 enabled |= 1 << PIPE_A;
1895         }
1896
1897         if (g4x_compute_wm0(dev, PIPE_B,
1898                             &sandybridge_display_wm_info, latency,
1899                             &sandybridge_cursor_wm_info, latency,
1900                             &plane_wm, &cursor_wm)) {
1901                 val = I915_READ(WM0_PIPEB_ILK);
1902                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1903                 I915_WRITE(WM0_PIPEB_ILK, val |
1904                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1905                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1906                               " plane %d, cursor: %d\n",
1907                               plane_wm, cursor_wm);
1908                 enabled |= 1 << PIPE_B;
1909         }
1910
1911         /*
1912          * Calculate and update the self-refresh watermark only when one
1913          * display plane is used.
1914          *
1915          * SNB support 3 levels of watermark.
1916          *
1917          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1918          * and disabled in the descending order
1919          *
1920          */
1921         I915_WRITE(WM3_LP_ILK, 0);
1922         I915_WRITE(WM2_LP_ILK, 0);
1923         I915_WRITE(WM1_LP_ILK, 0);
1924
1925         if (!single_plane_enabled(enabled) ||
1926             dev_priv->sprite_scaling_enabled)
1927                 return;
1928         enabled = ffs(enabled) - 1;
1929
1930         /* WM1 */
1931         if (!ironlake_compute_srwm(dev, 1, enabled,
1932                                    SNB_READ_WM1_LATENCY() * 500,
1933                                    &sandybridge_display_srwm_info,
1934                                    &sandybridge_cursor_srwm_info,
1935                                    &fbc_wm, &plane_wm, &cursor_wm))
1936                 return;
1937
1938         I915_WRITE(WM1_LP_ILK,
1939                    WM1_LP_SR_EN |
1940                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1941                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1942                    (plane_wm << WM1_LP_SR_SHIFT) |
1943                    cursor_wm);
1944
1945         /* WM2 */
1946         if (!ironlake_compute_srwm(dev, 2, enabled,
1947                                    SNB_READ_WM2_LATENCY() * 500,
1948                                    &sandybridge_display_srwm_info,
1949                                    &sandybridge_cursor_srwm_info,
1950                                    &fbc_wm, &plane_wm, &cursor_wm))
1951                 return;
1952
1953         I915_WRITE(WM2_LP_ILK,
1954                    WM2_LP_EN |
1955                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1956                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1957                    (plane_wm << WM1_LP_SR_SHIFT) |
1958                    cursor_wm);
1959
1960         /* WM3 */
1961         if (!ironlake_compute_srwm(dev, 3, enabled,
1962                                    SNB_READ_WM3_LATENCY() * 500,
1963                                    &sandybridge_display_srwm_info,
1964                                    &sandybridge_cursor_srwm_info,
1965                                    &fbc_wm, &plane_wm, &cursor_wm))
1966                 return;
1967
1968         I915_WRITE(WM3_LP_ILK,
1969                    WM3_LP_EN |
1970                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1971                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1972                    (plane_wm << WM1_LP_SR_SHIFT) |
1973                    cursor_wm);
1974 }
1975
1976 static void ivybridge_update_wm(struct drm_device *dev)
1977 {
1978         struct drm_i915_private *dev_priv = dev->dev_private;
1979         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1980         u32 val;
1981         int fbc_wm, plane_wm, cursor_wm;
1982         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1983         unsigned int enabled;
1984
1985         enabled = 0;
1986         if (g4x_compute_wm0(dev, PIPE_A,
1987                             &sandybridge_display_wm_info, latency,
1988                             &sandybridge_cursor_wm_info, latency,
1989                             &plane_wm, &cursor_wm)) {
1990                 val = I915_READ(WM0_PIPEA_ILK);
1991                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1992                 I915_WRITE(WM0_PIPEA_ILK, val |
1993                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1994                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1995                               " plane %d, " "cursor: %d\n",
1996                               plane_wm, cursor_wm);
1997                 enabled |= 1 << PIPE_A;
1998         }
1999
2000         if (g4x_compute_wm0(dev, PIPE_B,
2001                             &sandybridge_display_wm_info, latency,
2002                             &sandybridge_cursor_wm_info, latency,
2003                             &plane_wm, &cursor_wm)) {
2004                 val = I915_READ(WM0_PIPEB_ILK);
2005                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2006                 I915_WRITE(WM0_PIPEB_ILK, val |
2007                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2008                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2009                               " plane %d, cursor: %d\n",
2010                               plane_wm, cursor_wm);
2011                 enabled |= 1 << PIPE_B;
2012         }
2013
2014         if (g4x_compute_wm0(dev, PIPE_C,
2015                             &sandybridge_display_wm_info, latency,
2016                             &sandybridge_cursor_wm_info, latency,
2017                             &plane_wm, &cursor_wm)) {
2018                 val = I915_READ(WM0_PIPEC_IVB);
2019                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2020                 I915_WRITE(WM0_PIPEC_IVB, val |
2021                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2022                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2023                               " plane %d, cursor: %d\n",
2024                               plane_wm, cursor_wm);
2025                 enabled |= 1 << PIPE_C;
2026         }
2027
2028         /*
2029          * Calculate and update the self-refresh watermark only when one
2030          * display plane is used.
2031          *
2032          * SNB support 3 levels of watermark.
2033          *
2034          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2035          * and disabled in the descending order
2036          *
2037          */
2038         I915_WRITE(WM3_LP_ILK, 0);
2039         I915_WRITE(WM2_LP_ILK, 0);
2040         I915_WRITE(WM1_LP_ILK, 0);
2041
2042         if (!single_plane_enabled(enabled) ||
2043             dev_priv->sprite_scaling_enabled)
2044                 return;
2045         enabled = ffs(enabled) - 1;
2046
2047         /* WM1 */
2048         if (!ironlake_compute_srwm(dev, 1, enabled,
2049                                    SNB_READ_WM1_LATENCY() * 500,
2050                                    &sandybridge_display_srwm_info,
2051                                    &sandybridge_cursor_srwm_info,
2052                                    &fbc_wm, &plane_wm, &cursor_wm))
2053                 return;
2054
2055         I915_WRITE(WM1_LP_ILK,
2056                    WM1_LP_SR_EN |
2057                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2058                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2059                    (plane_wm << WM1_LP_SR_SHIFT) |
2060                    cursor_wm);
2061
2062         /* WM2 */
2063         if (!ironlake_compute_srwm(dev, 2, enabled,
2064                                    SNB_READ_WM2_LATENCY() * 500,
2065                                    &sandybridge_display_srwm_info,
2066                                    &sandybridge_cursor_srwm_info,
2067                                    &fbc_wm, &plane_wm, &cursor_wm))
2068                 return;
2069
2070         I915_WRITE(WM2_LP_ILK,
2071                    WM2_LP_EN |
2072                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2073                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2074                    (plane_wm << WM1_LP_SR_SHIFT) |
2075                    cursor_wm);
2076
2077         /* WM3, note we have to correct the cursor latency */
2078         if (!ironlake_compute_srwm(dev, 3, enabled,
2079                                    SNB_READ_WM3_LATENCY() * 500,
2080                                    &sandybridge_display_srwm_info,
2081                                    &sandybridge_cursor_srwm_info,
2082                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2083             !ironlake_compute_srwm(dev, 3, enabled,
2084                                    2 * SNB_READ_WM3_LATENCY() * 500,
2085                                    &sandybridge_display_srwm_info,
2086                                    &sandybridge_cursor_srwm_info,
2087                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2088                 return;
2089
2090         I915_WRITE(WM3_LP_ILK,
2091                    WM3_LP_EN |
2092                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2093                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2094                    (plane_wm << WM1_LP_SR_SHIFT) |
2095                    cursor_wm);
2096 }
2097
2098 static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
2099                                       struct drm_crtc *crtc)
2100 {
2101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2102         uint32_t pixel_rate, pfit_size;
2103
2104         pixel_rate = intel_crtc->config.adjusted_mode.clock;
2105
2106         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2107          * adjust the pixel_rate here. */
2108
2109         pfit_size = intel_crtc->config.pch_pfit.size;
2110         if (pfit_size) {
2111                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2112
2113                 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2114                 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2115                 pfit_w = (pfit_size >> 16) & 0xFFFF;
2116                 pfit_h = pfit_size & 0xFFFF;
2117                 if (pipe_w < pfit_w)
2118                         pipe_w = pfit_w;
2119                 if (pipe_h < pfit_h)
2120                         pipe_h = pfit_h;
2121
2122                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2123                                      pfit_w * pfit_h);
2124         }
2125
2126         return pixel_rate;
2127 }
2128
2129 static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2130                                uint32_t latency)
2131 {
2132         uint64_t ret;
2133
2134         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2135         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2136
2137         return ret;
2138 }
2139
2140 static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2141                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2142                                uint32_t latency)
2143 {
2144         uint32_t ret;
2145
2146         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2147         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2148         ret = DIV_ROUND_UP(ret, 64) + 2;
2149         return ret;
2150 }
2151
2152 static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2153                            uint8_t bytes_per_pixel)
2154 {
2155         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2156 }
2157
2158 struct hsw_pipe_wm_parameters {
2159         bool active;
2160         bool sprite_enabled;
2161         uint8_t pri_bytes_per_pixel;
2162         uint8_t spr_bytes_per_pixel;
2163         uint8_t cur_bytes_per_pixel;
2164         uint32_t pri_horiz_pixels;
2165         uint32_t spr_horiz_pixels;
2166         uint32_t cur_horiz_pixels;
2167         uint32_t pipe_htotal;
2168         uint32_t pixel_rate;
2169 };
2170
2171 struct hsw_wm_maximums {
2172         uint16_t pri;
2173         uint16_t spr;
2174         uint16_t cur;
2175         uint16_t fbc;
2176 };
2177
2178 struct hsw_lp_wm_result {
2179         bool enable;
2180         bool fbc_enable;
2181         uint32_t pri_val;
2182         uint32_t spr_val;
2183         uint32_t cur_val;
2184         uint32_t fbc_val;
2185 };
2186
2187 struct hsw_wm_values {
2188         uint32_t wm_pipe[3];
2189         uint32_t wm_lp[3];
2190         uint32_t wm_lp_spr[3];
2191         uint32_t wm_linetime[3];
2192         bool enable_fbc_wm;
2193 };
2194
2195 enum hsw_data_buf_partitioning {
2196         HSW_DATA_BUF_PART_1_2,
2197         HSW_DATA_BUF_PART_5_6,
2198 };
2199
2200 /* For both WM_PIPE and WM_LP. */
2201 static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2202                                    uint32_t mem_value,
2203                                    bool is_lp)
2204 {
2205         uint32_t method1, method2;
2206
2207         /* TODO: for now, assume the primary plane is always enabled. */
2208         if (!params->active)
2209                 return 0;
2210
2211         method1 = hsw_wm_method1(params->pixel_rate,
2212                                  params->pri_bytes_per_pixel,
2213                                  mem_value);
2214
2215         if (!is_lp)
2216                 return method1;
2217
2218         method2 = hsw_wm_method2(params->pixel_rate,
2219                                  params->pipe_htotal,
2220                                  params->pri_horiz_pixels,
2221                                  params->pri_bytes_per_pixel,
2222                                  mem_value);
2223
2224         return min(method1, method2);
2225 }
2226
2227 /* For both WM_PIPE and WM_LP. */
2228 static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2229                                    uint32_t mem_value)
2230 {
2231         uint32_t method1, method2;
2232
2233         if (!params->active || !params->sprite_enabled)
2234                 return 0;
2235
2236         method1 = hsw_wm_method1(params->pixel_rate,
2237                                  params->spr_bytes_per_pixel,
2238                                  mem_value);
2239         method2 = hsw_wm_method2(params->pixel_rate,
2240                                  params->pipe_htotal,
2241                                  params->spr_horiz_pixels,
2242                                  params->spr_bytes_per_pixel,
2243                                  mem_value);
2244         return min(method1, method2);
2245 }
2246
2247 /* For both WM_PIPE and WM_LP. */
2248 static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2249                                    uint32_t mem_value)
2250 {
2251         if (!params->active)
2252                 return 0;
2253
2254         return hsw_wm_method2(params->pixel_rate,
2255                               params->pipe_htotal,
2256                               params->cur_horiz_pixels,
2257                               params->cur_bytes_per_pixel,
2258                               mem_value);
2259 }
2260
2261 /* Only for WM_LP. */
2262 static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2263                                    uint32_t pri_val,
2264                                    uint32_t mem_value)
2265 {
2266         if (!params->active)
2267                 return 0;
2268
2269         return hsw_wm_fbc(pri_val,
2270                           params->pri_horiz_pixels,
2271                           params->pri_bytes_per_pixel);
2272 }
2273
2274 static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
2275                               struct hsw_pipe_wm_parameters *params,
2276                               struct hsw_lp_wm_result *result)
2277 {
2278         enum pipe pipe;
2279         uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];
2280
2281         for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
2282                 struct hsw_pipe_wm_parameters *p = &params[pipe];
2283
2284                 pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
2285                 spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
2286                 cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
2287                 fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
2288         }
2289
2290         result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
2291         result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
2292         result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
2293         result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);
2294
2295         if (result->fbc_val > max->fbc) {
2296                 result->fbc_enable = false;
2297                 result->fbc_val = 0;
2298         } else {
2299                 result->fbc_enable = true;
2300         }
2301
2302         result->enable = result->pri_val <= max->pri &&
2303                          result->spr_val <= max->spr &&
2304                          result->cur_val <= max->cur;
2305         return result->enable;
2306 }
2307
2308 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2309                                     uint32_t mem_value, enum pipe pipe,
2310                                     struct hsw_pipe_wm_parameters *params)
2311 {
2312         uint32_t pri_val, cur_val, spr_val;
2313
2314         pri_val = hsw_compute_pri_wm(params, mem_value, false);
2315         spr_val = hsw_compute_spr_wm(params, mem_value);
2316         cur_val = hsw_compute_cur_wm(params, mem_value);
2317
2318         WARN(pri_val > 127,
2319              "Primary WM error, mode not supported for pipe %c\n",
2320              pipe_name(pipe));
2321         WARN(spr_val > 127,
2322              "Sprite WM error, mode not supported for pipe %c\n",
2323              pipe_name(pipe));
2324         WARN(cur_val > 63,
2325              "Cursor WM error, mode not supported for pipe %c\n",
2326              pipe_name(pipe));
2327
2328         return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2329                (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2330                cur_val;
2331 }
2332
2333 static uint32_t
2334 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2335 {
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2338         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2339         u32 linetime, ips_linetime;
2340
2341         if (!intel_crtc_active(crtc))
2342                 return 0;
2343
2344         /* The WM are computed with base on how long it takes to fill a single
2345          * row at the given clock rate, multiplied by 8.
2346          * */
2347         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2348         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2349                                          intel_ddi_get_cdclk_freq(dev_priv));
2350
2351         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2352                PIPE_WM_LINETIME_TIME(linetime);
2353 }
2354
2355 static void hsw_compute_wm_parameters(struct drm_device *dev,
2356                                       struct hsw_pipe_wm_parameters *params,
2357                                       uint32_t *wm,
2358                                       struct hsw_wm_maximums *lp_max_1_2,
2359                                       struct hsw_wm_maximums *lp_max_5_6)
2360 {
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         struct drm_crtc *crtc;
2363         struct drm_plane *plane;
2364         uint64_t sskpd = I915_READ64(MCH_SSKPD);
2365         enum pipe pipe;
2366         int pipes_active = 0, sprites_enabled = 0;
2367
2368         if ((sskpd >> 56) & 0xFF)
2369                 wm[0] = (sskpd >> 56) & 0xFF;
2370         else
2371                 wm[0] = sskpd & 0xF;
2372         wm[1] = ((sskpd >> 4) & 0xFF) * 5;
2373         wm[2] = ((sskpd >> 12) & 0xFF) * 5;
2374         wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
2375         wm[4] = ((sskpd >> 32) & 0x1FF) * 5;
2376
2377         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2378                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2379                 struct hsw_pipe_wm_parameters *p;
2380
2381                 pipe = intel_crtc->pipe;
2382                 p = &params[pipe];
2383
2384                 p->active = intel_crtc_active(crtc);
2385                 if (!p->active)
2386                         continue;
2387
2388                 pipes_active++;
2389
2390                 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2391                 p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
2392                 p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2393                 p->cur_bytes_per_pixel = 4;
2394                 p->pri_horiz_pixels =
2395                         intel_crtc->config.requested_mode.hdisplay;
2396                 p->cur_horiz_pixels = 64;
2397         }
2398
2399         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2400                 struct intel_plane *intel_plane = to_intel_plane(plane);
2401                 struct hsw_pipe_wm_parameters *p;
2402
2403                 pipe = intel_plane->pipe;
2404                 p = &params[pipe];
2405
2406                 p->sprite_enabled = intel_plane->wm.enabled;
2407                 p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
2408                 p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2409
2410                 if (p->sprite_enabled)
2411                         sprites_enabled++;
2412         }
2413
2414         if (pipes_active > 1) {
2415                 lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
2416                 lp_max_1_2->spr = lp_max_5_6->spr = 128;
2417                 lp_max_1_2->cur = lp_max_5_6->cur = 64;
2418         } else {
2419                 lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2420                 lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2421                 lp_max_1_2->spr = 384;
2422                 lp_max_5_6->spr = 640;
2423                 lp_max_1_2->cur = lp_max_5_6->cur = 255;
2424         }
2425         lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2426 }
2427
2428 static void hsw_compute_wm_results(struct drm_device *dev,
2429                                    struct hsw_pipe_wm_parameters *params,
2430                                    uint32_t *wm,
2431                                    struct hsw_wm_maximums *lp_maximums,
2432                                    struct hsw_wm_values *results)
2433 {
2434         struct drm_i915_private *dev_priv = dev->dev_private;
2435         struct drm_crtc *crtc;
2436         struct hsw_lp_wm_result lp_results[4] = {};
2437         enum pipe pipe;
2438         int level, max_level, wm_lp;
2439
2440         for (level = 1; level <= 4; level++)
2441                 if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
2442                                        &lp_results[level - 1]))
2443                         break;
2444         max_level = level - 1;
2445
2446         /* The spec says it is preferred to disable FBC WMs instead of disabling
2447          * a WM level. */
2448         results->enable_fbc_wm = true;
2449         for (level = 1; level <= max_level; level++) {
2450                 if (!lp_results[level - 1].fbc_enable) {
2451                         results->enable_fbc_wm = false;
2452                         break;
2453                 }
2454         }
2455
2456         memset(results, 0, sizeof(*results));
2457         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2458                 const struct hsw_lp_wm_result *r;
2459
2460                 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2461                 if (level > max_level)
2462                         break;
2463
2464                 r = &lp_results[level - 1];
2465                 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2466                                                           r->fbc_val,
2467                                                           r->pri_val,
2468                                                           r->cur_val);
2469                 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2470         }
2471
2472         for_each_pipe(pipe)
2473                 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
2474                                                              pipe,
2475                                                              &params[pipe]);
2476
2477         for_each_pipe(pipe) {
2478                 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2479                 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2480         }
2481 }
2482
2483 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2484  * case both are at the same level. Prefer r1 in case they're the same. */
2485 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2486                                                   struct hsw_wm_values *r2)
2487 {
2488         int i, val_r1 = 0, val_r2 = 0;
2489
2490         for (i = 0; i < 3; i++) {
2491                 if (r1->wm_lp[i] & WM3_LP_EN)
2492                         val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2493                 if (r2->wm_lp[i] & WM3_LP_EN)
2494                         val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2495         }
2496
2497         if (val_r1 == val_r2) {
2498                 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2499                         return r2;
2500                 else
2501                         return r1;
2502         } else if (val_r1 > val_r2) {
2503                 return r1;
2504         } else {
2505                 return r2;
2506         }
2507 }
2508
2509 /*
2510  * The spec says we shouldn't write when we don't need, because every write
2511  * causes WMs to be re-evaluated, expending some power.
2512  */
2513 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2514                                 struct hsw_wm_values *results,
2515                                 enum hsw_data_buf_partitioning partitioning)
2516 {
2517         struct hsw_wm_values previous;
2518         uint32_t val;
2519         enum hsw_data_buf_partitioning prev_partitioning;
2520         bool prev_enable_fbc_wm;
2521
2522         previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2523         previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2524         previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2525         previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2526         previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2527         previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2528         previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2529         previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2530         previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2531         previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2532         previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2533         previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2534
2535         prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2536                             HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;
2537
2538         prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2539
2540         if (memcmp(results->wm_pipe, previous.wm_pipe,
2541                    sizeof(results->wm_pipe)) == 0 &&
2542             memcmp(results->wm_lp, previous.wm_lp,
2543                    sizeof(results->wm_lp)) == 0 &&
2544             memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2545                    sizeof(results->wm_lp_spr)) == 0 &&
2546             memcmp(results->wm_linetime, previous.wm_linetime,
2547                    sizeof(results->wm_linetime)) == 0 &&
2548             partitioning == prev_partitioning &&
2549             results->enable_fbc_wm == prev_enable_fbc_wm)
2550                 return;
2551
2552         if (previous.wm_lp[2] != 0)
2553                 I915_WRITE(WM3_LP_ILK, 0);
2554         if (previous.wm_lp[1] != 0)
2555                 I915_WRITE(WM2_LP_ILK, 0);
2556         if (previous.wm_lp[0] != 0)
2557                 I915_WRITE(WM1_LP_ILK, 0);
2558
2559         if (previous.wm_pipe[0] != results->wm_pipe[0])
2560                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2561         if (previous.wm_pipe[1] != results->wm_pipe[1])
2562                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2563         if (previous.wm_pipe[2] != results->wm_pipe[2])
2564                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2565
2566         if (previous.wm_linetime[0] != results->wm_linetime[0])
2567                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2568         if (previous.wm_linetime[1] != results->wm_linetime[1])
2569                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2570         if (previous.wm_linetime[2] != results->wm_linetime[2])
2571                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2572
2573         if (prev_partitioning != partitioning) {
2574                 val = I915_READ(WM_MISC);
2575                 if (partitioning == HSW_DATA_BUF_PART_1_2)
2576                         val &= ~WM_MISC_DATA_PARTITION_5_6;
2577                 else
2578                         val |= WM_MISC_DATA_PARTITION_5_6;
2579                 I915_WRITE(WM_MISC, val);
2580         }
2581
2582         if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2583                 val = I915_READ(DISP_ARB_CTL);
2584                 if (results->enable_fbc_wm)
2585                         val &= ~DISP_FBC_WM_DIS;
2586                 else
2587                         val |= DISP_FBC_WM_DIS;
2588                 I915_WRITE(DISP_ARB_CTL, val);
2589         }
2590
2591         if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2592                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2593         if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2594                 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2595         if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2596                 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2597
2598         if (results->wm_lp[0] != 0)
2599                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2600         if (results->wm_lp[1] != 0)
2601                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2602         if (results->wm_lp[2] != 0)
2603                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2604 }
2605
2606 static void haswell_update_wm(struct drm_device *dev)
2607 {
2608         struct drm_i915_private *dev_priv = dev->dev_private;
2609         struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2610         struct hsw_pipe_wm_parameters params[3];
2611         struct hsw_wm_values results_1_2, results_5_6, *best_results;
2612         uint32_t wm[5];
2613         enum hsw_data_buf_partitioning partitioning;
2614
2615         hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);
2616
2617         hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
2618         if (lp_max_1_2.pri != lp_max_5_6.pri) {
2619                 hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
2620                                        &results_5_6);
2621                 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2622         } else {
2623                 best_results = &results_1_2;
2624         }
2625
2626         partitioning = (best_results == &results_1_2) ?
2627                        HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2628
2629         hsw_write_wm_values(dev_priv, best_results, partitioning);
2630 }
2631
2632 static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
2633                                      uint32_t sprite_width, int pixel_size,
2634                                      bool enabled, bool scaled)
2635 {
2636         struct drm_plane *plane;
2637
2638         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2639                 struct intel_plane *intel_plane = to_intel_plane(plane);
2640
2641                 if (intel_plane->pipe == pipe) {
2642                         intel_plane->wm.enabled = enabled;
2643                         intel_plane->wm.scaled = scaled;
2644                         intel_plane->wm.horiz_pixels = sprite_width;
2645                         intel_plane->wm.bytes_per_pixel = pixel_size;
2646                         break;
2647                 }
2648         }
2649
2650         haswell_update_wm(dev);
2651 }
2652
2653 static bool
2654 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2655                               uint32_t sprite_width, int pixel_size,
2656                               const struct intel_watermark_params *display,
2657                               int display_latency_ns, int *sprite_wm)
2658 {
2659         struct drm_crtc *crtc;
2660         int clock;
2661         int entries, tlb_miss;
2662
2663         crtc = intel_get_crtc_for_plane(dev, plane);
2664         if (!intel_crtc_active(crtc)) {
2665                 *sprite_wm = display->guard_size;
2666                 return false;
2667         }
2668
2669         clock = crtc->mode.clock;
2670
2671         /* Use the small buffer method to calculate the sprite watermark */
2672         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2673         tlb_miss = display->fifo_size*display->cacheline_size -
2674                 sprite_width * 8;
2675         if (tlb_miss > 0)
2676                 entries += tlb_miss;
2677         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2678         *sprite_wm = entries + display->guard_size;
2679         if (*sprite_wm > (int)display->max_wm)
2680                 *sprite_wm = display->max_wm;
2681
2682         return true;
2683 }
2684
2685 static bool
2686 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2687                                 uint32_t sprite_width, int pixel_size,
2688                                 const struct intel_watermark_params *display,
2689                                 int latency_ns, int *sprite_wm)
2690 {
2691         struct drm_crtc *crtc;
2692         unsigned long line_time_us;
2693         int clock;
2694         int line_count, line_size;
2695         int small, large;
2696         int entries;
2697
2698         if (!latency_ns) {
2699                 *sprite_wm = 0;
2700                 return false;
2701         }
2702
2703         crtc = intel_get_crtc_for_plane(dev, plane);
2704         clock = crtc->mode.clock;
2705         if (!clock) {
2706                 *sprite_wm = 0;
2707                 return false;
2708         }
2709
2710         line_time_us = (sprite_width * 1000) / clock;
2711         if (!line_time_us) {
2712                 *sprite_wm = 0;
2713                 return false;
2714         }
2715
2716         line_count = (latency_ns / line_time_us + 1000) / 1000;
2717         line_size = sprite_width * pixel_size;
2718
2719         /* Use the minimum of the small and large buffer method for primary */
2720         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2721         large = line_count * line_size;
2722
2723         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2724         *sprite_wm = entries + display->guard_size;
2725
2726         return *sprite_wm > 0x3ff ? false : true;
2727 }
2728
2729 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2730                                          uint32_t sprite_width, int pixel_size,
2731                                          bool enable, bool scaled)
2732 {
2733         struct drm_i915_private *dev_priv = dev->dev_private;
2734         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2735         u32 val;
2736         int sprite_wm, reg;
2737         int ret;
2738
2739         if (!enable)
2740                 return;
2741
2742         switch (pipe) {
2743         case 0:
2744                 reg = WM0_PIPEA_ILK;
2745                 break;
2746         case 1:
2747                 reg = WM0_PIPEB_ILK;
2748                 break;
2749         case 2:
2750                 reg = WM0_PIPEC_IVB;
2751                 break;
2752         default:
2753                 return; /* bad pipe */
2754         }
2755
2756         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2757                                             &sandybridge_display_wm_info,
2758                                             latency, &sprite_wm);
2759         if (!ret) {
2760                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2761                               pipe_name(pipe));
2762                 return;
2763         }
2764
2765         val = I915_READ(reg);
2766         val &= ~WM0_PIPE_SPRITE_MASK;
2767         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2768         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2769
2770
2771         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2772                                               pixel_size,
2773                                               &sandybridge_display_srwm_info,
2774                                               SNB_READ_WM1_LATENCY() * 500,
2775                                               &sprite_wm);
2776         if (!ret) {
2777                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2778                               pipe_name(pipe));
2779                 return;
2780         }
2781         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2782
2783         /* Only IVB has two more LP watermarks for sprite */
2784         if (!IS_IVYBRIDGE(dev))
2785                 return;
2786
2787         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2788                                               pixel_size,
2789                                               &sandybridge_display_srwm_info,
2790                                               SNB_READ_WM2_LATENCY() * 500,
2791                                               &sprite_wm);
2792         if (!ret) {
2793                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2794                               pipe_name(pipe));
2795                 return;
2796         }
2797         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2798
2799         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2800                                               pixel_size,
2801                                               &sandybridge_display_srwm_info,
2802                                               SNB_READ_WM3_LATENCY() * 500,
2803                                               &sprite_wm);
2804         if (!ret) {
2805                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2806                               pipe_name(pipe));
2807                 return;
2808         }
2809         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2810 }
2811
2812 /**
2813  * intel_update_watermarks - update FIFO watermark values based on current modes
2814  *
2815  * Calculate watermark values for the various WM regs based on current mode
2816  * and plane configuration.
2817  *
2818  * There are several cases to deal with here:
2819  *   - normal (i.e. non-self-refresh)
2820  *   - self-refresh (SR) mode
2821  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2822  *   - lines are small relative to FIFO size (buffer can hold more than 2
2823  *     lines), so need to account for TLB latency
2824  *
2825  *   The normal calculation is:
2826  *     watermark = dotclock * bytes per pixel * latency
2827  *   where latency is platform & configuration dependent (we assume pessimal
2828  *   values here).
2829  *
2830  *   The SR calculation is:
2831  *     watermark = (trunc(latency/line time)+1) * surface width *
2832  *       bytes per pixel
2833  *   where
2834  *     line time = htotal / dotclock
2835  *     surface width = hdisplay for normal plane and 64 for cursor
2836  *   and latency is assumed to be high, as above.
2837  *
2838  * The final value programmed to the register should always be rounded up,
2839  * and include an extra 2 entries to account for clock crossings.
2840  *
2841  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2842  * to set the non-SR watermarks to 8.
2843  */
2844 void intel_update_watermarks(struct drm_device *dev)
2845 {
2846         struct drm_i915_private *dev_priv = dev->dev_private;
2847
2848         if (dev_priv->display.update_wm)
2849                 dev_priv->display.update_wm(dev);
2850 }
2851
2852 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2853                                     uint32_t sprite_width, int pixel_size,
2854                                     bool enable, bool scaled)
2855 {
2856         struct drm_i915_private *dev_priv = dev->dev_private;
2857
2858         if (dev_priv->display.update_sprite_wm)
2859                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2860                                                    pixel_size, enable, scaled);
2861 }
2862
2863 static struct drm_i915_gem_object *
2864 intel_alloc_context_page(struct drm_device *dev)
2865 {
2866         struct drm_i915_gem_object *ctx;
2867         int ret;
2868
2869         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2870
2871         ctx = i915_gem_alloc_object(dev, 4096);
2872         if (!ctx) {
2873                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2874                 return NULL;
2875         }
2876
2877         ret = i915_gem_object_pin(ctx, 4096, true, false);
2878         if (ret) {
2879                 DRM_ERROR("failed to pin power context: %d\n", ret);
2880                 goto err_unref;
2881         }
2882
2883         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2884         if (ret) {
2885                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2886                 goto err_unpin;
2887         }
2888
2889         return ctx;
2890
2891 err_unpin:
2892         i915_gem_object_unpin(ctx);
2893 err_unref:
2894         drm_gem_object_unreference(&ctx->base);
2895         return NULL;
2896 }
2897
2898 /**
2899  * Lock protecting IPS related data structures
2900  */
2901 DEFINE_SPINLOCK(mchdev_lock);
2902
2903 /* Global for IPS driver to get at the current i915 device. Protected by
2904  * mchdev_lock. */
2905 static struct drm_i915_private *i915_mch_dev;
2906
2907 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2908 {
2909         struct drm_i915_private *dev_priv = dev->dev_private;
2910         u16 rgvswctl;
2911
2912         assert_spin_locked(&mchdev_lock);
2913
2914         rgvswctl = I915_READ16(MEMSWCTL);
2915         if (rgvswctl & MEMCTL_CMD_STS) {
2916                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2917                 return false; /* still busy with another command */
2918         }
2919
2920         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2921                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2922         I915_WRITE16(MEMSWCTL, rgvswctl);
2923         POSTING_READ16(MEMSWCTL);
2924
2925         rgvswctl |= MEMCTL_CMD_STS;
2926         I915_WRITE16(MEMSWCTL, rgvswctl);
2927
2928         return true;
2929 }
2930
2931 static void ironlake_enable_drps(struct drm_device *dev)
2932 {
2933         struct drm_i915_private *dev_priv = dev->dev_private;
2934         u32 rgvmodectl = I915_READ(MEMMODECTL);
2935         u8 fmax, fmin, fstart, vstart;
2936
2937         spin_lock_irq(&mchdev_lock);
2938
2939         /* Enable temp reporting */
2940         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2941         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2942
2943         /* 100ms RC evaluation intervals */
2944         I915_WRITE(RCUPEI, 100000);
2945         I915_WRITE(RCDNEI, 100000);
2946
2947         /* Set max/min thresholds to 90ms and 80ms respectively */
2948         I915_WRITE(RCBMAXAVG, 90000);
2949         I915_WRITE(RCBMINAVG, 80000);
2950
2951         I915_WRITE(MEMIHYST, 1);
2952
2953         /* Set up min, max, and cur for interrupt handling */
2954         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2955         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2956         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2957                 MEMMODE_FSTART_SHIFT;
2958
2959         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2960                 PXVFREQ_PX_SHIFT;
2961
2962         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2963         dev_priv->ips.fstart = fstart;
2964
2965         dev_priv->ips.max_delay = fstart;
2966         dev_priv->ips.min_delay = fmin;
2967         dev_priv->ips.cur_delay = fstart;
2968
2969         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2970                          fmax, fmin, fstart);
2971
2972         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2973
2974         /*
2975          * Interrupts will be enabled in ironlake_irq_postinstall
2976          */
2977
2978         I915_WRITE(VIDSTART, vstart);
2979         POSTING_READ(VIDSTART);
2980
2981         rgvmodectl |= MEMMODE_SWMODE_EN;
2982         I915_WRITE(MEMMODECTL, rgvmodectl);
2983
2984         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2985                 DRM_ERROR("stuck trying to change perf mode\n");
2986         mdelay(1);
2987
2988         ironlake_set_drps(dev, fstart);
2989
2990         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2991                 I915_READ(0x112e0);
2992         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2993         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2994         getrawmonotonic(&dev_priv->ips.last_time2);
2995
2996         spin_unlock_irq(&mchdev_lock);
2997 }
2998
2999 static void ironlake_disable_drps(struct drm_device *dev)
3000 {
3001         struct drm_i915_private *dev_priv = dev->dev_private;
3002         u16 rgvswctl;
3003
3004         spin_lock_irq(&mchdev_lock);
3005
3006         rgvswctl = I915_READ16(MEMSWCTL);
3007
3008         /* Ack interrupts, disable EFC interrupt */
3009         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3010         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3011         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3012         I915_WRITE(DEIIR, DE_PCU_EVENT);
3013         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3014
3015         /* Go back to the starting frequency */
3016         ironlake_set_drps(dev, dev_priv->ips.fstart);
3017         mdelay(1);
3018         rgvswctl |= MEMCTL_CMD_STS;
3019         I915_WRITE(MEMSWCTL, rgvswctl);
3020         mdelay(1);
3021
3022         spin_unlock_irq(&mchdev_lock);
3023 }
3024
3025 /* There's a funny hw issue where the hw returns all 0 when reading from
3026  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3027  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3028  * all limits and the gpu stuck at whatever frequency it is at atm).
3029  */
3030 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3031 {
3032         u32 limits;
3033
3034         limits = 0;
3035
3036         if (*val >= dev_priv->rps.max_delay)
3037                 *val = dev_priv->rps.max_delay;
3038         limits |= dev_priv->rps.max_delay << 24;
3039
3040         /* Only set the down limit when we've reached the lowest level to avoid
3041          * getting more interrupts, otherwise leave this clear. This prevents a
3042          * race in the hw when coming out of rc6: There's a tiny window where
3043          * the hw runs at the minimal clock before selecting the desired
3044          * frequency, if the down threshold expires in that window we will not
3045          * receive a down interrupt. */
3046         if (*val <= dev_priv->rps.min_delay) {
3047                 *val = dev_priv->rps.min_delay;
3048                 limits |= dev_priv->rps.min_delay << 16;
3049         }
3050
3051         return limits;
3052 }
3053
3054 void gen6_set_rps(struct drm_device *dev, u8 val)
3055 {
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057         u32 limits = gen6_rps_limits(dev_priv, &val);
3058
3059         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3060         WARN_ON(val > dev_priv->rps.max_delay);
3061         WARN_ON(val < dev_priv->rps.min_delay);
3062
3063         if (val == dev_priv->rps.cur_delay)
3064                 return;
3065
3066         if (IS_HASWELL(dev))
3067                 I915_WRITE(GEN6_RPNSWREQ,
3068                            HSW_FREQUENCY(val));
3069         else
3070                 I915_WRITE(GEN6_RPNSWREQ,
3071                            GEN6_FREQUENCY(val) |
3072                            GEN6_OFFSET(0) |
3073                            GEN6_AGGRESSIVE_TURBO);
3074
3075         /* Make sure we continue to get interrupts
3076          * until we hit the minimum or maximum frequencies.
3077          */
3078         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3079
3080         POSTING_READ(GEN6_RPNSWREQ);
3081
3082         dev_priv->rps.cur_delay = val;
3083
3084         trace_intel_gpu_freq_change(val * 50);
3085 }
3086
3087 /*
3088  * Wait until the previous freq change has completed,
3089  * or the timeout elapsed, and then update our notion
3090  * of the current GPU frequency.
3091  */
3092 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3093 {
3094         u32 pval;
3095
3096         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3097
3098         if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3099                 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3100
3101         pval >>= 8;
3102
3103         if (pval != dev_priv->rps.cur_delay)
3104                 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3105                                  vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3106                                  dev_priv->rps.cur_delay,
3107                                  vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3108
3109         dev_priv->rps.cur_delay = pval;
3110 }
3111
3112 void valleyview_set_rps(struct drm_device *dev, u8 val)
3113 {
3114         struct drm_i915_private *dev_priv = dev->dev_private;
3115
3116         gen6_rps_limits(dev_priv, &val);
3117
3118         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3119         WARN_ON(val > dev_priv->rps.max_delay);
3120         WARN_ON(val < dev_priv->rps.min_delay);
3121
3122         vlv_update_rps_cur_delay(dev_priv);
3123
3124         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3125                          vlv_gpu_freq(dev_priv->mem_freq,
3126                                       dev_priv->rps.cur_delay),
3127                          dev_priv->rps.cur_delay,
3128                          vlv_gpu_freq(dev_priv->mem_freq, val), val);
3129
3130         if (val == dev_priv->rps.cur_delay)
3131                 return;
3132
3133         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3134
3135         dev_priv->rps.cur_delay = val;
3136
3137         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3138 }
3139
3140 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3141 {
3142         struct drm_i915_private *dev_priv = dev->dev_private;
3143
3144         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3145         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3146         /* Complete PM interrupt masking here doesn't race with the rps work
3147          * item again unmasking PM interrupts because that is using a different
3148          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3149          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3150
3151         spin_lock_irq(&dev_priv->irq_lock);
3152         dev_priv->rps.pm_iir = 0;
3153         spin_unlock_irq(&dev_priv->irq_lock);
3154
3155         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3156 }
3157
3158 static void gen6_disable_rps(struct drm_device *dev)
3159 {
3160         struct drm_i915_private *dev_priv = dev->dev_private;
3161
3162         I915_WRITE(GEN6_RC_CONTROL, 0);
3163         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3164
3165         gen6_disable_rps_interrupts(dev);
3166 }
3167
3168 static void valleyview_disable_rps(struct drm_device *dev)
3169 {
3170         struct drm_i915_private *dev_priv = dev->dev_private;
3171
3172         I915_WRITE(GEN6_RC_CONTROL, 0);
3173
3174         gen6_disable_rps_interrupts(dev);
3175
3176         if (dev_priv->vlv_pctx) {
3177                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3178                 dev_priv->vlv_pctx = NULL;
3179         }
3180 }
3181
3182 int intel_enable_rc6(const struct drm_device *dev)
3183 {
3184         /* No RC6 before Ironlake */
3185         if (INTEL_INFO(dev)->gen < 5)
3186                 return 0;
3187
3188         /* Respect the kernel parameter if it is set */
3189         if (i915_enable_rc6 >= 0)
3190                 return i915_enable_rc6;
3191
3192         /* Disable RC6 on Ironlake */
3193         if (INTEL_INFO(dev)->gen == 5)
3194                 return 0;
3195
3196         if (IS_HASWELL(dev)) {
3197                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3198                 return INTEL_RC6_ENABLE;
3199         }
3200
3201         /* snb/ivb have more than one rc6 state. */
3202         if (INTEL_INFO(dev)->gen == 6) {
3203                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3204                 return INTEL_RC6_ENABLE;
3205         }
3206
3207         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3208         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3209 }
3210
3211 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3212 {
3213         struct drm_i915_private *dev_priv = dev->dev_private;
3214
3215         spin_lock_irq(&dev_priv->irq_lock);
3216         WARN_ON(dev_priv->rps.pm_iir);
3217         I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
3218         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3219         spin_unlock_irq(&dev_priv->irq_lock);
3220         /* unmask all PM interrupts */
3221         I915_WRITE(GEN6_PMINTRMSK, 0);
3222 }
3223
3224 static void gen6_enable_rps(struct drm_device *dev)
3225 {
3226         struct drm_i915_private *dev_priv = dev->dev_private;
3227         struct intel_ring_buffer *ring;
3228         u32 rp_state_cap;
3229         u32 gt_perf_status;
3230         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3231         u32 gtfifodbg;
3232         int rc6_mode;
3233         int i, ret;
3234
3235         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3236
3237         /* Here begins a magic sequence of register writes to enable
3238          * auto-downclocking.
3239          *
3240          * Perhaps there might be some value in exposing these to
3241          * userspace...
3242          */
3243         I915_WRITE(GEN6_RC_STATE, 0);
3244
3245         /* Clear the DBG now so we don't confuse earlier errors */
3246         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3247                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3248                 I915_WRITE(GTFIFODBG, gtfifodbg);
3249         }
3250
3251         gen6_gt_force_wake_get(dev_priv);
3252
3253         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3254         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3255
3256         /* In units of 50MHz */
3257         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3258         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3259         dev_priv->rps.cur_delay = 0;
3260
3261         /* disable the counters and set deterministic thresholds */
3262         I915_WRITE(GEN6_RC_CONTROL, 0);
3263
3264         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3265         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3266         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3267         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3268         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3269
3270         for_each_ring(ring, dev_priv, i)
3271                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3272
3273         I915_WRITE(GEN6_RC_SLEEP, 0);
3274         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3275         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3276         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3277         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3278
3279         /* Check if we are enabling RC6 */
3280         rc6_mode = intel_enable_rc6(dev_priv->dev);
3281         if (rc6_mode & INTEL_RC6_ENABLE)
3282                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3283
3284         /* We don't use those on Haswell */
3285         if (!IS_HASWELL(dev)) {
3286                 if (rc6_mode & INTEL_RC6p_ENABLE)
3287                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3288
3289                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3290                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3291         }
3292
3293         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3294                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3295                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3296                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3297
3298         I915_WRITE(GEN6_RC_CONTROL,
3299                    rc6_mask |
3300                    GEN6_RC_CTL_EI_MODE(1) |
3301                    GEN6_RC_CTL_HW_ENABLE);
3302
3303         if (IS_HASWELL(dev)) {
3304                 I915_WRITE(GEN6_RPNSWREQ,
3305                            HSW_FREQUENCY(10));
3306                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3307                            HSW_FREQUENCY(12));
3308         } else {
3309                 I915_WRITE(GEN6_RPNSWREQ,
3310                            GEN6_FREQUENCY(10) |
3311                            GEN6_OFFSET(0) |
3312                            GEN6_AGGRESSIVE_TURBO);
3313                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3314                            GEN6_FREQUENCY(12));
3315         }
3316
3317         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3318         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3319                    dev_priv->rps.max_delay << 24 |
3320                    dev_priv->rps.min_delay << 16);
3321
3322         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3323         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3324         I915_WRITE(GEN6_RP_UP_EI, 66000);
3325         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3326
3327         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3328         I915_WRITE(GEN6_RP_CONTROL,
3329                    GEN6_RP_MEDIA_TURBO |
3330                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3331                    GEN6_RP_MEDIA_IS_GFX |
3332                    GEN6_RP_ENABLE |
3333                    GEN6_RP_UP_BUSY_AVG |
3334                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3335
3336         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3337         if (!ret) {
3338                 pcu_mbox = 0;
3339                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3340                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3341                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3342                                          (dev_priv->rps.max_delay & 0xff) * 50,
3343                                          (pcu_mbox & 0xff) * 50);
3344                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3345                 }
3346         } else {
3347                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3348         }
3349
3350         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3351
3352         gen6_enable_rps_interrupts(dev);
3353
3354         rc6vids = 0;
3355         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3356         if (IS_GEN6(dev) && ret) {
3357                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3358         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3359                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3360                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3361                 rc6vids &= 0xffff00;
3362                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3363                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3364                 if (ret)
3365                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3366         }
3367
3368         gen6_gt_force_wake_put(dev_priv);
3369 }
3370
3371 static void gen6_update_ring_freq(struct drm_device *dev)
3372 {
3373         struct drm_i915_private *dev_priv = dev->dev_private;
3374         int min_freq = 15;
3375         unsigned int gpu_freq;
3376         unsigned int max_ia_freq, min_ring_freq;
3377         int scaling_factor = 180;
3378
3379         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3380
3381         max_ia_freq = cpufreq_quick_get_max(0);
3382         /*
3383          * Default to measured freq if none found, PCU will ensure we don't go
3384          * over
3385          */
3386         if (!max_ia_freq)
3387                 max_ia_freq = tsc_khz;
3388
3389         /* Convert from kHz to MHz */
3390         max_ia_freq /= 1000;
3391
3392         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3393         /* convert DDR frequency from units of 133.3MHz to bandwidth */
3394         min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3395
3396         /*
3397          * For each potential GPU frequency, load a ring frequency we'd like
3398          * to use for memory access.  We do this by specifying the IA frequency
3399          * the PCU should use as a reference to determine the ring frequency.
3400          */
3401         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3402              gpu_freq--) {
3403                 int diff = dev_priv->rps.max_delay - gpu_freq;
3404                 unsigned int ia_freq = 0, ring_freq = 0;
3405
3406                 if (IS_HASWELL(dev)) {
3407                         ring_freq = (gpu_freq * 5 + 3) / 4;
3408                         ring_freq = max(min_ring_freq, ring_freq);
3409                         /* leave ia_freq as the default, chosen by cpufreq */
3410                 } else {
3411                         /* On older processors, there is no separate ring
3412                          * clock domain, so in order to boost the bandwidth
3413                          * of the ring, we need to upclock the CPU (ia_freq).
3414                          *
3415                          * For GPU frequencies less than 750MHz,
3416                          * just use the lowest ring freq.
3417                          */
3418                         if (gpu_freq < min_freq)
3419                                 ia_freq = 800;
3420                         else
3421                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3422                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3423                 }
3424
3425                 sandybridge_pcode_write(dev_priv,
3426                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3427                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3428                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3429                                         gpu_freq);
3430         }
3431 }
3432
3433 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3434 {
3435         u32 val, rp0;
3436
3437         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3438
3439         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3440         /* Clamp to max */
3441         rp0 = min_t(u32, rp0, 0xea);
3442
3443         return rp0;
3444 }
3445
3446 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3447 {
3448         u32 val, rpe;
3449
3450         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3451         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3452         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3453         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3454
3455         return rpe;
3456 }
3457
3458 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3459 {
3460         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3461 }
3462
3463 static void vlv_rps_timer_work(struct work_struct *work)
3464 {
3465         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3466                                                     rps.vlv_work.work);
3467
3468         /*
3469          * Timer fired, we must be idle.  Drop to min voltage state.
3470          * Note: we use RPe here since it should match the
3471          * Vmin we were shooting for.  That should give us better
3472          * perf when we come back out of RC6 than if we used the
3473          * min freq available.
3474          */
3475         mutex_lock(&dev_priv->rps.hw_lock);
3476         if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3477                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3478         mutex_unlock(&dev_priv->rps.hw_lock);
3479 }
3480
3481 static void valleyview_setup_pctx(struct drm_device *dev)
3482 {
3483         struct drm_i915_private *dev_priv = dev->dev_private;
3484         struct drm_i915_gem_object *pctx;
3485         unsigned long pctx_paddr;
3486         u32 pcbr;
3487         int pctx_size = 24*1024;
3488
3489         pcbr = I915_READ(VLV_PCBR);
3490         if (pcbr) {
3491                 /* BIOS set it up already, grab the pre-alloc'd space */
3492                 int pcbr_offset;
3493
3494                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3495                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3496                                                                       pcbr_offset,
3497                                                                       I915_GTT_OFFSET_NONE,
3498                                                                       pctx_size);
3499                 goto out;
3500         }
3501
3502         /*
3503          * From the Gunit register HAS:
3504          * The Gfx driver is expected to program this register and ensure
3505          * proper allocation within Gfx stolen memory.  For example, this
3506          * register should be programmed such than the PCBR range does not
3507          * overlap with other ranges, such as the frame buffer, protected
3508          * memory, or any other relevant ranges.
3509          */
3510         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3511         if (!pctx) {
3512                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3513                 return;
3514         }
3515
3516         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3517         I915_WRITE(VLV_PCBR, pctx_paddr);
3518
3519 out:
3520         dev_priv->vlv_pctx = pctx;
3521 }
3522
3523 static void valleyview_enable_rps(struct drm_device *dev)
3524 {
3525         struct drm_i915_private *dev_priv = dev->dev_private;
3526         struct intel_ring_buffer *ring;
3527         u32 gtfifodbg, val;
3528         int i;
3529
3530         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3531
3532         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3533                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3534                 I915_WRITE(GTFIFODBG, gtfifodbg);
3535         }
3536
3537         valleyview_setup_pctx(dev);
3538
3539         gen6_gt_force_wake_get(dev_priv);
3540
3541         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3542         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3543         I915_WRITE(GEN6_RP_UP_EI, 66000);
3544         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3545
3546         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3547
3548         I915_WRITE(GEN6_RP_CONTROL,
3549                    GEN6_RP_MEDIA_TURBO |
3550                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3551                    GEN6_RP_MEDIA_IS_GFX |
3552                    GEN6_RP_ENABLE |
3553                    GEN6_RP_UP_BUSY_AVG |
3554                    GEN6_RP_DOWN_IDLE_CONT);
3555
3556         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3557         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3558         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3559
3560         for_each_ring(ring, dev_priv, i)
3561                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3562
3563         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3564
3565         /* allows RC6 residency counter to work */
3566         I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3567         I915_WRITE(GEN6_RC_CONTROL,
3568                    GEN7_RC_CTL_TO_MODE);
3569
3570         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3571         switch ((val >> 6) & 3) {
3572         case 0:
3573         case 1:
3574                 dev_priv->mem_freq = 800;
3575                 break;
3576         case 2:
3577                 dev_priv->mem_freq = 1066;
3578                 break;
3579         case 3:
3580                 dev_priv->mem_freq = 1333;
3581                 break;
3582         }
3583         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3584
3585         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3586         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3587
3588         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3589         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3590                          vlv_gpu_freq(dev_priv->mem_freq,
3591                                       dev_priv->rps.cur_delay),
3592                          dev_priv->rps.cur_delay);
3593
3594         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3595         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3596         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3597                          vlv_gpu_freq(dev_priv->mem_freq,
3598                                       dev_priv->rps.max_delay),
3599                          dev_priv->rps.max_delay);
3600
3601         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3602         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3603                          vlv_gpu_freq(dev_priv->mem_freq,
3604                                       dev_priv->rps.rpe_delay),
3605                          dev_priv->rps.rpe_delay);
3606
3607         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3608         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3609                          vlv_gpu_freq(dev_priv->mem_freq,
3610                                       dev_priv->rps.min_delay),
3611                          dev_priv->rps.min_delay);
3612
3613         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3614                          vlv_gpu_freq(dev_priv->mem_freq,
3615                                       dev_priv->rps.rpe_delay),
3616                          dev_priv->rps.rpe_delay);
3617
3618         INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3619
3620         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3621
3622         gen6_enable_rps_interrupts(dev);
3623
3624         gen6_gt_force_wake_put(dev_priv);
3625 }
3626
3627 void ironlake_teardown_rc6(struct drm_device *dev)
3628 {
3629         struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631         if (dev_priv->ips.renderctx) {
3632                 i915_gem_object_unpin(dev_priv->ips.renderctx);
3633                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3634                 dev_priv->ips.renderctx = NULL;
3635         }
3636
3637         if (dev_priv->ips.pwrctx) {
3638                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3639                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3640                 dev_priv->ips.pwrctx = NULL;
3641         }
3642 }
3643
3644 static void ironlake_disable_rc6(struct drm_device *dev)
3645 {
3646         struct drm_i915_private *dev_priv = dev->dev_private;
3647
3648         if (I915_READ(PWRCTXA)) {
3649                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3650                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3651                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3652                          50);
3653
3654                 I915_WRITE(PWRCTXA, 0);
3655                 POSTING_READ(PWRCTXA);
3656
3657                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3658                 POSTING_READ(RSTDBYCTL);
3659         }
3660 }
3661
3662 static int ironlake_setup_rc6(struct drm_device *dev)
3663 {
3664         struct drm_i915_private *dev_priv = dev->dev_private;
3665
3666         if (dev_priv->ips.renderctx == NULL)
3667                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3668         if (!dev_priv->ips.renderctx)
3669                 return -ENOMEM;
3670
3671         if (dev_priv->ips.pwrctx == NULL)
3672                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3673         if (!dev_priv->ips.pwrctx) {
3674                 ironlake_teardown_rc6(dev);
3675                 return -ENOMEM;
3676         }
3677
3678         return 0;
3679 }
3680
3681 static void ironlake_enable_rc6(struct drm_device *dev)
3682 {
3683         struct drm_i915_private *dev_priv = dev->dev_private;
3684         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3685         bool was_interruptible;
3686         int ret;
3687
3688         /* rc6 disabled by default due to repeated reports of hanging during
3689          * boot and resume.
3690          */
3691         if (!intel_enable_rc6(dev))
3692                 return;
3693
3694         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3695
3696         ret = ironlake_setup_rc6(dev);
3697         if (ret)
3698                 return;
3699
3700         was_interruptible = dev_priv->mm.interruptible;
3701         dev_priv->mm.interruptible = false;
3702
3703         /*
3704          * GPU can automatically power down the render unit if given a page
3705          * to save state.
3706          */
3707         ret = intel_ring_begin(ring, 6);
3708         if (ret) {
3709                 ironlake_teardown_rc6(dev);
3710                 dev_priv->mm.interruptible = was_interruptible;
3711                 return;
3712         }
3713
3714         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3715         intel_ring_emit(ring, MI_SET_CONTEXT);
3716         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3717                         MI_MM_SPACE_GTT |
3718                         MI_SAVE_EXT_STATE_EN |
3719                         MI_RESTORE_EXT_STATE_EN |
3720                         MI_RESTORE_INHIBIT);
3721         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3722         intel_ring_emit(ring, MI_NOOP);
3723         intel_ring_emit(ring, MI_FLUSH);
3724         intel_ring_advance(ring);
3725
3726         /*
3727          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3728          * does an implicit flush, combined with MI_FLUSH above, it should be
3729          * safe to assume that renderctx is valid
3730          */
3731         ret = intel_ring_idle(ring);
3732         dev_priv->mm.interruptible = was_interruptible;
3733         if (ret) {
3734                 DRM_ERROR("failed to enable ironlake power savings\n");
3735                 ironlake_teardown_rc6(dev);
3736                 return;
3737         }
3738
3739         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3740         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3741 }
3742
3743 static unsigned long intel_pxfreq(u32 vidfreq)
3744 {
3745         unsigned long freq;
3746         int div = (vidfreq & 0x3f0000) >> 16;
3747         int post = (vidfreq & 0x3000) >> 12;
3748         int pre = (vidfreq & 0x7);
3749
3750         if (!pre)
3751                 return 0;
3752
3753         freq = ((div * 133333) / ((1<<post) * pre));
3754
3755         return freq;
3756 }
3757
3758 static const struct cparams {
3759         u16 i;
3760         u16 t;
3761         u16 m;
3762         u16 c;
3763 } cparams[] = {
3764         { 1, 1333, 301, 28664 },
3765         { 1, 1066, 294, 24460 },
3766         { 1, 800, 294, 25192 },
3767         { 0, 1333, 276, 27605 },
3768         { 0, 1066, 276, 27605 },
3769         { 0, 800, 231, 23784 },
3770 };
3771
3772 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3773 {
3774         u64 total_count, diff, ret;
3775         u32 count1, count2, count3, m = 0, c = 0;
3776         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3777         int i;
3778
3779         assert_spin_locked(&mchdev_lock);
3780
3781         diff1 = now - dev_priv->ips.last_time1;
3782
3783         /* Prevent division-by-zero if we are asking too fast.
3784          * Also, we don't get interesting results if we are polling
3785          * faster than once in 10ms, so just return the saved value
3786          * in such cases.
3787          */
3788         if (diff1 <= 10)
3789                 return dev_priv->ips.chipset_power;
3790
3791         count1 = I915_READ(DMIEC);
3792         count2 = I915_READ(DDREC);
3793         count3 = I915_READ(CSIEC);
3794
3795         total_count = count1 + count2 + count3;
3796
3797         /* FIXME: handle per-counter overflow */
3798         if (total_count < dev_priv->ips.last_count1) {
3799                 diff = ~0UL - dev_priv->ips.last_count1;
3800                 diff += total_count;
3801         } else {
3802                 diff = total_count - dev_priv->ips.last_count1;
3803         }
3804
3805         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3806                 if (cparams[i].i == dev_priv->ips.c_m &&
3807                     cparams[i].t == dev_priv->ips.r_t) {
3808                         m = cparams[i].m;
3809                         c = cparams[i].c;
3810                         break;
3811                 }
3812         }
3813
3814         diff = div_u64(diff, diff1);
3815         ret = ((m * diff) + c);
3816         ret = div_u64(ret, 10);
3817
3818         dev_priv->ips.last_count1 = total_count;
3819         dev_priv->ips.last_time1 = now;
3820
3821         dev_priv->ips.chipset_power = ret;
3822
3823         return ret;
3824 }
3825
3826 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3827 {
3828         unsigned long val;
3829
3830         if (dev_priv->info->gen != 5)
3831                 return 0;
3832
3833         spin_lock_irq(&mchdev_lock);
3834
3835         val = __i915_chipset_val(dev_priv);
3836
3837         spin_unlock_irq(&mchdev_lock);
3838
3839         return val;
3840 }
3841
3842 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3843 {
3844         unsigned long m, x, b;
3845         u32 tsfs;
3846
3847         tsfs = I915_READ(TSFS);
3848
3849         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3850         x = I915_READ8(TR1);
3851
3852         b = tsfs & TSFS_INTR_MASK;
3853
3854         return ((m * x) / 127) - b;
3855 }
3856
3857 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3858 {
3859         static const struct v_table {
3860                 u16 vd; /* in .1 mil */
3861                 u16 vm; /* in .1 mil */
3862         } v_table[] = {
3863                 { 0, 0, },
3864                 { 375, 0, },
3865                 { 500, 0, },
3866                 { 625, 0, },
3867                 { 750, 0, },
3868                 { 875, 0, },
3869                 { 1000, 0, },
3870                 { 1125, 0, },
3871                 { 4125, 3000, },
3872                 { 4125, 3000, },
3873                 { 4125, 3000, },
3874                 { 4125, 3000, },
3875                 { 4125, 3000, },
3876                 { 4125, 3000, },
3877                 { 4125, 3000, },
3878                 { 4125, 3000, },
3879                 { 4125, 3000, },
3880                 { 4125, 3000, },
3881                 { 4125, 3000, },
3882                 { 4125, 3000, },
3883                 { 4125, 3000, },
3884                 { 4125, 3000, },
3885                 { 4125, 3000, },
3886                 { 4125, 3000, },
3887                 { 4125, 3000, },
3888                 { 4125, 3000, },
3889                 { 4125, 3000, },
3890                 { 4125, 3000, },
3891                 { 4125, 3000, },
3892                 { 4125, 3000, },
3893                 { 4125, 3000, },
3894                 { 4125, 3000, },
3895                 { 4250, 3125, },
3896                 { 4375, 3250, },
3897                 { 4500, 3375, },
3898                 { 4625, 3500, },
3899                 { 4750, 3625, },
3900                 { 4875, 3750, },
3901                 { 5000, 3875, },
3902                 { 5125, 4000, },
3903                 { 5250, 4125, },
3904                 { 5375, 4250, },
3905                 { 5500, 4375, },
3906                 { 5625, 4500, },
3907                 { 5750, 4625, },
3908                 { 5875, 4750, },
3909                 { 6000, 4875, },
3910                 { 6125, 5000, },
3911                 { 6250, 5125, },
3912                 { 6375, 5250, },
3913                 { 6500, 5375, },
3914                 { 6625, 5500, },
3915                 { 6750, 5625, },
3916                 { 6875, 5750, },
3917                 { 7000, 5875, },
3918                 { 7125, 6000, },
3919                 { 7250, 6125, },
3920                 { 7375, 6250, },
3921                 { 7500, 6375, },
3922                 { 7625, 6500, },
3923                 { 7750, 6625, },
3924                 { 7875, 6750, },
3925                 { 8000, 6875, },
3926                 { 8125, 7000, },
3927                 { 8250, 7125, },
3928                 { 8375, 7250, },
3929                 { 8500, 7375, },
3930                 { 8625, 7500, },
3931                 { 8750, 7625, },
3932                 { 8875, 7750, },
3933                 { 9000, 7875, },
3934                 { 9125, 8000, },
3935                 { 9250, 8125, },
3936                 { 9375, 8250, },
3937                 { 9500, 8375, },
3938                 { 9625, 8500, },
3939                 { 9750, 8625, },
3940                 { 9875, 8750, },
3941                 { 10000, 8875, },
3942                 { 10125, 9000, },
3943                 { 10250, 9125, },
3944                 { 10375, 9250, },
3945                 { 10500, 9375, },
3946                 { 10625, 9500, },
3947                 { 10750, 9625, },
3948                 { 10875, 9750, },
3949                 { 11000, 9875, },
3950                 { 11125, 10000, },
3951                 { 11250, 10125, },
3952                 { 11375, 10250, },
3953                 { 11500, 10375, },
3954                 { 11625, 10500, },
3955                 { 11750, 10625, },
3956                 { 11875, 10750, },
3957                 { 12000, 10875, },
3958                 { 12125, 11000, },
3959                 { 12250, 11125, },
3960                 { 12375, 11250, },
3961                 { 12500, 11375, },
3962                 { 12625, 11500, },
3963                 { 12750, 11625, },
3964                 { 12875, 11750, },
3965                 { 13000, 11875, },
3966                 { 13125, 12000, },
3967                 { 13250, 12125, },
3968                 { 13375, 12250, },
3969                 { 13500, 12375, },
3970                 { 13625, 12500, },
3971                 { 13750, 12625, },
3972                 { 13875, 12750, },
3973                 { 14000, 12875, },
3974                 { 14125, 13000, },
3975                 { 14250, 13125, },
3976                 { 14375, 13250, },
3977                 { 14500, 13375, },
3978                 { 14625, 13500, },
3979                 { 14750, 13625, },
3980                 { 14875, 13750, },
3981                 { 15000, 13875, },
3982                 { 15125, 14000, },
3983                 { 15250, 14125, },
3984                 { 15375, 14250, },
3985                 { 15500, 14375, },
3986                 { 15625, 14500, },
3987                 { 15750, 14625, },
3988                 { 15875, 14750, },
3989                 { 16000, 14875, },
3990                 { 16125, 15000, },
3991         };
3992         if (dev_priv->info->is_mobile)
3993                 return v_table[pxvid].vm;
3994         else
3995                 return v_table[pxvid].vd;
3996 }
3997
3998 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3999 {
4000         struct timespec now, diff1;
4001         u64 diff;
4002         unsigned long diffms;
4003         u32 count;
4004
4005         assert_spin_locked(&mchdev_lock);
4006
4007         getrawmonotonic(&now);
4008         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4009
4010         /* Don't divide by 0 */
4011         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4012         if (!diffms)
4013                 return;
4014
4015         count = I915_READ(GFXEC);
4016
4017         if (count < dev_priv->ips.last_count2) {
4018                 diff = ~0UL - dev_priv->ips.last_count2;
4019                 diff += count;
4020         } else {
4021                 diff = count - dev_priv->ips.last_count2;
4022         }
4023
4024         dev_priv->ips.last_count2 = count;
4025         dev_priv->ips.last_time2 = now;
4026
4027         /* More magic constants... */
4028         diff = diff * 1181;
4029         diff = div_u64(diff, diffms * 10);
4030         dev_priv->ips.gfx_power = diff;
4031 }
4032
4033 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4034 {
4035         if (dev_priv->info->gen != 5)
4036                 return;
4037
4038         spin_lock_irq(&mchdev_lock);
4039
4040         __i915_update_gfx_val(dev_priv);
4041
4042         spin_unlock_irq(&mchdev_lock);
4043 }
4044
4045 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4046 {
4047         unsigned long t, corr, state1, corr2, state2;
4048         u32 pxvid, ext_v;
4049
4050         assert_spin_locked(&mchdev_lock);
4051
4052         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4053         pxvid = (pxvid >> 24) & 0x7f;
4054         ext_v = pvid_to_extvid(dev_priv, pxvid);
4055
4056         state1 = ext_v;
4057
4058         t = i915_mch_val(dev_priv);
4059
4060         /* Revel in the empirically derived constants */
4061
4062         /* Correction factor in 1/100000 units */
4063         if (t > 80)
4064                 corr = ((t * 2349) + 135940);
4065         else if (t >= 50)
4066                 corr = ((t * 964) + 29317);
4067         else /* < 50 */
4068                 corr = ((t * 301) + 1004);
4069
4070         corr = corr * ((150142 * state1) / 10000 - 78642);
4071         corr /= 100000;
4072         corr2 = (corr * dev_priv->ips.corr);
4073
4074         state2 = (corr2 * state1) / 10000;
4075         state2 /= 100; /* convert to mW */
4076
4077         __i915_update_gfx_val(dev_priv);
4078
4079         return dev_priv->ips.gfx_power + state2;
4080 }
4081
4082 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4083 {
4084         unsigned long val;
4085
4086         if (dev_priv->info->gen != 5)
4087                 return 0;
4088
4089         spin_lock_irq(&mchdev_lock);
4090
4091         val = __i915_gfx_val(dev_priv);
4092
4093         spin_unlock_irq(&mchdev_lock);
4094
4095         return val;
4096 }
4097
4098 /**
4099  * i915_read_mch_val - return value for IPS use
4100  *
4101  * Calculate and return a value for the IPS driver to use when deciding whether
4102  * we have thermal and power headroom to increase CPU or GPU power budget.
4103  */
4104 unsigned long i915_read_mch_val(void)
4105 {
4106         struct drm_i915_private *dev_priv;
4107         unsigned long chipset_val, graphics_val, ret = 0;
4108
4109         spin_lock_irq(&mchdev_lock);
4110         if (!i915_mch_dev)
4111                 goto out_unlock;
4112         dev_priv = i915_mch_dev;
4113
4114         chipset_val = __i915_chipset_val(dev_priv);
4115         graphics_val = __i915_gfx_val(dev_priv);
4116
4117         ret = chipset_val + graphics_val;
4118
4119 out_unlock:
4120         spin_unlock_irq(&mchdev_lock);
4121
4122         return ret;
4123 }
4124 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4125
4126 /**
4127  * i915_gpu_raise - raise GPU frequency limit
4128  *
4129  * Raise the limit; IPS indicates we have thermal headroom.
4130  */
4131 bool i915_gpu_raise(void)
4132 {
4133         struct drm_i915_private *dev_priv;
4134         bool ret = true;
4135
4136         spin_lock_irq(&mchdev_lock);
4137         if (!i915_mch_dev) {
4138                 ret = false;
4139                 goto out_unlock;
4140         }
4141         dev_priv = i915_mch_dev;
4142
4143         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4144                 dev_priv->ips.max_delay--;
4145
4146 out_unlock:
4147         spin_unlock_irq(&mchdev_lock);
4148
4149         return ret;
4150 }
4151 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4152
4153 /**
4154  * i915_gpu_lower - lower GPU frequency limit
4155  *
4156  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4157  * frequency maximum.
4158  */
4159 bool i915_gpu_lower(void)
4160 {
4161         struct drm_i915_private *dev_priv;
4162         bool ret = true;
4163
4164         spin_lock_irq(&mchdev_lock);
4165         if (!i915_mch_dev) {
4166                 ret = false;
4167                 goto out_unlock;
4168         }
4169         dev_priv = i915_mch_dev;
4170
4171         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4172                 dev_priv->ips.max_delay++;
4173
4174 out_unlock:
4175         spin_unlock_irq(&mchdev_lock);
4176
4177         return ret;
4178 }
4179 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4180
4181 /**
4182  * i915_gpu_busy - indicate GPU business to IPS
4183  *
4184  * Tell the IPS driver whether or not the GPU is busy.
4185  */
4186 bool i915_gpu_busy(void)
4187 {
4188         struct drm_i915_private *dev_priv;
4189         struct intel_ring_buffer *ring;
4190         bool ret = false;
4191         int i;
4192
4193         spin_lock_irq(&mchdev_lock);
4194         if (!i915_mch_dev)
4195                 goto out_unlock;
4196         dev_priv = i915_mch_dev;
4197
4198         for_each_ring(ring, dev_priv, i)
4199                 ret |= !list_empty(&ring->request_list);
4200
4201 out_unlock:
4202         spin_unlock_irq(&mchdev_lock);
4203
4204         return ret;
4205 }
4206 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4207
4208 /**
4209  * i915_gpu_turbo_disable - disable graphics turbo
4210  *
4211  * Disable graphics turbo by resetting the max frequency and setting the
4212  * current frequency to the default.
4213  */
4214 bool i915_gpu_turbo_disable(void)
4215 {
4216         struct drm_i915_private *dev_priv;
4217         bool ret = true;
4218
4219         spin_lock_irq(&mchdev_lock);
4220         if (!i915_mch_dev) {
4221                 ret = false;
4222                 goto out_unlock;
4223         }
4224         dev_priv = i915_mch_dev;
4225
4226         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4227
4228         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4229                 ret = false;
4230
4231 out_unlock:
4232         spin_unlock_irq(&mchdev_lock);
4233
4234         return ret;
4235 }
4236 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4237
4238 /**
4239  * Tells the intel_ips driver that the i915 driver is now loaded, if
4240  * IPS got loaded first.
4241  *
4242  * This awkward dance is so that neither module has to depend on the
4243  * other in order for IPS to do the appropriate communication of
4244  * GPU turbo limits to i915.
4245  */
4246 static void
4247 ips_ping_for_i915_load(void)
4248 {
4249         void (*link)(void);
4250
4251         link = symbol_get(ips_link_to_i915_driver);
4252         if (link) {
4253                 link();
4254                 symbol_put(ips_link_to_i915_driver);
4255         }
4256 }
4257
4258 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4259 {
4260         /* We only register the i915 ips part with intel-ips once everything is
4261          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4262         spin_lock_irq(&mchdev_lock);
4263         i915_mch_dev = dev_priv;
4264         spin_unlock_irq(&mchdev_lock);
4265
4266         ips_ping_for_i915_load();
4267 }
4268
4269 void intel_gpu_ips_teardown(void)
4270 {
4271         spin_lock_irq(&mchdev_lock);
4272         i915_mch_dev = NULL;
4273         spin_unlock_irq(&mchdev_lock);
4274 }
4275 static void intel_init_emon(struct drm_device *dev)
4276 {
4277         struct drm_i915_private *dev_priv = dev->dev_private;
4278         u32 lcfuse;
4279         u8 pxw[16];
4280         int i;
4281
4282         /* Disable to program */
4283         I915_WRITE(ECR, 0);
4284         POSTING_READ(ECR);
4285
4286         /* Program energy weights for various events */
4287         I915_WRITE(SDEW, 0x15040d00);
4288         I915_WRITE(CSIEW0, 0x007f0000);
4289         I915_WRITE(CSIEW1, 0x1e220004);
4290         I915_WRITE(CSIEW2, 0x04000004);
4291
4292         for (i = 0; i < 5; i++)
4293                 I915_WRITE(PEW + (i * 4), 0);
4294         for (i = 0; i < 3; i++)
4295                 I915_WRITE(DEW + (i * 4), 0);
4296
4297         /* Program P-state weights to account for frequency power adjustment */
4298         for (i = 0; i < 16; i++) {
4299                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4300                 unsigned long freq = intel_pxfreq(pxvidfreq);
4301                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4302                         PXVFREQ_PX_SHIFT;
4303                 unsigned long val;
4304
4305                 val = vid * vid;
4306                 val *= (freq / 1000);
4307                 val *= 255;
4308                 val /= (127*127*900);
4309                 if (val > 0xff)
4310                         DRM_ERROR("bad pxval: %ld\n", val);
4311                 pxw[i] = val;
4312         }
4313         /* Render standby states get 0 weight */
4314         pxw[14] = 0;
4315         pxw[15] = 0;
4316
4317         for (i = 0; i < 4; i++) {
4318                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4319                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4320                 I915_WRITE(PXW + (i * 4), val);
4321         }
4322
4323         /* Adjust magic regs to magic values (more experimental results) */
4324         I915_WRITE(OGW0, 0);
4325         I915_WRITE(OGW1, 0);
4326         I915_WRITE(EG0, 0x00007f00);
4327         I915_WRITE(EG1, 0x0000000e);
4328         I915_WRITE(EG2, 0x000e0000);
4329         I915_WRITE(EG3, 0x68000300);
4330         I915_WRITE(EG4, 0x42000000);
4331         I915_WRITE(EG5, 0x00140031);
4332         I915_WRITE(EG6, 0);
4333         I915_WRITE(EG7, 0);
4334
4335         for (i = 0; i < 8; i++)
4336                 I915_WRITE(PXWL + (i * 4), 0);
4337
4338         /* Enable PMON + select events */
4339         I915_WRITE(ECR, 0x80000019);
4340
4341         lcfuse = I915_READ(LCFUSE02);
4342
4343         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4344 }
4345
4346 void intel_disable_gt_powersave(struct drm_device *dev)
4347 {
4348         struct drm_i915_private *dev_priv = dev->dev_private;
4349
4350         /* Interrupts should be disabled already to avoid re-arming. */
4351         WARN_ON(dev->irq_enabled);
4352
4353         if (IS_IRONLAKE_M(dev)) {
4354                 ironlake_disable_drps(dev);
4355                 ironlake_disable_rc6(dev);
4356         } else if (INTEL_INFO(dev)->gen >= 6) {
4357                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4358                 cancel_work_sync(&dev_priv->rps.work);
4359                 if (IS_VALLEYVIEW(dev))
4360                         cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4361                 mutex_lock(&dev_priv->rps.hw_lock);
4362                 if (IS_VALLEYVIEW(dev))
4363                         valleyview_disable_rps(dev);
4364                 else
4365                         gen6_disable_rps(dev);
4366                 mutex_unlock(&dev_priv->rps.hw_lock);
4367         }
4368 }
4369
4370 static void intel_gen6_powersave_work(struct work_struct *work)
4371 {
4372         struct drm_i915_private *dev_priv =
4373                 container_of(work, struct drm_i915_private,
4374                              rps.delayed_resume_work.work);
4375         struct drm_device *dev = dev_priv->dev;
4376
4377         mutex_lock(&dev_priv->rps.hw_lock);
4378
4379         if (IS_VALLEYVIEW(dev)) {
4380                 valleyview_enable_rps(dev);
4381         } else {
4382                 gen6_enable_rps(dev);
4383                 gen6_update_ring_freq(dev);
4384         }
4385         mutex_unlock(&dev_priv->rps.hw_lock);
4386 }
4387
4388 void intel_enable_gt_powersave(struct drm_device *dev)
4389 {
4390         struct drm_i915_private *dev_priv = dev->dev_private;
4391
4392         if (IS_IRONLAKE_M(dev)) {
4393                 ironlake_enable_drps(dev);
4394                 ironlake_enable_rc6(dev);
4395                 intel_init_emon(dev);
4396         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4397                 /*
4398                  * PCU communication is slow and this doesn't need to be
4399                  * done at any specific time, so do this out of our fast path
4400                  * to make resume and init faster.
4401                  */
4402                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4403                                       round_jiffies_up_relative(HZ));
4404         }
4405 }
4406
4407 static void ibx_init_clock_gating(struct drm_device *dev)
4408 {
4409         struct drm_i915_private *dev_priv = dev->dev_private;
4410
4411         /*
4412          * On Ibex Peak and Cougar Point, we need to disable clock
4413          * gating for the panel power sequencer or it will fail to
4414          * start up when no ports are active.
4415          */
4416         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4417 }
4418
4419 static void g4x_disable_trickle_feed(struct drm_device *dev)
4420 {
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422         int pipe;
4423
4424         for_each_pipe(pipe) {
4425                 I915_WRITE(DSPCNTR(pipe),
4426                            I915_READ(DSPCNTR(pipe)) |
4427                            DISPPLANE_TRICKLE_FEED_DISABLE);
4428                 intel_flush_display_plane(dev_priv, pipe);
4429         }
4430 }
4431
4432 static void ironlake_init_clock_gating(struct drm_device *dev)
4433 {
4434         struct drm_i915_private *dev_priv = dev->dev_private;
4435         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4436
4437         /*
4438          * Required for FBC
4439          * WaFbcDisableDpfcClockGating:ilk
4440          */
4441         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4442                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4443                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4444
4445         I915_WRITE(PCH_3DCGDIS0,
4446                    MARIUNIT_CLOCK_GATE_DISABLE |
4447                    SVSMUNIT_CLOCK_GATE_DISABLE);
4448         I915_WRITE(PCH_3DCGDIS1,
4449                    VFMUNIT_CLOCK_GATE_DISABLE);
4450
4451         /*
4452          * According to the spec the following bits should be set in
4453          * order to enable memory self-refresh
4454          * The bit 22/21 of 0x42004
4455          * The bit 5 of 0x42020
4456          * The bit 15 of 0x45000
4457          */
4458         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4459                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4460                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4461         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4462         I915_WRITE(DISP_ARB_CTL,
4463                    (I915_READ(DISP_ARB_CTL) |
4464                     DISP_FBC_WM_DIS));
4465         I915_WRITE(WM3_LP_ILK, 0);
4466         I915_WRITE(WM2_LP_ILK, 0);
4467         I915_WRITE(WM1_LP_ILK, 0);
4468
4469         /*
4470          * Based on the document from hardware guys the following bits
4471          * should be set unconditionally in order to enable FBC.
4472          * The bit 22 of 0x42000
4473          * The bit 22 of 0x42004
4474          * The bit 7,8,9 of 0x42020.
4475          */
4476         if (IS_IRONLAKE_M(dev)) {
4477                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4478                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4479                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4480                            ILK_FBCQ_DIS);
4481                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4482                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4483                            ILK_DPARB_GATE);
4484         }
4485
4486         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4487
4488         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4489                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4490                    ILK_ELPIN_409_SELECT);
4491         I915_WRITE(_3D_CHICKEN2,
4492                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4493                    _3D_CHICKEN2_WM_READ_PIPELINED);
4494
4495         /* WaDisableRenderCachePipelinedFlush:ilk */
4496         I915_WRITE(CACHE_MODE_0,
4497                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4498
4499         g4x_disable_trickle_feed(dev);
4500
4501         ibx_init_clock_gating(dev);
4502 }
4503
4504 static void cpt_init_clock_gating(struct drm_device *dev)
4505 {
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507         int pipe;
4508         uint32_t val;
4509
4510         /*
4511          * On Ibex Peak and Cougar Point, we need to disable clock
4512          * gating for the panel power sequencer or it will fail to
4513          * start up when no ports are active.
4514          */
4515         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4516         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4517                    DPLS_EDP_PPS_FIX_DIS);
4518         /* The below fixes the weird display corruption, a few pixels shifted
4519          * downward, on (only) LVDS of some HP laptops with IVY.
4520          */
4521         for_each_pipe(pipe) {
4522                 val = I915_READ(TRANS_CHICKEN2(pipe));
4523                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4524                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4525                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4526                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4527                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4528                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4529                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4530                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4531         }
4532         /* WADP0ClockGatingDisable */
4533         for_each_pipe(pipe) {
4534                 I915_WRITE(TRANS_CHICKEN1(pipe),
4535                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4536         }
4537 }
4538
4539 static void gen6_check_mch_setup(struct drm_device *dev)
4540 {
4541         struct drm_i915_private *dev_priv = dev->dev_private;
4542         uint32_t tmp;
4543
4544         tmp = I915_READ(MCH_SSKPD);
4545         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4546                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4547                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4548                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4549         }
4550 }
4551
4552 static void gen6_init_clock_gating(struct drm_device *dev)
4553 {
4554         struct drm_i915_private *dev_priv = dev->dev_private;
4555         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4556
4557         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4558
4559         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4560                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4561                    ILK_ELPIN_409_SELECT);
4562
4563         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4564         I915_WRITE(_3D_CHICKEN,
4565                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4566
4567         /* WaSetupGtModeTdRowDispatch:snb */
4568         if (IS_SNB_GT1(dev))
4569                 I915_WRITE(GEN6_GT_MODE,
4570                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4571
4572         I915_WRITE(WM3_LP_ILK, 0);
4573         I915_WRITE(WM2_LP_ILK, 0);
4574         I915_WRITE(WM1_LP_ILK, 0);
4575
4576         I915_WRITE(CACHE_MODE_0,
4577                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4578
4579         I915_WRITE(GEN6_UCGCTL1,
4580                    I915_READ(GEN6_UCGCTL1) |
4581                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4582                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4583
4584         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4585          * gating disable must be set.  Failure to set it results in
4586          * flickering pixels due to Z write ordering failures after
4587          * some amount of runtime in the Mesa "fire" demo, and Unigine
4588          * Sanctuary and Tropics, and apparently anything else with
4589          * alpha test or pixel discard.
4590          *
4591          * According to the spec, bit 11 (RCCUNIT) must also be set,
4592          * but we didn't debug actual testcases to find it out.
4593          *
4594          * Also apply WaDisableVDSUnitClockGating:snb and
4595          * WaDisableRCPBUnitClockGating:snb.
4596          */
4597         I915_WRITE(GEN6_UCGCTL2,
4598                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4599                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4600                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4601
4602         /* Bspec says we need to always set all mask bits. */
4603         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4604                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4605
4606         /*
4607          * According to the spec the following bits should be
4608          * set in order to enable memory self-refresh and fbc:
4609          * The bit21 and bit22 of 0x42000
4610          * The bit21 and bit22 of 0x42004
4611          * The bit5 and bit7 of 0x42020
4612          * The bit14 of 0x70180
4613          * The bit14 of 0x71180
4614          *
4615          * WaFbcAsynchFlipDisableFbcQueue:snb
4616          */
4617         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4618                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4619                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4620         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4621                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4622                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4623         I915_WRITE(ILK_DSPCLK_GATE_D,
4624                    I915_READ(ILK_DSPCLK_GATE_D) |
4625                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4626                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4627
4628         /* WaMbcDriverBootEnable:snb */
4629         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4630                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4631
4632         g4x_disable_trickle_feed(dev);
4633
4634         /* The default value should be 0x200 according to docs, but the two
4635          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4636         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4637         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4638
4639         cpt_init_clock_gating(dev);
4640
4641         gen6_check_mch_setup(dev);
4642 }
4643
4644 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4645 {
4646         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4647
4648         reg &= ~GEN7_FF_SCHED_MASK;
4649         reg |= GEN7_FF_TS_SCHED_HW;
4650         reg |= GEN7_FF_VS_SCHED_HW;
4651         reg |= GEN7_FF_DS_SCHED_HW;
4652
4653         if (IS_HASWELL(dev_priv->dev))
4654                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4655
4656         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4657 }
4658
4659 static void lpt_init_clock_gating(struct drm_device *dev)
4660 {
4661         struct drm_i915_private *dev_priv = dev->dev_private;
4662
4663         /*
4664          * TODO: this bit should only be enabled when really needed, then
4665          * disabled when not needed anymore in order to save power.
4666          */
4667         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4668                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4669                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4670                            PCH_LP_PARTITION_LEVEL_DISABLE);
4671
4672         /* WADPOClockGatingDisable:hsw */
4673         I915_WRITE(_TRANSA_CHICKEN1,
4674                    I915_READ(_TRANSA_CHICKEN1) |
4675                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4676 }
4677
4678 static void lpt_suspend_hw(struct drm_device *dev)
4679 {
4680         struct drm_i915_private *dev_priv = dev->dev_private;
4681
4682         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4683                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4684
4685                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4686                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4687         }
4688 }
4689
4690 static void haswell_init_clock_gating(struct drm_device *dev)
4691 {
4692         struct drm_i915_private *dev_priv = dev->dev_private;
4693
4694         I915_WRITE(WM3_LP_ILK, 0);
4695         I915_WRITE(WM2_LP_ILK, 0);
4696         I915_WRITE(WM1_LP_ILK, 0);
4697
4698         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4699          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4700          */
4701         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4702
4703         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4704         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4705                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4706
4707         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4708         I915_WRITE(GEN7_L3CNTLREG1,
4709                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4710         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4711                         GEN7_WA_L3_CHICKEN_MODE);
4712
4713         /* This is required by WaCatErrorRejectionIssue:hsw */
4714         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4715                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4716                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4717
4718         g4x_disable_trickle_feed(dev);
4719
4720         /* WaVSRefCountFullforceMissDisable:hsw */
4721         gen7_setup_fixed_func_scheduler(dev_priv);
4722
4723         /* WaDisable4x2SubspanOptimization:hsw */
4724         I915_WRITE(CACHE_MODE_1,
4725                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4726
4727         /* WaMbcDriverBootEnable:hsw */
4728         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4729                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4730
4731         /* WaSwitchSolVfFArbitrationPriority:hsw */
4732         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4733
4734         /* WaRsPkgCStateDisplayPMReq:hsw */
4735         I915_WRITE(CHICKEN_PAR1_1,
4736                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4737
4738         lpt_init_clock_gating(dev);
4739 }
4740
4741 static void ivybridge_init_clock_gating(struct drm_device *dev)
4742 {
4743         struct drm_i915_private *dev_priv = dev->dev_private;
4744         uint32_t snpcr;
4745
4746         I915_WRITE(WM3_LP_ILK, 0);
4747         I915_WRITE(WM2_LP_ILK, 0);
4748         I915_WRITE(WM1_LP_ILK, 0);
4749
4750         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4751
4752         /* WaDisableEarlyCull:ivb */
4753         I915_WRITE(_3D_CHICKEN3,
4754                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4755
4756         /* WaDisableBackToBackFlipFix:ivb */
4757         I915_WRITE(IVB_CHICKEN3,
4758                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4759                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4760
4761         /* WaDisablePSDDualDispatchEnable:ivb */
4762         if (IS_IVB_GT1(dev))
4763                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4764                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4765         else
4766                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4767                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4768
4769         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4770         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4771                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4772
4773         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4774         I915_WRITE(GEN7_L3CNTLREG1,
4775                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4776         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4777                    GEN7_WA_L3_CHICKEN_MODE);
4778         if (IS_IVB_GT1(dev))
4779                 I915_WRITE(GEN7_ROW_CHICKEN2,
4780                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4781         else
4782                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4783                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4784
4785
4786         /* WaForceL3Serialization:ivb */
4787         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4788                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4789
4790         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4791          * gating disable must be set.  Failure to set it results in
4792          * flickering pixels due to Z write ordering failures after
4793          * some amount of runtime in the Mesa "fire" demo, and Unigine
4794          * Sanctuary and Tropics, and apparently anything else with
4795          * alpha test or pixel discard.
4796          *
4797          * According to the spec, bit 11 (RCCUNIT) must also be set,
4798          * but we didn't debug actual testcases to find it out.
4799          *
4800          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4801          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4802          */
4803         I915_WRITE(GEN6_UCGCTL2,
4804                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4805                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4806
4807         /* This is required by WaCatErrorRejectionIssue:ivb */
4808         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4809                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4810                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4811
4812         g4x_disable_trickle_feed(dev);
4813
4814         /* WaMbcDriverBootEnable:ivb */
4815         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4816                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4817
4818         /* WaVSRefCountFullforceMissDisable:ivb */
4819         gen7_setup_fixed_func_scheduler(dev_priv);
4820
4821         /* WaDisable4x2SubspanOptimization:ivb */
4822         I915_WRITE(CACHE_MODE_1,
4823                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4824
4825         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4826         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4827         snpcr |= GEN6_MBC_SNPCR_MED;
4828         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4829
4830         if (!HAS_PCH_NOP(dev))
4831                 cpt_init_clock_gating(dev);
4832
4833         gen6_check_mch_setup(dev);
4834 }
4835
4836 static void valleyview_init_clock_gating(struct drm_device *dev)
4837 {
4838         struct drm_i915_private *dev_priv = dev->dev_private;
4839
4840         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4841
4842         /* WaDisableEarlyCull:vlv */
4843         I915_WRITE(_3D_CHICKEN3,
4844                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4845
4846         /* WaDisableBackToBackFlipFix:vlv */
4847         I915_WRITE(IVB_CHICKEN3,
4848                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4849                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4850
4851         /* WaDisablePSDDualDispatchEnable:vlv */
4852         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4853                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4854                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4855
4856         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4857         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4858                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4859
4860         /* WaApplyL3ControlAndL3ChickenMode:vlv */
4861         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4862         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4863
4864         /* WaForceL3Serialization:vlv */
4865         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4866                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4867
4868         /* WaDisableDopClockGating:vlv */
4869         I915_WRITE(GEN7_ROW_CHICKEN2,
4870                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4871
4872         /* This is required by WaCatErrorRejectionIssue:vlv */
4873         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4874                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4875                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4876
4877         /* WaMbcDriverBootEnable:vlv */
4878         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4879                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4880
4881
4882         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4883          * gating disable must be set.  Failure to set it results in
4884          * flickering pixels due to Z write ordering failures after
4885          * some amount of runtime in the Mesa "fire" demo, and Unigine
4886          * Sanctuary and Tropics, and apparently anything else with
4887          * alpha test or pixel discard.
4888          *
4889          * According to the spec, bit 11 (RCCUNIT) must also be set,
4890          * but we didn't debug actual testcases to find it out.
4891          *
4892          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4893          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4894          *
4895          * Also apply WaDisableVDSUnitClockGating:vlv and
4896          * WaDisableRCPBUnitClockGating:vlv.
4897          */
4898         I915_WRITE(GEN6_UCGCTL2,
4899                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4900                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4901                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4902                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4903                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4904
4905         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4906
4907         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
4908
4909         I915_WRITE(CACHE_MODE_1,
4910                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4911
4912         /*
4913          * WaDisableVLVClockGating_VBIIssue:vlv
4914          * Disable clock gating on th GCFG unit to prevent a delay
4915          * in the reporting of vblank events.
4916          */
4917         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4918
4919         /* Conservative clock gating settings for now */
4920         I915_WRITE(0x9400, 0xffffffff);
4921         I915_WRITE(0x9404, 0xffffffff);
4922         I915_WRITE(0x9408, 0xffffffff);
4923         I915_WRITE(0x940c, 0xffffffff);
4924         I915_WRITE(0x9410, 0xffffffff);
4925         I915_WRITE(0x9414, 0xffffffff);
4926         I915_WRITE(0x9418, 0xffffffff);
4927 }
4928
4929 static void g4x_init_clock_gating(struct drm_device *dev)
4930 {
4931         struct drm_i915_private *dev_priv = dev->dev_private;
4932         uint32_t dspclk_gate;
4933
4934         I915_WRITE(RENCLK_GATE_D1, 0);
4935         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4936                    GS_UNIT_CLOCK_GATE_DISABLE |
4937                    CL_UNIT_CLOCK_GATE_DISABLE);
4938         I915_WRITE(RAMCLK_GATE_D, 0);
4939         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4940                 OVRUNIT_CLOCK_GATE_DISABLE |
4941                 OVCUNIT_CLOCK_GATE_DISABLE;
4942         if (IS_GM45(dev))
4943                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4944         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4945
4946         /* WaDisableRenderCachePipelinedFlush */
4947         I915_WRITE(CACHE_MODE_0,
4948                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4949
4950         g4x_disable_trickle_feed(dev);
4951 }
4952
4953 static void crestline_init_clock_gating(struct drm_device *dev)
4954 {
4955         struct drm_i915_private *dev_priv = dev->dev_private;
4956
4957         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4958         I915_WRITE(RENCLK_GATE_D2, 0);
4959         I915_WRITE(DSPCLK_GATE_D, 0);
4960         I915_WRITE(RAMCLK_GATE_D, 0);
4961         I915_WRITE16(DEUC, 0);
4962         I915_WRITE(MI_ARB_STATE,
4963                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4964 }
4965
4966 static void broadwater_init_clock_gating(struct drm_device *dev)
4967 {
4968         struct drm_i915_private *dev_priv = dev->dev_private;
4969
4970         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4971                    I965_RCC_CLOCK_GATE_DISABLE |
4972                    I965_RCPB_CLOCK_GATE_DISABLE |
4973                    I965_ISC_CLOCK_GATE_DISABLE |
4974                    I965_FBC_CLOCK_GATE_DISABLE);
4975         I915_WRITE(RENCLK_GATE_D2, 0);
4976         I915_WRITE(MI_ARB_STATE,
4977                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4978 }
4979
4980 static void gen3_init_clock_gating(struct drm_device *dev)
4981 {
4982         struct drm_i915_private *dev_priv = dev->dev_private;
4983         u32 dstate = I915_READ(D_STATE);
4984
4985         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4986                 DSTATE_DOT_CLOCK_GATING;
4987         I915_WRITE(D_STATE, dstate);
4988
4989         if (IS_PINEVIEW(dev))
4990                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4991
4992         /* IIR "flip pending" means done if this bit is set */
4993         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4994 }
4995
4996 static void i85x_init_clock_gating(struct drm_device *dev)
4997 {
4998         struct drm_i915_private *dev_priv = dev->dev_private;
4999
5000         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5001 }
5002
5003 static void i830_init_clock_gating(struct drm_device *dev)
5004 {
5005         struct drm_i915_private *dev_priv = dev->dev_private;
5006
5007         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5008 }
5009
5010 void intel_init_clock_gating(struct drm_device *dev)
5011 {
5012         struct drm_i915_private *dev_priv = dev->dev_private;
5013
5014         dev_priv->display.init_clock_gating(dev);
5015 }
5016
5017 void intel_suspend_hw(struct drm_device *dev)
5018 {
5019         if (HAS_PCH_LPT(dev))
5020                 lpt_suspend_hw(dev);
5021 }
5022
5023 /**
5024  * We should only use the power well if we explicitly asked the hardware to
5025  * enable it, so check if it's enabled and also check if we've requested it to
5026  * be enabled.
5027  */
5028 bool intel_display_power_enabled(struct drm_device *dev,
5029                                  enum intel_display_power_domain domain)
5030 {
5031         struct drm_i915_private *dev_priv = dev->dev_private;
5032
5033         if (!HAS_POWER_WELL(dev))
5034                 return true;
5035
5036         switch (domain) {
5037         case POWER_DOMAIN_PIPE_A:
5038         case POWER_DOMAIN_TRANSCODER_EDP:
5039                 return true;
5040         case POWER_DOMAIN_PIPE_B:
5041         case POWER_DOMAIN_PIPE_C:
5042         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5043         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5044         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5045         case POWER_DOMAIN_TRANSCODER_A:
5046         case POWER_DOMAIN_TRANSCODER_B:
5047         case POWER_DOMAIN_TRANSCODER_C:
5048                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5049                        (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5050         default:
5051                 BUG();
5052         }
5053 }
5054
5055 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5056 {
5057         struct drm_i915_private *dev_priv = dev->dev_private;
5058         bool is_enabled, enable_requested;
5059         uint32_t tmp;
5060
5061         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5062         is_enabled = tmp & HSW_PWR_WELL_STATE;
5063         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5064
5065         if (enable) {
5066                 if (!enable_requested)
5067                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5068
5069                 if (!is_enabled) {
5070                         DRM_DEBUG_KMS("Enabling power well\n");
5071                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5072                                       HSW_PWR_WELL_STATE), 20))
5073                                 DRM_ERROR("Timeout enabling power well\n");
5074                 }
5075         } else {
5076                 if (enable_requested) {
5077                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5078                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5079                 }
5080         }
5081 }
5082
5083 static struct i915_power_well *hsw_pwr;
5084
5085 /* Display audio driver power well request */
5086 void i915_request_power_well(void)
5087 {
5088         if (WARN_ON(!hsw_pwr))
5089                 return;
5090
5091         spin_lock_irq(&hsw_pwr->lock);
5092         if (!hsw_pwr->count++ &&
5093                         !hsw_pwr->i915_request)
5094                 __intel_set_power_well(hsw_pwr->device, true);
5095         spin_unlock_irq(&hsw_pwr->lock);
5096 }
5097 EXPORT_SYMBOL_GPL(i915_request_power_well);
5098
5099 /* Display audio driver power well release */
5100 void i915_release_power_well(void)
5101 {
5102         if (WARN_ON(!hsw_pwr))
5103                 return;
5104
5105         spin_lock_irq(&hsw_pwr->lock);
5106         WARN_ON(!hsw_pwr->count);
5107         if (!--hsw_pwr->count &&
5108                        !hsw_pwr->i915_request)
5109                 __intel_set_power_well(hsw_pwr->device, false);
5110         spin_unlock_irq(&hsw_pwr->lock);
5111 }
5112 EXPORT_SYMBOL_GPL(i915_release_power_well);
5113
5114 int i915_init_power_well(struct drm_device *dev)
5115 {
5116         struct drm_i915_private *dev_priv = dev->dev_private;
5117
5118         hsw_pwr = &dev_priv->power_well;
5119
5120         hsw_pwr->device = dev;
5121         spin_lock_init(&hsw_pwr->lock);
5122         hsw_pwr->count = 0;
5123
5124         return 0;
5125 }
5126
5127 void i915_remove_power_well(struct drm_device *dev)
5128 {
5129         hsw_pwr = NULL;
5130 }
5131
5132 void intel_set_power_well(struct drm_device *dev, bool enable)
5133 {
5134         struct drm_i915_private *dev_priv = dev->dev_private;
5135         struct i915_power_well *power_well = &dev_priv->power_well;
5136
5137         if (!HAS_POWER_WELL(dev))
5138                 return;
5139
5140         if (!i915_disable_power_well && !enable)
5141                 return;
5142
5143         spin_lock_irq(&power_well->lock);
5144         power_well->i915_request = enable;
5145
5146         /* only reject "disable" power well request */
5147         if (power_well->count && !enable) {
5148                 spin_unlock_irq(&power_well->lock);
5149                 return;
5150         }
5151
5152         __intel_set_power_well(dev, enable);
5153         spin_unlock_irq(&power_well->lock);
5154 }
5155
5156 /*
5157  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5158  * when not needed anymore. We have 4 registers that can request the power well
5159  * to be enabled, and it will only be disabled if none of the registers is
5160  * requesting it to be enabled.
5161  */
5162 void intel_init_power_well(struct drm_device *dev)
5163 {
5164         struct drm_i915_private *dev_priv = dev->dev_private;
5165
5166         if (!HAS_POWER_WELL(dev))
5167                 return;
5168
5169         /* For now, we need the power well to be always enabled. */
5170         intel_set_power_well(dev, true);
5171
5172         /* We're taking over the BIOS, so clear any requests made by it since
5173          * the driver is in charge now. */
5174         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
5175                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5176 }
5177
5178 /* Set up chip specific power management-related functions */
5179 void intel_init_pm(struct drm_device *dev)
5180 {
5181         struct drm_i915_private *dev_priv = dev->dev_private;
5182
5183         if (I915_HAS_FBC(dev)) {
5184                 if (HAS_PCH_SPLIT(dev)) {
5185                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5186                         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5187                                 dev_priv->display.enable_fbc =
5188                                         gen7_enable_fbc;
5189                         else
5190                                 dev_priv->display.enable_fbc =
5191                                         ironlake_enable_fbc;
5192                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5193                 } else if (IS_GM45(dev)) {
5194                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5195                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5196                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5197                 } else if (IS_CRESTLINE(dev)) {
5198                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5199                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5200                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5201                 }
5202                 /* 855GM needs testing */
5203         }
5204
5205         /* For cxsr */
5206         if (IS_PINEVIEW(dev))
5207                 i915_pineview_get_mem_freq(dev);
5208         else if (IS_GEN5(dev))
5209                 i915_ironlake_get_mem_freq(dev);
5210
5211         /* For FIFO watermark updates */
5212         if (HAS_PCH_SPLIT(dev)) {
5213                 if (IS_GEN5(dev)) {
5214                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5215                                 dev_priv->display.update_wm = ironlake_update_wm;
5216                         else {
5217                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5218                                               "Disable CxSR\n");
5219                                 dev_priv->display.update_wm = NULL;
5220                         }
5221                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5222                 } else if (IS_GEN6(dev)) {
5223                         if (SNB_READ_WM0_LATENCY()) {
5224                                 dev_priv->display.update_wm = sandybridge_update_wm;
5225                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5226                         } else {
5227                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5228                                               "Disable CxSR\n");
5229                                 dev_priv->display.update_wm = NULL;
5230                         }
5231                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5232                 } else if (IS_IVYBRIDGE(dev)) {
5233                         if (SNB_READ_WM0_LATENCY()) {
5234                                 dev_priv->display.update_wm = ivybridge_update_wm;
5235                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5236                         } else {
5237                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5238                                               "Disable CxSR\n");
5239                                 dev_priv->display.update_wm = NULL;
5240                         }
5241                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5242                 } else if (IS_HASWELL(dev)) {
5243                         if (I915_READ64(MCH_SSKPD)) {
5244                                 dev_priv->display.update_wm = haswell_update_wm;
5245                                 dev_priv->display.update_sprite_wm =
5246                                         haswell_update_sprite_wm;
5247                         } else {
5248                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5249                                               "Disable CxSR\n");
5250                                 dev_priv->display.update_wm = NULL;
5251                         }
5252                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5253                 } else
5254                         dev_priv->display.update_wm = NULL;
5255         } else if (IS_VALLEYVIEW(dev)) {
5256                 dev_priv->display.update_wm = valleyview_update_wm;
5257                 dev_priv->display.init_clock_gating =
5258                         valleyview_init_clock_gating;
5259         } else if (IS_PINEVIEW(dev)) {
5260                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5261                                             dev_priv->is_ddr3,
5262                                             dev_priv->fsb_freq,
5263                                             dev_priv->mem_freq)) {
5264                         DRM_INFO("failed to find known CxSR latency "
5265                                  "(found ddr%s fsb freq %d, mem freq %d), "
5266                                  "disabling CxSR\n",
5267                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5268                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5269                         /* Disable CxSR and never update its watermark again */
5270                         pineview_disable_cxsr(dev);
5271                         dev_priv->display.update_wm = NULL;
5272                 } else
5273                         dev_priv->display.update_wm = pineview_update_wm;
5274                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5275         } else if (IS_G4X(dev)) {
5276                 dev_priv->display.update_wm = g4x_update_wm;
5277                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5278         } else if (IS_GEN4(dev)) {
5279                 dev_priv->display.update_wm = i965_update_wm;
5280                 if (IS_CRESTLINE(dev))
5281                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5282                 else if (IS_BROADWATER(dev))
5283                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5284         } else if (IS_GEN3(dev)) {
5285                 dev_priv->display.update_wm = i9xx_update_wm;
5286                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5287                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5288         } else if (IS_I865G(dev)) {
5289                 dev_priv->display.update_wm = i830_update_wm;
5290                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5291                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5292         } else if (IS_I85X(dev)) {
5293                 dev_priv->display.update_wm = i9xx_update_wm;
5294                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5295                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5296         } else {
5297                 dev_priv->display.update_wm = i830_update_wm;
5298                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5299                 if (IS_845G(dev))
5300                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5301                 else
5302                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5303         }
5304 }
5305
5306 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5307 {
5308         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5309
5310         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5311                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5312                 return -EAGAIN;
5313         }
5314
5315         I915_WRITE(GEN6_PCODE_DATA, *val);
5316         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5317
5318         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5319                      500)) {
5320                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5321                 return -ETIMEDOUT;
5322         }
5323
5324         *val = I915_READ(GEN6_PCODE_DATA);
5325         I915_WRITE(GEN6_PCODE_DATA, 0);
5326
5327         return 0;
5328 }
5329
5330 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5331 {
5332         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5333
5334         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5335                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5336                 return -EAGAIN;
5337         }
5338
5339         I915_WRITE(GEN6_PCODE_DATA, val);
5340         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5341
5342         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5343                      500)) {
5344                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5345                 return -ETIMEDOUT;
5346         }
5347
5348         I915_WRITE(GEN6_PCODE_DATA, 0);
5349
5350         return 0;
5351 }
5352
5353 int vlv_gpu_freq(int ddr_freq, int val)
5354 {
5355         int mult, base;
5356
5357         switch (ddr_freq) {
5358         case 800:
5359                 mult = 20;
5360                 base = 120;
5361                 break;
5362         case 1066:
5363                 mult = 22;
5364                 base = 133;
5365                 break;
5366         case 1333:
5367                 mult = 21;
5368                 base = 125;
5369                 break;
5370         default:
5371                 return -1;
5372         }
5373
5374         return ((val - 0xbd) * mult) + base;
5375 }
5376
5377 int vlv_freq_opcode(int ddr_freq, int val)
5378 {
5379         int mult, base;
5380
5381         switch (ddr_freq) {
5382         case 800:
5383                 mult = 20;
5384                 base = 120;
5385                 break;
5386         case 1066:
5387                 mult = 22;
5388                 base = 133;
5389                 break;
5390         case 1333:
5391                 mult = 21;
5392                 base = 125;
5393                 break;
5394         default:
5395                 return -1;
5396         }
5397
5398         val /= mult;
5399         val -= base / mult;
5400         val += 0xbd;
5401
5402         if (val > 0xea)
5403                 val = 0xea;
5404
5405         return val;
5406 }
5407
5408 void intel_pm_init(struct drm_device *dev)
5409 {
5410         struct drm_i915_private *dev_priv = dev->dev_private;
5411
5412         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5413                           intel_gen6_powersave_work);
5414 }
5415