Merge tag 'drm-intel-next-2012-12-21' of git://people.freedesktop.org/~danvet/drm...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46
47 static void i8xx_disable_fbc(struct drm_device *dev)
48 {
49         struct drm_i915_private *dev_priv = dev->dev_private;
50         u32 fbc_ctl;
51
52         /* Disable compression */
53         fbc_ctl = I915_READ(FBC_CONTROL);
54         if ((fbc_ctl & FBC_CTL_EN) == 0)
55                 return;
56
57         fbc_ctl &= ~FBC_CTL_EN;
58         I915_WRITE(FBC_CONTROL, fbc_ctl);
59
60         /* Wait for compressing bit to clear */
61         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
62                 DRM_DEBUG_KMS("FBC idle timed out\n");
63                 return;
64         }
65
66         DRM_DEBUG_KMS("disabled FBC\n");
67 }
68
69 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
70 {
71         struct drm_device *dev = crtc->dev;
72         struct drm_i915_private *dev_priv = dev->dev_private;
73         struct drm_framebuffer *fb = crtc->fb;
74         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
75         struct drm_i915_gem_object *obj = intel_fb->obj;
76         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
77         int cfb_pitch;
78         int plane, i;
79         u32 fbc_ctl, fbc_ctl2;
80
81         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
82         if (fb->pitches[0] < cfb_pitch)
83                 cfb_pitch = fb->pitches[0];
84
85         /* FBC_CTL wants 64B units */
86         cfb_pitch = (cfb_pitch / 64) - 1;
87         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
88
89         /* Clear old tags */
90         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
91                 I915_WRITE(FBC_TAG + (i * 4), 0);
92
93         /* Set it up... */
94         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
95         fbc_ctl2 |= plane;
96         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
97         I915_WRITE(FBC_FENCE_OFF, crtc->y);
98
99         /* enable it... */
100         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
101         if (IS_I945GM(dev))
102                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
103         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
104         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
105         fbc_ctl |= obj->fence_reg;
106         I915_WRITE(FBC_CONTROL, fbc_ctl);
107
108         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
109                       cfb_pitch, crtc->y, intel_crtc->plane);
110 }
111
112 static bool i8xx_fbc_enabled(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115
116         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
117 }
118
119 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
120 {
121         struct drm_device *dev = crtc->dev;
122         struct drm_i915_private *dev_priv = dev->dev_private;
123         struct drm_framebuffer *fb = crtc->fb;
124         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
125         struct drm_i915_gem_object *obj = intel_fb->obj;
126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
127         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
128         unsigned long stall_watermark = 200;
129         u32 dpfc_ctl;
130
131         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
132         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
133         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
134
135         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
136                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
137                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
138         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
139
140         /* enable it... */
141         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
142
143         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
144 }
145
146 static void g4x_disable_fbc(struct drm_device *dev)
147 {
148         struct drm_i915_private *dev_priv = dev->dev_private;
149         u32 dpfc_ctl;
150
151         /* Disable compression */
152         dpfc_ctl = I915_READ(DPFC_CONTROL);
153         if (dpfc_ctl & DPFC_CTL_EN) {
154                 dpfc_ctl &= ~DPFC_CTL_EN;
155                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
156
157                 DRM_DEBUG_KMS("disabled FBC\n");
158         }
159 }
160
161 static bool g4x_fbc_enabled(struct drm_device *dev)
162 {
163         struct drm_i915_private *dev_priv = dev->dev_private;
164
165         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
166 }
167
168 static void sandybridge_blit_fbc_update(struct drm_device *dev)
169 {
170         struct drm_i915_private *dev_priv = dev->dev_private;
171         u32 blt_ecoskpd;
172
173         /* Make sure blitter notifies FBC of writes */
174         gen6_gt_force_wake_get(dev_priv);
175         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
176         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
177                 GEN6_BLITTER_LOCK_SHIFT;
178         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
179         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
180         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
181         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
182                          GEN6_BLITTER_LOCK_SHIFT);
183         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
184         POSTING_READ(GEN6_BLITTER_ECOSKPD);
185         gen6_gt_force_wake_put(dev_priv);
186 }
187
188 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
189 {
190         struct drm_device *dev = crtc->dev;
191         struct drm_i915_private *dev_priv = dev->dev_private;
192         struct drm_framebuffer *fb = crtc->fb;
193         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
194         struct drm_i915_gem_object *obj = intel_fb->obj;
195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
196         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
197         unsigned long stall_watermark = 200;
198         u32 dpfc_ctl;
199
200         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
201         dpfc_ctl &= DPFC_RESERVED;
202         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
203         /* Set persistent mode for front-buffer rendering, ala X. */
204         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
205         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
206         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
207
208         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
209                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
210                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
211         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
212         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
213         /* enable it... */
214         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
215
216         if (IS_GEN6(dev)) {
217                 I915_WRITE(SNB_DPFC_CTL_SA,
218                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
219                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
220                 sandybridge_blit_fbc_update(dev);
221         }
222
223         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
224 }
225
226 static void ironlake_disable_fbc(struct drm_device *dev)
227 {
228         struct drm_i915_private *dev_priv = dev->dev_private;
229         u32 dpfc_ctl;
230
231         /* Disable compression */
232         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
233         if (dpfc_ctl & DPFC_CTL_EN) {
234                 dpfc_ctl &= ~DPFC_CTL_EN;
235                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
236
237                 DRM_DEBUG_KMS("disabled FBC\n");
238         }
239 }
240
241 static bool ironlake_fbc_enabled(struct drm_device *dev)
242 {
243         struct drm_i915_private *dev_priv = dev->dev_private;
244
245         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
246 }
247
248 bool intel_fbc_enabled(struct drm_device *dev)
249 {
250         struct drm_i915_private *dev_priv = dev->dev_private;
251
252         if (!dev_priv->display.fbc_enabled)
253                 return false;
254
255         return dev_priv->display.fbc_enabled(dev);
256 }
257
258 static void intel_fbc_work_fn(struct work_struct *__work)
259 {
260         struct intel_fbc_work *work =
261                 container_of(to_delayed_work(__work),
262                              struct intel_fbc_work, work);
263         struct drm_device *dev = work->crtc->dev;
264         struct drm_i915_private *dev_priv = dev->dev_private;
265
266         mutex_lock(&dev->struct_mutex);
267         if (work == dev_priv->fbc_work) {
268                 /* Double check that we haven't switched fb without cancelling
269                  * the prior work.
270                  */
271                 if (work->crtc->fb == work->fb) {
272                         dev_priv->display.enable_fbc(work->crtc,
273                                                      work->interval);
274
275                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
276                         dev_priv->cfb_fb = work->crtc->fb->base.id;
277                         dev_priv->cfb_y = work->crtc->y;
278                 }
279
280                 dev_priv->fbc_work = NULL;
281         }
282         mutex_unlock(&dev->struct_mutex);
283
284         kfree(work);
285 }
286
287 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
288 {
289         if (dev_priv->fbc_work == NULL)
290                 return;
291
292         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
293
294         /* Synchronisation is provided by struct_mutex and checking of
295          * dev_priv->fbc_work, so we can perform the cancellation
296          * entirely asynchronously.
297          */
298         if (cancel_delayed_work(&dev_priv->fbc_work->work))
299                 /* tasklet was killed before being run, clean up */
300                 kfree(dev_priv->fbc_work);
301
302         /* Mark the work as no longer wanted so that if it does
303          * wake-up (because the work was already running and waiting
304          * for our mutex), it will discover that is no longer
305          * necessary to run.
306          */
307         dev_priv->fbc_work = NULL;
308 }
309
310 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
311 {
312         struct intel_fbc_work *work;
313         struct drm_device *dev = crtc->dev;
314         struct drm_i915_private *dev_priv = dev->dev_private;
315
316         if (!dev_priv->display.enable_fbc)
317                 return;
318
319         intel_cancel_fbc_work(dev_priv);
320
321         work = kzalloc(sizeof *work, GFP_KERNEL);
322         if (work == NULL) {
323                 dev_priv->display.enable_fbc(crtc, interval);
324                 return;
325         }
326
327         work->crtc = crtc;
328         work->fb = crtc->fb;
329         work->interval = interval;
330         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
331
332         dev_priv->fbc_work = work;
333
334         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
335
336         /* Delay the actual enabling to let pageflipping cease and the
337          * display to settle before starting the compression. Note that
338          * this delay also serves a second purpose: it allows for a
339          * vblank to pass after disabling the FBC before we attempt
340          * to modify the control registers.
341          *
342          * A more complicated solution would involve tracking vblanks
343          * following the termination of the page-flipping sequence
344          * and indeed performing the enable as a co-routine and not
345          * waiting synchronously upon the vblank.
346          */
347         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
348 }
349
350 void intel_disable_fbc(struct drm_device *dev)
351 {
352         struct drm_i915_private *dev_priv = dev->dev_private;
353
354         intel_cancel_fbc_work(dev_priv);
355
356         if (!dev_priv->display.disable_fbc)
357                 return;
358
359         dev_priv->display.disable_fbc(dev);
360         dev_priv->cfb_plane = -1;
361 }
362
363 /**
364  * intel_update_fbc - enable/disable FBC as needed
365  * @dev: the drm_device
366  *
367  * Set up the framebuffer compression hardware at mode set time.  We
368  * enable it if possible:
369  *   - plane A only (on pre-965)
370  *   - no pixel mulitply/line duplication
371  *   - no alpha buffer discard
372  *   - no dual wide
373  *   - framebuffer <= 2048 in width, 1536 in height
374  *
375  * We can't assume that any compression will take place (worst case),
376  * so the compressed buffer has to be the same size as the uncompressed
377  * one.  It also must reside (along with the line length buffer) in
378  * stolen memory.
379  *
380  * We need to enable/disable FBC on a global basis.
381  */
382 void intel_update_fbc(struct drm_device *dev)
383 {
384         struct drm_i915_private *dev_priv = dev->dev_private;
385         struct drm_crtc *crtc = NULL, *tmp_crtc;
386         struct intel_crtc *intel_crtc;
387         struct drm_framebuffer *fb;
388         struct intel_framebuffer *intel_fb;
389         struct drm_i915_gem_object *obj;
390         int enable_fbc;
391
392         if (!i915_powersave)
393                 return;
394
395         if (!I915_HAS_FBC(dev))
396                 return;
397
398         /*
399          * If FBC is already on, we just have to verify that we can
400          * keep it that way...
401          * Need to disable if:
402          *   - more than one pipe is active
403          *   - changing FBC params (stride, fence, mode)
404          *   - new fb is too large to fit in compressed buffer
405          *   - going to an unsupported config (interlace, pixel multiply, etc.)
406          */
407         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
408                 if (to_intel_crtc(tmp_crtc)->active &&
409                     !to_intel_crtc(tmp_crtc)->primary_disabled &&
410                     tmp_crtc->fb) {
411                         if (crtc) {
412                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
413                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
414                                 goto out_disable;
415                         }
416                         crtc = tmp_crtc;
417                 }
418         }
419
420         if (!crtc || crtc->fb == NULL) {
421                 DRM_DEBUG_KMS("no output, disabling\n");
422                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
423                 goto out_disable;
424         }
425
426         intel_crtc = to_intel_crtc(crtc);
427         fb = crtc->fb;
428         intel_fb = to_intel_framebuffer(fb);
429         obj = intel_fb->obj;
430
431         enable_fbc = i915_enable_fbc;
432         if (enable_fbc < 0) {
433                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
434                 enable_fbc = 1;
435                 if (INTEL_INFO(dev)->gen <= 6)
436                         enable_fbc = 0;
437         }
438         if (!enable_fbc) {
439                 DRM_DEBUG_KMS("fbc disabled per module param\n");
440                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
441                 goto out_disable;
442         }
443         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
444             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
445                 DRM_DEBUG_KMS("mode incompatible with compression, "
446                               "disabling\n");
447                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
448                 goto out_disable;
449         }
450         if ((crtc->mode.hdisplay > 2048) ||
451             (crtc->mode.vdisplay > 1536)) {
452                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
453                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
454                 goto out_disable;
455         }
456         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
457                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
458                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
459                 goto out_disable;
460         }
461
462         /* The use of a CPU fence is mandatory in order to detect writes
463          * by the CPU to the scanout and trigger updates to the FBC.
464          */
465         if (obj->tiling_mode != I915_TILING_X ||
466             obj->fence_reg == I915_FENCE_REG_NONE) {
467                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
468                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
469                 goto out_disable;
470         }
471
472         /* If the kernel debugger is active, always disable compression */
473         if (in_dbg_master())
474                 goto out_disable;
475
476         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
477                 DRM_INFO("not enough stolen space for compressed buffer (need %zd bytes), disabling\n", intel_fb->obj->base.size);
478                 DRM_INFO("hint: you may be able to increase stolen memory size in the BIOS to avoid this\n");
479                 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
480                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
481                 goto out_disable;
482         }
483
484         /* If the scanout has not changed, don't modify the FBC settings.
485          * Note that we make the fundamental assumption that the fb->obj
486          * cannot be unpinned (and have its GTT offset and fence revoked)
487          * without first being decoupled from the scanout and FBC disabled.
488          */
489         if (dev_priv->cfb_plane == intel_crtc->plane &&
490             dev_priv->cfb_fb == fb->base.id &&
491             dev_priv->cfb_y == crtc->y)
492                 return;
493
494         if (intel_fbc_enabled(dev)) {
495                 /* We update FBC along two paths, after changing fb/crtc
496                  * configuration (modeswitching) and after page-flipping
497                  * finishes. For the latter, we know that not only did
498                  * we disable the FBC at the start of the page-flip
499                  * sequence, but also more than one vblank has passed.
500                  *
501                  * For the former case of modeswitching, it is possible
502                  * to switch between two FBC valid configurations
503                  * instantaneously so we do need to disable the FBC
504                  * before we can modify its control registers. We also
505                  * have to wait for the next vblank for that to take
506                  * effect. However, since we delay enabling FBC we can
507                  * assume that a vblank has passed since disabling and
508                  * that we can safely alter the registers in the deferred
509                  * callback.
510                  *
511                  * In the scenario that we go from a valid to invalid
512                  * and then back to valid FBC configuration we have
513                  * no strict enforcement that a vblank occurred since
514                  * disabling the FBC. However, along all current pipe
515                  * disabling paths we do need to wait for a vblank at
516                  * some point. And we wait before enabling FBC anyway.
517                  */
518                 DRM_DEBUG_KMS("disabling active FBC for update\n");
519                 intel_disable_fbc(dev);
520         }
521
522         intel_enable_fbc(crtc, 500);
523         return;
524
525 out_disable:
526         /* Multiple disables should be harmless */
527         if (intel_fbc_enabled(dev)) {
528                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
529                 intel_disable_fbc(dev);
530         }
531         i915_gem_stolen_cleanup_compression(dev);
532 }
533
534 static void i915_pineview_get_mem_freq(struct drm_device *dev)
535 {
536         drm_i915_private_t *dev_priv = dev->dev_private;
537         u32 tmp;
538
539         tmp = I915_READ(CLKCFG);
540
541         switch (tmp & CLKCFG_FSB_MASK) {
542         case CLKCFG_FSB_533:
543                 dev_priv->fsb_freq = 533; /* 133*4 */
544                 break;
545         case CLKCFG_FSB_800:
546                 dev_priv->fsb_freq = 800; /* 200*4 */
547                 break;
548         case CLKCFG_FSB_667:
549                 dev_priv->fsb_freq =  667; /* 167*4 */
550                 break;
551         case CLKCFG_FSB_400:
552                 dev_priv->fsb_freq = 400; /* 100*4 */
553                 break;
554         }
555
556         switch (tmp & CLKCFG_MEM_MASK) {
557         case CLKCFG_MEM_533:
558                 dev_priv->mem_freq = 533;
559                 break;
560         case CLKCFG_MEM_667:
561                 dev_priv->mem_freq = 667;
562                 break;
563         case CLKCFG_MEM_800:
564                 dev_priv->mem_freq = 800;
565                 break;
566         }
567
568         /* detect pineview DDR3 setting */
569         tmp = I915_READ(CSHRDDR3CTL);
570         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
571 }
572
573 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
574 {
575         drm_i915_private_t *dev_priv = dev->dev_private;
576         u16 ddrpll, csipll;
577
578         ddrpll = I915_READ16(DDRMPLL1);
579         csipll = I915_READ16(CSIPLL0);
580
581         switch (ddrpll & 0xff) {
582         case 0xc:
583                 dev_priv->mem_freq = 800;
584                 break;
585         case 0x10:
586                 dev_priv->mem_freq = 1066;
587                 break;
588         case 0x14:
589                 dev_priv->mem_freq = 1333;
590                 break;
591         case 0x18:
592                 dev_priv->mem_freq = 1600;
593                 break;
594         default:
595                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
596                                  ddrpll & 0xff);
597                 dev_priv->mem_freq = 0;
598                 break;
599         }
600
601         dev_priv->ips.r_t = dev_priv->mem_freq;
602
603         switch (csipll & 0x3ff) {
604         case 0x00c:
605                 dev_priv->fsb_freq = 3200;
606                 break;
607         case 0x00e:
608                 dev_priv->fsb_freq = 3733;
609                 break;
610         case 0x010:
611                 dev_priv->fsb_freq = 4266;
612                 break;
613         case 0x012:
614                 dev_priv->fsb_freq = 4800;
615                 break;
616         case 0x014:
617                 dev_priv->fsb_freq = 5333;
618                 break;
619         case 0x016:
620                 dev_priv->fsb_freq = 5866;
621                 break;
622         case 0x018:
623                 dev_priv->fsb_freq = 6400;
624                 break;
625         default:
626                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
627                                  csipll & 0x3ff);
628                 dev_priv->fsb_freq = 0;
629                 break;
630         }
631
632         if (dev_priv->fsb_freq == 3200) {
633                 dev_priv->ips.c_m = 0;
634         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
635                 dev_priv->ips.c_m = 1;
636         } else {
637                 dev_priv->ips.c_m = 2;
638         }
639 }
640
641 static const struct cxsr_latency cxsr_latency_table[] = {
642         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
643         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
644         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
645         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
646         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
647
648         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
649         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
650         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
651         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
652         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
653
654         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
655         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
656         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
657         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
658         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
659
660         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
661         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
662         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
663         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
664         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
665
666         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
667         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
668         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
669         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
670         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
671
672         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
673         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
674         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
675         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
676         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
677 };
678
679 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
680                                                          int is_ddr3,
681                                                          int fsb,
682                                                          int mem)
683 {
684         const struct cxsr_latency *latency;
685         int i;
686
687         if (fsb == 0 || mem == 0)
688                 return NULL;
689
690         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
691                 latency = &cxsr_latency_table[i];
692                 if (is_desktop == latency->is_desktop &&
693                     is_ddr3 == latency->is_ddr3 &&
694                     fsb == latency->fsb_freq && mem == latency->mem_freq)
695                         return latency;
696         }
697
698         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
699
700         return NULL;
701 }
702
703 static void pineview_disable_cxsr(struct drm_device *dev)
704 {
705         struct drm_i915_private *dev_priv = dev->dev_private;
706
707         /* deactivate cxsr */
708         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
709 }
710
711 /*
712  * Latency for FIFO fetches is dependent on several factors:
713  *   - memory configuration (speed, channels)
714  *   - chipset
715  *   - current MCH state
716  * It can be fairly high in some situations, so here we assume a fairly
717  * pessimal value.  It's a tradeoff between extra memory fetches (if we
718  * set this value too high, the FIFO will fetch frequently to stay full)
719  * and power consumption (set it too low to save power and we might see
720  * FIFO underruns and display "flicker").
721  *
722  * A value of 5us seems to be a good balance; safe for very low end
723  * platforms but not overly aggressive on lower latency configs.
724  */
725 static const int latency_ns = 5000;
726
727 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
728 {
729         struct drm_i915_private *dev_priv = dev->dev_private;
730         uint32_t dsparb = I915_READ(DSPARB);
731         int size;
732
733         size = dsparb & 0x7f;
734         if (plane)
735                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
736
737         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
738                       plane ? "B" : "A", size);
739
740         return size;
741 }
742
743 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
744 {
745         struct drm_i915_private *dev_priv = dev->dev_private;
746         uint32_t dsparb = I915_READ(DSPARB);
747         int size;
748
749         size = dsparb & 0x1ff;
750         if (plane)
751                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
752         size >>= 1; /* Convert to cachelines */
753
754         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
755                       plane ? "B" : "A", size);
756
757         return size;
758 }
759
760 static int i845_get_fifo_size(struct drm_device *dev, int plane)
761 {
762         struct drm_i915_private *dev_priv = dev->dev_private;
763         uint32_t dsparb = I915_READ(DSPARB);
764         int size;
765
766         size = dsparb & 0x7f;
767         size >>= 2; /* Convert to cachelines */
768
769         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
770                       plane ? "B" : "A",
771                       size);
772
773         return size;
774 }
775
776 static int i830_get_fifo_size(struct drm_device *dev, int plane)
777 {
778         struct drm_i915_private *dev_priv = dev->dev_private;
779         uint32_t dsparb = I915_READ(DSPARB);
780         int size;
781
782         size = dsparb & 0x7f;
783         size >>= 1; /* Convert to cachelines */
784
785         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
786                       plane ? "B" : "A", size);
787
788         return size;
789 }
790
791 /* Pineview has different values for various configs */
792 static const struct intel_watermark_params pineview_display_wm = {
793         PINEVIEW_DISPLAY_FIFO,
794         PINEVIEW_MAX_WM,
795         PINEVIEW_DFT_WM,
796         PINEVIEW_GUARD_WM,
797         PINEVIEW_FIFO_LINE_SIZE
798 };
799 static const struct intel_watermark_params pineview_display_hplloff_wm = {
800         PINEVIEW_DISPLAY_FIFO,
801         PINEVIEW_MAX_WM,
802         PINEVIEW_DFT_HPLLOFF_WM,
803         PINEVIEW_GUARD_WM,
804         PINEVIEW_FIFO_LINE_SIZE
805 };
806 static const struct intel_watermark_params pineview_cursor_wm = {
807         PINEVIEW_CURSOR_FIFO,
808         PINEVIEW_CURSOR_MAX_WM,
809         PINEVIEW_CURSOR_DFT_WM,
810         PINEVIEW_CURSOR_GUARD_WM,
811         PINEVIEW_FIFO_LINE_SIZE,
812 };
813 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
814         PINEVIEW_CURSOR_FIFO,
815         PINEVIEW_CURSOR_MAX_WM,
816         PINEVIEW_CURSOR_DFT_WM,
817         PINEVIEW_CURSOR_GUARD_WM,
818         PINEVIEW_FIFO_LINE_SIZE
819 };
820 static const struct intel_watermark_params g4x_wm_info = {
821         G4X_FIFO_SIZE,
822         G4X_MAX_WM,
823         G4X_MAX_WM,
824         2,
825         G4X_FIFO_LINE_SIZE,
826 };
827 static const struct intel_watermark_params g4x_cursor_wm_info = {
828         I965_CURSOR_FIFO,
829         I965_CURSOR_MAX_WM,
830         I965_CURSOR_DFT_WM,
831         2,
832         G4X_FIFO_LINE_SIZE,
833 };
834 static const struct intel_watermark_params valleyview_wm_info = {
835         VALLEYVIEW_FIFO_SIZE,
836         VALLEYVIEW_MAX_WM,
837         VALLEYVIEW_MAX_WM,
838         2,
839         G4X_FIFO_LINE_SIZE,
840 };
841 static const struct intel_watermark_params valleyview_cursor_wm_info = {
842         I965_CURSOR_FIFO,
843         VALLEYVIEW_CURSOR_MAX_WM,
844         I965_CURSOR_DFT_WM,
845         2,
846         G4X_FIFO_LINE_SIZE,
847 };
848 static const struct intel_watermark_params i965_cursor_wm_info = {
849         I965_CURSOR_FIFO,
850         I965_CURSOR_MAX_WM,
851         I965_CURSOR_DFT_WM,
852         2,
853         I915_FIFO_LINE_SIZE,
854 };
855 static const struct intel_watermark_params i945_wm_info = {
856         I945_FIFO_SIZE,
857         I915_MAX_WM,
858         1,
859         2,
860         I915_FIFO_LINE_SIZE
861 };
862 static const struct intel_watermark_params i915_wm_info = {
863         I915_FIFO_SIZE,
864         I915_MAX_WM,
865         1,
866         2,
867         I915_FIFO_LINE_SIZE
868 };
869 static const struct intel_watermark_params i855_wm_info = {
870         I855GM_FIFO_SIZE,
871         I915_MAX_WM,
872         1,
873         2,
874         I830_FIFO_LINE_SIZE
875 };
876 static const struct intel_watermark_params i830_wm_info = {
877         I830_FIFO_SIZE,
878         I915_MAX_WM,
879         1,
880         2,
881         I830_FIFO_LINE_SIZE
882 };
883
884 static const struct intel_watermark_params ironlake_display_wm_info = {
885         ILK_DISPLAY_FIFO,
886         ILK_DISPLAY_MAXWM,
887         ILK_DISPLAY_DFTWM,
888         2,
889         ILK_FIFO_LINE_SIZE
890 };
891 static const struct intel_watermark_params ironlake_cursor_wm_info = {
892         ILK_CURSOR_FIFO,
893         ILK_CURSOR_MAXWM,
894         ILK_CURSOR_DFTWM,
895         2,
896         ILK_FIFO_LINE_SIZE
897 };
898 static const struct intel_watermark_params ironlake_display_srwm_info = {
899         ILK_DISPLAY_SR_FIFO,
900         ILK_DISPLAY_MAX_SRWM,
901         ILK_DISPLAY_DFT_SRWM,
902         2,
903         ILK_FIFO_LINE_SIZE
904 };
905 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
906         ILK_CURSOR_SR_FIFO,
907         ILK_CURSOR_MAX_SRWM,
908         ILK_CURSOR_DFT_SRWM,
909         2,
910         ILK_FIFO_LINE_SIZE
911 };
912
913 static const struct intel_watermark_params sandybridge_display_wm_info = {
914         SNB_DISPLAY_FIFO,
915         SNB_DISPLAY_MAXWM,
916         SNB_DISPLAY_DFTWM,
917         2,
918         SNB_FIFO_LINE_SIZE
919 };
920 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
921         SNB_CURSOR_FIFO,
922         SNB_CURSOR_MAXWM,
923         SNB_CURSOR_DFTWM,
924         2,
925         SNB_FIFO_LINE_SIZE
926 };
927 static const struct intel_watermark_params sandybridge_display_srwm_info = {
928         SNB_DISPLAY_SR_FIFO,
929         SNB_DISPLAY_MAX_SRWM,
930         SNB_DISPLAY_DFT_SRWM,
931         2,
932         SNB_FIFO_LINE_SIZE
933 };
934 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
935         SNB_CURSOR_SR_FIFO,
936         SNB_CURSOR_MAX_SRWM,
937         SNB_CURSOR_DFT_SRWM,
938         2,
939         SNB_FIFO_LINE_SIZE
940 };
941
942
943 /**
944  * intel_calculate_wm - calculate watermark level
945  * @clock_in_khz: pixel clock
946  * @wm: chip FIFO params
947  * @pixel_size: display pixel size
948  * @latency_ns: memory latency for the platform
949  *
950  * Calculate the watermark level (the level at which the display plane will
951  * start fetching from memory again).  Each chip has a different display
952  * FIFO size and allocation, so the caller needs to figure that out and pass
953  * in the correct intel_watermark_params structure.
954  *
955  * As the pixel clock runs, the FIFO will be drained at a rate that depends
956  * on the pixel size.  When it reaches the watermark level, it'll start
957  * fetching FIFO line sized based chunks from memory until the FIFO fills
958  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
959  * will occur, and a display engine hang could result.
960  */
961 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
962                                         const struct intel_watermark_params *wm,
963                                         int fifo_size,
964                                         int pixel_size,
965                                         unsigned long latency_ns)
966 {
967         long entries_required, wm_size;
968
969         /*
970          * Note: we need to make sure we don't overflow for various clock &
971          * latency values.
972          * clocks go from a few thousand to several hundred thousand.
973          * latency is usually a few thousand
974          */
975         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
976                 1000;
977         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
978
979         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
980
981         wm_size = fifo_size - (entries_required + wm->guard_size);
982
983         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
984
985         /* Don't promote wm_size to unsigned... */
986         if (wm_size > (long)wm->max_wm)
987                 wm_size = wm->max_wm;
988         if (wm_size <= 0)
989                 wm_size = wm->default_wm;
990         return wm_size;
991 }
992
993 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
994 {
995         struct drm_crtc *crtc, *enabled = NULL;
996
997         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
998                 if (to_intel_crtc(crtc)->active && crtc->fb) {
999                         if (enabled)
1000                                 return NULL;
1001                         enabled = crtc;
1002                 }
1003         }
1004
1005         return enabled;
1006 }
1007
1008 static void pineview_update_wm(struct drm_device *dev)
1009 {
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         struct drm_crtc *crtc;
1012         const struct cxsr_latency *latency;
1013         u32 reg;
1014         unsigned long wm;
1015
1016         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1017                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1018         if (!latency) {
1019                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1020                 pineview_disable_cxsr(dev);
1021                 return;
1022         }
1023
1024         crtc = single_enabled_crtc(dev);
1025         if (crtc) {
1026                 int clock = crtc->mode.clock;
1027                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1028
1029                 /* Display SR */
1030                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1031                                         pineview_display_wm.fifo_size,
1032                                         pixel_size, latency->display_sr);
1033                 reg = I915_READ(DSPFW1);
1034                 reg &= ~DSPFW_SR_MASK;
1035                 reg |= wm << DSPFW_SR_SHIFT;
1036                 I915_WRITE(DSPFW1, reg);
1037                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1038
1039                 /* cursor SR */
1040                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1041                                         pineview_display_wm.fifo_size,
1042                                         pixel_size, latency->cursor_sr);
1043                 reg = I915_READ(DSPFW3);
1044                 reg &= ~DSPFW_CURSOR_SR_MASK;
1045                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1046                 I915_WRITE(DSPFW3, reg);
1047
1048                 /* Display HPLL off SR */
1049                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1050                                         pineview_display_hplloff_wm.fifo_size,
1051                                         pixel_size, latency->display_hpll_disable);
1052                 reg = I915_READ(DSPFW3);
1053                 reg &= ~DSPFW_HPLL_SR_MASK;
1054                 reg |= wm & DSPFW_HPLL_SR_MASK;
1055                 I915_WRITE(DSPFW3, reg);
1056
1057                 /* cursor HPLL off SR */
1058                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1059                                         pineview_display_hplloff_wm.fifo_size,
1060                                         pixel_size, latency->cursor_hpll_disable);
1061                 reg = I915_READ(DSPFW3);
1062                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1063                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1064                 I915_WRITE(DSPFW3, reg);
1065                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1066
1067                 /* activate cxsr */
1068                 I915_WRITE(DSPFW3,
1069                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1070                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1071         } else {
1072                 pineview_disable_cxsr(dev);
1073                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1074         }
1075 }
1076
1077 static bool g4x_compute_wm0(struct drm_device *dev,
1078                             int plane,
1079                             const struct intel_watermark_params *display,
1080                             int display_latency_ns,
1081                             const struct intel_watermark_params *cursor,
1082                             int cursor_latency_ns,
1083                             int *plane_wm,
1084                             int *cursor_wm)
1085 {
1086         struct drm_crtc *crtc;
1087         int htotal, hdisplay, clock, pixel_size;
1088         int line_time_us, line_count;
1089         int entries, tlb_miss;
1090
1091         crtc = intel_get_crtc_for_plane(dev, plane);
1092         if (crtc->fb == NULL || !to_intel_crtc(crtc)->active) {
1093                 *cursor_wm = cursor->guard_size;
1094                 *plane_wm = display->guard_size;
1095                 return false;
1096         }
1097
1098         htotal = crtc->mode.htotal;
1099         hdisplay = crtc->mode.hdisplay;
1100         clock = crtc->mode.clock;
1101         pixel_size = crtc->fb->bits_per_pixel / 8;
1102
1103         /* Use the small buffer method to calculate plane watermark */
1104         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1105         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1106         if (tlb_miss > 0)
1107                 entries += tlb_miss;
1108         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1109         *plane_wm = entries + display->guard_size;
1110         if (*plane_wm > (int)display->max_wm)
1111                 *plane_wm = display->max_wm;
1112
1113         /* Use the large buffer method to calculate cursor watermark */
1114         line_time_us = ((htotal * 1000) / clock);
1115         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1116         entries = line_count * 64 * pixel_size;
1117         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1118         if (tlb_miss > 0)
1119                 entries += tlb_miss;
1120         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1121         *cursor_wm = entries + cursor->guard_size;
1122         if (*cursor_wm > (int)cursor->max_wm)
1123                 *cursor_wm = (int)cursor->max_wm;
1124
1125         return true;
1126 }
1127
1128 /*
1129  * Check the wm result.
1130  *
1131  * If any calculated watermark values is larger than the maximum value that
1132  * can be programmed into the associated watermark register, that watermark
1133  * must be disabled.
1134  */
1135 static bool g4x_check_srwm(struct drm_device *dev,
1136                            int display_wm, int cursor_wm,
1137                            const struct intel_watermark_params *display,
1138                            const struct intel_watermark_params *cursor)
1139 {
1140         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1141                       display_wm, cursor_wm);
1142
1143         if (display_wm > display->max_wm) {
1144                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1145                               display_wm, display->max_wm);
1146                 return false;
1147         }
1148
1149         if (cursor_wm > cursor->max_wm) {
1150                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1151                               cursor_wm, cursor->max_wm);
1152                 return false;
1153         }
1154
1155         if (!(display_wm || cursor_wm)) {
1156                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1157                 return false;
1158         }
1159
1160         return true;
1161 }
1162
1163 static bool g4x_compute_srwm(struct drm_device *dev,
1164                              int plane,
1165                              int latency_ns,
1166                              const struct intel_watermark_params *display,
1167                              const struct intel_watermark_params *cursor,
1168                              int *display_wm, int *cursor_wm)
1169 {
1170         struct drm_crtc *crtc;
1171         int hdisplay, htotal, pixel_size, clock;
1172         unsigned long line_time_us;
1173         int line_count, line_size;
1174         int small, large;
1175         int entries;
1176
1177         if (!latency_ns) {
1178                 *display_wm = *cursor_wm = 0;
1179                 return false;
1180         }
1181
1182         crtc = intel_get_crtc_for_plane(dev, plane);
1183         hdisplay = crtc->mode.hdisplay;
1184         htotal = crtc->mode.htotal;
1185         clock = crtc->mode.clock;
1186         pixel_size = crtc->fb->bits_per_pixel / 8;
1187
1188         line_time_us = (htotal * 1000) / clock;
1189         line_count = (latency_ns / line_time_us + 1000) / 1000;
1190         line_size = hdisplay * pixel_size;
1191
1192         /* Use the minimum of the small and large buffer method for primary */
1193         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1194         large = line_count * line_size;
1195
1196         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1197         *display_wm = entries + display->guard_size;
1198
1199         /* calculate the self-refresh watermark for display cursor */
1200         entries = line_count * pixel_size * 64;
1201         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1202         *cursor_wm = entries + cursor->guard_size;
1203
1204         return g4x_check_srwm(dev,
1205                               *display_wm, *cursor_wm,
1206                               display, cursor);
1207 }
1208
1209 static bool vlv_compute_drain_latency(struct drm_device *dev,
1210                                      int plane,
1211                                      int *plane_prec_mult,
1212                                      int *plane_dl,
1213                                      int *cursor_prec_mult,
1214                                      int *cursor_dl)
1215 {
1216         struct drm_crtc *crtc;
1217         int clock, pixel_size;
1218         int entries;
1219
1220         crtc = intel_get_crtc_for_plane(dev, plane);
1221         if (crtc->fb == NULL || !to_intel_crtc(crtc)->active)
1222                 return false;
1223
1224         clock = crtc->mode.clock;       /* VESA DOT Clock */
1225         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1226
1227         entries = (clock / 1000) * pixel_size;
1228         *plane_prec_mult = (entries > 256) ?
1229                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1230         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1231                                                      pixel_size);
1232
1233         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1234         *cursor_prec_mult = (entries > 256) ?
1235                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1236         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1237
1238         return true;
1239 }
1240
1241 /*
1242  * Update drain latency registers of memory arbiter
1243  *
1244  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1245  * to be programmed. Each plane has a drain latency multiplier and a drain
1246  * latency value.
1247  */
1248
1249 static void vlv_update_drain_latency(struct drm_device *dev)
1250 {
1251         struct drm_i915_private *dev_priv = dev->dev_private;
1252         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1253         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1254         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1255                                                         either 16 or 32 */
1256
1257         /* For plane A, Cursor A */
1258         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1259                                       &cursor_prec_mult, &cursora_dl)) {
1260                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1261                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1262                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1263                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1264
1265                 I915_WRITE(VLV_DDL1, cursora_prec |
1266                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1267                                 planea_prec | planea_dl);
1268         }
1269
1270         /* For plane B, Cursor B */
1271         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1272                                       &cursor_prec_mult, &cursorb_dl)) {
1273                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1274                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1275                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1276                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1277
1278                 I915_WRITE(VLV_DDL2, cursorb_prec |
1279                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1280                                 planeb_prec | planeb_dl);
1281         }
1282 }
1283
1284 #define single_plane_enabled(mask) is_power_of_2(mask)
1285
1286 static void valleyview_update_wm(struct drm_device *dev)
1287 {
1288         static const int sr_latency_ns = 12000;
1289         struct drm_i915_private *dev_priv = dev->dev_private;
1290         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1291         int plane_sr, cursor_sr;
1292         int ignore_plane_sr, ignore_cursor_sr;
1293         unsigned int enabled = 0;
1294
1295         vlv_update_drain_latency(dev);
1296
1297         if (g4x_compute_wm0(dev, 0,
1298                             &valleyview_wm_info, latency_ns,
1299                             &valleyview_cursor_wm_info, latency_ns,
1300                             &planea_wm, &cursora_wm))
1301                 enabled |= 1;
1302
1303         if (g4x_compute_wm0(dev, 1,
1304                             &valleyview_wm_info, latency_ns,
1305                             &valleyview_cursor_wm_info, latency_ns,
1306                             &planeb_wm, &cursorb_wm))
1307                 enabled |= 2;
1308
1309         if (single_plane_enabled(enabled) &&
1310             g4x_compute_srwm(dev, ffs(enabled) - 1,
1311                              sr_latency_ns,
1312                              &valleyview_wm_info,
1313                              &valleyview_cursor_wm_info,
1314                              &plane_sr, &ignore_cursor_sr) &&
1315             g4x_compute_srwm(dev, ffs(enabled) - 1,
1316                              2*sr_latency_ns,
1317                              &valleyview_wm_info,
1318                              &valleyview_cursor_wm_info,
1319                              &ignore_plane_sr, &cursor_sr)) {
1320                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1321         } else {
1322                 I915_WRITE(FW_BLC_SELF_VLV,
1323                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1324                 plane_sr = cursor_sr = 0;
1325         }
1326
1327         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1328                       planea_wm, cursora_wm,
1329                       planeb_wm, cursorb_wm,
1330                       plane_sr, cursor_sr);
1331
1332         I915_WRITE(DSPFW1,
1333                    (plane_sr << DSPFW_SR_SHIFT) |
1334                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1335                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1336                    planea_wm);
1337         I915_WRITE(DSPFW2,
1338                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1339                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1340         I915_WRITE(DSPFW3,
1341                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1342                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1343 }
1344
1345 static void g4x_update_wm(struct drm_device *dev)
1346 {
1347         static const int sr_latency_ns = 12000;
1348         struct drm_i915_private *dev_priv = dev->dev_private;
1349         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1350         int plane_sr, cursor_sr;
1351         unsigned int enabled = 0;
1352
1353         if (g4x_compute_wm0(dev, 0,
1354                             &g4x_wm_info, latency_ns,
1355                             &g4x_cursor_wm_info, latency_ns,
1356                             &planea_wm, &cursora_wm))
1357                 enabled |= 1;
1358
1359         if (g4x_compute_wm0(dev, 1,
1360                             &g4x_wm_info, latency_ns,
1361                             &g4x_cursor_wm_info, latency_ns,
1362                             &planeb_wm, &cursorb_wm))
1363                 enabled |= 2;
1364
1365         if (single_plane_enabled(enabled) &&
1366             g4x_compute_srwm(dev, ffs(enabled) - 1,
1367                              sr_latency_ns,
1368                              &g4x_wm_info,
1369                              &g4x_cursor_wm_info,
1370                              &plane_sr, &cursor_sr)) {
1371                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1372         } else {
1373                 I915_WRITE(FW_BLC_SELF,
1374                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1375                 plane_sr = cursor_sr = 0;
1376         }
1377
1378         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1379                       planea_wm, cursora_wm,
1380                       planeb_wm, cursorb_wm,
1381                       plane_sr, cursor_sr);
1382
1383         I915_WRITE(DSPFW1,
1384                    (plane_sr << DSPFW_SR_SHIFT) |
1385                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1386                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1387                    planea_wm);
1388         I915_WRITE(DSPFW2,
1389                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1390                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1391         /* HPLL off in SR has some issues on G4x... disable it */
1392         I915_WRITE(DSPFW3,
1393                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1394                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1395 }
1396
1397 static void i965_update_wm(struct drm_device *dev)
1398 {
1399         struct drm_i915_private *dev_priv = dev->dev_private;
1400         struct drm_crtc *crtc;
1401         int srwm = 1;
1402         int cursor_sr = 16;
1403
1404         /* Calc sr entries for one plane configs */
1405         crtc = single_enabled_crtc(dev);
1406         if (crtc) {
1407                 /* self-refresh has much higher latency */
1408                 static const int sr_latency_ns = 12000;
1409                 int clock = crtc->mode.clock;
1410                 int htotal = crtc->mode.htotal;
1411                 int hdisplay = crtc->mode.hdisplay;
1412                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1413                 unsigned long line_time_us;
1414                 int entries;
1415
1416                 line_time_us = ((htotal * 1000) / clock);
1417
1418                 /* Use ns/us then divide to preserve precision */
1419                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1420                         pixel_size * hdisplay;
1421                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1422                 srwm = I965_FIFO_SIZE - entries;
1423                 if (srwm < 0)
1424                         srwm = 1;
1425                 srwm &= 0x1ff;
1426                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1427                               entries, srwm);
1428
1429                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1430                         pixel_size * 64;
1431                 entries = DIV_ROUND_UP(entries,
1432                                           i965_cursor_wm_info.cacheline_size);
1433                 cursor_sr = i965_cursor_wm_info.fifo_size -
1434                         (entries + i965_cursor_wm_info.guard_size);
1435
1436                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1437                         cursor_sr = i965_cursor_wm_info.max_wm;
1438
1439                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1440                               "cursor %d\n", srwm, cursor_sr);
1441
1442                 if (IS_CRESTLINE(dev))
1443                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1444         } else {
1445                 /* Turn off self refresh if both pipes are enabled */
1446                 if (IS_CRESTLINE(dev))
1447                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1448                                    & ~FW_BLC_SELF_EN);
1449         }
1450
1451         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1452                       srwm);
1453
1454         /* 965 has limitations... */
1455         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1456                    (8 << 16) | (8 << 8) | (8 << 0));
1457         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1458         /* update cursor SR watermark */
1459         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1460 }
1461
1462 static void i9xx_update_wm(struct drm_device *dev)
1463 {
1464         struct drm_i915_private *dev_priv = dev->dev_private;
1465         const struct intel_watermark_params *wm_info;
1466         uint32_t fwater_lo;
1467         uint32_t fwater_hi;
1468         int cwm, srwm = 1;
1469         int fifo_size;
1470         int planea_wm, planeb_wm;
1471         struct drm_crtc *crtc, *enabled = NULL;
1472
1473         if (IS_I945GM(dev))
1474                 wm_info = &i945_wm_info;
1475         else if (!IS_GEN2(dev))
1476                 wm_info = &i915_wm_info;
1477         else
1478                 wm_info = &i855_wm_info;
1479
1480         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1481         crtc = intel_get_crtc_for_plane(dev, 0);
1482         if (to_intel_crtc(crtc)->active && crtc->fb) {
1483                 int cpp = crtc->fb->bits_per_pixel / 8;
1484                 if (IS_GEN2(dev))
1485                         cpp = 4;
1486
1487                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1488                                                wm_info, fifo_size, cpp,
1489                                                latency_ns);
1490                 enabled = crtc;
1491         } else
1492                 planea_wm = fifo_size - wm_info->guard_size;
1493
1494         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1495         crtc = intel_get_crtc_for_plane(dev, 1);
1496         if (to_intel_crtc(crtc)->active && crtc->fb) {
1497                 int cpp = crtc->fb->bits_per_pixel / 8;
1498                 if (IS_GEN2(dev))
1499                         cpp = 4;
1500
1501                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1502                                                wm_info, fifo_size, cpp,
1503                                                latency_ns);
1504                 if (enabled == NULL)
1505                         enabled = crtc;
1506                 else
1507                         enabled = NULL;
1508         } else
1509                 planeb_wm = fifo_size - wm_info->guard_size;
1510
1511         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1512
1513         /*
1514          * Overlay gets an aggressive default since video jitter is bad.
1515          */
1516         cwm = 2;
1517
1518         /* Play safe and disable self-refresh before adjusting watermarks. */
1519         if (IS_I945G(dev) || IS_I945GM(dev))
1520                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1521         else if (IS_I915GM(dev))
1522                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1523
1524         /* Calc sr entries for one plane configs */
1525         if (HAS_FW_BLC(dev) && enabled) {
1526                 /* self-refresh has much higher latency */
1527                 static const int sr_latency_ns = 6000;
1528                 int clock = enabled->mode.clock;
1529                 int htotal = enabled->mode.htotal;
1530                 int hdisplay = enabled->mode.hdisplay;
1531                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1532                 unsigned long line_time_us;
1533                 int entries;
1534
1535                 line_time_us = (htotal * 1000) / clock;
1536
1537                 /* Use ns/us then divide to preserve precision */
1538                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1539                         pixel_size * hdisplay;
1540                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1541                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1542                 srwm = wm_info->fifo_size - entries;
1543                 if (srwm < 0)
1544                         srwm = 1;
1545
1546                 if (IS_I945G(dev) || IS_I945GM(dev))
1547                         I915_WRITE(FW_BLC_SELF,
1548                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1549                 else if (IS_I915GM(dev))
1550                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1551         }
1552
1553         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1554                       planea_wm, planeb_wm, cwm, srwm);
1555
1556         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1557         fwater_hi = (cwm & 0x1f);
1558
1559         /* Set request length to 8 cachelines per fetch */
1560         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1561         fwater_hi = fwater_hi | (1 << 8);
1562
1563         I915_WRITE(FW_BLC, fwater_lo);
1564         I915_WRITE(FW_BLC2, fwater_hi);
1565
1566         if (HAS_FW_BLC(dev)) {
1567                 if (enabled) {
1568                         if (IS_I945G(dev) || IS_I945GM(dev))
1569                                 I915_WRITE(FW_BLC_SELF,
1570                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1571                         else if (IS_I915GM(dev))
1572                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1573                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1574                 } else
1575                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1576         }
1577 }
1578
1579 static void i830_update_wm(struct drm_device *dev)
1580 {
1581         struct drm_i915_private *dev_priv = dev->dev_private;
1582         struct drm_crtc *crtc;
1583         uint32_t fwater_lo;
1584         int planea_wm;
1585
1586         crtc = single_enabled_crtc(dev);
1587         if (crtc == NULL)
1588                 return;
1589
1590         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1591                                        dev_priv->display.get_fifo_size(dev, 0),
1592                                        4, latency_ns);
1593         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1594         fwater_lo |= (3<<8) | planea_wm;
1595
1596         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1597
1598         I915_WRITE(FW_BLC, fwater_lo);
1599 }
1600
1601 #define ILK_LP0_PLANE_LATENCY           700
1602 #define ILK_LP0_CURSOR_LATENCY          1300
1603
1604 /*
1605  * Check the wm result.
1606  *
1607  * If any calculated watermark values is larger than the maximum value that
1608  * can be programmed into the associated watermark register, that watermark
1609  * must be disabled.
1610  */
1611 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1612                                 int fbc_wm, int display_wm, int cursor_wm,
1613                                 const struct intel_watermark_params *display,
1614                                 const struct intel_watermark_params *cursor)
1615 {
1616         struct drm_i915_private *dev_priv = dev->dev_private;
1617
1618         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1619                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1620
1621         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1622                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1623                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1624
1625                 /* fbc has it's own way to disable FBC WM */
1626                 I915_WRITE(DISP_ARB_CTL,
1627                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1628                 return false;
1629         }
1630
1631         if (display_wm > display->max_wm) {
1632                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1633                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1634                 return false;
1635         }
1636
1637         if (cursor_wm > cursor->max_wm) {
1638                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1639                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1640                 return false;
1641         }
1642
1643         if (!(fbc_wm || display_wm || cursor_wm)) {
1644                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1645                 return false;
1646         }
1647
1648         return true;
1649 }
1650
1651 /*
1652  * Compute watermark values of WM[1-3],
1653  */
1654 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1655                                   int latency_ns,
1656                                   const struct intel_watermark_params *display,
1657                                   const struct intel_watermark_params *cursor,
1658                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1659 {
1660         struct drm_crtc *crtc;
1661         unsigned long line_time_us;
1662         int hdisplay, htotal, pixel_size, clock;
1663         int line_count, line_size;
1664         int small, large;
1665         int entries;
1666
1667         if (!latency_ns) {
1668                 *fbc_wm = *display_wm = *cursor_wm = 0;
1669                 return false;
1670         }
1671
1672         crtc = intel_get_crtc_for_plane(dev, plane);
1673         hdisplay = crtc->mode.hdisplay;
1674         htotal = crtc->mode.htotal;
1675         clock = crtc->mode.clock;
1676         pixel_size = crtc->fb->bits_per_pixel / 8;
1677
1678         line_time_us = (htotal * 1000) / clock;
1679         line_count = (latency_ns / line_time_us + 1000) / 1000;
1680         line_size = hdisplay * pixel_size;
1681
1682         /* Use the minimum of the small and large buffer method for primary */
1683         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1684         large = line_count * line_size;
1685
1686         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1687         *display_wm = entries + display->guard_size;
1688
1689         /*
1690          * Spec says:
1691          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1692          */
1693         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1694
1695         /* calculate the self-refresh watermark for display cursor */
1696         entries = line_count * pixel_size * 64;
1697         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1698         *cursor_wm = entries + cursor->guard_size;
1699
1700         return ironlake_check_srwm(dev, level,
1701                                    *fbc_wm, *display_wm, *cursor_wm,
1702                                    display, cursor);
1703 }
1704
1705 static void ironlake_update_wm(struct drm_device *dev)
1706 {
1707         struct drm_i915_private *dev_priv = dev->dev_private;
1708         int fbc_wm, plane_wm, cursor_wm;
1709         unsigned int enabled;
1710
1711         enabled = 0;
1712         if (g4x_compute_wm0(dev, 0,
1713                             &ironlake_display_wm_info,
1714                             ILK_LP0_PLANE_LATENCY,
1715                             &ironlake_cursor_wm_info,
1716                             ILK_LP0_CURSOR_LATENCY,
1717                             &plane_wm, &cursor_wm)) {
1718                 I915_WRITE(WM0_PIPEA_ILK,
1719                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1720                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1721                               " plane %d, " "cursor: %d\n",
1722                               plane_wm, cursor_wm);
1723                 enabled |= 1;
1724         }
1725
1726         if (g4x_compute_wm0(dev, 1,
1727                             &ironlake_display_wm_info,
1728                             ILK_LP0_PLANE_LATENCY,
1729                             &ironlake_cursor_wm_info,
1730                             ILK_LP0_CURSOR_LATENCY,
1731                             &plane_wm, &cursor_wm)) {
1732                 I915_WRITE(WM0_PIPEB_ILK,
1733                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1734                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1735                               " plane %d, cursor: %d\n",
1736                               plane_wm, cursor_wm);
1737                 enabled |= 2;
1738         }
1739
1740         /*
1741          * Calculate and update the self-refresh watermark only when one
1742          * display plane is used.
1743          */
1744         I915_WRITE(WM3_LP_ILK, 0);
1745         I915_WRITE(WM2_LP_ILK, 0);
1746         I915_WRITE(WM1_LP_ILK, 0);
1747
1748         if (!single_plane_enabled(enabled))
1749                 return;
1750         enabled = ffs(enabled) - 1;
1751
1752         /* WM1 */
1753         if (!ironlake_compute_srwm(dev, 1, enabled,
1754                                    ILK_READ_WM1_LATENCY() * 500,
1755                                    &ironlake_display_srwm_info,
1756                                    &ironlake_cursor_srwm_info,
1757                                    &fbc_wm, &plane_wm, &cursor_wm))
1758                 return;
1759
1760         I915_WRITE(WM1_LP_ILK,
1761                    WM1_LP_SR_EN |
1762                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1763                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1764                    (plane_wm << WM1_LP_SR_SHIFT) |
1765                    cursor_wm);
1766
1767         /* WM2 */
1768         if (!ironlake_compute_srwm(dev, 2, enabled,
1769                                    ILK_READ_WM2_LATENCY() * 500,
1770                                    &ironlake_display_srwm_info,
1771                                    &ironlake_cursor_srwm_info,
1772                                    &fbc_wm, &plane_wm, &cursor_wm))
1773                 return;
1774
1775         I915_WRITE(WM2_LP_ILK,
1776                    WM2_LP_EN |
1777                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1778                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1779                    (plane_wm << WM1_LP_SR_SHIFT) |
1780                    cursor_wm);
1781
1782         /*
1783          * WM3 is unsupported on ILK, probably because we don't have latency
1784          * data for that power state
1785          */
1786 }
1787
1788 static void sandybridge_update_wm(struct drm_device *dev)
1789 {
1790         struct drm_i915_private *dev_priv = dev->dev_private;
1791         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1792         u32 val;
1793         int fbc_wm, plane_wm, cursor_wm;
1794         unsigned int enabled;
1795
1796         enabled = 0;
1797         if (g4x_compute_wm0(dev, 0,
1798                             &sandybridge_display_wm_info, latency,
1799                             &sandybridge_cursor_wm_info, latency,
1800                             &plane_wm, &cursor_wm)) {
1801                 val = I915_READ(WM0_PIPEA_ILK);
1802                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1803                 I915_WRITE(WM0_PIPEA_ILK, val |
1804                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1805                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1806                               " plane %d, " "cursor: %d\n",
1807                               plane_wm, cursor_wm);
1808                 enabled |= 1;
1809         }
1810
1811         if (g4x_compute_wm0(dev, 1,
1812                             &sandybridge_display_wm_info, latency,
1813                             &sandybridge_cursor_wm_info, latency,
1814                             &plane_wm, &cursor_wm)) {
1815                 val = I915_READ(WM0_PIPEB_ILK);
1816                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1817                 I915_WRITE(WM0_PIPEB_ILK, val |
1818                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1819                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1820                               " plane %d, cursor: %d\n",
1821                               plane_wm, cursor_wm);
1822                 enabled |= 2;
1823         }
1824
1825         /*
1826          * Calculate and update the self-refresh watermark only when one
1827          * display plane is used.
1828          *
1829          * SNB support 3 levels of watermark.
1830          *
1831          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1832          * and disabled in the descending order
1833          *
1834          */
1835         I915_WRITE(WM3_LP_ILK, 0);
1836         I915_WRITE(WM2_LP_ILK, 0);
1837         I915_WRITE(WM1_LP_ILK, 0);
1838
1839         if (!single_plane_enabled(enabled) ||
1840             dev_priv->sprite_scaling_enabled)
1841                 return;
1842         enabled = ffs(enabled) - 1;
1843
1844         /* WM1 */
1845         if (!ironlake_compute_srwm(dev, 1, enabled,
1846                                    SNB_READ_WM1_LATENCY() * 500,
1847                                    &sandybridge_display_srwm_info,
1848                                    &sandybridge_cursor_srwm_info,
1849                                    &fbc_wm, &plane_wm, &cursor_wm))
1850                 return;
1851
1852         I915_WRITE(WM1_LP_ILK,
1853                    WM1_LP_SR_EN |
1854                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1855                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1856                    (plane_wm << WM1_LP_SR_SHIFT) |
1857                    cursor_wm);
1858
1859         /* WM2 */
1860         if (!ironlake_compute_srwm(dev, 2, enabled,
1861                                    SNB_READ_WM2_LATENCY() * 500,
1862                                    &sandybridge_display_srwm_info,
1863                                    &sandybridge_cursor_srwm_info,
1864                                    &fbc_wm, &plane_wm, &cursor_wm))
1865                 return;
1866
1867         I915_WRITE(WM2_LP_ILK,
1868                    WM2_LP_EN |
1869                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1870                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1871                    (plane_wm << WM1_LP_SR_SHIFT) |
1872                    cursor_wm);
1873
1874         /* WM3 */
1875         if (!ironlake_compute_srwm(dev, 3, enabled,
1876                                    SNB_READ_WM3_LATENCY() * 500,
1877                                    &sandybridge_display_srwm_info,
1878                                    &sandybridge_cursor_srwm_info,
1879                                    &fbc_wm, &plane_wm, &cursor_wm))
1880                 return;
1881
1882         I915_WRITE(WM3_LP_ILK,
1883                    WM3_LP_EN |
1884                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1885                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1886                    (plane_wm << WM1_LP_SR_SHIFT) |
1887                    cursor_wm);
1888 }
1889
1890 static void ivybridge_update_wm(struct drm_device *dev)
1891 {
1892         struct drm_i915_private *dev_priv = dev->dev_private;
1893         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1894         u32 val;
1895         int fbc_wm, plane_wm, cursor_wm;
1896         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1897         unsigned int enabled;
1898
1899         enabled = 0;
1900         if (g4x_compute_wm0(dev, 0,
1901                             &sandybridge_display_wm_info, latency,
1902                             &sandybridge_cursor_wm_info, latency,
1903                             &plane_wm, &cursor_wm)) {
1904                 val = I915_READ(WM0_PIPEA_ILK);
1905                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1906                 I915_WRITE(WM0_PIPEA_ILK, val |
1907                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1908                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1909                               " plane %d, " "cursor: %d\n",
1910                               plane_wm, cursor_wm);
1911                 enabled |= 1;
1912         }
1913
1914         if (g4x_compute_wm0(dev, 1,
1915                             &sandybridge_display_wm_info, latency,
1916                             &sandybridge_cursor_wm_info, latency,
1917                             &plane_wm, &cursor_wm)) {
1918                 val = I915_READ(WM0_PIPEB_ILK);
1919                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1920                 I915_WRITE(WM0_PIPEB_ILK, val |
1921                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1922                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1923                               " plane %d, cursor: %d\n",
1924                               plane_wm, cursor_wm);
1925                 enabled |= 2;
1926         }
1927
1928         if (g4x_compute_wm0(dev, 2,
1929                             &sandybridge_display_wm_info, latency,
1930                             &sandybridge_cursor_wm_info, latency,
1931                             &plane_wm, &cursor_wm)) {
1932                 val = I915_READ(WM0_PIPEC_IVB);
1933                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1934                 I915_WRITE(WM0_PIPEC_IVB, val |
1935                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1936                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1937                               " plane %d, cursor: %d\n",
1938                               plane_wm, cursor_wm);
1939                 enabled |= 3;
1940         }
1941
1942         /*
1943          * Calculate and update the self-refresh watermark only when one
1944          * display plane is used.
1945          *
1946          * SNB support 3 levels of watermark.
1947          *
1948          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1949          * and disabled in the descending order
1950          *
1951          */
1952         I915_WRITE(WM3_LP_ILK, 0);
1953         I915_WRITE(WM2_LP_ILK, 0);
1954         I915_WRITE(WM1_LP_ILK, 0);
1955
1956         if (!single_plane_enabled(enabled) ||
1957             dev_priv->sprite_scaling_enabled)
1958                 return;
1959         enabled = ffs(enabled) - 1;
1960
1961         /* WM1 */
1962         if (!ironlake_compute_srwm(dev, 1, enabled,
1963                                    SNB_READ_WM1_LATENCY() * 500,
1964                                    &sandybridge_display_srwm_info,
1965                                    &sandybridge_cursor_srwm_info,
1966                                    &fbc_wm, &plane_wm, &cursor_wm))
1967                 return;
1968
1969         I915_WRITE(WM1_LP_ILK,
1970                    WM1_LP_SR_EN |
1971                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1972                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1973                    (plane_wm << WM1_LP_SR_SHIFT) |
1974                    cursor_wm);
1975
1976         /* WM2 */
1977         if (!ironlake_compute_srwm(dev, 2, enabled,
1978                                    SNB_READ_WM2_LATENCY() * 500,
1979                                    &sandybridge_display_srwm_info,
1980                                    &sandybridge_cursor_srwm_info,
1981                                    &fbc_wm, &plane_wm, &cursor_wm))
1982                 return;
1983
1984         I915_WRITE(WM2_LP_ILK,
1985                    WM2_LP_EN |
1986                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1987                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1988                    (plane_wm << WM1_LP_SR_SHIFT) |
1989                    cursor_wm);
1990
1991         /* WM3, note we have to correct the cursor latency */
1992         if (!ironlake_compute_srwm(dev, 3, enabled,
1993                                    SNB_READ_WM3_LATENCY() * 500,
1994                                    &sandybridge_display_srwm_info,
1995                                    &sandybridge_cursor_srwm_info,
1996                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
1997             !ironlake_compute_srwm(dev, 3, enabled,
1998                                    2 * SNB_READ_WM3_LATENCY() * 500,
1999                                    &sandybridge_display_srwm_info,
2000                                    &sandybridge_cursor_srwm_info,
2001                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2002                 return;
2003
2004         I915_WRITE(WM3_LP_ILK,
2005                    WM3_LP_EN |
2006                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2007                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2008                    (plane_wm << WM1_LP_SR_SHIFT) |
2009                    cursor_wm);
2010 }
2011
2012 static void
2013 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2014                                  struct drm_display_mode *mode)
2015 {
2016         struct drm_i915_private *dev_priv = dev->dev_private;
2017         u32 temp;
2018
2019         temp = I915_READ(PIPE_WM_LINETIME(pipe));
2020         temp &= ~PIPE_WM_LINETIME_MASK;
2021
2022         /* The WM are computed with base on how long it takes to fill a single
2023          * row at the given clock rate, multiplied by 8.
2024          * */
2025         temp |= PIPE_WM_LINETIME_TIME(
2026                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2027
2028         /* IPS watermarks are only used by pipe A, and are ignored by
2029          * pipes B and C.  They are calculated similarly to the common
2030          * linetime values, except that we are using CD clock frequency
2031          * in MHz instead of pixel rate for the division.
2032          *
2033          * This is a placeholder for the IPS watermark calculation code.
2034          */
2035
2036         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2037 }
2038
2039 static bool
2040 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2041                               uint32_t sprite_width, int pixel_size,
2042                               const struct intel_watermark_params *display,
2043                               int display_latency_ns, int *sprite_wm)
2044 {
2045         struct drm_crtc *crtc;
2046         int clock;
2047         int entries, tlb_miss;
2048
2049         crtc = intel_get_crtc_for_plane(dev, plane);
2050         if (crtc->fb == NULL || !to_intel_crtc(crtc)->active) {
2051                 *sprite_wm = display->guard_size;
2052                 return false;
2053         }
2054
2055         clock = crtc->mode.clock;
2056
2057         /* Use the small buffer method to calculate the sprite watermark */
2058         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2059         tlb_miss = display->fifo_size*display->cacheline_size -
2060                 sprite_width * 8;
2061         if (tlb_miss > 0)
2062                 entries += tlb_miss;
2063         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2064         *sprite_wm = entries + display->guard_size;
2065         if (*sprite_wm > (int)display->max_wm)
2066                 *sprite_wm = display->max_wm;
2067
2068         return true;
2069 }
2070
2071 static bool
2072 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2073                                 uint32_t sprite_width, int pixel_size,
2074                                 const struct intel_watermark_params *display,
2075                                 int latency_ns, int *sprite_wm)
2076 {
2077         struct drm_crtc *crtc;
2078         unsigned long line_time_us;
2079         int clock;
2080         int line_count, line_size;
2081         int small, large;
2082         int entries;
2083
2084         if (!latency_ns) {
2085                 *sprite_wm = 0;
2086                 return false;
2087         }
2088
2089         crtc = intel_get_crtc_for_plane(dev, plane);
2090         clock = crtc->mode.clock;
2091         if (!clock) {
2092                 *sprite_wm = 0;
2093                 return false;
2094         }
2095
2096         line_time_us = (sprite_width * 1000) / clock;
2097         if (!line_time_us) {
2098                 *sprite_wm = 0;
2099                 return false;
2100         }
2101
2102         line_count = (latency_ns / line_time_us + 1000) / 1000;
2103         line_size = sprite_width * pixel_size;
2104
2105         /* Use the minimum of the small and large buffer method for primary */
2106         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2107         large = line_count * line_size;
2108
2109         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2110         *sprite_wm = entries + display->guard_size;
2111
2112         return *sprite_wm > 0x3ff ? false : true;
2113 }
2114
2115 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2116                                          uint32_t sprite_width, int pixel_size)
2117 {
2118         struct drm_i915_private *dev_priv = dev->dev_private;
2119         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2120         u32 val;
2121         int sprite_wm, reg;
2122         int ret;
2123
2124         switch (pipe) {
2125         case 0:
2126                 reg = WM0_PIPEA_ILK;
2127                 break;
2128         case 1:
2129                 reg = WM0_PIPEB_ILK;
2130                 break;
2131         case 2:
2132                 reg = WM0_PIPEC_IVB;
2133                 break;
2134         default:
2135                 return; /* bad pipe */
2136         }
2137
2138         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2139                                             &sandybridge_display_wm_info,
2140                                             latency, &sprite_wm);
2141         if (!ret) {
2142                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2143                               pipe);
2144                 return;
2145         }
2146
2147         val = I915_READ(reg);
2148         val &= ~WM0_PIPE_SPRITE_MASK;
2149         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2150         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2151
2152
2153         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2154                                               pixel_size,
2155                                               &sandybridge_display_srwm_info,
2156                                               SNB_READ_WM1_LATENCY() * 500,
2157                                               &sprite_wm);
2158         if (!ret) {
2159                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2160                               pipe);
2161                 return;
2162         }
2163         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2164
2165         /* Only IVB has two more LP watermarks for sprite */
2166         if (!IS_IVYBRIDGE(dev))
2167                 return;
2168
2169         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2170                                               pixel_size,
2171                                               &sandybridge_display_srwm_info,
2172                                               SNB_READ_WM2_LATENCY() * 500,
2173                                               &sprite_wm);
2174         if (!ret) {
2175                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2176                               pipe);
2177                 return;
2178         }
2179         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2180
2181         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2182                                               pixel_size,
2183                                               &sandybridge_display_srwm_info,
2184                                               SNB_READ_WM3_LATENCY() * 500,
2185                                               &sprite_wm);
2186         if (!ret) {
2187                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2188                               pipe);
2189                 return;
2190         }
2191         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2192 }
2193
2194 /**
2195  * intel_update_watermarks - update FIFO watermark values based on current modes
2196  *
2197  * Calculate watermark values for the various WM regs based on current mode
2198  * and plane configuration.
2199  *
2200  * There are several cases to deal with here:
2201  *   - normal (i.e. non-self-refresh)
2202  *   - self-refresh (SR) mode
2203  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2204  *   - lines are small relative to FIFO size (buffer can hold more than 2
2205  *     lines), so need to account for TLB latency
2206  *
2207  *   The normal calculation is:
2208  *     watermark = dotclock * bytes per pixel * latency
2209  *   where latency is platform & configuration dependent (we assume pessimal
2210  *   values here).
2211  *
2212  *   The SR calculation is:
2213  *     watermark = (trunc(latency/line time)+1) * surface width *
2214  *       bytes per pixel
2215  *   where
2216  *     line time = htotal / dotclock
2217  *     surface width = hdisplay for normal plane and 64 for cursor
2218  *   and latency is assumed to be high, as above.
2219  *
2220  * The final value programmed to the register should always be rounded up,
2221  * and include an extra 2 entries to account for clock crossings.
2222  *
2223  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2224  * to set the non-SR watermarks to 8.
2225  */
2226 void intel_update_watermarks(struct drm_device *dev)
2227 {
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229
2230         if (dev_priv->display.update_wm)
2231                 dev_priv->display.update_wm(dev);
2232 }
2233
2234 void intel_update_linetime_watermarks(struct drm_device *dev,
2235                 int pipe, struct drm_display_mode *mode)
2236 {
2237         struct drm_i915_private *dev_priv = dev->dev_private;
2238
2239         if (dev_priv->display.update_linetime_wm)
2240                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2241 }
2242
2243 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2244                                     uint32_t sprite_width, int pixel_size)
2245 {
2246         struct drm_i915_private *dev_priv = dev->dev_private;
2247
2248         if (dev_priv->display.update_sprite_wm)
2249                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2250                                                    pixel_size);
2251 }
2252
2253 static struct drm_i915_gem_object *
2254 intel_alloc_context_page(struct drm_device *dev)
2255 {
2256         struct drm_i915_gem_object *ctx;
2257         int ret;
2258
2259         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2260
2261         ctx = i915_gem_alloc_object(dev, 4096);
2262         if (!ctx) {
2263                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2264                 return NULL;
2265         }
2266
2267         ret = i915_gem_object_pin(ctx, 4096, true, false);
2268         if (ret) {
2269                 DRM_ERROR("failed to pin power context: %d\n", ret);
2270                 goto err_unref;
2271         }
2272
2273         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2274         if (ret) {
2275                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2276                 goto err_unpin;
2277         }
2278
2279         return ctx;
2280
2281 err_unpin:
2282         i915_gem_object_unpin(ctx);
2283 err_unref:
2284         drm_gem_object_unreference(&ctx->base);
2285         mutex_unlock(&dev->struct_mutex);
2286         return NULL;
2287 }
2288
2289 /**
2290  * Lock protecting IPS related data structures
2291  */
2292 DEFINE_SPINLOCK(mchdev_lock);
2293
2294 /* Global for IPS driver to get at the current i915 device. Protected by
2295  * mchdev_lock. */
2296 static struct drm_i915_private *i915_mch_dev;
2297
2298 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2299 {
2300         struct drm_i915_private *dev_priv = dev->dev_private;
2301         u16 rgvswctl;
2302
2303         assert_spin_locked(&mchdev_lock);
2304
2305         rgvswctl = I915_READ16(MEMSWCTL);
2306         if (rgvswctl & MEMCTL_CMD_STS) {
2307                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2308                 return false; /* still busy with another command */
2309         }
2310
2311         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2312                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2313         I915_WRITE16(MEMSWCTL, rgvswctl);
2314         POSTING_READ16(MEMSWCTL);
2315
2316         rgvswctl |= MEMCTL_CMD_STS;
2317         I915_WRITE16(MEMSWCTL, rgvswctl);
2318
2319         return true;
2320 }
2321
2322 static void ironlake_enable_drps(struct drm_device *dev)
2323 {
2324         struct drm_i915_private *dev_priv = dev->dev_private;
2325         u32 rgvmodectl = I915_READ(MEMMODECTL);
2326         u8 fmax, fmin, fstart, vstart;
2327
2328         spin_lock_irq(&mchdev_lock);
2329
2330         /* Enable temp reporting */
2331         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2332         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2333
2334         /* 100ms RC evaluation intervals */
2335         I915_WRITE(RCUPEI, 100000);
2336         I915_WRITE(RCDNEI, 100000);
2337
2338         /* Set max/min thresholds to 90ms and 80ms respectively */
2339         I915_WRITE(RCBMAXAVG, 90000);
2340         I915_WRITE(RCBMINAVG, 80000);
2341
2342         I915_WRITE(MEMIHYST, 1);
2343
2344         /* Set up min, max, and cur for interrupt handling */
2345         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2346         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2347         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2348                 MEMMODE_FSTART_SHIFT;
2349
2350         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2351                 PXVFREQ_PX_SHIFT;
2352
2353         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2354         dev_priv->ips.fstart = fstart;
2355
2356         dev_priv->ips.max_delay = fstart;
2357         dev_priv->ips.min_delay = fmin;
2358         dev_priv->ips.cur_delay = fstart;
2359
2360         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2361                          fmax, fmin, fstart);
2362
2363         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2364
2365         /*
2366          * Interrupts will be enabled in ironlake_irq_postinstall
2367          */
2368
2369         I915_WRITE(VIDSTART, vstart);
2370         POSTING_READ(VIDSTART);
2371
2372         rgvmodectl |= MEMMODE_SWMODE_EN;
2373         I915_WRITE(MEMMODECTL, rgvmodectl);
2374
2375         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2376                 DRM_ERROR("stuck trying to change perf mode\n");
2377         mdelay(1);
2378
2379         ironlake_set_drps(dev, fstart);
2380
2381         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2382                 I915_READ(0x112e0);
2383         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2384         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2385         getrawmonotonic(&dev_priv->ips.last_time2);
2386
2387         spin_unlock_irq(&mchdev_lock);
2388 }
2389
2390 static void ironlake_disable_drps(struct drm_device *dev)
2391 {
2392         struct drm_i915_private *dev_priv = dev->dev_private;
2393         u16 rgvswctl;
2394
2395         spin_lock_irq(&mchdev_lock);
2396
2397         rgvswctl = I915_READ16(MEMSWCTL);
2398
2399         /* Ack interrupts, disable EFC interrupt */
2400         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2401         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2402         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2403         I915_WRITE(DEIIR, DE_PCU_EVENT);
2404         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2405
2406         /* Go back to the starting frequency */
2407         ironlake_set_drps(dev, dev_priv->ips.fstart);
2408         mdelay(1);
2409         rgvswctl |= MEMCTL_CMD_STS;
2410         I915_WRITE(MEMSWCTL, rgvswctl);
2411         mdelay(1);
2412
2413         spin_unlock_irq(&mchdev_lock);
2414 }
2415
2416 /* There's a funny hw issue where the hw returns all 0 when reading from
2417  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2418  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2419  * all limits and the gpu stuck at whatever frequency it is at atm).
2420  */
2421 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2422 {
2423         u32 limits;
2424
2425         limits = 0;
2426
2427         if (*val >= dev_priv->rps.max_delay)
2428                 *val = dev_priv->rps.max_delay;
2429         limits |= dev_priv->rps.max_delay << 24;
2430
2431         /* Only set the down limit when we've reached the lowest level to avoid
2432          * getting more interrupts, otherwise leave this clear. This prevents a
2433          * race in the hw when coming out of rc6: There's a tiny window where
2434          * the hw runs at the minimal clock before selecting the desired
2435          * frequency, if the down threshold expires in that window we will not
2436          * receive a down interrupt. */
2437         if (*val <= dev_priv->rps.min_delay) {
2438                 *val = dev_priv->rps.min_delay;
2439                 limits |= dev_priv->rps.min_delay << 16;
2440         }
2441
2442         return limits;
2443 }
2444
2445 void gen6_set_rps(struct drm_device *dev, u8 val)
2446 {
2447         struct drm_i915_private *dev_priv = dev->dev_private;
2448         u32 limits = gen6_rps_limits(dev_priv, &val);
2449
2450         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2451         WARN_ON(val > dev_priv->rps.max_delay);
2452         WARN_ON(val < dev_priv->rps.min_delay);
2453
2454         if (val == dev_priv->rps.cur_delay)
2455                 return;
2456
2457         I915_WRITE(GEN6_RPNSWREQ,
2458                    GEN6_FREQUENCY(val) |
2459                    GEN6_OFFSET(0) |
2460                    GEN6_AGGRESSIVE_TURBO);
2461
2462         /* Make sure we continue to get interrupts
2463          * until we hit the minimum or maximum frequencies.
2464          */
2465         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2466
2467         POSTING_READ(GEN6_RPNSWREQ);
2468
2469         dev_priv->rps.cur_delay = val;
2470
2471         trace_intel_gpu_freq_change(val * 50);
2472 }
2473
2474 static void gen6_disable_rps(struct drm_device *dev)
2475 {
2476         struct drm_i915_private *dev_priv = dev->dev_private;
2477
2478         I915_WRITE(GEN6_RC_CONTROL, 0);
2479         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2480         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2481         I915_WRITE(GEN6_PMIER, 0);
2482         /* Complete PM interrupt masking here doesn't race with the rps work
2483          * item again unmasking PM interrupts because that is using a different
2484          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2485          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2486
2487         spin_lock_irq(&dev_priv->rps.lock);
2488         dev_priv->rps.pm_iir = 0;
2489         spin_unlock_irq(&dev_priv->rps.lock);
2490
2491         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2492 }
2493
2494 int intel_enable_rc6(const struct drm_device *dev)
2495 {
2496         /* Respect the kernel parameter if it is set */
2497         if (i915_enable_rc6 >= 0)
2498                 return i915_enable_rc6;
2499
2500         /* Disable RC6 on Ironlake */
2501         if (INTEL_INFO(dev)->gen == 5)
2502                 return 0;
2503
2504         if (IS_HASWELL(dev)) {
2505                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2506                 return INTEL_RC6_ENABLE;
2507         }
2508
2509         /* snb/ivb have more than one rc6 state. */
2510         if (INTEL_INFO(dev)->gen == 6) {
2511                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2512                 return INTEL_RC6_ENABLE;
2513         }
2514
2515         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2516         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2517 }
2518
2519 static void gen6_enable_rps(struct drm_device *dev)
2520 {
2521         struct drm_i915_private *dev_priv = dev->dev_private;
2522         struct intel_ring_buffer *ring;
2523         u32 rp_state_cap;
2524         u32 gt_perf_status;
2525         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2526         u32 gtfifodbg;
2527         int rc6_mode;
2528         int i, ret;
2529
2530         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2531
2532         /* Here begins a magic sequence of register writes to enable
2533          * auto-downclocking.
2534          *
2535          * Perhaps there might be some value in exposing these to
2536          * userspace...
2537          */
2538         I915_WRITE(GEN6_RC_STATE, 0);
2539
2540         /* Clear the DBG now so we don't confuse earlier errors */
2541         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2542                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2543                 I915_WRITE(GTFIFODBG, gtfifodbg);
2544         }
2545
2546         gen6_gt_force_wake_get(dev_priv);
2547
2548         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2549         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2550
2551         /* In units of 100MHz */
2552         dev_priv->rps.max_delay = rp_state_cap & 0xff;
2553         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2554         dev_priv->rps.cur_delay = 0;
2555
2556         /* disable the counters and set deterministic thresholds */
2557         I915_WRITE(GEN6_RC_CONTROL, 0);
2558
2559         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2560         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2561         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2562         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2563         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2564
2565         for_each_ring(ring, dev_priv, i)
2566                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2567
2568         I915_WRITE(GEN6_RC_SLEEP, 0);
2569         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2570         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2571         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2572         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2573
2574         /* Check if we are enabling RC6 */
2575         rc6_mode = intel_enable_rc6(dev_priv->dev);
2576         if (rc6_mode & INTEL_RC6_ENABLE)
2577                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2578
2579         /* We don't use those on Haswell */
2580         if (!IS_HASWELL(dev)) {
2581                 if (rc6_mode & INTEL_RC6p_ENABLE)
2582                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2583
2584                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2585                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2586         }
2587
2588         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2589                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2590                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2591                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2592
2593         I915_WRITE(GEN6_RC_CONTROL,
2594                    rc6_mask |
2595                    GEN6_RC_CTL_EI_MODE(1) |
2596                    GEN6_RC_CTL_HW_ENABLE);
2597
2598         I915_WRITE(GEN6_RPNSWREQ,
2599                    GEN6_FREQUENCY(10) |
2600                    GEN6_OFFSET(0) |
2601                    GEN6_AGGRESSIVE_TURBO);
2602         I915_WRITE(GEN6_RC_VIDEO_FREQ,
2603                    GEN6_FREQUENCY(12));
2604
2605         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2606         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2607                    dev_priv->rps.max_delay << 24 |
2608                    dev_priv->rps.min_delay << 16);
2609
2610         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2611         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2612         I915_WRITE(GEN6_RP_UP_EI, 66000);
2613         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2614
2615         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2616         I915_WRITE(GEN6_RP_CONTROL,
2617                    GEN6_RP_MEDIA_TURBO |
2618                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2619                    GEN6_RP_MEDIA_IS_GFX |
2620                    GEN6_RP_ENABLE |
2621                    GEN6_RP_UP_BUSY_AVG |
2622                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2623
2624         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2625         if (!ret) {
2626                 pcu_mbox = 0;
2627                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2628                 if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2629                         dev_priv->rps.max_delay = pcu_mbox & 0xff;
2630                         DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2631                 }
2632         } else {
2633                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2634         }
2635
2636         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2637
2638         /* requires MSI enabled */
2639         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2640         spin_lock_irq(&dev_priv->rps.lock);
2641         WARN_ON(dev_priv->rps.pm_iir != 0);
2642         I915_WRITE(GEN6_PMIMR, 0);
2643         spin_unlock_irq(&dev_priv->rps.lock);
2644         /* enable all PM interrupts */
2645         I915_WRITE(GEN6_PMINTRMSK, 0);
2646
2647         rc6vids = 0;
2648         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2649         if (IS_GEN6(dev) && ret) {
2650                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2651         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2652                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2653                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2654                 rc6vids &= 0xffff00;
2655                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2656                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2657                 if (ret)
2658                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2659         }
2660
2661         gen6_gt_force_wake_put(dev_priv);
2662 }
2663
2664 static void gen6_update_ring_freq(struct drm_device *dev)
2665 {
2666         struct drm_i915_private *dev_priv = dev->dev_private;
2667         int min_freq = 15;
2668         int gpu_freq;
2669         unsigned int ia_freq, max_ia_freq;
2670         int scaling_factor = 180;
2671
2672         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2673
2674         max_ia_freq = cpufreq_quick_get_max(0);
2675         /*
2676          * Default to measured freq if none found, PCU will ensure we don't go
2677          * over
2678          */
2679         if (!max_ia_freq)
2680                 max_ia_freq = tsc_khz;
2681
2682         /* Convert from kHz to MHz */
2683         max_ia_freq /= 1000;
2684
2685         /*
2686          * For each potential GPU frequency, load a ring frequency we'd like
2687          * to use for memory access.  We do this by specifying the IA frequency
2688          * the PCU should use as a reference to determine the ring frequency.
2689          */
2690         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2691              gpu_freq--) {
2692                 int diff = dev_priv->rps.max_delay - gpu_freq;
2693
2694                 /*
2695                  * For GPU frequencies less than 750MHz, just use the lowest
2696                  * ring freq.
2697                  */
2698                 if (gpu_freq < min_freq)
2699                         ia_freq = 800;
2700                 else
2701                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2702                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2703                 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2704
2705                 sandybridge_pcode_write(dev_priv,
2706                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2707                                         ia_freq | gpu_freq);
2708         }
2709 }
2710
2711 void ironlake_teardown_rc6(struct drm_device *dev)
2712 {
2713         struct drm_i915_private *dev_priv = dev->dev_private;
2714
2715         if (dev_priv->ips.renderctx) {
2716                 i915_gem_object_unpin(dev_priv->ips.renderctx);
2717                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2718                 dev_priv->ips.renderctx = NULL;
2719         }
2720
2721         if (dev_priv->ips.pwrctx) {
2722                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2723                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2724                 dev_priv->ips.pwrctx = NULL;
2725         }
2726 }
2727
2728 static void ironlake_disable_rc6(struct drm_device *dev)
2729 {
2730         struct drm_i915_private *dev_priv = dev->dev_private;
2731
2732         if (I915_READ(PWRCTXA)) {
2733                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2734                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2735                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2736                          50);
2737
2738                 I915_WRITE(PWRCTXA, 0);
2739                 POSTING_READ(PWRCTXA);
2740
2741                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2742                 POSTING_READ(RSTDBYCTL);
2743         }
2744 }
2745
2746 static int ironlake_setup_rc6(struct drm_device *dev)
2747 {
2748         struct drm_i915_private *dev_priv = dev->dev_private;
2749
2750         if (dev_priv->ips.renderctx == NULL)
2751                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2752         if (!dev_priv->ips.renderctx)
2753                 return -ENOMEM;
2754
2755         if (dev_priv->ips.pwrctx == NULL)
2756                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2757         if (!dev_priv->ips.pwrctx) {
2758                 ironlake_teardown_rc6(dev);
2759                 return -ENOMEM;
2760         }
2761
2762         return 0;
2763 }
2764
2765 static void ironlake_enable_rc6(struct drm_device *dev)
2766 {
2767         struct drm_i915_private *dev_priv = dev->dev_private;
2768         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2769         bool was_interruptible;
2770         int ret;
2771
2772         /* rc6 disabled by default due to repeated reports of hanging during
2773          * boot and resume.
2774          */
2775         if (!intel_enable_rc6(dev))
2776                 return;
2777
2778         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2779
2780         ret = ironlake_setup_rc6(dev);
2781         if (ret)
2782                 return;
2783
2784         was_interruptible = dev_priv->mm.interruptible;
2785         dev_priv->mm.interruptible = false;
2786
2787         /*
2788          * GPU can automatically power down the render unit if given a page
2789          * to save state.
2790          */
2791         ret = intel_ring_begin(ring, 6);
2792         if (ret) {
2793                 ironlake_teardown_rc6(dev);
2794                 dev_priv->mm.interruptible = was_interruptible;
2795                 return;
2796         }
2797
2798         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2799         intel_ring_emit(ring, MI_SET_CONTEXT);
2800         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2801                         MI_MM_SPACE_GTT |
2802                         MI_SAVE_EXT_STATE_EN |
2803                         MI_RESTORE_EXT_STATE_EN |
2804                         MI_RESTORE_INHIBIT);
2805         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2806         intel_ring_emit(ring, MI_NOOP);
2807         intel_ring_emit(ring, MI_FLUSH);
2808         intel_ring_advance(ring);
2809
2810         /*
2811          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2812          * does an implicit flush, combined with MI_FLUSH above, it should be
2813          * safe to assume that renderctx is valid
2814          */
2815         ret = intel_ring_idle(ring);
2816         dev_priv->mm.interruptible = was_interruptible;
2817         if (ret) {
2818                 DRM_ERROR("failed to enable ironlake power power savings\n");
2819                 ironlake_teardown_rc6(dev);
2820                 return;
2821         }
2822
2823         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2824         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2825 }
2826
2827 static unsigned long intel_pxfreq(u32 vidfreq)
2828 {
2829         unsigned long freq;
2830         int div = (vidfreq & 0x3f0000) >> 16;
2831         int post = (vidfreq & 0x3000) >> 12;
2832         int pre = (vidfreq & 0x7);
2833
2834         if (!pre)
2835                 return 0;
2836
2837         freq = ((div * 133333) / ((1<<post) * pre));
2838
2839         return freq;
2840 }
2841
2842 static const struct cparams {
2843         u16 i;
2844         u16 t;
2845         u16 m;
2846         u16 c;
2847 } cparams[] = {
2848         { 1, 1333, 301, 28664 },
2849         { 1, 1066, 294, 24460 },
2850         { 1, 800, 294, 25192 },
2851         { 0, 1333, 276, 27605 },
2852         { 0, 1066, 276, 27605 },
2853         { 0, 800, 231, 23784 },
2854 };
2855
2856 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2857 {
2858         u64 total_count, diff, ret;
2859         u32 count1, count2, count3, m = 0, c = 0;
2860         unsigned long now = jiffies_to_msecs(jiffies), diff1;
2861         int i;
2862
2863         assert_spin_locked(&mchdev_lock);
2864
2865         diff1 = now - dev_priv->ips.last_time1;
2866
2867         /* Prevent division-by-zero if we are asking too fast.
2868          * Also, we don't get interesting results if we are polling
2869          * faster than once in 10ms, so just return the saved value
2870          * in such cases.
2871          */
2872         if (diff1 <= 10)
2873                 return dev_priv->ips.chipset_power;
2874
2875         count1 = I915_READ(DMIEC);
2876         count2 = I915_READ(DDREC);
2877         count3 = I915_READ(CSIEC);
2878
2879         total_count = count1 + count2 + count3;
2880
2881         /* FIXME: handle per-counter overflow */
2882         if (total_count < dev_priv->ips.last_count1) {
2883                 diff = ~0UL - dev_priv->ips.last_count1;
2884                 diff += total_count;
2885         } else {
2886                 diff = total_count - dev_priv->ips.last_count1;
2887         }
2888
2889         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2890                 if (cparams[i].i == dev_priv->ips.c_m &&
2891                     cparams[i].t == dev_priv->ips.r_t) {
2892                         m = cparams[i].m;
2893                         c = cparams[i].c;
2894                         break;
2895                 }
2896         }
2897
2898         diff = div_u64(diff, diff1);
2899         ret = ((m * diff) + c);
2900         ret = div_u64(ret, 10);
2901
2902         dev_priv->ips.last_count1 = total_count;
2903         dev_priv->ips.last_time1 = now;
2904
2905         dev_priv->ips.chipset_power = ret;
2906
2907         return ret;
2908 }
2909
2910 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2911 {
2912         unsigned long val;
2913
2914         if (dev_priv->info->gen != 5)
2915                 return 0;
2916
2917         spin_lock_irq(&mchdev_lock);
2918
2919         val = __i915_chipset_val(dev_priv);
2920
2921         spin_unlock_irq(&mchdev_lock);
2922
2923         return val;
2924 }
2925
2926 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2927 {
2928         unsigned long m, x, b;
2929         u32 tsfs;
2930
2931         tsfs = I915_READ(TSFS);
2932
2933         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2934         x = I915_READ8(TR1);
2935
2936         b = tsfs & TSFS_INTR_MASK;
2937
2938         return ((m * x) / 127) - b;
2939 }
2940
2941 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2942 {
2943         static const struct v_table {
2944                 u16 vd; /* in .1 mil */
2945                 u16 vm; /* in .1 mil */
2946         } v_table[] = {
2947                 { 0, 0, },
2948                 { 375, 0, },
2949                 { 500, 0, },
2950                 { 625, 0, },
2951                 { 750, 0, },
2952                 { 875, 0, },
2953                 { 1000, 0, },
2954                 { 1125, 0, },
2955                 { 4125, 3000, },
2956                 { 4125, 3000, },
2957                 { 4125, 3000, },
2958                 { 4125, 3000, },
2959                 { 4125, 3000, },
2960                 { 4125, 3000, },
2961                 { 4125, 3000, },
2962                 { 4125, 3000, },
2963                 { 4125, 3000, },
2964                 { 4125, 3000, },
2965                 { 4125, 3000, },
2966                 { 4125, 3000, },
2967                 { 4125, 3000, },
2968                 { 4125, 3000, },
2969                 { 4125, 3000, },
2970                 { 4125, 3000, },
2971                 { 4125, 3000, },
2972                 { 4125, 3000, },
2973                 { 4125, 3000, },
2974                 { 4125, 3000, },
2975                 { 4125, 3000, },
2976                 { 4125, 3000, },
2977                 { 4125, 3000, },
2978                 { 4125, 3000, },
2979                 { 4250, 3125, },
2980                 { 4375, 3250, },
2981                 { 4500, 3375, },
2982                 { 4625, 3500, },
2983                 { 4750, 3625, },
2984                 { 4875, 3750, },
2985                 { 5000, 3875, },
2986                 { 5125, 4000, },
2987                 { 5250, 4125, },
2988                 { 5375, 4250, },
2989                 { 5500, 4375, },
2990                 { 5625, 4500, },
2991                 { 5750, 4625, },
2992                 { 5875, 4750, },
2993                 { 6000, 4875, },
2994                 { 6125, 5000, },
2995                 { 6250, 5125, },
2996                 { 6375, 5250, },
2997                 { 6500, 5375, },
2998                 { 6625, 5500, },
2999                 { 6750, 5625, },
3000                 { 6875, 5750, },
3001                 { 7000, 5875, },
3002                 { 7125, 6000, },
3003                 { 7250, 6125, },
3004                 { 7375, 6250, },
3005                 { 7500, 6375, },
3006                 { 7625, 6500, },
3007                 { 7750, 6625, },
3008                 { 7875, 6750, },
3009                 { 8000, 6875, },
3010                 { 8125, 7000, },
3011                 { 8250, 7125, },
3012                 { 8375, 7250, },
3013                 { 8500, 7375, },
3014                 { 8625, 7500, },
3015                 { 8750, 7625, },
3016                 { 8875, 7750, },
3017                 { 9000, 7875, },
3018                 { 9125, 8000, },
3019                 { 9250, 8125, },
3020                 { 9375, 8250, },
3021                 { 9500, 8375, },
3022                 { 9625, 8500, },
3023                 { 9750, 8625, },
3024                 { 9875, 8750, },
3025                 { 10000, 8875, },
3026                 { 10125, 9000, },
3027                 { 10250, 9125, },
3028                 { 10375, 9250, },
3029                 { 10500, 9375, },
3030                 { 10625, 9500, },
3031                 { 10750, 9625, },
3032                 { 10875, 9750, },
3033                 { 11000, 9875, },
3034                 { 11125, 10000, },
3035                 { 11250, 10125, },
3036                 { 11375, 10250, },
3037                 { 11500, 10375, },
3038                 { 11625, 10500, },
3039                 { 11750, 10625, },
3040                 { 11875, 10750, },
3041                 { 12000, 10875, },
3042                 { 12125, 11000, },
3043                 { 12250, 11125, },
3044                 { 12375, 11250, },
3045                 { 12500, 11375, },
3046                 { 12625, 11500, },
3047                 { 12750, 11625, },
3048                 { 12875, 11750, },
3049                 { 13000, 11875, },
3050                 { 13125, 12000, },
3051                 { 13250, 12125, },
3052                 { 13375, 12250, },
3053                 { 13500, 12375, },
3054                 { 13625, 12500, },
3055                 { 13750, 12625, },
3056                 { 13875, 12750, },
3057                 { 14000, 12875, },
3058                 { 14125, 13000, },
3059                 { 14250, 13125, },
3060                 { 14375, 13250, },
3061                 { 14500, 13375, },
3062                 { 14625, 13500, },
3063                 { 14750, 13625, },
3064                 { 14875, 13750, },
3065                 { 15000, 13875, },
3066                 { 15125, 14000, },
3067                 { 15250, 14125, },
3068                 { 15375, 14250, },
3069                 { 15500, 14375, },
3070                 { 15625, 14500, },
3071                 { 15750, 14625, },
3072                 { 15875, 14750, },
3073                 { 16000, 14875, },
3074                 { 16125, 15000, },
3075         };
3076         if (dev_priv->info->is_mobile)
3077                 return v_table[pxvid].vm;
3078         else
3079                 return v_table[pxvid].vd;
3080 }
3081
3082 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3083 {
3084         struct timespec now, diff1;
3085         u64 diff;
3086         unsigned long diffms;
3087         u32 count;
3088
3089         assert_spin_locked(&mchdev_lock);
3090
3091         getrawmonotonic(&now);
3092         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3093
3094         /* Don't divide by 0 */
3095         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3096         if (!diffms)
3097                 return;
3098
3099         count = I915_READ(GFXEC);
3100
3101         if (count < dev_priv->ips.last_count2) {
3102                 diff = ~0UL - dev_priv->ips.last_count2;
3103                 diff += count;
3104         } else {
3105                 diff = count - dev_priv->ips.last_count2;
3106         }
3107
3108         dev_priv->ips.last_count2 = count;
3109         dev_priv->ips.last_time2 = now;
3110
3111         /* More magic constants... */
3112         diff = diff * 1181;
3113         diff = div_u64(diff, diffms * 10);
3114         dev_priv->ips.gfx_power = diff;
3115 }
3116
3117 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3118 {
3119         if (dev_priv->info->gen != 5)
3120                 return;
3121
3122         spin_lock_irq(&mchdev_lock);
3123
3124         __i915_update_gfx_val(dev_priv);
3125
3126         spin_unlock_irq(&mchdev_lock);
3127 }
3128
3129 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3130 {
3131         unsigned long t, corr, state1, corr2, state2;
3132         u32 pxvid, ext_v;
3133
3134         assert_spin_locked(&mchdev_lock);
3135
3136         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3137         pxvid = (pxvid >> 24) & 0x7f;
3138         ext_v = pvid_to_extvid(dev_priv, pxvid);
3139
3140         state1 = ext_v;
3141
3142         t = i915_mch_val(dev_priv);
3143
3144         /* Revel in the empirically derived constants */
3145
3146         /* Correction factor in 1/100000 units */
3147         if (t > 80)
3148                 corr = ((t * 2349) + 135940);
3149         else if (t >= 50)
3150                 corr = ((t * 964) + 29317);
3151         else /* < 50 */
3152                 corr = ((t * 301) + 1004);
3153
3154         corr = corr * ((150142 * state1) / 10000 - 78642);
3155         corr /= 100000;
3156         corr2 = (corr * dev_priv->ips.corr);
3157
3158         state2 = (corr2 * state1) / 10000;
3159         state2 /= 100; /* convert to mW */
3160
3161         __i915_update_gfx_val(dev_priv);
3162
3163         return dev_priv->ips.gfx_power + state2;
3164 }
3165
3166 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3167 {
3168         unsigned long val;
3169
3170         if (dev_priv->info->gen != 5)
3171                 return 0;
3172
3173         spin_lock_irq(&mchdev_lock);
3174
3175         val = __i915_gfx_val(dev_priv);
3176
3177         spin_unlock_irq(&mchdev_lock);
3178
3179         return val;
3180 }
3181
3182 /**
3183  * i915_read_mch_val - return value for IPS use
3184  *
3185  * Calculate and return a value for the IPS driver to use when deciding whether
3186  * we have thermal and power headroom to increase CPU or GPU power budget.
3187  */
3188 unsigned long i915_read_mch_val(void)
3189 {
3190         struct drm_i915_private *dev_priv;
3191         unsigned long chipset_val, graphics_val, ret = 0;
3192
3193         spin_lock_irq(&mchdev_lock);
3194         if (!i915_mch_dev)
3195                 goto out_unlock;
3196         dev_priv = i915_mch_dev;
3197
3198         chipset_val = __i915_chipset_val(dev_priv);
3199         graphics_val = __i915_gfx_val(dev_priv);
3200
3201         ret = chipset_val + graphics_val;
3202
3203 out_unlock:
3204         spin_unlock_irq(&mchdev_lock);
3205
3206         return ret;
3207 }
3208 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3209
3210 /**
3211  * i915_gpu_raise - raise GPU frequency limit
3212  *
3213  * Raise the limit; IPS indicates we have thermal headroom.
3214  */
3215 bool i915_gpu_raise(void)
3216 {
3217         struct drm_i915_private *dev_priv;
3218         bool ret = true;
3219
3220         spin_lock_irq(&mchdev_lock);
3221         if (!i915_mch_dev) {
3222                 ret = false;
3223                 goto out_unlock;
3224         }
3225         dev_priv = i915_mch_dev;
3226
3227         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3228                 dev_priv->ips.max_delay--;
3229
3230 out_unlock:
3231         spin_unlock_irq(&mchdev_lock);
3232
3233         return ret;
3234 }
3235 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3236
3237 /**
3238  * i915_gpu_lower - lower GPU frequency limit
3239  *
3240  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3241  * frequency maximum.
3242  */
3243 bool i915_gpu_lower(void)
3244 {
3245         struct drm_i915_private *dev_priv;
3246         bool ret = true;
3247
3248         spin_lock_irq(&mchdev_lock);
3249         if (!i915_mch_dev) {
3250                 ret = false;
3251                 goto out_unlock;
3252         }
3253         dev_priv = i915_mch_dev;
3254
3255         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3256                 dev_priv->ips.max_delay++;
3257
3258 out_unlock:
3259         spin_unlock_irq(&mchdev_lock);
3260
3261         return ret;
3262 }
3263 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3264
3265 /**
3266  * i915_gpu_busy - indicate GPU business to IPS
3267  *
3268  * Tell the IPS driver whether or not the GPU is busy.
3269  */
3270 bool i915_gpu_busy(void)
3271 {
3272         struct drm_i915_private *dev_priv;
3273         struct intel_ring_buffer *ring;
3274         bool ret = false;
3275         int i;
3276
3277         spin_lock_irq(&mchdev_lock);
3278         if (!i915_mch_dev)
3279                 goto out_unlock;
3280         dev_priv = i915_mch_dev;
3281
3282         for_each_ring(ring, dev_priv, i)
3283                 ret |= !list_empty(&ring->request_list);
3284
3285 out_unlock:
3286         spin_unlock_irq(&mchdev_lock);
3287
3288         return ret;
3289 }
3290 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3291
3292 /**
3293  * i915_gpu_turbo_disable - disable graphics turbo
3294  *
3295  * Disable graphics turbo by resetting the max frequency and setting the
3296  * current frequency to the default.
3297  */
3298 bool i915_gpu_turbo_disable(void)
3299 {
3300         struct drm_i915_private *dev_priv;
3301         bool ret = true;
3302
3303         spin_lock_irq(&mchdev_lock);
3304         if (!i915_mch_dev) {
3305                 ret = false;
3306                 goto out_unlock;
3307         }
3308         dev_priv = i915_mch_dev;
3309
3310         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3311
3312         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3313                 ret = false;
3314
3315 out_unlock:
3316         spin_unlock_irq(&mchdev_lock);
3317
3318         return ret;
3319 }
3320 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3321
3322 /**
3323  * Tells the intel_ips driver that the i915 driver is now loaded, if
3324  * IPS got loaded first.
3325  *
3326  * This awkward dance is so that neither module has to depend on the
3327  * other in order for IPS to do the appropriate communication of
3328  * GPU turbo limits to i915.
3329  */
3330 static void
3331 ips_ping_for_i915_load(void)
3332 {
3333         void (*link)(void);
3334
3335         link = symbol_get(ips_link_to_i915_driver);
3336         if (link) {
3337                 link();
3338                 symbol_put(ips_link_to_i915_driver);
3339         }
3340 }
3341
3342 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3343 {
3344         /* We only register the i915 ips part with intel-ips once everything is
3345          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3346         spin_lock_irq(&mchdev_lock);
3347         i915_mch_dev = dev_priv;
3348         spin_unlock_irq(&mchdev_lock);
3349
3350         ips_ping_for_i915_load();
3351 }
3352
3353 void intel_gpu_ips_teardown(void)
3354 {
3355         spin_lock_irq(&mchdev_lock);
3356         i915_mch_dev = NULL;
3357         spin_unlock_irq(&mchdev_lock);
3358 }
3359 static void intel_init_emon(struct drm_device *dev)
3360 {
3361         struct drm_i915_private *dev_priv = dev->dev_private;
3362         u32 lcfuse;
3363         u8 pxw[16];
3364         int i;
3365
3366         /* Disable to program */
3367         I915_WRITE(ECR, 0);
3368         POSTING_READ(ECR);
3369
3370         /* Program energy weights for various events */
3371         I915_WRITE(SDEW, 0x15040d00);
3372         I915_WRITE(CSIEW0, 0x007f0000);
3373         I915_WRITE(CSIEW1, 0x1e220004);
3374         I915_WRITE(CSIEW2, 0x04000004);
3375
3376         for (i = 0; i < 5; i++)
3377                 I915_WRITE(PEW + (i * 4), 0);
3378         for (i = 0; i < 3; i++)
3379                 I915_WRITE(DEW + (i * 4), 0);
3380
3381         /* Program P-state weights to account for frequency power adjustment */
3382         for (i = 0; i < 16; i++) {
3383                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3384                 unsigned long freq = intel_pxfreq(pxvidfreq);
3385                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3386                         PXVFREQ_PX_SHIFT;
3387                 unsigned long val;
3388
3389                 val = vid * vid;
3390                 val *= (freq / 1000);
3391                 val *= 255;
3392                 val /= (127*127*900);
3393                 if (val > 0xff)
3394                         DRM_ERROR("bad pxval: %ld\n", val);
3395                 pxw[i] = val;
3396         }
3397         /* Render standby states get 0 weight */
3398         pxw[14] = 0;
3399         pxw[15] = 0;
3400
3401         for (i = 0; i < 4; i++) {
3402                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3403                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3404                 I915_WRITE(PXW + (i * 4), val);
3405         }
3406
3407         /* Adjust magic regs to magic values (more experimental results) */
3408         I915_WRITE(OGW0, 0);
3409         I915_WRITE(OGW1, 0);
3410         I915_WRITE(EG0, 0x00007f00);
3411         I915_WRITE(EG1, 0x0000000e);
3412         I915_WRITE(EG2, 0x000e0000);
3413         I915_WRITE(EG3, 0x68000300);
3414         I915_WRITE(EG4, 0x42000000);
3415         I915_WRITE(EG5, 0x00140031);
3416         I915_WRITE(EG6, 0);
3417         I915_WRITE(EG7, 0);
3418
3419         for (i = 0; i < 8; i++)
3420                 I915_WRITE(PXWL + (i * 4), 0);
3421
3422         /* Enable PMON + select events */
3423         I915_WRITE(ECR, 0x80000019);
3424
3425         lcfuse = I915_READ(LCFUSE02);
3426
3427         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3428 }
3429
3430 void intel_disable_gt_powersave(struct drm_device *dev)
3431 {
3432         struct drm_i915_private *dev_priv = dev->dev_private;
3433
3434         if (IS_IRONLAKE_M(dev)) {
3435                 ironlake_disable_drps(dev);
3436                 ironlake_disable_rc6(dev);
3437         } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3438                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3439                 mutex_lock(&dev_priv->rps.hw_lock);
3440                 gen6_disable_rps(dev);
3441                 mutex_unlock(&dev_priv->rps.hw_lock);
3442         }
3443 }
3444
3445 static void intel_gen6_powersave_work(struct work_struct *work)
3446 {
3447         struct drm_i915_private *dev_priv =
3448                 container_of(work, struct drm_i915_private,
3449                              rps.delayed_resume_work.work);
3450         struct drm_device *dev = dev_priv->dev;
3451
3452         mutex_lock(&dev_priv->rps.hw_lock);
3453         gen6_enable_rps(dev);
3454         gen6_update_ring_freq(dev);
3455         mutex_unlock(&dev_priv->rps.hw_lock);
3456 }
3457
3458 void intel_enable_gt_powersave(struct drm_device *dev)
3459 {
3460         struct drm_i915_private *dev_priv = dev->dev_private;
3461
3462         if (IS_IRONLAKE_M(dev)) {
3463                 ironlake_enable_drps(dev);
3464                 ironlake_enable_rc6(dev);
3465                 intel_init_emon(dev);
3466         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3467                 /*
3468                  * PCU communication is slow and this doesn't need to be
3469                  * done at any specific time, so do this out of our fast path
3470                  * to make resume and init faster.
3471                  */
3472                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3473                                       round_jiffies_up_relative(HZ));
3474         }
3475 }
3476
3477 static void ibx_init_clock_gating(struct drm_device *dev)
3478 {
3479         struct drm_i915_private *dev_priv = dev->dev_private;
3480
3481         /*
3482          * On Ibex Peak and Cougar Point, we need to disable clock
3483          * gating for the panel power sequencer or it will fail to
3484          * start up when no ports are active.
3485          */
3486         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3487 }
3488
3489 static void ironlake_init_clock_gating(struct drm_device *dev)
3490 {
3491         struct drm_i915_private *dev_priv = dev->dev_private;
3492         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3493
3494         /* Required for FBC */
3495         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3496                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3497                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3498
3499         I915_WRITE(PCH_3DCGDIS0,
3500                    MARIUNIT_CLOCK_GATE_DISABLE |
3501                    SVSMUNIT_CLOCK_GATE_DISABLE);
3502         I915_WRITE(PCH_3DCGDIS1,
3503                    VFMUNIT_CLOCK_GATE_DISABLE);
3504
3505         /*
3506          * According to the spec the following bits should be set in
3507          * order to enable memory self-refresh
3508          * The bit 22/21 of 0x42004
3509          * The bit 5 of 0x42020
3510          * The bit 15 of 0x45000
3511          */
3512         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3513                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3514                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3515         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3516         I915_WRITE(DISP_ARB_CTL,
3517                    (I915_READ(DISP_ARB_CTL) |
3518                     DISP_FBC_WM_DIS));
3519         I915_WRITE(WM3_LP_ILK, 0);
3520         I915_WRITE(WM2_LP_ILK, 0);
3521         I915_WRITE(WM1_LP_ILK, 0);
3522
3523         /*
3524          * Based on the document from hardware guys the following bits
3525          * should be set unconditionally in order to enable FBC.
3526          * The bit 22 of 0x42000
3527          * The bit 22 of 0x42004
3528          * The bit 7,8,9 of 0x42020.
3529          */
3530         if (IS_IRONLAKE_M(dev)) {
3531                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3532                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3533                            ILK_FBCQ_DIS);
3534                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3535                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3536                            ILK_DPARB_GATE);
3537         }
3538
3539         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3540
3541         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3542                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3543                    ILK_ELPIN_409_SELECT);
3544         I915_WRITE(_3D_CHICKEN2,
3545                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3546                    _3D_CHICKEN2_WM_READ_PIPELINED);
3547
3548         /* WaDisableRenderCachePipelinedFlush */
3549         I915_WRITE(CACHE_MODE_0,
3550                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3551
3552         ibx_init_clock_gating(dev);
3553 }
3554
3555 static void cpt_init_clock_gating(struct drm_device *dev)
3556 {
3557         struct drm_i915_private *dev_priv = dev->dev_private;
3558         int pipe;
3559
3560         /*
3561          * On Ibex Peak and Cougar Point, we need to disable clock
3562          * gating for the panel power sequencer or it will fail to
3563          * start up when no ports are active.
3564          */
3565         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3566         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3567                    DPLS_EDP_PPS_FIX_DIS);
3568         /* The below fixes the weird display corruption, a few pixels shifted
3569          * downward, on (only) LVDS of some HP laptops with IVY.
3570          */
3571         for_each_pipe(pipe)
3572                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
3573         /* WADP0ClockGatingDisable */
3574         for_each_pipe(pipe) {
3575                 I915_WRITE(TRANS_CHICKEN1(pipe),
3576                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3577         }
3578 }
3579
3580 static void gen6_init_clock_gating(struct drm_device *dev)
3581 {
3582         struct drm_i915_private *dev_priv = dev->dev_private;
3583         int pipe;
3584         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3585
3586         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3587
3588         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3589                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3590                    ILK_ELPIN_409_SELECT);
3591
3592         /* WaDisableHiZPlanesWhenMSAAEnabled */
3593         I915_WRITE(_3D_CHICKEN,
3594                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3595
3596         /* WaSetupGtModeTdRowDispatch */
3597         if (IS_SNB_GT1(dev))
3598                 I915_WRITE(GEN6_GT_MODE,
3599                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3600
3601         I915_WRITE(WM3_LP_ILK, 0);
3602         I915_WRITE(WM2_LP_ILK, 0);
3603         I915_WRITE(WM1_LP_ILK, 0);
3604
3605         I915_WRITE(CACHE_MODE_0,
3606                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3607
3608         I915_WRITE(GEN6_UCGCTL1,
3609                    I915_READ(GEN6_UCGCTL1) |
3610                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3611                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3612
3613         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3614          * gating disable must be set.  Failure to set it results in
3615          * flickering pixels due to Z write ordering failures after
3616          * some amount of runtime in the Mesa "fire" demo, and Unigine
3617          * Sanctuary and Tropics, and apparently anything else with
3618          * alpha test or pixel discard.
3619          *
3620          * According to the spec, bit 11 (RCCUNIT) must also be set,
3621          * but we didn't debug actual testcases to find it out.
3622          *
3623          * Also apply WaDisableVDSUnitClockGating and
3624          * WaDisableRCPBUnitClockGating.
3625          */
3626         I915_WRITE(GEN6_UCGCTL2,
3627                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3628                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3629                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3630
3631         /* Bspec says we need to always set all mask bits. */
3632         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3633                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3634
3635         /*
3636          * According to the spec the following bits should be
3637          * set in order to enable memory self-refresh and fbc:
3638          * The bit21 and bit22 of 0x42000
3639          * The bit21 and bit22 of 0x42004
3640          * The bit5 and bit7 of 0x42020
3641          * The bit14 of 0x70180
3642          * The bit14 of 0x71180
3643          */
3644         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3645                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3646                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3647         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3648                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3649                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3650         I915_WRITE(ILK_DSPCLK_GATE_D,
3651                    I915_READ(ILK_DSPCLK_GATE_D) |
3652                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3653                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3654
3655         /* WaMbcDriverBootEnable */
3656         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3657                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3658
3659         for_each_pipe(pipe) {
3660                 I915_WRITE(DSPCNTR(pipe),
3661                            I915_READ(DSPCNTR(pipe)) |
3662                            DISPPLANE_TRICKLE_FEED_DISABLE);
3663                 intel_flush_display_plane(dev_priv, pipe);
3664         }
3665
3666         /* The default value should be 0x200 according to docs, but the two
3667          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3668         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3669         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3670
3671         cpt_init_clock_gating(dev);
3672 }
3673
3674 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3675 {
3676         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3677
3678         reg &= ~GEN7_FF_SCHED_MASK;
3679         reg |= GEN7_FF_TS_SCHED_HW;
3680         reg |= GEN7_FF_VS_SCHED_HW;
3681         reg |= GEN7_FF_DS_SCHED_HW;
3682
3683         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3684 }
3685
3686 static void lpt_init_clock_gating(struct drm_device *dev)
3687 {
3688         struct drm_i915_private *dev_priv = dev->dev_private;
3689
3690         /*
3691          * TODO: this bit should only be enabled when really needed, then
3692          * disabled when not needed anymore in order to save power.
3693          */
3694         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3695                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3696                            I915_READ(SOUTH_DSPCLK_GATE_D) |
3697                            PCH_LP_PARTITION_LEVEL_DISABLE);
3698 }
3699
3700 static void haswell_init_clock_gating(struct drm_device *dev)
3701 {
3702         struct drm_i915_private *dev_priv = dev->dev_private;
3703         int pipe;
3704
3705         I915_WRITE(WM3_LP_ILK, 0);
3706         I915_WRITE(WM2_LP_ILK, 0);
3707         I915_WRITE(WM1_LP_ILK, 0);
3708
3709         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3710          * This implements the WaDisableRCZUnitClockGating workaround.
3711          */
3712         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3713
3714         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3715         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3716                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3717
3718         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3719         I915_WRITE(GEN7_L3CNTLREG1,
3720                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3721         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3722                         GEN7_WA_L3_CHICKEN_MODE);
3723
3724         /* This is required by WaCatErrorRejectionIssue */
3725         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3726                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3727                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3728
3729         for_each_pipe(pipe) {
3730                 I915_WRITE(DSPCNTR(pipe),
3731                            I915_READ(DSPCNTR(pipe)) |
3732                            DISPPLANE_TRICKLE_FEED_DISABLE);
3733                 intel_flush_display_plane(dev_priv, pipe);
3734         }
3735
3736         gen7_setup_fixed_func_scheduler(dev_priv);
3737
3738         /* WaDisable4x2SubspanOptimization */
3739         I915_WRITE(CACHE_MODE_1,
3740                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3741
3742         /* WaMbcDriverBootEnable */
3743         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3744                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3745
3746         /* XXX: This is a workaround for early silicon revisions and should be
3747          * removed later.
3748          */
3749         I915_WRITE(WM_DBG,
3750                         I915_READ(WM_DBG) |
3751                         WM_DBG_DISALLOW_MULTIPLE_LP |
3752                         WM_DBG_DISALLOW_SPRITE |
3753                         WM_DBG_DISALLOW_MAXFIFO);
3754
3755         lpt_init_clock_gating(dev);
3756 }
3757
3758 static void ivybridge_init_clock_gating(struct drm_device *dev)
3759 {
3760         struct drm_i915_private *dev_priv = dev->dev_private;
3761         int pipe;
3762         uint32_t snpcr;
3763
3764         I915_WRITE(WM3_LP_ILK, 0);
3765         I915_WRITE(WM2_LP_ILK, 0);
3766         I915_WRITE(WM1_LP_ILK, 0);
3767
3768         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3769
3770         /* WaDisableEarlyCull */
3771         I915_WRITE(_3D_CHICKEN3,
3772                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3773
3774         /* WaDisableBackToBackFlipFix */
3775         I915_WRITE(IVB_CHICKEN3,
3776                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3777                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3778
3779         /* WaDisablePSDDualDispatchEnable */
3780         if (IS_IVB_GT1(dev))
3781                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3782                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3783         else
3784                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3785                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3786
3787         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3788         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3789                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3790
3791         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3792         I915_WRITE(GEN7_L3CNTLREG1,
3793                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3794         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3795                    GEN7_WA_L3_CHICKEN_MODE);
3796         if (IS_IVB_GT1(dev))
3797                 I915_WRITE(GEN7_ROW_CHICKEN2,
3798                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3799         else
3800                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3801                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3802
3803
3804         /* WaForceL3Serialization */
3805         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3806                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3807
3808         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3809          * gating disable must be set.  Failure to set it results in
3810          * flickering pixels due to Z write ordering failures after
3811          * some amount of runtime in the Mesa "fire" demo, and Unigine
3812          * Sanctuary and Tropics, and apparently anything else with
3813          * alpha test or pixel discard.
3814          *
3815          * According to the spec, bit 11 (RCCUNIT) must also be set,
3816          * but we didn't debug actual testcases to find it out.
3817          *
3818          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3819          * This implements the WaDisableRCZUnitClockGating workaround.
3820          */
3821         I915_WRITE(GEN6_UCGCTL2,
3822                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3823                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3824
3825         /* This is required by WaCatErrorRejectionIssue */
3826         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3827                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3828                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3829
3830         for_each_pipe(pipe) {
3831                 I915_WRITE(DSPCNTR(pipe),
3832                            I915_READ(DSPCNTR(pipe)) |
3833                            DISPPLANE_TRICKLE_FEED_DISABLE);
3834                 intel_flush_display_plane(dev_priv, pipe);
3835         }
3836
3837         /* WaMbcDriverBootEnable */
3838         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3839                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3840
3841         gen7_setup_fixed_func_scheduler(dev_priv);
3842
3843         /* WaDisable4x2SubspanOptimization */
3844         I915_WRITE(CACHE_MODE_1,
3845                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3846
3847         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3848         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3849         snpcr |= GEN6_MBC_SNPCR_MED;
3850         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3851
3852         cpt_init_clock_gating(dev);
3853 }
3854
3855 static void valleyview_init_clock_gating(struct drm_device *dev)
3856 {
3857         struct drm_i915_private *dev_priv = dev->dev_private;
3858         int pipe;
3859
3860         I915_WRITE(WM3_LP_ILK, 0);
3861         I915_WRITE(WM2_LP_ILK, 0);
3862         I915_WRITE(WM1_LP_ILK, 0);
3863
3864         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3865
3866         /* WaDisableEarlyCull */
3867         I915_WRITE(_3D_CHICKEN3,
3868                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3869
3870         /* WaDisableBackToBackFlipFix */
3871         I915_WRITE(IVB_CHICKEN3,
3872                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3873                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3874
3875         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3876                    _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3877
3878         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3879         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3880                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3881
3882         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3883         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3884         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3885
3886         /* WaForceL3Serialization */
3887         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3888                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3889
3890         /* WaDisableDopClockGating */
3891         I915_WRITE(GEN7_ROW_CHICKEN2,
3892                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3893
3894         /* WaForceL3Serialization */
3895         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3896                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3897
3898         /* This is required by WaCatErrorRejectionIssue */
3899         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3900                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3901                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3902
3903         /* WaMbcDriverBootEnable */
3904         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3905                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3906
3907
3908         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3909          * gating disable must be set.  Failure to set it results in
3910          * flickering pixels due to Z write ordering failures after
3911          * some amount of runtime in the Mesa "fire" demo, and Unigine
3912          * Sanctuary and Tropics, and apparently anything else with
3913          * alpha test or pixel discard.
3914          *
3915          * According to the spec, bit 11 (RCCUNIT) must also be set,
3916          * but we didn't debug actual testcases to find it out.
3917          *
3918          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3919          * This implements the WaDisableRCZUnitClockGating workaround.
3920          *
3921          * Also apply WaDisableVDSUnitClockGating and
3922          * WaDisableRCPBUnitClockGating.
3923          */
3924         I915_WRITE(GEN6_UCGCTL2,
3925                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3926                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3927                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3928                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3929                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3930
3931         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3932
3933         for_each_pipe(pipe) {
3934                 I915_WRITE(DSPCNTR(pipe),
3935                            I915_READ(DSPCNTR(pipe)) |
3936                            DISPPLANE_TRICKLE_FEED_DISABLE);
3937                 intel_flush_display_plane(dev_priv, pipe);
3938         }
3939
3940         I915_WRITE(CACHE_MODE_1,
3941                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3942
3943         /*
3944          * On ValleyView, the GUnit needs to signal the GT
3945          * when flip and other events complete.  So enable
3946          * all the GUnit->GT interrupts here
3947          */
3948         I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3949                    PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3950                    SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3951                    PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3952                    PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3953                    SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3954                    PLANEA_FLIPDONE_INT_EN);
3955
3956         /*
3957          * WaDisableVLVClockGating_VBIIssue
3958          * Disable clock gating on th GCFG unit to prevent a delay
3959          * in the reporting of vblank events.
3960          */
3961         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3962 }
3963
3964 static void g4x_init_clock_gating(struct drm_device *dev)
3965 {
3966         struct drm_i915_private *dev_priv = dev->dev_private;
3967         uint32_t dspclk_gate;
3968
3969         I915_WRITE(RENCLK_GATE_D1, 0);
3970         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3971                    GS_UNIT_CLOCK_GATE_DISABLE |
3972                    CL_UNIT_CLOCK_GATE_DISABLE);
3973         I915_WRITE(RAMCLK_GATE_D, 0);
3974         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3975                 OVRUNIT_CLOCK_GATE_DISABLE |
3976                 OVCUNIT_CLOCK_GATE_DISABLE;
3977         if (IS_GM45(dev))
3978                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3979         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3980
3981         /* WaDisableRenderCachePipelinedFlush */
3982         I915_WRITE(CACHE_MODE_0,
3983                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3984 }
3985
3986 static void crestline_init_clock_gating(struct drm_device *dev)
3987 {
3988         struct drm_i915_private *dev_priv = dev->dev_private;
3989
3990         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3991         I915_WRITE(RENCLK_GATE_D2, 0);
3992         I915_WRITE(DSPCLK_GATE_D, 0);
3993         I915_WRITE(RAMCLK_GATE_D, 0);
3994         I915_WRITE16(DEUC, 0);
3995 }
3996
3997 static void broadwater_init_clock_gating(struct drm_device *dev)
3998 {
3999         struct drm_i915_private *dev_priv = dev->dev_private;
4000
4001         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4002                    I965_RCC_CLOCK_GATE_DISABLE |
4003                    I965_RCPB_CLOCK_GATE_DISABLE |
4004                    I965_ISC_CLOCK_GATE_DISABLE |
4005                    I965_FBC_CLOCK_GATE_DISABLE);
4006         I915_WRITE(RENCLK_GATE_D2, 0);
4007 }
4008
4009 static void gen3_init_clock_gating(struct drm_device *dev)
4010 {
4011         struct drm_i915_private *dev_priv = dev->dev_private;
4012         u32 dstate = I915_READ(D_STATE);
4013
4014         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4015                 DSTATE_DOT_CLOCK_GATING;
4016         I915_WRITE(D_STATE, dstate);
4017
4018         if (IS_PINEVIEW(dev))
4019                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4020
4021         /* IIR "flip pending" means done if this bit is set */
4022         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4023 }
4024
4025 static void i85x_init_clock_gating(struct drm_device *dev)
4026 {
4027         struct drm_i915_private *dev_priv = dev->dev_private;
4028
4029         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4030 }
4031
4032 static void i830_init_clock_gating(struct drm_device *dev)
4033 {
4034         struct drm_i915_private *dev_priv = dev->dev_private;
4035
4036         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4037 }
4038
4039 void intel_init_clock_gating(struct drm_device *dev)
4040 {
4041         struct drm_i915_private *dev_priv = dev->dev_private;
4042
4043         dev_priv->display.init_clock_gating(dev);
4044 }
4045
4046 /* Starting with Haswell, we have different power wells for
4047  * different parts of the GPU. This attempts to enable them all.
4048  */
4049 void intel_init_power_wells(struct drm_device *dev)
4050 {
4051         struct drm_i915_private *dev_priv = dev->dev_private;
4052         unsigned long power_wells[] = {
4053                 HSW_PWR_WELL_CTL1,
4054                 HSW_PWR_WELL_CTL2,
4055                 HSW_PWR_WELL_CTL4
4056         };
4057         int i;
4058
4059         if (!IS_HASWELL(dev))
4060                 return;
4061
4062         mutex_lock(&dev->struct_mutex);
4063
4064         for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
4065                 int well = I915_READ(power_wells[i]);
4066
4067                 if ((well & HSW_PWR_WELL_STATE) == 0) {
4068                         I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
4069                         if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
4070                                 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
4071                 }
4072         }
4073
4074         mutex_unlock(&dev->struct_mutex);
4075 }
4076
4077 /* Set up chip specific power management-related functions */
4078 void intel_init_pm(struct drm_device *dev)
4079 {
4080         struct drm_i915_private *dev_priv = dev->dev_private;
4081
4082         if (I915_HAS_FBC(dev)) {
4083                 if (HAS_PCH_SPLIT(dev)) {
4084                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4085                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
4086                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
4087                 } else if (IS_GM45(dev)) {
4088                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4089                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4090                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4091                 } else if (IS_CRESTLINE(dev)) {
4092                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4093                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4094                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4095                 }
4096                 /* 855GM needs testing */
4097         }
4098
4099         /* For cxsr */
4100         if (IS_PINEVIEW(dev))
4101                 i915_pineview_get_mem_freq(dev);
4102         else if (IS_GEN5(dev))
4103                 i915_ironlake_get_mem_freq(dev);
4104
4105         /* For FIFO watermark updates */
4106         if (HAS_PCH_SPLIT(dev)) {
4107                 if (IS_GEN5(dev)) {
4108                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4109                                 dev_priv->display.update_wm = ironlake_update_wm;
4110                         else {
4111                                 DRM_DEBUG_KMS("Failed to get proper latency. "
4112                                               "Disable CxSR\n");
4113                                 dev_priv->display.update_wm = NULL;
4114                         }
4115                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4116                 } else if (IS_GEN6(dev)) {
4117                         if (SNB_READ_WM0_LATENCY()) {
4118                                 dev_priv->display.update_wm = sandybridge_update_wm;
4119                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4120                         } else {
4121                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4122                                               "Disable CxSR\n");
4123                                 dev_priv->display.update_wm = NULL;
4124                         }
4125                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4126                 } else if (IS_IVYBRIDGE(dev)) {
4127                         /* FIXME: detect B0+ stepping and use auto training */
4128                         if (SNB_READ_WM0_LATENCY()) {
4129                                 dev_priv->display.update_wm = ivybridge_update_wm;
4130                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4131                         } else {
4132                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4133                                               "Disable CxSR\n");
4134                                 dev_priv->display.update_wm = NULL;
4135                         }
4136                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4137                 } else if (IS_HASWELL(dev)) {
4138                         if (SNB_READ_WM0_LATENCY()) {
4139                                 dev_priv->display.update_wm = sandybridge_update_wm;
4140                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4141                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4142                         } else {
4143                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4144                                               "Disable CxSR\n");
4145                                 dev_priv->display.update_wm = NULL;
4146                         }
4147                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4148                 } else
4149                         dev_priv->display.update_wm = NULL;
4150         } else if (IS_VALLEYVIEW(dev)) {
4151                 dev_priv->display.update_wm = valleyview_update_wm;
4152                 dev_priv->display.init_clock_gating =
4153                         valleyview_init_clock_gating;
4154         } else if (IS_PINEVIEW(dev)) {
4155                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4156                                             dev_priv->is_ddr3,
4157                                             dev_priv->fsb_freq,
4158                                             dev_priv->mem_freq)) {
4159                         DRM_INFO("failed to find known CxSR latency "
4160                                  "(found ddr%s fsb freq %d, mem freq %d), "
4161                                  "disabling CxSR\n",
4162                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4163                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4164                         /* Disable CxSR and never update its watermark again */
4165                         pineview_disable_cxsr(dev);
4166                         dev_priv->display.update_wm = NULL;
4167                 } else
4168                         dev_priv->display.update_wm = pineview_update_wm;
4169                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4170         } else if (IS_G4X(dev)) {
4171                 dev_priv->display.update_wm = g4x_update_wm;
4172                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4173         } else if (IS_GEN4(dev)) {
4174                 dev_priv->display.update_wm = i965_update_wm;
4175                 if (IS_CRESTLINE(dev))
4176                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4177                 else if (IS_BROADWATER(dev))
4178                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4179         } else if (IS_GEN3(dev)) {
4180                 dev_priv->display.update_wm = i9xx_update_wm;
4181                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4182                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4183         } else if (IS_I865G(dev)) {
4184                 dev_priv->display.update_wm = i830_update_wm;
4185                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4186                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4187         } else if (IS_I85X(dev)) {
4188                 dev_priv->display.update_wm = i9xx_update_wm;
4189                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4190                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4191         } else {
4192                 dev_priv->display.update_wm = i830_update_wm;
4193                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4194                 if (IS_845G(dev))
4195                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4196                 else
4197                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4198         }
4199 }
4200
4201 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4202 {
4203         u32 gt_thread_status_mask;
4204
4205         if (IS_HASWELL(dev_priv->dev))
4206                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4207         else
4208                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4209
4210         /* w/a for a sporadic read returning 0 by waiting for the GT
4211          * thread to wake up.
4212          */
4213         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4214                 DRM_ERROR("GT thread status wait timed out\n");
4215 }
4216
4217 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4218 {
4219         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4220         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4221 }
4222
4223 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4224 {
4225         u32 forcewake_ack;
4226
4227         if (IS_HASWELL(dev_priv->dev))
4228                 forcewake_ack = FORCEWAKE_ACK_HSW;
4229         else
4230                 forcewake_ack = FORCEWAKE_ACK;
4231
4232         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4233                             FORCEWAKE_ACK_TIMEOUT_MS))
4234                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4235
4236         I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4237         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4238
4239         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4240                             FORCEWAKE_ACK_TIMEOUT_MS))
4241                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4242
4243         __gen6_gt_wait_for_thread_c0(dev_priv);
4244 }
4245
4246 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4247 {
4248         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4249         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4250 }
4251
4252 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4253 {
4254         u32 forcewake_ack;
4255
4256         if (IS_HASWELL(dev_priv->dev))
4257                 forcewake_ack = FORCEWAKE_ACK_HSW;
4258         else
4259                 forcewake_ack = FORCEWAKE_MT_ACK;
4260
4261         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4262                             FORCEWAKE_ACK_TIMEOUT_MS))
4263                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4264
4265         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4266         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4267
4268         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4269                             FORCEWAKE_ACK_TIMEOUT_MS))
4270                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4271
4272         __gen6_gt_wait_for_thread_c0(dev_priv);
4273 }
4274
4275 /*
4276  * Generally this is called implicitly by the register read function. However,
4277  * if some sequence requires the GT to not power down then this function should
4278  * be called at the beginning of the sequence followed by a call to
4279  * gen6_gt_force_wake_put() at the end of the sequence.
4280  */
4281 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4282 {
4283         unsigned long irqflags;
4284
4285         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4286         if (dev_priv->forcewake_count++ == 0)
4287                 dev_priv->gt.force_wake_get(dev_priv);
4288         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4289 }
4290
4291 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4292 {
4293         u32 gtfifodbg;
4294         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4295         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4296              "MMIO read or write has been dropped %x\n", gtfifodbg))
4297                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4298 }
4299
4300 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4301 {
4302         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4303         /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4304         gen6_gt_check_fifodbg(dev_priv);
4305 }
4306
4307 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4308 {
4309         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4310         /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4311         gen6_gt_check_fifodbg(dev_priv);
4312 }
4313
4314 /*
4315  * see gen6_gt_force_wake_get()
4316  */
4317 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4318 {
4319         unsigned long irqflags;
4320
4321         spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4322         if (--dev_priv->forcewake_count == 0)
4323                 dev_priv->gt.force_wake_put(dev_priv);
4324         spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4325 }
4326
4327 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4328 {
4329         int ret = 0;
4330
4331         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4332                 int loop = 500;
4333                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4334                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4335                         udelay(10);
4336                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4337                 }
4338                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4339                         ++ret;
4340                 dev_priv->gt_fifo_count = fifo;
4341         }
4342         dev_priv->gt_fifo_count--;
4343
4344         return ret;
4345 }
4346
4347 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4348 {
4349         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4350 }
4351
4352 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4353 {
4354         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4355                             FORCEWAKE_ACK_TIMEOUT_MS))
4356                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4357
4358         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4359
4360         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4361                             FORCEWAKE_ACK_TIMEOUT_MS))
4362                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4363
4364         __gen6_gt_wait_for_thread_c0(dev_priv);
4365 }
4366
4367 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4368 {
4369         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4370         /* The below doubles as a POSTING_READ */
4371         gen6_gt_check_fifodbg(dev_priv);
4372 }
4373
4374 void intel_gt_reset(struct drm_device *dev)
4375 {
4376         struct drm_i915_private *dev_priv = dev->dev_private;
4377
4378         if (IS_VALLEYVIEW(dev)) {
4379                 vlv_force_wake_reset(dev_priv);
4380         } else if (INTEL_INFO(dev)->gen >= 6) {
4381                 __gen6_gt_force_wake_reset(dev_priv);
4382                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4383                         __gen6_gt_force_wake_mt_reset(dev_priv);
4384         }
4385 }
4386
4387 void intel_gt_init(struct drm_device *dev)
4388 {
4389         struct drm_i915_private *dev_priv = dev->dev_private;
4390
4391         spin_lock_init(&dev_priv->gt_lock);
4392
4393         intel_gt_reset(dev);
4394
4395         if (IS_VALLEYVIEW(dev)) {
4396                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4397                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4398         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4399                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4400                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4401         } else if (IS_GEN6(dev)) {
4402                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4403                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4404         }
4405         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4406                           intel_gen6_powersave_work);
4407 }
4408
4409 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4410 {
4411         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4412
4413         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4414                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4415                 return -EAGAIN;
4416         }
4417
4418         I915_WRITE(GEN6_PCODE_DATA, *val);
4419         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4420
4421         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4422                      500)) {
4423                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4424                 return -ETIMEDOUT;
4425         }
4426
4427         *val = I915_READ(GEN6_PCODE_DATA);
4428         I915_WRITE(GEN6_PCODE_DATA, 0);
4429
4430         return 0;
4431 }
4432
4433 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4434 {
4435         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4436
4437         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4438                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4439                 return -EAGAIN;
4440         }
4441
4442         I915_WRITE(GEN6_PCODE_DATA, val);
4443         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4444
4445         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4446                      500)) {
4447                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4448                 return -ETIMEDOUT;
4449         }
4450
4451         I915_WRITE(GEN6_PCODE_DATA, 0);
4452
4453         return 0;
4454 }