Merge tag 'mips_fixes_4.17_1' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan...
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_lrc_reg.h"
141 #include "intel_mocs.h"
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define GEN8_CTX_STATUS_COMPLETED_MASK \
158          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159
160 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
161 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162 #define WA_TAIL_DWORDS 2
163 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164
165 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
166                                             struct intel_engine_cs *engine);
167 static void execlists_init_reg_state(u32 *reg_state,
168                                      struct i915_gem_context *ctx,
169                                      struct intel_engine_cs *engine,
170                                      struct intel_ring *ring);
171
172 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
173 {
174         return rb_entry(rb, struct i915_priolist, node);
175 }
176
177 static inline int rq_prio(const struct i915_request *rq)
178 {
179         return rq->priotree.priority;
180 }
181
182 static inline bool need_preempt(const struct intel_engine_cs *engine,
183                                 const struct i915_request *last,
184                                 int prio)
185 {
186         return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
187 }
188
189 /**
190  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
191  *                                        descriptor for a pinned context
192  * @ctx: Context to work on
193  * @engine: Engine the descriptor will be used with
194  *
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222                                    struct intel_engine_cs *engine)
223 {
224         struct intel_context *ce = &ctx->engine[engine->id];
225         u64 desc;
226
227         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229
230         desc = ctx->desc_template;                              /* bits  0-11 */
231         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232
233         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234                                                                 /* bits 12-31 */
235         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236
237         if (INTEL_GEN(ctx->i915) >= 11) {
238                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
239                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
240                                                                 /* bits 37-47 */
241
242                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
243                                                                 /* bits 48-53 */
244
245                 /* TODO: decide what to do with SW counter (bits 55-60) */
246
247                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
248                                                                 /* bits 61-63 */
249         } else {
250                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
251                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
252         }
253
254         ce->lrc_desc = desc;
255 }
256
257 static struct i915_priolist *
258 lookup_priolist(struct intel_engine_cs *engine,
259                 struct i915_priotree *pt,
260                 int prio)
261 {
262         struct intel_engine_execlists * const execlists = &engine->execlists;
263         struct i915_priolist *p;
264         struct rb_node **parent, *rb;
265         bool first = true;
266
267         if (unlikely(execlists->no_priolist))
268                 prio = I915_PRIORITY_NORMAL;
269
270 find_priolist:
271         /* most positive priority is scheduled first, equal priorities fifo */
272         rb = NULL;
273         parent = &execlists->queue.rb_node;
274         while (*parent) {
275                 rb = *parent;
276                 p = to_priolist(rb);
277                 if (prio > p->priority) {
278                         parent = &rb->rb_left;
279                 } else if (prio < p->priority) {
280                         parent = &rb->rb_right;
281                         first = false;
282                 } else {
283                         return p;
284                 }
285         }
286
287         if (prio == I915_PRIORITY_NORMAL) {
288                 p = &execlists->default_priolist;
289         } else {
290                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
291                 /* Convert an allocation failure to a priority bump */
292                 if (unlikely(!p)) {
293                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
294
295                         /* To maintain ordering with all rendering, after an
296                          * allocation failure we have to disable all scheduling.
297                          * Requests will then be executed in fifo, and schedule
298                          * will ensure that dependencies are emitted in fifo.
299                          * There will be still some reordering with existing
300                          * requests, so if userspace lied about their
301                          * dependencies that reordering may be visible.
302                          */
303                         execlists->no_priolist = true;
304                         goto find_priolist;
305                 }
306         }
307
308         p->priority = prio;
309         INIT_LIST_HEAD(&p->requests);
310         rb_link_node(&p->node, rb, parent);
311         rb_insert_color(&p->node, &execlists->queue);
312
313         if (first)
314                 execlists->first = &p->node;
315
316         return p;
317 }
318
319 static void unwind_wa_tail(struct i915_request *rq)
320 {
321         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322         assert_ring_tail_valid(rq->ring, rq->tail);
323 }
324
325 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 {
327         struct i915_request *rq, *rn;
328         struct i915_priolist *uninitialized_var(p);
329         int last_prio = I915_PRIORITY_INVALID;
330
331         lockdep_assert_held(&engine->timeline->lock);
332
333         list_for_each_entry_safe_reverse(rq, rn,
334                                          &engine->timeline->requests,
335                                          link) {
336                 if (i915_request_completed(rq))
337                         return;
338
339                 __i915_request_unsubmit(rq);
340                 unwind_wa_tail(rq);
341
342                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
343                 if (rq_prio(rq) != last_prio) {
344                         last_prio = rq_prio(rq);
345                         p = lookup_priolist(engine, &rq->priotree, last_prio);
346                 }
347
348                 list_add(&rq->priotree.link, &p->requests);
349         }
350 }
351
352 void
353 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
354 {
355         struct intel_engine_cs *engine =
356                 container_of(execlists, typeof(*engine), execlists);
357
358         spin_lock_irq(&engine->timeline->lock);
359         __unwind_incomplete_requests(engine);
360         spin_unlock_irq(&engine->timeline->lock);
361 }
362
363 static inline void
364 execlists_context_status_change(struct i915_request *rq, unsigned long status)
365 {
366         /*
367          * Only used when GVT-g is enabled now. When GVT-g is disabled,
368          * The compiler should eliminate this function as dead-code.
369          */
370         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
371                 return;
372
373         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
374                                    status, rq);
375 }
376
377 static inline void
378 execlists_context_schedule_in(struct i915_request *rq)
379 {
380         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
381         intel_engine_context_in(rq->engine);
382 }
383
384 static inline void
385 execlists_context_schedule_out(struct i915_request *rq)
386 {
387         intel_engine_context_out(rq->engine);
388         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
389 }
390
391 static void
392 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
393 {
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
395         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
396         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
397         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
398 }
399
400 static u64 execlists_update_context(struct i915_request *rq)
401 {
402         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
403         struct i915_hw_ppgtt *ppgtt =
404                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
405         u32 *reg_state = ce->lrc_reg_state;
406
407         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
408
409         /* True 32b PPGTT with dynamic page allocation: update PDP
410          * registers and point the unallocated PDPs to scratch page.
411          * PML4 is allocated during ppgtt init, so this is not needed
412          * in 48-bit mode.
413          */
414         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
415                 execlists_update_context_pdps(ppgtt, reg_state);
416
417         return ce->lrc_desc;
418 }
419
420 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
421 {
422         if (execlists->ctrl_reg) {
423                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
424                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
425         } else {
426                 writel(upper_32_bits(desc), execlists->submit_reg);
427                 writel(lower_32_bits(desc), execlists->submit_reg);
428         }
429 }
430
431 static void execlists_submit_ports(struct intel_engine_cs *engine)
432 {
433         struct intel_engine_execlists *execlists = &engine->execlists;
434         struct execlist_port *port = execlists->port;
435         unsigned int n;
436
437         /*
438          * ELSQ note: the submit queue is not cleared after being submitted
439          * to the HW so we need to make sure we always clean it up. This is
440          * currently ensured by the fact that we always write the same number
441          * of elsq entries, keep this in mind before changing the loop below.
442          */
443         for (n = execlists_num_ports(execlists); n--; ) {
444                 struct i915_request *rq;
445                 unsigned int count;
446                 u64 desc;
447
448                 rq = port_unpack(&port[n], &count);
449                 if (rq) {
450                         GEM_BUG_ON(count > !n);
451                         if (!count++)
452                                 execlists_context_schedule_in(rq);
453                         port_set(&port[n], port_pack(rq, count));
454                         desc = execlists_update_context(rq);
455                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
456
457                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
458                                   engine->name, n,
459                                   port[n].context_id, count,
460                                   rq->global_seqno,
461                                   rq_prio(rq));
462                 } else {
463                         GEM_BUG_ON(!n);
464                         desc = 0;
465                 }
466
467                 write_desc(execlists, desc, n);
468         }
469
470         /* we need to manually load the submit queue */
471         if (execlists->ctrl_reg)
472                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
473
474         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
475 }
476
477 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
478 {
479         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
480                 i915_gem_context_force_single_submission(ctx));
481 }
482
483 static bool can_merge_ctx(const struct i915_gem_context *prev,
484                           const struct i915_gem_context *next)
485 {
486         if (prev != next)
487                 return false;
488
489         if (ctx_single_port_submission(prev))
490                 return false;
491
492         return true;
493 }
494
495 static void port_assign(struct execlist_port *port, struct i915_request *rq)
496 {
497         GEM_BUG_ON(rq == port_request(port));
498
499         if (port_isset(port))
500                 i915_request_put(port_request(port));
501
502         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
503 }
504
505 static void inject_preempt_context(struct intel_engine_cs *engine)
506 {
507         struct intel_engine_execlists *execlists = &engine->execlists;
508         struct intel_context *ce =
509                 &engine->i915->preempt_context->engine[engine->id];
510         unsigned int n;
511
512         GEM_BUG_ON(execlists->preempt_complete_status !=
513                    upper_32_bits(ce->lrc_desc));
514         GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
515                     _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
516                                        CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
517                    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
518                                       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
519
520         /*
521          * Switch to our empty preempt context so
522          * the state of the GPU is known (idle).
523          */
524         GEM_TRACE("%s\n", engine->name);
525         for (n = execlists_num_ports(execlists); --n; )
526                 write_desc(execlists, 0, n);
527
528         write_desc(execlists, ce->lrc_desc, n);
529
530         /* we need to manually load the submit queue */
531         if (execlists->ctrl_reg)
532                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
533
534         execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
535         execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
536 }
537
538 static void execlists_dequeue(struct intel_engine_cs *engine)
539 {
540         struct intel_engine_execlists * const execlists = &engine->execlists;
541         struct execlist_port *port = execlists->port;
542         const struct execlist_port * const last_port =
543                 &execlists->port[execlists->port_mask];
544         struct i915_request *last = port_request(port);
545         struct rb_node *rb;
546         bool submit = false;
547
548         /* Hardware submission is through 2 ports. Conceptually each port
549          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
550          * static for a context, and unique to each, so we only execute
551          * requests belonging to a single context from each ring. RING_HEAD
552          * is maintained by the CS in the context image, it marks the place
553          * where it got up to last time, and through RING_TAIL we tell the CS
554          * where we want to execute up to this time.
555          *
556          * In this list the requests are in order of execution. Consecutive
557          * requests from the same context are adjacent in the ringbuffer. We
558          * can combine these requests into a single RING_TAIL update:
559          *
560          *              RING_HEAD...req1...req2
561          *                                    ^- RING_TAIL
562          * since to execute req2 the CS must first execute req1.
563          *
564          * Our goal then is to point each port to the end of a consecutive
565          * sequence of requests as being the most optimal (fewest wake ups
566          * and context switches) submission.
567          */
568
569         spin_lock_irq(&engine->timeline->lock);
570         rb = execlists->first;
571         GEM_BUG_ON(rb_first(&execlists->queue) != rb);
572
573         if (last) {
574                 /*
575                  * Don't resubmit or switch until all outstanding
576                  * preemptions (lite-restore) are seen. Then we
577                  * know the next preemption status we see corresponds
578                  * to this ELSP update.
579                  */
580                 GEM_BUG_ON(!port_count(&port[0]));
581                 if (port_count(&port[0]) > 1)
582                         goto unlock;
583
584                 /*
585                  * If we write to ELSP a second time before the HW has had
586                  * a chance to respond to the previous write, we can confuse
587                  * the HW and hit "undefined behaviour". After writing to ELSP,
588                  * we must then wait until we see a context-switch event from
589                  * the HW to indicate that it has had a chance to respond.
590                  */
591                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
592                         goto unlock;
593
594                 if (need_preempt(engine, last, execlists->queue_priority)) {
595                         inject_preempt_context(engine);
596                         goto unlock;
597                 }
598
599                 /*
600                  * In theory, we could coalesce more requests onto
601                  * the second port (the first port is active, with
602                  * no preemptions pending). However, that means we
603                  * then have to deal with the possible lite-restore
604                  * of the second port (as we submit the ELSP, there
605                  * may be a context-switch) but also we may complete
606                  * the resubmission before the context-switch. Ergo,
607                  * coalescing onto the second port will cause a
608                  * preemption event, but we cannot predict whether
609                  * that will affect port[0] or port[1].
610                  *
611                  * If the second port is already active, we can wait
612                  * until the next context-switch before contemplating
613                  * new requests. The GPU will be busy and we should be
614                  * able to resubmit the new ELSP before it idles,
615                  * avoiding pipeline bubbles (momentary pauses where
616                  * the driver is unable to keep up the supply of new
617                  * work). However, we have to double check that the
618                  * priorities of the ports haven't been switch.
619                  */
620                 if (port_count(&port[1]))
621                         goto unlock;
622
623                 /*
624                  * WaIdleLiteRestore:bdw,skl
625                  * Apply the wa NOOPs to prevent
626                  * ring:HEAD == rq:TAIL as we resubmit the
627                  * request. See gen8_emit_breadcrumb() for
628                  * where we prepare the padding after the
629                  * end of the request.
630                  */
631                 last->tail = last->wa_tail;
632         }
633
634         while (rb) {
635                 struct i915_priolist *p = to_priolist(rb);
636                 struct i915_request *rq, *rn;
637
638                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
639                         /*
640                          * Can we combine this request with the current port?
641                          * It has to be the same context/ringbuffer and not
642                          * have any exceptions (e.g. GVT saying never to
643                          * combine contexts).
644                          *
645                          * If we can combine the requests, we can execute both
646                          * by updating the RING_TAIL to point to the end of the
647                          * second request, and so we never need to tell the
648                          * hardware about the first.
649                          */
650                         if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
651                                 /*
652                                  * If we are on the second port and cannot
653                                  * combine this request with the last, then we
654                                  * are done.
655                                  */
656                                 if (port == last_port) {
657                                         __list_del_many(&p->requests,
658                                                         &rq->priotree.link);
659                                         goto done;
660                                 }
661
662                                 /*
663                                  * If GVT overrides us we only ever submit
664                                  * port[0], leaving port[1] empty. Note that we
665                                  * also have to be careful that we don't queue
666                                  * the same context (even though a different
667                                  * request) to the second port.
668                                  */
669                                 if (ctx_single_port_submission(last->ctx) ||
670                                     ctx_single_port_submission(rq->ctx)) {
671                                         __list_del_many(&p->requests,
672                                                         &rq->priotree.link);
673                                         goto done;
674                                 }
675
676                                 GEM_BUG_ON(last->ctx == rq->ctx);
677
678                                 if (submit)
679                                         port_assign(port, last);
680                                 port++;
681
682                                 GEM_BUG_ON(port_isset(port));
683                         }
684
685                         INIT_LIST_HEAD(&rq->priotree.link);
686                         __i915_request_submit(rq);
687                         trace_i915_request_in(rq, port_index(port, execlists));
688                         last = rq;
689                         submit = true;
690                 }
691
692                 rb = rb_next(rb);
693                 rb_erase(&p->node, &execlists->queue);
694                 INIT_LIST_HEAD(&p->requests);
695                 if (p->priority != I915_PRIORITY_NORMAL)
696                         kmem_cache_free(engine->i915->priorities, p);
697         }
698 done:
699         execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
700         execlists->first = rb;
701         if (submit)
702                 port_assign(port, last);
703
704         /* We must always keep the beast fed if we have work piled up */
705         GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
706
707 unlock:
708         spin_unlock_irq(&engine->timeline->lock);
709
710         if (submit) {
711                 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
712                 execlists_submit_ports(engine);
713         }
714
715         GEM_BUG_ON(port_isset(execlists->port) &&
716                    !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
717 }
718
719 void
720 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
721 {
722         struct execlist_port *port = execlists->port;
723         unsigned int num_ports = execlists_num_ports(execlists);
724
725         while (num_ports-- && port_isset(port)) {
726                 struct i915_request *rq = port_request(port);
727
728                 GEM_BUG_ON(!execlists->active);
729                 intel_engine_context_out(rq->engine);
730
731                 execlists_context_status_change(rq,
732                                                 i915_request_completed(rq) ?
733                                                 INTEL_CONTEXT_SCHEDULE_OUT :
734                                                 INTEL_CONTEXT_SCHEDULE_PREEMPTED);
735
736                 i915_request_put(rq);
737
738                 memset(port, 0, sizeof(*port));
739                 port++;
740         }
741 }
742
743 static void execlists_cancel_requests(struct intel_engine_cs *engine)
744 {
745         struct intel_engine_execlists * const execlists = &engine->execlists;
746         struct i915_request *rq, *rn;
747         struct rb_node *rb;
748         unsigned long flags;
749
750         GEM_TRACE("%s\n", engine->name);
751
752         /*
753          * Before we call engine->cancel_requests(), we should have exclusive
754          * access to the submission state. This is arranged for us by the
755          * caller disabling the interrupt generation, the tasklet and other
756          * threads that may then access the same state, giving us a free hand
757          * to reset state. However, we still need to let lockdep be aware that
758          * we know this state may be accessed in hardirq context, so we
759          * disable the irq around this manipulation and we want to keep
760          * the spinlock focused on its duties and not accidentally conflate
761          * coverage to the submission's irq state. (Similarly, although we
762          * shouldn't need to disable irq around the manipulation of the
763          * submission's irq state, we also wish to remind ourselves that
764          * it is irq state.)
765          */
766         local_irq_save(flags);
767
768         /* Cancel the requests on the HW and clear the ELSP tracker. */
769         execlists_cancel_port_requests(execlists);
770
771         spin_lock(&engine->timeline->lock);
772
773         /* Mark all executing requests as skipped. */
774         list_for_each_entry(rq, &engine->timeline->requests, link) {
775                 GEM_BUG_ON(!rq->global_seqno);
776                 if (!i915_request_completed(rq))
777                         dma_fence_set_error(&rq->fence, -EIO);
778         }
779
780         /* Flush the queued requests to the timeline list (for retiring). */
781         rb = execlists->first;
782         while (rb) {
783                 struct i915_priolist *p = to_priolist(rb);
784
785                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
786                         INIT_LIST_HEAD(&rq->priotree.link);
787
788                         dma_fence_set_error(&rq->fence, -EIO);
789                         __i915_request_submit(rq);
790                 }
791
792                 rb = rb_next(rb);
793                 rb_erase(&p->node, &execlists->queue);
794                 INIT_LIST_HEAD(&p->requests);
795                 if (p->priority != I915_PRIORITY_NORMAL)
796                         kmem_cache_free(engine->i915->priorities, p);
797         }
798
799         /* Remaining _unready_ requests will be nop'ed when submitted */
800
801         execlists->queue_priority = INT_MIN;
802         execlists->queue = RB_ROOT;
803         execlists->first = NULL;
804         GEM_BUG_ON(port_isset(execlists->port));
805
806         spin_unlock(&engine->timeline->lock);
807
808         /*
809          * The port is checked prior to scheduling a tasklet, but
810          * just in case we have suspended the tasklet to do the
811          * wedging make sure that when it wakes, it decides there
812          * is no work to do by clearing the irq_posted bit.
813          */
814         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
815
816         /* Mark all CS interrupts as complete */
817         execlists->active = 0;
818
819         local_irq_restore(flags);
820 }
821
822 /*
823  * Check the unread Context Status Buffers and manage the submission of new
824  * contexts to the ELSP accordingly.
825  */
826 static void execlists_submission_tasklet(unsigned long data)
827 {
828         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
829         struct intel_engine_execlists * const execlists = &engine->execlists;
830         struct execlist_port * const port = execlists->port;
831         struct drm_i915_private *dev_priv = engine->i915;
832         bool fw = false;
833
834         /*
835          * We can skip acquiring intel_runtime_pm_get() here as it was taken
836          * on our behalf by the request (see i915_gem_mark_busy()) and it will
837          * not be relinquished until the device is idle (see
838          * i915_gem_idle_work_handler()). As a precaution, we make sure
839          * that all ELSP are drained i.e. we have processed the CSB,
840          * before allowing ourselves to idle and calling intel_runtime_pm_put().
841          */
842         GEM_BUG_ON(!dev_priv->gt.awake);
843
844         /*
845          * Prefer doing test_and_clear_bit() as a two stage operation to avoid
846          * imposing the cost of a locked atomic transaction when submitting a
847          * new request (outside of the context-switch interrupt).
848          */
849         while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
850                 /* The HWSP contains a (cacheable) mirror of the CSB */
851                 const u32 *buf =
852                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
853                 unsigned int head, tail;
854
855                 if (unlikely(execlists->csb_use_mmio)) {
856                         buf = (u32 * __force)
857                                 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
858                         execlists->csb_head = -1; /* force mmio read of CSB ptrs */
859                 }
860
861                 /* Clear before reading to catch new interrupts */
862                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
863                 smp_mb__after_atomic();
864
865                 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
866                         if (!fw) {
867                                 intel_uncore_forcewake_get(dev_priv,
868                                                            execlists->fw_domains);
869                                 fw = true;
870                         }
871
872                         head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
873                         tail = GEN8_CSB_WRITE_PTR(head);
874                         head = GEN8_CSB_READ_PTR(head);
875                         execlists->csb_head = head;
876                 } else {
877                         const int write_idx =
878                                 intel_hws_csb_write_index(dev_priv) -
879                                 I915_HWS_CSB_BUF0_INDEX;
880
881                         head = execlists->csb_head;
882                         tail = READ_ONCE(buf[write_idx]);
883                 }
884                 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
885                           engine->name,
886                           head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
887                           tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
888
889                 while (head != tail) {
890                         struct i915_request *rq;
891                         unsigned int status;
892                         unsigned int count;
893
894                         if (++head == GEN8_CSB_ENTRIES)
895                                 head = 0;
896
897                         /* We are flying near dragons again.
898                          *
899                          * We hold a reference to the request in execlist_port[]
900                          * but no more than that. We are operating in softirq
901                          * context and so cannot hold any mutex or sleep. That
902                          * prevents us stopping the requests we are processing
903                          * in port[] from being retired simultaneously (the
904                          * breadcrumb will be complete before we see the
905                          * context-switch). As we only hold the reference to the
906                          * request, any pointer chasing underneath the request
907                          * is subject to a potential use-after-free. Thus we
908                          * store all of the bookkeeping within port[] as
909                          * required, and avoid using unguarded pointers beneath
910                          * request itself. The same applies to the atomic
911                          * status notifier.
912                          */
913
914                         status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
915                         GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
916                                   engine->name, head,
917                                   status, buf[2*head + 1],
918                                   execlists->active);
919
920                         if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
921                                       GEN8_CTX_STATUS_PREEMPTED))
922                                 execlists_set_active(execlists,
923                                                      EXECLISTS_ACTIVE_HWACK);
924                         if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
925                                 execlists_clear_active(execlists,
926                                                        EXECLISTS_ACTIVE_HWACK);
927
928                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
929                                 continue;
930
931                         /* We should never get a COMPLETED | IDLE_ACTIVE! */
932                         GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
933
934                         if (status & GEN8_CTX_STATUS_COMPLETE &&
935                             buf[2*head + 1] == execlists->preempt_complete_status) {
936                                 GEM_TRACE("%s preempt-idle\n", engine->name);
937
938                                 execlists_cancel_port_requests(execlists);
939                                 execlists_unwind_incomplete_requests(execlists);
940
941                                 GEM_BUG_ON(!execlists_is_active(execlists,
942                                                                 EXECLISTS_ACTIVE_PREEMPT));
943                                 execlists_clear_active(execlists,
944                                                        EXECLISTS_ACTIVE_PREEMPT);
945                                 continue;
946                         }
947
948                         if (status & GEN8_CTX_STATUS_PREEMPTED &&
949                             execlists_is_active(execlists,
950                                                 EXECLISTS_ACTIVE_PREEMPT))
951                                 continue;
952
953                         GEM_BUG_ON(!execlists_is_active(execlists,
954                                                         EXECLISTS_ACTIVE_USER));
955
956                         rq = port_unpack(port, &count);
957                         GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
958                                   engine->name,
959                                   port->context_id, count,
960                                   rq ? rq->global_seqno : 0,
961                                   rq ? rq_prio(rq) : 0);
962
963                         /* Check the context/desc id for this event matches */
964                         GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
965
966                         GEM_BUG_ON(count == 0);
967                         if (--count == 0) {
968                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
969                                 GEM_BUG_ON(port_isset(&port[1]) &&
970                                            !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
971                                 GEM_BUG_ON(!i915_request_completed(rq));
972                                 execlists_context_schedule_out(rq);
973                                 trace_i915_request_out(rq);
974                                 i915_request_put(rq);
975
976                                 GEM_TRACE("%s completed ctx=%d\n",
977                                           engine->name, port->context_id);
978
979                                 execlists_port_complete(execlists, port);
980                         } else {
981                                 port_set(port, port_pack(rq, count));
982                         }
983
984                         /* After the final element, the hw should be idle */
985                         GEM_BUG_ON(port_count(port) == 0 &&
986                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
987                         if (port_count(port) == 0)
988                                 execlists_clear_active(execlists,
989                                                        EXECLISTS_ACTIVE_USER);
990                 }
991
992                 if (head != execlists->csb_head) {
993                         execlists->csb_head = head;
994                         writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
995                                dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
996                 }
997         }
998
999         if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1000                 execlists_dequeue(engine);
1001
1002         if (fw)
1003                 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1004 }
1005
1006 static void queue_request(struct intel_engine_cs *engine,
1007                           struct i915_priotree *pt,
1008                           int prio)
1009 {
1010         list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
1011 }
1012
1013 static void submit_queue(struct intel_engine_cs *engine, int prio)
1014 {
1015         if (prio > engine->execlists.queue_priority) {
1016                 engine->execlists.queue_priority = prio;
1017                 tasklet_hi_schedule(&engine->execlists.tasklet);
1018         }
1019 }
1020
1021 static void execlists_submit_request(struct i915_request *request)
1022 {
1023         struct intel_engine_cs *engine = request->engine;
1024         unsigned long flags;
1025
1026         /* Will be called from irq-context when using foreign fences. */
1027         spin_lock_irqsave(&engine->timeline->lock, flags);
1028
1029         queue_request(engine, &request->priotree, rq_prio(request));
1030         submit_queue(engine, rq_prio(request));
1031
1032         GEM_BUG_ON(!engine->execlists.first);
1033         GEM_BUG_ON(list_empty(&request->priotree.link));
1034
1035         spin_unlock_irqrestore(&engine->timeline->lock, flags);
1036 }
1037
1038 static struct i915_request *pt_to_request(struct i915_priotree *pt)
1039 {
1040         return container_of(pt, struct i915_request, priotree);
1041 }
1042
1043 static struct intel_engine_cs *
1044 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
1045 {
1046         struct intel_engine_cs *engine = pt_to_request(pt)->engine;
1047
1048         GEM_BUG_ON(!locked);
1049
1050         if (engine != locked) {
1051                 spin_unlock(&locked->timeline->lock);
1052                 spin_lock(&engine->timeline->lock);
1053         }
1054
1055         return engine;
1056 }
1057
1058 static void execlists_schedule(struct i915_request *request, int prio)
1059 {
1060         struct intel_engine_cs *engine;
1061         struct i915_dependency *dep, *p;
1062         struct i915_dependency stack;
1063         LIST_HEAD(dfs);
1064
1065         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1066
1067         if (i915_request_completed(request))
1068                 return;
1069
1070         if (prio <= READ_ONCE(request->priotree.priority))
1071                 return;
1072
1073         /* Need BKL in order to use the temporary link inside i915_dependency */
1074         lockdep_assert_held(&request->i915->drm.struct_mutex);
1075
1076         stack.signaler = &request->priotree;
1077         list_add(&stack.dfs_link, &dfs);
1078
1079         /*
1080          * Recursively bump all dependent priorities to match the new request.
1081          *
1082          * A naive approach would be to use recursion:
1083          * static void update_priorities(struct i915_priotree *pt, prio) {
1084          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
1085          *              update_priorities(dep->signal, prio)
1086          *      queue_request(pt);
1087          * }
1088          * but that may have unlimited recursion depth and so runs a very
1089          * real risk of overunning the kernel stack. Instead, we build
1090          * a flat list of all dependencies starting with the current request.
1091          * As we walk the list of dependencies, we add all of its dependencies
1092          * to the end of the list (this may include an already visited
1093          * request) and continue to walk onwards onto the new dependencies. The
1094          * end result is a topological list of requests in reverse order, the
1095          * last element in the list is the request we must execute first.
1096          */
1097         list_for_each_entry(dep, &dfs, dfs_link) {
1098                 struct i915_priotree *pt = dep->signaler;
1099
1100                 /*
1101                  * Within an engine, there can be no cycle, but we may
1102                  * refer to the same dependency chain multiple times
1103                  * (redundant dependencies are not eliminated) and across
1104                  * engines.
1105                  */
1106                 list_for_each_entry(p, &pt->signalers_list, signal_link) {
1107                         GEM_BUG_ON(p == dep); /* no cycles! */
1108
1109                         if (i915_priotree_signaled(p->signaler))
1110                                 continue;
1111
1112                         GEM_BUG_ON(p->signaler->priority < pt->priority);
1113                         if (prio > READ_ONCE(p->signaler->priority))
1114                                 list_move_tail(&p->dfs_link, &dfs);
1115                 }
1116         }
1117
1118         /*
1119          * If we didn't need to bump any existing priorities, and we haven't
1120          * yet submitted this request (i.e. there is no potential race with
1121          * execlists_submit_request()), we can set our own priority and skip
1122          * acquiring the engine locks.
1123          */
1124         if (request->priotree.priority == I915_PRIORITY_INVALID) {
1125                 GEM_BUG_ON(!list_empty(&request->priotree.link));
1126                 request->priotree.priority = prio;
1127                 if (stack.dfs_link.next == stack.dfs_link.prev)
1128                         return;
1129                 __list_del_entry(&stack.dfs_link);
1130         }
1131
1132         engine = request->engine;
1133         spin_lock_irq(&engine->timeline->lock);
1134
1135         /* Fifo and depth-first replacement ensure our deps execute before us */
1136         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1137                 struct i915_priotree *pt = dep->signaler;
1138
1139                 INIT_LIST_HEAD(&dep->dfs_link);
1140
1141                 engine = pt_lock_engine(pt, engine);
1142
1143                 if (prio <= pt->priority)
1144                         continue;
1145
1146                 pt->priority = prio;
1147                 if (!list_empty(&pt->link)) {
1148                         __list_del_entry(&pt->link);
1149                         queue_request(engine, pt, prio);
1150                 }
1151                 submit_queue(engine, prio);
1152         }
1153
1154         spin_unlock_irq(&engine->timeline->lock);
1155 }
1156
1157 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1158 {
1159         unsigned int flags;
1160         int err;
1161
1162         /*
1163          * Clear this page out of any CPU caches for coherent swap-in/out.
1164          * We only want to do this on the first bind so that we do not stall
1165          * on an active context (which by nature is already on the GPU).
1166          */
1167         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1168                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1169                 if (err)
1170                         return err;
1171         }
1172
1173         flags = PIN_GLOBAL | PIN_HIGH;
1174         if (ctx->ggtt_offset_bias)
1175                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1176
1177         return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1178 }
1179
1180 static struct intel_ring *
1181 execlists_context_pin(struct intel_engine_cs *engine,
1182                       struct i915_gem_context *ctx)
1183 {
1184         struct intel_context *ce = &ctx->engine[engine->id];
1185         void *vaddr;
1186         int ret;
1187
1188         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1189
1190         if (likely(ce->pin_count++))
1191                 goto out;
1192         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1193
1194         ret = execlists_context_deferred_alloc(ctx, engine);
1195         if (ret)
1196                 goto err;
1197         GEM_BUG_ON(!ce->state);
1198
1199         ret = __context_pin(ctx, ce->state);
1200         if (ret)
1201                 goto err;
1202
1203         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1204         if (IS_ERR(vaddr)) {
1205                 ret = PTR_ERR(vaddr);
1206                 goto unpin_vma;
1207         }
1208
1209         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1210         if (ret)
1211                 goto unpin_map;
1212
1213         intel_lr_context_descriptor_update(ctx, engine);
1214
1215         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1216         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1217                 i915_ggtt_offset(ce->ring->vma);
1218
1219         ce->state->obj->pin_global++;
1220         i915_gem_context_get(ctx);
1221 out:
1222         return ce->ring;
1223
1224 unpin_map:
1225         i915_gem_object_unpin_map(ce->state->obj);
1226 unpin_vma:
1227         __i915_vma_unpin(ce->state);
1228 err:
1229         ce->pin_count = 0;
1230         return ERR_PTR(ret);
1231 }
1232
1233 static void execlists_context_unpin(struct intel_engine_cs *engine,
1234                                     struct i915_gem_context *ctx)
1235 {
1236         struct intel_context *ce = &ctx->engine[engine->id];
1237
1238         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1239         GEM_BUG_ON(ce->pin_count == 0);
1240
1241         if (--ce->pin_count)
1242                 return;
1243
1244         intel_ring_unpin(ce->ring);
1245
1246         ce->state->obj->pin_global--;
1247         i915_gem_object_unpin_map(ce->state->obj);
1248         i915_vma_unpin(ce->state);
1249
1250         i915_gem_context_put(ctx);
1251 }
1252
1253 static int execlists_request_alloc(struct i915_request *request)
1254 {
1255         struct intel_engine_cs *engine = request->engine;
1256         struct intel_context *ce = &request->ctx->engine[engine->id];
1257         int ret;
1258
1259         GEM_BUG_ON(!ce->pin_count);
1260
1261         /* Flush enough space to reduce the likelihood of waiting after
1262          * we start building the request - in which case we will just
1263          * have to repeat work.
1264          */
1265         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1266
1267         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1268         if (ret)
1269                 return ret;
1270
1271         /* Note that after this point, we have committed to using
1272          * this request as it is being used to both track the
1273          * state of engine initialisation and liveness of the
1274          * golden renderstate above. Think twice before you try
1275          * to cancel/unwind this request now.
1276          */
1277
1278         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1279         return 0;
1280 }
1281
1282 /*
1283  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1284  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1285  * but there is a slight complication as this is applied in WA batch where the
1286  * values are only initialized once so we cannot take register value at the
1287  * beginning and reuse it further; hence we save its value to memory, upload a
1288  * constant value with bit21 set and then we restore it back with the saved value.
1289  * To simplify the WA, a constant value is formed by using the default value
1290  * of this register. This shouldn't be a problem because we are only modifying
1291  * it for a short period and this batch in non-premptible. We can ofcourse
1292  * use additional instructions that read the actual value of the register
1293  * at that time and set our bit of interest but it makes the WA complicated.
1294  *
1295  * This WA is also required for Gen9 so extracting as a function avoids
1296  * code duplication.
1297  */
1298 static u32 *
1299 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1300 {
1301         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1302         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1303         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1304         *batch++ = 0;
1305
1306         *batch++ = MI_LOAD_REGISTER_IMM(1);
1307         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1308         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1309
1310         batch = gen8_emit_pipe_control(batch,
1311                                        PIPE_CONTROL_CS_STALL |
1312                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1313                                        0);
1314
1315         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1316         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1317         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1318         *batch++ = 0;
1319
1320         return batch;
1321 }
1322
1323 /*
1324  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1325  * initialized at the beginning and shared across all contexts but this field
1326  * helps us to have multiple batches at different offsets and select them based
1327  * on a criteria. At the moment this batch always start at the beginning of the page
1328  * and at this point we don't have multiple wa_ctx batch buffers.
1329  *
1330  * The number of WA applied are not known at the beginning; we use this field
1331  * to return the no of DWORDS written.
1332  *
1333  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1334  * so it adds NOOPs as padding to make it cacheline aligned.
1335  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1336  * makes a complete batch buffer.
1337  */
1338 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1339 {
1340         /* WaDisableCtxRestoreArbitration:bdw,chv */
1341         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1342
1343         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1344         if (IS_BROADWELL(engine->i915))
1345                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1346
1347         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1348         /* Actual scratch location is at 128 bytes offset */
1349         batch = gen8_emit_pipe_control(batch,
1350                                        PIPE_CONTROL_FLUSH_L3 |
1351                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1352                                        PIPE_CONTROL_CS_STALL |
1353                                        PIPE_CONTROL_QW_WRITE,
1354                                        i915_ggtt_offset(engine->scratch) +
1355                                        2 * CACHELINE_BYTES);
1356
1357         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1358
1359         /* Pad to end of cacheline */
1360         while ((unsigned long)batch % CACHELINE_BYTES)
1361                 *batch++ = MI_NOOP;
1362
1363         /*
1364          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1365          * execution depends on the length specified in terms of cache lines
1366          * in the register CTX_RCS_INDIRECT_CTX
1367          */
1368
1369         return batch;
1370 }
1371
1372 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1373 {
1374         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1375
1376         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1377         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1378
1379         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1380         *batch++ = MI_LOAD_REGISTER_IMM(1);
1381         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1382         *batch++ = _MASKED_BIT_DISABLE(
1383                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1384         *batch++ = MI_NOOP;
1385
1386         /* WaClearSlmSpaceAtContextSwitch:kbl */
1387         /* Actual scratch location is at 128 bytes offset */
1388         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1389                 batch = gen8_emit_pipe_control(batch,
1390                                                PIPE_CONTROL_FLUSH_L3 |
1391                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1392                                                PIPE_CONTROL_CS_STALL |
1393                                                PIPE_CONTROL_QW_WRITE,
1394                                                i915_ggtt_offset(engine->scratch)
1395                                                + 2 * CACHELINE_BYTES);
1396         }
1397
1398         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1399         if (HAS_POOLED_EU(engine->i915)) {
1400                 /*
1401                  * EU pool configuration is setup along with golden context
1402                  * during context initialization. This value depends on
1403                  * device type (2x6 or 3x6) and needs to be updated based
1404                  * on which subslice is disabled especially for 2x6
1405                  * devices, however it is safe to load default
1406                  * configuration of 3x6 device instead of masking off
1407                  * corresponding bits because HW ignores bits of a disabled
1408                  * subslice and drops down to appropriate config. Please
1409                  * see render_state_setup() in i915_gem_render_state.c for
1410                  * possible configurations, to avoid duplication they are
1411                  * not shown here again.
1412                  */
1413                 *batch++ = GEN9_MEDIA_POOL_STATE;
1414                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1415                 *batch++ = 0x00777000;
1416                 *batch++ = 0;
1417                 *batch++ = 0;
1418                 *batch++ = 0;
1419         }
1420
1421         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1422
1423         /* Pad to end of cacheline */
1424         while ((unsigned long)batch % CACHELINE_BYTES)
1425                 *batch++ = MI_NOOP;
1426
1427         return batch;
1428 }
1429
1430 static u32 *
1431 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1432 {
1433         int i;
1434
1435         /*
1436          * WaPipeControlBefore3DStateSamplePattern: cnl
1437          *
1438          * Ensure the engine is idle prior to programming a
1439          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1440          */
1441         batch = gen8_emit_pipe_control(batch,
1442                                        PIPE_CONTROL_CS_STALL,
1443                                        0);
1444         /*
1445          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1446          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1447          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1448          * confusing. Since gen8_emit_pipe_control() already advances the
1449          * batch by 6 dwords, we advance the other 10 here, completing a
1450          * cacheline. It's not clear if the workaround requires this padding
1451          * before other commands, or if it's just the regular padding we would
1452          * already have for the workaround bb, so leave it here for now.
1453          */
1454         for (i = 0; i < 10; i++)
1455                 *batch++ = MI_NOOP;
1456
1457         /* Pad to end of cacheline */
1458         while ((unsigned long)batch % CACHELINE_BYTES)
1459                 *batch++ = MI_NOOP;
1460
1461         return batch;
1462 }
1463
1464 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1465
1466 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1467 {
1468         struct drm_i915_gem_object *obj;
1469         struct i915_vma *vma;
1470         int err;
1471
1472         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1473         if (IS_ERR(obj))
1474                 return PTR_ERR(obj);
1475
1476         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1477         if (IS_ERR(vma)) {
1478                 err = PTR_ERR(vma);
1479                 goto err;
1480         }
1481
1482         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1483         if (err)
1484                 goto err;
1485
1486         engine->wa_ctx.vma = vma;
1487         return 0;
1488
1489 err:
1490         i915_gem_object_put(obj);
1491         return err;
1492 }
1493
1494 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1495 {
1496         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1497 }
1498
1499 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1500
1501 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1502 {
1503         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1504         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1505                                             &wa_ctx->per_ctx };
1506         wa_bb_func_t wa_bb_fn[2];
1507         struct page *page;
1508         void *batch, *batch_ptr;
1509         unsigned int i;
1510         int ret;
1511
1512         if (GEM_WARN_ON(engine->id != RCS))
1513                 return -EINVAL;
1514
1515         switch (INTEL_GEN(engine->i915)) {
1516         case 10:
1517                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1518                 wa_bb_fn[1] = NULL;
1519                 break;
1520         case 9:
1521                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1522                 wa_bb_fn[1] = NULL;
1523                 break;
1524         case 8:
1525                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1526                 wa_bb_fn[1] = NULL;
1527                 break;
1528         default:
1529                 MISSING_CASE(INTEL_GEN(engine->i915));
1530                 return 0;
1531         }
1532
1533         ret = lrc_setup_wa_ctx(engine);
1534         if (ret) {
1535                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1536                 return ret;
1537         }
1538
1539         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1540         batch = batch_ptr = kmap_atomic(page);
1541
1542         /*
1543          * Emit the two workaround batch buffers, recording the offset from the
1544          * start of the workaround batch buffer object for each and their
1545          * respective sizes.
1546          */
1547         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1548                 wa_bb[i]->offset = batch_ptr - batch;
1549                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1550                                             CACHELINE_BYTES))) {
1551                         ret = -EINVAL;
1552                         break;
1553                 }
1554                 if (wa_bb_fn[i])
1555                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1556                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1557         }
1558
1559         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1560
1561         kunmap_atomic(batch);
1562         if (ret)
1563                 lrc_destroy_wa_ctx(engine);
1564
1565         return ret;
1566 }
1567
1568 static u8 gtiir[] = {
1569         [RCS] = 0,
1570         [BCS] = 0,
1571         [VCS] = 1,
1572         [VCS2] = 1,
1573         [VECS] = 3,
1574 };
1575
1576 static void enable_execlists(struct intel_engine_cs *engine)
1577 {
1578         struct drm_i915_private *dev_priv = engine->i915;
1579
1580         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1581
1582         /*
1583          * Make sure we're not enabling the new 12-deep CSB
1584          * FIFO as that requires a slightly updated handling
1585          * in the ctx switch irq. Since we're currently only
1586          * using only 2 elements of the enhanced execlists the
1587          * deeper FIFO it's not needed and it's not worth adding
1588          * more statements to the irq handler to support it.
1589          */
1590         if (INTEL_GEN(dev_priv) >= 11)
1591                 I915_WRITE(RING_MODE_GEN7(engine),
1592                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1593         else
1594                 I915_WRITE(RING_MODE_GEN7(engine),
1595                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1596
1597         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1598                    engine->status_page.ggtt_offset);
1599         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1600
1601         /* Following the reset, we need to reload the CSB read/write pointers */
1602         engine->execlists.csb_head = -1;
1603 }
1604
1605 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1606 {
1607         struct intel_engine_execlists * const execlists = &engine->execlists;
1608         int ret;
1609
1610         ret = intel_mocs_init_engine(engine);
1611         if (ret)
1612                 return ret;
1613
1614         intel_engine_reset_breadcrumbs(engine);
1615         intel_engine_init_hangcheck(engine);
1616
1617         enable_execlists(engine);
1618
1619         /* After a GPU reset, we may have requests to replay */
1620         if (execlists->first)
1621                 tasklet_schedule(&execlists->tasklet);
1622
1623         return 0;
1624 }
1625
1626 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1627 {
1628         struct drm_i915_private *dev_priv = engine->i915;
1629         int ret;
1630
1631         ret = gen8_init_common_ring(engine);
1632         if (ret)
1633                 return ret;
1634
1635         /* We need to disable the AsyncFlip performance optimisations in order
1636          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1637          * programmed to '1' on all products.
1638          *
1639          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1640          */
1641         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1642
1643         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1644
1645         return init_workarounds_ring(engine);
1646 }
1647
1648 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1649 {
1650         int ret;
1651
1652         ret = gen8_init_common_ring(engine);
1653         if (ret)
1654                 return ret;
1655
1656         return init_workarounds_ring(engine);
1657 }
1658
1659 static void reset_irq(struct intel_engine_cs *engine)
1660 {
1661         struct drm_i915_private *dev_priv = engine->i915;
1662         int i;
1663
1664         GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1665
1666         /*
1667          * Clear any pending interrupt state.
1668          *
1669          * We do it twice out of paranoia that some of the IIR are double
1670          * buffered, and if we only reset it once there may still be
1671          * an interrupt pending.
1672          */
1673         for (i = 0; i < 2; i++) {
1674                 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1675                            GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1676                 POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
1677         }
1678         GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
1679                    (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));
1680
1681         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1682 }
1683
1684 static void reset_common_ring(struct intel_engine_cs *engine,
1685                               struct i915_request *request)
1686 {
1687         struct intel_engine_execlists * const execlists = &engine->execlists;
1688         struct intel_context *ce;
1689         unsigned long flags;
1690
1691         GEM_TRACE("%s seqno=%x\n",
1692                   engine->name, request ? request->global_seqno : 0);
1693
1694         /* See execlists_cancel_requests() for the irq/spinlock split. */
1695         local_irq_save(flags);
1696
1697         reset_irq(engine);
1698
1699         /*
1700          * Catch up with any missed context-switch interrupts.
1701          *
1702          * Ideally we would just read the remaining CSB entries now that we
1703          * know the gpu is idle. However, the CSB registers are sometimes^W
1704          * often trashed across a GPU reset! Instead we have to rely on
1705          * guessing the missed context-switch events by looking at what
1706          * requests were completed.
1707          */
1708         execlists_cancel_port_requests(execlists);
1709
1710         /* Push back any incomplete requests for replay after the reset. */
1711         spin_lock(&engine->timeline->lock);
1712         __unwind_incomplete_requests(engine);
1713         spin_unlock(&engine->timeline->lock);
1714
1715         /* Mark all CS interrupts as complete */
1716         execlists->active = 0;
1717
1718         local_irq_restore(flags);
1719
1720         /*
1721          * If the request was innocent, we leave the request in the ELSP
1722          * and will try to replay it on restarting. The context image may
1723          * have been corrupted by the reset, in which case we may have
1724          * to service a new GPU hang, but more likely we can continue on
1725          * without impact.
1726          *
1727          * If the request was guilty, we presume the context is corrupt
1728          * and have to at least restore the RING register in the context
1729          * image back to the expected values to skip over the guilty request.
1730          */
1731         if (!request || request->fence.error != -EIO)
1732                 return;
1733
1734         /*
1735          * We want a simple context + ring to execute the breadcrumb update.
1736          * We cannot rely on the context being intact across the GPU hang,
1737          * so clear it and rebuild just what we need for the breadcrumb.
1738          * All pending requests for this context will be zapped, and any
1739          * future request will be after userspace has had the opportunity
1740          * to recreate its own state.
1741          */
1742         ce = &request->ctx->engine[engine->id];
1743         execlists_init_reg_state(ce->lrc_reg_state,
1744                                  request->ctx, engine, ce->ring);
1745
1746         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1747         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1748                 i915_ggtt_offset(ce->ring->vma);
1749         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1750
1751         request->ring->head = request->postfix;
1752         intel_ring_update_space(request->ring);
1753
1754         /* Reset WaIdleLiteRestore:bdw,skl as well */
1755         unwind_wa_tail(request);
1756 }
1757
1758 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1759 {
1760         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
1761         struct intel_engine_cs *engine = rq->engine;
1762         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1763         u32 *cs;
1764         int i;
1765
1766         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1767         if (IS_ERR(cs))
1768                 return PTR_ERR(cs);
1769
1770         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1771         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1772                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1773
1774                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1775                 *cs++ = upper_32_bits(pd_daddr);
1776                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1777                 *cs++ = lower_32_bits(pd_daddr);
1778         }
1779
1780         *cs++ = MI_NOOP;
1781         intel_ring_advance(rq, cs);
1782
1783         return 0;
1784 }
1785
1786 static int gen8_emit_bb_start(struct i915_request *rq,
1787                               u64 offset, u32 len,
1788                               const unsigned int flags)
1789 {
1790         u32 *cs;
1791         int ret;
1792
1793         /* Don't rely in hw updating PDPs, specially in lite-restore.
1794          * Ideally, we should set Force PD Restore in ctx descriptor,
1795          * but we can't. Force Restore would be a second option, but
1796          * it is unsafe in case of lite-restore (because the ctx is
1797          * not idle). PML4 is allocated during ppgtt init so this is
1798          * not needed in 48-bit.*/
1799         if (rq->ctx->ppgtt &&
1800             (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
1801             !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
1802             !intel_vgpu_active(rq->i915)) {
1803                 ret = intel_logical_ring_emit_pdps(rq);
1804                 if (ret)
1805                         return ret;
1806
1807                 rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1808         }
1809
1810         cs = intel_ring_begin(rq, 4);
1811         if (IS_ERR(cs))
1812                 return PTR_ERR(cs);
1813
1814         /*
1815          * WaDisableCtxRestoreArbitration:bdw,chv
1816          *
1817          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1818          * particular all the gen that do not need the w/a at all!), if we
1819          * took care to make sure that on every switch into this context
1820          * (both ordinary and for preemption) that arbitrartion was enabled
1821          * we would be fine. However, there doesn't seem to be a downside to
1822          * being paranoid and making sure it is set before each batch and
1823          * every context-switch.
1824          *
1825          * Note that if we fail to enable arbitration before the request
1826          * is complete, then we do not see the context-switch interrupt and
1827          * the engine hangs (with RING_HEAD == RING_TAIL).
1828          *
1829          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1830          */
1831         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1832
1833         /* FIXME(BDW): Address space and security selectors. */
1834         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1835                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1836                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1837         *cs++ = lower_32_bits(offset);
1838         *cs++ = upper_32_bits(offset);
1839         intel_ring_advance(rq, cs);
1840
1841         return 0;
1842 }
1843
1844 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1845 {
1846         struct drm_i915_private *dev_priv = engine->i915;
1847         I915_WRITE_IMR(engine,
1848                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1849         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1850 }
1851
1852 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1853 {
1854         struct drm_i915_private *dev_priv = engine->i915;
1855         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1856 }
1857
1858 static int gen8_emit_flush(struct i915_request *request, u32 mode)
1859 {
1860         u32 cmd, *cs;
1861
1862         cs = intel_ring_begin(request, 4);
1863         if (IS_ERR(cs))
1864                 return PTR_ERR(cs);
1865
1866         cmd = MI_FLUSH_DW + 1;
1867
1868         /* We always require a command barrier so that subsequent
1869          * commands, such as breadcrumb interrupts, are strictly ordered
1870          * wrt the contents of the write cache being flushed to memory
1871          * (and thus being coherent from the CPU).
1872          */
1873         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1874
1875         if (mode & EMIT_INVALIDATE) {
1876                 cmd |= MI_INVALIDATE_TLB;
1877                 if (request->engine->id == VCS)
1878                         cmd |= MI_INVALIDATE_BSD;
1879         }
1880
1881         *cs++ = cmd;
1882         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1883         *cs++ = 0; /* upper addr */
1884         *cs++ = 0; /* value */
1885         intel_ring_advance(request, cs);
1886
1887         return 0;
1888 }
1889
1890 static int gen8_emit_flush_render(struct i915_request *request,
1891                                   u32 mode)
1892 {
1893         struct intel_engine_cs *engine = request->engine;
1894         u32 scratch_addr =
1895                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1896         bool vf_flush_wa = false, dc_flush_wa = false;
1897         u32 *cs, flags = 0;
1898         int len;
1899
1900         flags |= PIPE_CONTROL_CS_STALL;
1901
1902         if (mode & EMIT_FLUSH) {
1903                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1904                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1905                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1906                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1907         }
1908
1909         if (mode & EMIT_INVALIDATE) {
1910                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1911                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1912                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1913                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1914                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1915                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1916                 flags |= PIPE_CONTROL_QW_WRITE;
1917                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1918
1919                 /*
1920                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1921                  * pipe control.
1922                  */
1923                 if (IS_GEN9(request->i915))
1924                         vf_flush_wa = true;
1925
1926                 /* WaForGAMHang:kbl */
1927                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1928                         dc_flush_wa = true;
1929         }
1930
1931         len = 6;
1932
1933         if (vf_flush_wa)
1934                 len += 6;
1935
1936         if (dc_flush_wa)
1937                 len += 12;
1938
1939         cs = intel_ring_begin(request, len);
1940         if (IS_ERR(cs))
1941                 return PTR_ERR(cs);
1942
1943         if (vf_flush_wa)
1944                 cs = gen8_emit_pipe_control(cs, 0, 0);
1945
1946         if (dc_flush_wa)
1947                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1948                                             0);
1949
1950         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1951
1952         if (dc_flush_wa)
1953                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1954
1955         intel_ring_advance(request, cs);
1956
1957         return 0;
1958 }
1959
1960 /*
1961  * Reserve space for 2 NOOPs at the end of each request to be
1962  * used as a workaround for not being allowed to do lite
1963  * restore with HEAD==TAIL (WaIdleLiteRestore).
1964  */
1965 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1966 {
1967         /* Ensure there's always at least one preemption point per-request. */
1968         *cs++ = MI_ARB_CHECK;
1969         *cs++ = MI_NOOP;
1970         request->wa_tail = intel_ring_offset(request, cs);
1971 }
1972
1973 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
1974 {
1975         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1976         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1977
1978         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1979                                   intel_hws_seqno_address(request->engine));
1980         *cs++ = MI_USER_INTERRUPT;
1981         *cs++ = MI_NOOP;
1982         request->tail = intel_ring_offset(request, cs);
1983         assert_ring_tail_valid(request->ring, request->tail);
1984
1985         gen8_emit_wa_tail(request, cs);
1986 }
1987 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1988
1989 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
1990 {
1991         /* We're using qword write, seqno should be aligned to 8 bytes. */
1992         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1993
1994         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
1995                                       intel_hws_seqno_address(request->engine));
1996         *cs++ = MI_USER_INTERRUPT;
1997         *cs++ = MI_NOOP;
1998         request->tail = intel_ring_offset(request, cs);
1999         assert_ring_tail_valid(request->ring, request->tail);
2000
2001         gen8_emit_wa_tail(request, cs);
2002 }
2003 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2004
2005 static int gen8_init_rcs_context(struct i915_request *rq)
2006 {
2007         int ret;
2008
2009         ret = intel_ring_workarounds_emit(rq);
2010         if (ret)
2011                 return ret;
2012
2013         ret = intel_rcs_context_init_mocs(rq);
2014         /*
2015          * Failing to program the MOCS is non-fatal.The system will not
2016          * run at peak performance. So generate an error and carry on.
2017          */
2018         if (ret)
2019                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2020
2021         return i915_gem_render_state_emit(rq);
2022 }
2023
2024 /**
2025  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2026  * @engine: Engine Command Streamer.
2027  */
2028 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2029 {
2030         struct drm_i915_private *dev_priv;
2031
2032         /*
2033          * Tasklet cannot be active at this point due intel_mark_active/idle
2034          * so this is just for documentation.
2035          */
2036         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2037                              &engine->execlists.tasklet.state)))
2038                 tasklet_kill(&engine->execlists.tasklet);
2039
2040         dev_priv = engine->i915;
2041
2042         if (engine->buffer) {
2043                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2044         }
2045
2046         if (engine->cleanup)
2047                 engine->cleanup(engine);
2048
2049         intel_engine_cleanup_common(engine);
2050
2051         lrc_destroy_wa_ctx(engine);
2052
2053         engine->i915 = NULL;
2054         dev_priv->engine[engine->id] = NULL;
2055         kfree(engine);
2056 }
2057
2058 static void execlists_set_default_submission(struct intel_engine_cs *engine)
2059 {
2060         engine->submit_request = execlists_submit_request;
2061         engine->cancel_requests = execlists_cancel_requests;
2062         engine->schedule = execlists_schedule;
2063         engine->execlists.tasklet.func = execlists_submission_tasklet;
2064
2065         engine->park = NULL;
2066         engine->unpark = NULL;
2067
2068         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2069
2070         engine->i915->caps.scheduler =
2071                 I915_SCHEDULER_CAP_ENABLED |
2072                 I915_SCHEDULER_CAP_PRIORITY;
2073         if (engine->i915->preempt_context)
2074                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2075 }
2076
2077 static void
2078 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2079 {
2080         /* Default vfuncs which can be overriden by each engine. */
2081         engine->init_hw = gen8_init_common_ring;
2082         engine->reset_hw = reset_common_ring;
2083
2084         engine->context_pin = execlists_context_pin;
2085         engine->context_unpin = execlists_context_unpin;
2086
2087         engine->request_alloc = execlists_request_alloc;
2088
2089         engine->emit_flush = gen8_emit_flush;
2090         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2091         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2092
2093         engine->set_default_submission = execlists_set_default_submission;
2094
2095         if (INTEL_GEN(engine->i915) < 11) {
2096                 engine->irq_enable = gen8_logical_ring_enable_irq;
2097                 engine->irq_disable = gen8_logical_ring_disable_irq;
2098         } else {
2099                 /*
2100                  * TODO: On Gen11 interrupt masks need to be clear
2101                  * to allow C6 entry. Keep interrupts enabled at
2102                  * and take the hit of generating extra interrupts
2103                  * until a more refined solution exists.
2104                  */
2105         }
2106         engine->emit_bb_start = gen8_emit_bb_start;
2107 }
2108
2109 static inline void
2110 logical_ring_default_irqs(struct intel_engine_cs *engine)
2111 {
2112         unsigned shift = engine->irq_shift;
2113         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2114         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2115 }
2116
2117 static void
2118 logical_ring_setup(struct intel_engine_cs *engine)
2119 {
2120         struct drm_i915_private *dev_priv = engine->i915;
2121         enum forcewake_domains fw_domains;
2122
2123         intel_engine_setup_common(engine);
2124
2125         /* Intentionally left blank. */
2126         engine->buffer = NULL;
2127
2128         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2129                                                     RING_ELSP(engine),
2130                                                     FW_REG_WRITE);
2131
2132         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2133                                                      RING_CONTEXT_STATUS_PTR(engine),
2134                                                      FW_REG_READ | FW_REG_WRITE);
2135
2136         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2137                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2138                                                      FW_REG_READ);
2139
2140         engine->execlists.fw_domains = fw_domains;
2141
2142         tasklet_init(&engine->execlists.tasklet,
2143                      execlists_submission_tasklet, (unsigned long)engine);
2144
2145         logical_ring_default_vfuncs(engine);
2146         logical_ring_default_irqs(engine);
2147 }
2148
2149 static int logical_ring_init(struct intel_engine_cs *engine)
2150 {
2151         int ret;
2152
2153         ret = intel_engine_init_common(engine);
2154         if (ret)
2155                 goto error;
2156
2157         if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2158                 engine->execlists.submit_reg = engine->i915->regs +
2159                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2160                 engine->execlists.ctrl_reg = engine->i915->regs +
2161                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2162         } else {
2163                 engine->execlists.submit_reg = engine->i915->regs +
2164                         i915_mmio_reg_offset(RING_ELSP(engine));
2165         }
2166
2167         engine->execlists.preempt_complete_status = ~0u;
2168         if (engine->i915->preempt_context)
2169                 engine->execlists.preempt_complete_status =
2170                         upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);
2171
2172         return 0;
2173
2174 error:
2175         intel_logical_ring_cleanup(engine);
2176         return ret;
2177 }
2178
2179 int logical_render_ring_init(struct intel_engine_cs *engine)
2180 {
2181         struct drm_i915_private *dev_priv = engine->i915;
2182         int ret;
2183
2184         logical_ring_setup(engine);
2185
2186         if (HAS_L3_DPF(dev_priv))
2187                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2188
2189         /* Override some for render ring. */
2190         if (INTEL_GEN(dev_priv) >= 9)
2191                 engine->init_hw = gen9_init_render_ring;
2192         else
2193                 engine->init_hw = gen8_init_render_ring;
2194         engine->init_context = gen8_init_rcs_context;
2195         engine->emit_flush = gen8_emit_flush_render;
2196         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2197         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2198
2199         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2200         if (ret)
2201                 return ret;
2202
2203         ret = intel_init_workaround_bb(engine);
2204         if (ret) {
2205                 /*
2206                  * We continue even if we fail to initialize WA batch
2207                  * because we only expect rare glitches but nothing
2208                  * critical to prevent us from using GPU
2209                  */
2210                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2211                           ret);
2212         }
2213
2214         return logical_ring_init(engine);
2215 }
2216
2217 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2218 {
2219         logical_ring_setup(engine);
2220
2221         return logical_ring_init(engine);
2222 }
2223
2224 static u32
2225 make_rpcs(struct drm_i915_private *dev_priv)
2226 {
2227         u32 rpcs = 0;
2228
2229         /*
2230          * No explicit RPCS request is needed to ensure full
2231          * slice/subslice/EU enablement prior to Gen9.
2232         */
2233         if (INTEL_GEN(dev_priv) < 9)
2234                 return 0;
2235
2236         /*
2237          * Starting in Gen9, render power gating can leave
2238          * slice/subslice/EU in a partially enabled state. We
2239          * must make an explicit request through RPCS for full
2240          * enablement.
2241         */
2242         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2243                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2244                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2245                         GEN8_RPCS_S_CNT_SHIFT;
2246                 rpcs |= GEN8_RPCS_ENABLE;
2247         }
2248
2249         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2250                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2251                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2252                         GEN8_RPCS_SS_CNT_SHIFT;
2253                 rpcs |= GEN8_RPCS_ENABLE;
2254         }
2255
2256         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2257                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2258                         GEN8_RPCS_EU_MIN_SHIFT;
2259                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2260                         GEN8_RPCS_EU_MAX_SHIFT;
2261                 rpcs |= GEN8_RPCS_ENABLE;
2262         }
2263
2264         return rpcs;
2265 }
2266
2267 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2268 {
2269         u32 indirect_ctx_offset;
2270
2271         switch (INTEL_GEN(engine->i915)) {
2272         default:
2273                 MISSING_CASE(INTEL_GEN(engine->i915));
2274                 /* fall through */
2275         case 11:
2276                 indirect_ctx_offset =
2277                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2278                 break;
2279         case 10:
2280                 indirect_ctx_offset =
2281                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2282                 break;
2283         case 9:
2284                 indirect_ctx_offset =
2285                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2286                 break;
2287         case 8:
2288                 indirect_ctx_offset =
2289                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2290                 break;
2291         }
2292
2293         return indirect_ctx_offset;
2294 }
2295
2296 static void execlists_init_reg_state(u32 *regs,
2297                                      struct i915_gem_context *ctx,
2298                                      struct intel_engine_cs *engine,
2299                                      struct intel_ring *ring)
2300 {
2301         struct drm_i915_private *dev_priv = engine->i915;
2302         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2303         u32 base = engine->mmio_base;
2304         bool rcs = engine->id == RCS;
2305
2306         /* A context is actually a big batch buffer with several
2307          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2308          * values we are setting here are only for the first context restore:
2309          * on a subsequent save, the GPU will recreate this batchbuffer with new
2310          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2311          * we are not initializing here).
2312          */
2313         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2314                                  MI_LRI_FORCE_POSTED;
2315
2316         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2317                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2318                                     CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2319                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2320                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
2321                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
2322         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2323         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2324         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2325         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2326                 RING_CTL_SIZE(ring->size) | RING_VALID);
2327         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2328         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2329         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2330         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2331         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2332         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2333         if (rcs) {
2334                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2335
2336                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2337                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2338                         RING_INDIRECT_CTX_OFFSET(base), 0);
2339                 if (wa_ctx->indirect_ctx.size) {
2340                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2341
2342                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2343                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2344                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2345
2346                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2347                                 intel_lr_indirect_ctx_offset(engine) << 6;
2348                 }
2349
2350                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2351                 if (wa_ctx->per_ctx.size) {
2352                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2353
2354                         regs[CTX_BB_PER_CTX_PTR + 1] =
2355                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2356                 }
2357         }
2358
2359         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2360
2361         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2362         /* PDP values well be assigned later if needed */
2363         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2364         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2365         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2366         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2367         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2368         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2369         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2370         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2371
2372         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2373                 /* 64b PPGTT (48bit canonical)
2374                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2375                  * other PDP Descriptors are ignored.
2376                  */
2377                 ASSIGN_CTX_PML4(ppgtt, regs);
2378         }
2379
2380         if (rcs) {
2381                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2382                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2383                         make_rpcs(dev_priv));
2384
2385                 i915_oa_init_reg_state(engine, ctx, regs);
2386         }
2387 }
2388
2389 static int
2390 populate_lr_context(struct i915_gem_context *ctx,
2391                     struct drm_i915_gem_object *ctx_obj,
2392                     struct intel_engine_cs *engine,
2393                     struct intel_ring *ring)
2394 {
2395         void *vaddr;
2396         u32 *regs;
2397         int ret;
2398
2399         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2400         if (ret) {
2401                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2402                 return ret;
2403         }
2404
2405         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2406         if (IS_ERR(vaddr)) {
2407                 ret = PTR_ERR(vaddr);
2408                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2409                 return ret;
2410         }
2411         ctx_obj->mm.dirty = true;
2412
2413         if (engine->default_state) {
2414                 /*
2415                  * We only want to copy over the template context state;
2416                  * skipping over the headers reserved for GuC communication,
2417                  * leaving those as zero.
2418                  */
2419                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2420                 void *defaults;
2421
2422                 defaults = i915_gem_object_pin_map(engine->default_state,
2423                                                    I915_MAP_WB);
2424                 if (IS_ERR(defaults))
2425                         return PTR_ERR(defaults);
2426
2427                 memcpy(vaddr + start, defaults + start, engine->context_size);
2428                 i915_gem_object_unpin_map(engine->default_state);
2429         }
2430
2431         /* The second page of the context object contains some fields which must
2432          * be set up prior to the first execution. */
2433         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2434         execlists_init_reg_state(regs, ctx, engine, ring);
2435         if (!engine->default_state)
2436                 regs[CTX_CONTEXT_CONTROL + 1] |=
2437                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2438         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2439                 regs[CTX_CONTEXT_CONTROL + 1] |=
2440                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2441                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2442
2443         i915_gem_object_unpin_map(ctx_obj);
2444
2445         return 0;
2446 }
2447
2448 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2449                                             struct intel_engine_cs *engine)
2450 {
2451         struct drm_i915_gem_object *ctx_obj;
2452         struct intel_context *ce = &ctx->engine[engine->id];
2453         struct i915_vma *vma;
2454         uint32_t context_size;
2455         struct intel_ring *ring;
2456         int ret;
2457
2458         if (ce->state)
2459                 return 0;
2460
2461         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2462
2463         /*
2464          * Before the actual start of the context image, we insert a few pages
2465          * for our own use and for sharing with the GuC.
2466          */
2467         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2468
2469         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2470         if (IS_ERR(ctx_obj)) {
2471                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2472                 return PTR_ERR(ctx_obj);
2473         }
2474
2475         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2476         if (IS_ERR(vma)) {
2477                 ret = PTR_ERR(vma);
2478                 goto error_deref_obj;
2479         }
2480
2481         ring = intel_engine_create_ring(engine, ctx->ring_size);
2482         if (IS_ERR(ring)) {
2483                 ret = PTR_ERR(ring);
2484                 goto error_deref_obj;
2485         }
2486
2487         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2488         if (ret) {
2489                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2490                 goto error_ring_free;
2491         }
2492
2493         ce->ring = ring;
2494         ce->state = vma;
2495
2496         return 0;
2497
2498 error_ring_free:
2499         intel_ring_free(ring);
2500 error_deref_obj:
2501         i915_gem_object_put(ctx_obj);
2502         return ret;
2503 }
2504
2505 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2506 {
2507         struct intel_engine_cs *engine;
2508         struct i915_gem_context *ctx;
2509         enum intel_engine_id id;
2510
2511         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2512          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2513          * that stored in context. As we only write new commands from
2514          * ce->ring->tail onwards, everything before that is junk. If the GPU
2515          * starts reading from its RING_HEAD from the context, it may try to
2516          * execute that junk and die.
2517          *
2518          * So to avoid that we reset the context images upon resume. For
2519          * simplicity, we just zero everything out.
2520          */
2521         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2522                 for_each_engine(engine, dev_priv, id) {
2523                         struct intel_context *ce = &ctx->engine[engine->id];
2524                         u32 *reg;
2525
2526                         if (!ce->state)
2527                                 continue;
2528
2529                         reg = i915_gem_object_pin_map(ce->state->obj,
2530                                                       I915_MAP_WB);
2531                         if (WARN_ON(IS_ERR(reg)))
2532                                 continue;
2533
2534                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2535                         reg[CTX_RING_HEAD+1] = 0;
2536                         reg[CTX_RING_TAIL+1] = 0;
2537
2538                         ce->state->obj->mm.dirty = true;
2539                         i915_gem_object_unpin_map(ce->state->obj);
2540
2541                         intel_ring_reset(ce->ring, 0);
2542                 }
2543         }
2544 }