drm/i915: Also record time difference if vblank evasion fails, v2.
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define CTX_LRI_HEADER_0                0x01
159 #define CTX_CONTEXT_CONTROL             0x02
160 #define CTX_RING_HEAD                   0x04
161 #define CTX_RING_TAIL                   0x06
162 #define CTX_RING_BUFFER_START           0x08
163 #define CTX_RING_BUFFER_CONTROL         0x0a
164 #define CTX_BB_HEAD_U                   0x0c
165 #define CTX_BB_HEAD_L                   0x0e
166 #define CTX_BB_STATE                    0x10
167 #define CTX_SECOND_BB_HEAD_U            0x12
168 #define CTX_SECOND_BB_HEAD_L            0x14
169 #define CTX_SECOND_BB_STATE             0x16
170 #define CTX_BB_PER_CTX_PTR              0x18
171 #define CTX_RCS_INDIRECT_CTX            0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
173 #define CTX_LRI_HEADER_1                0x21
174 #define CTX_CTX_TIMESTAMP               0x22
175 #define CTX_PDP3_UDW                    0x24
176 #define CTX_PDP3_LDW                    0x26
177 #define CTX_PDP2_UDW                    0x28
178 #define CTX_PDP2_LDW                    0x2a
179 #define CTX_PDP1_UDW                    0x2c
180 #define CTX_PDP1_LDW                    0x2e
181 #define CTX_PDP0_UDW                    0x30
182 #define CTX_PDP0_LDW                    0x32
183 #define CTX_LRI_HEADER_2                0x41
184 #define CTX_R_PWR_CLK_STATE             0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 }
203
204 enum {
205         ADVANCED_CONTEXT = 0,
206         LEGACY_32B_CONTEXT,
207         ADVANCED_AD_CONTEXT,
208         LEGACY_64B_CONTEXT
209 };
210 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
212                 LEGACY_64B_CONTEXT :\
213                 LEGACY_32B_CONTEXT)
214 enum {
215         FAULT_AND_HANG = 0,
216         FAULT_AND_HALT, /* Debug only */
217         FAULT_AND_STREAM,
218         FAULT_AND_CONTINUE /* Unsupported */
219 };
220 #define GEN8_CTX_ID_SHIFT 32
221 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
222
223 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224
225 /**
226  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
227  * @dev: DRM device.
228  * @enable_execlists: value of i915.enable_execlists module parameter.
229  *
230  * Only certain platforms support Execlists (the prerequisites being
231  * support for Logical Ring Contexts and Aliasing PPGTT or better).
232  *
233  * Return: 1 if Execlists is supported and has to be enabled.
234  */
235 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
236 {
237         WARN_ON(i915.enable_ppgtt == -1);
238
239         /* On platforms with execlist available, vGPU will only
240          * support execlist mode, no ring buffer mode.
241          */
242         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
243                 return 1;
244
245         if (INTEL_INFO(dev)->gen >= 9)
246                 return 1;
247
248         if (enable_execlists == 0)
249                 return 0;
250
251         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
252             i915.use_mmio_flip >= 0)
253                 return 1;
254
255         return 0;
256 }
257
258 /**
259  * intel_execlists_ctx_id() - get the Execlists Context ID
260  * @ctx_obj: Logical Ring Context backing object.
261  *
262  * Do not confuse with ctx->id! Unfortunately we have a name overload
263  * here: the old context ID we pass to userspace as a handler so that
264  * they can refer to a context, and the new context ID we pass to the
265  * ELSP so that the GPU can inform us of the context status via
266  * interrupts.
267  *
268  * Return: 20-bits globally unique context ID.
269  */
270 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
271 {
272         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
273                         LRC_PPHWSP_PN * PAGE_SIZE;
274
275         /* LRCA is required to be 4K aligned so the more significant 20 bits
276          * are globally unique */
277         return lrca >> 12;
278 }
279
280 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
281                                      struct intel_engine_cs *ring)
282 {
283         struct drm_device *dev = ring->dev;
284         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
285         uint64_t desc;
286         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
287                         LRC_PPHWSP_PN * PAGE_SIZE;
288
289         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
290
291         desc = GEN8_CTX_VALID;
292         desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
293         if (IS_GEN8(ctx_obj->base.dev))
294                 desc |= GEN8_CTX_L3LLC_COHERENT;
295         desc |= GEN8_CTX_PRIVILEGE;
296         desc |= lrca;
297         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
298
299         /* TODO: WaDisableLiteRestore when we start using semaphore
300          * signalling between Command Streamers */
301         /* desc |= GEN8_CTX_FORCE_RESTORE; */
302
303         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
304         if (IS_GEN9(dev) &&
305             INTEL_REVID(dev) <= SKL_REVID_B0 &&
306             (ring->id == BCS || ring->id == VCS ||
307             ring->id == VECS || ring->id == VCS2))
308                 desc |= GEN8_CTX_FORCE_RESTORE;
309
310         return desc;
311 }
312
313 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
314                                  struct drm_i915_gem_request *rq1)
315 {
316
317         struct intel_engine_cs *ring = rq0->ring;
318         struct drm_device *dev = ring->dev;
319         struct drm_i915_private *dev_priv = dev->dev_private;
320         uint64_t desc[2];
321
322         if (rq1) {
323                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
324                 rq1->elsp_submitted++;
325         } else {
326                 desc[1] = 0;
327         }
328
329         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
330         rq0->elsp_submitted++;
331
332         /* You must always write both descriptors in the order below. */
333         spin_lock(&dev_priv->uncore.lock);
334         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
335         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
336         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
337
338         I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
339         /* The context is automatically loaded after the following */
340         I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
341
342         /* ELSP is a wo register, use another nearby reg for posting */
343         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
344         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
345         spin_unlock(&dev_priv->uncore.lock);
346 }
347
348 static int execlists_update_context(struct drm_i915_gem_request *rq)
349 {
350         struct intel_engine_cs *ring = rq->ring;
351         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
352         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
353         struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
354         struct page *page;
355         uint32_t *reg_state;
356
357         BUG_ON(!ctx_obj);
358         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
359         WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
360
361         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
362         reg_state = kmap_atomic(page);
363
364         reg_state[CTX_RING_TAIL+1] = rq->tail;
365         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
366
367         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
368                 /* True 32b PPGTT with dynamic page allocation: update PDP
369                  * registers and point the unallocated PDPs to scratch page.
370                  * PML4 is allocated during ppgtt init, so this is not needed
371                  * in 48-bit mode.
372                  */
373                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
374                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
375                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
376                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
377         }
378
379         kunmap_atomic(reg_state);
380
381         return 0;
382 }
383
384 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
385                                       struct drm_i915_gem_request *rq1)
386 {
387         execlists_update_context(rq0);
388
389         if (rq1)
390                 execlists_update_context(rq1);
391
392         execlists_elsp_write(rq0, rq1);
393 }
394
395 static void execlists_context_unqueue(struct intel_engine_cs *ring)
396 {
397         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
398         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
399
400         assert_spin_locked(&ring->execlist_lock);
401
402         /*
403          * If irqs are not active generate a warning as batches that finish
404          * without the irqs may get lost and a GPU Hang may occur.
405          */
406         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
407
408         if (list_empty(&ring->execlist_queue))
409                 return;
410
411         /* Try to read in pairs */
412         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
413                                  execlist_link) {
414                 if (!req0) {
415                         req0 = cursor;
416                 } else if (req0->ctx == cursor->ctx) {
417                         /* Same ctx: ignore first request, as second request
418                          * will update tail past first request's workload */
419                         cursor->elsp_submitted = req0->elsp_submitted;
420                         list_del(&req0->execlist_link);
421                         list_add_tail(&req0->execlist_link,
422                                 &ring->execlist_retired_req_list);
423                         req0 = cursor;
424                 } else {
425                         req1 = cursor;
426                         break;
427                 }
428         }
429
430         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
431                 /*
432                  * WaIdleLiteRestore: make sure we never cause a lite
433                  * restore with HEAD==TAIL
434                  */
435                 if (req0->elsp_submitted) {
436                         /*
437                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
438                          * as we resubmit the request. See gen8_emit_request()
439                          * for where we prepare the padding after the end of the
440                          * request.
441                          */
442                         struct intel_ringbuffer *ringbuf;
443
444                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
445                         req0->tail += 8;
446                         req0->tail &= ringbuf->size - 1;
447                 }
448         }
449
450         WARN_ON(req1 && req1->elsp_submitted);
451
452         execlists_submit_requests(req0, req1);
453 }
454
455 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
456                                            u32 request_id)
457 {
458         struct drm_i915_gem_request *head_req;
459
460         assert_spin_locked(&ring->execlist_lock);
461
462         head_req = list_first_entry_or_null(&ring->execlist_queue,
463                                             struct drm_i915_gem_request,
464                                             execlist_link);
465
466         if (head_req != NULL) {
467                 struct drm_i915_gem_object *ctx_obj =
468                                 head_req->ctx->engine[ring->id].state;
469                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
470                         WARN(head_req->elsp_submitted == 0,
471                              "Never submitted head request\n");
472
473                         if (--head_req->elsp_submitted <= 0) {
474                                 list_del(&head_req->execlist_link);
475                                 list_add_tail(&head_req->execlist_link,
476                                         &ring->execlist_retired_req_list);
477                                 return true;
478                         }
479                 }
480         }
481
482         return false;
483 }
484
485 /**
486  * intel_lrc_irq_handler() - handle Context Switch interrupts
487  * @ring: Engine Command Streamer to handle.
488  *
489  * Check the unread Context Status Buffers and manage the submission of new
490  * contexts to the ELSP accordingly.
491  */
492 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
493 {
494         struct drm_i915_private *dev_priv = ring->dev->dev_private;
495         u32 status_pointer;
496         u8 read_pointer;
497         u8 write_pointer;
498         u32 status;
499         u32 status_id;
500         u32 submit_contexts = 0;
501
502         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
503
504         read_pointer = ring->next_context_status_buffer;
505         write_pointer = status_pointer & 0x07;
506         if (read_pointer > write_pointer)
507                 write_pointer += 6;
508
509         spin_lock(&ring->execlist_lock);
510
511         while (read_pointer < write_pointer) {
512                 read_pointer++;
513                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
514                                 (read_pointer % 6) * 8);
515                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
516                                 (read_pointer % 6) * 8 + 4);
517
518                 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
519                         continue;
520
521                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
522                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
523                                 if (execlists_check_remove_request(ring, status_id))
524                                         WARN(1, "Lite Restored request removed from queue\n");
525                         } else
526                                 WARN(1, "Preemption without Lite Restore\n");
527                 }
528
529                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
530                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
531                         if (execlists_check_remove_request(ring, status_id))
532                                 submit_contexts++;
533                 }
534         }
535
536         if (submit_contexts != 0)
537                 execlists_context_unqueue(ring);
538
539         spin_unlock(&ring->execlist_lock);
540
541         WARN(submit_contexts > 2, "More than two context complete events?\n");
542         ring->next_context_status_buffer = write_pointer % 6;
543
544         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
545                    _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
546 }
547
548 static int execlists_context_queue(struct drm_i915_gem_request *request)
549 {
550         struct intel_engine_cs *ring = request->ring;
551         struct drm_i915_gem_request *cursor;
552         int num_elements = 0;
553
554         if (request->ctx != ring->default_context)
555                 intel_lr_context_pin(request);
556
557         i915_gem_request_reference(request);
558
559         spin_lock_irq(&ring->execlist_lock);
560
561         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
562                 if (++num_elements > 2)
563                         break;
564
565         if (num_elements > 2) {
566                 struct drm_i915_gem_request *tail_req;
567
568                 tail_req = list_last_entry(&ring->execlist_queue,
569                                            struct drm_i915_gem_request,
570                                            execlist_link);
571
572                 if (request->ctx == tail_req->ctx) {
573                         WARN(tail_req->elsp_submitted != 0,
574                                 "More than 2 already-submitted reqs queued\n");
575                         list_del(&tail_req->execlist_link);
576                         list_add_tail(&tail_req->execlist_link,
577                                 &ring->execlist_retired_req_list);
578                 }
579         }
580
581         list_add_tail(&request->execlist_link, &ring->execlist_queue);
582         if (num_elements == 0)
583                 execlists_context_unqueue(ring);
584
585         spin_unlock_irq(&ring->execlist_lock);
586
587         return 0;
588 }
589
590 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
591 {
592         struct intel_engine_cs *ring = req->ring;
593         uint32_t flush_domains;
594         int ret;
595
596         flush_domains = 0;
597         if (ring->gpu_caches_dirty)
598                 flush_domains = I915_GEM_GPU_DOMAINS;
599
600         ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
601         if (ret)
602                 return ret;
603
604         ring->gpu_caches_dirty = false;
605         return 0;
606 }
607
608 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
609                                  struct list_head *vmas)
610 {
611         const unsigned other_rings = ~intel_ring_flag(req->ring);
612         struct i915_vma *vma;
613         uint32_t flush_domains = 0;
614         bool flush_chipset = false;
615         int ret;
616
617         list_for_each_entry(vma, vmas, exec_list) {
618                 struct drm_i915_gem_object *obj = vma->obj;
619
620                 if (obj->active & other_rings) {
621                         ret = i915_gem_object_sync(obj, req->ring, &req);
622                         if (ret)
623                                 return ret;
624                 }
625
626                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
627                         flush_chipset |= i915_gem_clflush_object(obj, false);
628
629                 flush_domains |= obj->base.write_domain;
630         }
631
632         if (flush_domains & I915_GEM_DOMAIN_GTT)
633                 wmb();
634
635         /* Unconditionally invalidate gpu caches and ensure that we do flush
636          * any residual writes from the previous batch.
637          */
638         return logical_ring_invalidate_all_caches(req);
639 }
640
641 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
642 {
643         int ret;
644
645         request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
646
647         if (request->ctx != request->ring->default_context) {
648                 ret = intel_lr_context_pin(request);
649                 if (ret)
650                         return ret;
651         }
652
653         return 0;
654 }
655
656 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
657                                        int bytes)
658 {
659         struct intel_ringbuffer *ringbuf = req->ringbuf;
660         struct intel_engine_cs *ring = req->ring;
661         struct drm_i915_gem_request *target;
662         unsigned space;
663         int ret;
664
665         if (intel_ring_space(ringbuf) >= bytes)
666                 return 0;
667
668         /* The whole point of reserving space is to not wait! */
669         WARN_ON(ringbuf->reserved_in_use);
670
671         list_for_each_entry(target, &ring->request_list, list) {
672                 /*
673                  * The request queue is per-engine, so can contain requests
674                  * from multiple ringbuffers. Here, we must ignore any that
675                  * aren't from the ringbuffer we're considering.
676                  */
677                 if (target->ringbuf != ringbuf)
678                         continue;
679
680                 /* Would completion of this request free enough space? */
681                 space = __intel_ring_space(target->postfix, ringbuf->tail,
682                                            ringbuf->size);
683                 if (space >= bytes)
684                         break;
685         }
686
687         if (WARN_ON(&target->list == &ring->request_list))
688                 return -ENOSPC;
689
690         ret = i915_wait_request(target);
691         if (ret)
692                 return ret;
693
694         ringbuf->space = space;
695         return 0;
696 }
697
698 /*
699  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
700  * @request: Request to advance the logical ringbuffer of.
701  *
702  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
703  * really happens during submission is that the context and current tail will be placed
704  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
705  * point, the tail *inside* the context is updated and the ELSP written to.
706  */
707 static void
708 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
709 {
710         struct intel_engine_cs *ring = request->ring;
711         struct drm_i915_private *dev_priv = request->i915;
712
713         intel_logical_ring_advance(request->ringbuf);
714
715         request->tail = request->ringbuf->tail;
716
717         if (intel_ring_stopped(ring))
718                 return;
719
720         if (dev_priv->guc.execbuf_client)
721                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
722         else
723                 execlists_context_queue(request);
724 }
725
726 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
727 {
728         uint32_t __iomem *virt;
729         int rem = ringbuf->size - ringbuf->tail;
730
731         virt = ringbuf->virtual_start + ringbuf->tail;
732         rem /= 4;
733         while (rem--)
734                 iowrite32(MI_NOOP, virt++);
735
736         ringbuf->tail = 0;
737         intel_ring_update_space(ringbuf);
738 }
739
740 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
741 {
742         struct intel_ringbuffer *ringbuf = req->ringbuf;
743         int remain_usable = ringbuf->effective_size - ringbuf->tail;
744         int remain_actual = ringbuf->size - ringbuf->tail;
745         int ret, total_bytes, wait_bytes = 0;
746         bool need_wrap = false;
747
748         if (ringbuf->reserved_in_use)
749                 total_bytes = bytes;
750         else
751                 total_bytes = bytes + ringbuf->reserved_size;
752
753         if (unlikely(bytes > remain_usable)) {
754                 /*
755                  * Not enough space for the basic request. So need to flush
756                  * out the remainder and then wait for base + reserved.
757                  */
758                 wait_bytes = remain_actual + total_bytes;
759                 need_wrap = true;
760         } else {
761                 if (unlikely(total_bytes > remain_usable)) {
762                         /*
763                          * The base request will fit but the reserved space
764                          * falls off the end. So only need to to wait for the
765                          * reserved size after flushing out the remainder.
766                          */
767                         wait_bytes = remain_actual + ringbuf->reserved_size;
768                         need_wrap = true;
769                 } else if (total_bytes > ringbuf->space) {
770                         /* No wrapping required, just waiting. */
771                         wait_bytes = total_bytes;
772                 }
773         }
774
775         if (wait_bytes) {
776                 ret = logical_ring_wait_for_space(req, wait_bytes);
777                 if (unlikely(ret))
778                         return ret;
779
780                 if (need_wrap)
781                         __wrap_ring_buffer(ringbuf);
782         }
783
784         return 0;
785 }
786
787 /**
788  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
789  *
790  * @request: The request to start some new work for
791  * @ctx: Logical ring context whose ringbuffer is being prepared.
792  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
793  *
794  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
795  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
796  * and also preallocates a request (every workload submission is still mediated through
797  * requests, same as it did with legacy ringbuffer submission).
798  *
799  * Return: non-zero if the ringbuffer is not ready to be written to.
800  */
801 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
802 {
803         struct drm_i915_private *dev_priv;
804         int ret;
805
806         WARN_ON(req == NULL);
807         dev_priv = req->ring->dev->dev_private;
808
809         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
810                                    dev_priv->mm.interruptible);
811         if (ret)
812                 return ret;
813
814         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
815         if (ret)
816                 return ret;
817
818         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
819         return 0;
820 }
821
822 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
823 {
824         /*
825          * The first call merely notes the reserve request and is common for
826          * all back ends. The subsequent localised _begin() call actually
827          * ensures that the reservation is available. Without the begin, if
828          * the request creator immediately submitted the request without
829          * adding any commands to it then there might not actually be
830          * sufficient room for the submission commands.
831          */
832         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
833
834         return intel_logical_ring_begin(request, 0);
835 }
836
837 /**
838  * execlists_submission() - submit a batchbuffer for execution, Execlists style
839  * @dev: DRM device.
840  * @file: DRM file.
841  * @ring: Engine Command Streamer to submit to.
842  * @ctx: Context to employ for this submission.
843  * @args: execbuffer call arguments.
844  * @vmas: list of vmas.
845  * @batch_obj: the batchbuffer to submit.
846  * @exec_start: batchbuffer start virtual address pointer.
847  * @dispatch_flags: translated execbuffer call flags.
848  *
849  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
850  * away the submission details of the execbuffer ioctl call.
851  *
852  * Return: non-zero if the submission fails.
853  */
854 int intel_execlists_submission(struct i915_execbuffer_params *params,
855                                struct drm_i915_gem_execbuffer2 *args,
856                                struct list_head *vmas)
857 {
858         struct drm_device       *dev = params->dev;
859         struct intel_engine_cs  *ring = params->ring;
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
862         u64 exec_start;
863         int instp_mode;
864         u32 instp_mask;
865         int ret;
866
867         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
868         instp_mask = I915_EXEC_CONSTANTS_MASK;
869         switch (instp_mode) {
870         case I915_EXEC_CONSTANTS_REL_GENERAL:
871         case I915_EXEC_CONSTANTS_ABSOLUTE:
872         case I915_EXEC_CONSTANTS_REL_SURFACE:
873                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
874                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
875                         return -EINVAL;
876                 }
877
878                 if (instp_mode != dev_priv->relative_constants_mode) {
879                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
880                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
881                                 return -EINVAL;
882                         }
883
884                         /* The HW changed the meaning on this bit on gen6 */
885                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
886                 }
887                 break;
888         default:
889                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
890                 return -EINVAL;
891         }
892
893         if (args->num_cliprects != 0) {
894                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
895                 return -EINVAL;
896         } else {
897                 if (args->DR4 == 0xffffffff) {
898                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
899                         args->DR4 = 0;
900                 }
901
902                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
903                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
904                         return -EINVAL;
905                 }
906         }
907
908         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
909                 DRM_DEBUG("sol reset is gen7 only\n");
910                 return -EINVAL;
911         }
912
913         ret = execlists_move_to_gpu(params->request, vmas);
914         if (ret)
915                 return ret;
916
917         if (ring == &dev_priv->ring[RCS] &&
918             instp_mode != dev_priv->relative_constants_mode) {
919                 ret = intel_logical_ring_begin(params->request, 4);
920                 if (ret)
921                         return ret;
922
923                 intel_logical_ring_emit(ringbuf, MI_NOOP);
924                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
925                 intel_logical_ring_emit(ringbuf, INSTPM);
926                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
927                 intel_logical_ring_advance(ringbuf);
928
929                 dev_priv->relative_constants_mode = instp_mode;
930         }
931
932         exec_start = params->batch_obj_vm_offset +
933                      args->batch_start_offset;
934
935         ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
936         if (ret)
937                 return ret;
938
939         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
940
941         i915_gem_execbuffer_move_to_active(vmas, params->request);
942         i915_gem_execbuffer_retire_commands(params);
943
944         return 0;
945 }
946
947 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
948 {
949         struct drm_i915_gem_request *req, *tmp;
950         struct list_head retired_list;
951
952         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
953         if (list_empty(&ring->execlist_retired_req_list))
954                 return;
955
956         INIT_LIST_HEAD(&retired_list);
957         spin_lock_irq(&ring->execlist_lock);
958         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
959         spin_unlock_irq(&ring->execlist_lock);
960
961         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
962                 struct intel_context *ctx = req->ctx;
963                 struct drm_i915_gem_object *ctx_obj =
964                                 ctx->engine[ring->id].state;
965
966                 if (ctx_obj && (ctx != ring->default_context))
967                         intel_lr_context_unpin(req);
968                 list_del(&req->execlist_link);
969                 i915_gem_request_unreference(req);
970         }
971 }
972
973 void intel_logical_ring_stop(struct intel_engine_cs *ring)
974 {
975         struct drm_i915_private *dev_priv = ring->dev->dev_private;
976         int ret;
977
978         if (!intel_ring_initialized(ring))
979                 return;
980
981         ret = intel_ring_idle(ring);
982         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
983                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
984                           ring->name, ret);
985
986         /* TODO: Is this correct with Execlists enabled? */
987         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
988         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
989                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
990                 return;
991         }
992         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
993 }
994
995 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
996 {
997         struct intel_engine_cs *ring = req->ring;
998         int ret;
999
1000         if (!ring->gpu_caches_dirty)
1001                 return 0;
1002
1003         ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1004         if (ret)
1005                 return ret;
1006
1007         ring->gpu_caches_dirty = false;
1008         return 0;
1009 }
1010
1011 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1012 {
1013         struct drm_i915_private *dev_priv = rq->i915;
1014         struct intel_engine_cs *ring = rq->ring;
1015         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1016         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1017         int ret = 0;
1018
1019         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1020         if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1021                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1022                                 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1023                 if (ret)
1024                         goto reset_pin_count;
1025
1026                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1027                 if (ret)
1028                         goto unpin_ctx_obj;
1029
1030                 /* Invalidate GuC TLB. */
1031                 if (i915.enable_guc_submission)
1032                         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1033         }
1034
1035         return ret;
1036
1037 unpin_ctx_obj:
1038         i915_gem_object_ggtt_unpin(ctx_obj);
1039 reset_pin_count:
1040         rq->ctx->engine[ring->id].pin_count = 0;
1041
1042         return ret;
1043 }
1044
1045 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1046 {
1047         struct intel_engine_cs *ring = rq->ring;
1048         struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1049         struct intel_ringbuffer *ringbuf = rq->ringbuf;
1050
1051         if (ctx_obj) {
1052                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1053                 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1054                         intel_unpin_ringbuffer_obj(ringbuf);
1055                         i915_gem_object_ggtt_unpin(ctx_obj);
1056                 }
1057         }
1058 }
1059
1060 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1061 {
1062         int ret, i;
1063         struct intel_engine_cs *ring = req->ring;
1064         struct intel_ringbuffer *ringbuf = req->ringbuf;
1065         struct drm_device *dev = ring->dev;
1066         struct drm_i915_private *dev_priv = dev->dev_private;
1067         struct i915_workarounds *w = &dev_priv->workarounds;
1068
1069         if (WARN_ON_ONCE(w->count == 0))
1070                 return 0;
1071
1072         ring->gpu_caches_dirty = true;
1073         ret = logical_ring_flush_all_caches(req);
1074         if (ret)
1075                 return ret;
1076
1077         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1078         if (ret)
1079                 return ret;
1080
1081         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1082         for (i = 0; i < w->count; i++) {
1083                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1084                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1085         }
1086         intel_logical_ring_emit(ringbuf, MI_NOOP);
1087
1088         intel_logical_ring_advance(ringbuf);
1089
1090         ring->gpu_caches_dirty = true;
1091         ret = logical_ring_flush_all_caches(req);
1092         if (ret)
1093                 return ret;
1094
1095         return 0;
1096 }
1097
1098 #define wa_ctx_emit(batch, index, cmd)                                  \
1099         do {                                                            \
1100                 int __index = (index)++;                                \
1101                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1102                         return -ENOSPC;                                 \
1103                 }                                                       \
1104                 batch[__index] = (cmd);                                 \
1105         } while (0)
1106
1107
1108 /*
1109  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1110  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1111  * but there is a slight complication as this is applied in WA batch where the
1112  * values are only initialized once so we cannot take register value at the
1113  * beginning and reuse it further; hence we save its value to memory, upload a
1114  * constant value with bit21 set and then we restore it back with the saved value.
1115  * To simplify the WA, a constant value is formed by using the default value
1116  * of this register. This shouldn't be a problem because we are only modifying
1117  * it for a short period and this batch in non-premptible. We can ofcourse
1118  * use additional instructions that read the actual value of the register
1119  * at that time and set our bit of interest but it makes the WA complicated.
1120  *
1121  * This WA is also required for Gen9 so extracting as a function avoids
1122  * code duplication.
1123  */
1124 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1125                                                 uint32_t *const batch,
1126                                                 uint32_t index)
1127 {
1128         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1129
1130         /*
1131          * WaDisableLSQCROPERFforOCL:skl
1132          * This WA is implemented in skl_init_clock_gating() but since
1133          * this batch updates GEN8_L3SQCREG4 with default value we need to
1134          * set this bit here to retain the WA during flush.
1135          */
1136         if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1137                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1138
1139         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1140                                    MI_SRM_LRM_GLOBAL_GTT));
1141         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1142         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1143         wa_ctx_emit(batch, index, 0);
1144
1145         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1146         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1147         wa_ctx_emit(batch, index, l3sqc4_flush);
1148
1149         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1150         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1151                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1152         wa_ctx_emit(batch, index, 0);
1153         wa_ctx_emit(batch, index, 0);
1154         wa_ctx_emit(batch, index, 0);
1155         wa_ctx_emit(batch, index, 0);
1156
1157         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1158                                    MI_SRM_LRM_GLOBAL_GTT));
1159         wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1160         wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1161         wa_ctx_emit(batch, index, 0);
1162
1163         return index;
1164 }
1165
1166 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1167                                     uint32_t offset,
1168                                     uint32_t start_alignment)
1169 {
1170         return wa_ctx->offset = ALIGN(offset, start_alignment);
1171 }
1172
1173 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1174                              uint32_t offset,
1175                              uint32_t size_alignment)
1176 {
1177         wa_ctx->size = offset - wa_ctx->offset;
1178
1179         WARN(wa_ctx->size % size_alignment,
1180              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1181              wa_ctx->size, size_alignment);
1182         return 0;
1183 }
1184
1185 /**
1186  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1187  *
1188  * @ring: only applicable for RCS
1189  * @wa_ctx: structure representing wa_ctx
1190  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1191  *    with the offset value received as input.
1192  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1193  * @batch: page in which WA are loaded
1194  * @offset: This field specifies the start of the batch, it should be
1195  *  cache-aligned otherwise it is adjusted accordingly.
1196  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1197  *  initialized at the beginning and shared across all contexts but this field
1198  *  helps us to have multiple batches at different offsets and select them based
1199  *  on a criteria. At the moment this batch always start at the beginning of the page
1200  *  and at this point we don't have multiple wa_ctx batch buffers.
1201  *
1202  *  The number of WA applied are not known at the beginning; we use this field
1203  *  to return the no of DWORDS written.
1204  *
1205  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1206  *  so it adds NOOPs as padding to make it cacheline aligned.
1207  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1208  *  makes a complete batch buffer.
1209  *
1210  * Return: non-zero if we exceed the PAGE_SIZE limit.
1211  */
1212
1213 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1214                                     struct i915_wa_ctx_bb *wa_ctx,
1215                                     uint32_t *const batch,
1216                                     uint32_t *offset)
1217 {
1218         uint32_t scratch_addr;
1219         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1220
1221         /* WaDisableCtxRestoreArbitration:bdw,chv */
1222         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1223
1224         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1225         if (IS_BROADWELL(ring->dev)) {
1226                 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1227                 if (index < 0)
1228                         return index;
1229         }
1230
1231         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1232         /* Actual scratch location is at 128 bytes offset */
1233         scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1234
1235         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1236         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1237                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1238                                    PIPE_CONTROL_CS_STALL |
1239                                    PIPE_CONTROL_QW_WRITE));
1240         wa_ctx_emit(batch, index, scratch_addr);
1241         wa_ctx_emit(batch, index, 0);
1242         wa_ctx_emit(batch, index, 0);
1243         wa_ctx_emit(batch, index, 0);
1244
1245         /* Pad to end of cacheline */
1246         while (index % CACHELINE_DWORDS)
1247                 wa_ctx_emit(batch, index, MI_NOOP);
1248
1249         /*
1250          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1251          * execution depends on the length specified in terms of cache lines
1252          * in the register CTX_RCS_INDIRECT_CTX
1253          */
1254
1255         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1256 }
1257
1258 /**
1259  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1260  *
1261  * @ring: only applicable for RCS
1262  * @wa_ctx: structure representing wa_ctx
1263  *  offset: specifies start of the batch, should be cache-aligned.
1264  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1265  * @batch: page in which WA are loaded
1266  * @offset: This field specifies the start of this batch.
1267  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1268  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1269  *
1270  *   The number of DWORDS written are returned using this field.
1271  *
1272  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1273  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1274  */
1275 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1276                                struct i915_wa_ctx_bb *wa_ctx,
1277                                uint32_t *const batch,
1278                                uint32_t *offset)
1279 {
1280         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1281
1282         /* WaDisableCtxRestoreArbitration:bdw,chv */
1283         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1284
1285         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1286
1287         return wa_ctx_end(wa_ctx, *offset = index, 1);
1288 }
1289
1290 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1291                                     struct i915_wa_ctx_bb *wa_ctx,
1292                                     uint32_t *const batch,
1293                                     uint32_t *offset)
1294 {
1295         int ret;
1296         struct drm_device *dev = ring->dev;
1297         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1298
1299         /* WaDisableCtxRestoreArbitration:skl,bxt */
1300         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1301             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1302                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1303
1304         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1305         ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1306         if (ret < 0)
1307                 return ret;
1308         index = ret;
1309
1310         /* Pad to end of cacheline */
1311         while (index % CACHELINE_DWORDS)
1312                 wa_ctx_emit(batch, index, MI_NOOP);
1313
1314         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1315 }
1316
1317 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1318                                struct i915_wa_ctx_bb *wa_ctx,
1319                                uint32_t *const batch,
1320                                uint32_t *offset)
1321 {
1322         struct drm_device *dev = ring->dev;
1323         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1324
1325         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1326         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1327             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1328                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1329                 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1330                 wa_ctx_emit(batch, index,
1331                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1332                 wa_ctx_emit(batch, index, MI_NOOP);
1333         }
1334
1335         /* WaDisableCtxRestoreArbitration:skl,bxt */
1336         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1337             (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1338                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1339
1340         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1341
1342         return wa_ctx_end(wa_ctx, *offset = index, 1);
1343 }
1344
1345 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1346 {
1347         int ret;
1348
1349         ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1350         if (!ring->wa_ctx.obj) {
1351                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1352                 return -ENOMEM;
1353         }
1354
1355         ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1356         if (ret) {
1357                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1358                                  ret);
1359                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1360                 return ret;
1361         }
1362
1363         return 0;
1364 }
1365
1366 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1367 {
1368         if (ring->wa_ctx.obj) {
1369                 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1370                 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1371                 ring->wa_ctx.obj = NULL;
1372         }
1373 }
1374
1375 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1376 {
1377         int ret;
1378         uint32_t *batch;
1379         uint32_t offset;
1380         struct page *page;
1381         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1382
1383         WARN_ON(ring->id != RCS);
1384
1385         /* update this when WA for higher Gen are added */
1386         if (INTEL_INFO(ring->dev)->gen > 9) {
1387                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1388                           INTEL_INFO(ring->dev)->gen);
1389                 return 0;
1390         }
1391
1392         /* some WA perform writes to scratch page, ensure it is valid */
1393         if (ring->scratch.obj == NULL) {
1394                 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1395                 return -EINVAL;
1396         }
1397
1398         ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1399         if (ret) {
1400                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1401                 return ret;
1402         }
1403
1404         page = i915_gem_object_get_page(wa_ctx->obj, 0);
1405         batch = kmap_atomic(page);
1406         offset = 0;
1407
1408         if (INTEL_INFO(ring->dev)->gen == 8) {
1409                 ret = gen8_init_indirectctx_bb(ring,
1410                                                &wa_ctx->indirect_ctx,
1411                                                batch,
1412                                                &offset);
1413                 if (ret)
1414                         goto out;
1415
1416                 ret = gen8_init_perctx_bb(ring,
1417                                           &wa_ctx->per_ctx,
1418                                           batch,
1419                                           &offset);
1420                 if (ret)
1421                         goto out;
1422         } else if (INTEL_INFO(ring->dev)->gen == 9) {
1423                 ret = gen9_init_indirectctx_bb(ring,
1424                                                &wa_ctx->indirect_ctx,
1425                                                batch,
1426                                                &offset);
1427                 if (ret)
1428                         goto out;
1429
1430                 ret = gen9_init_perctx_bb(ring,
1431                                           &wa_ctx->per_ctx,
1432                                           batch,
1433                                           &offset);
1434                 if (ret)
1435                         goto out;
1436         }
1437
1438 out:
1439         kunmap_atomic(batch);
1440         if (ret)
1441                 lrc_destroy_wa_ctx_obj(ring);
1442
1443         return ret;
1444 }
1445
1446 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1447 {
1448         struct drm_device *dev = ring->dev;
1449         struct drm_i915_private *dev_priv = dev->dev_private;
1450
1451         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1452         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1453
1454         if (ring->status_page.obj) {
1455                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1456                            (u32)ring->status_page.gfx_addr);
1457                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1458         }
1459
1460         I915_WRITE(RING_MODE_GEN7(ring),
1461                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1462                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1463         POSTING_READ(RING_MODE_GEN7(ring));
1464         ring->next_context_status_buffer = 0;
1465         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1466
1467         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1468
1469         return 0;
1470 }
1471
1472 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1473 {
1474         struct drm_device *dev = ring->dev;
1475         struct drm_i915_private *dev_priv = dev->dev_private;
1476         int ret;
1477
1478         ret = gen8_init_common_ring(ring);
1479         if (ret)
1480                 return ret;
1481
1482         /* We need to disable the AsyncFlip performance optimisations in order
1483          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1484          * programmed to '1' on all products.
1485          *
1486          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1487          */
1488         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1489
1490         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1491
1492         return init_workarounds_ring(ring);
1493 }
1494
1495 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1496 {
1497         int ret;
1498
1499         ret = gen8_init_common_ring(ring);
1500         if (ret)
1501                 return ret;
1502
1503         return init_workarounds_ring(ring);
1504 }
1505
1506 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1507 {
1508         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1509         struct intel_engine_cs *ring = req->ring;
1510         struct intel_ringbuffer *ringbuf = req->ringbuf;
1511         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1512         int i, ret;
1513
1514         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1515         if (ret)
1516                 return ret;
1517
1518         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1519         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1520                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1521
1522                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1523                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1524                 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1525                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1526         }
1527
1528         intel_logical_ring_emit(ringbuf, MI_NOOP);
1529         intel_logical_ring_advance(ringbuf);
1530
1531         return 0;
1532 }
1533
1534 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1535                               u64 offset, unsigned dispatch_flags)
1536 {
1537         struct intel_ringbuffer *ringbuf = req->ringbuf;
1538         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1539         int ret;
1540
1541         /* Don't rely in hw updating PDPs, specially in lite-restore.
1542          * Ideally, we should set Force PD Restore in ctx descriptor,
1543          * but we can't. Force Restore would be a second option, but
1544          * it is unsafe in case of lite-restore (because the ctx is
1545          * not idle). PML4 is allocated during ppgtt init so this is
1546          * not needed in 48-bit.*/
1547         if (req->ctx->ppgtt &&
1548             (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1549                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1550                     !intel_vgpu_active(req->i915->dev)) {
1551                         ret = intel_logical_ring_emit_pdps(req);
1552                         if (ret)
1553                                 return ret;
1554                 }
1555
1556                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1557         }
1558
1559         ret = intel_logical_ring_begin(req, 4);
1560         if (ret)
1561                 return ret;
1562
1563         /* FIXME(BDW): Address space and security selectors. */
1564         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1565                                 (ppgtt<<8) |
1566                                 (dispatch_flags & I915_DISPATCH_RS ?
1567                                  MI_BATCH_RESOURCE_STREAMER : 0));
1568         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1569         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1570         intel_logical_ring_emit(ringbuf, MI_NOOP);
1571         intel_logical_ring_advance(ringbuf);
1572
1573         return 0;
1574 }
1575
1576 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1577 {
1578         struct drm_device *dev = ring->dev;
1579         struct drm_i915_private *dev_priv = dev->dev_private;
1580         unsigned long flags;
1581
1582         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1583                 return false;
1584
1585         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1586         if (ring->irq_refcount++ == 0) {
1587                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1588                 POSTING_READ(RING_IMR(ring->mmio_base));
1589         }
1590         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1591
1592         return true;
1593 }
1594
1595 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1596 {
1597         struct drm_device *dev = ring->dev;
1598         struct drm_i915_private *dev_priv = dev->dev_private;
1599         unsigned long flags;
1600
1601         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1602         if (--ring->irq_refcount == 0) {
1603                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1604                 POSTING_READ(RING_IMR(ring->mmio_base));
1605         }
1606         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1607 }
1608
1609 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1610                            u32 invalidate_domains,
1611                            u32 unused)
1612 {
1613         struct intel_ringbuffer *ringbuf = request->ringbuf;
1614         struct intel_engine_cs *ring = ringbuf->ring;
1615         struct drm_device *dev = ring->dev;
1616         struct drm_i915_private *dev_priv = dev->dev_private;
1617         uint32_t cmd;
1618         int ret;
1619
1620         ret = intel_logical_ring_begin(request, 4);
1621         if (ret)
1622                 return ret;
1623
1624         cmd = MI_FLUSH_DW + 1;
1625
1626         /* We always require a command barrier so that subsequent
1627          * commands, such as breadcrumb interrupts, are strictly ordered
1628          * wrt the contents of the write cache being flushed to memory
1629          * (and thus being coherent from the CPU).
1630          */
1631         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1632
1633         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1634                 cmd |= MI_INVALIDATE_TLB;
1635                 if (ring == &dev_priv->ring[VCS])
1636                         cmd |= MI_INVALIDATE_BSD;
1637         }
1638
1639         intel_logical_ring_emit(ringbuf, cmd);
1640         intel_logical_ring_emit(ringbuf,
1641                                 I915_GEM_HWS_SCRATCH_ADDR |
1642                                 MI_FLUSH_DW_USE_GTT);
1643         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1644         intel_logical_ring_emit(ringbuf, 0); /* value */
1645         intel_logical_ring_advance(ringbuf);
1646
1647         return 0;
1648 }
1649
1650 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1651                                   u32 invalidate_domains,
1652                                   u32 flush_domains)
1653 {
1654         struct intel_ringbuffer *ringbuf = request->ringbuf;
1655         struct intel_engine_cs *ring = ringbuf->ring;
1656         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1657         bool vf_flush_wa;
1658         u32 flags = 0;
1659         int ret;
1660
1661         flags |= PIPE_CONTROL_CS_STALL;
1662
1663         if (flush_domains) {
1664                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1665                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1666         }
1667
1668         if (invalidate_domains) {
1669                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1670                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1671                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1672                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1673                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1674                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1675                 flags |= PIPE_CONTROL_QW_WRITE;
1676                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1677         }
1678
1679         /*
1680          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1681          * control.
1682          */
1683         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1684                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1685
1686         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1687         if (ret)
1688                 return ret;
1689
1690         if (vf_flush_wa) {
1691                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1692                 intel_logical_ring_emit(ringbuf, 0);
1693                 intel_logical_ring_emit(ringbuf, 0);
1694                 intel_logical_ring_emit(ringbuf, 0);
1695                 intel_logical_ring_emit(ringbuf, 0);
1696                 intel_logical_ring_emit(ringbuf, 0);
1697         }
1698
1699         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1700         intel_logical_ring_emit(ringbuf, flags);
1701         intel_logical_ring_emit(ringbuf, scratch_addr);
1702         intel_logical_ring_emit(ringbuf, 0);
1703         intel_logical_ring_emit(ringbuf, 0);
1704         intel_logical_ring_emit(ringbuf, 0);
1705         intel_logical_ring_advance(ringbuf);
1706
1707         return 0;
1708 }
1709
1710 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1711 {
1712         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1713 }
1714
1715 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1716 {
1717         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1718 }
1719
1720 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1721 {
1722
1723         /*
1724          * On BXT A steppings there is a HW coherency issue whereby the
1725          * MI_STORE_DATA_IMM storing the completed request's seqno
1726          * occasionally doesn't invalidate the CPU cache. Work around this by
1727          * clflushing the corresponding cacheline whenever the caller wants
1728          * the coherency to be guaranteed. Note that this cacheline is known
1729          * to be clean at this point, since we only write it in
1730          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1731          * this clflush in practice becomes an invalidate operation.
1732          */
1733
1734         if (!lazy_coherency)
1735                 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1736
1737         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1738 }
1739
1740 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1741 {
1742         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1743
1744         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1745         intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1746 }
1747
1748 static int gen8_emit_request(struct drm_i915_gem_request *request)
1749 {
1750         struct intel_ringbuffer *ringbuf = request->ringbuf;
1751         struct intel_engine_cs *ring = ringbuf->ring;
1752         u32 cmd;
1753         int ret;
1754
1755         /*
1756          * Reserve space for 2 NOOPs at the end of each request to be
1757          * used as a workaround for not being allowed to do lite
1758          * restore with HEAD==TAIL (WaIdleLiteRestore).
1759          */
1760         ret = intel_logical_ring_begin(request, 8);
1761         if (ret)
1762                 return ret;
1763
1764         cmd = MI_STORE_DWORD_IMM_GEN4;
1765         cmd |= MI_GLOBAL_GTT;
1766
1767         intel_logical_ring_emit(ringbuf, cmd);
1768         intel_logical_ring_emit(ringbuf,
1769                                 (ring->status_page.gfx_addr +
1770                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1771         intel_logical_ring_emit(ringbuf, 0);
1772         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1773         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1774         intel_logical_ring_emit(ringbuf, MI_NOOP);
1775         intel_logical_ring_advance_and_submit(request);
1776
1777         /*
1778          * Here we add two extra NOOPs as padding to avoid
1779          * lite restore of a context with HEAD==TAIL.
1780          */
1781         intel_logical_ring_emit(ringbuf, MI_NOOP);
1782         intel_logical_ring_emit(ringbuf, MI_NOOP);
1783         intel_logical_ring_advance(ringbuf);
1784
1785         return 0;
1786 }
1787
1788 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1789 {
1790         struct render_state so;
1791         int ret;
1792
1793         ret = i915_gem_render_state_prepare(req->ring, &so);
1794         if (ret)
1795                 return ret;
1796
1797         if (so.rodata == NULL)
1798                 return 0;
1799
1800         ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1801                                        I915_DISPATCH_SECURE);
1802         if (ret)
1803                 goto out;
1804
1805         ret = req->ring->emit_bb_start(req,
1806                                        (so.ggtt_offset + so.aux_batch_offset),
1807                                        I915_DISPATCH_SECURE);
1808         if (ret)
1809                 goto out;
1810
1811         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1812
1813 out:
1814         i915_gem_render_state_fini(&so);
1815         return ret;
1816 }
1817
1818 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1819 {
1820         int ret;
1821
1822         ret = intel_logical_ring_workarounds_emit(req);
1823         if (ret)
1824                 return ret;
1825
1826         ret = intel_rcs_context_init_mocs(req);
1827         /*
1828          * Failing to program the MOCS is non-fatal.The system will not
1829          * run at peak performance. So generate an error and carry on.
1830          */
1831         if (ret)
1832                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1833
1834         return intel_lr_context_render_state_init(req);
1835 }
1836
1837 /**
1838  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1839  *
1840  * @ring: Engine Command Streamer.
1841  *
1842  */
1843 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1844 {
1845         struct drm_i915_private *dev_priv;
1846
1847         if (!intel_ring_initialized(ring))
1848                 return;
1849
1850         dev_priv = ring->dev->dev_private;
1851
1852         intel_logical_ring_stop(ring);
1853         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1854
1855         if (ring->cleanup)
1856                 ring->cleanup(ring);
1857
1858         i915_cmd_parser_fini_ring(ring);
1859         i915_gem_batch_pool_fini(&ring->batch_pool);
1860
1861         if (ring->status_page.obj) {
1862                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1863                 ring->status_page.obj = NULL;
1864         }
1865
1866         lrc_destroy_wa_ctx_obj(ring);
1867 }
1868
1869 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1870 {
1871         int ret;
1872
1873         /* Intentionally left blank. */
1874         ring->buffer = NULL;
1875
1876         ring->dev = dev;
1877         INIT_LIST_HEAD(&ring->active_list);
1878         INIT_LIST_HEAD(&ring->request_list);
1879         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1880         init_waitqueue_head(&ring->irq_queue);
1881
1882         INIT_LIST_HEAD(&ring->execlist_queue);
1883         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1884         spin_lock_init(&ring->execlist_lock);
1885
1886         ret = i915_cmd_parser_init_ring(ring);
1887         if (ret)
1888                 return ret;
1889
1890         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1891
1892         return ret;
1893 }
1894
1895 static int logical_render_ring_init(struct drm_device *dev)
1896 {
1897         struct drm_i915_private *dev_priv = dev->dev_private;
1898         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1899         int ret;
1900
1901         ring->name = "render ring";
1902         ring->id = RCS;
1903         ring->mmio_base = RENDER_RING_BASE;
1904         ring->irq_enable_mask =
1905                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1906         ring->irq_keep_mask =
1907                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1908         if (HAS_L3_DPF(dev))
1909                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1910
1911         if (INTEL_INFO(dev)->gen >= 9)
1912                 ring->init_hw = gen9_init_render_ring;
1913         else
1914                 ring->init_hw = gen8_init_render_ring;
1915         ring->init_context = gen8_init_rcs_context;
1916         ring->cleanup = intel_fini_pipe_control;
1917         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1918                 ring->get_seqno = bxt_a_get_seqno;
1919                 ring->set_seqno = bxt_a_set_seqno;
1920         } else {
1921                 ring->get_seqno = gen8_get_seqno;
1922                 ring->set_seqno = gen8_set_seqno;
1923         }
1924         ring->emit_request = gen8_emit_request;
1925         ring->emit_flush = gen8_emit_flush_render;
1926         ring->irq_get = gen8_logical_ring_get_irq;
1927         ring->irq_put = gen8_logical_ring_put_irq;
1928         ring->emit_bb_start = gen8_emit_bb_start;
1929
1930         ring->dev = dev;
1931
1932         ret = intel_init_pipe_control(ring);
1933         if (ret)
1934                 return ret;
1935
1936         ret = intel_init_workaround_bb(ring);
1937         if (ret) {
1938                 /*
1939                  * We continue even if we fail to initialize WA batch
1940                  * because we only expect rare glitches but nothing
1941                  * critical to prevent us from using GPU
1942                  */
1943                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1944                           ret);
1945         }
1946
1947         ret = logical_ring_init(dev, ring);
1948         if (ret) {
1949                 lrc_destroy_wa_ctx_obj(ring);
1950         }
1951
1952         return ret;
1953 }
1954
1955 static int logical_bsd_ring_init(struct drm_device *dev)
1956 {
1957         struct drm_i915_private *dev_priv = dev->dev_private;
1958         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1959
1960         ring->name = "bsd ring";
1961         ring->id = VCS;
1962         ring->mmio_base = GEN6_BSD_RING_BASE;
1963         ring->irq_enable_mask =
1964                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1965         ring->irq_keep_mask =
1966                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1967
1968         ring->init_hw = gen8_init_common_ring;
1969         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1970                 ring->get_seqno = bxt_a_get_seqno;
1971                 ring->set_seqno = bxt_a_set_seqno;
1972         } else {
1973                 ring->get_seqno = gen8_get_seqno;
1974                 ring->set_seqno = gen8_set_seqno;
1975         }
1976         ring->emit_request = gen8_emit_request;
1977         ring->emit_flush = gen8_emit_flush;
1978         ring->irq_get = gen8_logical_ring_get_irq;
1979         ring->irq_put = gen8_logical_ring_put_irq;
1980         ring->emit_bb_start = gen8_emit_bb_start;
1981
1982         return logical_ring_init(dev, ring);
1983 }
1984
1985 static int logical_bsd2_ring_init(struct drm_device *dev)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1989
1990         ring->name = "bds2 ring";
1991         ring->id = VCS2;
1992         ring->mmio_base = GEN8_BSD2_RING_BASE;
1993         ring->irq_enable_mask =
1994                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1995         ring->irq_keep_mask =
1996                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1997
1998         ring->init_hw = gen8_init_common_ring;
1999         ring->get_seqno = gen8_get_seqno;
2000         ring->set_seqno = gen8_set_seqno;
2001         ring->emit_request = gen8_emit_request;
2002         ring->emit_flush = gen8_emit_flush;
2003         ring->irq_get = gen8_logical_ring_get_irq;
2004         ring->irq_put = gen8_logical_ring_put_irq;
2005         ring->emit_bb_start = gen8_emit_bb_start;
2006
2007         return logical_ring_init(dev, ring);
2008 }
2009
2010 static int logical_blt_ring_init(struct drm_device *dev)
2011 {
2012         struct drm_i915_private *dev_priv = dev->dev_private;
2013         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2014
2015         ring->name = "blitter ring";
2016         ring->id = BCS;
2017         ring->mmio_base = BLT_RING_BASE;
2018         ring->irq_enable_mask =
2019                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2020         ring->irq_keep_mask =
2021                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2022
2023         ring->init_hw = gen8_init_common_ring;
2024         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2025                 ring->get_seqno = bxt_a_get_seqno;
2026                 ring->set_seqno = bxt_a_set_seqno;
2027         } else {
2028                 ring->get_seqno = gen8_get_seqno;
2029                 ring->set_seqno = gen8_set_seqno;
2030         }
2031         ring->emit_request = gen8_emit_request;
2032         ring->emit_flush = gen8_emit_flush;
2033         ring->irq_get = gen8_logical_ring_get_irq;
2034         ring->irq_put = gen8_logical_ring_put_irq;
2035         ring->emit_bb_start = gen8_emit_bb_start;
2036
2037         return logical_ring_init(dev, ring);
2038 }
2039
2040 static int logical_vebox_ring_init(struct drm_device *dev)
2041 {
2042         struct drm_i915_private *dev_priv = dev->dev_private;
2043         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2044
2045         ring->name = "video enhancement ring";
2046         ring->id = VECS;
2047         ring->mmio_base = VEBOX_RING_BASE;
2048         ring->irq_enable_mask =
2049                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2050         ring->irq_keep_mask =
2051                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2052
2053         ring->init_hw = gen8_init_common_ring;
2054         if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2055                 ring->get_seqno = bxt_a_get_seqno;
2056                 ring->set_seqno = bxt_a_set_seqno;
2057         } else {
2058                 ring->get_seqno = gen8_get_seqno;
2059                 ring->set_seqno = gen8_set_seqno;
2060         }
2061         ring->emit_request = gen8_emit_request;
2062         ring->emit_flush = gen8_emit_flush;
2063         ring->irq_get = gen8_logical_ring_get_irq;
2064         ring->irq_put = gen8_logical_ring_put_irq;
2065         ring->emit_bb_start = gen8_emit_bb_start;
2066
2067         return logical_ring_init(dev, ring);
2068 }
2069
2070 /**
2071  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2072  * @dev: DRM device.
2073  *
2074  * This function inits the engines for an Execlists submission style (the equivalent in the
2075  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2076  * those engines that are present in the hardware.
2077  *
2078  * Return: non-zero if the initialization failed.
2079  */
2080 int intel_logical_rings_init(struct drm_device *dev)
2081 {
2082         struct drm_i915_private *dev_priv = dev->dev_private;
2083         int ret;
2084
2085         ret = logical_render_ring_init(dev);
2086         if (ret)
2087                 return ret;
2088
2089         if (HAS_BSD(dev)) {
2090                 ret = logical_bsd_ring_init(dev);
2091                 if (ret)
2092                         goto cleanup_render_ring;
2093         }
2094
2095         if (HAS_BLT(dev)) {
2096                 ret = logical_blt_ring_init(dev);
2097                 if (ret)
2098                         goto cleanup_bsd_ring;
2099         }
2100
2101         if (HAS_VEBOX(dev)) {
2102                 ret = logical_vebox_ring_init(dev);
2103                 if (ret)
2104                         goto cleanup_blt_ring;
2105         }
2106
2107         if (HAS_BSD2(dev)) {
2108                 ret = logical_bsd2_ring_init(dev);
2109                 if (ret)
2110                         goto cleanup_vebox_ring;
2111         }
2112
2113         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2114         if (ret)
2115                 goto cleanup_bsd2_ring;
2116
2117         return 0;
2118
2119 cleanup_bsd2_ring:
2120         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2121 cleanup_vebox_ring:
2122         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2123 cleanup_blt_ring:
2124         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2125 cleanup_bsd_ring:
2126         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2127 cleanup_render_ring:
2128         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2129
2130         return ret;
2131 }
2132
2133 static u32
2134 make_rpcs(struct drm_device *dev)
2135 {
2136         u32 rpcs = 0;
2137
2138         /*
2139          * No explicit RPCS request is needed to ensure full
2140          * slice/subslice/EU enablement prior to Gen9.
2141         */
2142         if (INTEL_INFO(dev)->gen < 9)
2143                 return 0;
2144
2145         /*
2146          * Starting in Gen9, render power gating can leave
2147          * slice/subslice/EU in a partially enabled state. We
2148          * must make an explicit request through RPCS for full
2149          * enablement.
2150         */
2151         if (INTEL_INFO(dev)->has_slice_pg) {
2152                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2153                 rpcs |= INTEL_INFO(dev)->slice_total <<
2154                         GEN8_RPCS_S_CNT_SHIFT;
2155                 rpcs |= GEN8_RPCS_ENABLE;
2156         }
2157
2158         if (INTEL_INFO(dev)->has_subslice_pg) {
2159                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2160                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2161                         GEN8_RPCS_SS_CNT_SHIFT;
2162                 rpcs |= GEN8_RPCS_ENABLE;
2163         }
2164
2165         if (INTEL_INFO(dev)->has_eu_pg) {
2166                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2167                         GEN8_RPCS_EU_MIN_SHIFT;
2168                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2169                         GEN8_RPCS_EU_MAX_SHIFT;
2170                 rpcs |= GEN8_RPCS_ENABLE;
2171         }
2172
2173         return rpcs;
2174 }
2175
2176 static int
2177 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2178                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2179 {
2180         struct drm_device *dev = ring->dev;
2181         struct drm_i915_private *dev_priv = dev->dev_private;
2182         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2183         struct page *page;
2184         uint32_t *reg_state;
2185         int ret;
2186
2187         if (!ppgtt)
2188                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2189
2190         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2191         if (ret) {
2192                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2193                 return ret;
2194         }
2195
2196         ret = i915_gem_object_get_pages(ctx_obj);
2197         if (ret) {
2198                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2199                 return ret;
2200         }
2201
2202         i915_gem_object_pin_pages(ctx_obj);
2203
2204         /* The second page of the context object contains some fields which must
2205          * be set up prior to the first execution. */
2206         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2207         reg_state = kmap_atomic(page);
2208
2209         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2210          * commands followed by (reg, value) pairs. The values we are setting here are
2211          * only for the first context restore: on a subsequent save, the GPU will
2212          * recreate this batchbuffer with new values (including all the missing
2213          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2214         if (ring->id == RCS)
2215                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2216         else
2217                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2218         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2219         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2220         reg_state[CTX_CONTEXT_CONTROL+1] =
2221                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2222                                    CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2223                                    CTX_CTRL_RS_CTX_ENABLE);
2224         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2225         reg_state[CTX_RING_HEAD+1] = 0;
2226         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2227         reg_state[CTX_RING_TAIL+1] = 0;
2228         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2229         /* Ring buffer start address is not known until the buffer is pinned.
2230          * It is written to the context image in execlists_update_context()
2231          */
2232         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2233         reg_state[CTX_RING_BUFFER_CONTROL+1] =
2234                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2235         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2236         reg_state[CTX_BB_HEAD_U+1] = 0;
2237         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2238         reg_state[CTX_BB_HEAD_L+1] = 0;
2239         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2240         reg_state[CTX_BB_STATE+1] = (1<<5);
2241         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2242         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2243         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2244         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2245         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2246         reg_state[CTX_SECOND_BB_STATE+1] = 0;
2247         if (ring->id == RCS) {
2248                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2249                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2250                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2251                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2252                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2253                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2254                 if (ring->wa_ctx.obj) {
2255                         struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2256                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2257
2258                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2259                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2260                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2261
2262                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2263                                 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2264
2265                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2266                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2267                                 0x01;
2268                 }
2269         }
2270         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2271         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2272         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2273         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2274         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2275         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2276         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2277         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2278         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2279         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2280         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2281         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2282
2283         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2284                 /* 64b PPGTT (48bit canonical)
2285                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2286                  * other PDP Descriptors are ignored.
2287                  */
2288                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2289         } else {
2290                 /* 32b PPGTT
2291                  * PDP*_DESCRIPTOR contains the base address of space supported.
2292                  * With dynamic page allocation, PDPs may not be allocated at
2293                  * this point. Point the unallocated PDPs to the scratch page
2294                  */
2295                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2296                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2297                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2298                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2299         }
2300
2301         if (ring->id == RCS) {
2302                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2303                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2304                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2305         }
2306
2307         kunmap_atomic(reg_state);
2308
2309         ctx_obj->dirty = 1;
2310         set_page_dirty(page);
2311         i915_gem_object_unpin_pages(ctx_obj);
2312
2313         return 0;
2314 }
2315
2316 /**
2317  * intel_lr_context_free() - free the LRC specific bits of a context
2318  * @ctx: the LR context to free.
2319  *
2320  * The real context freeing is done in i915_gem_context_free: this only
2321  * takes care of the bits that are LRC related: the per-engine backing
2322  * objects and the logical ringbuffer.
2323  */
2324 void intel_lr_context_free(struct intel_context *ctx)
2325 {
2326         int i;
2327
2328         for (i = 0; i < I915_NUM_RINGS; i++) {
2329                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2330
2331                 if (ctx_obj) {
2332                         struct intel_ringbuffer *ringbuf =
2333                                         ctx->engine[i].ringbuf;
2334                         struct intel_engine_cs *ring = ringbuf->ring;
2335
2336                         if (ctx == ring->default_context) {
2337                                 intel_unpin_ringbuffer_obj(ringbuf);
2338                                 i915_gem_object_ggtt_unpin(ctx_obj);
2339                         }
2340                         WARN_ON(ctx->engine[ring->id].pin_count);
2341                         intel_destroy_ringbuffer_obj(ringbuf);
2342                         kfree(ringbuf);
2343                         drm_gem_object_unreference(&ctx_obj->base);
2344                 }
2345         }
2346 }
2347
2348 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2349 {
2350         int ret = 0;
2351
2352         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2353
2354         switch (ring->id) {
2355         case RCS:
2356                 if (INTEL_INFO(ring->dev)->gen >= 9)
2357                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2358                 else
2359                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2360                 break;
2361         case VCS:
2362         case BCS:
2363         case VECS:
2364         case VCS2:
2365                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2366                 break;
2367         }
2368
2369         return ret;
2370 }
2371
2372 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2373                 struct drm_i915_gem_object *default_ctx_obj)
2374 {
2375         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2376         struct page *page;
2377
2378         /* The HWSP is part of the default context object in LRC mode. */
2379         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2380                         + LRC_PPHWSP_PN * PAGE_SIZE;
2381         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2382         ring->status_page.page_addr = kmap(page);
2383         ring->status_page.obj = default_ctx_obj;
2384
2385         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2386                         (u32)ring->status_page.gfx_addr);
2387         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2388 }
2389
2390 /**
2391  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2392  * @ctx: LR context to create.
2393  * @ring: engine to be used with the context.
2394  *
2395  * This function can be called more than once, with different engines, if we plan
2396  * to use the context with them. The context backing objects and the ringbuffers
2397  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2398  * the creation is a deferred call: it's better to make sure first that we need to use
2399  * a given ring with the context.
2400  *
2401  * Return: non-zero on error.
2402  */
2403 int intel_lr_context_deferred_create(struct intel_context *ctx,
2404                                      struct intel_engine_cs *ring)
2405 {
2406         const bool is_global_default_ctx = (ctx == ring->default_context);
2407         struct drm_device *dev = ring->dev;
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         struct drm_i915_gem_object *ctx_obj;
2410         uint32_t context_size;
2411         struct intel_ringbuffer *ringbuf;
2412         int ret;
2413
2414         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2415         WARN_ON(ctx->engine[ring->id].state);
2416
2417         context_size = round_up(get_lr_context_size(ring), 4096);
2418
2419         /* One extra page as the sharing data between driver and GuC */
2420         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2421
2422         ctx_obj = i915_gem_alloc_object(dev, context_size);
2423         if (!ctx_obj) {
2424                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2425                 return -ENOMEM;
2426         }
2427
2428         if (is_global_default_ctx) {
2429                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
2430                                 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
2431                 if (ret) {
2432                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2433                                         ret);
2434                         drm_gem_object_unreference(&ctx_obj->base);
2435                         return ret;
2436                 }
2437
2438                 /* Invalidate GuC TLB. */
2439                 if (i915.enable_guc_submission)
2440                         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
2441         }
2442
2443         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2444         if (!ringbuf) {
2445                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2446                                 ring->name);
2447                 ret = -ENOMEM;
2448                 goto error_unpin_ctx;
2449         }
2450
2451         ringbuf->ring = ring;
2452
2453         ringbuf->size = 4 * PAGE_SIZE;
2454         ringbuf->effective_size = ringbuf->size;
2455         ringbuf->head = 0;
2456         ringbuf->tail = 0;
2457         ringbuf->last_retired_head = -1;
2458         intel_ring_update_space(ringbuf);
2459
2460         if (ringbuf->obj == NULL) {
2461                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2462                 if (ret) {
2463                         DRM_DEBUG_DRIVER(
2464                                 "Failed to allocate ringbuffer obj %s: %d\n",
2465                                 ring->name, ret);
2466                         goto error_free_rbuf;
2467                 }
2468
2469                 if (is_global_default_ctx) {
2470                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2471                         if (ret) {
2472                                 DRM_ERROR(
2473                                         "Failed to pin and map ringbuffer %s: %d\n",
2474                                         ring->name, ret);
2475                                 goto error_destroy_rbuf;
2476                         }
2477                 }
2478
2479         }
2480
2481         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2482         if (ret) {
2483                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2484                 goto error;
2485         }
2486
2487         ctx->engine[ring->id].ringbuf = ringbuf;
2488         ctx->engine[ring->id].state = ctx_obj;
2489
2490         if (ctx == ring->default_context)
2491                 lrc_setup_hardware_status_page(ring, ctx_obj);
2492         else if (ring->id == RCS && !ctx->rcs_initialized) {
2493                 if (ring->init_context) {
2494                         struct drm_i915_gem_request *req;
2495
2496                         ret = i915_gem_request_alloc(ring, ctx, &req);
2497                         if (ret)
2498                                 return ret;
2499
2500                         ret = ring->init_context(req);
2501                         if (ret) {
2502                                 DRM_ERROR("ring init context: %d\n", ret);
2503                                 i915_gem_request_cancel(req);
2504                                 ctx->engine[ring->id].ringbuf = NULL;
2505                                 ctx->engine[ring->id].state = NULL;
2506                                 goto error;
2507                         }
2508
2509                         i915_add_request_no_flush(req);
2510                 }
2511
2512                 ctx->rcs_initialized = true;
2513         }
2514
2515         return 0;
2516
2517 error:
2518         if (is_global_default_ctx)
2519                 intel_unpin_ringbuffer_obj(ringbuf);
2520 error_destroy_rbuf:
2521         intel_destroy_ringbuffer_obj(ringbuf);
2522 error_free_rbuf:
2523         kfree(ringbuf);
2524 error_unpin_ctx:
2525         if (is_global_default_ctx)
2526                 i915_gem_object_ggtt_unpin(ctx_obj);
2527         drm_gem_object_unreference(&ctx_obj->base);
2528         return ret;
2529 }
2530
2531 void intel_lr_context_reset(struct drm_device *dev,
2532                         struct intel_context *ctx)
2533 {
2534         struct drm_i915_private *dev_priv = dev->dev_private;
2535         struct intel_engine_cs *ring;
2536         int i;
2537
2538         for_each_ring(ring, dev_priv, i) {
2539                 struct drm_i915_gem_object *ctx_obj =
2540                                 ctx->engine[ring->id].state;
2541                 struct intel_ringbuffer *ringbuf =
2542                                 ctx->engine[ring->id].ringbuf;
2543                 uint32_t *reg_state;
2544                 struct page *page;
2545
2546                 if (!ctx_obj)
2547                         continue;
2548
2549                 if (i915_gem_object_get_pages(ctx_obj)) {
2550                         WARN(1, "Failed get_pages for context obj\n");
2551                         continue;
2552                 }
2553                 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2554                 reg_state = kmap_atomic(page);
2555
2556                 reg_state[CTX_RING_HEAD+1] = 0;
2557                 reg_state[CTX_RING_TAIL+1] = 0;
2558
2559                 kunmap_atomic(reg_state);
2560
2561                 ringbuf->head = 0;
2562                 ringbuf->tail = 0;
2563         }
2564 }