drm/i915/execlists: Apply a full mb before execution for Braswell
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168                                             struct intel_engine_cs *engine,
169                                             struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171                                      struct i915_gem_context *ctx,
172                                      struct intel_engine_cs *engine,
173                                      struct intel_ring *ring);
174
175 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
176 {
177         return rb_entry(rb, struct i915_priolist, node);
178 }
179
180 static inline int rq_prio(const struct i915_request *rq)
181 {
182         return rq->sched.attr.priority;
183 }
184
185 static inline bool need_preempt(const struct intel_engine_cs *engine,
186                                 const struct i915_request *last,
187                                 int prio)
188 {
189         return (intel_engine_has_preemption(engine) &&
190                 __execlists_need_preempt(prio, rq_prio(last)) &&
191                 !i915_request_completed(last));
192 }
193
194 /*
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222                                    struct intel_engine_cs *engine,
223                                    struct intel_context *ce)
224 {
225         u64 desc;
226
227         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229
230         desc = ctx->desc_template;                              /* bits  0-11 */
231         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232
233         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234                                                                 /* bits 12-31 */
235         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236
237         /*
238          * The following 32bits are copied into the OA reports (dword 2).
239          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
240          * anything below.
241          */
242         if (INTEL_GEN(ctx->i915) >= 11) {
243                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
244                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245                                                                 /* bits 37-47 */
246
247                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248                                                                 /* bits 48-53 */
249
250                 /* TODO: decide what to do with SW counter (bits 55-60) */
251
252                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253                                                                 /* bits 61-63 */
254         } else {
255                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
256                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
257         }
258
259         ce->lrc_desc = desc;
260 }
261
262 static struct i915_priolist *
263 lookup_priolist(struct intel_engine_cs *engine, int prio)
264 {
265         struct intel_engine_execlists * const execlists = &engine->execlists;
266         struct i915_priolist *p;
267         struct rb_node **parent, *rb;
268         bool first = true;
269
270         if (unlikely(execlists->no_priolist))
271                 prio = I915_PRIORITY_NORMAL;
272
273 find_priolist:
274         /* most positive priority is scheduled first, equal priorities fifo */
275         rb = NULL;
276         parent = &execlists->queue.rb_root.rb_node;
277         while (*parent) {
278                 rb = *parent;
279                 p = to_priolist(rb);
280                 if (prio > p->priority) {
281                         parent = &rb->rb_left;
282                 } else if (prio < p->priority) {
283                         parent = &rb->rb_right;
284                         first = false;
285                 } else {
286                         return p;
287                 }
288         }
289
290         if (prio == I915_PRIORITY_NORMAL) {
291                 p = &execlists->default_priolist;
292         } else {
293                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
294                 /* Convert an allocation failure to a priority bump */
295                 if (unlikely(!p)) {
296                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
297
298                         /* To maintain ordering with all rendering, after an
299                          * allocation failure we have to disable all scheduling.
300                          * Requests will then be executed in fifo, and schedule
301                          * will ensure that dependencies are emitted in fifo.
302                          * There will be still some reordering with existing
303                          * requests, so if userspace lied about their
304                          * dependencies that reordering may be visible.
305                          */
306                         execlists->no_priolist = true;
307                         goto find_priolist;
308                 }
309         }
310
311         p->priority = prio;
312         INIT_LIST_HEAD(&p->requests);
313         rb_link_node(&p->node, rb, parent);
314         rb_insert_color_cached(&p->node, &execlists->queue, first);
315
316         return p;
317 }
318
319 static void unwind_wa_tail(struct i915_request *rq)
320 {
321         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322         assert_ring_tail_valid(rq->ring, rq->tail);
323 }
324
325 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 {
327         struct i915_request *rq, *rn;
328         struct i915_priolist *uninitialized_var(p);
329         int last_prio = I915_PRIORITY_INVALID;
330
331         lockdep_assert_held(&engine->timeline.lock);
332
333         list_for_each_entry_safe_reverse(rq, rn,
334                                          &engine->timeline.requests,
335                                          link) {
336                 if (i915_request_completed(rq))
337                         return;
338
339                 __i915_request_unsubmit(rq);
340                 unwind_wa_tail(rq);
341
342                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
343                 if (rq_prio(rq) != last_prio) {
344                         last_prio = rq_prio(rq);
345                         p = lookup_priolist(engine, last_prio);
346                 }
347
348                 GEM_BUG_ON(p->priority != rq_prio(rq));
349                 list_add(&rq->sched.link, &p->requests);
350         }
351 }
352
353 void
354 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
355 {
356         struct intel_engine_cs *engine =
357                 container_of(execlists, typeof(*engine), execlists);
358         unsigned long flags;
359
360         spin_lock_irqsave(&engine->timeline.lock, flags);
361
362         __unwind_incomplete_requests(engine);
363
364         spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 }
366
367 static inline void
368 execlists_context_status_change(struct i915_request *rq, unsigned long status)
369 {
370         /*
371          * Only used when GVT-g is enabled now. When GVT-g is disabled,
372          * The compiler should eliminate this function as dead-code.
373          */
374         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
375                 return;
376
377         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
378                                    status, rq);
379 }
380
381 inline void
382 execlists_user_begin(struct intel_engine_execlists *execlists,
383                      const struct execlist_port *port)
384 {
385         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
386 }
387
388 inline void
389 execlists_user_end(struct intel_engine_execlists *execlists)
390 {
391         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
392 }
393
394 static inline void
395 execlists_context_schedule_in(struct i915_request *rq)
396 {
397         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398         intel_engine_context_in(rq->engine);
399 }
400
401 static inline void
402 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403 {
404         intel_engine_context_out(rq->engine);
405         execlists_context_status_change(rq, status);
406         trace_i915_request_out(rq);
407 }
408
409 static void
410 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
411 {
412         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
413         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
414         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
415         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
416 }
417
418 static u64 execlists_update_context(struct i915_request *rq)
419 {
420         struct intel_context *ce = rq->hw_context;
421         struct i915_hw_ppgtt *ppgtt =
422                 rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423         u32 *reg_state = ce->lrc_reg_state;
424
425         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426
427         /*
428          * True 32b PPGTT with dynamic page allocation: update PDP
429          * registers and point the unallocated PDPs to scratch page.
430          * PML4 is allocated during ppgtt init, so this is not needed
431          * in 48-bit mode.
432          */
433         if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
434                 execlists_update_context_pdps(ppgtt, reg_state);
435
436         /*
437          * Make sure the context image is complete before we submit it to HW.
438          *
439          * Ostensibly, writes (including the WCB) should be flushed prior to
440          * an uncached write such as our mmio register access, the empirical
441          * evidence (esp. on Braswell) suggests that the WC write into memory
442          * may not be visible to the HW prior to the completion of the UC
443          * register write and that we may begin execution from the context
444          * before its image is complete leading to invalid PD chasing.
445          *
446          * Furthermore, Braswell, at least, wants a full mb to be sure that
447          * the writes are coherent in memory (visible to the GPU) prior to
448          * execution, and not just visible to other CPUs (as is the result of
449          * wmb).
450          */
451         mb();
452         return ce->lrc_desc;
453 }
454
455 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
456 {
457         if (execlists->ctrl_reg) {
458                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
459                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
460         } else {
461                 writel(upper_32_bits(desc), execlists->submit_reg);
462                 writel(lower_32_bits(desc), execlists->submit_reg);
463         }
464 }
465
466 static void execlists_submit_ports(struct intel_engine_cs *engine)
467 {
468         struct intel_engine_execlists *execlists = &engine->execlists;
469         struct execlist_port *port = execlists->port;
470         unsigned int n;
471
472         /*
473          * We can skip acquiring intel_runtime_pm_get() here as it was taken
474          * on our behalf by the request (see i915_gem_mark_busy()) and it will
475          * not be relinquished until the device is idle (see
476          * i915_gem_idle_work_handler()). As a precaution, we make sure
477          * that all ELSP are drained i.e. we have processed the CSB,
478          * before allowing ourselves to idle and calling intel_runtime_pm_put().
479          */
480         GEM_BUG_ON(!engine->i915->gt.awake);
481
482         /*
483          * ELSQ note: the submit queue is not cleared after being submitted
484          * to the HW so we need to make sure we always clean it up. This is
485          * currently ensured by the fact that we always write the same number
486          * of elsq entries, keep this in mind before changing the loop below.
487          */
488         for (n = execlists_num_ports(execlists); n--; ) {
489                 struct i915_request *rq;
490                 unsigned int count;
491                 u64 desc;
492
493                 rq = port_unpack(&port[n], &count);
494                 if (rq) {
495                         GEM_BUG_ON(count > !n);
496                         if (!count++)
497                                 execlists_context_schedule_in(rq);
498                         port_set(&port[n], port_pack(rq, count));
499                         desc = execlists_update_context(rq);
500                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
501
502                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
503                                   engine->name, n,
504                                   port[n].context_id, count,
505                                   rq->global_seqno,
506                                   rq->fence.context, rq->fence.seqno,
507                                   intel_engine_get_seqno(engine),
508                                   rq_prio(rq));
509                 } else {
510                         GEM_BUG_ON(!n);
511                         desc = 0;
512                 }
513
514                 write_desc(execlists, desc, n);
515         }
516
517         /* we need to manually load the submit queue */
518         if (execlists->ctrl_reg)
519                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
520
521         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
522 }
523
524 static bool ctx_single_port_submission(const struct intel_context *ce)
525 {
526         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
527                 i915_gem_context_force_single_submission(ce->gem_context));
528 }
529
530 static bool can_merge_ctx(const struct intel_context *prev,
531                           const struct intel_context *next)
532 {
533         if (prev != next)
534                 return false;
535
536         if (ctx_single_port_submission(prev))
537                 return false;
538
539         return true;
540 }
541
542 static void port_assign(struct execlist_port *port, struct i915_request *rq)
543 {
544         GEM_BUG_ON(rq == port_request(port));
545
546         if (port_isset(port))
547                 i915_request_put(port_request(port));
548
549         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
550 }
551
552 static void inject_preempt_context(struct intel_engine_cs *engine)
553 {
554         struct intel_engine_execlists *execlists = &engine->execlists;
555         struct intel_context *ce =
556                 to_intel_context(engine->i915->preempt_context, engine);
557         unsigned int n;
558
559         GEM_BUG_ON(execlists->preempt_complete_status !=
560                    upper_32_bits(ce->lrc_desc));
561
562         /*
563          * Switch to our empty preempt context so
564          * the state of the GPU is known (idle).
565          */
566         GEM_TRACE("%s\n", engine->name);
567         for (n = execlists_num_ports(execlists); --n; )
568                 write_desc(execlists, 0, n);
569
570         write_desc(execlists, ce->lrc_desc, n);
571
572         /* we need to manually load the submit queue */
573         if (execlists->ctrl_reg)
574                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
575
576         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
577         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
578 }
579
580 static void complete_preempt_context(struct intel_engine_execlists *execlists)
581 {
582         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
583
584         if (inject_preempt_hang(execlists))
585                 return;
586
587         execlists_cancel_port_requests(execlists);
588         __unwind_incomplete_requests(container_of(execlists,
589                                                   struct intel_engine_cs,
590                                                   execlists));
591 }
592
593 static void execlists_dequeue(struct intel_engine_cs *engine)
594 {
595         struct intel_engine_execlists * const execlists = &engine->execlists;
596         struct execlist_port *port = execlists->port;
597         const struct execlist_port * const last_port =
598                 &execlists->port[execlists->port_mask];
599         struct i915_request *last = port_request(port);
600         struct rb_node *rb;
601         bool submit = false;
602
603         /*
604          * Hardware submission is through 2 ports. Conceptually each port
605          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
606          * static for a context, and unique to each, so we only execute
607          * requests belonging to a single context from each ring. RING_HEAD
608          * is maintained by the CS in the context image, it marks the place
609          * where it got up to last time, and through RING_TAIL we tell the CS
610          * where we want to execute up to this time.
611          *
612          * In this list the requests are in order of execution. Consecutive
613          * requests from the same context are adjacent in the ringbuffer. We
614          * can combine these requests into a single RING_TAIL update:
615          *
616          *              RING_HEAD...req1...req2
617          *                                    ^- RING_TAIL
618          * since to execute req2 the CS must first execute req1.
619          *
620          * Our goal then is to point each port to the end of a consecutive
621          * sequence of requests as being the most optimal (fewest wake ups
622          * and context switches) submission.
623          */
624
625         if (last) {
626                 /*
627                  * Don't resubmit or switch until all outstanding
628                  * preemptions (lite-restore) are seen. Then we
629                  * know the next preemption status we see corresponds
630                  * to this ELSP update.
631                  */
632                 GEM_BUG_ON(!execlists_is_active(execlists,
633                                                 EXECLISTS_ACTIVE_USER));
634                 GEM_BUG_ON(!port_count(&port[0]));
635
636                 /*
637                  * If we write to ELSP a second time before the HW has had
638                  * a chance to respond to the previous write, we can confuse
639                  * the HW and hit "undefined behaviour". After writing to ELSP,
640                  * we must then wait until we see a context-switch event from
641                  * the HW to indicate that it has had a chance to respond.
642                  */
643                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
644                         return;
645
646                 if (need_preempt(engine, last, execlists->queue_priority)) {
647                         inject_preempt_context(engine);
648                         return;
649                 }
650
651                 /*
652                  * In theory, we could coalesce more requests onto
653                  * the second port (the first port is active, with
654                  * no preemptions pending). However, that means we
655                  * then have to deal with the possible lite-restore
656                  * of the second port (as we submit the ELSP, there
657                  * may be a context-switch) but also we may complete
658                  * the resubmission before the context-switch. Ergo,
659                  * coalescing onto the second port will cause a
660                  * preemption event, but we cannot predict whether
661                  * that will affect port[0] or port[1].
662                  *
663                  * If the second port is already active, we can wait
664                  * until the next context-switch before contemplating
665                  * new requests. The GPU will be busy and we should be
666                  * able to resubmit the new ELSP before it idles,
667                  * avoiding pipeline bubbles (momentary pauses where
668                  * the driver is unable to keep up the supply of new
669                  * work). However, we have to double check that the
670                  * priorities of the ports haven't been switch.
671                  */
672                 if (port_count(&port[1]))
673                         return;
674
675                 /*
676                  * WaIdleLiteRestore:bdw,skl
677                  * Apply the wa NOOPs to prevent
678                  * ring:HEAD == rq:TAIL as we resubmit the
679                  * request. See gen8_emit_breadcrumb() for
680                  * where we prepare the padding after the
681                  * end of the request.
682                  */
683                 last->tail = last->wa_tail;
684         }
685
686         while ((rb = rb_first_cached(&execlists->queue))) {
687                 struct i915_priolist *p = to_priolist(rb);
688                 struct i915_request *rq, *rn;
689
690                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
691                         /*
692                          * Can we combine this request with the current port?
693                          * It has to be the same context/ringbuffer and not
694                          * have any exceptions (e.g. GVT saying never to
695                          * combine contexts).
696                          *
697                          * If we can combine the requests, we can execute both
698                          * by updating the RING_TAIL to point to the end of the
699                          * second request, and so we never need to tell the
700                          * hardware about the first.
701                          */
702                         if (last &&
703                             !can_merge_ctx(rq->hw_context, last->hw_context)) {
704                                 /*
705                                  * If we are on the second port and cannot
706                                  * combine this request with the last, then we
707                                  * are done.
708                                  */
709                                 if (port == last_port) {
710                                         __list_del_many(&p->requests,
711                                                         &rq->sched.link);
712                                         goto done;
713                                 }
714
715                                 /*
716                                  * If GVT overrides us we only ever submit
717                                  * port[0], leaving port[1] empty. Note that we
718                                  * also have to be careful that we don't queue
719                                  * the same context (even though a different
720                                  * request) to the second port.
721                                  */
722                                 if (ctx_single_port_submission(last->hw_context) ||
723                                     ctx_single_port_submission(rq->hw_context)) {
724                                         __list_del_many(&p->requests,
725                                                         &rq->sched.link);
726                                         goto done;
727                                 }
728
729                                 GEM_BUG_ON(last->hw_context == rq->hw_context);
730
731                                 if (submit)
732                                         port_assign(port, last);
733                                 port++;
734
735                                 GEM_BUG_ON(port_isset(port));
736                         }
737
738                         INIT_LIST_HEAD(&rq->sched.link);
739                         __i915_request_submit(rq);
740                         trace_i915_request_in(rq, port_index(port, execlists));
741                         last = rq;
742                         submit = true;
743                 }
744
745                 rb_erase_cached(&p->node, &execlists->queue);
746                 INIT_LIST_HEAD(&p->requests);
747                 if (p->priority != I915_PRIORITY_NORMAL)
748                         kmem_cache_free(engine->i915->priorities, p);
749         }
750
751 done:
752         /*
753          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
754          *
755          * We choose queue_priority such that if we add a request of greater
756          * priority than this, we kick the submission tasklet to decide on
757          * the right order of submitting the requests to hardware. We must
758          * also be prepared to reorder requests as they are in-flight on the
759          * HW. We derive the queue_priority then as the first "hole" in
760          * the HW submission ports and if there are no available slots,
761          * the priority of the lowest executing request, i.e. last.
762          *
763          * When we do receive a higher priority request ready to run from the
764          * user, see queue_request(), the queue_priority is bumped to that
765          * request triggering preemption on the next dequeue (or subsequent
766          * interrupt for secondary ports).
767          */
768         execlists->queue_priority =
769                 port != execlists->port ? rq_prio(last) : INT_MIN;
770
771         if (submit) {
772                 port_assign(port, last);
773                 execlists_submit_ports(engine);
774         }
775
776         /* We must always keep the beast fed if we have work piled up */
777         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
778                    !port_isset(execlists->port));
779
780         /* Re-evaluate the executing context setup after each preemptive kick */
781         if (last)
782                 execlists_user_begin(execlists, execlists->port);
783
784         /* If the engine is now idle, so should be the flag; and vice versa. */
785         GEM_BUG_ON(execlists_is_active(&engine->execlists,
786                                        EXECLISTS_ACTIVE_USER) ==
787                    !port_isset(engine->execlists.port));
788 }
789
790 void
791 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
792 {
793         struct execlist_port *port = execlists->port;
794         unsigned int num_ports = execlists_num_ports(execlists);
795
796         while (num_ports-- && port_isset(port)) {
797                 struct i915_request *rq = port_request(port);
798
799                 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
800                           rq->engine->name,
801                           (unsigned int)(port - execlists->port),
802                           rq->global_seqno,
803                           rq->fence.context, rq->fence.seqno,
804                           intel_engine_get_seqno(rq->engine));
805
806                 GEM_BUG_ON(!execlists->active);
807                 execlists_context_schedule_out(rq,
808                                                i915_request_completed(rq) ?
809                                                INTEL_CONTEXT_SCHEDULE_OUT :
810                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
811
812                 i915_request_put(rq);
813
814                 memset(port, 0, sizeof(*port));
815                 port++;
816         }
817
818         execlists_clear_all_active(execlists);
819 }
820
821 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
822 {
823         /*
824          * After a reset, the HW starts writing into CSB entry [0]. We
825          * therefore have to set our HEAD pointer back one entry so that
826          * the *first* entry we check is entry 0. To complicate this further,
827          * as we don't wait for the first interrupt after reset, we have to
828          * fake the HW write to point back to the last entry so that our
829          * inline comparison of our cached head position against the last HW
830          * write works even before the first interrupt.
831          */
832         execlists->csb_head = execlists->csb_write_reset;
833         WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
834 }
835
836 static void nop_submission_tasklet(unsigned long data)
837 {
838         /* The driver is wedged; don't process any more events. */
839 }
840
841 static void execlists_cancel_requests(struct intel_engine_cs *engine)
842 {
843         struct intel_engine_execlists * const execlists = &engine->execlists;
844         struct i915_request *rq, *rn;
845         struct rb_node *rb;
846         unsigned long flags;
847
848         GEM_TRACE("%s current %d\n",
849                   engine->name, intel_engine_get_seqno(engine));
850
851         /*
852          * Before we call engine->cancel_requests(), we should have exclusive
853          * access to the submission state. This is arranged for us by the
854          * caller disabling the interrupt generation, the tasklet and other
855          * threads that may then access the same state, giving us a free hand
856          * to reset state. However, we still need to let lockdep be aware that
857          * we know this state may be accessed in hardirq context, so we
858          * disable the irq around this manipulation and we want to keep
859          * the spinlock focused on its duties and not accidentally conflate
860          * coverage to the submission's irq state. (Similarly, although we
861          * shouldn't need to disable irq around the manipulation of the
862          * submission's irq state, we also wish to remind ourselves that
863          * it is irq state.)
864          */
865         spin_lock_irqsave(&engine->timeline.lock, flags);
866
867         /* Cancel the requests on the HW and clear the ELSP tracker. */
868         execlists_cancel_port_requests(execlists);
869         execlists_user_end(execlists);
870
871         /* Mark all executing requests as skipped. */
872         list_for_each_entry(rq, &engine->timeline.requests, link) {
873                 GEM_BUG_ON(!rq->global_seqno);
874                 if (!i915_request_completed(rq))
875                         dma_fence_set_error(&rq->fence, -EIO);
876         }
877
878         /* Flush the queued requests to the timeline list (for retiring). */
879         while ((rb = rb_first_cached(&execlists->queue))) {
880                 struct i915_priolist *p = to_priolist(rb);
881
882                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
883                         INIT_LIST_HEAD(&rq->sched.link);
884
885                         dma_fence_set_error(&rq->fence, -EIO);
886                         __i915_request_submit(rq);
887                 }
888
889                 rb_erase_cached(&p->node, &execlists->queue);
890                 INIT_LIST_HEAD(&p->requests);
891                 if (p->priority != I915_PRIORITY_NORMAL)
892                         kmem_cache_free(engine->i915->priorities, p);
893         }
894
895         /* Remaining _unready_ requests will be nop'ed when submitted */
896
897         execlists->queue_priority = INT_MIN;
898         execlists->queue = RB_ROOT_CACHED;
899         GEM_BUG_ON(port_isset(execlists->port));
900
901         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
902         execlists->tasklet.func = nop_submission_tasklet;
903
904         spin_unlock_irqrestore(&engine->timeline.lock, flags);
905 }
906
907 static inline bool
908 reset_in_progress(const struct intel_engine_execlists *execlists)
909 {
910         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
911 }
912
913 static void process_csb(struct intel_engine_cs *engine)
914 {
915         struct intel_engine_execlists * const execlists = &engine->execlists;
916         struct execlist_port *port = execlists->port;
917         const u32 * const buf = execlists->csb_status;
918         u8 head, tail;
919
920         /*
921          * Note that csb_write, csb_status may be either in HWSP or mmio.
922          * When reading from the csb_write mmio register, we have to be
923          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
924          * the low 4bits. As it happens we know the next 4bits are always
925          * zero and so we can simply masked off the low u8 of the register
926          * and treat it identically to reading from the HWSP (without having
927          * to use explicit shifting and masking, and probably bifurcating
928          * the code to handle the legacy mmio read).
929          */
930         head = execlists->csb_head;
931         tail = READ_ONCE(*execlists->csb_write);
932         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
933         if (unlikely(head == tail))
934                 return;
935
936         /*
937          * Hopefully paired with a wmb() in HW!
938          *
939          * We must complete the read of the write pointer before any reads
940          * from the CSB, so that we do not see stale values. Without an rmb
941          * (lfence) the HW may speculatively perform the CSB[] reads *before*
942          * we perform the READ_ONCE(*csb_write).
943          */
944         rmb();
945
946         do {
947                 struct i915_request *rq;
948                 unsigned int status;
949                 unsigned int count;
950
951                 if (++head == GEN8_CSB_ENTRIES)
952                         head = 0;
953
954                 /*
955                  * We are flying near dragons again.
956                  *
957                  * We hold a reference to the request in execlist_port[]
958                  * but no more than that. We are operating in softirq
959                  * context and so cannot hold any mutex or sleep. That
960                  * prevents us stopping the requests we are processing
961                  * in port[] from being retired simultaneously (the
962                  * breadcrumb will be complete before we see the
963                  * context-switch). As we only hold the reference to the
964                  * request, any pointer chasing underneath the request
965                  * is subject to a potential use-after-free. Thus we
966                  * store all of the bookkeeping within port[] as
967                  * required, and avoid using unguarded pointers beneath
968                  * request itself. The same applies to the atomic
969                  * status notifier.
970                  */
971
972                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
973                           engine->name, head,
974                           buf[2 * head + 0], buf[2 * head + 1],
975                           execlists->active);
976
977                 status = buf[2 * head];
978                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
979                               GEN8_CTX_STATUS_PREEMPTED))
980                         execlists_set_active(execlists,
981                                              EXECLISTS_ACTIVE_HWACK);
982                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
983                         execlists_clear_active(execlists,
984                                                EXECLISTS_ACTIVE_HWACK);
985
986                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
987                         continue;
988
989                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
990                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
991
992                 if (status & GEN8_CTX_STATUS_COMPLETE &&
993                     buf[2*head + 1] == execlists->preempt_complete_status) {
994                         GEM_TRACE("%s preempt-idle\n", engine->name);
995                         complete_preempt_context(execlists);
996                         continue;
997                 }
998
999                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
1000                     execlists_is_active(execlists,
1001                                         EXECLISTS_ACTIVE_PREEMPT))
1002                         continue;
1003
1004                 GEM_BUG_ON(!execlists_is_active(execlists,
1005                                                 EXECLISTS_ACTIVE_USER));
1006
1007                 rq = port_unpack(port, &count);
1008                 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1009                           engine->name,
1010                           port->context_id, count,
1011                           rq ? rq->global_seqno : 0,
1012                           rq ? rq->fence.context : 0,
1013                           rq ? rq->fence.seqno : 0,
1014                           intel_engine_get_seqno(engine),
1015                           rq ? rq_prio(rq) : 0);
1016
1017                 /* Check the context/desc id for this event matches */
1018                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1019
1020                 GEM_BUG_ON(count == 0);
1021                 if (--count == 0) {
1022                         /*
1023                          * On the final event corresponding to the
1024                          * submission of this context, we expect either
1025                          * an element-switch event or a completion
1026                          * event (and on completion, the active-idle
1027                          * marker). No more preemptions, lite-restore
1028                          * or otherwise.
1029                          */
1030                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1031                         GEM_BUG_ON(port_isset(&port[1]) &&
1032                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1033                         GEM_BUG_ON(!port_isset(&port[1]) &&
1034                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1035
1036                         /*
1037                          * We rely on the hardware being strongly
1038                          * ordered, that the breadcrumb write is
1039                          * coherent (visible from the CPU) before the
1040                          * user interrupt and CSB is processed.
1041                          */
1042                         GEM_BUG_ON(!i915_request_completed(rq));
1043
1044                         execlists_context_schedule_out(rq,
1045                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1046                         i915_request_put(rq);
1047
1048                         GEM_TRACE("%s completed ctx=%d\n",
1049                                   engine->name, port->context_id);
1050
1051                         port = execlists_port_complete(execlists, port);
1052                         if (port_isset(port))
1053                                 execlists_user_begin(execlists, port);
1054                         else
1055                                 execlists_user_end(execlists);
1056                 } else {
1057                         port_set(port, port_pack(rq, count));
1058                 }
1059         } while (head != tail);
1060
1061         execlists->csb_head = head;
1062 }
1063
1064 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1065 {
1066         lockdep_assert_held(&engine->timeline.lock);
1067
1068         process_csb(engine);
1069         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1070                 execlists_dequeue(engine);
1071 }
1072
1073 /*
1074  * Check the unread Context Status Buffers and manage the submission of new
1075  * contexts to the ELSP accordingly.
1076  */
1077 static void execlists_submission_tasklet(unsigned long data)
1078 {
1079         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1080         unsigned long flags;
1081
1082         GEM_TRACE("%s awake?=%d, active=%x\n",
1083                   engine->name,
1084                   engine->i915->gt.awake,
1085                   engine->execlists.active);
1086
1087         spin_lock_irqsave(&engine->timeline.lock, flags);
1088         __execlists_submission_tasklet(engine);
1089         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1090 }
1091
1092 static void queue_request(struct intel_engine_cs *engine,
1093                           struct i915_sched_node *node,
1094                           int prio)
1095 {
1096         list_add_tail(&node->link,
1097                       &lookup_priolist(engine, prio)->requests);
1098 }
1099
1100 static void __update_queue(struct intel_engine_cs *engine, int prio)
1101 {
1102         engine->execlists.queue_priority = prio;
1103 }
1104
1105 static void __submit_queue_imm(struct intel_engine_cs *engine)
1106 {
1107         struct intel_engine_execlists * const execlists = &engine->execlists;
1108
1109         if (reset_in_progress(execlists))
1110                 return; /* defer until we restart the engine following reset */
1111
1112         if (execlists->tasklet.func == execlists_submission_tasklet)
1113                 __execlists_submission_tasklet(engine);
1114         else
1115                 tasklet_hi_schedule(&execlists->tasklet);
1116 }
1117
1118 static void submit_queue(struct intel_engine_cs *engine, int prio)
1119 {
1120         if (prio > engine->execlists.queue_priority) {
1121                 __update_queue(engine, prio);
1122                 __submit_queue_imm(engine);
1123         }
1124 }
1125
1126 static void execlists_submit_request(struct i915_request *request)
1127 {
1128         struct intel_engine_cs *engine = request->engine;
1129         unsigned long flags;
1130
1131         /* Will be called from irq-context when using foreign fences. */
1132         spin_lock_irqsave(&engine->timeline.lock, flags);
1133
1134         queue_request(engine, &request->sched, rq_prio(request));
1135
1136         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1137         GEM_BUG_ON(list_empty(&request->sched.link));
1138
1139         submit_queue(engine, rq_prio(request));
1140
1141         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1142 }
1143
1144 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1145 {
1146         return container_of(node, struct i915_request, sched);
1147 }
1148
1149 static struct intel_engine_cs *
1150 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1151 {
1152         struct intel_engine_cs *engine = sched_to_request(node)->engine;
1153
1154         GEM_BUG_ON(!locked);
1155
1156         if (engine != locked) {
1157                 spin_unlock(&locked->timeline.lock);
1158                 spin_lock(&engine->timeline.lock);
1159         }
1160
1161         return engine;
1162 }
1163
1164 static void execlists_schedule(struct i915_request *request,
1165                                const struct i915_sched_attr *attr)
1166 {
1167         struct i915_priolist *uninitialized_var(pl);
1168         struct intel_engine_cs *engine, *last;
1169         struct i915_dependency *dep, *p;
1170         struct i915_dependency stack;
1171         const int prio = attr->priority;
1172         LIST_HEAD(dfs);
1173
1174         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1175
1176         if (i915_request_completed(request))
1177                 return;
1178
1179         if (prio <= READ_ONCE(request->sched.attr.priority))
1180                 return;
1181
1182         /* Need BKL in order to use the temporary link inside i915_dependency */
1183         lockdep_assert_held(&request->i915->drm.struct_mutex);
1184
1185         stack.signaler = &request->sched;
1186         list_add(&stack.dfs_link, &dfs);
1187
1188         /*
1189          * Recursively bump all dependent priorities to match the new request.
1190          *
1191          * A naive approach would be to use recursion:
1192          * static void update_priorities(struct i915_sched_node *node, prio) {
1193          *      list_for_each_entry(dep, &node->signalers_list, signal_link)
1194          *              update_priorities(dep->signal, prio)
1195          *      queue_request(node);
1196          * }
1197          * but that may have unlimited recursion depth and so runs a very
1198          * real risk of overunning the kernel stack. Instead, we build
1199          * a flat list of all dependencies starting with the current request.
1200          * As we walk the list of dependencies, we add all of its dependencies
1201          * to the end of the list (this may include an already visited
1202          * request) and continue to walk onwards onto the new dependencies. The
1203          * end result is a topological list of requests in reverse order, the
1204          * last element in the list is the request we must execute first.
1205          */
1206         list_for_each_entry(dep, &dfs, dfs_link) {
1207                 struct i915_sched_node *node = dep->signaler;
1208
1209                 /*
1210                  * Within an engine, there can be no cycle, but we may
1211                  * refer to the same dependency chain multiple times
1212                  * (redundant dependencies are not eliminated) and across
1213                  * engines.
1214                  */
1215                 list_for_each_entry(p, &node->signalers_list, signal_link) {
1216                         GEM_BUG_ON(p == dep); /* no cycles! */
1217
1218                         if (i915_sched_node_signaled(p->signaler))
1219                                 continue;
1220
1221                         GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1222                         if (prio > READ_ONCE(p->signaler->attr.priority))
1223                                 list_move_tail(&p->dfs_link, &dfs);
1224                 }
1225         }
1226
1227         /*
1228          * If we didn't need to bump any existing priorities, and we haven't
1229          * yet submitted this request (i.e. there is no potential race with
1230          * execlists_submit_request()), we can set our own priority and skip
1231          * acquiring the engine locks.
1232          */
1233         if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1234                 GEM_BUG_ON(!list_empty(&request->sched.link));
1235                 request->sched.attr = *attr;
1236                 if (stack.dfs_link.next == stack.dfs_link.prev)
1237                         return;
1238                 __list_del_entry(&stack.dfs_link);
1239         }
1240
1241         last = NULL;
1242         engine = request->engine;
1243         spin_lock_irq(&engine->timeline.lock);
1244
1245         /* Fifo and depth-first replacement ensure our deps execute before us */
1246         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1247                 struct i915_sched_node *node = dep->signaler;
1248
1249                 INIT_LIST_HEAD(&dep->dfs_link);
1250
1251                 engine = sched_lock_engine(node, engine);
1252
1253                 if (prio <= node->attr.priority)
1254                         continue;
1255
1256                 node->attr.priority = prio;
1257                 if (!list_empty(&node->link)) {
1258                         if (last != engine) {
1259                                 pl = lookup_priolist(engine, prio);
1260                                 last = engine;
1261                         }
1262                         GEM_BUG_ON(pl->priority != prio);
1263                         list_move_tail(&node->link, &pl->requests);
1264                 }
1265
1266                 if (prio > engine->execlists.queue_priority &&
1267                     i915_sw_fence_done(&sched_to_request(node)->submit)) {
1268                         /* defer submission until after all of our updates */
1269                         __update_queue(engine, prio);
1270                         tasklet_hi_schedule(&engine->execlists.tasklet);
1271                 }
1272         }
1273
1274         spin_unlock_irq(&engine->timeline.lock);
1275 }
1276
1277 static void execlists_context_destroy(struct intel_context *ce)
1278 {
1279         GEM_BUG_ON(ce->pin_count);
1280
1281         if (!ce->state)
1282                 return;
1283
1284         intel_ring_free(ce->ring);
1285
1286         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1287         i915_gem_object_put(ce->state->obj);
1288 }
1289
1290 static void execlists_context_unpin(struct intel_context *ce)
1291 {
1292         i915_gem_context_unpin_hw_id(ce->gem_context);
1293
1294         intel_ring_unpin(ce->ring);
1295
1296         ce->state->obj->pin_global--;
1297         i915_gem_object_unpin_map(ce->state->obj);
1298         i915_vma_unpin(ce->state);
1299
1300         i915_gem_context_put(ce->gem_context);
1301 }
1302
1303 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1304 {
1305         unsigned int flags;
1306         int err;
1307
1308         /*
1309          * Clear this page out of any CPU caches for coherent swap-in/out.
1310          * We only want to do this on the first bind so that we do not stall
1311          * on an active context (which by nature is already on the GPU).
1312          */
1313         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1314                 err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1315                 if (err)
1316                         return err;
1317         }
1318
1319         flags = PIN_GLOBAL | PIN_HIGH;
1320         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1321
1322         return i915_vma_pin(vma, 0, 0, flags);
1323 }
1324
1325 static struct intel_context *
1326 __execlists_context_pin(struct intel_engine_cs *engine,
1327                         struct i915_gem_context *ctx,
1328                         struct intel_context *ce)
1329 {
1330         void *vaddr;
1331         int ret;
1332
1333         ret = execlists_context_deferred_alloc(ctx, engine, ce);
1334         if (ret)
1335                 goto err;
1336         GEM_BUG_ON(!ce->state);
1337
1338         ret = __context_pin(ctx, ce->state);
1339         if (ret)
1340                 goto err;
1341
1342         vaddr = i915_gem_object_pin_map(ce->state->obj,
1343                                         i915_coherent_map_type(ctx->i915) |
1344                                         I915_MAP_OVERRIDE);
1345         if (IS_ERR(vaddr)) {
1346                 ret = PTR_ERR(vaddr);
1347                 goto unpin_vma;
1348         }
1349
1350         ret = intel_ring_pin(ce->ring);
1351         if (ret)
1352                 goto unpin_map;
1353
1354         ret = i915_gem_context_pin_hw_id(ctx);
1355         if (ret)
1356                 goto unpin_ring;
1357
1358         intel_lr_context_descriptor_update(ctx, engine, ce);
1359
1360         GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1361
1362         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1363         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1364                 i915_ggtt_offset(ce->ring->vma);
1365         ce->lrc_reg_state[CTX_RING_HEAD + 1] = ce->ring->head;
1366         ce->lrc_reg_state[CTX_RING_TAIL + 1] = ce->ring->tail;
1367
1368         ce->state->obj->pin_global++;
1369         i915_gem_context_get(ctx);
1370         return ce;
1371
1372 unpin_ring:
1373         intel_ring_unpin(ce->ring);
1374 unpin_map:
1375         i915_gem_object_unpin_map(ce->state->obj);
1376 unpin_vma:
1377         __i915_vma_unpin(ce->state);
1378 err:
1379         ce->pin_count = 0;
1380         return ERR_PTR(ret);
1381 }
1382
1383 static const struct intel_context_ops execlists_context_ops = {
1384         .unpin = execlists_context_unpin,
1385         .destroy = execlists_context_destroy,
1386 };
1387
1388 static struct intel_context *
1389 execlists_context_pin(struct intel_engine_cs *engine,
1390                       struct i915_gem_context *ctx)
1391 {
1392         struct intel_context *ce = to_intel_context(ctx, engine);
1393
1394         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1395
1396         if (likely(ce->pin_count++))
1397                 return ce;
1398         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1399
1400         ce->ops = &execlists_context_ops;
1401
1402         return __execlists_context_pin(engine, ctx, ce);
1403 }
1404
1405 static int execlists_request_alloc(struct i915_request *request)
1406 {
1407         int ret;
1408
1409         GEM_BUG_ON(!request->hw_context->pin_count);
1410
1411         /* Flush enough space to reduce the likelihood of waiting after
1412          * we start building the request - in which case we will just
1413          * have to repeat work.
1414          */
1415         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1416
1417         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1418         if (ret)
1419                 return ret;
1420
1421         /* Note that after this point, we have committed to using
1422          * this request as it is being used to both track the
1423          * state of engine initialisation and liveness of the
1424          * golden renderstate above. Think twice before you try
1425          * to cancel/unwind this request now.
1426          */
1427
1428         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1429         return 0;
1430 }
1431
1432 /*
1433  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1434  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1435  * but there is a slight complication as this is applied in WA batch where the
1436  * values are only initialized once so we cannot take register value at the
1437  * beginning and reuse it further; hence we save its value to memory, upload a
1438  * constant value with bit21 set and then we restore it back with the saved value.
1439  * To simplify the WA, a constant value is formed by using the default value
1440  * of this register. This shouldn't be a problem because we are only modifying
1441  * it for a short period and this batch in non-premptible. We can ofcourse
1442  * use additional instructions that read the actual value of the register
1443  * at that time and set our bit of interest but it makes the WA complicated.
1444  *
1445  * This WA is also required for Gen9 so extracting as a function avoids
1446  * code duplication.
1447  */
1448 static u32 *
1449 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1450 {
1451         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1452         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1453         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1454         *batch++ = 0;
1455
1456         *batch++ = MI_LOAD_REGISTER_IMM(1);
1457         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1458         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1459
1460         batch = gen8_emit_pipe_control(batch,
1461                                        PIPE_CONTROL_CS_STALL |
1462                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1463                                        0);
1464
1465         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1466         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1467         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1468         *batch++ = 0;
1469
1470         return batch;
1471 }
1472
1473 /*
1474  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1475  * initialized at the beginning and shared across all contexts but this field
1476  * helps us to have multiple batches at different offsets and select them based
1477  * on a criteria. At the moment this batch always start at the beginning of the page
1478  * and at this point we don't have multiple wa_ctx batch buffers.
1479  *
1480  * The number of WA applied are not known at the beginning; we use this field
1481  * to return the no of DWORDS written.
1482  *
1483  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1484  * so it adds NOOPs as padding to make it cacheline aligned.
1485  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1486  * makes a complete batch buffer.
1487  */
1488 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1489 {
1490         /* WaDisableCtxRestoreArbitration:bdw,chv */
1491         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1492
1493         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1494         if (IS_BROADWELL(engine->i915))
1495                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1496
1497         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1498         /* Actual scratch location is at 128 bytes offset */
1499         batch = gen8_emit_pipe_control(batch,
1500                                        PIPE_CONTROL_FLUSH_L3 |
1501                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1502                                        PIPE_CONTROL_CS_STALL |
1503                                        PIPE_CONTROL_QW_WRITE,
1504                                        i915_ggtt_offset(engine->scratch) +
1505                                        2 * CACHELINE_BYTES);
1506
1507         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1508
1509         /* Pad to end of cacheline */
1510         while ((unsigned long)batch % CACHELINE_BYTES)
1511                 *batch++ = MI_NOOP;
1512
1513         /*
1514          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1515          * execution depends on the length specified in terms of cache lines
1516          * in the register CTX_RCS_INDIRECT_CTX
1517          */
1518
1519         return batch;
1520 }
1521
1522 struct lri {
1523         i915_reg_t reg;
1524         u32 value;
1525 };
1526
1527 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1528 {
1529         GEM_BUG_ON(!count || count > 63);
1530
1531         *batch++ = MI_LOAD_REGISTER_IMM(count);
1532         do {
1533                 *batch++ = i915_mmio_reg_offset(lri->reg);
1534                 *batch++ = lri->value;
1535         } while (lri++, --count);
1536         *batch++ = MI_NOOP;
1537
1538         return batch;
1539 }
1540
1541 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1542 {
1543         static const struct lri lri[] = {
1544                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1545                 {
1546                         COMMON_SLICE_CHICKEN2,
1547                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1548                                        0),
1549                 },
1550
1551                 /* BSpec: 11391 */
1552                 {
1553                         FF_SLICE_CHICKEN,
1554                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1555                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1556                 },
1557
1558                 /* BSpec: 11299 */
1559                 {
1560                         _3D_CHICKEN3,
1561                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1562                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1563                 }
1564         };
1565
1566         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1567
1568         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1569         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1570
1571         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1572
1573         /* WaClearSlmSpaceAtContextSwitch:kbl */
1574         /* Actual scratch location is at 128 bytes offset */
1575         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1576                 batch = gen8_emit_pipe_control(batch,
1577                                                PIPE_CONTROL_FLUSH_L3 |
1578                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1579                                                PIPE_CONTROL_CS_STALL |
1580                                                PIPE_CONTROL_QW_WRITE,
1581                                                i915_ggtt_offset(engine->scratch)
1582                                                + 2 * CACHELINE_BYTES);
1583         }
1584
1585         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1586         if (HAS_POOLED_EU(engine->i915)) {
1587                 /*
1588                  * EU pool configuration is setup along with golden context
1589                  * during context initialization. This value depends on
1590                  * device type (2x6 or 3x6) and needs to be updated based
1591                  * on which subslice is disabled especially for 2x6
1592                  * devices, however it is safe to load default
1593                  * configuration of 3x6 device instead of masking off
1594                  * corresponding bits because HW ignores bits of a disabled
1595                  * subslice and drops down to appropriate config. Please
1596                  * see render_state_setup() in i915_gem_render_state.c for
1597                  * possible configurations, to avoid duplication they are
1598                  * not shown here again.
1599                  */
1600                 *batch++ = GEN9_MEDIA_POOL_STATE;
1601                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1602                 *batch++ = 0x00777000;
1603                 *batch++ = 0;
1604                 *batch++ = 0;
1605                 *batch++ = 0;
1606         }
1607
1608         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1609
1610         /* Pad to end of cacheline */
1611         while ((unsigned long)batch % CACHELINE_BYTES)
1612                 *batch++ = MI_NOOP;
1613
1614         return batch;
1615 }
1616
1617 static u32 *
1618 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1619 {
1620         int i;
1621
1622         /*
1623          * WaPipeControlBefore3DStateSamplePattern: cnl
1624          *
1625          * Ensure the engine is idle prior to programming a
1626          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1627          */
1628         batch = gen8_emit_pipe_control(batch,
1629                                        PIPE_CONTROL_CS_STALL,
1630                                        0);
1631         /*
1632          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1633          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1634          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1635          * confusing. Since gen8_emit_pipe_control() already advances the
1636          * batch by 6 dwords, we advance the other 10 here, completing a
1637          * cacheline. It's not clear if the workaround requires this padding
1638          * before other commands, or if it's just the regular padding we would
1639          * already have for the workaround bb, so leave it here for now.
1640          */
1641         for (i = 0; i < 10; i++)
1642                 *batch++ = MI_NOOP;
1643
1644         /* Pad to end of cacheline */
1645         while ((unsigned long)batch % CACHELINE_BYTES)
1646                 *batch++ = MI_NOOP;
1647
1648         return batch;
1649 }
1650
1651 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1652
1653 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1654 {
1655         struct drm_i915_gem_object *obj;
1656         struct i915_vma *vma;
1657         int err;
1658
1659         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1660         if (IS_ERR(obj))
1661                 return PTR_ERR(obj);
1662
1663         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1664         if (IS_ERR(vma)) {
1665                 err = PTR_ERR(vma);
1666                 goto err;
1667         }
1668
1669         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1670         if (err)
1671                 goto err;
1672
1673         engine->wa_ctx.vma = vma;
1674         return 0;
1675
1676 err:
1677         i915_gem_object_put(obj);
1678         return err;
1679 }
1680
1681 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1682 {
1683         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1684 }
1685
1686 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1687
1688 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1689 {
1690         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1691         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1692                                             &wa_ctx->per_ctx };
1693         wa_bb_func_t wa_bb_fn[2];
1694         struct page *page;
1695         void *batch, *batch_ptr;
1696         unsigned int i;
1697         int ret;
1698
1699         if (GEM_WARN_ON(engine->id != RCS))
1700                 return -EINVAL;
1701
1702         switch (INTEL_GEN(engine->i915)) {
1703         case 11:
1704                 return 0;
1705         case 10:
1706                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1707                 wa_bb_fn[1] = NULL;
1708                 break;
1709         case 9:
1710                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1711                 wa_bb_fn[1] = NULL;
1712                 break;
1713         case 8:
1714                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1715                 wa_bb_fn[1] = NULL;
1716                 break;
1717         default:
1718                 MISSING_CASE(INTEL_GEN(engine->i915));
1719                 return 0;
1720         }
1721
1722         ret = lrc_setup_wa_ctx(engine);
1723         if (ret) {
1724                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1725                 return ret;
1726         }
1727
1728         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1729         batch = batch_ptr = kmap_atomic(page);
1730
1731         /*
1732          * Emit the two workaround batch buffers, recording the offset from the
1733          * start of the workaround batch buffer object for each and their
1734          * respective sizes.
1735          */
1736         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1737                 wa_bb[i]->offset = batch_ptr - batch;
1738                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1739                                             CACHELINE_BYTES))) {
1740                         ret = -EINVAL;
1741                         break;
1742                 }
1743                 if (wa_bb_fn[i])
1744                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1745                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1746         }
1747
1748         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1749
1750         kunmap_atomic(batch);
1751         if (ret)
1752                 lrc_destroy_wa_ctx(engine);
1753
1754         return ret;
1755 }
1756
1757 static void enable_execlists(struct intel_engine_cs *engine)
1758 {
1759         struct drm_i915_private *dev_priv = engine->i915;
1760
1761         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1762
1763         /*
1764          * Make sure we're not enabling the new 12-deep CSB
1765          * FIFO as that requires a slightly updated handling
1766          * in the ctx switch irq. Since we're currently only
1767          * using only 2 elements of the enhanced execlists the
1768          * deeper FIFO it's not needed and it's not worth adding
1769          * more statements to the irq handler to support it.
1770          */
1771         if (INTEL_GEN(dev_priv) >= 11)
1772                 I915_WRITE(RING_MODE_GEN7(engine),
1773                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1774         else
1775                 I915_WRITE(RING_MODE_GEN7(engine),
1776                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1777
1778         I915_WRITE(RING_MI_MODE(engine->mmio_base),
1779                    _MASKED_BIT_DISABLE(STOP_RING));
1780
1781         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1782                    engine->status_page.ggtt_offset);
1783         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1784 }
1785
1786 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1787 {
1788         struct drm_i915_private *dev_priv = engine->i915;
1789         bool unexpected = false;
1790
1791         if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1792                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1793                 unexpected = true;
1794         }
1795
1796         return unexpected;
1797 }
1798
1799 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1800 {
1801         intel_engine_apply_workarounds(engine);
1802
1803         intel_mocs_init_engine(engine);
1804
1805         intel_engine_reset_breadcrumbs(engine);
1806
1807         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1808                 struct drm_printer p = drm_debug_printer(__func__);
1809
1810                 intel_engine_dump(engine, &p, NULL);
1811         }
1812
1813         enable_execlists(engine);
1814
1815         return 0;
1816 }
1817
1818 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1819 {
1820         struct drm_i915_private *dev_priv = engine->i915;
1821         int ret;
1822
1823         ret = gen8_init_common_ring(engine);
1824         if (ret)
1825                 return ret;
1826
1827         intel_whitelist_workarounds_apply(engine);
1828
1829         /* We need to disable the AsyncFlip performance optimisations in order
1830          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1831          * programmed to '1' on all products.
1832          *
1833          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1834          */
1835         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1836
1837         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1838
1839         return 0;
1840 }
1841
1842 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1843 {
1844         int ret;
1845
1846         ret = gen8_init_common_ring(engine);
1847         if (ret)
1848                 return ret;
1849
1850         intel_whitelist_workarounds_apply(engine);
1851
1852         return 0;
1853 }
1854
1855 static struct i915_request *
1856 execlists_reset_prepare(struct intel_engine_cs *engine)
1857 {
1858         struct intel_engine_execlists * const execlists = &engine->execlists;
1859         struct i915_request *request, *active;
1860         unsigned long flags;
1861
1862         GEM_TRACE("%s: depth<-%d\n", engine->name,
1863                   atomic_read(&execlists->tasklet.count));
1864
1865         /*
1866          * Prevent request submission to the hardware until we have
1867          * completed the reset in i915_gem_reset_finish(). If a request
1868          * is completed by one engine, it may then queue a request
1869          * to a second via its execlists->tasklet *just* as we are
1870          * calling engine->init_hw() and also writing the ELSP.
1871          * Turning off the execlists->tasklet until the reset is over
1872          * prevents the race.
1873          */
1874         __tasklet_disable_sync_once(&execlists->tasklet);
1875
1876         spin_lock_irqsave(&engine->timeline.lock, flags);
1877
1878         /*
1879          * We want to flush the pending context switches, having disabled
1880          * the tasklet above, we can assume exclusive access to the execlists.
1881          * For this allows us to catch up with an inflight preemption event,
1882          * and avoid blaming an innocent request if the stall was due to the
1883          * preemption itself.
1884          */
1885         process_csb(engine);
1886
1887         /*
1888          * The last active request can then be no later than the last request
1889          * now in ELSP[0]. So search backwards from there, so that if the GPU
1890          * has advanced beyond the last CSB update, it will be pardoned.
1891          */
1892         active = NULL;
1893         request = port_request(execlists->port);
1894         if (request) {
1895                 /*
1896                  * Prevent the breadcrumb from advancing before we decide
1897                  * which request is currently active.
1898                  */
1899                 intel_engine_stop_cs(engine);
1900
1901                 list_for_each_entry_from_reverse(request,
1902                                                  &engine->timeline.requests,
1903                                                  link) {
1904                         if (__i915_request_completed(request,
1905                                                      request->global_seqno))
1906                                 break;
1907
1908                         active = request;
1909                 }
1910         }
1911
1912         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1913
1914         return active;
1915 }
1916
1917 static void execlists_reset(struct intel_engine_cs *engine,
1918                             struct i915_request *request)
1919 {
1920         struct intel_engine_execlists * const execlists = &engine->execlists;
1921         unsigned long flags;
1922         u32 *regs;
1923
1924         GEM_TRACE("%s request global=%x, current=%d\n",
1925                   engine->name, request ? request->global_seqno : 0,
1926                   intel_engine_get_seqno(engine));
1927
1928         spin_lock_irqsave(&engine->timeline.lock, flags);
1929
1930         /*
1931          * Catch up with any missed context-switch interrupts.
1932          *
1933          * Ideally we would just read the remaining CSB entries now that we
1934          * know the gpu is idle. However, the CSB registers are sometimes^W
1935          * often trashed across a GPU reset! Instead we have to rely on
1936          * guessing the missed context-switch events by looking at what
1937          * requests were completed.
1938          */
1939         execlists_cancel_port_requests(execlists);
1940
1941         /* Push back any incomplete requests for replay after the reset. */
1942         __unwind_incomplete_requests(engine);
1943
1944         /* Following the reset, we need to reload the CSB read/write pointers */
1945         reset_csb_pointers(&engine->execlists);
1946
1947         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1948
1949         /*
1950          * If the request was innocent, we leave the request in the ELSP
1951          * and will try to replay it on restarting. The context image may
1952          * have been corrupted by the reset, in which case we may have
1953          * to service a new GPU hang, but more likely we can continue on
1954          * without impact.
1955          *
1956          * If the request was guilty, we presume the context is corrupt
1957          * and have to at least restore the RING register in the context
1958          * image back to the expected values to skip over the guilty request.
1959          */
1960         if (!request || request->fence.error != -EIO)
1961                 return;
1962
1963         /*
1964          * We want a simple context + ring to execute the breadcrumb update.
1965          * We cannot rely on the context being intact across the GPU hang,
1966          * so clear it and rebuild just what we need for the breadcrumb.
1967          * All pending requests for this context will be zapped, and any
1968          * future request will be after userspace has had the opportunity
1969          * to recreate its own state.
1970          */
1971         regs = request->hw_context->lrc_reg_state;
1972         if (engine->pinned_default_state) {
1973                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1974                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1975                        engine->context_size - PAGE_SIZE);
1976         }
1977         execlists_init_reg_state(regs,
1978                                  request->gem_context, engine, request->ring);
1979
1980         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1981         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1982
1983         request->ring->head = intel_ring_wrap(request->ring, request->postfix);
1984         regs[CTX_RING_HEAD + 1] = request->ring->head;
1985
1986         intel_ring_update_space(request->ring);
1987
1988         /* Reset WaIdleLiteRestore:bdw,skl as well */
1989         unwind_wa_tail(request);
1990 }
1991
1992 static void execlists_reset_finish(struct intel_engine_cs *engine)
1993 {
1994         struct intel_engine_execlists * const execlists = &engine->execlists;
1995
1996         /*
1997          * After a GPU reset, we may have requests to replay. Do so now while
1998          * we still have the forcewake to be sure that the GPU is not allowed
1999          * to sleep before we restart and reload a context.
2000          *
2001          */
2002         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2003                 execlists->tasklet.func(execlists->tasklet.data);
2004
2005         tasklet_enable(&execlists->tasklet);
2006         GEM_TRACE("%s: depth->%d\n", engine->name,
2007                   atomic_read(&execlists->tasklet.count));
2008 }
2009
2010 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
2011 {
2012         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
2013         struct intel_engine_cs *engine = rq->engine;
2014         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
2015         u32 *cs;
2016         int i;
2017
2018         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2019         if (IS_ERR(cs))
2020                 return PTR_ERR(cs);
2021
2022         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2023         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2024                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2025
2026                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
2027                 *cs++ = upper_32_bits(pd_daddr);
2028                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
2029                 *cs++ = lower_32_bits(pd_daddr);
2030         }
2031
2032         *cs++ = MI_NOOP;
2033         intel_ring_advance(rq, cs);
2034
2035         return 0;
2036 }
2037
2038 static int gen8_emit_bb_start(struct i915_request *rq,
2039                               u64 offset, u32 len,
2040                               const unsigned int flags)
2041 {
2042         u32 *cs;
2043         int ret;
2044
2045         /* Don't rely in hw updating PDPs, specially in lite-restore.
2046          * Ideally, we should set Force PD Restore in ctx descriptor,
2047          * but we can't. Force Restore would be a second option, but
2048          * it is unsafe in case of lite-restore (because the ctx is
2049          * not idle). PML4 is allocated during ppgtt init so this is
2050          * not needed in 48-bit.*/
2051         if (rq->gem_context->ppgtt &&
2052             (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2053             !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2054             !intel_vgpu_active(rq->i915)) {
2055                 ret = intel_logical_ring_emit_pdps(rq);
2056                 if (ret)
2057                         return ret;
2058
2059                 rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2060         }
2061
2062         cs = intel_ring_begin(rq, 6);
2063         if (IS_ERR(cs))
2064                 return PTR_ERR(cs);
2065
2066         /*
2067          * WaDisableCtxRestoreArbitration:bdw,chv
2068          *
2069          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2070          * particular all the gen that do not need the w/a at all!), if we
2071          * took care to make sure that on every switch into this context
2072          * (both ordinary and for preemption) that arbitrartion was enabled
2073          * we would be fine. However, there doesn't seem to be a downside to
2074          * being paranoid and making sure it is set before each batch and
2075          * every context-switch.
2076          *
2077          * Note that if we fail to enable arbitration before the request
2078          * is complete, then we do not see the context-switch interrupt and
2079          * the engine hangs (with RING_HEAD == RING_TAIL).
2080          *
2081          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
2082          */
2083         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2084
2085         /* FIXME(BDW): Address space and security selectors. */
2086         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2087                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2088         *cs++ = lower_32_bits(offset);
2089         *cs++ = upper_32_bits(offset);
2090
2091         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2092         *cs++ = MI_NOOP;
2093         intel_ring_advance(rq, cs);
2094
2095         return 0;
2096 }
2097
2098 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2099 {
2100         struct drm_i915_private *dev_priv = engine->i915;
2101         I915_WRITE_IMR(engine,
2102                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
2103         POSTING_READ_FW(RING_IMR(engine->mmio_base));
2104 }
2105
2106 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2107 {
2108         struct drm_i915_private *dev_priv = engine->i915;
2109         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2110 }
2111
2112 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2113 {
2114         u32 cmd, *cs;
2115
2116         cs = intel_ring_begin(request, 4);
2117         if (IS_ERR(cs))
2118                 return PTR_ERR(cs);
2119
2120         cmd = MI_FLUSH_DW + 1;
2121
2122         /* We always require a command barrier so that subsequent
2123          * commands, such as breadcrumb interrupts, are strictly ordered
2124          * wrt the contents of the write cache being flushed to memory
2125          * (and thus being coherent from the CPU).
2126          */
2127         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2128
2129         if (mode & EMIT_INVALIDATE) {
2130                 cmd |= MI_INVALIDATE_TLB;
2131                 if (request->engine->id == VCS)
2132                         cmd |= MI_INVALIDATE_BSD;
2133         }
2134
2135         *cs++ = cmd;
2136         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2137         *cs++ = 0; /* upper addr */
2138         *cs++ = 0; /* value */
2139         intel_ring_advance(request, cs);
2140
2141         return 0;
2142 }
2143
2144 static int gen8_emit_flush_render(struct i915_request *request,
2145                                   u32 mode)
2146 {
2147         struct intel_engine_cs *engine = request->engine;
2148         u32 scratch_addr =
2149                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2150         bool vf_flush_wa = false, dc_flush_wa = false;
2151         u32 *cs, flags = 0;
2152         int len;
2153
2154         flags |= PIPE_CONTROL_CS_STALL;
2155
2156         if (mode & EMIT_FLUSH) {
2157                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2158                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2159                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2160                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2161         }
2162
2163         if (mode & EMIT_INVALIDATE) {
2164                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2165                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2166                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2167                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2168                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2169                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2170                 flags |= PIPE_CONTROL_QW_WRITE;
2171                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2172
2173                 /*
2174                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2175                  * pipe control.
2176                  */
2177                 if (IS_GEN9(request->i915))
2178                         vf_flush_wa = true;
2179
2180                 /* WaForGAMHang:kbl */
2181                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2182                         dc_flush_wa = true;
2183         }
2184
2185         len = 6;
2186
2187         if (vf_flush_wa)
2188                 len += 6;
2189
2190         if (dc_flush_wa)
2191                 len += 12;
2192
2193         cs = intel_ring_begin(request, len);
2194         if (IS_ERR(cs))
2195                 return PTR_ERR(cs);
2196
2197         if (vf_flush_wa)
2198                 cs = gen8_emit_pipe_control(cs, 0, 0);
2199
2200         if (dc_flush_wa)
2201                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2202                                             0);
2203
2204         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2205
2206         if (dc_flush_wa)
2207                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2208
2209         intel_ring_advance(request, cs);
2210
2211         return 0;
2212 }
2213
2214 /*
2215  * Reserve space for 2 NOOPs at the end of each request to be
2216  * used as a workaround for not being allowed to do lite
2217  * restore with HEAD==TAIL (WaIdleLiteRestore).
2218  */
2219 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2220 {
2221         /* Ensure there's always at least one preemption point per-request. */
2222         *cs++ = MI_ARB_CHECK;
2223         *cs++ = MI_NOOP;
2224         request->wa_tail = intel_ring_offset(request, cs);
2225 }
2226
2227 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2228 {
2229         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2230         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2231
2232         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2233                                   intel_hws_seqno_address(request->engine));
2234         *cs++ = MI_USER_INTERRUPT;
2235         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2236         request->tail = intel_ring_offset(request, cs);
2237         assert_ring_tail_valid(request->ring, request->tail);
2238
2239         gen8_emit_wa_tail(request, cs);
2240 }
2241 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2242
2243 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2244 {
2245         /* We're using qword write, seqno should be aligned to 8 bytes. */
2246         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2247
2248         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2249                                       intel_hws_seqno_address(request->engine));
2250         *cs++ = MI_USER_INTERRUPT;
2251         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2252         request->tail = intel_ring_offset(request, cs);
2253         assert_ring_tail_valid(request->ring, request->tail);
2254
2255         gen8_emit_wa_tail(request, cs);
2256 }
2257 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2258
2259 static int gen8_init_rcs_context(struct i915_request *rq)
2260 {
2261         int ret;
2262
2263         ret = intel_ctx_workarounds_emit(rq);
2264         if (ret)
2265                 return ret;
2266
2267         ret = intel_rcs_context_init_mocs(rq);
2268         /*
2269          * Failing to program the MOCS is non-fatal.The system will not
2270          * run at peak performance. So generate an error and carry on.
2271          */
2272         if (ret)
2273                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2274
2275         return i915_gem_render_state_emit(rq);
2276 }
2277
2278 /**
2279  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2280  * @engine: Engine Command Streamer.
2281  */
2282 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2283 {
2284         struct drm_i915_private *dev_priv;
2285
2286         /*
2287          * Tasklet cannot be active at this point due intel_mark_active/idle
2288          * so this is just for documentation.
2289          */
2290         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2291                              &engine->execlists.tasklet.state)))
2292                 tasklet_kill(&engine->execlists.tasklet);
2293
2294         dev_priv = engine->i915;
2295
2296         if (engine->buffer) {
2297                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2298         }
2299
2300         if (engine->cleanup)
2301                 engine->cleanup(engine);
2302
2303         intel_engine_cleanup_common(engine);
2304
2305         lrc_destroy_wa_ctx(engine);
2306
2307         engine->i915 = NULL;
2308         dev_priv->engine[engine->id] = NULL;
2309         kfree(engine);
2310 }
2311
2312 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2313 {
2314         engine->submit_request = execlists_submit_request;
2315         engine->cancel_requests = execlists_cancel_requests;
2316         engine->schedule = execlists_schedule;
2317         engine->execlists.tasklet.func = execlists_submission_tasklet;
2318
2319         engine->reset.prepare = execlists_reset_prepare;
2320
2321         engine->park = NULL;
2322         engine->unpark = NULL;
2323
2324         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2325         if (engine->i915->preempt_context)
2326                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2327
2328         engine->i915->caps.scheduler =
2329                 I915_SCHEDULER_CAP_ENABLED |
2330                 I915_SCHEDULER_CAP_PRIORITY;
2331         if (intel_engine_has_preemption(engine))
2332                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2333 }
2334
2335 static void
2336 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2337 {
2338         /* Default vfuncs which can be overriden by each engine. */
2339         engine->init_hw = gen8_init_common_ring;
2340
2341         engine->reset.prepare = execlists_reset_prepare;
2342         engine->reset.reset = execlists_reset;
2343         engine->reset.finish = execlists_reset_finish;
2344
2345         engine->context_pin = execlists_context_pin;
2346         engine->request_alloc = execlists_request_alloc;
2347
2348         engine->emit_flush = gen8_emit_flush;
2349         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2350         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2351
2352         engine->set_default_submission = intel_execlists_set_default_submission;
2353
2354         if (INTEL_GEN(engine->i915) < 11) {
2355                 engine->irq_enable = gen8_logical_ring_enable_irq;
2356                 engine->irq_disable = gen8_logical_ring_disable_irq;
2357         } else {
2358                 /*
2359                  * TODO: On Gen11 interrupt masks need to be clear
2360                  * to allow C6 entry. Keep interrupts enabled at
2361                  * and take the hit of generating extra interrupts
2362                  * until a more refined solution exists.
2363                  */
2364         }
2365         engine->emit_bb_start = gen8_emit_bb_start;
2366 }
2367
2368 static inline void
2369 logical_ring_default_irqs(struct intel_engine_cs *engine)
2370 {
2371         unsigned int shift = 0;
2372
2373         if (INTEL_GEN(engine->i915) < 11) {
2374                 const u8 irq_shifts[] = {
2375                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2376                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2377                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2378                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2379                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2380                 };
2381
2382                 shift = irq_shifts[engine->id];
2383         }
2384
2385         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2386         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2387 }
2388
2389 static void
2390 logical_ring_setup(struct intel_engine_cs *engine)
2391 {
2392         intel_engine_setup_common(engine);
2393
2394         /* Intentionally left blank. */
2395         engine->buffer = NULL;
2396
2397         tasklet_init(&engine->execlists.tasklet,
2398                      execlists_submission_tasklet, (unsigned long)engine);
2399
2400         logical_ring_default_vfuncs(engine);
2401         logical_ring_default_irqs(engine);
2402 }
2403
2404 static bool csb_force_mmio(struct drm_i915_private *i915)
2405 {
2406         /* Older GVT emulation depends upon intercepting CSB mmio */
2407         return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
2408 }
2409
2410 static int logical_ring_init(struct intel_engine_cs *engine)
2411 {
2412         struct drm_i915_private *i915 = engine->i915;
2413         struct intel_engine_execlists * const execlists = &engine->execlists;
2414         int ret;
2415
2416         ret = intel_engine_init_common(engine);
2417         if (ret)
2418                 return ret;
2419
2420         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2421                 execlists->submit_reg = i915->regs +
2422                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2423                 execlists->ctrl_reg = i915->regs +
2424                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2425         } else {
2426                 execlists->submit_reg = i915->regs +
2427                         i915_mmio_reg_offset(RING_ELSP(engine));
2428         }
2429
2430         execlists->preempt_complete_status = ~0u;
2431         if (i915->preempt_context) {
2432                 struct intel_context *ce =
2433                         to_intel_context(i915->preempt_context, engine);
2434
2435                 execlists->preempt_complete_status =
2436                         upper_32_bits(ce->lrc_desc);
2437         }
2438
2439         execlists->csb_read =
2440                 i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
2441         if (csb_force_mmio(i915)) {
2442                 execlists->csb_status = (u32 __force *)
2443                         (i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
2444
2445                 execlists->csb_write = (u32 __force *)execlists->csb_read;
2446                 execlists->csb_write_reset =
2447                         _MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
2448                                       GEN8_CSB_ENTRIES - 1);
2449         } else {
2450                 execlists->csb_status =
2451                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2452
2453                 execlists->csb_write =
2454                         &engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2455                 execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2456         }
2457         reset_csb_pointers(execlists);
2458
2459         return 0;
2460 }
2461
2462 int logical_render_ring_init(struct intel_engine_cs *engine)
2463 {
2464         struct drm_i915_private *dev_priv = engine->i915;
2465         int ret;
2466
2467         logical_ring_setup(engine);
2468
2469         if (HAS_L3_DPF(dev_priv))
2470                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2471
2472         /* Override some for render ring. */
2473         if (INTEL_GEN(dev_priv) >= 9)
2474                 engine->init_hw = gen9_init_render_ring;
2475         else
2476                 engine->init_hw = gen8_init_render_ring;
2477         engine->init_context = gen8_init_rcs_context;
2478         engine->emit_flush = gen8_emit_flush_render;
2479         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2480         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2481
2482         ret = logical_ring_init(engine);
2483         if (ret)
2484                 return ret;
2485
2486         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2487         if (ret)
2488                 goto err_cleanup_common;
2489
2490         ret = intel_init_workaround_bb(engine);
2491         if (ret) {
2492                 /*
2493                  * We continue even if we fail to initialize WA batch
2494                  * because we only expect rare glitches but nothing
2495                  * critical to prevent us from using GPU
2496                  */
2497                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2498                           ret);
2499         }
2500
2501         intel_engine_init_workarounds(engine);
2502
2503         return 0;
2504
2505 err_cleanup_common:
2506         intel_engine_cleanup_common(engine);
2507         return ret;
2508 }
2509
2510 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2511 {
2512         logical_ring_setup(engine);
2513
2514         return logical_ring_init(engine);
2515 }
2516
2517 static u32
2518 make_rpcs(struct drm_i915_private *dev_priv)
2519 {
2520         bool subslice_pg = INTEL_INFO(dev_priv)->sseu.has_subslice_pg;
2521         u8 slices = hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask);
2522         u8 subslices = hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]);
2523         u32 rpcs = 0;
2524
2525         /*
2526          * No explicit RPCS request is needed to ensure full
2527          * slice/subslice/EU enablement prior to Gen9.
2528         */
2529         if (INTEL_GEN(dev_priv) < 9)
2530                 return 0;
2531
2532         /*
2533          * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
2534          * wide and Icelake has up to eight subslices, specfial programming is
2535          * needed in order to correctly enable all subslices.
2536          *
2537          * According to documentation software must consider the configuration
2538          * as 2x4x8 and hardware will translate this to 1x8x8.
2539          *
2540          * Furthemore, even though SScount is three bits, maximum documented
2541          * value for it is four. From this some rules/restrictions follow:
2542          *
2543          * 1.
2544          * If enabled subslice count is greater than four, two whole slices must
2545          * be enabled instead.
2546          *
2547          * 2.
2548          * When more than one slice is enabled, hardware ignores the subslice
2549          * count altogether.
2550          *
2551          * From these restrictions it follows that it is not possible to enable
2552          * a count of subslices between the SScount maximum of four restriction,
2553          * and the maximum available number on a particular SKU. Either all
2554          * subslices are enabled, or a count between one and four on the first
2555          * slice.
2556          */
2557         if (IS_GEN11(dev_priv) && slices == 1 && subslices >= 4) {
2558                 GEM_BUG_ON(subslices & 1);
2559
2560                 subslice_pg = false;
2561                 slices *= 2;
2562         }
2563
2564         /*
2565          * Starting in Gen9, render power gating can leave
2566          * slice/subslice/EU in a partially enabled state. We
2567          * must make an explicit request through RPCS for full
2568          * enablement.
2569         */
2570         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2571                 u32 mask, val = slices;
2572
2573                 if (INTEL_GEN(dev_priv) >= 11) {
2574                         mask = GEN11_RPCS_S_CNT_MASK;
2575                         val <<= GEN11_RPCS_S_CNT_SHIFT;
2576                 } else {
2577                         mask = GEN8_RPCS_S_CNT_MASK;
2578                         val <<= GEN8_RPCS_S_CNT_SHIFT;
2579                 }
2580
2581                 GEM_BUG_ON(val & ~mask);
2582                 val &= mask;
2583
2584                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2585         }
2586
2587         if (subslice_pg) {
2588                 u32 val = subslices;
2589
2590                 val <<= GEN8_RPCS_SS_CNT_SHIFT;
2591
2592                 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
2593                 val &= GEN8_RPCS_SS_CNT_MASK;
2594
2595                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2596         }
2597
2598         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2599                 u32 val;
2600
2601                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2602                       GEN8_RPCS_EU_MIN_SHIFT;
2603                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
2604                 val &= GEN8_RPCS_EU_MIN_MASK;
2605
2606                 rpcs |= val;
2607
2608                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2609                       GEN8_RPCS_EU_MAX_SHIFT;
2610                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
2611                 val &= GEN8_RPCS_EU_MAX_MASK;
2612
2613                 rpcs |= val;
2614
2615                 rpcs |= GEN8_RPCS_ENABLE;
2616         }
2617
2618         return rpcs;
2619 }
2620
2621 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2622 {
2623         u32 indirect_ctx_offset;
2624
2625         switch (INTEL_GEN(engine->i915)) {
2626         default:
2627                 MISSING_CASE(INTEL_GEN(engine->i915));
2628                 /* fall through */
2629         case 11:
2630                 indirect_ctx_offset =
2631                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2632                 break;
2633         case 10:
2634                 indirect_ctx_offset =
2635                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2636                 break;
2637         case 9:
2638                 indirect_ctx_offset =
2639                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2640                 break;
2641         case 8:
2642                 indirect_ctx_offset =
2643                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2644                 break;
2645         }
2646
2647         return indirect_ctx_offset;
2648 }
2649
2650 static void execlists_init_reg_state(u32 *regs,
2651                                      struct i915_gem_context *ctx,
2652                                      struct intel_engine_cs *engine,
2653                                      struct intel_ring *ring)
2654 {
2655         struct drm_i915_private *dev_priv = engine->i915;
2656         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2657         u32 base = engine->mmio_base;
2658         bool rcs = engine->class == RENDER_CLASS;
2659
2660         /* A context is actually a big batch buffer with several
2661          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2662          * values we are setting here are only for the first context restore:
2663          * on a subsequent save, the GPU will recreate this batchbuffer with new
2664          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2665          * we are not initializing here).
2666          */
2667         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2668                                  MI_LRI_FORCE_POSTED;
2669
2670         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2671                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2672                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2673         if (INTEL_GEN(dev_priv) < 11) {
2674                 regs[CTX_CONTEXT_CONTROL + 1] |=
2675                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2676                                             CTX_CTRL_RS_CTX_ENABLE);
2677         }
2678         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2679         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2680         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2681         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2682                 RING_CTL_SIZE(ring->size) | RING_VALID);
2683         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2684         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2685         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2686         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2687         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2688         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2689         if (rcs) {
2690                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2691
2692                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2693                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2694                         RING_INDIRECT_CTX_OFFSET(base), 0);
2695                 if (wa_ctx->indirect_ctx.size) {
2696                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2697
2698                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2699                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2700                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2701
2702                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2703                                 intel_lr_indirect_ctx_offset(engine) << 6;
2704                 }
2705
2706                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2707                 if (wa_ctx->per_ctx.size) {
2708                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2709
2710                         regs[CTX_BB_PER_CTX_PTR + 1] =
2711                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2712                 }
2713         }
2714
2715         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2716
2717         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2718         /* PDP values well be assigned later if needed */
2719         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2720         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2721         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2722         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2723         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2724         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2725         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2726         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2727
2728         if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2729                 /* 64b PPGTT (48bit canonical)
2730                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2731                  * other PDP Descriptors are ignored.
2732                  */
2733                 ASSIGN_CTX_PML4(ppgtt, regs);
2734         }
2735
2736         if (rcs) {
2737                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2738                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2739                         make_rpcs(dev_priv));
2740
2741                 i915_oa_init_reg_state(engine, ctx, regs);
2742         }
2743
2744         regs[CTX_END] = MI_BATCH_BUFFER_END;
2745         if (INTEL_GEN(dev_priv) >= 10)
2746                 regs[CTX_END] |= BIT(0);
2747 }
2748
2749 static int
2750 populate_lr_context(struct i915_gem_context *ctx,
2751                     struct drm_i915_gem_object *ctx_obj,
2752                     struct intel_engine_cs *engine,
2753                     struct intel_ring *ring)
2754 {
2755         void *vaddr;
2756         u32 *regs;
2757         int ret;
2758
2759         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2760         if (ret) {
2761                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2762                 return ret;
2763         }
2764
2765         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2766         if (IS_ERR(vaddr)) {
2767                 ret = PTR_ERR(vaddr);
2768                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2769                 return ret;
2770         }
2771         ctx_obj->mm.dirty = true;
2772
2773         if (engine->default_state) {
2774                 /*
2775                  * We only want to copy over the template context state;
2776                  * skipping over the headers reserved for GuC communication,
2777                  * leaving those as zero.
2778                  */
2779                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2780                 void *defaults;
2781
2782                 defaults = i915_gem_object_pin_map(engine->default_state,
2783                                                    I915_MAP_WB);
2784                 if (IS_ERR(defaults)) {
2785                         ret = PTR_ERR(defaults);
2786                         goto err_unpin_ctx;
2787                 }
2788
2789                 memcpy(vaddr + start, defaults + start, engine->context_size);
2790                 i915_gem_object_unpin_map(engine->default_state);
2791         }
2792
2793         /* The second page of the context object contains some fields which must
2794          * be set up prior to the first execution. */
2795         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2796         execlists_init_reg_state(regs, ctx, engine, ring);
2797         if (!engine->default_state)
2798                 regs[CTX_CONTEXT_CONTROL + 1] |=
2799                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2800         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2801                 regs[CTX_CONTEXT_CONTROL + 1] |=
2802                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2803                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2804
2805 err_unpin_ctx:
2806         i915_gem_object_unpin_map(ctx_obj);
2807         return ret;
2808 }
2809
2810 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2811                                             struct intel_engine_cs *engine,
2812                                             struct intel_context *ce)
2813 {
2814         struct drm_i915_gem_object *ctx_obj;
2815         struct i915_vma *vma;
2816         uint32_t context_size;
2817         struct intel_ring *ring;
2818         struct i915_timeline *timeline;
2819         int ret;
2820
2821         if (ce->state)
2822                 return 0;
2823
2824         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2825
2826         /*
2827          * Before the actual start of the context image, we insert a few pages
2828          * for our own use and for sharing with the GuC.
2829          */
2830         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2831
2832         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2833         if (IS_ERR(ctx_obj))
2834                 return PTR_ERR(ctx_obj);
2835
2836         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2837         if (IS_ERR(vma)) {
2838                 ret = PTR_ERR(vma);
2839                 goto error_deref_obj;
2840         }
2841
2842         timeline = i915_timeline_create(ctx->i915, ctx->name);
2843         if (IS_ERR(timeline)) {
2844                 ret = PTR_ERR(timeline);
2845                 goto error_deref_obj;
2846         }
2847
2848         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2849         i915_timeline_put(timeline);
2850         if (IS_ERR(ring)) {
2851                 ret = PTR_ERR(ring);
2852                 goto error_deref_obj;
2853         }
2854
2855         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2856         if (ret) {
2857                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2858                 goto error_ring_free;
2859         }
2860
2861         ce->ring = ring;
2862         ce->state = vma;
2863
2864         return 0;
2865
2866 error_ring_free:
2867         intel_ring_free(ring);
2868 error_deref_obj:
2869         i915_gem_object_put(ctx_obj);
2870         return ret;
2871 }
2872
2873 void intel_lr_context_resume(struct drm_i915_private *i915)
2874 {
2875         struct intel_engine_cs *engine;
2876         struct i915_gem_context *ctx;
2877         enum intel_engine_id id;
2878
2879         /*
2880          * Because we emit WA_TAIL_DWORDS there may be a disparity
2881          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2882          * that stored in context. As we only write new commands from
2883          * ce->ring->tail onwards, everything before that is junk. If the GPU
2884          * starts reading from its RING_HEAD from the context, it may try to
2885          * execute that junk and die.
2886          *
2887          * So to avoid that we reset the context images upon resume. For
2888          * simplicity, we just zero everything out.
2889          */
2890         list_for_each_entry(ctx, &i915->contexts.list, link) {
2891                 for_each_engine(engine, i915, id) {
2892                         struct intel_context *ce =
2893                                 to_intel_context(ctx, engine);
2894
2895                         if (!ce->state)
2896                                 continue;
2897
2898                         intel_ring_reset(ce->ring, 0);
2899
2900                         if (ce->pin_count) { /* otherwise done in context_pin */
2901                                 u32 *regs = ce->lrc_reg_state;
2902
2903                                 regs[CTX_RING_HEAD + 1] = ce->ring->head;
2904                                 regs[CTX_RING_TAIL + 1] = ce->ring->tail;
2905                         }
2906                 }
2907         }
2908 }
2909
2910 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2911 #include "selftests/intel_lrc.c"
2912 #endif