drm/i915: Swap if(enable_execlists) in i915_gem_request_alloc for a vfunc
[linux-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161           GEN8_CTX_STATUS_PREEMPTED | \
162           GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0                0x01
165 #define CTX_CONTEXT_CONTROL             0x02
166 #define CTX_RING_HEAD                   0x04
167 #define CTX_RING_TAIL                   0x06
168 #define CTX_RING_BUFFER_START           0x08
169 #define CTX_RING_BUFFER_CONTROL         0x0a
170 #define CTX_BB_HEAD_U                   0x0c
171 #define CTX_BB_HEAD_L                   0x0e
172 #define CTX_BB_STATE                    0x10
173 #define CTX_SECOND_BB_HEAD_U            0x12
174 #define CTX_SECOND_BB_HEAD_L            0x14
175 #define CTX_SECOND_BB_STATE             0x16
176 #define CTX_BB_PER_CTX_PTR              0x18
177 #define CTX_RCS_INDIRECT_CTX            0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
179 #define CTX_LRI_HEADER_1                0x21
180 #define CTX_CTX_TIMESTAMP               0x22
181 #define CTX_PDP3_UDW                    0x24
182 #define CTX_PDP3_LDW                    0x26
183 #define CTX_PDP2_UDW                    0x28
184 #define CTX_PDP2_LDW                    0x2a
185 #define CTX_PDP1_UDW                    0x2c
186 #define CTX_PDP1_LDW                    0x2e
187 #define CTX_PDP0_UDW                    0x30
188 #define CTX_PDP0_LDW                    0x32
189 #define CTX_LRI_HEADER_2                0x41
190 #define CTX_R_PWR_CLK_STATE             0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201         (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
205         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216         FAULT_AND_HANG = 0,
217         FAULT_AND_HALT, /* Debug only */
218         FAULT_AND_STREAM,
219         FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 #define WA_TAIL_DWORDS 2
230
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232                                             struct intel_engine_cs *engine);
233 static void execlists_init_reg_state(u32 *reg_state,
234                                      struct i915_gem_context *ctx,
235                                      struct intel_engine_cs *engine,
236                                      struct intel_ring *ring);
237
238 /**
239  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240  * @dev_priv: i915 device private
241  * @enable_execlists: value of i915.enable_execlists module parameter.
242  *
243  * Only certain platforms support Execlists (the prerequisites being
244  * support for Logical Ring Contexts and Aliasing PPGTT or better).
245  *
246  * Return: 1 if Execlists is supported and has to be enabled.
247  */
248 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
249 {
250         /* On platforms with execlist available, vGPU will only
251          * support execlist mode, no ring buffer mode.
252          */
253         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
254                 return 1;
255
256         if (INTEL_GEN(dev_priv) >= 9)
257                 return 1;
258
259         if (enable_execlists == 0)
260                 return 0;
261
262         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
263             USES_PPGTT(dev_priv) &&
264             i915.use_mmio_flip >= 0)
265                 return 1;
266
267         return 0;
268 }
269
270 static void
271 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
272 {
273         struct drm_i915_private *dev_priv = engine->i915;
274
275         engine->disable_lite_restore_wa =
276                 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
277                 (engine->id == VCS || engine->id == VCS2);
278
279         engine->ctx_desc_template = GEN8_CTX_VALID;
280         if (IS_GEN8(dev_priv))
281                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
282         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
283
284         /* TODO: WaDisableLiteRestore when we start using semaphore
285          * signalling between Command Streamers */
286         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
287
288         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
289         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290         if (engine->disable_lite_restore_wa)
291                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
292 }
293
294 /**
295  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
296  *                                        descriptor for a pinned context
297  * @ctx: Context to work on
298  * @engine: Engine the descriptor will be used with
299  *
300  * The context descriptor encodes various attributes of a context,
301  * including its GTT address and some flags. Because it's fairly
302  * expensive to calculate, we'll just do it once and cache the result,
303  * which remains valid until the context is unpinned.
304  *
305  * This is what a descriptor looks like, from LSB to MSB::
306  *
307  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
308  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
309  *      bits 32-52:    ctx ID, a globally unique tag
310  *      bits 53-54:    mbz, reserved for use by hardware
311  *      bits 55-63:    group ID, currently unused and set to 0
312  */
313 static void
314 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
315                                    struct intel_engine_cs *engine)
316 {
317         struct intel_context *ce = &ctx->engine[engine->id];
318         u64 desc;
319
320         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
321
322         desc = ctx->desc_template;                              /* bits  3-4  */
323         desc |= engine->ctx_desc_template;                      /* bits  0-11 */
324         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
325                                                                 /* bits 12-31 */
326         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
327
328         ce->lrc_desc = desc;
329 }
330
331 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
332                                      struct intel_engine_cs *engine)
333 {
334         return ctx->engine[engine->id].lrc_desc;
335 }
336
337 static inline void
338 execlists_context_status_change(struct drm_i915_gem_request *rq,
339                                 unsigned long status)
340 {
341         /*
342          * Only used when GVT-g is enabled now. When GVT-g is disabled,
343          * The compiler should eliminate this function as dead-code.
344          */
345         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
346                 return;
347
348         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
349 }
350
351 static void
352 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
353 {
354         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
355         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
356         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
357         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
358 }
359
360 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
361 {
362         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
363         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
364         u32 *reg_state = ce->lrc_reg_state;
365
366         reg_state[CTX_RING_TAIL+1] = rq->tail;
367
368         /* True 32b PPGTT with dynamic page allocation: update PDP
369          * registers and point the unallocated PDPs to scratch page.
370          * PML4 is allocated during ppgtt init, so this is not needed
371          * in 48-bit mode.
372          */
373         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
374                 execlists_update_context_pdps(ppgtt, reg_state);
375
376         return ce->lrc_desc;
377 }
378
379 static void execlists_submit_ports(struct intel_engine_cs *engine)
380 {
381         struct drm_i915_private *dev_priv = engine->i915;
382         struct execlist_port *port = engine->execlist_port;
383         u32 __iomem *elsp =
384                 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
385         u64 desc[2];
386
387         if (!port[0].count)
388                 execlists_context_status_change(port[0].request,
389                                                 INTEL_CONTEXT_SCHEDULE_IN);
390         desc[0] = execlists_update_context(port[0].request);
391         engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
392
393         if (port[1].request) {
394                 GEM_BUG_ON(port[1].count);
395                 execlists_context_status_change(port[1].request,
396                                                 INTEL_CONTEXT_SCHEDULE_IN);
397                 desc[1] = execlists_update_context(port[1].request);
398                 port[1].count = 1;
399         } else {
400                 desc[1] = 0;
401         }
402         GEM_BUG_ON(desc[0] == desc[1]);
403
404         /* You must always write both descriptors in the order below. */
405         writel(upper_32_bits(desc[1]), elsp);
406         writel(lower_32_bits(desc[1]), elsp);
407
408         writel(upper_32_bits(desc[0]), elsp);
409         /* The context is automatically loaded after the following */
410         writel(lower_32_bits(desc[0]), elsp);
411 }
412
413 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
414 {
415         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
416                 ctx->execlists_force_single_submission);
417 }
418
419 static bool can_merge_ctx(const struct i915_gem_context *prev,
420                           const struct i915_gem_context *next)
421 {
422         if (prev != next)
423                 return false;
424
425         if (ctx_single_port_submission(prev))
426                 return false;
427
428         return true;
429 }
430
431 static void execlists_dequeue(struct intel_engine_cs *engine)
432 {
433         struct drm_i915_gem_request *last;
434         struct execlist_port *port = engine->execlist_port;
435         unsigned long flags;
436         struct rb_node *rb;
437         bool submit = false;
438
439         last = port->request;
440         if (last)
441                 /* WaIdleLiteRestore:bdw,skl
442                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
443                  * as we resubmit the request. See gen8_emit_breadcrumb()
444                  * for where we prepare the padding after the end of the
445                  * request.
446                  */
447                 last->tail = last->wa_tail;
448
449         GEM_BUG_ON(port[1].request);
450
451         /* Hardware submission is through 2 ports. Conceptually each port
452          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
453          * static for a context, and unique to each, so we only execute
454          * requests belonging to a single context from each ring. RING_HEAD
455          * is maintained by the CS in the context image, it marks the place
456          * where it got up to last time, and through RING_TAIL we tell the CS
457          * where we want to execute up to this time.
458          *
459          * In this list the requests are in order of execution. Consecutive
460          * requests from the same context are adjacent in the ringbuffer. We
461          * can combine these requests into a single RING_TAIL update:
462          *
463          *              RING_HEAD...req1...req2
464          *                                    ^- RING_TAIL
465          * since to execute req2 the CS must first execute req1.
466          *
467          * Our goal then is to point each port to the end of a consecutive
468          * sequence of requests as being the most optimal (fewest wake ups
469          * and context switches) submission.
470          */
471
472         spin_lock_irqsave(&engine->timeline->lock, flags);
473         rb = engine->execlist_first;
474         while (rb) {
475                 struct drm_i915_gem_request *cursor =
476                         rb_entry(rb, typeof(*cursor), priotree.node);
477
478                 /* Can we combine this request with the current port? It has to
479                  * be the same context/ringbuffer and not have any exceptions
480                  * (e.g. GVT saying never to combine contexts).
481                  *
482                  * If we can combine the requests, we can execute both by
483                  * updating the RING_TAIL to point to the end of the second
484                  * request, and so we never need to tell the hardware about
485                  * the first.
486                  */
487                 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
488                         /* If we are on the second port and cannot combine
489                          * this request with the last, then we are done.
490                          */
491                         if (port != engine->execlist_port)
492                                 break;
493
494                         /* If GVT overrides us we only ever submit port[0],
495                          * leaving port[1] empty. Note that we also have
496                          * to be careful that we don't queue the same
497                          * context (even though a different request) to
498                          * the second port.
499                          */
500                         if (ctx_single_port_submission(last->ctx) ||
501                             ctx_single_port_submission(cursor->ctx))
502                                 break;
503
504                         GEM_BUG_ON(last->ctx == cursor->ctx);
505
506                         i915_gem_request_assign(&port->request, last);
507                         port++;
508                 }
509
510                 rb = rb_next(rb);
511                 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
512                 RB_CLEAR_NODE(&cursor->priotree.node);
513                 cursor->priotree.priority = INT_MAX;
514
515                 __i915_gem_request_submit(cursor);
516                 last = cursor;
517                 submit = true;
518         }
519         if (submit) {
520                 i915_gem_request_assign(&port->request, last);
521                 engine->execlist_first = rb;
522         }
523         spin_unlock_irqrestore(&engine->timeline->lock, flags);
524
525         if (submit)
526                 execlists_submit_ports(engine);
527 }
528
529 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
530 {
531         return !engine->execlist_port[0].request;
532 }
533
534 /**
535  * intel_execlists_idle() - Determine if all engine submission ports are idle
536  * @dev_priv: i915 device private
537  *
538  * Return true if there are no requests pending on any of the submission ports
539  * of any engines.
540  */
541 bool intel_execlists_idle(struct drm_i915_private *dev_priv)
542 {
543         struct intel_engine_cs *engine;
544         enum intel_engine_id id;
545
546         if (!i915.enable_execlists)
547                 return true;
548
549         for_each_engine(engine, dev_priv, id)
550                 if (!execlists_elsp_idle(engine))
551                         return false;
552
553         return true;
554 }
555
556 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
557 {
558         int port;
559
560         port = 1; /* wait for a free slot */
561         if (engine->disable_lite_restore_wa || engine->preempt_wa)
562                 port = 0; /* wait for GPU to be idle before continuing */
563
564         return !engine->execlist_port[port].request;
565 }
566
567 /*
568  * Check the unread Context Status Buffers and manage the submission of new
569  * contexts to the ELSP accordingly.
570  */
571 static void intel_lrc_irq_handler(unsigned long data)
572 {
573         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
574         struct execlist_port *port = engine->execlist_port;
575         struct drm_i915_private *dev_priv = engine->i915;
576
577         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
578
579         if (!execlists_elsp_idle(engine)) {
580                 u32 __iomem *csb_mmio =
581                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
582                 u32 __iomem *buf =
583                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
584                 unsigned int csb, head, tail;
585
586                 csb = readl(csb_mmio);
587                 head = GEN8_CSB_READ_PTR(csb);
588                 tail = GEN8_CSB_WRITE_PTR(csb);
589                 if (tail < head)
590                         tail += GEN8_CSB_ENTRIES;
591                 while (head < tail) {
592                         unsigned int idx = ++head % GEN8_CSB_ENTRIES;
593                         unsigned int status = readl(buf + 2 * idx);
594
595                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
596                                 continue;
597
598                         GEM_BUG_ON(port[0].count == 0);
599                         if (--port[0].count == 0) {
600                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
601                                 execlists_context_status_change(port[0].request,
602                                                                 INTEL_CONTEXT_SCHEDULE_OUT);
603
604                                 i915_gem_request_put(port[0].request);
605                                 port[0] = port[1];
606                                 memset(&port[1], 0, sizeof(port[1]));
607
608                                 engine->preempt_wa = false;
609                         }
610
611                         GEM_BUG_ON(port[0].count == 0 &&
612                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
613                 }
614
615                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
616                                      GEN8_CSB_WRITE_PTR(csb) << 8),
617                        csb_mmio);
618         }
619
620         if (execlists_elsp_ready(engine))
621                 execlists_dequeue(engine);
622
623         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
624 }
625
626 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
627 {
628         struct rb_node **p, *rb;
629         bool first = true;
630
631         /* most positive priority is scheduled first, equal priorities fifo */
632         rb = NULL;
633         p = &root->rb_node;
634         while (*p) {
635                 struct i915_priotree *pos;
636
637                 rb = *p;
638                 pos = rb_entry(rb, typeof(*pos), node);
639                 if (pt->priority > pos->priority) {
640                         p = &rb->rb_left;
641                 } else {
642                         p = &rb->rb_right;
643                         first = false;
644                 }
645         }
646         rb_link_node(&pt->node, rb, p);
647         rb_insert_color(&pt->node, root);
648
649         return first;
650 }
651
652 static void execlists_submit_request(struct drm_i915_gem_request *request)
653 {
654         struct intel_engine_cs *engine = request->engine;
655         unsigned long flags;
656
657         /* Will be called from irq-context when using foreign fences. */
658         spin_lock_irqsave(&engine->timeline->lock, flags);
659
660         if (insert_request(&request->priotree, &engine->execlist_queue))
661                 engine->execlist_first = &request->priotree.node;
662         if (execlists_elsp_idle(engine))
663                 tasklet_hi_schedule(&engine->irq_tasklet);
664
665         spin_unlock_irqrestore(&engine->timeline->lock, flags);
666 }
667
668 static struct intel_engine_cs *
669 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
670 {
671         struct intel_engine_cs *engine;
672
673         engine = container_of(pt,
674                               struct drm_i915_gem_request,
675                               priotree)->engine;
676         if (engine != locked) {
677                 if (locked)
678                         spin_unlock_irq(&locked->timeline->lock);
679                 spin_lock_irq(&engine->timeline->lock);
680         }
681
682         return engine;
683 }
684
685 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
686 {
687         struct intel_engine_cs *engine = NULL;
688         struct i915_dependency *dep, *p;
689         struct i915_dependency stack;
690         LIST_HEAD(dfs);
691
692         if (prio <= READ_ONCE(request->priotree.priority))
693                 return;
694
695         /* Need BKL in order to use the temporary link inside i915_dependency */
696         lockdep_assert_held(&request->i915->drm.struct_mutex);
697
698         stack.signaler = &request->priotree;
699         list_add(&stack.dfs_link, &dfs);
700
701         /* Recursively bump all dependent priorities to match the new request.
702          *
703          * A naive approach would be to use recursion:
704          * static void update_priorities(struct i915_priotree *pt, prio) {
705          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
706          *              update_priorities(dep->signal, prio)
707          *      insert_request(pt);
708          * }
709          * but that may have unlimited recursion depth and so runs a very
710          * real risk of overunning the kernel stack. Instead, we build
711          * a flat list of all dependencies starting with the current request.
712          * As we walk the list of dependencies, we add all of its dependencies
713          * to the end of the list (this may include an already visited
714          * request) and continue to walk onwards onto the new dependencies. The
715          * end result is a topological list of requests in reverse order, the
716          * last element in the list is the request we must execute first.
717          */
718         list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
719                 struct i915_priotree *pt = dep->signaler;
720
721                 list_for_each_entry(p, &pt->signalers_list, signal_link)
722                         if (prio > READ_ONCE(p->signaler->priority))
723                                 list_move_tail(&p->dfs_link, &dfs);
724
725                 list_safe_reset_next(dep, p, dfs_link);
726                 if (!RB_EMPTY_NODE(&pt->node))
727                         continue;
728
729                 engine = pt_lock_engine(pt, engine);
730
731                 /* If it is not already in the rbtree, we can update the
732                  * priority inplace and skip over it (and its dependencies)
733                  * if it is referenced *again* as we descend the dfs.
734                  */
735                 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
736                         pt->priority = prio;
737                         list_del_init(&dep->dfs_link);
738                 }
739         }
740
741         /* Fifo and depth-first replacement ensure our deps execute before us */
742         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
743                 struct i915_priotree *pt = dep->signaler;
744
745                 INIT_LIST_HEAD(&dep->dfs_link);
746
747                 engine = pt_lock_engine(pt, engine);
748
749                 if (prio <= pt->priority)
750                         continue;
751
752                 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
753
754                 pt->priority = prio;
755                 rb_erase(&pt->node, &engine->execlist_queue);
756                 if (insert_request(pt, &engine->execlist_queue))
757                         engine->execlist_first = &pt->node;
758         }
759
760         if (engine)
761                 spin_unlock_irq(&engine->timeline->lock);
762
763         /* XXX Do we need to preempt to make room for us and our deps? */
764 }
765
766 static int execlists_context_pin(struct intel_engine_cs *engine,
767                                  struct i915_gem_context *ctx)
768 {
769         struct intel_context *ce = &ctx->engine[engine->id];
770         unsigned int flags;
771         void *vaddr;
772         int ret;
773
774         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
775
776         if (ce->pin_count++)
777                 return 0;
778
779         if (!ce->state) {
780                 ret = execlists_context_deferred_alloc(ctx, engine);
781                 if (ret)
782                         goto err;
783         }
784
785         flags = PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL;
786         if (ctx == ctx->i915->kernel_context)
787                 flags |= PIN_HIGH;
788
789         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
790         if (ret)
791                 goto err;
792
793         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
794         if (IS_ERR(vaddr)) {
795                 ret = PTR_ERR(vaddr);
796                 goto unpin_vma;
797         }
798
799         ret = intel_ring_pin(ce->ring);
800         if (ret)
801                 goto unpin_map;
802
803         intel_lr_context_descriptor_update(ctx, engine);
804
805         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
806         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
807                 i915_ggtt_offset(ce->ring->vma);
808
809         ce->state->obj->mm.dirty = true;
810
811         /* Invalidate GuC TLB. */
812         if (i915.enable_guc_submission) {
813                 struct drm_i915_private *dev_priv = ctx->i915;
814                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
815         }
816
817         i915_gem_context_get(ctx);
818         return 0;
819
820 unpin_map:
821         i915_gem_object_unpin_map(ce->state->obj);
822 unpin_vma:
823         __i915_vma_unpin(ce->state);
824 err:
825         ce->pin_count = 0;
826         return ret;
827 }
828
829 static void execlists_context_unpin(struct intel_engine_cs *engine,
830                                     struct i915_gem_context *ctx)
831 {
832         struct intel_context *ce = &ctx->engine[engine->id];
833
834         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
835         GEM_BUG_ON(ce->pin_count == 0);
836
837         if (--ce->pin_count)
838                 return;
839
840         intel_ring_unpin(ce->ring);
841
842         i915_gem_object_unpin_map(ce->state->obj);
843         i915_vma_unpin(ce->state);
844
845         i915_gem_context_put(ctx);
846 }
847
848 static int execlists_request_alloc(struct drm_i915_gem_request *request)
849 {
850         struct intel_engine_cs *engine = request->engine;
851         struct intel_context *ce = &request->ctx->engine[engine->id];
852         int ret;
853
854         GEM_BUG_ON(!ce->pin_count);
855
856         /* Flush enough space to reduce the likelihood of waiting after
857          * we start building the request - in which case we will just
858          * have to repeat work.
859          */
860         request->reserved_space += EXECLISTS_REQUEST_SIZE;
861
862         GEM_BUG_ON(!ce->ring);
863         request->ring = ce->ring;
864
865         if (i915.enable_guc_submission) {
866                 /*
867                  * Check that the GuC has space for the request before
868                  * going any further, as the i915_add_request() call
869                  * later on mustn't fail ...
870                  */
871                 ret = i915_guc_wq_reserve(request);
872                 if (ret)
873                         goto err;
874         }
875
876         ret = intel_ring_begin(request, 0);
877         if (ret)
878                 goto err_unreserve;
879
880         if (!ce->initialised) {
881                 ret = engine->init_context(request);
882                 if (ret)
883                         goto err_unreserve;
884
885                 ce->initialised = true;
886         }
887
888         /* Note that after this point, we have committed to using
889          * this request as it is being used to both track the
890          * state of engine initialisation and liveness of the
891          * golden renderstate above. Think twice before you try
892          * to cancel/unwind this request now.
893          */
894
895         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
896         return 0;
897
898 err_unreserve:
899         if (i915.enable_guc_submission)
900                 i915_guc_wq_unreserve(request);
901 err:
902         return ret;
903 }
904
905 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
906 {
907         int ret, i;
908         struct intel_ring *ring = req->ring;
909         struct i915_workarounds *w = &req->i915->workarounds;
910
911         if (w->count == 0)
912                 return 0;
913
914         ret = req->engine->emit_flush(req, EMIT_BARRIER);
915         if (ret)
916                 return ret;
917
918         ret = intel_ring_begin(req, w->count * 2 + 2);
919         if (ret)
920                 return ret;
921
922         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
923         for (i = 0; i < w->count; i++) {
924                 intel_ring_emit_reg(ring, w->reg[i].addr);
925                 intel_ring_emit(ring, w->reg[i].value);
926         }
927         intel_ring_emit(ring, MI_NOOP);
928
929         intel_ring_advance(ring);
930
931         ret = req->engine->emit_flush(req, EMIT_BARRIER);
932         if (ret)
933                 return ret;
934
935         return 0;
936 }
937
938 #define wa_ctx_emit(batch, index, cmd)                                  \
939         do {                                                            \
940                 int __index = (index)++;                                \
941                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
942                         return -ENOSPC;                                 \
943                 }                                                       \
944                 batch[__index] = (cmd);                                 \
945         } while (0)
946
947 #define wa_ctx_emit_reg(batch, index, reg) \
948         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
949
950 /*
951  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
952  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
953  * but there is a slight complication as this is applied in WA batch where the
954  * values are only initialized once so we cannot take register value at the
955  * beginning and reuse it further; hence we save its value to memory, upload a
956  * constant value with bit21 set and then we restore it back with the saved value.
957  * To simplify the WA, a constant value is formed by using the default value
958  * of this register. This shouldn't be a problem because we are only modifying
959  * it for a short period and this batch in non-premptible. We can ofcourse
960  * use additional instructions that read the actual value of the register
961  * at that time and set our bit of interest but it makes the WA complicated.
962  *
963  * This WA is also required for Gen9 so extracting as a function avoids
964  * code duplication.
965  */
966 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
967                                                 uint32_t *batch,
968                                                 uint32_t index)
969 {
970         struct drm_i915_private *dev_priv = engine->i915;
971         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
972
973         /*
974          * WaDisableLSQCROPERFforOCL:kbl
975          * This WA is implemented in skl_init_clock_gating() but since
976          * this batch updates GEN8_L3SQCREG4 with default value we need to
977          * set this bit here to retain the WA during flush.
978          */
979         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
980                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
981
982         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
983                                    MI_SRM_LRM_GLOBAL_GTT));
984         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
985         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
986         wa_ctx_emit(batch, index, 0);
987
988         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
989         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
990         wa_ctx_emit(batch, index, l3sqc4_flush);
991
992         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
993         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
994                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
995         wa_ctx_emit(batch, index, 0);
996         wa_ctx_emit(batch, index, 0);
997         wa_ctx_emit(batch, index, 0);
998         wa_ctx_emit(batch, index, 0);
999
1000         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1001                                    MI_SRM_LRM_GLOBAL_GTT));
1002         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1003         wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1004         wa_ctx_emit(batch, index, 0);
1005
1006         return index;
1007 }
1008
1009 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1010                                     uint32_t offset,
1011                                     uint32_t start_alignment)
1012 {
1013         return wa_ctx->offset = ALIGN(offset, start_alignment);
1014 }
1015
1016 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1017                              uint32_t offset,
1018                              uint32_t size_alignment)
1019 {
1020         wa_ctx->size = offset - wa_ctx->offset;
1021
1022         WARN(wa_ctx->size % size_alignment,
1023              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1024              wa_ctx->size, size_alignment);
1025         return 0;
1026 }
1027
1028 /*
1029  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1030  * initialized at the beginning and shared across all contexts but this field
1031  * helps us to have multiple batches at different offsets and select them based
1032  * on a criteria. At the moment this batch always start at the beginning of the page
1033  * and at this point we don't have multiple wa_ctx batch buffers.
1034  *
1035  * The number of WA applied are not known at the beginning; we use this field
1036  * to return the no of DWORDS written.
1037  *
1038  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1039  * so it adds NOOPs as padding to make it cacheline aligned.
1040  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1041  * makes a complete batch buffer.
1042  */
1043 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1044                                     struct i915_wa_ctx_bb *wa_ctx,
1045                                     uint32_t *batch,
1046                                     uint32_t *offset)
1047 {
1048         uint32_t scratch_addr;
1049         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1050
1051         /* WaDisableCtxRestoreArbitration:bdw,chv */
1052         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1053
1054         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1055         if (IS_BROADWELL(engine->i915)) {
1056                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1057                 if (rc < 0)
1058                         return rc;
1059                 index = rc;
1060         }
1061
1062         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1063         /* Actual scratch location is at 128 bytes offset */
1064         scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1065
1066         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1067         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1068                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1069                                    PIPE_CONTROL_CS_STALL |
1070                                    PIPE_CONTROL_QW_WRITE));
1071         wa_ctx_emit(batch, index, scratch_addr);
1072         wa_ctx_emit(batch, index, 0);
1073         wa_ctx_emit(batch, index, 0);
1074         wa_ctx_emit(batch, index, 0);
1075
1076         /* Pad to end of cacheline */
1077         while (index % CACHELINE_DWORDS)
1078                 wa_ctx_emit(batch, index, MI_NOOP);
1079
1080         /*
1081          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1082          * execution depends on the length specified in terms of cache lines
1083          * in the register CTX_RCS_INDIRECT_CTX
1084          */
1085
1086         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1087 }
1088
1089 /*
1090  *  This batch is started immediately after indirect_ctx batch. Since we ensure
1091  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1092  *
1093  *  The number of DWORDS written are returned using this field.
1094  *
1095  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1096  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1097  */
1098 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1099                                struct i915_wa_ctx_bb *wa_ctx,
1100                                uint32_t *batch,
1101                                uint32_t *offset)
1102 {
1103         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1104
1105         /* WaDisableCtxRestoreArbitration:bdw,chv */
1106         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1107
1108         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1109
1110         return wa_ctx_end(wa_ctx, *offset = index, 1);
1111 }
1112
1113 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1114                                     struct i915_wa_ctx_bb *wa_ctx,
1115                                     uint32_t *batch,
1116                                     uint32_t *offset)
1117 {
1118         int ret;
1119         struct drm_i915_private *dev_priv = engine->i915;
1120         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1121
1122         /* WaDisableCtxRestoreArbitration:bxt */
1123         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1124                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1125
1126         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1127         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1128         if (ret < 0)
1129                 return ret;
1130         index = ret;
1131
1132         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1133         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1134         wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1135         wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1136                             GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1137         wa_ctx_emit(batch, index, MI_NOOP);
1138
1139         /* WaClearSlmSpaceAtContextSwitch:kbl */
1140         /* Actual scratch location is at 128 bytes offset */
1141         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1142                 u32 scratch_addr =
1143                         i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1144
1145                 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1146                 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1147                                            PIPE_CONTROL_GLOBAL_GTT_IVB |
1148                                            PIPE_CONTROL_CS_STALL |
1149                                            PIPE_CONTROL_QW_WRITE));
1150                 wa_ctx_emit(batch, index, scratch_addr);
1151                 wa_ctx_emit(batch, index, 0);
1152                 wa_ctx_emit(batch, index, 0);
1153                 wa_ctx_emit(batch, index, 0);
1154         }
1155
1156         /* WaMediaPoolStateCmdInWABB:bxt */
1157         if (HAS_POOLED_EU(engine->i915)) {
1158                 /*
1159                  * EU pool configuration is setup along with golden context
1160                  * during context initialization. This value depends on
1161                  * device type (2x6 or 3x6) and needs to be updated based
1162                  * on which subslice is disabled especially for 2x6
1163                  * devices, however it is safe to load default
1164                  * configuration of 3x6 device instead of masking off
1165                  * corresponding bits because HW ignores bits of a disabled
1166                  * subslice and drops down to appropriate config. Please
1167                  * see render_state_setup() in i915_gem_render_state.c for
1168                  * possible configurations, to avoid duplication they are
1169                  * not shown here again.
1170                  */
1171                 u32 eu_pool_config = 0x00777000;
1172                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1173                 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1174                 wa_ctx_emit(batch, index, eu_pool_config);
1175                 wa_ctx_emit(batch, index, 0);
1176                 wa_ctx_emit(batch, index, 0);
1177                 wa_ctx_emit(batch, index, 0);
1178         }
1179
1180         /* Pad to end of cacheline */
1181         while (index % CACHELINE_DWORDS)
1182                 wa_ctx_emit(batch, index, MI_NOOP);
1183
1184         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1185 }
1186
1187 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1188                                struct i915_wa_ctx_bb *wa_ctx,
1189                                uint32_t *batch,
1190                                uint32_t *offset)
1191 {
1192         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1193
1194         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1195         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1196                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1197                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1198                 wa_ctx_emit(batch, index,
1199                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1200                 wa_ctx_emit(batch, index, MI_NOOP);
1201         }
1202
1203         /* WaClearTdlStateAckDirtyBits:bxt */
1204         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1205                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1206
1207                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1208                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1209
1210                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1211                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1212
1213                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1214                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1215
1216                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1217                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1218                 wa_ctx_emit(batch, index, 0x0);
1219                 wa_ctx_emit(batch, index, MI_NOOP);
1220         }
1221
1222         /* WaDisableCtxRestoreArbitration:bxt */
1223         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1224                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1225
1226         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1227
1228         return wa_ctx_end(wa_ctx, *offset = index, 1);
1229 }
1230
1231 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1232 {
1233         struct drm_i915_gem_object *obj;
1234         struct i915_vma *vma;
1235         int err;
1236
1237         obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1238         if (IS_ERR(obj))
1239                 return PTR_ERR(obj);
1240
1241         vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1242         if (IS_ERR(vma)) {
1243                 err = PTR_ERR(vma);
1244                 goto err;
1245         }
1246
1247         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1248         if (err)
1249                 goto err;
1250
1251         engine->wa_ctx.vma = vma;
1252         return 0;
1253
1254 err:
1255         i915_gem_object_put(obj);
1256         return err;
1257 }
1258
1259 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1260 {
1261         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1262 }
1263
1264 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1265 {
1266         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1267         uint32_t *batch;
1268         uint32_t offset;
1269         struct page *page;
1270         int ret;
1271
1272         WARN_ON(engine->id != RCS);
1273
1274         /* update this when WA for higher Gen are added */
1275         if (INTEL_GEN(engine->i915) > 9) {
1276                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1277                           INTEL_GEN(engine->i915));
1278                 return 0;
1279         }
1280
1281         /* some WA perform writes to scratch page, ensure it is valid */
1282         if (!engine->scratch) {
1283                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1284                 return -EINVAL;
1285         }
1286
1287         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1288         if (ret) {
1289                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1290                 return ret;
1291         }
1292
1293         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1294         batch = kmap_atomic(page);
1295         offset = 0;
1296
1297         if (IS_GEN8(engine->i915)) {
1298                 ret = gen8_init_indirectctx_bb(engine,
1299                                                &wa_ctx->indirect_ctx,
1300                                                batch,
1301                                                &offset);
1302                 if (ret)
1303                         goto out;
1304
1305                 ret = gen8_init_perctx_bb(engine,
1306                                           &wa_ctx->per_ctx,
1307                                           batch,
1308                                           &offset);
1309                 if (ret)
1310                         goto out;
1311         } else if (IS_GEN9(engine->i915)) {
1312                 ret = gen9_init_indirectctx_bb(engine,
1313                                                &wa_ctx->indirect_ctx,
1314                                                batch,
1315                                                &offset);
1316                 if (ret)
1317                         goto out;
1318
1319                 ret = gen9_init_perctx_bb(engine,
1320                                           &wa_ctx->per_ctx,
1321                                           batch,
1322                                           &offset);
1323                 if (ret)
1324                         goto out;
1325         }
1326
1327 out:
1328         kunmap_atomic(batch);
1329         if (ret)
1330                 lrc_destroy_wa_ctx_obj(engine);
1331
1332         return ret;
1333 }
1334
1335 static void lrc_init_hws(struct intel_engine_cs *engine)
1336 {
1337         struct drm_i915_private *dev_priv = engine->i915;
1338
1339         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1340                    engine->status_page.ggtt_offset);
1341         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1342 }
1343
1344 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1345 {
1346         struct drm_i915_private *dev_priv = engine->i915;
1347         int ret;
1348
1349         ret = intel_mocs_init_engine(engine);
1350         if (ret)
1351                 return ret;
1352
1353         lrc_init_hws(engine);
1354
1355         intel_engine_reset_breadcrumbs(engine);
1356
1357         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1358
1359         I915_WRITE(RING_MODE_GEN7(engine),
1360                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1361                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1362
1363         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1364
1365         intel_engine_init_hangcheck(engine);
1366
1367         /* After a GPU reset, we may have requests to replay */
1368         if (!execlists_elsp_idle(engine)) {
1369                 engine->execlist_port[0].count = 0;
1370                 engine->execlist_port[1].count = 0;
1371                 execlists_submit_ports(engine);
1372         }
1373
1374         return 0;
1375 }
1376
1377 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1378 {
1379         struct drm_i915_private *dev_priv = engine->i915;
1380         int ret;
1381
1382         ret = gen8_init_common_ring(engine);
1383         if (ret)
1384                 return ret;
1385
1386         /* We need to disable the AsyncFlip performance optimisations in order
1387          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1388          * programmed to '1' on all products.
1389          *
1390          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1391          */
1392         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1393
1394         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1395
1396         return init_workarounds_ring(engine);
1397 }
1398
1399 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1400 {
1401         int ret;
1402
1403         ret = gen8_init_common_ring(engine);
1404         if (ret)
1405                 return ret;
1406
1407         return init_workarounds_ring(engine);
1408 }
1409
1410 static void reset_common_ring(struct intel_engine_cs *engine,
1411                               struct drm_i915_gem_request *request)
1412 {
1413         struct drm_i915_private *dev_priv = engine->i915;
1414         struct execlist_port *port = engine->execlist_port;
1415         struct intel_context *ce = &request->ctx->engine[engine->id];
1416
1417         /* We want a simple context + ring to execute the breadcrumb update.
1418          * We cannot rely on the context being intact across the GPU hang,
1419          * so clear it and rebuild just what we need for the breadcrumb.
1420          * All pending requests for this context will be zapped, and any
1421          * future request will be after userspace has had the opportunity
1422          * to recreate its own state.
1423          */
1424         execlists_init_reg_state(ce->lrc_reg_state,
1425                                  request->ctx, engine, ce->ring);
1426
1427         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1428         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1429                 i915_ggtt_offset(ce->ring->vma);
1430         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1431
1432         request->ring->head = request->postfix;
1433         request->ring->last_retired_head = -1;
1434         intel_ring_update_space(request->ring);
1435
1436         if (i915.enable_guc_submission)
1437                 return;
1438
1439         /* Catch up with any missed context-switch interrupts */
1440         I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1441         if (request->ctx != port[0].request->ctx) {
1442                 i915_gem_request_put(port[0].request);
1443                 port[0] = port[1];
1444                 memset(&port[1], 0, sizeof(port[1]));
1445         }
1446
1447         GEM_BUG_ON(request->ctx != port[0].request->ctx);
1448
1449         /* Reset WaIdleLiteRestore:bdw,skl as well */
1450         request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1451 }
1452
1453 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1454 {
1455         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1456         struct intel_ring *ring = req->ring;
1457         struct intel_engine_cs *engine = req->engine;
1458         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1459         int i, ret;
1460
1461         ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1462         if (ret)
1463                 return ret;
1464
1465         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1466         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1467                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1468
1469                 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1470                 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1471                 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1472                 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1473         }
1474
1475         intel_ring_emit(ring, MI_NOOP);
1476         intel_ring_advance(ring);
1477
1478         return 0;
1479 }
1480
1481 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1482                               u64 offset, u32 len,
1483                               unsigned int dispatch_flags)
1484 {
1485         struct intel_ring *ring = req->ring;
1486         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1487         int ret;
1488
1489         /* Don't rely in hw updating PDPs, specially in lite-restore.
1490          * Ideally, we should set Force PD Restore in ctx descriptor,
1491          * but we can't. Force Restore would be a second option, but
1492          * it is unsafe in case of lite-restore (because the ctx is
1493          * not idle). PML4 is allocated during ppgtt init so this is
1494          * not needed in 48-bit.*/
1495         if (req->ctx->ppgtt &&
1496             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1497                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1498                     !intel_vgpu_active(req->i915)) {
1499                         ret = intel_logical_ring_emit_pdps(req);
1500                         if (ret)
1501                                 return ret;
1502                 }
1503
1504                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1505         }
1506
1507         ret = intel_ring_begin(req, 4);
1508         if (ret)
1509                 return ret;
1510
1511         /* FIXME(BDW): Address space and security selectors. */
1512         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1513                         (ppgtt<<8) |
1514                         (dispatch_flags & I915_DISPATCH_RS ?
1515                          MI_BATCH_RESOURCE_STREAMER : 0));
1516         intel_ring_emit(ring, lower_32_bits(offset));
1517         intel_ring_emit(ring, upper_32_bits(offset));
1518         intel_ring_emit(ring, MI_NOOP);
1519         intel_ring_advance(ring);
1520
1521         return 0;
1522 }
1523
1524 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1525 {
1526         struct drm_i915_private *dev_priv = engine->i915;
1527         I915_WRITE_IMR(engine,
1528                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1529         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1530 }
1531
1532 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1533 {
1534         struct drm_i915_private *dev_priv = engine->i915;
1535         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1536 }
1537
1538 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1539 {
1540         struct intel_ring *ring = request->ring;
1541         u32 cmd;
1542         int ret;
1543
1544         ret = intel_ring_begin(request, 4);
1545         if (ret)
1546                 return ret;
1547
1548         cmd = MI_FLUSH_DW + 1;
1549
1550         /* We always require a command barrier so that subsequent
1551          * commands, such as breadcrumb interrupts, are strictly ordered
1552          * wrt the contents of the write cache being flushed to memory
1553          * (and thus being coherent from the CPU).
1554          */
1555         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1556
1557         if (mode & EMIT_INVALIDATE) {
1558                 cmd |= MI_INVALIDATE_TLB;
1559                 if (request->engine->id == VCS)
1560                         cmd |= MI_INVALIDATE_BSD;
1561         }
1562
1563         intel_ring_emit(ring, cmd);
1564         intel_ring_emit(ring,
1565                         I915_GEM_HWS_SCRATCH_ADDR |
1566                         MI_FLUSH_DW_USE_GTT);
1567         intel_ring_emit(ring, 0); /* upper addr */
1568         intel_ring_emit(ring, 0); /* value */
1569         intel_ring_advance(ring);
1570
1571         return 0;
1572 }
1573
1574 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1575                                   u32 mode)
1576 {
1577         struct intel_ring *ring = request->ring;
1578         struct intel_engine_cs *engine = request->engine;
1579         u32 scratch_addr =
1580                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1581         bool vf_flush_wa = false, dc_flush_wa = false;
1582         u32 flags = 0;
1583         int ret;
1584         int len;
1585
1586         flags |= PIPE_CONTROL_CS_STALL;
1587
1588         if (mode & EMIT_FLUSH) {
1589                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1590                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1591                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1592                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1593         }
1594
1595         if (mode & EMIT_INVALIDATE) {
1596                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1597                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1598                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1599                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1600                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1601                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1602                 flags |= PIPE_CONTROL_QW_WRITE;
1603                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1604
1605                 /*
1606                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1607                  * pipe control.
1608                  */
1609                 if (IS_GEN9(request->i915))
1610                         vf_flush_wa = true;
1611
1612                 /* WaForGAMHang:kbl */
1613                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1614                         dc_flush_wa = true;
1615         }
1616
1617         len = 6;
1618
1619         if (vf_flush_wa)
1620                 len += 6;
1621
1622         if (dc_flush_wa)
1623                 len += 12;
1624
1625         ret = intel_ring_begin(request, len);
1626         if (ret)
1627                 return ret;
1628
1629         if (vf_flush_wa) {
1630                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1631                 intel_ring_emit(ring, 0);
1632                 intel_ring_emit(ring, 0);
1633                 intel_ring_emit(ring, 0);
1634                 intel_ring_emit(ring, 0);
1635                 intel_ring_emit(ring, 0);
1636         }
1637
1638         if (dc_flush_wa) {
1639                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1640                 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1641                 intel_ring_emit(ring, 0);
1642                 intel_ring_emit(ring, 0);
1643                 intel_ring_emit(ring, 0);
1644                 intel_ring_emit(ring, 0);
1645         }
1646
1647         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1648         intel_ring_emit(ring, flags);
1649         intel_ring_emit(ring, scratch_addr);
1650         intel_ring_emit(ring, 0);
1651         intel_ring_emit(ring, 0);
1652         intel_ring_emit(ring, 0);
1653
1654         if (dc_flush_wa) {
1655                 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1656                 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1657                 intel_ring_emit(ring, 0);
1658                 intel_ring_emit(ring, 0);
1659                 intel_ring_emit(ring, 0);
1660                 intel_ring_emit(ring, 0);
1661         }
1662
1663         intel_ring_advance(ring);
1664
1665         return 0;
1666 }
1667
1668 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1669 {
1670         /*
1671          * On BXT A steppings there is a HW coherency issue whereby the
1672          * MI_STORE_DATA_IMM storing the completed request's seqno
1673          * occasionally doesn't invalidate the CPU cache. Work around this by
1674          * clflushing the corresponding cacheline whenever the caller wants
1675          * the coherency to be guaranteed. Note that this cacheline is known
1676          * to be clean at this point, since we only write it in
1677          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1678          * this clflush in practice becomes an invalidate operation.
1679          */
1680         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1681 }
1682
1683 /*
1684  * Reserve space for 2 NOOPs at the end of each request to be
1685  * used as a workaround for not being allowed to do lite
1686  * restore with HEAD==TAIL (WaIdleLiteRestore).
1687  */
1688 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1689 {
1690         *out++ = MI_NOOP;
1691         *out++ = MI_NOOP;
1692         request->wa_tail = intel_ring_offset(request->ring, out);
1693 }
1694
1695 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1696                                  u32 *out)
1697 {
1698         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1699         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1700
1701         *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1702         *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1703         *out++ = 0;
1704         *out++ = request->global_seqno;
1705         *out++ = MI_USER_INTERRUPT;
1706         *out++ = MI_NOOP;
1707         request->tail = intel_ring_offset(request->ring, out);
1708
1709         gen8_emit_wa_tail(request, out);
1710 }
1711
1712 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1713
1714 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1715                                         u32 *out)
1716 {
1717         /* We're using qword write, seqno should be aligned to 8 bytes. */
1718         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1719
1720         /* w/a for post sync ops following a GPGPU operation we
1721          * need a prior CS_STALL, which is emitted by the flush
1722          * following the batch.
1723          */
1724         *out++ = GFX_OP_PIPE_CONTROL(6);
1725         *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1726                   PIPE_CONTROL_CS_STALL |
1727                   PIPE_CONTROL_QW_WRITE);
1728         *out++ = intel_hws_seqno_address(request->engine);
1729         *out++ = 0;
1730         *out++ = request->global_seqno;
1731         /* We're thrashing one dword of HWS. */
1732         *out++ = 0;
1733         *out++ = MI_USER_INTERRUPT;
1734         *out++ = MI_NOOP;
1735         request->tail = intel_ring_offset(request->ring, out);
1736
1737         gen8_emit_wa_tail(request, out);
1738 }
1739
1740 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1741
1742 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1743 {
1744         int ret;
1745
1746         ret = intel_logical_ring_workarounds_emit(req);
1747         if (ret)
1748                 return ret;
1749
1750         ret = intel_rcs_context_init_mocs(req);
1751         /*
1752          * Failing to program the MOCS is non-fatal.The system will not
1753          * run at peak performance. So generate an error and carry on.
1754          */
1755         if (ret)
1756                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1757
1758         return i915_gem_render_state_emit(req);
1759 }
1760
1761 /**
1762  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1763  * @engine: Engine Command Streamer.
1764  */
1765 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1766 {
1767         struct drm_i915_private *dev_priv;
1768
1769         /*
1770          * Tasklet cannot be active at this point due intel_mark_active/idle
1771          * so this is just for documentation.
1772          */
1773         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1774                 tasklet_kill(&engine->irq_tasklet);
1775
1776         dev_priv = engine->i915;
1777
1778         if (engine->buffer) {
1779                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1780         }
1781
1782         if (engine->cleanup)
1783                 engine->cleanup(engine);
1784
1785         if (engine->status_page.vma) {
1786                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1787                 engine->status_page.vma = NULL;
1788         }
1789
1790         intel_engine_cleanup_common(engine);
1791
1792         lrc_destroy_wa_ctx_obj(engine);
1793         engine->i915 = NULL;
1794         dev_priv->engine[engine->id] = NULL;
1795         kfree(engine);
1796 }
1797
1798 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1799 {
1800         struct intel_engine_cs *engine;
1801         enum intel_engine_id id;
1802
1803         for_each_engine(engine, dev_priv, id) {
1804                 engine->submit_request = execlists_submit_request;
1805                 engine->schedule = execlists_schedule;
1806         }
1807 }
1808
1809 static void
1810 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1811 {
1812         /* Default vfuncs which can be overriden by each engine. */
1813         engine->init_hw = gen8_init_common_ring;
1814         engine->reset_hw = reset_common_ring;
1815
1816         engine->context_pin = execlists_context_pin;
1817         engine->context_unpin = execlists_context_unpin;
1818
1819         engine->request_alloc = execlists_request_alloc;
1820
1821         engine->emit_flush = gen8_emit_flush;
1822         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1823         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1824         engine->submit_request = execlists_submit_request;
1825         engine->schedule = execlists_schedule;
1826
1827         engine->irq_enable = gen8_logical_ring_enable_irq;
1828         engine->irq_disable = gen8_logical_ring_disable_irq;
1829         engine->emit_bb_start = gen8_emit_bb_start;
1830         if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1831                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1832 }
1833
1834 static inline void
1835 logical_ring_default_irqs(struct intel_engine_cs *engine)
1836 {
1837         unsigned shift = engine->irq_shift;
1838         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1839         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1840 }
1841
1842 static int
1843 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1844 {
1845         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1846         void *hws;
1847
1848         /* The HWSP is part of the default context object in LRC mode. */
1849         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1850         if (IS_ERR(hws))
1851                 return PTR_ERR(hws);
1852
1853         engine->status_page.page_addr = hws + hws_offset;
1854         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1855         engine->status_page.vma = vma;
1856
1857         return 0;
1858 }
1859
1860 static void
1861 logical_ring_setup(struct intel_engine_cs *engine)
1862 {
1863         struct drm_i915_private *dev_priv = engine->i915;
1864         enum forcewake_domains fw_domains;
1865
1866         intel_engine_setup_common(engine);
1867
1868         /* Intentionally left blank. */
1869         engine->buffer = NULL;
1870
1871         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1872                                                     RING_ELSP(engine),
1873                                                     FW_REG_WRITE);
1874
1875         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1876                                                      RING_CONTEXT_STATUS_PTR(engine),
1877                                                      FW_REG_READ | FW_REG_WRITE);
1878
1879         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1880                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1881                                                      FW_REG_READ);
1882
1883         engine->fw_domains = fw_domains;
1884
1885         tasklet_init(&engine->irq_tasklet,
1886                      intel_lrc_irq_handler, (unsigned long)engine);
1887
1888         logical_ring_init_platform_invariants(engine);
1889         logical_ring_default_vfuncs(engine);
1890         logical_ring_default_irqs(engine);
1891 }
1892
1893 static int
1894 logical_ring_init(struct intel_engine_cs *engine)
1895 {
1896         struct i915_gem_context *dctx = engine->i915->kernel_context;
1897         int ret;
1898
1899         ret = intel_engine_init_common(engine);
1900         if (ret)
1901                 goto error;
1902
1903         /* And setup the hardware status page. */
1904         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1905         if (ret) {
1906                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1907                 goto error;
1908         }
1909
1910         return 0;
1911
1912 error:
1913         intel_logical_ring_cleanup(engine);
1914         return ret;
1915 }
1916
1917 int logical_render_ring_init(struct intel_engine_cs *engine)
1918 {
1919         struct drm_i915_private *dev_priv = engine->i915;
1920         int ret;
1921
1922         logical_ring_setup(engine);
1923
1924         if (HAS_L3_DPF(dev_priv))
1925                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1926
1927         /* Override some for render ring. */
1928         if (INTEL_GEN(dev_priv) >= 9)
1929                 engine->init_hw = gen9_init_render_ring;
1930         else
1931                 engine->init_hw = gen8_init_render_ring;
1932         engine->init_context = gen8_init_rcs_context;
1933         engine->emit_flush = gen8_emit_flush_render;
1934         engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1935         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1936
1937         ret = intel_engine_create_scratch(engine, 4096);
1938         if (ret)
1939                 return ret;
1940
1941         ret = intel_init_workaround_bb(engine);
1942         if (ret) {
1943                 /*
1944                  * We continue even if we fail to initialize WA batch
1945                  * because we only expect rare glitches but nothing
1946                  * critical to prevent us from using GPU
1947                  */
1948                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1949                           ret);
1950         }
1951
1952         return logical_ring_init(engine);
1953 }
1954
1955 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1956 {
1957         logical_ring_setup(engine);
1958
1959         return logical_ring_init(engine);
1960 }
1961
1962 static u32
1963 make_rpcs(struct drm_i915_private *dev_priv)
1964 {
1965         u32 rpcs = 0;
1966
1967         /*
1968          * No explicit RPCS request is needed to ensure full
1969          * slice/subslice/EU enablement prior to Gen9.
1970         */
1971         if (INTEL_GEN(dev_priv) < 9)
1972                 return 0;
1973
1974         /*
1975          * Starting in Gen9, render power gating can leave
1976          * slice/subslice/EU in a partially enabled state. We
1977          * must make an explicit request through RPCS for full
1978          * enablement.
1979         */
1980         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1981                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1982                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1983                         GEN8_RPCS_S_CNT_SHIFT;
1984                 rpcs |= GEN8_RPCS_ENABLE;
1985         }
1986
1987         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1988                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1989                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1990                         GEN8_RPCS_SS_CNT_SHIFT;
1991                 rpcs |= GEN8_RPCS_ENABLE;
1992         }
1993
1994         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1995                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1996                         GEN8_RPCS_EU_MIN_SHIFT;
1997                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1998                         GEN8_RPCS_EU_MAX_SHIFT;
1999                 rpcs |= GEN8_RPCS_ENABLE;
2000         }
2001
2002         return rpcs;
2003 }
2004
2005 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2006 {
2007         u32 indirect_ctx_offset;
2008
2009         switch (INTEL_GEN(engine->i915)) {
2010         default:
2011                 MISSING_CASE(INTEL_GEN(engine->i915));
2012                 /* fall through */
2013         case 9:
2014                 indirect_ctx_offset =
2015                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2016                 break;
2017         case 8:
2018                 indirect_ctx_offset =
2019                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2020                 break;
2021         }
2022
2023         return indirect_ctx_offset;
2024 }
2025
2026 static void execlists_init_reg_state(u32 *reg_state,
2027                                      struct i915_gem_context *ctx,
2028                                      struct intel_engine_cs *engine,
2029                                      struct intel_ring *ring)
2030 {
2031         struct drm_i915_private *dev_priv = engine->i915;
2032         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2033
2034         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2035          * commands followed by (reg, value) pairs. The values we are setting here are
2036          * only for the first context restore: on a subsequent save, the GPU will
2037          * recreate this batchbuffer with new values (including all the missing
2038          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2039         reg_state[CTX_LRI_HEADER_0] =
2040                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2041         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2042                        RING_CONTEXT_CONTROL(engine),
2043                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2044                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2045                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
2046                                            CTX_CTRL_RS_CTX_ENABLE : 0)));
2047         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2048                        0);
2049         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2050                        0);
2051         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2052                        RING_START(engine->mmio_base), 0);
2053         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2054                        RING_CTL(engine->mmio_base),
2055                        RING_CTL_SIZE(ring->size) | RING_VALID);
2056         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2057                        RING_BBADDR_UDW(engine->mmio_base), 0);
2058         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2059                        RING_BBADDR(engine->mmio_base), 0);
2060         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2061                        RING_BBSTATE(engine->mmio_base),
2062                        RING_BB_PPGTT);
2063         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2064                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2065         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2066                        RING_SBBADDR(engine->mmio_base), 0);
2067         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2068                        RING_SBBSTATE(engine->mmio_base), 0);
2069         if (engine->id == RCS) {
2070                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2071                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2072                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2073                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2074                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2075                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2076                 if (engine->wa_ctx.vma) {
2077                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2078                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2079
2080                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2081                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2082                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2083
2084                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2085                                 intel_lr_indirect_ctx_offset(engine) << 6;
2086
2087                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2088                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2089                                 0x01;
2090                 }
2091         }
2092         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2093         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2094                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2095         /* PDP values well be assigned later if needed */
2096         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2097                        0);
2098         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2099                        0);
2100         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2101                        0);
2102         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2103                        0);
2104         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2105                        0);
2106         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2107                        0);
2108         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2109                        0);
2110         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2111                        0);
2112
2113         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2114                 /* 64b PPGTT (48bit canonical)
2115                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2116                  * other PDP Descriptors are ignored.
2117                  */
2118                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2119         } else {
2120                 /* 32b PPGTT
2121                  * PDP*_DESCRIPTOR contains the base address of space supported.
2122                  * With dynamic page allocation, PDPs may not be allocated at
2123                  * this point. Point the unallocated PDPs to the scratch page
2124                  */
2125                 execlists_update_context_pdps(ppgtt, reg_state);
2126         }
2127
2128         if (engine->id == RCS) {
2129                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2130                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2131                                make_rpcs(dev_priv));
2132         }
2133 }
2134
2135 static int
2136 populate_lr_context(struct i915_gem_context *ctx,
2137                     struct drm_i915_gem_object *ctx_obj,
2138                     struct intel_engine_cs *engine,
2139                     struct intel_ring *ring)
2140 {
2141         void *vaddr;
2142         int ret;
2143
2144         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2145         if (ret) {
2146                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2147                 return ret;
2148         }
2149
2150         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2151         if (IS_ERR(vaddr)) {
2152                 ret = PTR_ERR(vaddr);
2153                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2154                 return ret;
2155         }
2156         ctx_obj->mm.dirty = true;
2157
2158         /* The second page of the context object contains some fields which must
2159          * be set up prior to the first execution. */
2160
2161         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2162                                  ctx, engine, ring);
2163
2164         i915_gem_object_unpin_map(ctx_obj);
2165
2166         return 0;
2167 }
2168
2169 /**
2170  * intel_lr_context_size() - return the size of the context for an engine
2171  * @engine: which engine to find the context size for
2172  *
2173  * Each engine may require a different amount of space for a context image,
2174  * so when allocating (or copying) an image, this function can be used to
2175  * find the right size for the specific engine.
2176  *
2177  * Return: size (in bytes) of an engine-specific context image
2178  *
2179  * Note: this size includes the HWSP, which is part of the context image
2180  * in LRC mode, but does not include the "shared data page" used with
2181  * GuC submission. The caller should account for this if using the GuC.
2182  */
2183 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2184 {
2185         int ret = 0;
2186
2187         WARN_ON(INTEL_GEN(engine->i915) < 8);
2188
2189         switch (engine->id) {
2190         case RCS:
2191                 if (INTEL_GEN(engine->i915) >= 9)
2192                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2193                 else
2194                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2195                 break;
2196         case VCS:
2197         case BCS:
2198         case VECS:
2199         case VCS2:
2200                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2201                 break;
2202         }
2203
2204         return ret;
2205 }
2206
2207 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2208                                             struct intel_engine_cs *engine)
2209 {
2210         struct drm_i915_gem_object *ctx_obj;
2211         struct intel_context *ce = &ctx->engine[engine->id];
2212         struct i915_vma *vma;
2213         uint32_t context_size;
2214         struct intel_ring *ring;
2215         int ret;
2216
2217         WARN_ON(ce->state);
2218
2219         context_size = round_up(intel_lr_context_size(engine), 4096);
2220
2221         /* One extra page as the sharing data between driver and GuC */
2222         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2223
2224         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2225         if (IS_ERR(ctx_obj)) {
2226                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2227                 return PTR_ERR(ctx_obj);
2228         }
2229
2230         vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2231         if (IS_ERR(vma)) {
2232                 ret = PTR_ERR(vma);
2233                 goto error_deref_obj;
2234         }
2235
2236         ring = intel_engine_create_ring(engine, ctx->ring_size);
2237         if (IS_ERR(ring)) {
2238                 ret = PTR_ERR(ring);
2239                 goto error_deref_obj;
2240         }
2241
2242         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2243         if (ret) {
2244                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2245                 goto error_ring_free;
2246         }
2247
2248         ce->ring = ring;
2249         ce->state = vma;
2250         ce->initialised = engine->init_context == NULL;
2251
2252         return 0;
2253
2254 error_ring_free:
2255         intel_ring_free(ring);
2256 error_deref_obj:
2257         i915_gem_object_put(ctx_obj);
2258         return ret;
2259 }
2260
2261 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2262 {
2263         struct intel_engine_cs *engine;
2264         struct i915_gem_context *ctx;
2265         enum intel_engine_id id;
2266
2267         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2268          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2269          * that stored in context. As we only write new commands from
2270          * ce->ring->tail onwards, everything before that is junk. If the GPU
2271          * starts reading from its RING_HEAD from the context, it may try to
2272          * execute that junk and die.
2273          *
2274          * So to avoid that we reset the context images upon resume. For
2275          * simplicity, we just zero everything out.
2276          */
2277         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2278                 for_each_engine(engine, dev_priv, id) {
2279                         struct intel_context *ce = &ctx->engine[engine->id];
2280                         u32 *reg;
2281
2282                         if (!ce->state)
2283                                 continue;
2284
2285                         reg = i915_gem_object_pin_map(ce->state->obj,
2286                                                       I915_MAP_WB);
2287                         if (WARN_ON(IS_ERR(reg)))
2288                                 continue;
2289
2290                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2291                         reg[CTX_RING_HEAD+1] = 0;
2292                         reg[CTX_RING_TAIL+1] = 0;
2293
2294                         ce->state->obj->mm.dirty = true;
2295                         i915_gem_object_unpin_map(ce->state->obj);
2296
2297                         ce->ring->head = ce->ring->tail = 0;
2298                         ce->ring->last_retired_head = -1;
2299                         intel_ring_update_space(ce->ring);
2300                 }
2301         }
2302 }