drm/i915/execlists: Remove the startup spam
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_lrc_reg.h"
141 #include "intel_mocs.h"
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define GEN8_CTX_STATUS_COMPLETED_MASK \
158          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159
160 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
161 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162 #define WA_TAIL_DWORDS 2
163 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
164 #define PREEMPT_ID 0x1
165
166 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167                                             struct intel_engine_cs *engine);
168 static void execlists_init_reg_state(u32 *reg_state,
169                                      struct i915_gem_context *ctx,
170                                      struct intel_engine_cs *engine,
171                                      struct intel_ring *ring);
172
173 /**
174  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
175  *                                        descriptor for a pinned context
176  * @ctx: Context to work on
177  * @engine: Engine the descriptor will be used with
178  *
179  * The context descriptor encodes various attributes of a context,
180  * including its GTT address and some flags. Because it's fairly
181  * expensive to calculate, we'll just do it once and cache the result,
182  * which remains valid until the context is unpinned.
183  *
184  * This is what a descriptor looks like, from LSB to MSB::
185  *
186  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
187  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
188  *      bits 32-52:    ctx ID, a globally unique tag
189  *      bits 53-54:    mbz, reserved for use by hardware
190  *      bits 55-63:    group ID, currently unused and set to 0
191  */
192 static void
193 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
194                                    struct intel_engine_cs *engine)
195 {
196         struct intel_context *ce = &ctx->engine[engine->id];
197         u64 desc;
198
199         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
200
201         desc = ctx->desc_template;                              /* bits  0-11 */
202         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
203                                                                 /* bits 12-31 */
204         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
205
206         ce->lrc_desc = desc;
207 }
208
209 static struct i915_priolist *
210 lookup_priolist(struct intel_engine_cs *engine,
211                 struct i915_priotree *pt,
212                 int prio)
213 {
214         struct intel_engine_execlists * const execlists = &engine->execlists;
215         struct i915_priolist *p;
216         struct rb_node **parent, *rb;
217         bool first = true;
218
219         if (unlikely(execlists->no_priolist))
220                 prio = I915_PRIORITY_NORMAL;
221
222 find_priolist:
223         /* most positive priority is scheduled first, equal priorities fifo */
224         rb = NULL;
225         parent = &execlists->queue.rb_node;
226         while (*parent) {
227                 rb = *parent;
228                 p = rb_entry(rb, typeof(*p), node);
229                 if (prio > p->priority) {
230                         parent = &rb->rb_left;
231                 } else if (prio < p->priority) {
232                         parent = &rb->rb_right;
233                         first = false;
234                 } else {
235                         return p;
236                 }
237         }
238
239         if (prio == I915_PRIORITY_NORMAL) {
240                 p = &execlists->default_priolist;
241         } else {
242                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
243                 /* Convert an allocation failure to a priority bump */
244                 if (unlikely(!p)) {
245                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
246
247                         /* To maintain ordering with all rendering, after an
248                          * allocation failure we have to disable all scheduling.
249                          * Requests will then be executed in fifo, and schedule
250                          * will ensure that dependencies are emitted in fifo.
251                          * There will be still some reordering with existing
252                          * requests, so if userspace lied about their
253                          * dependencies that reordering may be visible.
254                          */
255                         execlists->no_priolist = true;
256                         goto find_priolist;
257                 }
258         }
259
260         p->priority = prio;
261         INIT_LIST_HEAD(&p->requests);
262         rb_link_node(&p->node, rb, parent);
263         rb_insert_color(&p->node, &execlists->queue);
264
265         if (first)
266                 execlists->first = &p->node;
267
268         return ptr_pack_bits(p, first, 1);
269 }
270
271 static void unwind_wa_tail(struct drm_i915_gem_request *rq)
272 {
273         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
274         assert_ring_tail_valid(rq->ring, rq->tail);
275 }
276
277 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
278 {
279         struct drm_i915_gem_request *rq, *rn;
280         struct i915_priolist *uninitialized_var(p);
281         int last_prio = I915_PRIORITY_INVALID;
282
283         lockdep_assert_held(&engine->timeline->lock);
284
285         list_for_each_entry_safe_reverse(rq, rn,
286                                          &engine->timeline->requests,
287                                          link) {
288                 if (i915_gem_request_completed(rq))
289                         return;
290
291                 __i915_gem_request_unsubmit(rq);
292                 unwind_wa_tail(rq);
293
294                 GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
295                 if (rq->priotree.priority != last_prio) {
296                         p = lookup_priolist(engine,
297                                             &rq->priotree,
298                                             rq->priotree.priority);
299                         p = ptr_mask_bits(p, 1);
300
301                         last_prio = rq->priotree.priority;
302                 }
303
304                 list_add(&rq->priotree.link, &p->requests);
305         }
306 }
307
308 void
309 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
310 {
311         struct intel_engine_cs *engine =
312                 container_of(execlists, typeof(*engine), execlists);
313
314         spin_lock_irq(&engine->timeline->lock);
315         __unwind_incomplete_requests(engine);
316         spin_unlock_irq(&engine->timeline->lock);
317 }
318
319 static inline void
320 execlists_context_status_change(struct drm_i915_gem_request *rq,
321                                 unsigned long status)
322 {
323         /*
324          * Only used when GVT-g is enabled now. When GVT-g is disabled,
325          * The compiler should eliminate this function as dead-code.
326          */
327         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
328                 return;
329
330         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
331                                    status, rq);
332 }
333
334 static inline void
335 execlists_context_schedule_in(struct drm_i915_gem_request *rq)
336 {
337         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
338         intel_engine_context_in(rq->engine);
339 }
340
341 static inline void
342 execlists_context_schedule_out(struct drm_i915_gem_request *rq)
343 {
344         intel_engine_context_out(rq->engine);
345         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
346 }
347
348 static void
349 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
350 {
351         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355 }
356
357 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
358 {
359         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
360         struct i915_hw_ppgtt *ppgtt =
361                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
362         u32 *reg_state = ce->lrc_reg_state;
363
364         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
365
366         /* True 32b PPGTT with dynamic page allocation: update PDP
367          * registers and point the unallocated PDPs to scratch page.
368          * PML4 is allocated during ppgtt init, so this is not needed
369          * in 48-bit mode.
370          */
371         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
372                 execlists_update_context_pdps(ppgtt, reg_state);
373
374         return ce->lrc_desc;
375 }
376
377 static inline void elsp_write(u64 desc, u32 __iomem *elsp)
378 {
379         writel(upper_32_bits(desc), elsp);
380         writel(lower_32_bits(desc), elsp);
381 }
382
383 static void execlists_submit_ports(struct intel_engine_cs *engine)
384 {
385         struct execlist_port *port = engine->execlists.port;
386         unsigned int n;
387
388         for (n = execlists_num_ports(&engine->execlists); n--; ) {
389                 struct drm_i915_gem_request *rq;
390                 unsigned int count;
391                 u64 desc;
392
393                 rq = port_unpack(&port[n], &count);
394                 if (rq) {
395                         GEM_BUG_ON(count > !n);
396                         if (!count++)
397                                 execlists_context_schedule_in(rq);
398                         port_set(&port[n], port_pack(rq, count));
399                         desc = execlists_update_context(rq);
400                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
401
402                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
403                                   engine->name, n,
404                                   port[n].context_id, count,
405                                   rq->global_seqno);
406                 } else {
407                         GEM_BUG_ON(!n);
408                         desc = 0;
409                 }
410
411                 elsp_write(desc, engine->execlists.elsp);
412         }
413         execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
414 }
415
416 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
417 {
418         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
419                 i915_gem_context_force_single_submission(ctx));
420 }
421
422 static bool can_merge_ctx(const struct i915_gem_context *prev,
423                           const struct i915_gem_context *next)
424 {
425         if (prev != next)
426                 return false;
427
428         if (ctx_single_port_submission(prev))
429                 return false;
430
431         return true;
432 }
433
434 static void port_assign(struct execlist_port *port,
435                         struct drm_i915_gem_request *rq)
436 {
437         GEM_BUG_ON(rq == port_request(port));
438
439         if (port_isset(port))
440                 i915_gem_request_put(port_request(port));
441
442         port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
443 }
444
445 static void inject_preempt_context(struct intel_engine_cs *engine)
446 {
447         struct intel_context *ce =
448                 &engine->i915->preempt_context->engine[engine->id];
449         unsigned int n;
450
451         GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
452         GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));
453
454         memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
455         ce->ring->tail += WA_TAIL_BYTES;
456         ce->ring->tail &= (ce->ring->size - 1);
457         ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;
458
459         GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
460                     _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
461                                        CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
462                    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
463                                       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
464
465         GEM_TRACE("%s\n", engine->name);
466         for (n = execlists_num_ports(&engine->execlists); --n; )
467                 elsp_write(0, engine->execlists.elsp);
468
469         elsp_write(ce->lrc_desc, engine->execlists.elsp);
470         execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
471 }
472
473 static void execlists_dequeue(struct intel_engine_cs *engine)
474 {
475         struct intel_engine_execlists * const execlists = &engine->execlists;
476         struct execlist_port *port = execlists->port;
477         const struct execlist_port * const last_port =
478                 &execlists->port[execlists->port_mask];
479         struct drm_i915_gem_request *last = port_request(port);
480         struct rb_node *rb;
481         bool submit = false;
482
483         /* Hardware submission is through 2 ports. Conceptually each port
484          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
485          * static for a context, and unique to each, so we only execute
486          * requests belonging to a single context from each ring. RING_HEAD
487          * is maintained by the CS in the context image, it marks the place
488          * where it got up to last time, and through RING_TAIL we tell the CS
489          * where we want to execute up to this time.
490          *
491          * In this list the requests are in order of execution. Consecutive
492          * requests from the same context are adjacent in the ringbuffer. We
493          * can combine these requests into a single RING_TAIL update:
494          *
495          *              RING_HEAD...req1...req2
496          *                                    ^- RING_TAIL
497          * since to execute req2 the CS must first execute req1.
498          *
499          * Our goal then is to point each port to the end of a consecutive
500          * sequence of requests as being the most optimal (fewest wake ups
501          * and context switches) submission.
502          */
503
504         spin_lock_irq(&engine->timeline->lock);
505         rb = execlists->first;
506         GEM_BUG_ON(rb_first(&execlists->queue) != rb);
507         if (!rb)
508                 goto unlock;
509
510         if (last) {
511                 /*
512                  * Don't resubmit or switch until all outstanding
513                  * preemptions (lite-restore) are seen. Then we
514                  * know the next preemption status we see corresponds
515                  * to this ELSP update.
516                  */
517                 GEM_BUG_ON(!port_count(&port[0]));
518                 if (port_count(&port[0]) > 1)
519                         goto unlock;
520
521                 /*
522                  * If we write to ELSP a second time before the HW has had
523                  * a chance to respond to the previous write, we can confuse
524                  * the HW and hit "undefined behaviour". After writing to ELSP,
525                  * we must then wait until we see a context-switch event from
526                  * the HW to indicate that it has had a chance to respond.
527                  */
528                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
529                         goto unlock;
530
531                 if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
532                     rb_entry(rb, struct i915_priolist, node)->priority >
533                     max(last->priotree.priority, 0)) {
534                         /*
535                          * Switch to our empty preempt context so
536                          * the state of the GPU is known (idle).
537                          */
538                         inject_preempt_context(engine);
539                         execlists_set_active(execlists,
540                                              EXECLISTS_ACTIVE_PREEMPT);
541                         goto unlock;
542                 } else {
543                         /*
544                          * In theory, we could coalesce more requests onto
545                          * the second port (the first port is active, with
546                          * no preemptions pending). However, that means we
547                          * then have to deal with the possible lite-restore
548                          * of the second port (as we submit the ELSP, there
549                          * may be a context-switch) but also we may complete
550                          * the resubmission before the context-switch. Ergo,
551                          * coalescing onto the second port will cause a
552                          * preemption event, but we cannot predict whether
553                          * that will affect port[0] or port[1].
554                          *
555                          * If the second port is already active, we can wait
556                          * until the next context-switch before contemplating
557                          * new requests. The GPU will be busy and we should be
558                          * able to resubmit the new ELSP before it idles,
559                          * avoiding pipeline bubbles (momentary pauses where
560                          * the driver is unable to keep up the supply of new
561                          * work).
562                          */
563                         if (port_count(&port[1]))
564                                 goto unlock;
565
566                         /* WaIdleLiteRestore:bdw,skl
567                          * Apply the wa NOOPs to prevent
568                          * ring:HEAD == req:TAIL as we resubmit the
569                          * request. See gen8_emit_breadcrumb() for
570                          * where we prepare the padding after the
571                          * end of the request.
572                          */
573                         last->tail = last->wa_tail;
574                 }
575         }
576
577         do {
578                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
579                 struct drm_i915_gem_request *rq, *rn;
580
581                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
582                         /*
583                          * Can we combine this request with the current port?
584                          * It has to be the same context/ringbuffer and not
585                          * have any exceptions (e.g. GVT saying never to
586                          * combine contexts).
587                          *
588                          * If we can combine the requests, we can execute both
589                          * by updating the RING_TAIL to point to the end of the
590                          * second request, and so we never need to tell the
591                          * hardware about the first.
592                          */
593                         if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
594                                 /*
595                                  * If we are on the second port and cannot
596                                  * combine this request with the last, then we
597                                  * are done.
598                                  */
599                                 if (port == last_port) {
600                                         __list_del_many(&p->requests,
601                                                         &rq->priotree.link);
602                                         goto done;
603                                 }
604
605                                 /*
606                                  * If GVT overrides us we only ever submit
607                                  * port[0], leaving port[1] empty. Note that we
608                                  * also have to be careful that we don't queue
609                                  * the same context (even though a different
610                                  * request) to the second port.
611                                  */
612                                 if (ctx_single_port_submission(last->ctx) ||
613                                     ctx_single_port_submission(rq->ctx)) {
614                                         __list_del_many(&p->requests,
615                                                         &rq->priotree.link);
616                                         goto done;
617                                 }
618
619                                 GEM_BUG_ON(last->ctx == rq->ctx);
620
621                                 if (submit)
622                                         port_assign(port, last);
623                                 port++;
624
625                                 GEM_BUG_ON(port_isset(port));
626                         }
627
628                         INIT_LIST_HEAD(&rq->priotree.link);
629                         __i915_gem_request_submit(rq);
630                         trace_i915_gem_request_in(rq, port_index(port, execlists));
631                         last = rq;
632                         submit = true;
633                 }
634
635                 rb = rb_next(rb);
636                 rb_erase(&p->node, &execlists->queue);
637                 INIT_LIST_HEAD(&p->requests);
638                 if (p->priority != I915_PRIORITY_NORMAL)
639                         kmem_cache_free(engine->i915->priorities, p);
640         } while (rb);
641 done:
642         execlists->first = rb;
643         if (submit)
644                 port_assign(port, last);
645 unlock:
646         spin_unlock_irq(&engine->timeline->lock);
647
648         if (submit) {
649                 execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
650                 execlists_submit_ports(engine);
651         }
652 }
653
654 void
655 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
656 {
657         struct execlist_port *port = execlists->port;
658         unsigned int num_ports = execlists_num_ports(execlists);
659
660         while (num_ports-- && port_isset(port)) {
661                 struct drm_i915_gem_request *rq = port_request(port);
662
663                 GEM_BUG_ON(!execlists->active);
664                 intel_engine_context_out(rq->engine);
665                 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
666                 i915_gem_request_put(rq);
667
668                 memset(port, 0, sizeof(*port));
669                 port++;
670         }
671 }
672
673 static void execlists_cancel_requests(struct intel_engine_cs *engine)
674 {
675         struct intel_engine_execlists * const execlists = &engine->execlists;
676         struct drm_i915_gem_request *rq, *rn;
677         struct rb_node *rb;
678         unsigned long flags;
679
680         spin_lock_irqsave(&engine->timeline->lock, flags);
681
682         /* Cancel the requests on the HW and clear the ELSP tracker. */
683         execlists_cancel_port_requests(execlists);
684
685         /* Mark all executing requests as skipped. */
686         list_for_each_entry(rq, &engine->timeline->requests, link) {
687                 GEM_BUG_ON(!rq->global_seqno);
688                 if (!i915_gem_request_completed(rq))
689                         dma_fence_set_error(&rq->fence, -EIO);
690         }
691
692         /* Flush the queued requests to the timeline list (for retiring). */
693         rb = execlists->first;
694         while (rb) {
695                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
696
697                 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
698                         INIT_LIST_HEAD(&rq->priotree.link);
699
700                         dma_fence_set_error(&rq->fence, -EIO);
701                         __i915_gem_request_submit(rq);
702                 }
703
704                 rb = rb_next(rb);
705                 rb_erase(&p->node, &execlists->queue);
706                 INIT_LIST_HEAD(&p->requests);
707                 if (p->priority != I915_PRIORITY_NORMAL)
708                         kmem_cache_free(engine->i915->priorities, p);
709         }
710
711         /* Remaining _unready_ requests will be nop'ed when submitted */
712
713
714         execlists->queue = RB_ROOT;
715         execlists->first = NULL;
716         GEM_BUG_ON(port_isset(execlists->port));
717
718         /*
719          * The port is checked prior to scheduling a tasklet, but
720          * just in case we have suspended the tasklet to do the
721          * wedging make sure that when it wakes, it decides there
722          * is no work to do by clearing the irq_posted bit.
723          */
724         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
725
726         spin_unlock_irqrestore(&engine->timeline->lock, flags);
727 }
728
729 /*
730  * Check the unread Context Status Buffers and manage the submission of new
731  * contexts to the ELSP accordingly.
732  */
733 static void execlists_submission_tasklet(unsigned long data)
734 {
735         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
736         struct intel_engine_execlists * const execlists = &engine->execlists;
737         struct execlist_port * const port = execlists->port;
738         struct drm_i915_private *dev_priv = engine->i915;
739         bool fw = false;
740
741         /* We can skip acquiring intel_runtime_pm_get() here as it was taken
742          * on our behalf by the request (see i915_gem_mark_busy()) and it will
743          * not be relinquished until the device is idle (see
744          * i915_gem_idle_work_handler()). As a precaution, we make sure
745          * that all ELSP are drained i.e. we have processed the CSB,
746          * before allowing ourselves to idle and calling intel_runtime_pm_put().
747          */
748         GEM_BUG_ON(!dev_priv->gt.awake);
749
750         /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
751          * imposing the cost of a locked atomic transaction when submitting a
752          * new request (outside of the context-switch interrupt).
753          */
754         while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
755                 /* The HWSP contains a (cacheable) mirror of the CSB */
756                 const u32 *buf =
757                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
758                 unsigned int head, tail;
759
760                 if (unlikely(execlists->csb_use_mmio)) {
761                         buf = (u32 * __force)
762                                 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
763                         execlists->csb_head = -1; /* force mmio read of CSB ptrs */
764                 }
765
766                 /* The write will be ordered by the uncached read (itself
767                  * a memory barrier), so we do not need another in the form
768                  * of a locked instruction. The race between the interrupt
769                  * handler and the split test/clear is harmless as we order
770                  * our clear before the CSB read. If the interrupt arrived
771                  * first between the test and the clear, we read the updated
772                  * CSB and clear the bit. If the interrupt arrives as we read
773                  * the CSB or later (i.e. after we had cleared the bit) the bit
774                  * is set and we do a new loop.
775                  */
776                 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
777                 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
778                         if (!fw) {
779                                 intel_uncore_forcewake_get(dev_priv,
780                                                            execlists->fw_domains);
781                                 fw = true;
782                         }
783
784                         head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
785                         tail = GEN8_CSB_WRITE_PTR(head);
786                         head = GEN8_CSB_READ_PTR(head);
787                         execlists->csb_head = head;
788                 } else {
789                         const int write_idx =
790                                 intel_hws_csb_write_index(dev_priv) -
791                                 I915_HWS_CSB_BUF0_INDEX;
792
793                         head = execlists->csb_head;
794                         tail = READ_ONCE(buf[write_idx]);
795                 }
796                 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
797                           engine->name,
798                           head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
799                           tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
800
801                 while (head != tail) {
802                         struct drm_i915_gem_request *rq;
803                         unsigned int status;
804                         unsigned int count;
805
806                         if (++head == GEN8_CSB_ENTRIES)
807                                 head = 0;
808
809                         /* We are flying near dragons again.
810                          *
811                          * We hold a reference to the request in execlist_port[]
812                          * but no more than that. We are operating in softirq
813                          * context and so cannot hold any mutex or sleep. That
814                          * prevents us stopping the requests we are processing
815                          * in port[] from being retired simultaneously (the
816                          * breadcrumb will be complete before we see the
817                          * context-switch). As we only hold the reference to the
818                          * request, any pointer chasing underneath the request
819                          * is subject to a potential use-after-free. Thus we
820                          * store all of the bookkeeping within port[] as
821                          * required, and avoid using unguarded pointers beneath
822                          * request itself. The same applies to the atomic
823                          * status notifier.
824                          */
825
826                         status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
827                         GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
828                                   engine->name, head,
829                                   status, buf[2*head + 1],
830                                   execlists->active);
831
832                         if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
833                                       GEN8_CTX_STATUS_PREEMPTED))
834                                 execlists_set_active(execlists,
835                                                      EXECLISTS_ACTIVE_HWACK);
836                         if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
837                                 execlists_clear_active(execlists,
838                                                        EXECLISTS_ACTIVE_HWACK);
839
840                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
841                                 continue;
842
843                         /* We should never get a COMPLETED | IDLE_ACTIVE! */
844                         GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
845
846                         if (status & GEN8_CTX_STATUS_COMPLETE &&
847                             buf[2*head + 1] == PREEMPT_ID) {
848                                 GEM_TRACE("%s preempt-idle\n", engine->name);
849
850                                 execlists_cancel_port_requests(execlists);
851                                 execlists_unwind_incomplete_requests(execlists);
852
853                                 GEM_BUG_ON(!execlists_is_active(execlists,
854                                                                 EXECLISTS_ACTIVE_PREEMPT));
855                                 execlists_clear_active(execlists,
856                                                        EXECLISTS_ACTIVE_PREEMPT);
857                                 continue;
858                         }
859
860                         if (status & GEN8_CTX_STATUS_PREEMPTED &&
861                             execlists_is_active(execlists,
862                                                 EXECLISTS_ACTIVE_PREEMPT))
863                                 continue;
864
865                         GEM_BUG_ON(!execlists_is_active(execlists,
866                                                         EXECLISTS_ACTIVE_USER));
867
868                         /* Check the context/desc id for this event matches */
869                         GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
870
871                         rq = port_unpack(port, &count);
872                         GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
873                                   engine->name,
874                                   port->context_id, count,
875                                   rq ? rq->global_seqno : 0);
876                         GEM_BUG_ON(count == 0);
877                         if (--count == 0) {
878                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
879                                 GEM_BUG_ON(port_isset(&port[1]) &&
880                                            !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
881                                 GEM_BUG_ON(!i915_gem_request_completed(rq));
882                                 execlists_context_schedule_out(rq);
883                                 trace_i915_gem_request_out(rq);
884                                 i915_gem_request_put(rq);
885
886                                 execlists_port_complete(execlists, port);
887                         } else {
888                                 port_set(port, port_pack(rq, count));
889                         }
890
891                         /* After the final element, the hw should be idle */
892                         GEM_BUG_ON(port_count(port) == 0 &&
893                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
894                         if (port_count(port) == 0)
895                                 execlists_clear_active(execlists,
896                                                        EXECLISTS_ACTIVE_USER);
897                 }
898
899                 if (head != execlists->csb_head) {
900                         execlists->csb_head = head;
901                         writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
902                                dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
903                 }
904         }
905
906         if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
907                 execlists_dequeue(engine);
908
909         if (fw)
910                 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
911 }
912
913 static void insert_request(struct intel_engine_cs *engine,
914                            struct i915_priotree *pt,
915                            int prio)
916 {
917         struct i915_priolist *p = lookup_priolist(engine, pt, prio);
918
919         list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
920         if (ptr_unmask_bits(p, 1))
921                 tasklet_hi_schedule(&engine->execlists.tasklet);
922 }
923
924 static void execlists_submit_request(struct drm_i915_gem_request *request)
925 {
926         struct intel_engine_cs *engine = request->engine;
927         unsigned long flags;
928
929         /* Will be called from irq-context when using foreign fences. */
930         spin_lock_irqsave(&engine->timeline->lock, flags);
931
932         insert_request(engine, &request->priotree, request->priotree.priority);
933
934         GEM_BUG_ON(!engine->execlists.first);
935         GEM_BUG_ON(list_empty(&request->priotree.link));
936
937         spin_unlock_irqrestore(&engine->timeline->lock, flags);
938 }
939
940 static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
941 {
942         return container_of(pt, struct drm_i915_gem_request, priotree);
943 }
944
945 static struct intel_engine_cs *
946 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
947 {
948         struct intel_engine_cs *engine = pt_to_request(pt)->engine;
949
950         GEM_BUG_ON(!locked);
951
952         if (engine != locked) {
953                 spin_unlock(&locked->timeline->lock);
954                 spin_lock(&engine->timeline->lock);
955         }
956
957         return engine;
958 }
959
960 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
961 {
962         struct intel_engine_cs *engine;
963         struct i915_dependency *dep, *p;
964         struct i915_dependency stack;
965         LIST_HEAD(dfs);
966
967         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
968
969         if (i915_gem_request_completed(request))
970                 return;
971
972         if (prio <= READ_ONCE(request->priotree.priority))
973                 return;
974
975         /* Need BKL in order to use the temporary link inside i915_dependency */
976         lockdep_assert_held(&request->i915->drm.struct_mutex);
977
978         stack.signaler = &request->priotree;
979         list_add(&stack.dfs_link, &dfs);
980
981         /*
982          * Recursively bump all dependent priorities to match the new request.
983          *
984          * A naive approach would be to use recursion:
985          * static void update_priorities(struct i915_priotree *pt, prio) {
986          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
987          *              update_priorities(dep->signal, prio)
988          *      insert_request(pt);
989          * }
990          * but that may have unlimited recursion depth and so runs a very
991          * real risk of overunning the kernel stack. Instead, we build
992          * a flat list of all dependencies starting with the current request.
993          * As we walk the list of dependencies, we add all of its dependencies
994          * to the end of the list (this may include an already visited
995          * request) and continue to walk onwards onto the new dependencies. The
996          * end result is a topological list of requests in reverse order, the
997          * last element in the list is the request we must execute first.
998          */
999         list_for_each_entry(dep, &dfs, dfs_link) {
1000                 struct i915_priotree *pt = dep->signaler;
1001
1002                 /*
1003                  * Within an engine, there can be no cycle, but we may
1004                  * refer to the same dependency chain multiple times
1005                  * (redundant dependencies are not eliminated) and across
1006                  * engines.
1007                  */
1008                 list_for_each_entry(p, &pt->signalers_list, signal_link) {
1009                         GEM_BUG_ON(p == dep); /* no cycles! */
1010
1011                         if (i915_priotree_signaled(p->signaler))
1012                                 continue;
1013
1014                         GEM_BUG_ON(p->signaler->priority < pt->priority);
1015                         if (prio > READ_ONCE(p->signaler->priority))
1016                                 list_move_tail(&p->dfs_link, &dfs);
1017                 }
1018         }
1019
1020         /*
1021          * If we didn't need to bump any existing priorities, and we haven't
1022          * yet submitted this request (i.e. there is no potential race with
1023          * execlists_submit_request()), we can set our own priority and skip
1024          * acquiring the engine locks.
1025          */
1026         if (request->priotree.priority == I915_PRIORITY_INVALID) {
1027                 GEM_BUG_ON(!list_empty(&request->priotree.link));
1028                 request->priotree.priority = prio;
1029                 if (stack.dfs_link.next == stack.dfs_link.prev)
1030                         return;
1031                 __list_del_entry(&stack.dfs_link);
1032         }
1033
1034         engine = request->engine;
1035         spin_lock_irq(&engine->timeline->lock);
1036
1037         /* Fifo and depth-first replacement ensure our deps execute before us */
1038         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1039                 struct i915_priotree *pt = dep->signaler;
1040
1041                 INIT_LIST_HEAD(&dep->dfs_link);
1042
1043                 engine = pt_lock_engine(pt, engine);
1044
1045                 if (prio <= pt->priority)
1046                         continue;
1047
1048                 pt->priority = prio;
1049                 if (!list_empty(&pt->link)) {
1050                         __list_del_entry(&pt->link);
1051                         insert_request(engine, pt, prio);
1052                 }
1053         }
1054
1055         spin_unlock_irq(&engine->timeline->lock);
1056 }
1057
1058 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1059 {
1060         unsigned int flags;
1061         int err;
1062
1063         /*
1064          * Clear this page out of any CPU caches for coherent swap-in/out.
1065          * We only want to do this on the first bind so that we do not stall
1066          * on an active context (which by nature is already on the GPU).
1067          */
1068         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1069                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1070                 if (err)
1071                         return err;
1072         }
1073
1074         flags = PIN_GLOBAL | PIN_HIGH;
1075         if (ctx->ggtt_offset_bias)
1076                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1077
1078         return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1079 }
1080
1081 static struct intel_ring *
1082 execlists_context_pin(struct intel_engine_cs *engine,
1083                       struct i915_gem_context *ctx)
1084 {
1085         struct intel_context *ce = &ctx->engine[engine->id];
1086         void *vaddr;
1087         int ret;
1088
1089         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1090
1091         if (likely(ce->pin_count++))
1092                 goto out;
1093         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1094
1095         ret = execlists_context_deferred_alloc(ctx, engine);
1096         if (ret)
1097                 goto err;
1098         GEM_BUG_ON(!ce->state);
1099
1100         ret = __context_pin(ctx, ce->state);
1101         if (ret)
1102                 goto err;
1103
1104         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1105         if (IS_ERR(vaddr)) {
1106                 ret = PTR_ERR(vaddr);
1107                 goto unpin_vma;
1108         }
1109
1110         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1111         if (ret)
1112                 goto unpin_map;
1113
1114         intel_lr_context_descriptor_update(ctx, engine);
1115
1116         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1117         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1118                 i915_ggtt_offset(ce->ring->vma);
1119
1120         ce->state->obj->pin_global++;
1121         i915_gem_context_get(ctx);
1122 out:
1123         return ce->ring;
1124
1125 unpin_map:
1126         i915_gem_object_unpin_map(ce->state->obj);
1127 unpin_vma:
1128         __i915_vma_unpin(ce->state);
1129 err:
1130         ce->pin_count = 0;
1131         return ERR_PTR(ret);
1132 }
1133
1134 static void execlists_context_unpin(struct intel_engine_cs *engine,
1135                                     struct i915_gem_context *ctx)
1136 {
1137         struct intel_context *ce = &ctx->engine[engine->id];
1138
1139         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1140         GEM_BUG_ON(ce->pin_count == 0);
1141
1142         if (--ce->pin_count)
1143                 return;
1144
1145         intel_ring_unpin(ce->ring);
1146
1147         ce->state->obj->pin_global--;
1148         i915_gem_object_unpin_map(ce->state->obj);
1149         i915_vma_unpin(ce->state);
1150
1151         i915_gem_context_put(ctx);
1152 }
1153
1154 static int execlists_request_alloc(struct drm_i915_gem_request *request)
1155 {
1156         struct intel_engine_cs *engine = request->engine;
1157         struct intel_context *ce = &request->ctx->engine[engine->id];
1158         int ret;
1159
1160         GEM_BUG_ON(!ce->pin_count);
1161
1162         /* Flush enough space to reduce the likelihood of waiting after
1163          * we start building the request - in which case we will just
1164          * have to repeat work.
1165          */
1166         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1167
1168         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1169         if (ret)
1170                 return ret;
1171
1172         /* Note that after this point, we have committed to using
1173          * this request as it is being used to both track the
1174          * state of engine initialisation and liveness of the
1175          * golden renderstate above. Think twice before you try
1176          * to cancel/unwind this request now.
1177          */
1178
1179         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1180         return 0;
1181 }
1182
1183 /*
1184  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1185  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1186  * but there is a slight complication as this is applied in WA batch where the
1187  * values are only initialized once so we cannot take register value at the
1188  * beginning and reuse it further; hence we save its value to memory, upload a
1189  * constant value with bit21 set and then we restore it back with the saved value.
1190  * To simplify the WA, a constant value is formed by using the default value
1191  * of this register. This shouldn't be a problem because we are only modifying
1192  * it for a short period and this batch in non-premptible. We can ofcourse
1193  * use additional instructions that read the actual value of the register
1194  * at that time and set our bit of interest but it makes the WA complicated.
1195  *
1196  * This WA is also required for Gen9 so extracting as a function avoids
1197  * code duplication.
1198  */
1199 static u32 *
1200 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1201 {
1202         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1203         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1204         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1205         *batch++ = 0;
1206
1207         *batch++ = MI_LOAD_REGISTER_IMM(1);
1208         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1209         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1210
1211         batch = gen8_emit_pipe_control(batch,
1212                                        PIPE_CONTROL_CS_STALL |
1213                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1214                                        0);
1215
1216         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1217         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1218         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1219         *batch++ = 0;
1220
1221         return batch;
1222 }
1223
1224 /*
1225  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1226  * initialized at the beginning and shared across all contexts but this field
1227  * helps us to have multiple batches at different offsets and select them based
1228  * on a criteria. At the moment this batch always start at the beginning of the page
1229  * and at this point we don't have multiple wa_ctx batch buffers.
1230  *
1231  * The number of WA applied are not known at the beginning; we use this field
1232  * to return the no of DWORDS written.
1233  *
1234  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1235  * so it adds NOOPs as padding to make it cacheline aligned.
1236  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1237  * makes a complete batch buffer.
1238  */
1239 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1240 {
1241         /* WaDisableCtxRestoreArbitration:bdw,chv */
1242         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1243
1244         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1245         if (IS_BROADWELL(engine->i915))
1246                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1247
1248         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1249         /* Actual scratch location is at 128 bytes offset */
1250         batch = gen8_emit_pipe_control(batch,
1251                                        PIPE_CONTROL_FLUSH_L3 |
1252                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1253                                        PIPE_CONTROL_CS_STALL |
1254                                        PIPE_CONTROL_QW_WRITE,
1255                                        i915_ggtt_offset(engine->scratch) +
1256                                        2 * CACHELINE_BYTES);
1257
1258         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1259
1260         /* Pad to end of cacheline */
1261         while ((unsigned long)batch % CACHELINE_BYTES)
1262                 *batch++ = MI_NOOP;
1263
1264         /*
1265          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1266          * execution depends on the length specified in terms of cache lines
1267          * in the register CTX_RCS_INDIRECT_CTX
1268          */
1269
1270         return batch;
1271 }
1272
1273 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1274 {
1275         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1276
1277         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1278         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1279
1280         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1281         *batch++ = MI_LOAD_REGISTER_IMM(1);
1282         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1283         *batch++ = _MASKED_BIT_DISABLE(
1284                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1285         *batch++ = MI_NOOP;
1286
1287         /* WaClearSlmSpaceAtContextSwitch:kbl */
1288         /* Actual scratch location is at 128 bytes offset */
1289         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1290                 batch = gen8_emit_pipe_control(batch,
1291                                                PIPE_CONTROL_FLUSH_L3 |
1292                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1293                                                PIPE_CONTROL_CS_STALL |
1294                                                PIPE_CONTROL_QW_WRITE,
1295                                                i915_ggtt_offset(engine->scratch)
1296                                                + 2 * CACHELINE_BYTES);
1297         }
1298
1299         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1300         if (HAS_POOLED_EU(engine->i915)) {
1301                 /*
1302                  * EU pool configuration is setup along with golden context
1303                  * during context initialization. This value depends on
1304                  * device type (2x6 or 3x6) and needs to be updated based
1305                  * on which subslice is disabled especially for 2x6
1306                  * devices, however it is safe to load default
1307                  * configuration of 3x6 device instead of masking off
1308                  * corresponding bits because HW ignores bits of a disabled
1309                  * subslice and drops down to appropriate config. Please
1310                  * see render_state_setup() in i915_gem_render_state.c for
1311                  * possible configurations, to avoid duplication they are
1312                  * not shown here again.
1313                  */
1314                 *batch++ = GEN9_MEDIA_POOL_STATE;
1315                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1316                 *batch++ = 0x00777000;
1317                 *batch++ = 0;
1318                 *batch++ = 0;
1319                 *batch++ = 0;
1320         }
1321
1322         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1323
1324         /* Pad to end of cacheline */
1325         while ((unsigned long)batch % CACHELINE_BYTES)
1326                 *batch++ = MI_NOOP;
1327
1328         return batch;
1329 }
1330
1331 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1332
1333 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1334 {
1335         struct drm_i915_gem_object *obj;
1336         struct i915_vma *vma;
1337         int err;
1338
1339         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1340         if (IS_ERR(obj))
1341                 return PTR_ERR(obj);
1342
1343         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1344         if (IS_ERR(vma)) {
1345                 err = PTR_ERR(vma);
1346                 goto err;
1347         }
1348
1349         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1350         if (err)
1351                 goto err;
1352
1353         engine->wa_ctx.vma = vma;
1354         return 0;
1355
1356 err:
1357         i915_gem_object_put(obj);
1358         return err;
1359 }
1360
1361 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1362 {
1363         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1364 }
1365
1366 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1367
1368 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1369 {
1370         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1371         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1372                                             &wa_ctx->per_ctx };
1373         wa_bb_func_t wa_bb_fn[2];
1374         struct page *page;
1375         void *batch, *batch_ptr;
1376         unsigned int i;
1377         int ret;
1378
1379         if (GEM_WARN_ON(engine->id != RCS))
1380                 return -EINVAL;
1381
1382         switch (INTEL_GEN(engine->i915)) {
1383         case 10:
1384                 return 0;
1385         case 9:
1386                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1387                 wa_bb_fn[1] = NULL;
1388                 break;
1389         case 8:
1390                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1391                 wa_bb_fn[1] = NULL;
1392                 break;
1393         default:
1394                 MISSING_CASE(INTEL_GEN(engine->i915));
1395                 return 0;
1396         }
1397
1398         ret = lrc_setup_wa_ctx(engine);
1399         if (ret) {
1400                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1401                 return ret;
1402         }
1403
1404         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1405         batch = batch_ptr = kmap_atomic(page);
1406
1407         /*
1408          * Emit the two workaround batch buffers, recording the offset from the
1409          * start of the workaround batch buffer object for each and their
1410          * respective sizes.
1411          */
1412         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1413                 wa_bb[i]->offset = batch_ptr - batch;
1414                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1415                                             CACHELINE_BYTES))) {
1416                         ret = -EINVAL;
1417                         break;
1418                 }
1419                 if (wa_bb_fn[i])
1420                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1421                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1422         }
1423
1424         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1425
1426         kunmap_atomic(batch);
1427         if (ret)
1428                 lrc_destroy_wa_ctx(engine);
1429
1430         return ret;
1431 }
1432
1433 static u8 gtiir[] = {
1434         [RCS] = 0,
1435         [BCS] = 0,
1436         [VCS] = 1,
1437         [VCS2] = 1,
1438         [VECS] = 3,
1439 };
1440
1441 static void enable_execlists(struct intel_engine_cs *engine)
1442 {
1443         struct drm_i915_private *dev_priv = engine->i915;
1444
1445         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1446
1447         /*
1448          * Make sure we're not enabling the new 12-deep CSB
1449          * FIFO as that requires a slightly updated handling
1450          * in the ctx switch irq. Since we're currently only
1451          * using only 2 elements of the enhanced execlists the
1452          * deeper FIFO it's not needed and it's not worth adding
1453          * more statements to the irq handler to support it.
1454          */
1455         if (INTEL_GEN(dev_priv) >= 11)
1456                 I915_WRITE(RING_MODE_GEN7(engine),
1457                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1458         else
1459                 I915_WRITE(RING_MODE_GEN7(engine),
1460                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1461
1462         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1463                    engine->status_page.ggtt_offset);
1464         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1465 }
1466
1467 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1468 {
1469         struct intel_engine_execlists * const execlists = &engine->execlists;
1470         int ret;
1471
1472         ret = intel_mocs_init_engine(engine);
1473         if (ret)
1474                 return ret;
1475
1476         intel_engine_reset_breadcrumbs(engine);
1477         intel_engine_init_hangcheck(engine);
1478
1479         enable_execlists(engine);
1480
1481         GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1482
1483         execlists->csb_head = -1;
1484         execlists->active = 0;
1485
1486         /* After a GPU reset, we may have requests to replay */
1487         if (execlists->first)
1488                 tasklet_schedule(&execlists->tasklet);
1489
1490         return 0;
1491 }
1492
1493 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1494 {
1495         struct drm_i915_private *dev_priv = engine->i915;
1496         int ret;
1497
1498         ret = gen8_init_common_ring(engine);
1499         if (ret)
1500                 return ret;
1501
1502         /* We need to disable the AsyncFlip performance optimisations in order
1503          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1504          * programmed to '1' on all products.
1505          *
1506          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1507          */
1508         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1509
1510         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1511
1512         return init_workarounds_ring(engine);
1513 }
1514
1515 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1516 {
1517         int ret;
1518
1519         ret = gen8_init_common_ring(engine);
1520         if (ret)
1521                 return ret;
1522
1523         return init_workarounds_ring(engine);
1524 }
1525
1526 static void reset_irq(struct intel_engine_cs *engine)
1527 {
1528         struct drm_i915_private *dev_priv = engine->i915;
1529         int i;
1530
1531         /*
1532          * Clear any pending interrupt state.
1533          *
1534          * We do it twice out of paranoia that some of the IIR are double
1535          * buffered, and if we only reset it once there may still be
1536          * an interrupt pending.
1537          */
1538         for (i = 0; i < 2; i++) {
1539                 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1540                            GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1541                 POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
1542         }
1543         GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
1544                    (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));
1545
1546         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1547 }
1548
1549 static void reset_common_ring(struct intel_engine_cs *engine,
1550                               struct drm_i915_gem_request *request)
1551 {
1552         struct intel_engine_execlists * const execlists = &engine->execlists;
1553         struct intel_context *ce;
1554         unsigned long flags;
1555
1556         GEM_TRACE("%s seqno=%x\n",
1557                   engine->name, request ? request->global_seqno : 0);
1558
1559         reset_irq(engine);
1560
1561         spin_lock_irqsave(&engine->timeline->lock, flags);
1562
1563         /*
1564          * Catch up with any missed context-switch interrupts.
1565          *
1566          * Ideally we would just read the remaining CSB entries now that we
1567          * know the gpu is idle. However, the CSB registers are sometimes^W
1568          * often trashed across a GPU reset! Instead we have to rely on
1569          * guessing the missed context-switch events by looking at what
1570          * requests were completed.
1571          */
1572         execlists_cancel_port_requests(execlists);
1573
1574         /* Push back any incomplete requests for replay after the reset. */
1575         __unwind_incomplete_requests(engine);
1576
1577         spin_unlock_irqrestore(&engine->timeline->lock, flags);
1578
1579         /* If the request was innocent, we leave the request in the ELSP
1580          * and will try to replay it on restarting. The context image may
1581          * have been corrupted by the reset, in which case we may have
1582          * to service a new GPU hang, but more likely we can continue on
1583          * without impact.
1584          *
1585          * If the request was guilty, we presume the context is corrupt
1586          * and have to at least restore the RING register in the context
1587          * image back to the expected values to skip over the guilty request.
1588          */
1589         if (!request || request->fence.error != -EIO)
1590                 return;
1591
1592         /* We want a simple context + ring to execute the breadcrumb update.
1593          * We cannot rely on the context being intact across the GPU hang,
1594          * so clear it and rebuild just what we need for the breadcrumb.
1595          * All pending requests for this context will be zapped, and any
1596          * future request will be after userspace has had the opportunity
1597          * to recreate its own state.
1598          */
1599         ce = &request->ctx->engine[engine->id];
1600         execlists_init_reg_state(ce->lrc_reg_state,
1601                                  request->ctx, engine, ce->ring);
1602
1603         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1604         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1605                 i915_ggtt_offset(ce->ring->vma);
1606         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1607
1608         request->ring->head = request->postfix;
1609         intel_ring_update_space(request->ring);
1610
1611         /* Reset WaIdleLiteRestore:bdw,skl as well */
1612         unwind_wa_tail(request);
1613 }
1614
1615 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1616 {
1617         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1618         struct intel_engine_cs *engine = req->engine;
1619         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1620         u32 *cs;
1621         int i;
1622
1623         cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1624         if (IS_ERR(cs))
1625                 return PTR_ERR(cs);
1626
1627         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1628         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1629                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1630
1631                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1632                 *cs++ = upper_32_bits(pd_daddr);
1633                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1634                 *cs++ = lower_32_bits(pd_daddr);
1635         }
1636
1637         *cs++ = MI_NOOP;
1638         intel_ring_advance(req, cs);
1639
1640         return 0;
1641 }
1642
1643 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1644                               u64 offset, u32 len,
1645                               const unsigned int flags)
1646 {
1647         u32 *cs;
1648         int ret;
1649
1650         /* Don't rely in hw updating PDPs, specially in lite-restore.
1651          * Ideally, we should set Force PD Restore in ctx descriptor,
1652          * but we can't. Force Restore would be a second option, but
1653          * it is unsafe in case of lite-restore (because the ctx is
1654          * not idle). PML4 is allocated during ppgtt init so this is
1655          * not needed in 48-bit.*/
1656         if (req->ctx->ppgtt &&
1657             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1658             !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1659             !intel_vgpu_active(req->i915)) {
1660                 ret = intel_logical_ring_emit_pdps(req);
1661                 if (ret)
1662                         return ret;
1663
1664                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1665         }
1666
1667         cs = intel_ring_begin(req, 4);
1668         if (IS_ERR(cs))
1669                 return PTR_ERR(cs);
1670
1671         /*
1672          * WaDisableCtxRestoreArbitration:bdw,chv
1673          *
1674          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1675          * particular all the gen that do not need the w/a at all!), if we
1676          * took care to make sure that on every switch into this context
1677          * (both ordinary and for preemption) that arbitrartion was enabled
1678          * we would be fine. However, there doesn't seem to be a downside to
1679          * being paranoid and making sure it is set before each batch and
1680          * every context-switch.
1681          *
1682          * Note that if we fail to enable arbitration before the request
1683          * is complete, then we do not see the context-switch interrupt and
1684          * the engine hangs (with RING_HEAD == RING_TAIL).
1685          *
1686          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1687          */
1688         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1689
1690         /* FIXME(BDW): Address space and security selectors. */
1691         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1692                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1693                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1694         *cs++ = lower_32_bits(offset);
1695         *cs++ = upper_32_bits(offset);
1696         intel_ring_advance(req, cs);
1697
1698         return 0;
1699 }
1700
1701 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1702 {
1703         struct drm_i915_private *dev_priv = engine->i915;
1704         I915_WRITE_IMR(engine,
1705                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1706         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1707 }
1708
1709 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1710 {
1711         struct drm_i915_private *dev_priv = engine->i915;
1712         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1713 }
1714
1715 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1716 {
1717         u32 cmd, *cs;
1718
1719         cs = intel_ring_begin(request, 4);
1720         if (IS_ERR(cs))
1721                 return PTR_ERR(cs);
1722
1723         cmd = MI_FLUSH_DW + 1;
1724
1725         /* We always require a command barrier so that subsequent
1726          * commands, such as breadcrumb interrupts, are strictly ordered
1727          * wrt the contents of the write cache being flushed to memory
1728          * (and thus being coherent from the CPU).
1729          */
1730         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1731
1732         if (mode & EMIT_INVALIDATE) {
1733                 cmd |= MI_INVALIDATE_TLB;
1734                 if (request->engine->id == VCS)
1735                         cmd |= MI_INVALIDATE_BSD;
1736         }
1737
1738         *cs++ = cmd;
1739         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1740         *cs++ = 0; /* upper addr */
1741         *cs++ = 0; /* value */
1742         intel_ring_advance(request, cs);
1743
1744         return 0;
1745 }
1746
1747 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1748                                   u32 mode)
1749 {
1750         struct intel_engine_cs *engine = request->engine;
1751         u32 scratch_addr =
1752                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1753         bool vf_flush_wa = false, dc_flush_wa = false;
1754         u32 *cs, flags = 0;
1755         int len;
1756
1757         flags |= PIPE_CONTROL_CS_STALL;
1758
1759         if (mode & EMIT_FLUSH) {
1760                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1761                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1762                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1763                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1764         }
1765
1766         if (mode & EMIT_INVALIDATE) {
1767                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1768                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1769                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1770                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1771                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1772                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1773                 flags |= PIPE_CONTROL_QW_WRITE;
1774                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1775
1776                 /*
1777                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1778                  * pipe control.
1779                  */
1780                 if (IS_GEN9(request->i915))
1781                         vf_flush_wa = true;
1782
1783                 /* WaForGAMHang:kbl */
1784                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1785                         dc_flush_wa = true;
1786         }
1787
1788         len = 6;
1789
1790         if (vf_flush_wa)
1791                 len += 6;
1792
1793         if (dc_flush_wa)
1794                 len += 12;
1795
1796         cs = intel_ring_begin(request, len);
1797         if (IS_ERR(cs))
1798                 return PTR_ERR(cs);
1799
1800         if (vf_flush_wa)
1801                 cs = gen8_emit_pipe_control(cs, 0, 0);
1802
1803         if (dc_flush_wa)
1804                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1805                                             0);
1806
1807         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1808
1809         if (dc_flush_wa)
1810                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1811
1812         intel_ring_advance(request, cs);
1813
1814         return 0;
1815 }
1816
1817 /*
1818  * Reserve space for 2 NOOPs at the end of each request to be
1819  * used as a workaround for not being allowed to do lite
1820  * restore with HEAD==TAIL (WaIdleLiteRestore).
1821  */
1822 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1823 {
1824         /* Ensure there's always at least one preemption point per-request. */
1825         *cs++ = MI_ARB_CHECK;
1826         *cs++ = MI_NOOP;
1827         request->wa_tail = intel_ring_offset(request, cs);
1828 }
1829
1830 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1831 {
1832         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1833         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1834
1835         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1836                                   intel_hws_seqno_address(request->engine));
1837         *cs++ = MI_USER_INTERRUPT;
1838         *cs++ = MI_NOOP;
1839         request->tail = intel_ring_offset(request, cs);
1840         assert_ring_tail_valid(request->ring, request->tail);
1841
1842         gen8_emit_wa_tail(request, cs);
1843 }
1844 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1845
1846 static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1847                                         u32 *cs)
1848 {
1849         /* We're using qword write, seqno should be aligned to 8 bytes. */
1850         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1851
1852         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
1853                                       intel_hws_seqno_address(request->engine));
1854         *cs++ = MI_USER_INTERRUPT;
1855         *cs++ = MI_NOOP;
1856         request->tail = intel_ring_offset(request, cs);
1857         assert_ring_tail_valid(request->ring, request->tail);
1858
1859         gen8_emit_wa_tail(request, cs);
1860 }
1861 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1862
1863 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1864 {
1865         int ret;
1866
1867         ret = intel_ring_workarounds_emit(req);
1868         if (ret)
1869                 return ret;
1870
1871         ret = intel_rcs_context_init_mocs(req);
1872         /*
1873          * Failing to program the MOCS is non-fatal.The system will not
1874          * run at peak performance. So generate an error and carry on.
1875          */
1876         if (ret)
1877                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1878
1879         return i915_gem_render_state_emit(req);
1880 }
1881
1882 /**
1883  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1884  * @engine: Engine Command Streamer.
1885  */
1886 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1887 {
1888         struct drm_i915_private *dev_priv;
1889
1890         /*
1891          * Tasklet cannot be active at this point due intel_mark_active/idle
1892          * so this is just for documentation.
1893          */
1894         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
1895                              &engine->execlists.tasklet.state)))
1896                 tasklet_kill(&engine->execlists.tasklet);
1897
1898         dev_priv = engine->i915;
1899
1900         if (engine->buffer) {
1901                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1902         }
1903
1904         if (engine->cleanup)
1905                 engine->cleanup(engine);
1906
1907         intel_engine_cleanup_common(engine);
1908
1909         lrc_destroy_wa_ctx(engine);
1910
1911         engine->i915 = NULL;
1912         dev_priv->engine[engine->id] = NULL;
1913         kfree(engine);
1914 }
1915
1916 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1917 {
1918         engine->submit_request = execlists_submit_request;
1919         engine->cancel_requests = execlists_cancel_requests;
1920         engine->schedule = execlists_schedule;
1921         engine->execlists.tasklet.func = execlists_submission_tasklet;
1922
1923         engine->park = NULL;
1924         engine->unpark = NULL;
1925
1926         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1927 }
1928
1929 static void
1930 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1931 {
1932         /* Default vfuncs which can be overriden by each engine. */
1933         engine->init_hw = gen8_init_common_ring;
1934         engine->reset_hw = reset_common_ring;
1935
1936         engine->context_pin = execlists_context_pin;
1937         engine->context_unpin = execlists_context_unpin;
1938
1939         engine->request_alloc = execlists_request_alloc;
1940
1941         engine->emit_flush = gen8_emit_flush;
1942         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1943         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1944
1945         engine->set_default_submission = execlists_set_default_submission;
1946
1947         engine->irq_enable = gen8_logical_ring_enable_irq;
1948         engine->irq_disable = gen8_logical_ring_disable_irq;
1949         engine->emit_bb_start = gen8_emit_bb_start;
1950 }
1951
1952 static inline void
1953 logical_ring_default_irqs(struct intel_engine_cs *engine)
1954 {
1955         unsigned shift = engine->irq_shift;
1956         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1957         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1958 }
1959
1960 static void
1961 logical_ring_setup(struct intel_engine_cs *engine)
1962 {
1963         struct drm_i915_private *dev_priv = engine->i915;
1964         enum forcewake_domains fw_domains;
1965
1966         intel_engine_setup_common(engine);
1967
1968         /* Intentionally left blank. */
1969         engine->buffer = NULL;
1970
1971         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1972                                                     RING_ELSP(engine),
1973                                                     FW_REG_WRITE);
1974
1975         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1976                                                      RING_CONTEXT_STATUS_PTR(engine),
1977                                                      FW_REG_READ | FW_REG_WRITE);
1978
1979         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1980                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1981                                                      FW_REG_READ);
1982
1983         engine->execlists.fw_domains = fw_domains;
1984
1985         tasklet_init(&engine->execlists.tasklet,
1986                      execlists_submission_tasklet, (unsigned long)engine);
1987
1988         logical_ring_default_vfuncs(engine);
1989         logical_ring_default_irqs(engine);
1990 }
1991
1992 static int logical_ring_init(struct intel_engine_cs *engine)
1993 {
1994         int ret;
1995
1996         ret = intel_engine_init_common(engine);
1997         if (ret)
1998                 goto error;
1999
2000         engine->execlists.elsp =
2001                 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
2002
2003         return 0;
2004
2005 error:
2006         intel_logical_ring_cleanup(engine);
2007         return ret;
2008 }
2009
2010 int logical_render_ring_init(struct intel_engine_cs *engine)
2011 {
2012         struct drm_i915_private *dev_priv = engine->i915;
2013         int ret;
2014
2015         logical_ring_setup(engine);
2016
2017         if (HAS_L3_DPF(dev_priv))
2018                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2019
2020         /* Override some for render ring. */
2021         if (INTEL_GEN(dev_priv) >= 9)
2022                 engine->init_hw = gen9_init_render_ring;
2023         else
2024                 engine->init_hw = gen8_init_render_ring;
2025         engine->init_context = gen8_init_rcs_context;
2026         engine->emit_flush = gen8_emit_flush_render;
2027         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2028         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2029
2030         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2031         if (ret)
2032                 return ret;
2033
2034         ret = intel_init_workaround_bb(engine);
2035         if (ret) {
2036                 /*
2037                  * We continue even if we fail to initialize WA batch
2038                  * because we only expect rare glitches but nothing
2039                  * critical to prevent us from using GPU
2040                  */
2041                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2042                           ret);
2043         }
2044
2045         return logical_ring_init(engine);
2046 }
2047
2048 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2049 {
2050         logical_ring_setup(engine);
2051
2052         return logical_ring_init(engine);
2053 }
2054
2055 static u32
2056 make_rpcs(struct drm_i915_private *dev_priv)
2057 {
2058         u32 rpcs = 0;
2059
2060         /*
2061          * No explicit RPCS request is needed to ensure full
2062          * slice/subslice/EU enablement prior to Gen9.
2063         */
2064         if (INTEL_GEN(dev_priv) < 9)
2065                 return 0;
2066
2067         /*
2068          * Starting in Gen9, render power gating can leave
2069          * slice/subslice/EU in a partially enabled state. We
2070          * must make an explicit request through RPCS for full
2071          * enablement.
2072         */
2073         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2074                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2075                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2076                         GEN8_RPCS_S_CNT_SHIFT;
2077                 rpcs |= GEN8_RPCS_ENABLE;
2078         }
2079
2080         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2081                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2082                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2083                         GEN8_RPCS_SS_CNT_SHIFT;
2084                 rpcs |= GEN8_RPCS_ENABLE;
2085         }
2086
2087         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2088                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2089                         GEN8_RPCS_EU_MIN_SHIFT;
2090                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2091                         GEN8_RPCS_EU_MAX_SHIFT;
2092                 rpcs |= GEN8_RPCS_ENABLE;
2093         }
2094
2095         return rpcs;
2096 }
2097
2098 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2099 {
2100         u32 indirect_ctx_offset;
2101
2102         switch (INTEL_GEN(engine->i915)) {
2103         default:
2104                 MISSING_CASE(INTEL_GEN(engine->i915));
2105                 /* fall through */
2106         case 10:
2107                 indirect_ctx_offset =
2108                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2109                 break;
2110         case 9:
2111                 indirect_ctx_offset =
2112                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2113                 break;
2114         case 8:
2115                 indirect_ctx_offset =
2116                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2117                 break;
2118         }
2119
2120         return indirect_ctx_offset;
2121 }
2122
2123 static void execlists_init_reg_state(u32 *regs,
2124                                      struct i915_gem_context *ctx,
2125                                      struct intel_engine_cs *engine,
2126                                      struct intel_ring *ring)
2127 {
2128         struct drm_i915_private *dev_priv = engine->i915;
2129         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2130         u32 base = engine->mmio_base;
2131         bool rcs = engine->id == RCS;
2132
2133         /* A context is actually a big batch buffer with several
2134          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2135          * values we are setting here are only for the first context restore:
2136          * on a subsequent save, the GPU will recreate this batchbuffer with new
2137          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2138          * we are not initializing here).
2139          */
2140         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2141                                  MI_LRI_FORCE_POSTED;
2142
2143         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2144                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2145                                     CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2146                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2147                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
2148                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
2149         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2150         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2151         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2152         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2153                 RING_CTL_SIZE(ring->size) | RING_VALID);
2154         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2155         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2156         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2157         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2158         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2159         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2160         if (rcs) {
2161                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2162
2163                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2164                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2165                         RING_INDIRECT_CTX_OFFSET(base), 0);
2166                 if (wa_ctx->indirect_ctx.size) {
2167                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2168
2169                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2170                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2171                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2172
2173                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2174                                 intel_lr_indirect_ctx_offset(engine) << 6;
2175                 }
2176
2177                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2178                 if (wa_ctx->per_ctx.size) {
2179                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2180
2181                         regs[CTX_BB_PER_CTX_PTR + 1] =
2182                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2183                 }
2184         }
2185
2186         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2187
2188         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2189         /* PDP values well be assigned later if needed */
2190         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2191         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2192         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2193         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2194         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2195         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2196         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2197         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2198
2199         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2200                 /* 64b PPGTT (48bit canonical)
2201                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2202                  * other PDP Descriptors are ignored.
2203                  */
2204                 ASSIGN_CTX_PML4(ppgtt, regs);
2205         }
2206
2207         if (rcs) {
2208                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2209                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2210                         make_rpcs(dev_priv));
2211
2212                 i915_oa_init_reg_state(engine, ctx, regs);
2213         }
2214 }
2215
2216 static int
2217 populate_lr_context(struct i915_gem_context *ctx,
2218                     struct drm_i915_gem_object *ctx_obj,
2219                     struct intel_engine_cs *engine,
2220                     struct intel_ring *ring)
2221 {
2222         void *vaddr;
2223         u32 *regs;
2224         int ret;
2225
2226         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2227         if (ret) {
2228                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2229                 return ret;
2230         }
2231
2232         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2233         if (IS_ERR(vaddr)) {
2234                 ret = PTR_ERR(vaddr);
2235                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2236                 return ret;
2237         }
2238         ctx_obj->mm.dirty = true;
2239
2240         if (engine->default_state) {
2241                 /*
2242                  * We only want to copy over the template context state;
2243                  * skipping over the headers reserved for GuC communication,
2244                  * leaving those as zero.
2245                  */
2246                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2247                 void *defaults;
2248
2249                 defaults = i915_gem_object_pin_map(engine->default_state,
2250                                                    I915_MAP_WB);
2251                 if (IS_ERR(defaults))
2252                         return PTR_ERR(defaults);
2253
2254                 memcpy(vaddr + start, defaults + start, engine->context_size);
2255                 i915_gem_object_unpin_map(engine->default_state);
2256         }
2257
2258         /* The second page of the context object contains some fields which must
2259          * be set up prior to the first execution. */
2260         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2261         execlists_init_reg_state(regs, ctx, engine, ring);
2262         if (!engine->default_state)
2263                 regs[CTX_CONTEXT_CONTROL + 1] |=
2264                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2265         if (ctx->hw_id == PREEMPT_ID)
2266                 regs[CTX_CONTEXT_CONTROL + 1] |=
2267                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2268                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2269
2270         i915_gem_object_unpin_map(ctx_obj);
2271
2272         return 0;
2273 }
2274
2275 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2276                                             struct intel_engine_cs *engine)
2277 {
2278         struct drm_i915_gem_object *ctx_obj;
2279         struct intel_context *ce = &ctx->engine[engine->id];
2280         struct i915_vma *vma;
2281         uint32_t context_size;
2282         struct intel_ring *ring;
2283         int ret;
2284
2285         if (ce->state)
2286                 return 0;
2287
2288         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2289
2290         /*
2291          * Before the actual start of the context image, we insert a few pages
2292          * for our own use and for sharing with the GuC.
2293          */
2294         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2295
2296         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2297         if (IS_ERR(ctx_obj)) {
2298                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2299                 return PTR_ERR(ctx_obj);
2300         }
2301
2302         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2303         if (IS_ERR(vma)) {
2304                 ret = PTR_ERR(vma);
2305                 goto error_deref_obj;
2306         }
2307
2308         ring = intel_engine_create_ring(engine, ctx->ring_size);
2309         if (IS_ERR(ring)) {
2310                 ret = PTR_ERR(ring);
2311                 goto error_deref_obj;
2312         }
2313
2314         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2315         if (ret) {
2316                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2317                 goto error_ring_free;
2318         }
2319
2320         ce->ring = ring;
2321         ce->state = vma;
2322
2323         return 0;
2324
2325 error_ring_free:
2326         intel_ring_free(ring);
2327 error_deref_obj:
2328         i915_gem_object_put(ctx_obj);
2329         return ret;
2330 }
2331
2332 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2333 {
2334         struct intel_engine_cs *engine;
2335         struct i915_gem_context *ctx;
2336         enum intel_engine_id id;
2337
2338         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2339          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2340          * that stored in context. As we only write new commands from
2341          * ce->ring->tail onwards, everything before that is junk. If the GPU
2342          * starts reading from its RING_HEAD from the context, it may try to
2343          * execute that junk and die.
2344          *
2345          * So to avoid that we reset the context images upon resume. For
2346          * simplicity, we just zero everything out.
2347          */
2348         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2349                 for_each_engine(engine, dev_priv, id) {
2350                         struct intel_context *ce = &ctx->engine[engine->id];
2351                         u32 *reg;
2352
2353                         if (!ce->state)
2354                                 continue;
2355
2356                         reg = i915_gem_object_pin_map(ce->state->obj,
2357                                                       I915_MAP_WB);
2358                         if (WARN_ON(IS_ERR(reg)))
2359                                 continue;
2360
2361                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2362                         reg[CTX_RING_HEAD+1] = 0;
2363                         reg[CTX_RING_TAIL+1] = 0;
2364
2365                         ce->state->obj->mm.dirty = true;
2366                         i915_gem_object_unpin_map(ce->state->obj);
2367
2368                         intel_ring_reset(ce->ring, 0);
2369                 }
2370         }
2371 }