UAPI: (Scripted) Convert #include "..." to #include <path/...> in drivers/gpu/
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38 #include <drm/drm_dp_helper.h>
39
40 #define DP_RECEIVER_CAP_SIZE    0xf
41 #define DP_LINK_STATUS_SIZE     6
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE      9
45
46 struct intel_dp {
47         struct intel_encoder base;
48         uint32_t output_reg;
49         uint32_t DP;
50         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         enum hdmi_force_audio force_audio;
53         uint32_t color_range;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58         struct i2c_adapter adapter;
59         struct i2c_algo_dp_aux_data algo;
60         bool is_pch_edp;
61         uint8_t train_set[4];
62         int panel_power_up_delay;
63         int panel_power_down_delay;
64         int panel_power_cycle_delay;
65         int backlight_on_delay;
66         int backlight_off_delay;
67         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68         struct delayed_work panel_vdd_work;
69         bool want_panel_vdd;
70         struct edid *edid; /* cached EDID for eDP */
71         int edid_mode_count;
72 };
73
74 /**
75  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
76  * @intel_dp: DP struct
77  *
78  * If a CPU or PCH DP output is attached to an eDP panel, this function
79  * will return true, and false otherwise.
80  */
81 static bool is_edp(struct intel_dp *intel_dp)
82 {
83         return intel_dp->base.type == INTEL_OUTPUT_EDP;
84 }
85
86 /**
87  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
88  * @intel_dp: DP struct
89  *
90  * Returns true if the given DP struct corresponds to a PCH DP port attached
91  * to an eDP panel, false otherwise.  Helpful for determining whether we
92  * may need FDI resources for a given DP output or not.
93  */
94 static bool is_pch_edp(struct intel_dp *intel_dp)
95 {
96         return intel_dp->is_pch_edp;
97 }
98
99 /**
100  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
101  * @intel_dp: DP struct
102  *
103  * Returns true if the given DP struct corresponds to a CPU eDP port.
104  */
105 static bool is_cpu_edp(struct intel_dp *intel_dp)
106 {
107         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
108 }
109
110 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
111 {
112         return container_of(encoder, struct intel_dp, base.base);
113 }
114
115 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
116 {
117         return container_of(intel_attached_encoder(connector),
118                             struct intel_dp, base);
119 }
120
121 /**
122  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
123  * @encoder: DRM encoder
124  *
125  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
126  * by intel_display.c.
127  */
128 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
129 {
130         struct intel_dp *intel_dp;
131
132         if (!encoder)
133                 return false;
134
135         intel_dp = enc_to_intel_dp(encoder);
136
137         return is_pch_edp(intel_dp);
138 }
139
140 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
141 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
142 static void intel_dp_link_down(struct intel_dp *intel_dp);
143
144 void
145 intel_edp_link_config(struct intel_encoder *intel_encoder,
146                        int *lane_num, int *link_bw)
147 {
148         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
149
150         *lane_num = intel_dp->lane_count;
151         if (intel_dp->link_bw == DP_LINK_BW_1_62)
152                 *link_bw = 162000;
153         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
154                 *link_bw = 270000;
155 }
156
157 int
158 intel_edp_target_clock(struct intel_encoder *intel_encoder,
159                        struct drm_display_mode *mode)
160 {
161         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
162
163         if (intel_dp->panel_fixed_mode)
164                 return intel_dp->panel_fixed_mode->clock;
165         else
166                 return mode->clock;
167 }
168
169 static int
170 intel_dp_max_lane_count(struct intel_dp *intel_dp)
171 {
172         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
173         switch (max_lane_count) {
174         case 1: case 2: case 4:
175                 break;
176         default:
177                 max_lane_count = 4;
178         }
179         return max_lane_count;
180 }
181
182 static int
183 intel_dp_max_link_bw(struct intel_dp *intel_dp)
184 {
185         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
186
187         switch (max_link_bw) {
188         case DP_LINK_BW_1_62:
189         case DP_LINK_BW_2_7:
190                 break;
191         default:
192                 max_link_bw = DP_LINK_BW_1_62;
193                 break;
194         }
195         return max_link_bw;
196 }
197
198 static int
199 intel_dp_link_clock(uint8_t link_bw)
200 {
201         if (link_bw == DP_LINK_BW_2_7)
202                 return 270000;
203         else
204                 return 162000;
205 }
206
207 /*
208  * The units on the numbers in the next two are... bizarre.  Examples will
209  * make it clearer; this one parallels an example in the eDP spec.
210  *
211  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
212  *
213  *     270000 * 1 * 8 / 10 == 216000
214  *
215  * The actual data capacity of that configuration is 2.16Gbit/s, so the
216  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
217  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
218  * 119000.  At 18bpp that's 2142000 kilobits per second.
219  *
220  * Thus the strange-looking division by 10 in intel_dp_link_required, to
221  * get the result in decakilobits instead of kilobits.
222  */
223
224 static int
225 intel_dp_link_required(int pixel_clock, int bpp)
226 {
227         return (pixel_clock * bpp + 9) / 10;
228 }
229
230 static int
231 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
232 {
233         return (max_link_clock * max_lanes * 8) / 10;
234 }
235
236 static bool
237 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
238                           struct drm_display_mode *mode,
239                           bool adjust_mode)
240 {
241         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
242         int max_lanes = intel_dp_max_lane_count(intel_dp);
243         int max_rate, mode_rate;
244
245         mode_rate = intel_dp_link_required(mode->clock, 24);
246         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
247
248         if (mode_rate > max_rate) {
249                 mode_rate = intel_dp_link_required(mode->clock, 18);
250                 if (mode_rate > max_rate)
251                         return false;
252
253                 if (adjust_mode)
254                         mode->private_flags
255                                 |= INTEL_MODE_DP_FORCE_6BPC;
256
257                 return true;
258         }
259
260         return true;
261 }
262
263 static int
264 intel_dp_mode_valid(struct drm_connector *connector,
265                     struct drm_display_mode *mode)
266 {
267         struct intel_dp *intel_dp = intel_attached_dp(connector);
268
269         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
270                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
271                         return MODE_PANEL;
272
273                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
274                         return MODE_PANEL;
275         }
276
277         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
278                 return MODE_CLOCK_HIGH;
279
280         if (mode->clock < 10000)
281                 return MODE_CLOCK_LOW;
282
283         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
284                 return MODE_H_ILLEGAL;
285
286         return MODE_OK;
287 }
288
289 static uint32_t
290 pack_aux(uint8_t *src, int src_bytes)
291 {
292         int     i;
293         uint32_t v = 0;
294
295         if (src_bytes > 4)
296                 src_bytes = 4;
297         for (i = 0; i < src_bytes; i++)
298                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
299         return v;
300 }
301
302 static void
303 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
304 {
305         int i;
306         if (dst_bytes > 4)
307                 dst_bytes = 4;
308         for (i = 0; i < dst_bytes; i++)
309                 dst[i] = src >> ((3-i) * 8);
310 }
311
312 /* hrawclock is 1/4 the FSB frequency */
313 static int
314 intel_hrawclk(struct drm_device *dev)
315 {
316         struct drm_i915_private *dev_priv = dev->dev_private;
317         uint32_t clkcfg;
318
319         clkcfg = I915_READ(CLKCFG);
320         switch (clkcfg & CLKCFG_FSB_MASK) {
321         case CLKCFG_FSB_400:
322                 return 100;
323         case CLKCFG_FSB_533:
324                 return 133;
325         case CLKCFG_FSB_667:
326                 return 166;
327         case CLKCFG_FSB_800:
328                 return 200;
329         case CLKCFG_FSB_1067:
330                 return 266;
331         case CLKCFG_FSB_1333:
332                 return 333;
333         /* these two are just a guess; one of them might be right */
334         case CLKCFG_FSB_1600:
335         case CLKCFG_FSB_1600_ALT:
336                 return 400;
337         default:
338                 return 133;
339         }
340 }
341
342 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
343 {
344         struct drm_device *dev = intel_dp->base.base.dev;
345         struct drm_i915_private *dev_priv = dev->dev_private;
346
347         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
348 }
349
350 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
351 {
352         struct drm_device *dev = intel_dp->base.base.dev;
353         struct drm_i915_private *dev_priv = dev->dev_private;
354
355         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
356 }
357
358 static void
359 intel_dp_check_edp(struct intel_dp *intel_dp)
360 {
361         struct drm_device *dev = intel_dp->base.base.dev;
362         struct drm_i915_private *dev_priv = dev->dev_private;
363
364         if (!is_edp(intel_dp))
365                 return;
366         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
367                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
368                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
369                               I915_READ(PCH_PP_STATUS),
370                               I915_READ(PCH_PP_CONTROL));
371         }
372 }
373
374 static int
375 intel_dp_aux_ch(struct intel_dp *intel_dp,
376                 uint8_t *send, int send_bytes,
377                 uint8_t *recv, int recv_size)
378 {
379         uint32_t output_reg = intel_dp->output_reg;
380         struct drm_device *dev = intel_dp->base.base.dev;
381         struct drm_i915_private *dev_priv = dev->dev_private;
382         uint32_t ch_ctl = output_reg + 0x10;
383         uint32_t ch_data = ch_ctl + 4;
384         int i;
385         int recv_bytes;
386         uint32_t status;
387         uint32_t aux_clock_divider;
388         int try, precharge;
389
390         intel_dp_check_edp(intel_dp);
391         /* The clock divider is based off the hrawclk,
392          * and would like to run at 2MHz. So, take the
393          * hrawclk value and divide by 2 and use that
394          *
395          * Note that PCH attached eDP panels should use a 125MHz input
396          * clock divider.
397          */
398         if (is_cpu_edp(intel_dp)) {
399                 if (IS_GEN6(dev) || IS_GEN7(dev))
400                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
401                 else
402                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
403         } else if (HAS_PCH_SPLIT(dev))
404                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
405         else
406                 aux_clock_divider = intel_hrawclk(dev) / 2;
407
408         if (IS_GEN6(dev))
409                 precharge = 3;
410         else
411                 precharge = 5;
412
413         /* Try to wait for any previous AUX channel activity */
414         for (try = 0; try < 3; try++) {
415                 status = I915_READ(ch_ctl);
416                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
417                         break;
418                 msleep(1);
419         }
420
421         if (try == 3) {
422                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
423                      I915_READ(ch_ctl));
424                 return -EBUSY;
425         }
426
427         /* Must try at least 3 times according to DP spec */
428         for (try = 0; try < 5; try++) {
429                 /* Load the send data into the aux channel data registers */
430                 for (i = 0; i < send_bytes; i += 4)
431                         I915_WRITE(ch_data + i,
432                                    pack_aux(send + i, send_bytes - i));
433
434                 /* Send the command and wait for it to complete */
435                 I915_WRITE(ch_ctl,
436                            DP_AUX_CH_CTL_SEND_BUSY |
437                            DP_AUX_CH_CTL_TIME_OUT_400us |
438                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
439                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
440                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
441                            DP_AUX_CH_CTL_DONE |
442                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
443                            DP_AUX_CH_CTL_RECEIVE_ERROR);
444                 for (;;) {
445                         status = I915_READ(ch_ctl);
446                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
447                                 break;
448                         udelay(100);
449                 }
450
451                 /* Clear done status and any errors */
452                 I915_WRITE(ch_ctl,
453                            status |
454                            DP_AUX_CH_CTL_DONE |
455                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
456                            DP_AUX_CH_CTL_RECEIVE_ERROR);
457
458                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
459                               DP_AUX_CH_CTL_RECEIVE_ERROR))
460                         continue;
461                 if (status & DP_AUX_CH_CTL_DONE)
462                         break;
463         }
464
465         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
466                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
467                 return -EBUSY;
468         }
469
470         /* Check for timeout or receive error.
471          * Timeouts occur when the sink is not connected
472          */
473         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
474                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
475                 return -EIO;
476         }
477
478         /* Timeouts occur when the device isn't connected, so they're
479          * "normal" -- don't fill the kernel log with these */
480         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
481                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
482                 return -ETIMEDOUT;
483         }
484
485         /* Unload any bytes sent back from the other side */
486         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
487                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
488         if (recv_bytes > recv_size)
489                 recv_bytes = recv_size;
490
491         for (i = 0; i < recv_bytes; i += 4)
492                 unpack_aux(I915_READ(ch_data + i),
493                            recv + i, recv_bytes - i);
494
495         return recv_bytes;
496 }
497
498 /* Write data to the aux channel in native mode */
499 static int
500 intel_dp_aux_native_write(struct intel_dp *intel_dp,
501                           uint16_t address, uint8_t *send, int send_bytes)
502 {
503         int ret;
504         uint8_t msg[20];
505         int msg_bytes;
506         uint8_t ack;
507
508         intel_dp_check_edp(intel_dp);
509         if (send_bytes > 16)
510                 return -1;
511         msg[0] = AUX_NATIVE_WRITE << 4;
512         msg[1] = address >> 8;
513         msg[2] = address & 0xff;
514         msg[3] = send_bytes - 1;
515         memcpy(&msg[4], send, send_bytes);
516         msg_bytes = send_bytes + 4;
517         for (;;) {
518                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
519                 if (ret < 0)
520                         return ret;
521                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
522                         break;
523                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
524                         udelay(100);
525                 else
526                         return -EIO;
527         }
528         return send_bytes;
529 }
530
531 /* Write a single byte to the aux channel in native mode */
532 static int
533 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
534                             uint16_t address, uint8_t byte)
535 {
536         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
537 }
538
539 /* read bytes from a native aux channel */
540 static int
541 intel_dp_aux_native_read(struct intel_dp *intel_dp,
542                          uint16_t address, uint8_t *recv, int recv_bytes)
543 {
544         uint8_t msg[4];
545         int msg_bytes;
546         uint8_t reply[20];
547         int reply_bytes;
548         uint8_t ack;
549         int ret;
550
551         intel_dp_check_edp(intel_dp);
552         msg[0] = AUX_NATIVE_READ << 4;
553         msg[1] = address >> 8;
554         msg[2] = address & 0xff;
555         msg[3] = recv_bytes - 1;
556
557         msg_bytes = 4;
558         reply_bytes = recv_bytes + 1;
559
560         for (;;) {
561                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
562                                       reply, reply_bytes);
563                 if (ret == 0)
564                         return -EPROTO;
565                 if (ret < 0)
566                         return ret;
567                 ack = reply[0];
568                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
569                         memcpy(recv, reply + 1, ret - 1);
570                         return ret - 1;
571                 }
572                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
573                         udelay(100);
574                 else
575                         return -EIO;
576         }
577 }
578
579 static int
580 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
581                     uint8_t write_byte, uint8_t *read_byte)
582 {
583         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
584         struct intel_dp *intel_dp = container_of(adapter,
585                                                 struct intel_dp,
586                                                 adapter);
587         uint16_t address = algo_data->address;
588         uint8_t msg[5];
589         uint8_t reply[2];
590         unsigned retry;
591         int msg_bytes;
592         int reply_bytes;
593         int ret;
594
595         intel_dp_check_edp(intel_dp);
596         /* Set up the command byte */
597         if (mode & MODE_I2C_READ)
598                 msg[0] = AUX_I2C_READ << 4;
599         else
600                 msg[0] = AUX_I2C_WRITE << 4;
601
602         if (!(mode & MODE_I2C_STOP))
603                 msg[0] |= AUX_I2C_MOT << 4;
604
605         msg[1] = address >> 8;
606         msg[2] = address;
607
608         switch (mode) {
609         case MODE_I2C_WRITE:
610                 msg[3] = 0;
611                 msg[4] = write_byte;
612                 msg_bytes = 5;
613                 reply_bytes = 1;
614                 break;
615         case MODE_I2C_READ:
616                 msg[3] = 0;
617                 msg_bytes = 4;
618                 reply_bytes = 2;
619                 break;
620         default:
621                 msg_bytes = 3;
622                 reply_bytes = 1;
623                 break;
624         }
625
626         for (retry = 0; retry < 5; retry++) {
627                 ret = intel_dp_aux_ch(intel_dp,
628                                       msg, msg_bytes,
629                                       reply, reply_bytes);
630                 if (ret < 0) {
631                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
632                         return ret;
633                 }
634
635                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
636                 case AUX_NATIVE_REPLY_ACK:
637                         /* I2C-over-AUX Reply field is only valid
638                          * when paired with AUX ACK.
639                          */
640                         break;
641                 case AUX_NATIVE_REPLY_NACK:
642                         DRM_DEBUG_KMS("aux_ch native nack\n");
643                         return -EREMOTEIO;
644                 case AUX_NATIVE_REPLY_DEFER:
645                         udelay(100);
646                         continue;
647                 default:
648                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
649                                   reply[0]);
650                         return -EREMOTEIO;
651                 }
652
653                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
654                 case AUX_I2C_REPLY_ACK:
655                         if (mode == MODE_I2C_READ) {
656                                 *read_byte = reply[1];
657                         }
658                         return reply_bytes - 1;
659                 case AUX_I2C_REPLY_NACK:
660                         DRM_DEBUG_KMS("aux_i2c nack\n");
661                         return -EREMOTEIO;
662                 case AUX_I2C_REPLY_DEFER:
663                         DRM_DEBUG_KMS("aux_i2c defer\n");
664                         udelay(100);
665                         break;
666                 default:
667                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
668                         return -EREMOTEIO;
669                 }
670         }
671
672         DRM_ERROR("too many retries, giving up\n");
673         return -EREMOTEIO;
674 }
675
676 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
677 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
678
679 static int
680 intel_dp_i2c_init(struct intel_dp *intel_dp,
681                   struct intel_connector *intel_connector, const char *name)
682 {
683         int     ret;
684
685         DRM_DEBUG_KMS("i2c_init %s\n", name);
686         intel_dp->algo.running = false;
687         intel_dp->algo.address = 0;
688         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
689
690         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
691         intel_dp->adapter.owner = THIS_MODULE;
692         intel_dp->adapter.class = I2C_CLASS_DDC;
693         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
694         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
695         intel_dp->adapter.algo_data = &intel_dp->algo;
696         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
697
698         ironlake_edp_panel_vdd_on(intel_dp);
699         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
700         ironlake_edp_panel_vdd_off(intel_dp, false);
701         return ret;
702 }
703
704 static bool
705 intel_dp_mode_fixup(struct drm_encoder *encoder,
706                     const struct drm_display_mode *mode,
707                     struct drm_display_mode *adjusted_mode)
708 {
709         struct drm_device *dev = encoder->dev;
710         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
711         int lane_count, clock;
712         int max_lane_count = intel_dp_max_lane_count(intel_dp);
713         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
714         int bpp, mode_rate;
715         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
716
717         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
718                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
719                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
720                                         mode, adjusted_mode);
721         }
722
723         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
724                 return false;
725
726         DRM_DEBUG_KMS("DP link computation with max lane count %i "
727                       "max bw %02x pixel clock %iKHz\n",
728                       max_lane_count, bws[max_clock], adjusted_mode->clock);
729
730         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
731                 return false;
732
733         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
734         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
735
736         for (clock = 0; clock <= max_clock; clock++) {
737                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
738                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
739
740                         if (mode_rate <= link_avail) {
741                                 intel_dp->link_bw = bws[clock];
742                                 intel_dp->lane_count = lane_count;
743                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
744                                 DRM_DEBUG_KMS("DP link bw %02x lane "
745                                                 "count %d clock %d bpp %d\n",
746                                        intel_dp->link_bw, intel_dp->lane_count,
747                                        adjusted_mode->clock, bpp);
748                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
749                                               mode_rate, link_avail);
750                                 return true;
751                         }
752                 }
753         }
754
755         return false;
756 }
757
758 struct intel_dp_m_n {
759         uint32_t        tu;
760         uint32_t        gmch_m;
761         uint32_t        gmch_n;
762         uint32_t        link_m;
763         uint32_t        link_n;
764 };
765
766 static void
767 intel_reduce_ratio(uint32_t *num, uint32_t *den)
768 {
769         while (*num > 0xffffff || *den > 0xffffff) {
770                 *num >>= 1;
771                 *den >>= 1;
772         }
773 }
774
775 static void
776 intel_dp_compute_m_n(int bpp,
777                      int nlanes,
778                      int pixel_clock,
779                      int link_clock,
780                      struct intel_dp_m_n *m_n)
781 {
782         m_n->tu = 64;
783         m_n->gmch_m = (pixel_clock * bpp) >> 3;
784         m_n->gmch_n = link_clock * nlanes;
785         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
786         m_n->link_m = pixel_clock;
787         m_n->link_n = link_clock;
788         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
789 }
790
791 void
792 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
793                  struct drm_display_mode *adjusted_mode)
794 {
795         struct drm_device *dev = crtc->dev;
796         struct intel_encoder *encoder;
797         struct drm_i915_private *dev_priv = dev->dev_private;
798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799         int lane_count = 4;
800         struct intel_dp_m_n m_n;
801         int pipe = intel_crtc->pipe;
802
803         /*
804          * Find the lane count in the intel_encoder private
805          */
806         for_each_encoder_on_crtc(dev, crtc, encoder) {
807                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
808
809                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
810                     intel_dp->base.type == INTEL_OUTPUT_EDP)
811                 {
812                         lane_count = intel_dp->lane_count;
813                         break;
814                 }
815         }
816
817         /*
818          * Compute the GMCH and Link ratios. The '3' here is
819          * the number of bytes_per_pixel post-LUT, which we always
820          * set up for 8-bits of R/G/B, or 3 bytes total.
821          */
822         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
823                              mode->clock, adjusted_mode->clock, &m_n);
824
825         if (HAS_PCH_SPLIT(dev)) {
826                 I915_WRITE(TRANSDATA_M1(pipe),
827                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
828                            m_n.gmch_m);
829                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
830                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
831                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
832         } else {
833                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
834                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
835                            m_n.gmch_m);
836                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
837                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
838                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
839         }
840 }
841
842 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
843 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
844
845 static void
846 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
847                   struct drm_display_mode *adjusted_mode)
848 {
849         struct drm_device *dev = encoder->dev;
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
852         struct drm_crtc *crtc = intel_dp->base.base.crtc;
853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
854
855         /* Turn on the eDP PLL if needed */
856         if (is_edp(intel_dp)) {
857                 if (!is_pch_edp(intel_dp))
858                         ironlake_edp_pll_on(encoder);
859                 else
860                         ironlake_edp_pll_off(encoder);
861         }
862
863         /*
864          * There are four kinds of DP registers:
865          *
866          *      IBX PCH
867          *      SNB CPU
868          *      IVB CPU
869          *      CPT PCH
870          *
871          * IBX PCH and CPU are the same for almost everything,
872          * except that the CPU DP PLL is configured in this
873          * register
874          *
875          * CPT PCH is quite different, having many bits moved
876          * to the TRANS_DP_CTL register instead. That
877          * configuration happens (oddly) in ironlake_pch_enable
878          */
879
880         /* Preserve the BIOS-computed detected bit. This is
881          * supposed to be read-only.
882          */
883         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
884         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
885
886         /* Handle DP bits in common between all three register formats */
887
888         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
889
890         switch (intel_dp->lane_count) {
891         case 1:
892                 intel_dp->DP |= DP_PORT_WIDTH_1;
893                 break;
894         case 2:
895                 intel_dp->DP |= DP_PORT_WIDTH_2;
896                 break;
897         case 4:
898                 intel_dp->DP |= DP_PORT_WIDTH_4;
899                 break;
900         }
901         if (intel_dp->has_audio) {
902                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
903                                  pipe_name(intel_crtc->pipe));
904                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
905                 intel_write_eld(encoder, adjusted_mode);
906         }
907         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
908         intel_dp->link_configuration[0] = intel_dp->link_bw;
909         intel_dp->link_configuration[1] = intel_dp->lane_count;
910         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
911         /*
912          * Check for DPCD version > 1.1 and enhanced framing support
913          */
914         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
915             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
916                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
917         }
918
919         /* Split out the IBX/CPU vs CPT settings */
920
921         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
922                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
923                         intel_dp->DP |= DP_SYNC_HS_HIGH;
924                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
925                         intel_dp->DP |= DP_SYNC_VS_HIGH;
926                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
927
928                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
929                         intel_dp->DP |= DP_ENHANCED_FRAMING;
930
931                 intel_dp->DP |= intel_crtc->pipe << 29;
932
933                 /* don't miss out required setting for eDP */
934                 intel_dp->DP |= DP_PLL_ENABLE;
935                 if (adjusted_mode->clock < 200000)
936                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
937                 else
938                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
939         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
940                 intel_dp->DP |= intel_dp->color_range;
941
942                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
943                         intel_dp->DP |= DP_SYNC_HS_HIGH;
944                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
945                         intel_dp->DP |= DP_SYNC_VS_HIGH;
946                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
947
948                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
949                         intel_dp->DP |= DP_ENHANCED_FRAMING;
950
951                 if (intel_crtc->pipe == 1)
952                         intel_dp->DP |= DP_PIPEB_SELECT;
953
954                 if (is_cpu_edp(intel_dp)) {
955                         /* don't miss out required setting for eDP */
956                         intel_dp->DP |= DP_PLL_ENABLE;
957                         if (adjusted_mode->clock < 200000)
958                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
959                         else
960                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
961                 }
962         } else {
963                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
964         }
965 }
966
967 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
968 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
969
970 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
971 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
972
973 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
974 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
975
976 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
977                                        u32 mask,
978                                        u32 value)
979 {
980         struct drm_device *dev = intel_dp->base.base.dev;
981         struct drm_i915_private *dev_priv = dev->dev_private;
982
983         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
984                       mask, value,
985                       I915_READ(PCH_PP_STATUS),
986                       I915_READ(PCH_PP_CONTROL));
987
988         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
989                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
990                           I915_READ(PCH_PP_STATUS),
991                           I915_READ(PCH_PP_CONTROL));
992         }
993 }
994
995 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
996 {
997         DRM_DEBUG_KMS("Wait for panel power on\n");
998         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
999 }
1000
1001 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1002 {
1003         DRM_DEBUG_KMS("Wait for panel power off time\n");
1004         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1005 }
1006
1007 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1008 {
1009         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1010         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1011 }
1012
1013
1014 /* Read the current pp_control value, unlocking the register if it
1015  * is locked
1016  */
1017
1018 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1019 {
1020         u32     control = I915_READ(PCH_PP_CONTROL);
1021
1022         control &= ~PANEL_UNLOCK_MASK;
1023         control |= PANEL_UNLOCK_REGS;
1024         return control;
1025 }
1026
1027 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1028 {
1029         struct drm_device *dev = intel_dp->base.base.dev;
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         u32 pp;
1032
1033         if (!is_edp(intel_dp))
1034                 return;
1035         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1036
1037         WARN(intel_dp->want_panel_vdd,
1038              "eDP VDD already requested on\n");
1039
1040         intel_dp->want_panel_vdd = true;
1041
1042         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1043                 DRM_DEBUG_KMS("eDP VDD already on\n");
1044                 return;
1045         }
1046
1047         if (!ironlake_edp_have_panel_power(intel_dp))
1048                 ironlake_wait_panel_power_cycle(intel_dp);
1049
1050         pp = ironlake_get_pp_control(dev_priv);
1051         pp |= EDP_FORCE_VDD;
1052         I915_WRITE(PCH_PP_CONTROL, pp);
1053         POSTING_READ(PCH_PP_CONTROL);
1054         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1055                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1056
1057         /*
1058          * If the panel wasn't on, delay before accessing aux channel
1059          */
1060         if (!ironlake_edp_have_panel_power(intel_dp)) {
1061                 DRM_DEBUG_KMS("eDP was not running\n");
1062                 msleep(intel_dp->panel_power_up_delay);
1063         }
1064 }
1065
1066 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1067 {
1068         struct drm_device *dev = intel_dp->base.base.dev;
1069         struct drm_i915_private *dev_priv = dev->dev_private;
1070         u32 pp;
1071
1072         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1073                 pp = ironlake_get_pp_control(dev_priv);
1074                 pp &= ~EDP_FORCE_VDD;
1075                 I915_WRITE(PCH_PP_CONTROL, pp);
1076                 POSTING_READ(PCH_PP_CONTROL);
1077
1078                 /* Make sure sequencer is idle before allowing subsequent activity */
1079                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1080                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1081
1082                 msleep(intel_dp->panel_power_down_delay);
1083         }
1084 }
1085
1086 static void ironlake_panel_vdd_work(struct work_struct *__work)
1087 {
1088         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1089                                                  struct intel_dp, panel_vdd_work);
1090         struct drm_device *dev = intel_dp->base.base.dev;
1091
1092         mutex_lock(&dev->mode_config.mutex);
1093         ironlake_panel_vdd_off_sync(intel_dp);
1094         mutex_unlock(&dev->mode_config.mutex);
1095 }
1096
1097 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1098 {
1099         if (!is_edp(intel_dp))
1100                 return;
1101
1102         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1103         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1104
1105         intel_dp->want_panel_vdd = false;
1106
1107         if (sync) {
1108                 ironlake_panel_vdd_off_sync(intel_dp);
1109         } else {
1110                 /*
1111                  * Queue the timer to fire a long
1112                  * time from now (relative to the power down delay)
1113                  * to keep the panel power up across a sequence of operations
1114                  */
1115                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1116                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1117         }
1118 }
1119
1120 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1121 {
1122         struct drm_device *dev = intel_dp->base.base.dev;
1123         struct drm_i915_private *dev_priv = dev->dev_private;
1124         u32 pp;
1125
1126         if (!is_edp(intel_dp))
1127                 return;
1128
1129         DRM_DEBUG_KMS("Turn eDP power on\n");
1130
1131         if (ironlake_edp_have_panel_power(intel_dp)) {
1132                 DRM_DEBUG_KMS("eDP power already on\n");
1133                 return;
1134         }
1135
1136         ironlake_wait_panel_power_cycle(intel_dp);
1137
1138         pp = ironlake_get_pp_control(dev_priv);
1139         if (IS_GEN5(dev)) {
1140                 /* ILK workaround: disable reset around power sequence */
1141                 pp &= ~PANEL_POWER_RESET;
1142                 I915_WRITE(PCH_PP_CONTROL, pp);
1143                 POSTING_READ(PCH_PP_CONTROL);
1144         }
1145
1146         pp |= POWER_TARGET_ON;
1147         if (!IS_GEN5(dev))
1148                 pp |= PANEL_POWER_RESET;
1149
1150         I915_WRITE(PCH_PP_CONTROL, pp);
1151         POSTING_READ(PCH_PP_CONTROL);
1152
1153         ironlake_wait_panel_on(intel_dp);
1154
1155         if (IS_GEN5(dev)) {
1156                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1157                 I915_WRITE(PCH_PP_CONTROL, pp);
1158                 POSTING_READ(PCH_PP_CONTROL);
1159         }
1160 }
1161
1162 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1163 {
1164         struct drm_device *dev = intel_dp->base.base.dev;
1165         struct drm_i915_private *dev_priv = dev->dev_private;
1166         u32 pp;
1167
1168         if (!is_edp(intel_dp))
1169                 return;
1170
1171         DRM_DEBUG_KMS("Turn eDP power off\n");
1172
1173         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1174
1175         pp = ironlake_get_pp_control(dev_priv);
1176         /* We need to switch off panel power _and_ force vdd, for otherwise some
1177          * panels get very unhappy and cease to work. */
1178         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1179         I915_WRITE(PCH_PP_CONTROL, pp);
1180         POSTING_READ(PCH_PP_CONTROL);
1181
1182         intel_dp->want_panel_vdd = false;
1183
1184         ironlake_wait_panel_off(intel_dp);
1185 }
1186
1187 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1188 {
1189         struct drm_device *dev = intel_dp->base.base.dev;
1190         struct drm_i915_private *dev_priv = dev->dev_private;
1191         u32 pp;
1192
1193         if (!is_edp(intel_dp))
1194                 return;
1195
1196         DRM_DEBUG_KMS("\n");
1197         /*
1198          * If we enable the backlight right away following a panel power
1199          * on, we may see slight flicker as the panel syncs with the eDP
1200          * link.  So delay a bit to make sure the image is solid before
1201          * allowing it to appear.
1202          */
1203         msleep(intel_dp->backlight_on_delay);
1204         pp = ironlake_get_pp_control(dev_priv);
1205         pp |= EDP_BLC_ENABLE;
1206         I915_WRITE(PCH_PP_CONTROL, pp);
1207         POSTING_READ(PCH_PP_CONTROL);
1208 }
1209
1210 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1211 {
1212         struct drm_device *dev = intel_dp->base.base.dev;
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214         u32 pp;
1215
1216         if (!is_edp(intel_dp))
1217                 return;
1218
1219         DRM_DEBUG_KMS("\n");
1220         pp = ironlake_get_pp_control(dev_priv);
1221         pp &= ~EDP_BLC_ENABLE;
1222         I915_WRITE(PCH_PP_CONTROL, pp);
1223         POSTING_READ(PCH_PP_CONTROL);
1224         msleep(intel_dp->backlight_off_delay);
1225 }
1226
1227 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1228 {
1229         struct drm_device *dev = encoder->dev;
1230         struct drm_i915_private *dev_priv = dev->dev_private;
1231         u32 dpa_ctl;
1232
1233         DRM_DEBUG_KMS("\n");
1234         dpa_ctl = I915_READ(DP_A);
1235         dpa_ctl |= DP_PLL_ENABLE;
1236         I915_WRITE(DP_A, dpa_ctl);
1237         POSTING_READ(DP_A);
1238         udelay(200);
1239 }
1240
1241 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1242 {
1243         struct drm_device *dev = encoder->dev;
1244         struct drm_i915_private *dev_priv = dev->dev_private;
1245         u32 dpa_ctl;
1246
1247         dpa_ctl = I915_READ(DP_A);
1248         dpa_ctl &= ~DP_PLL_ENABLE;
1249         I915_WRITE(DP_A, dpa_ctl);
1250         POSTING_READ(DP_A);
1251         udelay(200);
1252 }
1253
1254 /* If the sink supports it, try to set the power state appropriately */
1255 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1256 {
1257         int ret, i;
1258
1259         /* Should have a valid DPCD by this point */
1260         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1261                 return;
1262
1263         if (mode != DRM_MODE_DPMS_ON) {
1264                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1265                                                   DP_SET_POWER_D3);
1266                 if (ret != 1)
1267                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1268         } else {
1269                 /*
1270                  * When turning on, we need to retry for 1ms to give the sink
1271                  * time to wake up.
1272                  */
1273                 for (i = 0; i < 3; i++) {
1274                         ret = intel_dp_aux_native_write_1(intel_dp,
1275                                                           DP_SET_POWER,
1276                                                           DP_SET_POWER_D0);
1277                         if (ret == 1)
1278                                 break;
1279                         msleep(1);
1280                 }
1281         }
1282 }
1283
1284 static void intel_dp_prepare(struct drm_encoder *encoder)
1285 {
1286         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1287
1288
1289         /* Make sure the panel is off before trying to change the mode. But also
1290          * ensure that we have vdd while we switch off the panel. */
1291         ironlake_edp_panel_vdd_on(intel_dp);
1292         ironlake_edp_backlight_off(intel_dp);
1293         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1294         ironlake_edp_panel_off(intel_dp);
1295         intel_dp_link_down(intel_dp);
1296 }
1297
1298 static void intel_dp_commit(struct drm_encoder *encoder)
1299 {
1300         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1301         struct drm_device *dev = encoder->dev;
1302         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1303
1304         ironlake_edp_panel_vdd_on(intel_dp);
1305         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1306         intel_dp_start_link_train(intel_dp);
1307         ironlake_edp_panel_on(intel_dp);
1308         ironlake_edp_panel_vdd_off(intel_dp, true);
1309         intel_dp_complete_link_train(intel_dp);
1310         ironlake_edp_backlight_on(intel_dp);
1311
1312         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1313
1314         if (HAS_PCH_CPT(dev))
1315                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1316 }
1317
1318 static void
1319 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1320 {
1321         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1322         struct drm_device *dev = encoder->dev;
1323         struct drm_i915_private *dev_priv = dev->dev_private;
1324         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1325
1326         if (mode != DRM_MODE_DPMS_ON) {
1327                 /* Switching the panel off requires vdd. */
1328                 ironlake_edp_panel_vdd_on(intel_dp);
1329                 ironlake_edp_backlight_off(intel_dp);
1330                 intel_dp_sink_dpms(intel_dp, mode);
1331                 ironlake_edp_panel_off(intel_dp);
1332                 intel_dp_link_down(intel_dp);
1333
1334                 if (is_cpu_edp(intel_dp))
1335                         ironlake_edp_pll_off(encoder);
1336         } else {
1337                 if (is_cpu_edp(intel_dp))
1338                         ironlake_edp_pll_on(encoder);
1339
1340                 ironlake_edp_panel_vdd_on(intel_dp);
1341                 intel_dp_sink_dpms(intel_dp, mode);
1342                 if (!(dp_reg & DP_PORT_EN)) {
1343                         intel_dp_start_link_train(intel_dp);
1344                         ironlake_edp_panel_on(intel_dp);
1345                         ironlake_edp_panel_vdd_off(intel_dp, true);
1346                         intel_dp_complete_link_train(intel_dp);
1347                 } else
1348                         ironlake_edp_panel_vdd_off(intel_dp, false);
1349                 ironlake_edp_backlight_on(intel_dp);
1350         }
1351         intel_dp->dpms_mode = mode;
1352 }
1353
1354 /*
1355  * Native read with retry for link status and receiver capability reads for
1356  * cases where the sink may still be asleep.
1357  */
1358 static bool
1359 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1360                                uint8_t *recv, int recv_bytes)
1361 {
1362         int ret, i;
1363
1364         /*
1365          * Sinks are *supposed* to come up within 1ms from an off state,
1366          * but we're also supposed to retry 3 times per the spec.
1367          */
1368         for (i = 0; i < 3; i++) {
1369                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1370                                                recv_bytes);
1371                 if (ret == recv_bytes)
1372                         return true;
1373                 msleep(1);
1374         }
1375
1376         return false;
1377 }
1378
1379 /*
1380  * Fetch AUX CH registers 0x202 - 0x207 which contain
1381  * link status information
1382  */
1383 static bool
1384 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1385 {
1386         return intel_dp_aux_native_read_retry(intel_dp,
1387                                               DP_LANE0_1_STATUS,
1388                                               link_status,
1389                                               DP_LINK_STATUS_SIZE);
1390 }
1391
1392 static uint8_t
1393 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1394                      int r)
1395 {
1396         return link_status[r - DP_LANE0_1_STATUS];
1397 }
1398
1399 static uint8_t
1400 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1401                                  int lane)
1402 {
1403         int         s = ((lane & 1) ?
1404                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1405                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1406         uint8_t l = adjust_request[lane>>1];
1407
1408         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1409 }
1410
1411 static uint8_t
1412 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1413                                       int lane)
1414 {
1415         int         s = ((lane & 1) ?
1416                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1417                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1418         uint8_t l = adjust_request[lane>>1];
1419
1420         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1421 }
1422
1423
1424 #if 0
1425 static char     *voltage_names[] = {
1426         "0.4V", "0.6V", "0.8V", "1.2V"
1427 };
1428 static char     *pre_emph_names[] = {
1429         "0dB", "3.5dB", "6dB", "9.5dB"
1430 };
1431 static char     *link_train_names[] = {
1432         "pattern 1", "pattern 2", "idle", "off"
1433 };
1434 #endif
1435
1436 /*
1437  * These are source-specific values; current Intel hardware supports
1438  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1439  */
1440
1441 static uint8_t
1442 intel_dp_voltage_max(struct intel_dp *intel_dp)
1443 {
1444         struct drm_device *dev = intel_dp->base.base.dev;
1445
1446         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1447                 return DP_TRAIN_VOLTAGE_SWING_800;
1448         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1449                 return DP_TRAIN_VOLTAGE_SWING_1200;
1450         else
1451                 return DP_TRAIN_VOLTAGE_SWING_800;
1452 }
1453
1454 static uint8_t
1455 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1456 {
1457         struct drm_device *dev = intel_dp->base.base.dev;
1458
1459         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1460                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1461                 case DP_TRAIN_VOLTAGE_SWING_400:
1462                         return DP_TRAIN_PRE_EMPHASIS_6;
1463                 case DP_TRAIN_VOLTAGE_SWING_600:
1464                 case DP_TRAIN_VOLTAGE_SWING_800:
1465                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1466                 default:
1467                         return DP_TRAIN_PRE_EMPHASIS_0;
1468                 }
1469         } else {
1470                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1471                 case DP_TRAIN_VOLTAGE_SWING_400:
1472                         return DP_TRAIN_PRE_EMPHASIS_6;
1473                 case DP_TRAIN_VOLTAGE_SWING_600:
1474                         return DP_TRAIN_PRE_EMPHASIS_6;
1475                 case DP_TRAIN_VOLTAGE_SWING_800:
1476                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1477                 case DP_TRAIN_VOLTAGE_SWING_1200:
1478                 default:
1479                         return DP_TRAIN_PRE_EMPHASIS_0;
1480                 }
1481         }
1482 }
1483
1484 static void
1485 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1486 {
1487         uint8_t v = 0;
1488         uint8_t p = 0;
1489         int lane;
1490         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1491         uint8_t voltage_max;
1492         uint8_t preemph_max;
1493
1494         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1495                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1496                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1497
1498                 if (this_v > v)
1499                         v = this_v;
1500                 if (this_p > p)
1501                         p = this_p;
1502         }
1503
1504         voltage_max = intel_dp_voltage_max(intel_dp);
1505         if (v >= voltage_max)
1506                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1507
1508         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1509         if (p >= preemph_max)
1510                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1511
1512         for (lane = 0; lane < 4; lane++)
1513                 intel_dp->train_set[lane] = v | p;
1514 }
1515
1516 static uint32_t
1517 intel_dp_signal_levels(uint8_t train_set)
1518 {
1519         uint32_t        signal_levels = 0;
1520
1521         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1522         case DP_TRAIN_VOLTAGE_SWING_400:
1523         default:
1524                 signal_levels |= DP_VOLTAGE_0_4;
1525                 break;
1526         case DP_TRAIN_VOLTAGE_SWING_600:
1527                 signal_levels |= DP_VOLTAGE_0_6;
1528                 break;
1529         case DP_TRAIN_VOLTAGE_SWING_800:
1530                 signal_levels |= DP_VOLTAGE_0_8;
1531                 break;
1532         case DP_TRAIN_VOLTAGE_SWING_1200:
1533                 signal_levels |= DP_VOLTAGE_1_2;
1534                 break;
1535         }
1536         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1537         case DP_TRAIN_PRE_EMPHASIS_0:
1538         default:
1539                 signal_levels |= DP_PRE_EMPHASIS_0;
1540                 break;
1541         case DP_TRAIN_PRE_EMPHASIS_3_5:
1542                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1543                 break;
1544         case DP_TRAIN_PRE_EMPHASIS_6:
1545                 signal_levels |= DP_PRE_EMPHASIS_6;
1546                 break;
1547         case DP_TRAIN_PRE_EMPHASIS_9_5:
1548                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1549                 break;
1550         }
1551         return signal_levels;
1552 }
1553
1554 /* Gen6's DP voltage swing and pre-emphasis control */
1555 static uint32_t
1556 intel_gen6_edp_signal_levels(uint8_t train_set)
1557 {
1558         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1559                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1560         switch (signal_levels) {
1561         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1562         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1563                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1564         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1565                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1566         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1567         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1568                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1569         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1570         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1571                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1572         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1573         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1574                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1575         default:
1576                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1577                               "0x%x\n", signal_levels);
1578                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1579         }
1580 }
1581
1582 /* Gen7's DP voltage swing and pre-emphasis control */
1583 static uint32_t
1584 intel_gen7_edp_signal_levels(uint8_t train_set)
1585 {
1586         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1587                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1588         switch (signal_levels) {
1589         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1590                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1591         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1592                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1593         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1594                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1595
1596         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1597                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1598         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1599                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1600
1601         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1602                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1603         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1604                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1605
1606         default:
1607                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1608                               "0x%x\n", signal_levels);
1609                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1610         }
1611 }
1612
1613 static uint8_t
1614 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1615                       int lane)
1616 {
1617         int s = (lane & 1) * 4;
1618         uint8_t l = link_status[lane>>1];
1619
1620         return (l >> s) & 0xf;
1621 }
1622
1623 /* Check for clock recovery is done on all channels */
1624 static bool
1625 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1626 {
1627         int lane;
1628         uint8_t lane_status;
1629
1630         for (lane = 0; lane < lane_count; lane++) {
1631                 lane_status = intel_get_lane_status(link_status, lane);
1632                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1633                         return false;
1634         }
1635         return true;
1636 }
1637
1638 /* Check to see if channel eq is done on all channels */
1639 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1640                          DP_LANE_CHANNEL_EQ_DONE|\
1641                          DP_LANE_SYMBOL_LOCKED)
1642 static bool
1643 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1644 {
1645         uint8_t lane_align;
1646         uint8_t lane_status;
1647         int lane;
1648
1649         lane_align = intel_dp_link_status(link_status,
1650                                           DP_LANE_ALIGN_STATUS_UPDATED);
1651         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1652                 return false;
1653         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1654                 lane_status = intel_get_lane_status(link_status, lane);
1655                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1656                         return false;
1657         }
1658         return true;
1659 }
1660
1661 static bool
1662 intel_dp_set_link_train(struct intel_dp *intel_dp,
1663                         uint32_t dp_reg_value,
1664                         uint8_t dp_train_pat)
1665 {
1666         struct drm_device *dev = intel_dp->base.base.dev;
1667         struct drm_i915_private *dev_priv = dev->dev_private;
1668         int ret;
1669
1670         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1671         POSTING_READ(intel_dp->output_reg);
1672
1673         intel_dp_aux_native_write_1(intel_dp,
1674                                     DP_TRAINING_PATTERN_SET,
1675                                     dp_train_pat);
1676
1677         ret = intel_dp_aux_native_write(intel_dp,
1678                                         DP_TRAINING_LANE0_SET,
1679                                         intel_dp->train_set,
1680                                         intel_dp->lane_count);
1681         if (ret != intel_dp->lane_count)
1682                 return false;
1683
1684         return true;
1685 }
1686
1687 /* Enable corresponding port and start training pattern 1 */
1688 static void
1689 intel_dp_start_link_train(struct intel_dp *intel_dp)
1690 {
1691         struct drm_device *dev = intel_dp->base.base.dev;
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1694         int i;
1695         uint8_t voltage;
1696         bool clock_recovery = false;
1697         int voltage_tries, loop_tries;
1698         u32 reg;
1699         uint32_t DP = intel_dp->DP;
1700
1701         /*
1702          * On CPT we have to enable the port in training pattern 1, which
1703          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1704          * the port and wait for it to become active.
1705          */
1706         if (!HAS_PCH_CPT(dev)) {
1707                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1708                 POSTING_READ(intel_dp->output_reg);
1709                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1710         }
1711
1712         /* Write the link configuration data */
1713         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1714                                   intel_dp->link_configuration,
1715                                   DP_LINK_CONFIGURATION_SIZE);
1716
1717         DP |= DP_PORT_EN;
1718
1719         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1720                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1721         else
1722                 DP &= ~DP_LINK_TRAIN_MASK;
1723         memset(intel_dp->train_set, 0, 4);
1724         voltage = 0xff;
1725         voltage_tries = 0;
1726         loop_tries = 0;
1727         clock_recovery = false;
1728         for (;;) {
1729                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1730                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1731                 uint32_t    signal_levels;
1732
1733
1734                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1735                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1736                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1737                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1738                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1739                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1740                 } else {
1741                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1742                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1743                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1744                 }
1745
1746                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1747                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1748                 else
1749                         reg = DP | DP_LINK_TRAIN_PAT_1;
1750
1751                 if (!intel_dp_set_link_train(intel_dp, reg,
1752                                              DP_TRAINING_PATTERN_1 |
1753                                              DP_LINK_SCRAMBLING_DISABLE))
1754                         break;
1755                 /* Set training pattern 1 */
1756
1757                 udelay(100);
1758                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1759                         DRM_ERROR("failed to get link status\n");
1760                         break;
1761                 }
1762
1763                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1764                         DRM_DEBUG_KMS("clock recovery OK\n");
1765                         clock_recovery = true;
1766                         break;
1767                 }
1768
1769                 /* Check to see if we've tried the max voltage */
1770                 for (i = 0; i < intel_dp->lane_count; i++)
1771                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1772                                 break;
1773                 if (i == intel_dp->lane_count && voltage_tries == 5) {
1774                         ++loop_tries;
1775                         if (loop_tries == 5) {
1776                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1777                                 break;
1778                         }
1779                         memset(intel_dp->train_set, 0, 4);
1780                         voltage_tries = 0;
1781                         continue;
1782                 }
1783
1784                 /* Check to see if we've tried the same voltage 5 times */
1785                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1786                         ++voltage_tries;
1787                         if (voltage_tries == 5) {
1788                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1789                                 break;
1790                         }
1791                 } else
1792                         voltage_tries = 0;
1793                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1794
1795                 /* Compute new intel_dp->train_set as requested by target */
1796                 intel_get_adjust_train(intel_dp, link_status);
1797         }
1798
1799         intel_dp->DP = DP;
1800 }
1801
1802 static void
1803 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1804 {
1805         struct drm_device *dev = intel_dp->base.base.dev;
1806         struct drm_i915_private *dev_priv = dev->dev_private;
1807         bool channel_eq = false;
1808         int tries, cr_tries;
1809         u32 reg;
1810         uint32_t DP = intel_dp->DP;
1811
1812         /* channel equalization */
1813         tries = 0;
1814         cr_tries = 0;
1815         channel_eq = false;
1816         for (;;) {
1817                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1818                 uint32_t    signal_levels;
1819                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1820
1821                 if (cr_tries > 5) {
1822                         DRM_ERROR("failed to train DP, aborting\n");
1823                         intel_dp_link_down(intel_dp);
1824                         break;
1825                 }
1826
1827                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1828                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1829                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1830                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1831                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1832                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1833                 } else {
1834                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1835                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1836                 }
1837
1838                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1839                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1840                 else
1841                         reg = DP | DP_LINK_TRAIN_PAT_2;
1842
1843                 /* channel eq pattern */
1844                 if (!intel_dp_set_link_train(intel_dp, reg,
1845                                              DP_TRAINING_PATTERN_2 |
1846                                              DP_LINK_SCRAMBLING_DISABLE))
1847                         break;
1848
1849                 udelay(400);
1850                 if (!intel_dp_get_link_status(intel_dp, link_status))
1851                         break;
1852
1853                 /* Make sure clock is still ok */
1854                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1855                         intel_dp_start_link_train(intel_dp);
1856                         cr_tries++;
1857                         continue;
1858                 }
1859
1860                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1861                         channel_eq = true;
1862                         break;
1863                 }
1864
1865                 /* Try 5 times, then try clock recovery if that fails */
1866                 if (tries > 5) {
1867                         intel_dp_link_down(intel_dp);
1868                         intel_dp_start_link_train(intel_dp);
1869                         tries = 0;
1870                         cr_tries++;
1871                         continue;
1872                 }
1873
1874                 /* Compute new intel_dp->train_set as requested by target */
1875                 intel_get_adjust_train(intel_dp, link_status);
1876                 ++tries;
1877         }
1878
1879         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1880                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1881         else
1882                 reg = DP | DP_LINK_TRAIN_OFF;
1883
1884         I915_WRITE(intel_dp->output_reg, reg);
1885         POSTING_READ(intel_dp->output_reg);
1886         intel_dp_aux_native_write_1(intel_dp,
1887                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1888 }
1889
1890 static void
1891 intel_dp_link_down(struct intel_dp *intel_dp)
1892 {
1893         struct drm_device *dev = intel_dp->base.base.dev;
1894         struct drm_i915_private *dev_priv = dev->dev_private;
1895         uint32_t DP = intel_dp->DP;
1896
1897         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1898                 return;
1899
1900         DRM_DEBUG_KMS("\n");
1901
1902         if (is_edp(intel_dp)) {
1903                 DP &= ~DP_PLL_ENABLE;
1904                 I915_WRITE(intel_dp->output_reg, DP);
1905                 POSTING_READ(intel_dp->output_reg);
1906                 udelay(100);
1907         }
1908
1909         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1910                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1911                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1912         } else {
1913                 DP &= ~DP_LINK_TRAIN_MASK;
1914                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1915         }
1916         POSTING_READ(intel_dp->output_reg);
1917
1918         msleep(17);
1919
1920         if (is_edp(intel_dp)) {
1921                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1922                         DP |= DP_LINK_TRAIN_OFF_CPT;
1923                 else
1924                         DP |= DP_LINK_TRAIN_OFF;
1925         }
1926
1927         if (HAS_PCH_IBX(dev) &&
1928             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1929                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1930
1931                 /* Hardware workaround: leaving our transcoder select
1932                  * set to transcoder B while it's off will prevent the
1933                  * corresponding HDMI output on transcoder A.
1934                  *
1935                  * Combine this with another hardware workaround:
1936                  * transcoder select bit can only be cleared while the
1937                  * port is enabled.
1938                  */
1939                 DP &= ~DP_PIPEB_SELECT;
1940                 I915_WRITE(intel_dp->output_reg, DP);
1941
1942                 /* Changes to enable or select take place the vblank
1943                  * after being written.
1944                  */
1945                 if (crtc == NULL) {
1946                         /* We can arrive here never having been attached
1947                          * to a CRTC, for instance, due to inheriting
1948                          * random state from the BIOS.
1949                          *
1950                          * If the pipe is not running, play safe and
1951                          * wait for the clocks to stabilise before
1952                          * continuing.
1953                          */
1954                         POSTING_READ(intel_dp->output_reg);
1955                         msleep(50);
1956                 } else
1957                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1958         }
1959
1960         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1961         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1962         POSTING_READ(intel_dp->output_reg);
1963         msleep(intel_dp->panel_power_down_delay);
1964 }
1965
1966 static bool
1967 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1968 {
1969         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1970                                            sizeof(intel_dp->dpcd)) &&
1971             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1972                 return true;
1973         }
1974
1975         return false;
1976 }
1977
1978 static void
1979 intel_dp_probe_oui(struct intel_dp *intel_dp)
1980 {
1981         u8 buf[3];
1982
1983         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1984                 return;
1985
1986         ironlake_edp_panel_vdd_on(intel_dp);
1987
1988         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1989                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1990                               buf[0], buf[1], buf[2]);
1991
1992         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1993                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1994                               buf[0], buf[1], buf[2]);
1995
1996         ironlake_edp_panel_vdd_off(intel_dp, false);
1997 }
1998
1999 static bool
2000 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2001 {
2002         int ret;
2003
2004         ret = intel_dp_aux_native_read_retry(intel_dp,
2005                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2006                                              sink_irq_vector, 1);
2007         if (!ret)
2008                 return false;
2009
2010         return true;
2011 }
2012
2013 static void
2014 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2015 {
2016         /* NAK by default */
2017         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2018 }
2019
2020 /*
2021  * According to DP spec
2022  * 5.1.2:
2023  *  1. Read DPCD
2024  *  2. Configure link according to Receiver Capabilities
2025  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2026  *  4. Check link status on receipt of hot-plug interrupt
2027  */
2028
2029 static void
2030 intel_dp_check_link_status(struct intel_dp *intel_dp)
2031 {
2032         u8 sink_irq_vector;
2033         u8 link_status[DP_LINK_STATUS_SIZE];
2034
2035         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2036                 return;
2037
2038         if (!intel_dp->base.base.crtc)
2039                 return;
2040
2041         /* Try to read receiver status if the link appears to be up */
2042         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2043                 intel_dp_link_down(intel_dp);
2044                 return;
2045         }
2046
2047         /* Now read the DPCD to see if it's actually running */
2048         if (!intel_dp_get_dpcd(intel_dp)) {
2049                 intel_dp_link_down(intel_dp);
2050                 return;
2051         }
2052
2053         /* Try to read the source of the interrupt */
2054         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2055             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2056                 /* Clear interrupt source */
2057                 intel_dp_aux_native_write_1(intel_dp,
2058                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2059                                             sink_irq_vector);
2060
2061                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2062                         intel_dp_handle_test_request(intel_dp);
2063                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2064                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2065         }
2066
2067         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2068                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2069                               drm_get_encoder_name(&intel_dp->base.base));
2070                 intel_dp_start_link_train(intel_dp);
2071                 intel_dp_complete_link_train(intel_dp);
2072         }
2073 }
2074
2075 static enum drm_connector_status
2076 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2077 {
2078         if (intel_dp_get_dpcd(intel_dp))
2079                 return connector_status_connected;
2080         return connector_status_disconnected;
2081 }
2082
2083 static enum drm_connector_status
2084 ironlake_dp_detect(struct intel_dp *intel_dp)
2085 {
2086         enum drm_connector_status status;
2087
2088         /* Can't disconnect eDP, but you can close the lid... */
2089         if (is_edp(intel_dp)) {
2090                 status = intel_panel_detect(intel_dp->base.base.dev);
2091                 if (status == connector_status_unknown)
2092                         status = connector_status_connected;
2093                 return status;
2094         }
2095
2096         return intel_dp_detect_dpcd(intel_dp);
2097 }
2098
2099 static enum drm_connector_status
2100 g4x_dp_detect(struct intel_dp *intel_dp)
2101 {
2102         struct drm_device *dev = intel_dp->base.base.dev;
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         uint32_t bit;
2105
2106         switch (intel_dp->output_reg) {
2107         case DP_B:
2108                 bit = DPB_HOTPLUG_LIVE_STATUS;
2109                 break;
2110         case DP_C:
2111                 bit = DPC_HOTPLUG_LIVE_STATUS;
2112                 break;
2113         case DP_D:
2114                 bit = DPD_HOTPLUG_LIVE_STATUS;
2115                 break;
2116         default:
2117                 return connector_status_unknown;
2118         }
2119
2120         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2121                 return connector_status_disconnected;
2122
2123         return intel_dp_detect_dpcd(intel_dp);
2124 }
2125
2126 static struct edid *
2127 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2128 {
2129         struct intel_dp *intel_dp = intel_attached_dp(connector);
2130         struct edid     *edid;
2131         int size;
2132
2133         if (is_edp(intel_dp)) {
2134                 if (!intel_dp->edid)
2135                         return NULL;
2136
2137                 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2138                 edid = kmalloc(size, GFP_KERNEL);
2139                 if (!edid)
2140                         return NULL;
2141
2142                 memcpy(edid, intel_dp->edid, size);
2143                 return edid;
2144         }
2145
2146         edid = drm_get_edid(connector, adapter);
2147         return edid;
2148 }
2149
2150 static int
2151 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2152 {
2153         struct intel_dp *intel_dp = intel_attached_dp(connector);
2154         int     ret;
2155
2156         if (is_edp(intel_dp)) {
2157                 drm_mode_connector_update_edid_property(connector,
2158                                                         intel_dp->edid);
2159                 ret = drm_add_edid_modes(connector, intel_dp->edid);
2160                 drm_edid_to_eld(connector,
2161                                 intel_dp->edid);
2162                 connector->display_info.raw_edid = NULL;
2163                 return intel_dp->edid_mode_count;
2164         }
2165
2166         ret = intel_ddc_get_modes(connector, adapter);
2167         return ret;
2168 }
2169
2170
2171 /**
2172  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2173  *
2174  * \return true if DP port is connected.
2175  * \return false if DP port is disconnected.
2176  */
2177 static enum drm_connector_status
2178 intel_dp_detect(struct drm_connector *connector, bool force)
2179 {
2180         struct intel_dp *intel_dp = intel_attached_dp(connector);
2181         struct drm_device *dev = intel_dp->base.base.dev;
2182         enum drm_connector_status status;
2183         struct edid *edid = NULL;
2184
2185         intel_dp->has_audio = false;
2186
2187         if (HAS_PCH_SPLIT(dev))
2188                 status = ironlake_dp_detect(intel_dp);
2189         else
2190                 status = g4x_dp_detect(intel_dp);
2191
2192         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2193                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2194                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2195                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2196
2197         if (status != connector_status_connected)
2198                 return status;
2199
2200         intel_dp_probe_oui(intel_dp);
2201
2202         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2203                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2204         } else {
2205                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2206                 if (edid) {
2207                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2208                         connector->display_info.raw_edid = NULL;
2209                         kfree(edid);
2210                 }
2211         }
2212
2213         return connector_status_connected;
2214 }
2215
2216 static int intel_dp_get_modes(struct drm_connector *connector)
2217 {
2218         struct intel_dp *intel_dp = intel_attached_dp(connector);
2219         struct drm_device *dev = intel_dp->base.base.dev;
2220         struct drm_i915_private *dev_priv = dev->dev_private;
2221         int ret;
2222
2223         /* We should parse the EDID data and find out if it has an audio sink
2224          */
2225
2226         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2227         if (ret) {
2228                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2229                         struct drm_display_mode *newmode;
2230                         list_for_each_entry(newmode, &connector->probed_modes,
2231                                             head) {
2232                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2233                                         intel_dp->panel_fixed_mode =
2234                                                 drm_mode_duplicate(dev, newmode);
2235                                         break;
2236                                 }
2237                         }
2238                 }
2239                 return ret;
2240         }
2241
2242         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2243         if (is_edp(intel_dp)) {
2244                 /* initialize panel mode from VBT if available for eDP */
2245                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2246                         intel_dp->panel_fixed_mode =
2247                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2248                         if (intel_dp->panel_fixed_mode) {
2249                                 intel_dp->panel_fixed_mode->type |=
2250                                         DRM_MODE_TYPE_PREFERRED;
2251                         }
2252                 }
2253                 if (intel_dp->panel_fixed_mode) {
2254                         struct drm_display_mode *mode;
2255                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2256                         drm_mode_probed_add(connector, mode);
2257                         return 1;
2258                 }
2259         }
2260         return 0;
2261 }
2262
2263 static bool
2264 intel_dp_detect_audio(struct drm_connector *connector)
2265 {
2266         struct intel_dp *intel_dp = intel_attached_dp(connector);
2267         struct edid *edid;
2268         bool has_audio = false;
2269
2270         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2271         if (edid) {
2272                 has_audio = drm_detect_monitor_audio(edid);
2273
2274                 connector->display_info.raw_edid = NULL;
2275                 kfree(edid);
2276         }
2277
2278         return has_audio;
2279 }
2280
2281 static int
2282 intel_dp_set_property(struct drm_connector *connector,
2283                       struct drm_property *property,
2284                       uint64_t val)
2285 {
2286         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2287         struct intel_dp *intel_dp = intel_attached_dp(connector);
2288         int ret;
2289
2290         ret = drm_connector_property_set_value(connector, property, val);
2291         if (ret)
2292                 return ret;
2293
2294         if (property == dev_priv->force_audio_property) {
2295                 int i = val;
2296                 bool has_audio;
2297
2298                 if (i == intel_dp->force_audio)
2299                         return 0;
2300
2301                 intel_dp->force_audio = i;
2302
2303                 if (i == HDMI_AUDIO_AUTO)
2304                         has_audio = intel_dp_detect_audio(connector);
2305                 else
2306                         has_audio = (i == HDMI_AUDIO_ON);
2307
2308                 if (has_audio == intel_dp->has_audio)
2309                         return 0;
2310
2311                 intel_dp->has_audio = has_audio;
2312                 goto done;
2313         }
2314
2315         if (property == dev_priv->broadcast_rgb_property) {
2316                 if (val == !!intel_dp->color_range)
2317                         return 0;
2318
2319                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2320                 goto done;
2321         }
2322
2323         return -EINVAL;
2324
2325 done:
2326         if (intel_dp->base.base.crtc) {
2327                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2328                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2329                                          crtc->x, crtc->y,
2330                                          crtc->fb);
2331         }
2332
2333         return 0;
2334 }
2335
2336 static void
2337 intel_dp_destroy(struct drm_connector *connector)
2338 {
2339         struct drm_device *dev = connector->dev;
2340
2341         if (intel_dpd_is_edp(dev))
2342                 intel_panel_destroy_backlight(dev);
2343
2344         drm_sysfs_connector_remove(connector);
2345         drm_connector_cleanup(connector);
2346         kfree(connector);
2347 }
2348
2349 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2350 {
2351         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2352
2353         i2c_del_adapter(&intel_dp->adapter);
2354         drm_encoder_cleanup(encoder);
2355         if (is_edp(intel_dp)) {
2356                 kfree(intel_dp->edid);
2357                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2358                 ironlake_panel_vdd_off_sync(intel_dp);
2359         }
2360         kfree(intel_dp);
2361 }
2362
2363 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2364         .dpms = intel_dp_dpms,
2365         .mode_fixup = intel_dp_mode_fixup,
2366         .prepare = intel_dp_prepare,
2367         .mode_set = intel_dp_mode_set,
2368         .commit = intel_dp_commit,
2369 };
2370
2371 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2372         .dpms = drm_helper_connector_dpms,
2373         .detect = intel_dp_detect,
2374         .fill_modes = drm_helper_probe_single_connector_modes,
2375         .set_property = intel_dp_set_property,
2376         .destroy = intel_dp_destroy,
2377 };
2378
2379 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2380         .get_modes = intel_dp_get_modes,
2381         .mode_valid = intel_dp_mode_valid,
2382         .best_encoder = intel_best_encoder,
2383 };
2384
2385 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2386         .destroy = intel_dp_encoder_destroy,
2387 };
2388
2389 static void
2390 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2391 {
2392         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2393
2394         intel_dp_check_link_status(intel_dp);
2395 }
2396
2397 /* Return which DP Port should be selected for Transcoder DP control */
2398 int
2399 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2400 {
2401         struct drm_device *dev = crtc->dev;
2402         struct intel_encoder *encoder;
2403
2404         for_each_encoder_on_crtc(dev, crtc, encoder) {
2405                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2406
2407                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2408                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2409                         return intel_dp->output_reg;
2410         }
2411
2412         return -1;
2413 }
2414
2415 /* check the VBT to see whether the eDP is on DP-D port */
2416 bool intel_dpd_is_edp(struct drm_device *dev)
2417 {
2418         struct drm_i915_private *dev_priv = dev->dev_private;
2419         struct child_device_config *p_child;
2420         int i;
2421
2422         if (!dev_priv->child_dev_num)
2423                 return false;
2424
2425         for (i = 0; i < dev_priv->child_dev_num; i++) {
2426                 p_child = dev_priv->child_dev + i;
2427
2428                 if (p_child->dvo_port == PORT_IDPD &&
2429                     p_child->device_type == DEVICE_TYPE_eDP)
2430                         return true;
2431         }
2432         return false;
2433 }
2434
2435 static void
2436 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2437 {
2438         intel_attach_force_audio_property(connector);
2439         intel_attach_broadcast_rgb_property(connector);
2440 }
2441
2442 void
2443 intel_dp_init(struct drm_device *dev, int output_reg)
2444 {
2445         struct drm_i915_private *dev_priv = dev->dev_private;
2446         struct drm_connector *connector;
2447         struct intel_dp *intel_dp;
2448         struct intel_encoder *intel_encoder;
2449         struct intel_connector *intel_connector;
2450         const char *name = NULL;
2451         int type;
2452
2453         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2454         if (!intel_dp)
2455                 return;
2456
2457         intel_dp->output_reg = output_reg;
2458         intel_dp->dpms_mode = -1;
2459
2460         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2461         if (!intel_connector) {
2462                 kfree(intel_dp);
2463                 return;
2464         }
2465         intel_encoder = &intel_dp->base;
2466
2467         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2468                 if (intel_dpd_is_edp(dev))
2469                         intel_dp->is_pch_edp = true;
2470
2471         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2472                 type = DRM_MODE_CONNECTOR_eDP;
2473                 intel_encoder->type = INTEL_OUTPUT_EDP;
2474         } else {
2475                 type = DRM_MODE_CONNECTOR_DisplayPort;
2476                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2477         }
2478
2479         connector = &intel_connector->base;
2480         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2481         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2482
2483         connector->polled = DRM_CONNECTOR_POLL_HPD;
2484
2485         if (output_reg == DP_B || output_reg == PCH_DP_B)
2486                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2487         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2488                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2489         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2490                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2491
2492         if (is_edp(intel_dp)) {
2493                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2494                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2495                                   ironlake_panel_vdd_work);
2496         }
2497
2498         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2499
2500         connector->interlace_allowed = true;
2501         connector->doublescan_allowed = 0;
2502
2503         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2504                          DRM_MODE_ENCODER_TMDS);
2505         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2506
2507         intel_connector_attach_encoder(intel_connector, intel_encoder);
2508         drm_sysfs_connector_add(connector);
2509
2510         /* Set up the DDC bus. */
2511         switch (output_reg) {
2512                 case DP_A:
2513                         name = "DPDDC-A";
2514                         break;
2515                 case DP_B:
2516                 case PCH_DP_B:
2517                         dev_priv->hotplug_supported_mask |=
2518                                 DPB_HOTPLUG_INT_STATUS;
2519                         name = "DPDDC-B";
2520                         break;
2521                 case DP_C:
2522                 case PCH_DP_C:
2523                         dev_priv->hotplug_supported_mask |=
2524                                 DPC_HOTPLUG_INT_STATUS;
2525                         name = "DPDDC-C";
2526                         break;
2527                 case DP_D:
2528                 case PCH_DP_D:
2529                         dev_priv->hotplug_supported_mask |=
2530                                 DPD_HOTPLUG_INT_STATUS;
2531                         name = "DPDDC-D";
2532                         break;
2533         }
2534
2535         /* Cache some DPCD data in the eDP case */
2536         if (is_edp(intel_dp)) {
2537                 struct edp_power_seq    cur, vbt;
2538                 u32 pp_on, pp_off, pp_div;
2539
2540                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2541                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2542                 pp_div = I915_READ(PCH_PP_DIVISOR);
2543
2544                 if (!pp_on || !pp_off || !pp_div) {
2545                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2546                         intel_dp_encoder_destroy(&intel_dp->base.base);
2547                         intel_dp_destroy(&intel_connector->base);
2548                         return;
2549                 }
2550
2551                 /* Pull timing values out of registers */
2552                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2553                         PANEL_POWER_UP_DELAY_SHIFT;
2554
2555                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2556                         PANEL_LIGHT_ON_DELAY_SHIFT;
2557
2558                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2559                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2560
2561                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2562                         PANEL_POWER_DOWN_DELAY_SHIFT;
2563
2564                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2565                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2566
2567                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2568                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2569
2570                 vbt = dev_priv->edp.pps;
2571
2572                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2573                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2574
2575 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2576
2577                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2578                 intel_dp->backlight_on_delay = get_delay(t8);
2579                 intel_dp->backlight_off_delay = get_delay(t9);
2580                 intel_dp->panel_power_down_delay = get_delay(t10);
2581                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2582
2583                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2584                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2585                               intel_dp->panel_power_cycle_delay);
2586
2587                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2588                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2589         }
2590
2591         intel_dp_i2c_init(intel_dp, intel_connector, name);
2592
2593         if (is_edp(intel_dp)) {
2594                 bool ret;
2595                 struct edid *edid;
2596
2597                 ironlake_edp_panel_vdd_on(intel_dp);
2598                 ret = intel_dp_get_dpcd(intel_dp);
2599                 ironlake_edp_panel_vdd_off(intel_dp, false);
2600
2601                 if (ret) {
2602                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2603                                 dev_priv->no_aux_handshake =
2604                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2605                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2606                 } else {
2607                         /* if this fails, presume the device is a ghost */
2608                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2609                         intel_dp_encoder_destroy(&intel_dp->base.base);
2610                         intel_dp_destroy(&intel_connector->base);
2611                         return;
2612                 }
2613
2614                 ironlake_edp_panel_vdd_on(intel_dp);
2615                 edid = drm_get_edid(connector, &intel_dp->adapter);
2616                 if (edid) {
2617                         drm_mode_connector_update_edid_property(connector,
2618                                                                 edid);
2619                         intel_dp->edid_mode_count =
2620                                 drm_add_edid_modes(connector, edid);
2621                         drm_edid_to_eld(connector, edid);
2622                         intel_dp->edid = edid;
2623                 }
2624                 ironlake_edp_panel_vdd_off(intel_dp, false);
2625         }
2626
2627         intel_encoder->hot_plug = intel_dp_hot_plug;
2628
2629         if (is_edp(intel_dp)) {
2630                 dev_priv->int_edp_connector = connector;
2631                 intel_panel_setup_backlight(dev);
2632         }
2633
2634         intel_dp_add_properties(intel_dp, connector);
2635
2636         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2637          * 0xd.  Failure to do so will result in spurious interrupts being
2638          * generated on the port when a cable is not attached.
2639          */
2640         if (IS_G4X(dev) && !IS_GM45(dev)) {
2641                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2642                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2643         }
2644 }