37638f8e22650f40806ef6528e3f672416db6137
[linux-block.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /*
68  * CHV supports eDP 1.4 that have  more link rates.
69  * Below only provides the fixed rate but exclude variable rate.
70  */
71 static const struct dp_link_dpll chv_dpll[] = {
72         /*
73          * CHV requires to program fractional division for m2.
74          * m2 is stored in fixed point format using formula below
75          * (m2_int << 22) | m2_fraction
76          */
77         { DP_LINK_BW_1_62,      /* m2_int = 32, m2_fraction = 1677722 */
78                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79         { DP_LINK_BW_2_7,       /* m2_int = 27, m2_fraction = 0 */
80                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81         { DP_LINK_BW_5_4,       /* m2_int = 27, m2_fraction = 0 */
82                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83 };
84
85 /**
86  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87  * @intel_dp: DP struct
88  *
89  * If a CPU or PCH DP output is attached to an eDP panel, this function
90  * will return true, and false otherwise.
91  */
92 static bool is_edp(struct intel_dp *intel_dp)
93 {
94         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
96         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97 }
98
99 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100 {
101         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103         return intel_dig_port->base.base.dev;
104 }
105
106 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107 {
108         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109 }
110
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
114
115 static int
116 intel_dp_max_link_bw(struct intel_dp *intel_dp)
117 {
118         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
119         struct drm_device *dev = intel_dp->attached_connector->base.dev;
120
121         switch (max_link_bw) {
122         case DP_LINK_BW_1_62:
123         case DP_LINK_BW_2_7:
124                 break;
125         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
126                 if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
127                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
128                         max_link_bw = DP_LINK_BW_5_4;
129                 else
130                         max_link_bw = DP_LINK_BW_2_7;
131                 break;
132         default:
133                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
134                      max_link_bw);
135                 max_link_bw = DP_LINK_BW_1_62;
136                 break;
137         }
138         return max_link_bw;
139 }
140
141 /*
142  * The units on the numbers in the next two are... bizarre.  Examples will
143  * make it clearer; this one parallels an example in the eDP spec.
144  *
145  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
146  *
147  *     270000 * 1 * 8 / 10 == 216000
148  *
149  * The actual data capacity of that configuration is 2.16Gbit/s, so the
150  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
151  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
152  * 119000.  At 18bpp that's 2142000 kilobits per second.
153  *
154  * Thus the strange-looking division by 10 in intel_dp_link_required, to
155  * get the result in decakilobits instead of kilobits.
156  */
157
158 static int
159 intel_dp_link_required(int pixel_clock, int bpp)
160 {
161         return (pixel_clock * bpp + 9) / 10;
162 }
163
164 static int
165 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
166 {
167         return (max_link_clock * max_lanes * 8) / 10;
168 }
169
170 static enum drm_mode_status
171 intel_dp_mode_valid(struct drm_connector *connector,
172                     struct drm_display_mode *mode)
173 {
174         struct intel_dp *intel_dp = intel_attached_dp(connector);
175         struct intel_connector *intel_connector = to_intel_connector(connector);
176         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
177         int target_clock = mode->clock;
178         int max_rate, mode_rate, max_lanes, max_link_clock;
179
180         if (is_edp(intel_dp) && fixed_mode) {
181                 if (mode->hdisplay > fixed_mode->hdisplay)
182                         return MODE_PANEL;
183
184                 if (mode->vdisplay > fixed_mode->vdisplay)
185                         return MODE_PANEL;
186
187                 target_clock = fixed_mode->clock;
188         }
189
190         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
191         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
192
193         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
194         mode_rate = intel_dp_link_required(target_clock, 18);
195
196         if (mode_rate > max_rate)
197                 return MODE_CLOCK_HIGH;
198
199         if (mode->clock < 10000)
200                 return MODE_CLOCK_LOW;
201
202         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
203                 return MODE_H_ILLEGAL;
204
205         return MODE_OK;
206 }
207
208 static uint32_t
209 pack_aux(uint8_t *src, int src_bytes)
210 {
211         int     i;
212         uint32_t v = 0;
213
214         if (src_bytes > 4)
215                 src_bytes = 4;
216         for (i = 0; i < src_bytes; i++)
217                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
218         return v;
219 }
220
221 static void
222 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
223 {
224         int i;
225         if (dst_bytes > 4)
226                 dst_bytes = 4;
227         for (i = 0; i < dst_bytes; i++)
228                 dst[i] = src >> ((3-i) * 8);
229 }
230
231 /* hrawclock is 1/4 the FSB frequency */
232 static int
233 intel_hrawclk(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         uint32_t clkcfg;
237
238         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
239         if (IS_VALLEYVIEW(dev))
240                 return 200;
241
242         clkcfg = I915_READ(CLKCFG);
243         switch (clkcfg & CLKCFG_FSB_MASK) {
244         case CLKCFG_FSB_400:
245                 return 100;
246         case CLKCFG_FSB_533:
247                 return 133;
248         case CLKCFG_FSB_667:
249                 return 166;
250         case CLKCFG_FSB_800:
251                 return 200;
252         case CLKCFG_FSB_1067:
253                 return 266;
254         case CLKCFG_FSB_1333:
255                 return 333;
256         /* these two are just a guess; one of them might be right */
257         case CLKCFG_FSB_1600:
258         case CLKCFG_FSB_1600_ALT:
259                 return 400;
260         default:
261                 return 133;
262         }
263 }
264
265 static void
266 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
267                                     struct intel_dp *intel_dp,
268                                     struct edp_power_seq *out);
269 static void
270 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
271                                               struct intel_dp *intel_dp,
272                                               struct edp_power_seq *out);
273
274 static enum pipe
275 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
276 {
277         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
278         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
279         struct drm_device *dev = intel_dig_port->base.base.dev;
280         struct drm_i915_private *dev_priv = dev->dev_private;
281         enum port port = intel_dig_port->port;
282         enum pipe pipe;
283
284         /* modeset should have pipe */
285         if (crtc)
286                 return to_intel_crtc(crtc)->pipe;
287
288         /* init time, try to find a pipe with this port selected */
289         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
290                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
291                         PANEL_PORT_SELECT_MASK;
292                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
293                         return pipe;
294                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
295                         return pipe;
296         }
297
298         /* shrug */
299         return PIPE_A;
300 }
301
302 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
303 {
304         struct drm_device *dev = intel_dp_to_dev(intel_dp);
305
306         if (HAS_PCH_SPLIT(dev))
307                 return PCH_PP_CONTROL;
308         else
309                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
310 }
311
312 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
313 {
314         struct drm_device *dev = intel_dp_to_dev(intel_dp);
315
316         if (HAS_PCH_SPLIT(dev))
317                 return PCH_PP_STATUS;
318         else
319                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
320 }
321
322 static bool edp_have_panel_power(struct intel_dp *intel_dp)
323 {
324         struct drm_device *dev = intel_dp_to_dev(intel_dp);
325         struct drm_i915_private *dev_priv = dev->dev_private;
326
327         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
328 }
329
330 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
331 {
332         struct drm_device *dev = intel_dp_to_dev(intel_dp);
333         struct drm_i915_private *dev_priv = dev->dev_private;
334         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
335         struct intel_encoder *intel_encoder = &intel_dig_port->base;
336         enum intel_display_power_domain power_domain;
337
338         power_domain = intel_display_port_power_domain(intel_encoder);
339         return intel_display_power_enabled(dev_priv, power_domain) &&
340                (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
341 }
342
343 static void
344 intel_dp_check_edp(struct intel_dp *intel_dp)
345 {
346         struct drm_device *dev = intel_dp_to_dev(intel_dp);
347         struct drm_i915_private *dev_priv = dev->dev_private;
348
349         if (!is_edp(intel_dp))
350                 return;
351
352         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
353                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
354                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
355                               I915_READ(_pp_stat_reg(intel_dp)),
356                               I915_READ(_pp_ctrl_reg(intel_dp)));
357         }
358 }
359
360 static uint32_t
361 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
362 {
363         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
364         struct drm_device *dev = intel_dig_port->base.base.dev;
365         struct drm_i915_private *dev_priv = dev->dev_private;
366         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
367         uint32_t status;
368         bool done;
369
370 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
371         if (has_aux_irq)
372                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
373                                           msecs_to_jiffies_timeout(10));
374         else
375                 done = wait_for_atomic(C, 10) == 0;
376         if (!done)
377                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
378                           has_aux_irq);
379 #undef C
380
381         return status;
382 }
383
384 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
385 {
386         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
387         struct drm_device *dev = intel_dig_port->base.base.dev;
388
389         /*
390          * The clock divider is based off the hrawclk, and would like to run at
391          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
392          */
393         return index ? 0 : intel_hrawclk(dev) / 2;
394 }
395
396 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
397 {
398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399         struct drm_device *dev = intel_dig_port->base.base.dev;
400
401         if (index)
402                 return 0;
403
404         if (intel_dig_port->port == PORT_A) {
405                 if (IS_GEN6(dev) || IS_GEN7(dev))
406                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
407                 else
408                         return 225; /* eDP input clock at 450Mhz */
409         } else {
410                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
411         }
412 }
413
414 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
415 {
416         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
417         struct drm_device *dev = intel_dig_port->base.base.dev;
418         struct drm_i915_private *dev_priv = dev->dev_private;
419
420         if (intel_dig_port->port == PORT_A) {
421                 if (index)
422                         return 0;
423                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
424         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
425                 /* Workaround for non-ULT HSW */
426                 switch (index) {
427                 case 0: return 63;
428                 case 1: return 72;
429                 default: return 0;
430                 }
431         } else  {
432                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
433         }
434 }
435
436 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
437 {
438         return index ? 0 : 100;
439 }
440
441 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
442                                       bool has_aux_irq,
443                                       int send_bytes,
444                                       uint32_t aux_clock_divider)
445 {
446         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
447         struct drm_device *dev = intel_dig_port->base.base.dev;
448         uint32_t precharge, timeout;
449
450         if (IS_GEN6(dev))
451                 precharge = 3;
452         else
453                 precharge = 5;
454
455         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
456                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
457         else
458                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
459
460         return DP_AUX_CH_CTL_SEND_BUSY |
461                DP_AUX_CH_CTL_DONE |
462                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463                DP_AUX_CH_CTL_TIME_OUT_ERROR |
464                timeout |
465                DP_AUX_CH_CTL_RECEIVE_ERROR |
466                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
467                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
468                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
469 }
470
471 static int
472 intel_dp_aux_ch(struct intel_dp *intel_dp,
473                 uint8_t *send, int send_bytes,
474                 uint8_t *recv, int recv_size)
475 {
476         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
477         struct drm_device *dev = intel_dig_port->base.base.dev;
478         struct drm_i915_private *dev_priv = dev->dev_private;
479         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
480         uint32_t ch_data = ch_ctl + 4;
481         uint32_t aux_clock_divider;
482         int i, ret, recv_bytes;
483         uint32_t status;
484         int try, clock = 0;
485         bool has_aux_irq = HAS_AUX_IRQ(dev);
486         bool vdd;
487
488         vdd = _edp_panel_vdd_on(intel_dp);
489
490         /* dp aux is extremely sensitive to irq latency, hence request the
491          * lowest possible wakeup latency and so prevent the cpu from going into
492          * deep sleep states.
493          */
494         pm_qos_update_request(&dev_priv->pm_qos, 0);
495
496         intel_dp_check_edp(intel_dp);
497
498         intel_aux_display_runtime_get(dev_priv);
499
500         /* Try to wait for any previous AUX channel activity */
501         for (try = 0; try < 3; try++) {
502                 status = I915_READ_NOTRACE(ch_ctl);
503                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
504                         break;
505                 msleep(1);
506         }
507
508         if (try == 3) {
509                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
510                      I915_READ(ch_ctl));
511                 ret = -EBUSY;
512                 goto out;
513         }
514
515         /* Only 5 data registers! */
516         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
517                 ret = -E2BIG;
518                 goto out;
519         }
520
521         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
522                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
523                                                           has_aux_irq,
524                                                           send_bytes,
525                                                           aux_clock_divider);
526
527                 /* Must try at least 3 times according to DP spec */
528                 for (try = 0; try < 5; try++) {
529                         /* Load the send data into the aux channel data registers */
530                         for (i = 0; i < send_bytes; i += 4)
531                                 I915_WRITE(ch_data + i,
532                                            pack_aux(send + i, send_bytes - i));
533
534                         /* Send the command and wait for it to complete */
535                         I915_WRITE(ch_ctl, send_ctl);
536
537                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
538
539                         /* Clear done status and any errors */
540                         I915_WRITE(ch_ctl,
541                                    status |
542                                    DP_AUX_CH_CTL_DONE |
543                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
544                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
545
546                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
547                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
548                                 continue;
549                         if (status & DP_AUX_CH_CTL_DONE)
550                                 break;
551                 }
552                 if (status & DP_AUX_CH_CTL_DONE)
553                         break;
554         }
555
556         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
557                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
558                 ret = -EBUSY;
559                 goto out;
560         }
561
562         /* Check for timeout or receive error.
563          * Timeouts occur when the sink is not connected
564          */
565         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
566                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
567                 ret = -EIO;
568                 goto out;
569         }
570
571         /* Timeouts occur when the device isn't connected, so they're
572          * "normal" -- don't fill the kernel log with these */
573         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
574                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
575                 ret = -ETIMEDOUT;
576                 goto out;
577         }
578
579         /* Unload any bytes sent back from the other side */
580         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
581                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
582         if (recv_bytes > recv_size)
583                 recv_bytes = recv_size;
584
585         for (i = 0; i < recv_bytes; i += 4)
586                 unpack_aux(I915_READ(ch_data + i),
587                            recv + i, recv_bytes - i);
588
589         ret = recv_bytes;
590 out:
591         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
592         intel_aux_display_runtime_put(dev_priv);
593
594         if (vdd)
595                 edp_panel_vdd_off(intel_dp, false);
596
597         return ret;
598 }
599
600 #define BARE_ADDRESS_SIZE       3
601 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
602 static ssize_t
603 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
604 {
605         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
606         uint8_t txbuf[20], rxbuf[20];
607         size_t txsize, rxsize;
608         int ret;
609
610         txbuf[0] = msg->request << 4;
611         txbuf[1] = msg->address >> 8;
612         txbuf[2] = msg->address & 0xff;
613         txbuf[3] = msg->size - 1;
614
615         switch (msg->request & ~DP_AUX_I2C_MOT) {
616         case DP_AUX_NATIVE_WRITE:
617         case DP_AUX_I2C_WRITE:
618                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
619                 rxsize = 1;
620
621                 if (WARN_ON(txsize > 20))
622                         return -E2BIG;
623
624                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
625
626                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
627                 if (ret > 0) {
628                         msg->reply = rxbuf[0] >> 4;
629
630                         /* Return payload size. */
631                         ret = msg->size;
632                 }
633                 break;
634
635         case DP_AUX_NATIVE_READ:
636         case DP_AUX_I2C_READ:
637                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
638                 rxsize = msg->size + 1;
639
640                 if (WARN_ON(rxsize > 20))
641                         return -E2BIG;
642
643                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
644                 if (ret > 0) {
645                         msg->reply = rxbuf[0] >> 4;
646                         /*
647                          * Assume happy day, and copy the data. The caller is
648                          * expected to check msg->reply before touching it.
649                          *
650                          * Return payload size.
651                          */
652                         ret--;
653                         memcpy(msg->buffer, rxbuf + 1, ret);
654                 }
655                 break;
656
657         default:
658                 ret = -EINVAL;
659                 break;
660         }
661
662         return ret;
663 }
664
665 static void
666 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
667 {
668         struct drm_device *dev = intel_dp_to_dev(intel_dp);
669         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
670         enum port port = intel_dig_port->port;
671         const char *name = NULL;
672         int ret;
673
674         switch (port) {
675         case PORT_A:
676                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
677                 name = "DPDDC-A";
678                 break;
679         case PORT_B:
680                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
681                 name = "DPDDC-B";
682                 break;
683         case PORT_C:
684                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
685                 name = "DPDDC-C";
686                 break;
687         case PORT_D:
688                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
689                 name = "DPDDC-D";
690                 break;
691         default:
692                 BUG();
693         }
694
695         if (!HAS_DDI(dev))
696                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
697
698         intel_dp->aux.name = name;
699         intel_dp->aux.dev = dev->dev;
700         intel_dp->aux.transfer = intel_dp_aux_transfer;
701
702         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
703                       connector->base.kdev->kobj.name);
704
705         ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
706         if (ret < 0) {
707                 DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
708                           name, ret);
709                 return;
710         }
711
712         ret = sysfs_create_link(&connector->base.kdev->kobj,
713                                 &intel_dp->aux.ddc.dev.kobj,
714                                 intel_dp->aux.ddc.dev.kobj.name);
715         if (ret < 0) {
716                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
717                 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
718         }
719 }
720
721 static void
722 intel_dp_connector_unregister(struct intel_connector *intel_connector)
723 {
724         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
725
726         sysfs_remove_link(&intel_connector->base.kdev->kobj,
727                           intel_dp->aux.ddc.dev.kobj.name);
728         intel_connector_unregister(intel_connector);
729 }
730
731 static void
732 intel_dp_set_clock(struct intel_encoder *encoder,
733                    struct intel_crtc_config *pipe_config, int link_bw)
734 {
735         struct drm_device *dev = encoder->base.dev;
736         const struct dp_link_dpll *divisor = NULL;
737         int i, count = 0;
738
739         if (IS_G4X(dev)) {
740                 divisor = gen4_dpll;
741                 count = ARRAY_SIZE(gen4_dpll);
742         } else if (IS_HASWELL(dev)) {
743                 /* Haswell has special-purpose DP DDI clocks. */
744         } else if (HAS_PCH_SPLIT(dev)) {
745                 divisor = pch_dpll;
746                 count = ARRAY_SIZE(pch_dpll);
747         } else if (IS_CHERRYVIEW(dev)) {
748                 divisor = chv_dpll;
749                 count = ARRAY_SIZE(chv_dpll);
750         } else if (IS_VALLEYVIEW(dev)) {
751                 divisor = vlv_dpll;
752                 count = ARRAY_SIZE(vlv_dpll);
753         }
754
755         if (divisor && count) {
756                 for (i = 0; i < count; i++) {
757                         if (link_bw == divisor[i].link_bw) {
758                                 pipe_config->dpll = divisor[i].dpll;
759                                 pipe_config->clock_set = true;
760                                 break;
761                         }
762                 }
763         }
764 }
765
766 static void
767 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
768 {
769         struct drm_device *dev = crtc->base.dev;
770         struct drm_i915_private *dev_priv = dev->dev_private;
771         enum transcoder transcoder = crtc->config.cpu_transcoder;
772
773         I915_WRITE(PIPE_DATA_M2(transcoder),
774                 TU_SIZE(m_n->tu) | m_n->gmch_m);
775         I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
776         I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
777         I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
778 }
779
780 bool
781 intel_dp_compute_config(struct intel_encoder *encoder,
782                         struct intel_crtc_config *pipe_config)
783 {
784         struct drm_device *dev = encoder->base.dev;
785         struct drm_i915_private *dev_priv = dev->dev_private;
786         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
787         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
788         enum port port = dp_to_dig_port(intel_dp)->port;
789         struct intel_crtc *intel_crtc = encoder->new_crtc;
790         struct intel_connector *intel_connector = intel_dp->attached_connector;
791         int lane_count, clock;
792         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
793         /* Conveniently, the link BW constants become indices with a shift...*/
794         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
795         int bpp, mode_rate;
796         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
797         int link_avail, link_clock;
798
799         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
800                 pipe_config->has_pch_encoder = true;
801
802         pipe_config->has_dp_encoder = true;
803         pipe_config->has_audio = intel_dp->has_audio;
804
805         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
806                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
807                                        adjusted_mode);
808                 if (!HAS_PCH_SPLIT(dev))
809                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
810                                                  intel_connector->panel.fitting_mode);
811                 else
812                         intel_pch_panel_fitting(intel_crtc, pipe_config,
813                                                 intel_connector->panel.fitting_mode);
814         }
815
816         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
817                 return false;
818
819         DRM_DEBUG_KMS("DP link computation with max lane count %i "
820                       "max bw %02x pixel clock %iKHz\n",
821                       max_lane_count, bws[max_clock],
822                       adjusted_mode->crtc_clock);
823
824         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
825          * bpc in between. */
826         bpp = pipe_config->pipe_bpp;
827         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
828             dev_priv->vbt.edp_bpp < bpp) {
829                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
830                               dev_priv->vbt.edp_bpp);
831                 bpp = dev_priv->vbt.edp_bpp;
832         }
833
834         for (; bpp >= 6*3; bpp -= 2*3) {
835                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
836                                                    bpp);
837
838                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
839                         for (clock = 0; clock <= max_clock; clock++) {
840                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
841                                 link_avail = intel_dp_max_data_rate(link_clock,
842                                                                     lane_count);
843
844                                 if (mode_rate <= link_avail) {
845                                         goto found;
846                                 }
847                         }
848                 }
849         }
850
851         return false;
852
853 found:
854         if (intel_dp->color_range_auto) {
855                 /*
856                  * See:
857                  * CEA-861-E - 5.1 Default Encoding Parameters
858                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
859                  */
860                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
861                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
862                 else
863                         intel_dp->color_range = 0;
864         }
865
866         if (intel_dp->color_range)
867                 pipe_config->limited_color_range = true;
868
869         intel_dp->link_bw = bws[clock];
870         intel_dp->lane_count = lane_count;
871         pipe_config->pipe_bpp = bpp;
872         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
873
874         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
875                       intel_dp->link_bw, intel_dp->lane_count,
876                       pipe_config->port_clock, bpp);
877         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
878                       mode_rate, link_avail);
879
880         intel_link_compute_m_n(bpp, lane_count,
881                                adjusted_mode->crtc_clock,
882                                pipe_config->port_clock,
883                                &pipe_config->dp_m_n);
884
885         if (intel_connector->panel.downclock_mode != NULL &&
886                 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
887                         intel_link_compute_m_n(bpp, lane_count,
888                                 intel_connector->panel.downclock_mode->clock,
889                                 pipe_config->port_clock,
890                                 &pipe_config->dp_m2_n2);
891         }
892
893         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
894
895         return true;
896 }
897
898 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
899 {
900         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
901         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
902         struct drm_device *dev = crtc->base.dev;
903         struct drm_i915_private *dev_priv = dev->dev_private;
904         u32 dpa_ctl;
905
906         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
907         dpa_ctl = I915_READ(DP_A);
908         dpa_ctl &= ~DP_PLL_FREQ_MASK;
909
910         if (crtc->config.port_clock == 162000) {
911                 /* For a long time we've carried around a ILK-DevA w/a for the
912                  * 160MHz clock. If we're really unlucky, it's still required.
913                  */
914                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
915                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
916                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
917         } else {
918                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
919                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
920         }
921
922         I915_WRITE(DP_A, dpa_ctl);
923
924         POSTING_READ(DP_A);
925         udelay(500);
926 }
927
928 static void intel_dp_prepare(struct intel_encoder *encoder)
929 {
930         struct drm_device *dev = encoder->base.dev;
931         struct drm_i915_private *dev_priv = dev->dev_private;
932         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
933         enum port port = dp_to_dig_port(intel_dp)->port;
934         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
935         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
936
937         /*
938          * There are four kinds of DP registers:
939          *
940          *      IBX PCH
941          *      SNB CPU
942          *      IVB CPU
943          *      CPT PCH
944          *
945          * IBX PCH and CPU are the same for almost everything,
946          * except that the CPU DP PLL is configured in this
947          * register
948          *
949          * CPT PCH is quite different, having many bits moved
950          * to the TRANS_DP_CTL register instead. That
951          * configuration happens (oddly) in ironlake_pch_enable
952          */
953
954         /* Preserve the BIOS-computed detected bit. This is
955          * supposed to be read-only.
956          */
957         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
958
959         /* Handle DP bits in common between all three register formats */
960         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
961         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
962
963         if (crtc->config.has_audio) {
964                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
965                                  pipe_name(crtc->pipe));
966                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
967                 intel_write_eld(&encoder->base, adjusted_mode);
968         }
969
970         /* Split out the IBX/CPU vs CPT settings */
971
972         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
973                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
974                         intel_dp->DP |= DP_SYNC_HS_HIGH;
975                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
976                         intel_dp->DP |= DP_SYNC_VS_HIGH;
977                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
978
979                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
980                         intel_dp->DP |= DP_ENHANCED_FRAMING;
981
982                 intel_dp->DP |= crtc->pipe << 29;
983         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
984                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
985                         intel_dp->DP |= intel_dp->color_range;
986
987                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
988                         intel_dp->DP |= DP_SYNC_HS_HIGH;
989                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
990                         intel_dp->DP |= DP_SYNC_VS_HIGH;
991                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
992
993                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
994                         intel_dp->DP |= DP_ENHANCED_FRAMING;
995
996                 if (!IS_CHERRYVIEW(dev)) {
997                         if (crtc->pipe == 1)
998                                 intel_dp->DP |= DP_PIPEB_SELECT;
999                 } else {
1000                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1001                 }
1002         } else {
1003                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1004         }
1005 }
1006
1007 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1008 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1009
1010 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1011 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1012
1013 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1014 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1015
1016 static void wait_panel_status(struct intel_dp *intel_dp,
1017                                        u32 mask,
1018                                        u32 value)
1019 {
1020         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1021         struct drm_i915_private *dev_priv = dev->dev_private;
1022         u32 pp_stat_reg, pp_ctrl_reg;
1023
1024         pp_stat_reg = _pp_stat_reg(intel_dp);
1025         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1026
1027         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1028                         mask, value,
1029                         I915_READ(pp_stat_reg),
1030                         I915_READ(pp_ctrl_reg));
1031
1032         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1033                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1034                                 I915_READ(pp_stat_reg),
1035                                 I915_READ(pp_ctrl_reg));
1036         }
1037
1038         DRM_DEBUG_KMS("Wait complete\n");
1039 }
1040
1041 static void wait_panel_on(struct intel_dp *intel_dp)
1042 {
1043         DRM_DEBUG_KMS("Wait for panel power on\n");
1044         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1045 }
1046
1047 static void wait_panel_off(struct intel_dp *intel_dp)
1048 {
1049         DRM_DEBUG_KMS("Wait for panel power off time\n");
1050         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1051 }
1052
1053 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1054 {
1055         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1056
1057         /* When we disable the VDD override bit last we have to do the manual
1058          * wait. */
1059         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1060                                        intel_dp->panel_power_cycle_delay);
1061
1062         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1063 }
1064
1065 static void wait_backlight_on(struct intel_dp *intel_dp)
1066 {
1067         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1068                                        intel_dp->backlight_on_delay);
1069 }
1070
1071 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1072 {
1073         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1074                                        intel_dp->backlight_off_delay);
1075 }
1076
1077 /* Read the current pp_control value, unlocking the register if it
1078  * is locked
1079  */
1080
1081 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1082 {
1083         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1084         struct drm_i915_private *dev_priv = dev->dev_private;
1085         u32 control;
1086
1087         control = I915_READ(_pp_ctrl_reg(intel_dp));
1088         control &= ~PANEL_UNLOCK_MASK;
1089         control |= PANEL_UNLOCK_REGS;
1090         return control;
1091 }
1092
1093 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1094 {
1095         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1096         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1097         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1098         struct drm_i915_private *dev_priv = dev->dev_private;
1099         enum intel_display_power_domain power_domain;
1100         u32 pp;
1101         u32 pp_stat_reg, pp_ctrl_reg;
1102         bool need_to_disable = !intel_dp->want_panel_vdd;
1103
1104         if (!is_edp(intel_dp))
1105                 return false;
1106
1107         intel_dp->want_panel_vdd = true;
1108
1109         if (edp_have_panel_vdd(intel_dp))
1110                 return need_to_disable;
1111
1112         power_domain = intel_display_port_power_domain(intel_encoder);
1113         intel_display_power_get(dev_priv, power_domain);
1114
1115         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1116
1117         if (!edp_have_panel_power(intel_dp))
1118                 wait_panel_power_cycle(intel_dp);
1119
1120         pp = ironlake_get_pp_control(intel_dp);
1121         pp |= EDP_FORCE_VDD;
1122
1123         pp_stat_reg = _pp_stat_reg(intel_dp);
1124         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1125
1126         I915_WRITE(pp_ctrl_reg, pp);
1127         POSTING_READ(pp_ctrl_reg);
1128         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1129                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1130         /*
1131          * If the panel wasn't on, delay before accessing aux channel
1132          */
1133         if (!edp_have_panel_power(intel_dp)) {
1134                 DRM_DEBUG_KMS("eDP was not running\n");
1135                 msleep(intel_dp->panel_power_up_delay);
1136         }
1137
1138         return need_to_disable;
1139 }
1140
1141 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1142 {
1143         if (is_edp(intel_dp)) {
1144                 bool vdd = _edp_panel_vdd_on(intel_dp);
1145
1146                 WARN(!vdd, "eDP VDD already requested on\n");
1147         }
1148 }
1149
1150 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1151 {
1152         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1153         struct drm_i915_private *dev_priv = dev->dev_private;
1154         u32 pp;
1155         u32 pp_stat_reg, pp_ctrl_reg;
1156
1157         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1158
1159         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1160                 struct intel_digital_port *intel_dig_port =
1161                                                 dp_to_dig_port(intel_dp);
1162                 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1163                 enum intel_display_power_domain power_domain;
1164
1165                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1166
1167                 pp = ironlake_get_pp_control(intel_dp);
1168                 pp &= ~EDP_FORCE_VDD;
1169
1170                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1171                 pp_stat_reg = _pp_stat_reg(intel_dp);
1172
1173                 I915_WRITE(pp_ctrl_reg, pp);
1174                 POSTING_READ(pp_ctrl_reg);
1175
1176                 /* Make sure sequencer is idle before allowing subsequent activity */
1177                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1178                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1179
1180                 if ((pp & POWER_TARGET_ON) == 0)
1181                         intel_dp->last_power_cycle = jiffies;
1182
1183                 power_domain = intel_display_port_power_domain(intel_encoder);
1184                 intel_display_power_put(dev_priv, power_domain);
1185         }
1186 }
1187
1188 static void edp_panel_vdd_work(struct work_struct *__work)
1189 {
1190         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1191                                                  struct intel_dp, panel_vdd_work);
1192         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1193
1194         mutex_lock(&dev->mode_config.mutex);
1195         edp_panel_vdd_off_sync(intel_dp);
1196         mutex_unlock(&dev->mode_config.mutex);
1197 }
1198
1199 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1200 {
1201         if (!is_edp(intel_dp))
1202                 return;
1203
1204         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1205
1206         intel_dp->want_panel_vdd = false;
1207
1208         if (sync) {
1209                 edp_panel_vdd_off_sync(intel_dp);
1210         } else {
1211                 /*
1212                  * Queue the timer to fire a long
1213                  * time from now (relative to the power down delay)
1214                  * to keep the panel power up across a sequence of operations
1215                  */
1216                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1217                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1218         }
1219 }
1220
1221 void intel_edp_panel_on(struct intel_dp *intel_dp)
1222 {
1223         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1224         struct drm_i915_private *dev_priv = dev->dev_private;
1225         u32 pp;
1226         u32 pp_ctrl_reg;
1227
1228         if (!is_edp(intel_dp))
1229                 return;
1230
1231         DRM_DEBUG_KMS("Turn eDP power on\n");
1232
1233         if (edp_have_panel_power(intel_dp)) {
1234                 DRM_DEBUG_KMS("eDP power already on\n");
1235                 return;
1236         }
1237
1238         wait_panel_power_cycle(intel_dp);
1239
1240         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1241         pp = ironlake_get_pp_control(intel_dp);
1242         if (IS_GEN5(dev)) {
1243                 /* ILK workaround: disable reset around power sequence */
1244                 pp &= ~PANEL_POWER_RESET;
1245                 I915_WRITE(pp_ctrl_reg, pp);
1246                 POSTING_READ(pp_ctrl_reg);
1247         }
1248
1249         pp |= POWER_TARGET_ON;
1250         if (!IS_GEN5(dev))
1251                 pp |= PANEL_POWER_RESET;
1252
1253         I915_WRITE(pp_ctrl_reg, pp);
1254         POSTING_READ(pp_ctrl_reg);
1255
1256         wait_panel_on(intel_dp);
1257         intel_dp->last_power_on = jiffies;
1258
1259         if (IS_GEN5(dev)) {
1260                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1261                 I915_WRITE(pp_ctrl_reg, pp);
1262                 POSTING_READ(pp_ctrl_reg);
1263         }
1264 }
1265
1266 void intel_edp_panel_off(struct intel_dp *intel_dp)
1267 {
1268         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1269         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1270         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1271         struct drm_i915_private *dev_priv = dev->dev_private;
1272         enum intel_display_power_domain power_domain;
1273         u32 pp;
1274         u32 pp_ctrl_reg;
1275
1276         if (!is_edp(intel_dp))
1277                 return;
1278
1279         DRM_DEBUG_KMS("Turn eDP power off\n");
1280
1281         edp_wait_backlight_off(intel_dp);
1282
1283         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1284
1285         pp = ironlake_get_pp_control(intel_dp);
1286         /* We need to switch off panel power _and_ force vdd, for otherwise some
1287          * panels get very unhappy and cease to work. */
1288         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1289                 EDP_BLC_ENABLE);
1290
1291         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1292
1293         intel_dp->want_panel_vdd = false;
1294
1295         I915_WRITE(pp_ctrl_reg, pp);
1296         POSTING_READ(pp_ctrl_reg);
1297
1298         intel_dp->last_power_cycle = jiffies;
1299         wait_panel_off(intel_dp);
1300
1301         /* We got a reference when we enabled the VDD. */
1302         power_domain = intel_display_port_power_domain(intel_encoder);
1303         intel_display_power_put(dev_priv, power_domain);
1304 }
1305
1306 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1307 {
1308         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1309         struct drm_device *dev = intel_dig_port->base.base.dev;
1310         struct drm_i915_private *dev_priv = dev->dev_private;
1311         u32 pp;
1312         u32 pp_ctrl_reg;
1313
1314         if (!is_edp(intel_dp))
1315                 return;
1316
1317         DRM_DEBUG_KMS("\n");
1318         /*
1319          * If we enable the backlight right away following a panel power
1320          * on, we may see slight flicker as the panel syncs with the eDP
1321          * link.  So delay a bit to make sure the image is solid before
1322          * allowing it to appear.
1323          */
1324         wait_backlight_on(intel_dp);
1325         pp = ironlake_get_pp_control(intel_dp);
1326         pp |= EDP_BLC_ENABLE;
1327
1328         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1329
1330         I915_WRITE(pp_ctrl_reg, pp);
1331         POSTING_READ(pp_ctrl_reg);
1332
1333         intel_panel_enable_backlight(intel_dp->attached_connector);
1334 }
1335
1336 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1337 {
1338         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1339         struct drm_i915_private *dev_priv = dev->dev_private;
1340         u32 pp;
1341         u32 pp_ctrl_reg;
1342
1343         if (!is_edp(intel_dp))
1344                 return;
1345
1346         intel_panel_disable_backlight(intel_dp->attached_connector);
1347
1348         DRM_DEBUG_KMS("\n");
1349         pp = ironlake_get_pp_control(intel_dp);
1350         pp &= ~EDP_BLC_ENABLE;
1351
1352         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1353
1354         I915_WRITE(pp_ctrl_reg, pp);
1355         POSTING_READ(pp_ctrl_reg);
1356         intel_dp->last_backlight_off = jiffies;
1357 }
1358
1359 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1360 {
1361         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1362         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1363         struct drm_device *dev = crtc->dev;
1364         struct drm_i915_private *dev_priv = dev->dev_private;
1365         u32 dpa_ctl;
1366
1367         assert_pipe_disabled(dev_priv,
1368                              to_intel_crtc(crtc)->pipe);
1369
1370         DRM_DEBUG_KMS("\n");
1371         dpa_ctl = I915_READ(DP_A);
1372         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1373         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1374
1375         /* We don't adjust intel_dp->DP while tearing down the link, to
1376          * facilitate link retraining (e.g. after hotplug). Hence clear all
1377          * enable bits here to ensure that we don't enable too much. */
1378         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1379         intel_dp->DP |= DP_PLL_ENABLE;
1380         I915_WRITE(DP_A, intel_dp->DP);
1381         POSTING_READ(DP_A);
1382         udelay(200);
1383 }
1384
1385 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1386 {
1387         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1388         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1389         struct drm_device *dev = crtc->dev;
1390         struct drm_i915_private *dev_priv = dev->dev_private;
1391         u32 dpa_ctl;
1392
1393         assert_pipe_disabled(dev_priv,
1394                              to_intel_crtc(crtc)->pipe);
1395
1396         dpa_ctl = I915_READ(DP_A);
1397         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1398              "dp pll off, should be on\n");
1399         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1400
1401         /* We can't rely on the value tracked for the DP register in
1402          * intel_dp->DP because link_down must not change that (otherwise link
1403          * re-training will fail. */
1404         dpa_ctl &= ~DP_PLL_ENABLE;
1405         I915_WRITE(DP_A, dpa_ctl);
1406         POSTING_READ(DP_A);
1407         udelay(200);
1408 }
1409
1410 /* If the sink supports it, try to set the power state appropriately */
1411 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1412 {
1413         int ret, i;
1414
1415         /* Should have a valid DPCD by this point */
1416         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1417                 return;
1418
1419         if (mode != DRM_MODE_DPMS_ON) {
1420                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1421                                          DP_SET_POWER_D3);
1422                 if (ret != 1)
1423                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1424         } else {
1425                 /*
1426                  * When turning on, we need to retry for 1ms to give the sink
1427                  * time to wake up.
1428                  */
1429                 for (i = 0; i < 3; i++) {
1430                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1431                                                  DP_SET_POWER_D0);
1432                         if (ret == 1)
1433                                 break;
1434                         msleep(1);
1435                 }
1436         }
1437 }
1438
1439 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1440                                   enum pipe *pipe)
1441 {
1442         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1443         enum port port = dp_to_dig_port(intel_dp)->port;
1444         struct drm_device *dev = encoder->base.dev;
1445         struct drm_i915_private *dev_priv = dev->dev_private;
1446         enum intel_display_power_domain power_domain;
1447         u32 tmp;
1448
1449         power_domain = intel_display_port_power_domain(encoder);
1450         if (!intel_display_power_enabled(dev_priv, power_domain))
1451                 return false;
1452
1453         tmp = I915_READ(intel_dp->output_reg);
1454
1455         if (!(tmp & DP_PORT_EN))
1456                 return false;
1457
1458         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1459                 *pipe = PORT_TO_PIPE_CPT(tmp);
1460         } else if (IS_CHERRYVIEW(dev)) {
1461                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1462         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1463                 *pipe = PORT_TO_PIPE(tmp);
1464         } else {
1465                 u32 trans_sel;
1466                 u32 trans_dp;
1467                 int i;
1468
1469                 switch (intel_dp->output_reg) {
1470                 case PCH_DP_B:
1471                         trans_sel = TRANS_DP_PORT_SEL_B;
1472                         break;
1473                 case PCH_DP_C:
1474                         trans_sel = TRANS_DP_PORT_SEL_C;
1475                         break;
1476                 case PCH_DP_D:
1477                         trans_sel = TRANS_DP_PORT_SEL_D;
1478                         break;
1479                 default:
1480                         return true;
1481                 }
1482
1483                 for_each_pipe(i) {
1484                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1485                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1486                                 *pipe = i;
1487                                 return true;
1488                         }
1489                 }
1490
1491                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1492                               intel_dp->output_reg);
1493         }
1494
1495         return true;
1496 }
1497
1498 static void intel_dp_get_config(struct intel_encoder *encoder,
1499                                 struct intel_crtc_config *pipe_config)
1500 {
1501         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1502         u32 tmp, flags = 0;
1503         struct drm_device *dev = encoder->base.dev;
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505         enum port port = dp_to_dig_port(intel_dp)->port;
1506         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1507         int dotclock;
1508
1509         tmp = I915_READ(intel_dp->output_reg);
1510         if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1511                 pipe_config->has_audio = true;
1512
1513         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1514                 if (tmp & DP_SYNC_HS_HIGH)
1515                         flags |= DRM_MODE_FLAG_PHSYNC;
1516                 else
1517                         flags |= DRM_MODE_FLAG_NHSYNC;
1518
1519                 if (tmp & DP_SYNC_VS_HIGH)
1520                         flags |= DRM_MODE_FLAG_PVSYNC;
1521                 else
1522                         flags |= DRM_MODE_FLAG_NVSYNC;
1523         } else {
1524                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1525                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1526                         flags |= DRM_MODE_FLAG_PHSYNC;
1527                 else
1528                         flags |= DRM_MODE_FLAG_NHSYNC;
1529
1530                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1531                         flags |= DRM_MODE_FLAG_PVSYNC;
1532                 else
1533                         flags |= DRM_MODE_FLAG_NVSYNC;
1534         }
1535
1536         pipe_config->adjusted_mode.flags |= flags;
1537
1538         pipe_config->has_dp_encoder = true;
1539
1540         intel_dp_get_m_n(crtc, pipe_config);
1541
1542         if (port == PORT_A) {
1543                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1544                         pipe_config->port_clock = 162000;
1545                 else
1546                         pipe_config->port_clock = 270000;
1547         }
1548
1549         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1550                                             &pipe_config->dp_m_n);
1551
1552         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1553                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1554
1555         pipe_config->adjusted_mode.crtc_clock = dotclock;
1556
1557         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1558             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1559                 /*
1560                  * This is a big fat ugly hack.
1561                  *
1562                  * Some machines in UEFI boot mode provide us a VBT that has 18
1563                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1564                  * unknown we fail to light up. Yet the same BIOS boots up with
1565                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1566                  * max, not what it tells us to use.
1567                  *
1568                  * Note: This will still be broken if the eDP panel is not lit
1569                  * up by the BIOS, and thus we can't get the mode at module
1570                  * load.
1571                  */
1572                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1573                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1574                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1575         }
1576 }
1577
1578 static bool is_edp_psr(struct drm_device *dev)
1579 {
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582         return dev_priv->psr.sink_support;
1583 }
1584
1585 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1586 {
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589         if (!HAS_PSR(dev))
1590                 return false;
1591
1592         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1593 }
1594
1595 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1596                                     struct edp_vsc_psr *vsc_psr)
1597 {
1598         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1599         struct drm_device *dev = dig_port->base.base.dev;
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1602         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1603         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1604         uint32_t *data = (uint32_t *) vsc_psr;
1605         unsigned int i;
1606
1607         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1608            the video DIP being updated before program video DIP data buffer
1609            registers for DIP being updated. */
1610         I915_WRITE(ctl_reg, 0);
1611         POSTING_READ(ctl_reg);
1612
1613         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1614                 if (i < sizeof(struct edp_vsc_psr))
1615                         I915_WRITE(data_reg + i, *data++);
1616                 else
1617                         I915_WRITE(data_reg + i, 0);
1618         }
1619
1620         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1621         POSTING_READ(ctl_reg);
1622 }
1623
1624 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1625 {
1626         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1627         struct drm_i915_private *dev_priv = dev->dev_private;
1628         struct edp_vsc_psr psr_vsc;
1629
1630         if (intel_dp->psr_setup_done)
1631                 return;
1632
1633         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1634         memset(&psr_vsc, 0, sizeof(psr_vsc));
1635         psr_vsc.sdp_header.HB0 = 0;
1636         psr_vsc.sdp_header.HB1 = 0x7;
1637         psr_vsc.sdp_header.HB2 = 0x2;
1638         psr_vsc.sdp_header.HB3 = 0x8;
1639         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1640
1641         /* Avoid continuous PSR exit by masking memup and hpd */
1642         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1643                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1644
1645         intel_dp->psr_setup_done = true;
1646 }
1647
1648 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1649 {
1650         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652         uint32_t aux_clock_divider;
1653         int precharge = 0x3;
1654         int msg_size = 5;       /* Header(4) + Message(1) */
1655
1656         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1657
1658         /* Enable PSR in sink */
1659         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1660                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1661                                    DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1662         else
1663                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1664                                    DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1665
1666         /* Setup AUX registers */
1667         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1668         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1669         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1670                    DP_AUX_CH_CTL_TIME_OUT_400us |
1671                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1672                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1673                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1674 }
1675
1676 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1677 {
1678         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1679         struct drm_i915_private *dev_priv = dev->dev_private;
1680         uint32_t max_sleep_time = 0x1f;
1681         uint32_t idle_frames = 1;
1682         uint32_t val = 0x0;
1683         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1684
1685         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1686                 val |= EDP_PSR_LINK_STANDBY;
1687                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1688                 val |= EDP_PSR_TP1_TIME_0us;
1689                 val |= EDP_PSR_SKIP_AUX_EXIT;
1690         } else
1691                 val |= EDP_PSR_LINK_DISABLE;
1692
1693         I915_WRITE(EDP_PSR_CTL(dev), val |
1694                    (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1695                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1696                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1697                    EDP_PSR_ENABLE);
1698 }
1699
1700 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1701 {
1702         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1703         struct drm_device *dev = dig_port->base.base.dev;
1704         struct drm_i915_private *dev_priv = dev->dev_private;
1705         struct drm_crtc *crtc = dig_port->base.base.crtc;
1706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1707         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1708         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1709
1710         dev_priv->psr.source_ok = false;
1711
1712         if (!HAS_PSR(dev)) {
1713                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1714                 return false;
1715         }
1716
1717         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1718             (dig_port->port != PORT_A)) {
1719                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1720                 return false;
1721         }
1722
1723         if (!i915.enable_psr) {
1724                 DRM_DEBUG_KMS("PSR disable by flag\n");
1725                 return false;
1726         }
1727
1728         crtc = dig_port->base.base.crtc;
1729         if (crtc == NULL) {
1730                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1731                 return false;
1732         }
1733
1734         intel_crtc = to_intel_crtc(crtc);
1735         if (!intel_crtc_active(crtc)) {
1736                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1737                 return false;
1738         }
1739
1740         obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1741         if (obj->tiling_mode != I915_TILING_X ||
1742             obj->fence_reg == I915_FENCE_REG_NONE) {
1743                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1744                 return false;
1745         }
1746
1747         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1748                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1749                 return false;
1750         }
1751
1752         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1753             S3D_ENABLE) {
1754                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1755                 return false;
1756         }
1757
1758         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1759                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1760                 return false;
1761         }
1762
1763         dev_priv->psr.source_ok = true;
1764         return true;
1765 }
1766
1767 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1768 {
1769         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1770
1771         if (!intel_edp_psr_match_conditions(intel_dp) ||
1772             intel_edp_is_psr_enabled(dev))
1773                 return;
1774
1775         /* Setup PSR once */
1776         intel_edp_psr_setup(intel_dp);
1777
1778         /* Enable PSR on the panel */
1779         intel_edp_psr_enable_sink(intel_dp);
1780
1781         /* Enable PSR on the host */
1782         intel_edp_psr_enable_source(intel_dp);
1783 }
1784
1785 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1786 {
1787         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1788
1789         if (intel_edp_psr_match_conditions(intel_dp) &&
1790             !intel_edp_is_psr_enabled(dev))
1791                 intel_edp_psr_do_enable(intel_dp);
1792 }
1793
1794 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1795 {
1796         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1797         struct drm_i915_private *dev_priv = dev->dev_private;
1798
1799         if (!intel_edp_is_psr_enabled(dev))
1800                 return;
1801
1802         I915_WRITE(EDP_PSR_CTL(dev),
1803                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1804
1805         /* Wait till PSR is idle */
1806         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1807                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1808                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1809 }
1810
1811 void intel_edp_psr_update(struct drm_device *dev)
1812 {
1813         struct intel_encoder *encoder;
1814         struct intel_dp *intel_dp = NULL;
1815
1816         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1817                 if (encoder->type == INTEL_OUTPUT_EDP) {
1818                         intel_dp = enc_to_intel_dp(&encoder->base);
1819
1820                         if (!is_edp_psr(dev))
1821                                 return;
1822
1823                         if (!intel_edp_psr_match_conditions(intel_dp))
1824                                 intel_edp_psr_disable(intel_dp);
1825                         else
1826                                 if (!intel_edp_is_psr_enabled(dev))
1827                                         intel_edp_psr_do_enable(intel_dp);
1828                 }
1829 }
1830
1831 static void intel_disable_dp(struct intel_encoder *encoder)
1832 {
1833         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1834         enum port port = dp_to_dig_port(intel_dp)->port;
1835         struct drm_device *dev = encoder->base.dev;
1836
1837         /* Make sure the panel is off before trying to change the mode. But also
1838          * ensure that we have vdd while we switch off the panel. */
1839         intel_edp_panel_vdd_on(intel_dp);
1840         intel_edp_backlight_off(intel_dp);
1841         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1842         intel_edp_panel_off(intel_dp);
1843
1844         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1845         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1846                 intel_dp_link_down(intel_dp);
1847 }
1848
1849 static void g4x_post_disable_dp(struct intel_encoder *encoder)
1850 {
1851         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1852         enum port port = dp_to_dig_port(intel_dp)->port;
1853
1854         if (port != PORT_A)
1855                 return;
1856
1857         intel_dp_link_down(intel_dp);
1858         ironlake_edp_pll_off(intel_dp);
1859 }
1860
1861 static void vlv_post_disable_dp(struct intel_encoder *encoder)
1862 {
1863         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1864
1865         intel_dp_link_down(intel_dp);
1866 }
1867
1868 static void chv_post_disable_dp(struct intel_encoder *encoder)
1869 {
1870         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1871         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1872         struct drm_device *dev = encoder->base.dev;
1873         struct drm_i915_private *dev_priv = dev->dev_private;
1874         struct intel_crtc *intel_crtc =
1875                 to_intel_crtc(encoder->base.crtc);
1876         enum dpio_channel ch = vlv_dport_to_channel(dport);
1877         enum pipe pipe = intel_crtc->pipe;
1878         u32 val;
1879
1880         intel_dp_link_down(intel_dp);
1881
1882         mutex_lock(&dev_priv->dpio_lock);
1883
1884         /* Propagate soft reset to data lane reset */
1885         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW1(ch));
1886         val |= CHV_PCS_REQ_SOFTRESET_EN;
1887         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(ch), val);
1888
1889         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(ch));
1890         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1891         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(ch), val);
1892
1893         mutex_unlock(&dev_priv->dpio_lock);
1894 }
1895
1896 static void intel_enable_dp(struct intel_encoder *encoder)
1897 {
1898         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1899         struct drm_device *dev = encoder->base.dev;
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1902
1903         if (WARN_ON(dp_reg & DP_PORT_EN))
1904                 return;
1905
1906         intel_edp_panel_vdd_on(intel_dp);
1907         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1908         intel_dp_start_link_train(intel_dp);
1909         intel_edp_panel_on(intel_dp);
1910         edp_panel_vdd_off(intel_dp, true);
1911         intel_dp_complete_link_train(intel_dp);
1912         intel_dp_stop_link_train(intel_dp);
1913 }
1914
1915 static void g4x_enable_dp(struct intel_encoder *encoder)
1916 {
1917         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1918
1919         intel_enable_dp(encoder);
1920         intel_edp_backlight_on(intel_dp);
1921 }
1922
1923 static void vlv_enable_dp(struct intel_encoder *encoder)
1924 {
1925         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1926
1927         intel_edp_backlight_on(intel_dp);
1928 }
1929
1930 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1931 {
1932         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1933         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1934
1935         intel_dp_prepare(encoder);
1936
1937         /* Only ilk+ has port A */
1938         if (dport->port == PORT_A) {
1939                 ironlake_set_pll_cpu_edp(intel_dp);
1940                 ironlake_edp_pll_on(intel_dp);
1941         }
1942 }
1943
1944 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1945 {
1946         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1947         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1948         struct drm_device *dev = encoder->base.dev;
1949         struct drm_i915_private *dev_priv = dev->dev_private;
1950         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1951         enum dpio_channel port = vlv_dport_to_channel(dport);
1952         int pipe = intel_crtc->pipe;
1953         struct edp_power_seq power_seq;
1954         u32 val;
1955
1956         mutex_lock(&dev_priv->dpio_lock);
1957
1958         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1959         val = 0;
1960         if (pipe)
1961                 val |= (1<<21);
1962         else
1963                 val &= ~(1<<21);
1964         val |= 0x001000c4;
1965         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1966         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1967         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1968
1969         mutex_unlock(&dev_priv->dpio_lock);
1970
1971         if (is_edp(intel_dp)) {
1972                 /* init power sequencer on this pipe and port */
1973                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1974                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1975                                                               &power_seq);
1976         }
1977
1978         intel_enable_dp(encoder);
1979
1980         vlv_wait_port_ready(dev_priv, dport);
1981 }
1982
1983 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1984 {
1985         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1986         struct drm_device *dev = encoder->base.dev;
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         struct intel_crtc *intel_crtc =
1989                 to_intel_crtc(encoder->base.crtc);
1990         enum dpio_channel port = vlv_dport_to_channel(dport);
1991         int pipe = intel_crtc->pipe;
1992
1993         intel_dp_prepare(encoder);
1994
1995         /* Program Tx lane resets to default */
1996         mutex_lock(&dev_priv->dpio_lock);
1997         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1998                          DPIO_PCS_TX_LANE2_RESET |
1999                          DPIO_PCS_TX_LANE1_RESET);
2000         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2001                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2002                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2003                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2004                                  DPIO_PCS_CLK_SOFT_RESET);
2005
2006         /* Fix up inter-pair skew failure */
2007         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2008         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2009         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2010         mutex_unlock(&dev_priv->dpio_lock);
2011 }
2012
2013 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2014 {
2015         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2016         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2017         struct drm_device *dev = encoder->base.dev;
2018         struct drm_i915_private *dev_priv = dev->dev_private;
2019         struct edp_power_seq power_seq;
2020         struct intel_crtc *intel_crtc =
2021                 to_intel_crtc(encoder->base.crtc);
2022         enum dpio_channel ch = vlv_dport_to_channel(dport);
2023         int pipe = intel_crtc->pipe;
2024         int data, i;
2025         u32 val;
2026
2027         mutex_lock(&dev_priv->dpio_lock);
2028
2029         /* Deassert soft data lane reset*/
2030         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW1(ch));
2031         val |= CHV_PCS_REQ_SOFTRESET_EN;
2032         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(ch), val);
2033
2034         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS_DW0(ch));
2035         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2036         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(ch), val);
2037
2038         /* Program Tx lane latency optimal setting*/
2039         for (i = 0; i < 4; i++) {
2040                 /* Set the latency optimal bit */
2041                 data = (i == 1) ? 0x0 : 0x6;
2042                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2043                                 data << DPIO_FRC_LATENCY_SHFIT);
2044
2045                 /* Set the upar bit */
2046                 data = (i == 1) ? 0x0 : 0x1;
2047                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2048                                 data << DPIO_UPAR_SHIFT);
2049         }
2050
2051         /* Data lane stagger programming */
2052         /* FIXME: Fix up value only after power analysis */
2053
2054         mutex_unlock(&dev_priv->dpio_lock);
2055
2056         if (is_edp(intel_dp)) {
2057                 /* init power sequencer on this pipe and port */
2058                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2059                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2060                                                               &power_seq);
2061         }
2062
2063         intel_enable_dp(encoder);
2064
2065         vlv_wait_port_ready(dev_priv, dport);
2066 }
2067
2068 /*
2069  * Native read with retry for link status and receiver capability reads for
2070  * cases where the sink may still be asleep.
2071  *
2072  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2073  * supposed to retry 3 times per the spec.
2074  */
2075 static ssize_t
2076 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2077                         void *buffer, size_t size)
2078 {
2079         ssize_t ret;
2080         int i;
2081
2082         for (i = 0; i < 3; i++) {
2083                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2084                 if (ret == size)
2085                         return ret;
2086                 msleep(1);
2087         }
2088
2089         return ret;
2090 }
2091
2092 /*
2093  * Fetch AUX CH registers 0x202 - 0x207 which contain
2094  * link status information
2095  */
2096 static bool
2097 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2098 {
2099         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2100                                        DP_LANE0_1_STATUS,
2101                                        link_status,
2102                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2103 }
2104
2105 /*
2106  * These are source-specific values; current Intel hardware supports
2107  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2108  */
2109
2110 static uint8_t
2111 intel_dp_voltage_max(struct intel_dp *intel_dp)
2112 {
2113         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2114         enum port port = dp_to_dig_port(intel_dp)->port;
2115
2116         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2117                 return DP_TRAIN_VOLTAGE_SWING_1200;
2118         else if (IS_GEN7(dev) && port == PORT_A)
2119                 return DP_TRAIN_VOLTAGE_SWING_800;
2120         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2121                 return DP_TRAIN_VOLTAGE_SWING_1200;
2122         else
2123                 return DP_TRAIN_VOLTAGE_SWING_800;
2124 }
2125
2126 static uint8_t
2127 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2128 {
2129         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2130         enum port port = dp_to_dig_port(intel_dp)->port;
2131
2132         if (IS_BROADWELL(dev)) {
2133                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2134                 case DP_TRAIN_VOLTAGE_SWING_400:
2135                 case DP_TRAIN_VOLTAGE_SWING_600:
2136                         return DP_TRAIN_PRE_EMPHASIS_6;
2137                 case DP_TRAIN_VOLTAGE_SWING_800:
2138                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2139                 case DP_TRAIN_VOLTAGE_SWING_1200:
2140                 default:
2141                         return DP_TRAIN_PRE_EMPHASIS_0;
2142                 }
2143         } else if (IS_HASWELL(dev)) {
2144                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2145                 case DP_TRAIN_VOLTAGE_SWING_400:
2146                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2147                 case DP_TRAIN_VOLTAGE_SWING_600:
2148                         return DP_TRAIN_PRE_EMPHASIS_6;
2149                 case DP_TRAIN_VOLTAGE_SWING_800:
2150                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2151                 case DP_TRAIN_VOLTAGE_SWING_1200:
2152                 default:
2153                         return DP_TRAIN_PRE_EMPHASIS_0;
2154                 }
2155         } else if (IS_VALLEYVIEW(dev)) {
2156                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2157                 case DP_TRAIN_VOLTAGE_SWING_400:
2158                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2159                 case DP_TRAIN_VOLTAGE_SWING_600:
2160                         return DP_TRAIN_PRE_EMPHASIS_6;
2161                 case DP_TRAIN_VOLTAGE_SWING_800:
2162                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2163                 case DP_TRAIN_VOLTAGE_SWING_1200:
2164                 default:
2165                         return DP_TRAIN_PRE_EMPHASIS_0;
2166                 }
2167         } else if (IS_GEN7(dev) && port == PORT_A) {
2168                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2169                 case DP_TRAIN_VOLTAGE_SWING_400:
2170                         return DP_TRAIN_PRE_EMPHASIS_6;
2171                 case DP_TRAIN_VOLTAGE_SWING_600:
2172                 case DP_TRAIN_VOLTAGE_SWING_800:
2173                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2174                 default:
2175                         return DP_TRAIN_PRE_EMPHASIS_0;
2176                 }
2177         } else {
2178                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2179                 case DP_TRAIN_VOLTAGE_SWING_400:
2180                         return DP_TRAIN_PRE_EMPHASIS_6;
2181                 case DP_TRAIN_VOLTAGE_SWING_600:
2182                         return DP_TRAIN_PRE_EMPHASIS_6;
2183                 case DP_TRAIN_VOLTAGE_SWING_800:
2184                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2185                 case DP_TRAIN_VOLTAGE_SWING_1200:
2186                 default:
2187                         return DP_TRAIN_PRE_EMPHASIS_0;
2188                 }
2189         }
2190 }
2191
2192 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2193 {
2194         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2195         struct drm_i915_private *dev_priv = dev->dev_private;
2196         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2197         struct intel_crtc *intel_crtc =
2198                 to_intel_crtc(dport->base.base.crtc);
2199         unsigned long demph_reg_value, preemph_reg_value,
2200                 uniqtranscale_reg_value;
2201         uint8_t train_set = intel_dp->train_set[0];
2202         enum dpio_channel port = vlv_dport_to_channel(dport);
2203         int pipe = intel_crtc->pipe;
2204
2205         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2206         case DP_TRAIN_PRE_EMPHASIS_0:
2207                 preemph_reg_value = 0x0004000;
2208                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2209                 case DP_TRAIN_VOLTAGE_SWING_400:
2210                         demph_reg_value = 0x2B405555;
2211                         uniqtranscale_reg_value = 0x552AB83A;
2212                         break;
2213                 case DP_TRAIN_VOLTAGE_SWING_600:
2214                         demph_reg_value = 0x2B404040;
2215                         uniqtranscale_reg_value = 0x5548B83A;
2216                         break;
2217                 case DP_TRAIN_VOLTAGE_SWING_800:
2218                         demph_reg_value = 0x2B245555;
2219                         uniqtranscale_reg_value = 0x5560B83A;
2220                         break;
2221                 case DP_TRAIN_VOLTAGE_SWING_1200:
2222                         demph_reg_value = 0x2B405555;
2223                         uniqtranscale_reg_value = 0x5598DA3A;
2224                         break;
2225                 default:
2226                         return 0;
2227                 }
2228                 break;
2229         case DP_TRAIN_PRE_EMPHASIS_3_5:
2230                 preemph_reg_value = 0x0002000;
2231                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2232                 case DP_TRAIN_VOLTAGE_SWING_400:
2233                         demph_reg_value = 0x2B404040;
2234                         uniqtranscale_reg_value = 0x5552B83A;
2235                         break;
2236                 case DP_TRAIN_VOLTAGE_SWING_600:
2237                         demph_reg_value = 0x2B404848;
2238                         uniqtranscale_reg_value = 0x5580B83A;
2239                         break;
2240                 case DP_TRAIN_VOLTAGE_SWING_800:
2241                         demph_reg_value = 0x2B404040;
2242                         uniqtranscale_reg_value = 0x55ADDA3A;
2243                         break;
2244                 default:
2245                         return 0;
2246                 }
2247                 break;
2248         case DP_TRAIN_PRE_EMPHASIS_6:
2249                 preemph_reg_value = 0x0000000;
2250                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2251                 case DP_TRAIN_VOLTAGE_SWING_400:
2252                         demph_reg_value = 0x2B305555;
2253                         uniqtranscale_reg_value = 0x5570B83A;
2254                         break;
2255                 case DP_TRAIN_VOLTAGE_SWING_600:
2256                         demph_reg_value = 0x2B2B4040;
2257                         uniqtranscale_reg_value = 0x55ADDA3A;
2258                         break;
2259                 default:
2260                         return 0;
2261                 }
2262                 break;
2263         case DP_TRAIN_PRE_EMPHASIS_9_5:
2264                 preemph_reg_value = 0x0006000;
2265                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2266                 case DP_TRAIN_VOLTAGE_SWING_400:
2267                         demph_reg_value = 0x1B405555;
2268                         uniqtranscale_reg_value = 0x55ADDA3A;
2269                         break;
2270                 default:
2271                         return 0;
2272                 }
2273                 break;
2274         default:
2275                 return 0;
2276         }
2277
2278         mutex_lock(&dev_priv->dpio_lock);
2279         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2280         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2281         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2282                          uniqtranscale_reg_value);
2283         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2284         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2285         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2286         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2287         mutex_unlock(&dev_priv->dpio_lock);
2288
2289         return 0;
2290 }
2291
2292 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2293 {
2294         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2295         struct drm_i915_private *dev_priv = dev->dev_private;
2296         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2297         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2298         u32 deemph_reg_value, margin_reg_value, val, tx_dw2;
2299         uint8_t train_set = intel_dp->train_set[0];
2300         enum dpio_channel ch = vlv_dport_to_channel(dport);
2301         int pipe = intel_crtc->pipe;
2302
2303         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2304         case DP_TRAIN_PRE_EMPHASIS_0:
2305                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2306                 case DP_TRAIN_VOLTAGE_SWING_400:
2307                         deemph_reg_value = 128;
2308                         margin_reg_value = 52;
2309                         break;
2310                 case DP_TRAIN_VOLTAGE_SWING_600:
2311                         deemph_reg_value = 128;
2312                         margin_reg_value = 77;
2313                         break;
2314                 case DP_TRAIN_VOLTAGE_SWING_800:
2315                         deemph_reg_value = 128;
2316                         margin_reg_value = 102;
2317                         break;
2318                 case DP_TRAIN_VOLTAGE_SWING_1200:
2319                         deemph_reg_value = 128;
2320                         margin_reg_value = 154;
2321                         /* FIXME extra to set for 1200 */
2322                         break;
2323                 default:
2324                         return 0;
2325                 }
2326                 break;
2327         case DP_TRAIN_PRE_EMPHASIS_3_5:
2328                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2329                 case DP_TRAIN_VOLTAGE_SWING_400:
2330                         deemph_reg_value = 85;
2331                         margin_reg_value = 78;
2332                         break;
2333                 case DP_TRAIN_VOLTAGE_SWING_600:
2334                         deemph_reg_value = 85;
2335                         margin_reg_value = 116;
2336                         break;
2337                 case DP_TRAIN_VOLTAGE_SWING_800:
2338                         deemph_reg_value = 85;
2339                         margin_reg_value = 154;
2340                         break;
2341                 default:
2342                         return 0;
2343                 }
2344                 break;
2345         case DP_TRAIN_PRE_EMPHASIS_6:
2346                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2347                 case DP_TRAIN_VOLTAGE_SWING_400:
2348                         deemph_reg_value = 64;
2349                         margin_reg_value = 104;
2350                         break;
2351                 case DP_TRAIN_VOLTAGE_SWING_600:
2352                         deemph_reg_value = 64;
2353                         margin_reg_value = 154;
2354                         break;
2355                 default:
2356                         return 0;
2357                 }
2358                 break;
2359         case DP_TRAIN_PRE_EMPHASIS_9_5:
2360                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2361                 case DP_TRAIN_VOLTAGE_SWING_400:
2362                         deemph_reg_value = 43;
2363                         margin_reg_value = 154;
2364                         break;
2365                 default:
2366                         return 0;
2367                 }
2368                 break;
2369         default:
2370                 return 0;
2371         }
2372
2373         mutex_lock(&dev_priv->dpio_lock);
2374
2375         /* Clear calc init */
2376         vlv_dpio_write(dev_priv, pipe, CHV_PCS_DW10(ch), 0);
2377
2378         /* Program swing deemph */
2379         val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW4(ch));
2380         val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2381         val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2382         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(ch), val);
2383
2384         /* Program swing margin */
2385         tx_dw2 = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch));
2386         tx_dw2 &= ~DPIO_SWING_MARGIN_MASK;
2387         tx_dw2 |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2388         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch), tx_dw2);
2389
2390         /* Disable unique transition scale */
2391         val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
2392         val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2393         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
2394
2395         if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2396                         == DP_TRAIN_PRE_EMPHASIS_0) &&
2397                 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2398                         == DP_TRAIN_VOLTAGE_SWING_1200)) {
2399
2400                 /*
2401                  * The document said it needs to set bit 27 for ch0 and bit 26
2402                  * for ch1. Might be a typo in the doc.
2403                  * For now, for this unique transition scale selection, set bit
2404                  * 27 for ch0 and ch1.
2405                  */
2406                 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
2407                 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2408                 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
2409
2410                 tx_dw2 |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2411                 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch), tx_dw2);
2412         }
2413
2414         /* Start swing calculation */
2415         vlv_dpio_write(dev_priv, pipe, CHV_PCS_DW10(ch),
2416                 (DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3));
2417
2418         /* LRC Bypass */
2419         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2420         val |= DPIO_LRC_BYPASS;
2421         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2422
2423         mutex_unlock(&dev_priv->dpio_lock);
2424
2425         return 0;
2426 }
2427
2428 static void
2429 intel_get_adjust_train(struct intel_dp *intel_dp,
2430                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2431 {
2432         uint8_t v = 0;
2433         uint8_t p = 0;
2434         int lane;
2435         uint8_t voltage_max;
2436         uint8_t preemph_max;
2437
2438         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2439                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2440                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2441
2442                 if (this_v > v)
2443                         v = this_v;
2444                 if (this_p > p)
2445                         p = this_p;
2446         }
2447
2448         voltage_max = intel_dp_voltage_max(intel_dp);
2449         if (v >= voltage_max)
2450                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2451
2452         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2453         if (p >= preemph_max)
2454                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2455
2456         for (lane = 0; lane < 4; lane++)
2457                 intel_dp->train_set[lane] = v | p;
2458 }
2459
2460 static uint32_t
2461 intel_gen4_signal_levels(uint8_t train_set)
2462 {
2463         uint32_t        signal_levels = 0;
2464
2465         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2466         case DP_TRAIN_VOLTAGE_SWING_400:
2467         default:
2468                 signal_levels |= DP_VOLTAGE_0_4;
2469                 break;
2470         case DP_TRAIN_VOLTAGE_SWING_600:
2471                 signal_levels |= DP_VOLTAGE_0_6;
2472                 break;
2473         case DP_TRAIN_VOLTAGE_SWING_800:
2474                 signal_levels |= DP_VOLTAGE_0_8;
2475                 break;
2476         case DP_TRAIN_VOLTAGE_SWING_1200:
2477                 signal_levels |= DP_VOLTAGE_1_2;
2478                 break;
2479         }
2480         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2481         case DP_TRAIN_PRE_EMPHASIS_0:
2482         default:
2483                 signal_levels |= DP_PRE_EMPHASIS_0;
2484                 break;
2485         case DP_TRAIN_PRE_EMPHASIS_3_5:
2486                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2487                 break;
2488         case DP_TRAIN_PRE_EMPHASIS_6:
2489                 signal_levels |= DP_PRE_EMPHASIS_6;
2490                 break;
2491         case DP_TRAIN_PRE_EMPHASIS_9_5:
2492                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2493                 break;
2494         }
2495         return signal_levels;
2496 }
2497
2498 /* Gen6's DP voltage swing and pre-emphasis control */
2499 static uint32_t
2500 intel_gen6_edp_signal_levels(uint8_t train_set)
2501 {
2502         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2503                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2504         switch (signal_levels) {
2505         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2506         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2507                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2508         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2509                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2510         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2511         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2512                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2513         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2514         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2515                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2516         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2517         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2518                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2519         default:
2520                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2521                               "0x%x\n", signal_levels);
2522                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2523         }
2524 }
2525
2526 /* Gen7's DP voltage swing and pre-emphasis control */
2527 static uint32_t
2528 intel_gen7_edp_signal_levels(uint8_t train_set)
2529 {
2530         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2531                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2532         switch (signal_levels) {
2533         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2534                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2535         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2536                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2537         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2538                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2539
2540         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2541                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2542         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2543                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2544
2545         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2546                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2547         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2548                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2549
2550         default:
2551                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2552                               "0x%x\n", signal_levels);
2553                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2554         }
2555 }
2556
2557 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2558 static uint32_t
2559 intel_hsw_signal_levels(uint8_t train_set)
2560 {
2561         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2562                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2563         switch (signal_levels) {
2564         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2565                 return DDI_BUF_EMP_400MV_0DB_HSW;
2566         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2567                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2568         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2569                 return DDI_BUF_EMP_400MV_6DB_HSW;
2570         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2571                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2572
2573         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2574                 return DDI_BUF_EMP_600MV_0DB_HSW;
2575         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2576                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2577         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2578                 return DDI_BUF_EMP_600MV_6DB_HSW;
2579
2580         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2581                 return DDI_BUF_EMP_800MV_0DB_HSW;
2582         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2583                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2584         default:
2585                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2586                               "0x%x\n", signal_levels);
2587                 return DDI_BUF_EMP_400MV_0DB_HSW;
2588         }
2589 }
2590
2591 static uint32_t
2592 intel_bdw_signal_levels(uint8_t train_set)
2593 {
2594         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2595                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2596         switch (signal_levels) {
2597         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2598                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2599         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2600                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2601         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2602                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2603
2604         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2605                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2606         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2607                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2608         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2609                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2610
2611         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2612                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2613         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2614                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2615
2616         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2617                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2618
2619         default:
2620                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2621                               "0x%x\n", signal_levels);
2622                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2623         }
2624 }
2625
2626 /* Properly updates "DP" with the correct signal levels. */
2627 static void
2628 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2629 {
2630         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2631         enum port port = intel_dig_port->port;
2632         struct drm_device *dev = intel_dig_port->base.base.dev;
2633         uint32_t signal_levels, mask;
2634         uint8_t train_set = intel_dp->train_set[0];
2635
2636         if (IS_BROADWELL(dev)) {
2637                 signal_levels = intel_bdw_signal_levels(train_set);
2638                 mask = DDI_BUF_EMP_MASK;
2639         } else if (IS_HASWELL(dev)) {
2640                 signal_levels = intel_hsw_signal_levels(train_set);
2641                 mask = DDI_BUF_EMP_MASK;
2642         } else if (IS_CHERRYVIEW(dev)) {
2643                 signal_levels = intel_chv_signal_levels(intel_dp);
2644                 mask = 0;
2645         } else if (IS_VALLEYVIEW(dev)) {
2646                 signal_levels = intel_vlv_signal_levels(intel_dp);
2647                 mask = 0;
2648         } else if (IS_GEN7(dev) && port == PORT_A) {
2649                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2650                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2651         } else if (IS_GEN6(dev) && port == PORT_A) {
2652                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2653                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2654         } else {
2655                 signal_levels = intel_gen4_signal_levels(train_set);
2656                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2657         }
2658
2659         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2660
2661         *DP = (*DP & ~mask) | signal_levels;
2662 }
2663
2664 static bool
2665 intel_dp_set_link_train(struct intel_dp *intel_dp,
2666                         uint32_t *DP,
2667                         uint8_t dp_train_pat)
2668 {
2669         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2670         struct drm_device *dev = intel_dig_port->base.base.dev;
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         enum port port = intel_dig_port->port;
2673         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2674         int ret, len;
2675
2676         if (HAS_DDI(dev)) {
2677                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2678
2679                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2680                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2681                 else
2682                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2683
2684                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2685                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2686                 case DP_TRAINING_PATTERN_DISABLE:
2687                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2688
2689                         break;
2690                 case DP_TRAINING_PATTERN_1:
2691                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2692                         break;
2693                 case DP_TRAINING_PATTERN_2:
2694                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2695                         break;
2696                 case DP_TRAINING_PATTERN_3:
2697                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2698                         break;
2699                 }
2700                 I915_WRITE(DP_TP_CTL(port), temp);
2701
2702         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2703                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2704
2705                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2706                 case DP_TRAINING_PATTERN_DISABLE:
2707                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2708                         break;
2709                 case DP_TRAINING_PATTERN_1:
2710                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2711                         break;
2712                 case DP_TRAINING_PATTERN_2:
2713                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2714                         break;
2715                 case DP_TRAINING_PATTERN_3:
2716                         DRM_ERROR("DP training pattern 3 not supported\n");
2717                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2718                         break;
2719                 }
2720
2721         } else {
2722                 *DP &= ~DP_LINK_TRAIN_MASK;
2723
2724                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2725                 case DP_TRAINING_PATTERN_DISABLE:
2726                         *DP |= DP_LINK_TRAIN_OFF;
2727                         break;
2728                 case DP_TRAINING_PATTERN_1:
2729                         *DP |= DP_LINK_TRAIN_PAT_1;
2730                         break;
2731                 case DP_TRAINING_PATTERN_2:
2732                         *DP |= DP_LINK_TRAIN_PAT_2;
2733                         break;
2734                 case DP_TRAINING_PATTERN_3:
2735                         DRM_ERROR("DP training pattern 3 not supported\n");
2736                         *DP |= DP_LINK_TRAIN_PAT_2;
2737                         break;
2738                 }
2739         }
2740
2741         I915_WRITE(intel_dp->output_reg, *DP);
2742         POSTING_READ(intel_dp->output_reg);
2743
2744         buf[0] = dp_train_pat;
2745         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2746             DP_TRAINING_PATTERN_DISABLE) {
2747                 /* don't write DP_TRAINING_LANEx_SET on disable */
2748                 len = 1;
2749         } else {
2750                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2751                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2752                 len = intel_dp->lane_count + 1;
2753         }
2754
2755         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2756                                 buf, len);
2757
2758         return ret == len;
2759 }
2760
2761 static bool
2762 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2763                         uint8_t dp_train_pat)
2764 {
2765         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2766         intel_dp_set_signal_levels(intel_dp, DP);
2767         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2768 }
2769
2770 static bool
2771 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2772                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2773 {
2774         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2775         struct drm_device *dev = intel_dig_port->base.base.dev;
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         int ret;
2778
2779         intel_get_adjust_train(intel_dp, link_status);
2780         intel_dp_set_signal_levels(intel_dp, DP);
2781
2782         I915_WRITE(intel_dp->output_reg, *DP);
2783         POSTING_READ(intel_dp->output_reg);
2784
2785         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2786                                 intel_dp->train_set, intel_dp->lane_count);
2787
2788         return ret == intel_dp->lane_count;
2789 }
2790
2791 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2792 {
2793         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2794         struct drm_device *dev = intel_dig_port->base.base.dev;
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         enum port port = intel_dig_port->port;
2797         uint32_t val;
2798
2799         if (!HAS_DDI(dev))
2800                 return;
2801
2802         val = I915_READ(DP_TP_CTL(port));
2803         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2804         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2805         I915_WRITE(DP_TP_CTL(port), val);
2806
2807         /*
2808          * On PORT_A we can have only eDP in SST mode. There the only reason
2809          * we need to set idle transmission mode is to work around a HW issue
2810          * where we enable the pipe while not in idle link-training mode.
2811          * In this case there is requirement to wait for a minimum number of
2812          * idle patterns to be sent.
2813          */
2814         if (port == PORT_A)
2815                 return;
2816
2817         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2818                      1))
2819                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2820 }
2821
2822 /* Enable corresponding port and start training pattern 1 */
2823 void
2824 intel_dp_start_link_train(struct intel_dp *intel_dp)
2825 {
2826         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2827         struct drm_device *dev = encoder->dev;
2828         int i;
2829         uint8_t voltage;
2830         int voltage_tries, loop_tries;
2831         uint32_t DP = intel_dp->DP;
2832         uint8_t link_config[2];
2833
2834         if (HAS_DDI(dev))
2835                 intel_ddi_prepare_link_retrain(encoder);
2836
2837         /* Write the link configuration data */
2838         link_config[0] = intel_dp->link_bw;
2839         link_config[1] = intel_dp->lane_count;
2840         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2841                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2842         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2843
2844         link_config[0] = 0;
2845         link_config[1] = DP_SET_ANSI_8B10B;
2846         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2847
2848         DP |= DP_PORT_EN;
2849
2850         /* clock recovery */
2851         if (!intel_dp_reset_link_train(intel_dp, &DP,
2852                                        DP_TRAINING_PATTERN_1 |
2853                                        DP_LINK_SCRAMBLING_DISABLE)) {
2854                 DRM_ERROR("failed to enable link training\n");
2855                 return;
2856         }
2857
2858         voltage = 0xff;
2859         voltage_tries = 0;
2860         loop_tries = 0;
2861         for (;;) {
2862                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2863
2864                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2865                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2866                         DRM_ERROR("failed to get link status\n");
2867                         break;
2868                 }
2869
2870                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2871                         DRM_DEBUG_KMS("clock recovery OK\n");
2872                         break;
2873                 }
2874
2875                 /* Check to see if we've tried the max voltage */
2876                 for (i = 0; i < intel_dp->lane_count; i++)
2877                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2878                                 break;
2879                 if (i == intel_dp->lane_count) {
2880                         ++loop_tries;
2881                         if (loop_tries == 5) {
2882                                 DRM_ERROR("too many full retries, give up\n");
2883                                 break;
2884                         }
2885                         intel_dp_reset_link_train(intel_dp, &DP,
2886                                                   DP_TRAINING_PATTERN_1 |
2887                                                   DP_LINK_SCRAMBLING_DISABLE);
2888                         voltage_tries = 0;
2889                         continue;
2890                 }
2891
2892                 /* Check to see if we've tried the same voltage 5 times */
2893                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2894                         ++voltage_tries;
2895                         if (voltage_tries == 5) {
2896                                 DRM_ERROR("too many voltage retries, give up\n");
2897                                 break;
2898                         }
2899                 } else
2900                         voltage_tries = 0;
2901                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2902
2903                 /* Update training set as requested by target */
2904                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2905                         DRM_ERROR("failed to update link training\n");
2906                         break;
2907                 }
2908         }
2909
2910         intel_dp->DP = DP;
2911 }
2912
2913 void
2914 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2915 {
2916         bool channel_eq = false;
2917         int tries, cr_tries;
2918         uint32_t DP = intel_dp->DP;
2919         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2920
2921         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2922         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2923                 training_pattern = DP_TRAINING_PATTERN_3;
2924
2925         /* channel equalization */
2926         if (!intel_dp_set_link_train(intel_dp, &DP,
2927                                      training_pattern |
2928                                      DP_LINK_SCRAMBLING_DISABLE)) {
2929                 DRM_ERROR("failed to start channel equalization\n");
2930                 return;
2931         }
2932
2933         tries = 0;
2934         cr_tries = 0;
2935         channel_eq = false;
2936         for (;;) {
2937                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2938
2939                 if (cr_tries > 5) {
2940                         DRM_ERROR("failed to train DP, aborting\n");
2941                         break;
2942                 }
2943
2944                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2945                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2946                         DRM_ERROR("failed to get link status\n");
2947                         break;
2948                 }
2949
2950                 /* Make sure clock is still ok */
2951                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2952                         intel_dp_start_link_train(intel_dp);
2953                         intel_dp_set_link_train(intel_dp, &DP,
2954                                                 training_pattern |
2955                                                 DP_LINK_SCRAMBLING_DISABLE);
2956                         cr_tries++;
2957                         continue;
2958                 }
2959
2960                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2961                         channel_eq = true;
2962                         break;
2963                 }
2964
2965                 /* Try 5 times, then try clock recovery if that fails */
2966                 if (tries > 5) {
2967                         intel_dp_link_down(intel_dp);
2968                         intel_dp_start_link_train(intel_dp);
2969                         intel_dp_set_link_train(intel_dp, &DP,
2970                                                 training_pattern |
2971                                                 DP_LINK_SCRAMBLING_DISABLE);
2972                         tries = 0;
2973                         cr_tries++;
2974                         continue;
2975                 }
2976
2977                 /* Update training set as requested by target */
2978                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2979                         DRM_ERROR("failed to update link training\n");
2980                         break;
2981                 }
2982                 ++tries;
2983         }
2984
2985         intel_dp_set_idle_link_train(intel_dp);
2986
2987         intel_dp->DP = DP;
2988
2989         if (channel_eq)
2990                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2991
2992 }
2993
2994 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2995 {
2996         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2997                                 DP_TRAINING_PATTERN_DISABLE);
2998 }
2999
3000 static void
3001 intel_dp_link_down(struct intel_dp *intel_dp)
3002 {
3003         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3004         enum port port = intel_dig_port->port;
3005         struct drm_device *dev = intel_dig_port->base.base.dev;
3006         struct drm_i915_private *dev_priv = dev->dev_private;
3007         struct intel_crtc *intel_crtc =
3008                 to_intel_crtc(intel_dig_port->base.base.crtc);
3009         uint32_t DP = intel_dp->DP;
3010
3011         /*
3012          * DDI code has a strict mode set sequence and we should try to respect
3013          * it, otherwise we might hang the machine in many different ways. So we
3014          * really should be disabling the port only on a complete crtc_disable
3015          * sequence. This function is just called under two conditions on DDI
3016          * code:
3017          * - Link train failed while doing crtc_enable, and on this case we
3018          *   really should respect the mode set sequence and wait for a
3019          *   crtc_disable.
3020          * - Someone turned the monitor off and intel_dp_check_link_status
3021          *   called us. We don't need to disable the whole port on this case, so
3022          *   when someone turns the monitor on again,
3023          *   intel_ddi_prepare_link_retrain will take care of redoing the link
3024          *   train.
3025          */
3026         if (HAS_DDI(dev))
3027                 return;
3028
3029         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3030                 return;
3031
3032         DRM_DEBUG_KMS("\n");
3033
3034         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3035                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3036                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3037         } else {
3038                 DP &= ~DP_LINK_TRAIN_MASK;
3039                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3040         }
3041         POSTING_READ(intel_dp->output_reg);
3042
3043         if (HAS_PCH_IBX(dev) &&
3044             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3045                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3046
3047                 /* Hardware workaround: leaving our transcoder select
3048                  * set to transcoder B while it's off will prevent the
3049                  * corresponding HDMI output on transcoder A.
3050                  *
3051                  * Combine this with another hardware workaround:
3052                  * transcoder select bit can only be cleared while the
3053                  * port is enabled.
3054                  */
3055                 DP &= ~DP_PIPEB_SELECT;
3056                 I915_WRITE(intel_dp->output_reg, DP);
3057
3058                 /* Changes to enable or select take place the vblank
3059                  * after being written.
3060                  */
3061                 if (WARN_ON(crtc == NULL)) {
3062                         /* We should never try to disable a port without a crtc
3063                          * attached. For paranoia keep the code around for a
3064                          * bit. */
3065                         POSTING_READ(intel_dp->output_reg);
3066                         msleep(50);
3067                 } else
3068                         intel_wait_for_vblank(dev, intel_crtc->pipe);
3069         }
3070
3071         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3072         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3073         POSTING_READ(intel_dp->output_reg);
3074         msleep(intel_dp->panel_power_down_delay);
3075 }
3076
3077 static bool
3078 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3079 {
3080         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3081         struct drm_device *dev = dig_port->base.base.dev;
3082         struct drm_i915_private *dev_priv = dev->dev_private;
3083
3084         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3085
3086         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3087                                     sizeof(intel_dp->dpcd)) < 0)
3088                 return false; /* aux transfer failed */
3089
3090         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3091                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3092         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3093
3094         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3095                 return false; /* DPCD not present */
3096
3097         /* Check if the panel supports PSR */
3098         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3099         if (is_edp(intel_dp)) {
3100                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3101                                         intel_dp->psr_dpcd,
3102                                         sizeof(intel_dp->psr_dpcd));
3103                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3104                         dev_priv->psr.sink_support = true;
3105                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3106                 }
3107         }
3108
3109         /* Training Pattern 3 support */
3110         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3111             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3112                 intel_dp->use_tps3 = true;
3113                 DRM_DEBUG_KMS("Displayport TPS3 supported");
3114         } else
3115                 intel_dp->use_tps3 = false;
3116
3117         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3118               DP_DWN_STRM_PORT_PRESENT))
3119                 return true; /* native DP sink */
3120
3121         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3122                 return true; /* no per-port downstream info */
3123
3124         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3125                                     intel_dp->downstream_ports,
3126                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3127                 return false; /* downstream port status fetch failed */
3128
3129         return true;
3130 }
3131
3132 static void
3133 intel_dp_probe_oui(struct intel_dp *intel_dp)
3134 {
3135         u8 buf[3];
3136
3137         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3138                 return;
3139
3140         intel_edp_panel_vdd_on(intel_dp);
3141
3142         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3143                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3144                               buf[0], buf[1], buf[2]);
3145
3146         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3147                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3148                               buf[0], buf[1], buf[2]);
3149
3150         edp_panel_vdd_off(intel_dp, false);
3151 }
3152
3153 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3154 {
3155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3156         struct drm_device *dev = intel_dig_port->base.base.dev;
3157         struct intel_crtc *intel_crtc =
3158                 to_intel_crtc(intel_dig_port->base.base.crtc);
3159         u8 buf[1];
3160
3161         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3162                 return -EAGAIN;
3163
3164         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3165                 return -ENOTTY;
3166
3167         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3168                                DP_TEST_SINK_START) < 0)
3169                 return -EAGAIN;
3170
3171         /* Wait 2 vblanks to be sure we will have the correct CRC value */
3172         intel_wait_for_vblank(dev, intel_crtc->pipe);
3173         intel_wait_for_vblank(dev, intel_crtc->pipe);
3174
3175         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3176                 return -EAGAIN;
3177
3178         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3179         return 0;
3180 }
3181
3182 static bool
3183 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3184 {
3185         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3186                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3187                                        sink_irq_vector, 1) == 1;
3188 }
3189
3190 static void
3191 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3192 {
3193         /* NAK by default */
3194         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3195 }
3196
3197 /*
3198  * According to DP spec
3199  * 5.1.2:
3200  *  1. Read DPCD
3201  *  2. Configure link according to Receiver Capabilities
3202  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3203  *  4. Check link status on receipt of hot-plug interrupt
3204  */
3205
3206 void
3207 intel_dp_check_link_status(struct intel_dp *intel_dp)
3208 {
3209         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3210         u8 sink_irq_vector;
3211         u8 link_status[DP_LINK_STATUS_SIZE];
3212
3213         if (!intel_encoder->connectors_active)
3214                 return;
3215
3216         if (WARN_ON(!intel_encoder->base.crtc))
3217                 return;
3218
3219         /* Try to read receiver status if the link appears to be up */
3220         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3221                 return;
3222         }
3223
3224         /* Now read the DPCD to see if it's actually running */
3225         if (!intel_dp_get_dpcd(intel_dp)) {
3226                 return;
3227         }
3228
3229         /* Try to read the source of the interrupt */
3230         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3231             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3232                 /* Clear interrupt source */
3233                 drm_dp_dpcd_writeb(&intel_dp->aux,
3234                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3235                                    sink_irq_vector);
3236
3237                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3238                         intel_dp_handle_test_request(intel_dp);
3239                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3240                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3241         }
3242
3243         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3244                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3245                               drm_get_encoder_name(&intel_encoder->base));
3246                 intel_dp_start_link_train(intel_dp);
3247                 intel_dp_complete_link_train(intel_dp);
3248                 intel_dp_stop_link_train(intel_dp);
3249         }
3250 }
3251
3252 /* XXX this is probably wrong for multiple downstream ports */
3253 static enum drm_connector_status
3254 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3255 {
3256         uint8_t *dpcd = intel_dp->dpcd;
3257         uint8_t type;
3258
3259         if (!intel_dp_get_dpcd(intel_dp))
3260                 return connector_status_disconnected;
3261
3262         /* if there's no downstream port, we're done */
3263         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3264                 return connector_status_connected;
3265
3266         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3267         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3268             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3269                 uint8_t reg;
3270
3271                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3272                                             &reg, 1) < 0)
3273                         return connector_status_unknown;
3274
3275                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3276                                               : connector_status_disconnected;
3277         }
3278
3279         /* If no HPD, poke DDC gently */
3280         if (drm_probe_ddc(&intel_dp->aux.ddc))
3281                 return connector_status_connected;
3282
3283         /* Well we tried, say unknown for unreliable port types */
3284         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3285                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3286                 if (type == DP_DS_PORT_TYPE_VGA ||
3287                     type == DP_DS_PORT_TYPE_NON_EDID)
3288                         return connector_status_unknown;
3289         } else {
3290                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3291                         DP_DWN_STRM_PORT_TYPE_MASK;
3292                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3293                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
3294                         return connector_status_unknown;
3295         }
3296
3297         /* Anything else is out of spec, warn and ignore */
3298         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3299         return connector_status_disconnected;
3300 }
3301
3302 static enum drm_connector_status
3303 ironlake_dp_detect(struct intel_dp *intel_dp)
3304 {
3305         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3308         enum drm_connector_status status;
3309
3310         /* Can't disconnect eDP, but you can close the lid... */
3311         if (is_edp(intel_dp)) {
3312                 status = intel_panel_detect(dev);
3313                 if (status == connector_status_unknown)
3314                         status = connector_status_connected;
3315                 return status;
3316         }
3317
3318         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3319                 return connector_status_disconnected;
3320
3321         return intel_dp_detect_dpcd(intel_dp);
3322 }
3323
3324 static enum drm_connector_status
3325 g4x_dp_detect(struct intel_dp *intel_dp)
3326 {
3327         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3328         struct drm_i915_private *dev_priv = dev->dev_private;
3329         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3330         uint32_t bit;
3331
3332         /* Can't disconnect eDP, but you can close the lid... */
3333         if (is_edp(intel_dp)) {
3334                 enum drm_connector_status status;
3335
3336                 status = intel_panel_detect(dev);
3337                 if (status == connector_status_unknown)
3338                         status = connector_status_connected;
3339                 return status;
3340         }
3341
3342         if (IS_VALLEYVIEW(dev)) {
3343                 switch (intel_dig_port->port) {
3344                 case PORT_B:
3345                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3346                         break;
3347                 case PORT_C:
3348                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3349                         break;
3350                 case PORT_D:
3351                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3352                         break;
3353                 default:
3354                         return connector_status_unknown;
3355                 }
3356         } else {
3357                 switch (intel_dig_port->port) {
3358                 case PORT_B:
3359                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3360                         break;
3361                 case PORT_C:
3362                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3363                         break;
3364                 case PORT_D:
3365                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3366                         break;
3367                 default:
3368                         return connector_status_unknown;
3369                 }
3370         }
3371
3372         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3373                 return connector_status_disconnected;
3374
3375         return intel_dp_detect_dpcd(intel_dp);
3376 }
3377
3378 static struct edid *
3379 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3380 {
3381         struct intel_connector *intel_connector = to_intel_connector(connector);
3382
3383         /* use cached edid if we have one */
3384         if (intel_connector->edid) {
3385                 /* invalid edid */
3386                 if (IS_ERR(intel_connector->edid))
3387                         return NULL;
3388
3389                 return drm_edid_duplicate(intel_connector->edid);
3390         }
3391
3392         return drm_get_edid(connector, adapter);
3393 }
3394
3395 static int
3396 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3397 {
3398         struct intel_connector *intel_connector = to_intel_connector(connector);
3399
3400         /* use cached edid if we have one */
3401         if (intel_connector->edid) {
3402                 /* invalid edid */
3403                 if (IS_ERR(intel_connector->edid))
3404                         return 0;
3405
3406                 return intel_connector_update_modes(connector,
3407                                                     intel_connector->edid);
3408         }
3409
3410         return intel_ddc_get_modes(connector, adapter);
3411 }
3412
3413 static enum drm_connector_status
3414 intel_dp_detect(struct drm_connector *connector, bool force)
3415 {
3416         struct intel_dp *intel_dp = intel_attached_dp(connector);
3417         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3418         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3419         struct drm_device *dev = connector->dev;
3420         struct drm_i915_private *dev_priv = dev->dev_private;
3421         enum drm_connector_status status;
3422         enum intel_display_power_domain power_domain;
3423         struct edid *edid = NULL;
3424
3425         intel_runtime_pm_get(dev_priv);
3426
3427         power_domain = intel_display_port_power_domain(intel_encoder);
3428         intel_display_power_get(dev_priv, power_domain);
3429
3430         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3431                       connector->base.id, drm_get_connector_name(connector));
3432
3433         intel_dp->has_audio = false;
3434
3435         if (HAS_PCH_SPLIT(dev))
3436                 status = ironlake_dp_detect(intel_dp);
3437         else
3438                 status = g4x_dp_detect(intel_dp);
3439
3440         if (status != connector_status_connected)
3441                 goto out;
3442
3443         intel_dp_probe_oui(intel_dp);
3444
3445         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3446                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3447         } else {
3448                 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3449                 if (edid) {
3450                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3451                         kfree(edid);
3452                 }
3453         }
3454
3455         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3456                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3457         status = connector_status_connected;
3458
3459 out:
3460         intel_display_power_put(dev_priv, power_domain);
3461
3462         intel_runtime_pm_put(dev_priv);
3463
3464         return status;
3465 }
3466
3467 static int intel_dp_get_modes(struct drm_connector *connector)
3468 {
3469         struct intel_dp *intel_dp = intel_attached_dp(connector);
3470         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3471         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3472         struct intel_connector *intel_connector = to_intel_connector(connector);
3473         struct drm_device *dev = connector->dev;
3474         struct drm_i915_private *dev_priv = dev->dev_private;
3475         enum intel_display_power_domain power_domain;
3476         int ret;
3477
3478         /* We should parse the EDID data and find out if it has an audio sink
3479          */
3480
3481         power_domain = intel_display_port_power_domain(intel_encoder);
3482         intel_display_power_get(dev_priv, power_domain);
3483
3484         ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3485         intel_display_power_put(dev_priv, power_domain);
3486         if (ret)
3487                 return ret;
3488
3489         /* if eDP has no EDID, fall back to fixed mode */
3490         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3491                 struct drm_display_mode *mode;
3492                 mode = drm_mode_duplicate(dev,
3493                                           intel_connector->panel.fixed_mode);
3494                 if (mode) {
3495                         drm_mode_probed_add(connector, mode);
3496                         return 1;
3497                 }
3498         }
3499         return 0;
3500 }
3501
3502 static bool
3503 intel_dp_detect_audio(struct drm_connector *connector)
3504 {
3505         struct intel_dp *intel_dp = intel_attached_dp(connector);
3506         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3507         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3508         struct drm_device *dev = connector->dev;
3509         struct drm_i915_private *dev_priv = dev->dev_private;
3510         enum intel_display_power_domain power_domain;
3511         struct edid *edid;
3512         bool has_audio = false;
3513
3514         power_domain = intel_display_port_power_domain(intel_encoder);
3515         intel_display_power_get(dev_priv, power_domain);
3516
3517         edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3518         if (edid) {
3519                 has_audio = drm_detect_monitor_audio(edid);
3520                 kfree(edid);
3521         }
3522
3523         intel_display_power_put(dev_priv, power_domain);
3524
3525         return has_audio;
3526 }
3527
3528 static int
3529 intel_dp_set_property(struct drm_connector *connector,
3530                       struct drm_property *property,
3531                       uint64_t val)
3532 {
3533         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3534         struct intel_connector *intel_connector = to_intel_connector(connector);
3535         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3536         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3537         int ret;
3538
3539         ret = drm_object_property_set_value(&connector->base, property, val);
3540         if (ret)
3541                 return ret;
3542
3543         if (property == dev_priv->force_audio_property) {
3544                 int i = val;
3545                 bool has_audio;
3546
3547                 if (i == intel_dp->force_audio)
3548                         return 0;
3549
3550                 intel_dp->force_audio = i;
3551
3552                 if (i == HDMI_AUDIO_AUTO)
3553                         has_audio = intel_dp_detect_audio(connector);
3554                 else
3555                         has_audio = (i == HDMI_AUDIO_ON);
3556
3557                 if (has_audio == intel_dp->has_audio)
3558                         return 0;
3559
3560                 intel_dp->has_audio = has_audio;
3561                 goto done;
3562         }
3563
3564         if (property == dev_priv->broadcast_rgb_property) {
3565                 bool old_auto = intel_dp->color_range_auto;
3566                 uint32_t old_range = intel_dp->color_range;
3567
3568                 switch (val) {
3569                 case INTEL_BROADCAST_RGB_AUTO:
3570                         intel_dp->color_range_auto = true;
3571                         break;
3572                 case INTEL_BROADCAST_RGB_FULL:
3573                         intel_dp->color_range_auto = false;
3574                         intel_dp->color_range = 0;
3575                         break;
3576                 case INTEL_BROADCAST_RGB_LIMITED:
3577                         intel_dp->color_range_auto = false;
3578                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3579                         break;
3580                 default:
3581                         return -EINVAL;
3582                 }
3583
3584                 if (old_auto == intel_dp->color_range_auto &&
3585                     old_range == intel_dp->color_range)
3586                         return 0;
3587
3588                 goto done;
3589         }
3590
3591         if (is_edp(intel_dp) &&
3592             property == connector->dev->mode_config.scaling_mode_property) {
3593                 if (val == DRM_MODE_SCALE_NONE) {
3594                         DRM_DEBUG_KMS("no scaling not supported\n");
3595                         return -EINVAL;
3596                 }
3597
3598                 if (intel_connector->panel.fitting_mode == val) {
3599                         /* the eDP scaling property is not changed */
3600                         return 0;
3601                 }
3602                 intel_connector->panel.fitting_mode = val;
3603
3604                 goto done;
3605         }
3606
3607         return -EINVAL;
3608
3609 done:
3610         if (intel_encoder->base.crtc)
3611                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3612
3613         return 0;
3614 }
3615
3616 static void
3617 intel_dp_connector_destroy(struct drm_connector *connector)
3618 {
3619         struct intel_connector *intel_connector = to_intel_connector(connector);
3620
3621         if (!IS_ERR_OR_NULL(intel_connector->edid))
3622                 kfree(intel_connector->edid);
3623
3624         /* Can't call is_edp() since the encoder may have been destroyed
3625          * already. */
3626         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3627                 intel_panel_fini(&intel_connector->panel);
3628
3629         drm_connector_cleanup(connector);
3630         kfree(connector);
3631 }
3632
3633 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3634 {
3635         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3636         struct intel_dp *intel_dp = &intel_dig_port->dp;
3637         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3638
3639         drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3640         drm_encoder_cleanup(encoder);
3641         if (is_edp(intel_dp)) {
3642                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3643                 mutex_lock(&dev->mode_config.mutex);
3644                 edp_panel_vdd_off_sync(intel_dp);
3645                 mutex_unlock(&dev->mode_config.mutex);
3646         }
3647         kfree(intel_dig_port);
3648 }
3649
3650 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3651         .dpms = intel_connector_dpms,
3652         .detect = intel_dp_detect,
3653         .fill_modes = drm_helper_probe_single_connector_modes,
3654         .set_property = intel_dp_set_property,
3655         .destroy = intel_dp_connector_destroy,
3656 };
3657
3658 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3659         .get_modes = intel_dp_get_modes,
3660         .mode_valid = intel_dp_mode_valid,
3661         .best_encoder = intel_best_encoder,
3662 };
3663
3664 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3665         .destroy = intel_dp_encoder_destroy,
3666 };
3667
3668 static void
3669 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3670 {
3671         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3672
3673         intel_dp_check_link_status(intel_dp);
3674 }
3675
3676 /* Return which DP Port should be selected for Transcoder DP control */
3677 int
3678 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3679 {
3680         struct drm_device *dev = crtc->dev;
3681         struct intel_encoder *intel_encoder;
3682         struct intel_dp *intel_dp;
3683
3684         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3685                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3686
3687                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3688                     intel_encoder->type == INTEL_OUTPUT_EDP)
3689                         return intel_dp->output_reg;
3690         }
3691
3692         return -1;
3693 }
3694
3695 /* check the VBT to see whether the eDP is on DP-D port */
3696 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3697 {
3698         struct drm_i915_private *dev_priv = dev->dev_private;
3699         union child_device_config *p_child;
3700         int i;
3701         static const short port_mapping[] = {
3702                 [PORT_B] = PORT_IDPB,
3703                 [PORT_C] = PORT_IDPC,
3704                 [PORT_D] = PORT_IDPD,
3705         };
3706
3707         if (port == PORT_A)
3708                 return true;
3709
3710         if (!dev_priv->vbt.child_dev_num)
3711                 return false;
3712
3713         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3714                 p_child = dev_priv->vbt.child_dev + i;
3715
3716                 if (p_child->common.dvo_port == port_mapping[port] &&
3717                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3718                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3719                         return true;
3720         }
3721         return false;
3722 }
3723
3724 static void
3725 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3726 {
3727         struct intel_connector *intel_connector = to_intel_connector(connector);
3728
3729         intel_attach_force_audio_property(connector);
3730         intel_attach_broadcast_rgb_property(connector);
3731         intel_dp->color_range_auto = true;
3732
3733         if (is_edp(intel_dp)) {
3734                 drm_mode_create_scaling_mode_property(connector->dev);
3735                 drm_object_attach_property(
3736                         &connector->base,
3737                         connector->dev->mode_config.scaling_mode_property,
3738                         DRM_MODE_SCALE_ASPECT);
3739                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3740         }
3741 }
3742
3743 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3744 {
3745         intel_dp->last_power_cycle = jiffies;
3746         intel_dp->last_power_on = jiffies;
3747         intel_dp->last_backlight_off = jiffies;
3748 }
3749
3750 static void
3751 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3752                                     struct intel_dp *intel_dp,
3753                                     struct edp_power_seq *out)
3754 {
3755         struct drm_i915_private *dev_priv = dev->dev_private;
3756         struct edp_power_seq cur, vbt, spec, final;
3757         u32 pp_on, pp_off, pp_div, pp;
3758         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3759
3760         if (HAS_PCH_SPLIT(dev)) {
3761                 pp_ctrl_reg = PCH_PP_CONTROL;
3762                 pp_on_reg = PCH_PP_ON_DELAYS;
3763                 pp_off_reg = PCH_PP_OFF_DELAYS;
3764                 pp_div_reg = PCH_PP_DIVISOR;
3765         } else {
3766                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3767
3768                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3769                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3770                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3771                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3772         }
3773
3774         /* Workaround: Need to write PP_CONTROL with the unlock key as
3775          * the very first thing. */
3776         pp = ironlake_get_pp_control(intel_dp);
3777         I915_WRITE(pp_ctrl_reg, pp);
3778
3779         pp_on = I915_READ(pp_on_reg);
3780         pp_off = I915_READ(pp_off_reg);
3781         pp_div = I915_READ(pp_div_reg);
3782
3783         /* Pull timing values out of registers */
3784         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3785                 PANEL_POWER_UP_DELAY_SHIFT;
3786
3787         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3788                 PANEL_LIGHT_ON_DELAY_SHIFT;
3789
3790         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3791                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3792
3793         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3794                 PANEL_POWER_DOWN_DELAY_SHIFT;
3795
3796         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3797                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3798
3799         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3800                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3801
3802         vbt = dev_priv->vbt.edp_pps;
3803
3804         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3805          * our hw here, which are all in 100usec. */
3806         spec.t1_t3 = 210 * 10;
3807         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3808         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3809         spec.t10 = 500 * 10;
3810         /* This one is special and actually in units of 100ms, but zero
3811          * based in the hw (so we need to add 100 ms). But the sw vbt
3812          * table multiplies it with 1000 to make it in units of 100usec,
3813          * too. */
3814         spec.t11_t12 = (510 + 100) * 10;
3815
3816         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3817                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3818
3819         /* Use the max of the register settings and vbt. If both are
3820          * unset, fall back to the spec limits. */
3821 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3822                                        spec.field : \
3823                                        max(cur.field, vbt.field))
3824         assign_final(t1_t3);
3825         assign_final(t8);
3826         assign_final(t9);
3827         assign_final(t10);
3828         assign_final(t11_t12);
3829 #undef assign_final
3830
3831 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3832         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3833         intel_dp->backlight_on_delay = get_delay(t8);
3834         intel_dp->backlight_off_delay = get_delay(t9);
3835         intel_dp->panel_power_down_delay = get_delay(t10);
3836         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3837 #undef get_delay
3838
3839         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3840                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3841                       intel_dp->panel_power_cycle_delay);
3842
3843         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3844                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3845
3846         if (out)
3847                 *out = final;
3848 }
3849
3850 static void
3851 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3852                                               struct intel_dp *intel_dp,
3853                                               struct edp_power_seq *seq)
3854 {
3855         struct drm_i915_private *dev_priv = dev->dev_private;
3856         u32 pp_on, pp_off, pp_div, port_sel = 0;
3857         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3858         int pp_on_reg, pp_off_reg, pp_div_reg;
3859
3860         if (HAS_PCH_SPLIT(dev)) {
3861                 pp_on_reg = PCH_PP_ON_DELAYS;
3862                 pp_off_reg = PCH_PP_OFF_DELAYS;
3863                 pp_div_reg = PCH_PP_DIVISOR;
3864         } else {
3865                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3866
3867                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3868                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3869                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3870         }
3871
3872         /*
3873          * And finally store the new values in the power sequencer. The
3874          * backlight delays are set to 1 because we do manual waits on them. For
3875          * T8, even BSpec recommends doing it. For T9, if we don't do this,
3876          * we'll end up waiting for the backlight off delay twice: once when we
3877          * do the manual sleep, and once when we disable the panel and wait for
3878          * the PP_STATUS bit to become zero.
3879          */
3880         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3881                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3882         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3883                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3884         /* Compute the divisor for the pp clock, simply match the Bspec
3885          * formula. */
3886         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3887         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3888                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3889
3890         /* Haswell doesn't have any port selection bits for the panel
3891          * power sequencer any more. */
3892         if (IS_VALLEYVIEW(dev)) {
3893                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3894                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3895                 else
3896                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3897         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3898                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3899                         port_sel = PANEL_PORT_SELECT_DPA;
3900                 else
3901                         port_sel = PANEL_PORT_SELECT_DPD;
3902         }
3903
3904         pp_on |= port_sel;
3905
3906         I915_WRITE(pp_on_reg, pp_on);
3907         I915_WRITE(pp_off_reg, pp_off);
3908         I915_WRITE(pp_div_reg, pp_div);
3909
3910         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3911                       I915_READ(pp_on_reg),
3912                       I915_READ(pp_off_reg),
3913                       I915_READ(pp_div_reg));
3914 }
3915
3916 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
3917 {
3918         struct drm_i915_private *dev_priv = dev->dev_private;
3919         struct intel_encoder *encoder;
3920         struct intel_dp *intel_dp = NULL;
3921         struct intel_crtc_config *config = NULL;
3922         struct intel_crtc *intel_crtc = NULL;
3923         struct intel_connector *intel_connector = dev_priv->drrs.connector;
3924         u32 reg, val;
3925         enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
3926
3927         if (refresh_rate <= 0) {
3928                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
3929                 return;
3930         }
3931
3932         if (intel_connector == NULL) {
3933                 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
3934                 return;
3935         }
3936
3937         if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
3938                 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
3939                 return;
3940         }
3941
3942         encoder = intel_attached_encoder(&intel_connector->base);
3943         intel_dp = enc_to_intel_dp(&encoder->base);
3944         intel_crtc = encoder->new_crtc;
3945
3946         if (!intel_crtc) {
3947                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
3948                 return;
3949         }
3950
3951         config = &intel_crtc->config;
3952
3953         if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
3954                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
3955                 return;
3956         }
3957
3958         if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
3959                 index = DRRS_LOW_RR;
3960
3961         if (index == intel_dp->drrs_state.refresh_rate_type) {
3962                 DRM_DEBUG_KMS(
3963                         "DRRS requested for previously set RR...ignoring\n");
3964                 return;
3965         }
3966
3967         if (!intel_crtc->active) {
3968                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
3969                 return;
3970         }
3971
3972         if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
3973                 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
3974                 val = I915_READ(reg);
3975                 if (index > DRRS_HIGH_RR) {
3976                         val |= PIPECONF_EDP_RR_MODE_SWITCH;
3977                         intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
3978                 } else {
3979                         val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
3980                 }
3981                 I915_WRITE(reg, val);
3982         }
3983
3984         /*
3985          * mutex taken to ensure that there is no race between differnt
3986          * drrs calls trying to update refresh rate. This scenario may occur
3987          * in future when idleness detection based DRRS in kernel and
3988          * possible calls from user space to set differnt RR are made.
3989          */
3990
3991         mutex_lock(&intel_dp->drrs_state.mutex);
3992
3993         intel_dp->drrs_state.refresh_rate_type = index;
3994
3995         mutex_unlock(&intel_dp->drrs_state.mutex);
3996
3997         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
3998 }
3999
4000 static struct drm_display_mode *
4001 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4002                         struct intel_connector *intel_connector,
4003                         struct drm_display_mode *fixed_mode)
4004 {
4005         struct drm_connector *connector = &intel_connector->base;
4006         struct intel_dp *intel_dp = &intel_dig_port->dp;
4007         struct drm_device *dev = intel_dig_port->base.base.dev;
4008         struct drm_i915_private *dev_priv = dev->dev_private;
4009         struct drm_display_mode *downclock_mode = NULL;
4010
4011         if (INTEL_INFO(dev)->gen <= 6) {
4012                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4013                 return NULL;
4014         }
4015
4016         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4017                 DRM_INFO("VBT doesn't support DRRS\n");
4018                 return NULL;
4019         }
4020
4021         downclock_mode = intel_find_panel_downclock
4022                                         (dev, fixed_mode, connector);
4023
4024         if (!downclock_mode) {
4025                 DRM_INFO("DRRS not supported\n");
4026                 return NULL;
4027         }
4028
4029         dev_priv->drrs.connector = intel_connector;
4030
4031         mutex_init(&intel_dp->drrs_state.mutex);
4032
4033         intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4034
4035         intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4036         DRM_INFO("seamless DRRS supported for eDP panel.\n");
4037         return downclock_mode;
4038 }
4039
4040 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4041                                      struct intel_connector *intel_connector,
4042                                      struct edp_power_seq *power_seq)
4043 {
4044         struct drm_connector *connector = &intel_connector->base;
4045         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4046         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4047         struct drm_device *dev = intel_encoder->base.dev;
4048         struct drm_i915_private *dev_priv = dev->dev_private;
4049         struct drm_display_mode *fixed_mode = NULL;
4050         struct drm_display_mode *downclock_mode = NULL;
4051         bool has_dpcd;
4052         struct drm_display_mode *scan;
4053         struct edid *edid;
4054
4055         intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4056
4057         if (!is_edp(intel_dp))
4058                 return true;
4059
4060         /* The VDD bit needs a power domain reference, so if the bit is already
4061          * enabled when we boot, grab this reference. */
4062         if (edp_have_panel_vdd(intel_dp)) {
4063                 enum intel_display_power_domain power_domain;
4064                 power_domain = intel_display_port_power_domain(intel_encoder);
4065                 intel_display_power_get(dev_priv, power_domain);
4066         }
4067
4068         /* Cache DPCD and EDID for edp. */
4069         intel_edp_panel_vdd_on(intel_dp);
4070         has_dpcd = intel_dp_get_dpcd(intel_dp);
4071         edp_panel_vdd_off(intel_dp, false);
4072
4073         if (has_dpcd) {
4074                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4075                         dev_priv->no_aux_handshake =
4076                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4077                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4078         } else {
4079                 /* if this fails, presume the device is a ghost */
4080                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4081                 return false;
4082         }
4083
4084         /* We now know it's not a ghost, init power sequence regs. */
4085         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4086
4087         mutex_lock(&dev->mode_config.mutex);
4088         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4089         if (edid) {
4090                 if (drm_add_edid_modes(connector, edid)) {
4091                         drm_mode_connector_update_edid_property(connector,
4092                                                                 edid);
4093                         drm_edid_to_eld(connector, edid);
4094                 } else {
4095                         kfree(edid);
4096                         edid = ERR_PTR(-EINVAL);
4097                 }
4098         } else {
4099                 edid = ERR_PTR(-ENOENT);
4100         }
4101         intel_connector->edid = edid;
4102
4103         /* prefer fixed mode from EDID if available */
4104         list_for_each_entry(scan, &connector->probed_modes, head) {
4105                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4106                         fixed_mode = drm_mode_duplicate(dev, scan);
4107                         downclock_mode = intel_dp_drrs_init(
4108                                                 intel_dig_port,
4109                                                 intel_connector, fixed_mode);
4110                         break;
4111                 }
4112         }
4113
4114         /* fallback to VBT if available for eDP */
4115         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4116                 fixed_mode = drm_mode_duplicate(dev,
4117                                         dev_priv->vbt.lfp_lvds_vbt_mode);
4118                 if (fixed_mode)
4119                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4120         }
4121         mutex_unlock(&dev->mode_config.mutex);
4122
4123         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4124         intel_panel_setup_backlight(connector);
4125
4126         return true;
4127 }
4128
4129 bool
4130 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4131                         struct intel_connector *intel_connector)
4132 {
4133         struct drm_connector *connector = &intel_connector->base;
4134         struct intel_dp *intel_dp = &intel_dig_port->dp;
4135         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4136         struct drm_device *dev = intel_encoder->base.dev;
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         enum port port = intel_dig_port->port;
4139         struct edp_power_seq power_seq = { 0 };
4140         int type;
4141
4142         /* intel_dp vfuncs */
4143         if (IS_VALLEYVIEW(dev))
4144                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4145         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4146                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4147         else if (HAS_PCH_SPLIT(dev))
4148                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4149         else
4150                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4151
4152         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4153
4154         /* Preserve the current hw state. */
4155         intel_dp->DP = I915_READ(intel_dp->output_reg);
4156         intel_dp->attached_connector = intel_connector;
4157
4158         if (intel_dp_is_edp(dev, port))
4159                 type = DRM_MODE_CONNECTOR_eDP;
4160         else
4161                 type = DRM_MODE_CONNECTOR_DisplayPort;
4162
4163         /*
4164          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4165          * for DP the encoder type can be set by the caller to
4166          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4167          */
4168         if (type == DRM_MODE_CONNECTOR_eDP)
4169                 intel_encoder->type = INTEL_OUTPUT_EDP;
4170
4171         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4172                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4173                         port_name(port));
4174
4175         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4176         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4177
4178         connector->interlace_allowed = true;
4179         connector->doublescan_allowed = 0;
4180
4181         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4182                           edp_panel_vdd_work);
4183
4184         intel_connector_attach_encoder(intel_connector, intel_encoder);
4185         drm_sysfs_connector_add(connector);
4186
4187         if (HAS_DDI(dev))
4188                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4189         else
4190                 intel_connector->get_hw_state = intel_connector_get_hw_state;
4191         intel_connector->unregister = intel_dp_connector_unregister;
4192
4193         /* Set up the hotplug pin. */
4194         switch (port) {
4195         case PORT_A:
4196                 intel_encoder->hpd_pin = HPD_PORT_A;
4197                 break;
4198         case PORT_B:
4199                 intel_encoder->hpd_pin = HPD_PORT_B;
4200                 break;
4201         case PORT_C:
4202                 intel_encoder->hpd_pin = HPD_PORT_C;
4203                 break;
4204         case PORT_D:
4205                 intel_encoder->hpd_pin = HPD_PORT_D;
4206                 break;
4207         default:
4208                 BUG();
4209         }
4210
4211         if (is_edp(intel_dp)) {
4212                 intel_dp_init_panel_power_timestamps(intel_dp);
4213                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4214         }
4215
4216         intel_dp_aux_init(intel_dp, intel_connector);
4217
4218         intel_dp->psr_setup_done = false;
4219
4220         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4221                 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
4222                 if (is_edp(intel_dp)) {
4223                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4224                         mutex_lock(&dev->mode_config.mutex);
4225                         edp_panel_vdd_off_sync(intel_dp);
4226                         mutex_unlock(&dev->mode_config.mutex);
4227                 }
4228                 drm_sysfs_connector_remove(connector);
4229                 drm_connector_cleanup(connector);
4230                 return false;
4231         }
4232
4233         intel_dp_add_properties(intel_dp, connector);
4234
4235         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4236          * 0xd.  Failure to do so will result in spurious interrupts being
4237          * generated on the port when a cable is not attached.
4238          */
4239         if (IS_G4X(dev) && !IS_GM45(dev)) {
4240                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4241                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4242         }
4243
4244         return true;
4245 }
4246
4247 void
4248 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4249 {
4250         struct intel_digital_port *intel_dig_port;
4251         struct intel_encoder *intel_encoder;
4252         struct drm_encoder *encoder;
4253         struct intel_connector *intel_connector;
4254
4255         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4256         if (!intel_dig_port)
4257                 return;
4258
4259         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4260         if (!intel_connector) {
4261                 kfree(intel_dig_port);
4262                 return;
4263         }
4264
4265         intel_encoder = &intel_dig_port->base;
4266         encoder = &intel_encoder->base;
4267
4268         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4269                          DRM_MODE_ENCODER_TMDS);
4270
4271         intel_encoder->compute_config = intel_dp_compute_config;
4272         intel_encoder->disable = intel_disable_dp;
4273         intel_encoder->get_hw_state = intel_dp_get_hw_state;
4274         intel_encoder->get_config = intel_dp_get_config;
4275         if (IS_CHERRYVIEW(dev)) {
4276                 intel_encoder->pre_enable = chv_pre_enable_dp;
4277                 intel_encoder->enable = vlv_enable_dp;
4278                 intel_encoder->post_disable = chv_post_disable_dp;
4279         } else if (IS_VALLEYVIEW(dev)) {
4280                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4281                 intel_encoder->pre_enable = vlv_pre_enable_dp;
4282                 intel_encoder->enable = vlv_enable_dp;
4283                 intel_encoder->post_disable = vlv_post_disable_dp;
4284         } else {
4285                 intel_encoder->pre_enable = g4x_pre_enable_dp;
4286                 intel_encoder->enable = g4x_enable_dp;
4287                 intel_encoder->post_disable = g4x_post_disable_dp;
4288         }
4289
4290         intel_dig_port->port = port;
4291         intel_dig_port->dp.output_reg = output_reg;
4292
4293         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4294         if (IS_CHERRYVIEW(dev)) {
4295                 if (port == PORT_D)
4296                         intel_encoder->crtc_mask = 1 << 2;
4297                 else
4298                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4299         } else {
4300                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4301         }
4302         intel_encoder->cloneable = 0;
4303         intel_encoder->hot_plug = intel_dp_hot_plug;
4304
4305         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4306                 drm_encoder_cleanup(encoder);
4307                 kfree(intel_dig_port);
4308                 kfree(intel_connector);
4309         }
4310 }