drm/i915: rename __hsw_do_{en, dis}able_pc8
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54 static int intel_framebuffer_init(struct drm_device *dev,
55                                   struct intel_framebuffer *ifb,
56                                   struct drm_mode_fb_cmd2 *mode_cmd,
57                                   struct drm_i915_gem_object *obj);
58
59 typedef struct {
60         int     min, max;
61 } intel_range_t;
62
63 typedef struct {
64         int     dot_limit;
65         int     p2_slow, p2_fast;
66 } intel_p2_t;
67
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71         intel_p2_t          p2;
72 };
73
74 int
75 intel_pch_rawclk(struct drm_device *dev)
76 {
77         struct drm_i915_private *dev_priv = dev->dev_private;
78
79         WARN_ON(!HAS_PCH_SPLIT(dev));
80
81         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
82 }
83
84 static inline u32 /* units of 100MHz */
85 intel_fdi_link_freq(struct drm_device *dev)
86 {
87         if (IS_GEN5(dev)) {
88                 struct drm_i915_private *dev_priv = dev->dev_private;
89                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
90         } else
91                 return 27;
92 }
93
94 static const intel_limit_t intel_limits_i8xx_dac = {
95         .dot = { .min = 25000, .max = 350000 },
96         .vco = { .min = 908000, .max = 1512000 },
97         .n = { .min = 2, .max = 16 },
98         .m = { .min = 96, .max = 140 },
99         .m1 = { .min = 18, .max = 26 },
100         .m2 = { .min = 6, .max = 16 },
101         .p = { .min = 4, .max = 128 },
102         .p1 = { .min = 2, .max = 33 },
103         .p2 = { .dot_limit = 165000,
104                 .p2_slow = 4, .p2_fast = 2 },
105 };
106
107 static const intel_limit_t intel_limits_i8xx_dvo = {
108         .dot = { .min = 25000, .max = 350000 },
109         .vco = { .min = 908000, .max = 1512000 },
110         .n = { .min = 2, .max = 16 },
111         .m = { .min = 96, .max = 140 },
112         .m1 = { .min = 18, .max = 26 },
113         .m2 = { .min = 6, .max = 16 },
114         .p = { .min = 4, .max = 128 },
115         .p1 = { .min = 2, .max = 33 },
116         .p2 = { .dot_limit = 165000,
117                 .p2_slow = 4, .p2_fast = 4 },
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 908000, .max = 1512000 },
123         .n = { .min = 2, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 1, .max = 6 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 14, .p2_fast = 7 },
131 };
132
133 static const intel_limit_t intel_limits_i9xx_sdvo = {
134         .dot = { .min = 20000, .max = 400000 },
135         .vco = { .min = 1400000, .max = 2800000 },
136         .n = { .min = 1, .max = 6 },
137         .m = { .min = 70, .max = 120 },
138         .m1 = { .min = 8, .max = 18 },
139         .m2 = { .min = 3, .max = 7 },
140         .p = { .min = 5, .max = 80 },
141         .p1 = { .min = 1, .max = 8 },
142         .p2 = { .dot_limit = 200000,
143                 .p2_slow = 10, .p2_fast = 5 },
144 };
145
146 static const intel_limit_t intel_limits_i9xx_lvds = {
147         .dot = { .min = 20000, .max = 400000 },
148         .vco = { .min = 1400000, .max = 2800000 },
149         .n = { .min = 1, .max = 6 },
150         .m = { .min = 70, .max = 120 },
151         .m1 = { .min = 8, .max = 18 },
152         .m2 = { .min = 3, .max = 7 },
153         .p = { .min = 7, .max = 98 },
154         .p1 = { .min = 1, .max = 8 },
155         .p2 = { .dot_limit = 112000,
156                 .p2_slow = 14, .p2_fast = 7 },
157 };
158
159
160 static const intel_limit_t intel_limits_g4x_sdvo = {
161         .dot = { .min = 25000, .max = 270000 },
162         .vco = { .min = 1750000, .max = 3500000},
163         .n = { .min = 1, .max = 4 },
164         .m = { .min = 104, .max = 138 },
165         .m1 = { .min = 17, .max = 23 },
166         .m2 = { .min = 5, .max = 11 },
167         .p = { .min = 10, .max = 30 },
168         .p1 = { .min = 1, .max = 3},
169         .p2 = { .dot_limit = 270000,
170                 .p2_slow = 10,
171                 .p2_fast = 10
172         },
173 };
174
175 static const intel_limit_t intel_limits_g4x_hdmi = {
176         .dot = { .min = 22000, .max = 400000 },
177         .vco = { .min = 1750000, .max = 3500000},
178         .n = { .min = 1, .max = 4 },
179         .m = { .min = 104, .max = 138 },
180         .m1 = { .min = 16, .max = 23 },
181         .m2 = { .min = 5, .max = 11 },
182         .p = { .min = 5, .max = 80 },
183         .p1 = { .min = 1, .max = 8},
184         .p2 = { .dot_limit = 165000,
185                 .p2_slow = 10, .p2_fast = 5 },
186 };
187
188 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
189         .dot = { .min = 20000, .max = 115000 },
190         .vco = { .min = 1750000, .max = 3500000 },
191         .n = { .min = 1, .max = 3 },
192         .m = { .min = 104, .max = 138 },
193         .m1 = { .min = 17, .max = 23 },
194         .m2 = { .min = 5, .max = 11 },
195         .p = { .min = 28, .max = 112 },
196         .p1 = { .min = 2, .max = 8 },
197         .p2 = { .dot_limit = 0,
198                 .p2_slow = 14, .p2_fast = 14
199         },
200 };
201
202 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
203         .dot = { .min = 80000, .max = 224000 },
204         .vco = { .min = 1750000, .max = 3500000 },
205         .n = { .min = 1, .max = 3 },
206         .m = { .min = 104, .max = 138 },
207         .m1 = { .min = 17, .max = 23 },
208         .m2 = { .min = 5, .max = 11 },
209         .p = { .min = 14, .max = 42 },
210         .p1 = { .min = 2, .max = 6 },
211         .p2 = { .dot_limit = 0,
212                 .p2_slow = 7, .p2_fast = 7
213         },
214 };
215
216 static const intel_limit_t intel_limits_pineview_sdvo = {
217         .dot = { .min = 20000, .max = 400000},
218         .vco = { .min = 1700000, .max = 3500000 },
219         /* Pineview's Ncounter is a ring counter */
220         .n = { .min = 3, .max = 6 },
221         .m = { .min = 2, .max = 256 },
222         /* Pineview only has one combined m divider, which we treat as m2. */
223         .m1 = { .min = 0, .max = 0 },
224         .m2 = { .min = 0, .max = 254 },
225         .p = { .min = 5, .max = 80 },
226         .p1 = { .min = 1, .max = 8 },
227         .p2 = { .dot_limit = 200000,
228                 .p2_slow = 10, .p2_fast = 5 },
229 };
230
231 static const intel_limit_t intel_limits_pineview_lvds = {
232         .dot = { .min = 20000, .max = 400000 },
233         .vco = { .min = 1700000, .max = 3500000 },
234         .n = { .min = 3, .max = 6 },
235         .m = { .min = 2, .max = 256 },
236         .m1 = { .min = 0, .max = 0 },
237         .m2 = { .min = 0, .max = 254 },
238         .p = { .min = 7, .max = 112 },
239         .p1 = { .min = 1, .max = 8 },
240         .p2 = { .dot_limit = 112000,
241                 .p2_slow = 14, .p2_fast = 14 },
242 };
243
244 /* Ironlake / Sandybridge
245  *
246  * We calculate clock using (register_value + 2) for N/M1/M2, so here
247  * the range value for them is (actual_value - 2).
248  */
249 static const intel_limit_t intel_limits_ironlake_dac = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 1760000, .max = 3510000 },
252         .n = { .min = 1, .max = 5 },
253         .m = { .min = 79, .max = 127 },
254         .m1 = { .min = 12, .max = 22 },
255         .m2 = { .min = 5, .max = 9 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 225000,
259                 .p2_slow = 10, .p2_fast = 5 },
260 };
261
262 static const intel_limit_t intel_limits_ironlake_single_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 1760000, .max = 3510000 },
265         .n = { .min = 1, .max = 3 },
266         .m = { .min = 79, .max = 118 },
267         .m1 = { .min = 12, .max = 22 },
268         .m2 = { .min = 5, .max = 9 },
269         .p = { .min = 28, .max = 112 },
270         .p1 = { .min = 2, .max = 8 },
271         .p2 = { .dot_limit = 225000,
272                 .p2_slow = 14, .p2_fast = 14 },
273 };
274
275 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
276         .dot = { .min = 25000, .max = 350000 },
277         .vco = { .min = 1760000, .max = 3510000 },
278         .n = { .min = 1, .max = 3 },
279         .m = { .min = 79, .max = 127 },
280         .m1 = { .min = 12, .max = 22 },
281         .m2 = { .min = 5, .max = 9 },
282         .p = { .min = 14, .max = 56 },
283         .p1 = { .min = 2, .max = 8 },
284         .p2 = { .dot_limit = 225000,
285                 .p2_slow = 7, .p2_fast = 7 },
286 };
287
288 /* LVDS 100mhz refclk limits. */
289 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
290         .dot = { .min = 25000, .max = 350000 },
291         .vco = { .min = 1760000, .max = 3510000 },
292         .n = { .min = 1, .max = 2 },
293         .m = { .min = 79, .max = 126 },
294         .m1 = { .min = 12, .max = 22 },
295         .m2 = { .min = 5, .max = 9 },
296         .p = { .min = 28, .max = 112 },
297         .p1 = { .min = 2, .max = 8 },
298         .p2 = { .dot_limit = 225000,
299                 .p2_slow = 14, .p2_fast = 14 },
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 3 },
306         .m = { .min = 79, .max = 126 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 14, .max = 42 },
310         .p1 = { .min = 2, .max = 6 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 7, .p2_fast = 7 },
313 };
314
315 static const intel_limit_t intel_limits_vlv = {
316          /*
317           * These are the data rate limits (measured in fast clocks)
318           * since those are the strictest limits we have. The fast
319           * clock and actual rate limits are more relaxed, so checking
320           * them would make no difference.
321           */
322         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
323         .vco = { .min = 4000000, .max = 6000000 },
324         .n = { .min = 1, .max = 7 },
325         .m1 = { .min = 2, .max = 3 },
326         .m2 = { .min = 11, .max = 156 },
327         .p1 = { .min = 2, .max = 3 },
328         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
329 };
330
331 static void vlv_clock(int refclk, intel_clock_t *clock)
332 {
333         clock->m = clock->m1 * clock->m2;
334         clock->p = clock->p1 * clock->p2;
335         if (WARN_ON(clock->n == 0 || clock->p == 0))
336                 return;
337         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
338         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
339 }
340
341 /**
342  * Returns whether any output on the specified pipe is of the specified type
343  */
344 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
345 {
346         struct drm_device *dev = crtc->dev;
347         struct intel_encoder *encoder;
348
349         for_each_encoder_on_crtc(dev, crtc, encoder)
350                 if (encoder->type == type)
351                         return true;
352
353         return false;
354 }
355
356 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
357                                                 int refclk)
358 {
359         struct drm_device *dev = crtc->dev;
360         const intel_limit_t *limit;
361
362         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
363                 if (intel_is_dual_link_lvds(dev)) {
364                         if (refclk == 100000)
365                                 limit = &intel_limits_ironlake_dual_lvds_100m;
366                         else
367                                 limit = &intel_limits_ironlake_dual_lvds;
368                 } else {
369                         if (refclk == 100000)
370                                 limit = &intel_limits_ironlake_single_lvds_100m;
371                         else
372                                 limit = &intel_limits_ironlake_single_lvds;
373                 }
374         } else
375                 limit = &intel_limits_ironlake_dac;
376
377         return limit;
378 }
379
380 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
381 {
382         struct drm_device *dev = crtc->dev;
383         const intel_limit_t *limit;
384
385         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
386                 if (intel_is_dual_link_lvds(dev))
387                         limit = &intel_limits_g4x_dual_channel_lvds;
388                 else
389                         limit = &intel_limits_g4x_single_channel_lvds;
390         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
391                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
392                 limit = &intel_limits_g4x_hdmi;
393         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
394                 limit = &intel_limits_g4x_sdvo;
395         } else /* The option is for other outputs */
396                 limit = &intel_limits_i9xx_sdvo;
397
398         return limit;
399 }
400
401 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
402 {
403         struct drm_device *dev = crtc->dev;
404         const intel_limit_t *limit;
405
406         if (HAS_PCH_SPLIT(dev))
407                 limit = intel_ironlake_limit(crtc, refclk);
408         else if (IS_G4X(dev)) {
409                 limit = intel_g4x_limit(crtc);
410         } else if (IS_PINEVIEW(dev)) {
411                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
412                         limit = &intel_limits_pineview_lvds;
413                 else
414                         limit = &intel_limits_pineview_sdvo;
415         } else if (IS_VALLEYVIEW(dev)) {
416                 limit = &intel_limits_vlv;
417         } else if (!IS_GEN2(dev)) {
418                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419                         limit = &intel_limits_i9xx_lvds;
420                 else
421                         limit = &intel_limits_i9xx_sdvo;
422         } else {
423                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424                         limit = &intel_limits_i8xx_lvds;
425                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426                         limit = &intel_limits_i8xx_dvo;
427                 else
428                         limit = &intel_limits_i8xx_dac;
429         }
430         return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436         clock->m = clock->m2 + 2;
437         clock->p = clock->p1 * clock->p2;
438         if (WARN_ON(clock->n == 0 || clock->p == 0))
439                 return;
440         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
441         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
442 }
443
444 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
445 {
446         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
447 }
448
449 static void i9xx_clock(int refclk, intel_clock_t *clock)
450 {
451         clock->m = i9xx_dpll_compute_m(clock);
452         clock->p = clock->p1 * clock->p2;
453         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
454                 return;
455         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
456         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
457 }
458
459 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
460 /**
461  * Returns whether the given set of divisors are valid for a given refclk with
462  * the given connectors.
463  */
464
465 static bool intel_PLL_is_valid(struct drm_device *dev,
466                                const intel_limit_t *limit,
467                                const intel_clock_t *clock)
468 {
469         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
470                 INTELPllInvalid("n out of range\n");
471         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
472                 INTELPllInvalid("p1 out of range\n");
473         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
474                 INTELPllInvalid("m2 out of range\n");
475         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
476                 INTELPllInvalid("m1 out of range\n");
477
478         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
479                 if (clock->m1 <= clock->m2)
480                         INTELPllInvalid("m1 <= m2\n");
481
482         if (!IS_VALLEYVIEW(dev)) {
483                 if (clock->p < limit->p.min || limit->p.max < clock->p)
484                         INTELPllInvalid("p out of range\n");
485                 if (clock->m < limit->m.min || limit->m.max < clock->m)
486                         INTELPllInvalid("m out of range\n");
487         }
488
489         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
490                 INTELPllInvalid("vco out of range\n");
491         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
492          * connector, etc., rather than just a single range.
493          */
494         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
495                 INTELPllInvalid("dot out of range\n");
496
497         return true;
498 }
499
500 static bool
501 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
502                     int target, int refclk, intel_clock_t *match_clock,
503                     intel_clock_t *best_clock)
504 {
505         struct drm_device *dev = crtc->dev;
506         intel_clock_t clock;
507         int err = target;
508
509         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
510                 /*
511                  * For LVDS just rely on its current settings for dual-channel.
512                  * We haven't figured out how to reliably set up different
513                  * single/dual channel state, if we even can.
514                  */
515                 if (intel_is_dual_link_lvds(dev))
516                         clock.p2 = limit->p2.p2_fast;
517                 else
518                         clock.p2 = limit->p2.p2_slow;
519         } else {
520                 if (target < limit->p2.dot_limit)
521                         clock.p2 = limit->p2.p2_slow;
522                 else
523                         clock.p2 = limit->p2.p2_fast;
524         }
525
526         memset(best_clock, 0, sizeof(*best_clock));
527
528         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
529              clock.m1++) {
530                 for (clock.m2 = limit->m2.min;
531                      clock.m2 <= limit->m2.max; clock.m2++) {
532                         if (clock.m2 >= clock.m1)
533                                 break;
534                         for (clock.n = limit->n.min;
535                              clock.n <= limit->n.max; clock.n++) {
536                                 for (clock.p1 = limit->p1.min;
537                                         clock.p1 <= limit->p1.max; clock.p1++) {
538                                         int this_err;
539
540                                         i9xx_clock(refclk, &clock);
541                                         if (!intel_PLL_is_valid(dev, limit,
542                                                                 &clock))
543                                                 continue;
544                                         if (match_clock &&
545                                             clock.p != match_clock->p)
546                                                 continue;
547
548                                         this_err = abs(clock.dot - target);
549                                         if (this_err < err) {
550                                                 *best_clock = clock;
551                                                 err = this_err;
552                                         }
553                                 }
554                         }
555                 }
556         }
557
558         return (err != target);
559 }
560
561 static bool
562 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
563                    int target, int refclk, intel_clock_t *match_clock,
564                    intel_clock_t *best_clock)
565 {
566         struct drm_device *dev = crtc->dev;
567         intel_clock_t clock;
568         int err = target;
569
570         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
571                 /*
572                  * For LVDS just rely on its current settings for dual-channel.
573                  * We haven't figured out how to reliably set up different
574                  * single/dual channel state, if we even can.
575                  */
576                 if (intel_is_dual_link_lvds(dev))
577                         clock.p2 = limit->p2.p2_fast;
578                 else
579                         clock.p2 = limit->p2.p2_slow;
580         } else {
581                 if (target < limit->p2.dot_limit)
582                         clock.p2 = limit->p2.p2_slow;
583                 else
584                         clock.p2 = limit->p2.p2_fast;
585         }
586
587         memset(best_clock, 0, sizeof(*best_clock));
588
589         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
590              clock.m1++) {
591                 for (clock.m2 = limit->m2.min;
592                      clock.m2 <= limit->m2.max; clock.m2++) {
593                         for (clock.n = limit->n.min;
594                              clock.n <= limit->n.max; clock.n++) {
595                                 for (clock.p1 = limit->p1.min;
596                                         clock.p1 <= limit->p1.max; clock.p1++) {
597                                         int this_err;
598
599                                         pineview_clock(refclk, &clock);
600                                         if (!intel_PLL_is_valid(dev, limit,
601                                                                 &clock))
602                                                 continue;
603                                         if (match_clock &&
604                                             clock.p != match_clock->p)
605                                                 continue;
606
607                                         this_err = abs(clock.dot - target);
608                                         if (this_err < err) {
609                                                 *best_clock = clock;
610                                                 err = this_err;
611                                         }
612                                 }
613                         }
614                 }
615         }
616
617         return (err != target);
618 }
619
620 static bool
621 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
622                    int target, int refclk, intel_clock_t *match_clock,
623                    intel_clock_t *best_clock)
624 {
625         struct drm_device *dev = crtc->dev;
626         intel_clock_t clock;
627         int max_n;
628         bool found;
629         /* approximately equals target * 0.00585 */
630         int err_most = (target >> 8) + (target >> 9);
631         found = false;
632
633         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
634                 if (intel_is_dual_link_lvds(dev))
635                         clock.p2 = limit->p2.p2_fast;
636                 else
637                         clock.p2 = limit->p2.p2_slow;
638         } else {
639                 if (target < limit->p2.dot_limit)
640                         clock.p2 = limit->p2.p2_slow;
641                 else
642                         clock.p2 = limit->p2.p2_fast;
643         }
644
645         memset(best_clock, 0, sizeof(*best_clock));
646         max_n = limit->n.max;
647         /* based on hardware requirement, prefer smaller n to precision */
648         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
649                 /* based on hardware requirement, prefere larger m1,m2 */
650                 for (clock.m1 = limit->m1.max;
651                      clock.m1 >= limit->m1.min; clock.m1--) {
652                         for (clock.m2 = limit->m2.max;
653                              clock.m2 >= limit->m2.min; clock.m2--) {
654                                 for (clock.p1 = limit->p1.max;
655                                      clock.p1 >= limit->p1.min; clock.p1--) {
656                                         int this_err;
657
658                                         i9xx_clock(refclk, &clock);
659                                         if (!intel_PLL_is_valid(dev, limit,
660                                                                 &clock))
661                                                 continue;
662
663                                         this_err = abs(clock.dot - target);
664                                         if (this_err < err_most) {
665                                                 *best_clock = clock;
666                                                 err_most = this_err;
667                                                 max_n = clock.n;
668                                                 found = true;
669                                         }
670                                 }
671                         }
672                 }
673         }
674         return found;
675 }
676
677 static bool
678 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
679                    int target, int refclk, intel_clock_t *match_clock,
680                    intel_clock_t *best_clock)
681 {
682         struct drm_device *dev = crtc->dev;
683         intel_clock_t clock;
684         unsigned int bestppm = 1000000;
685         /* min update 19.2 MHz */
686         int max_n = min(limit->n.max, refclk / 19200);
687         bool found = false;
688
689         target *= 5; /* fast clock */
690
691         memset(best_clock, 0, sizeof(*best_clock));
692
693         /* based on hardware requirement, prefer smaller n to precision */
694         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
695                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
696                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
697                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
698                                 clock.p = clock.p1 * clock.p2;
699                                 /* based on hardware requirement, prefer bigger m1,m2 values */
700                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
701                                         unsigned int ppm, diff;
702
703                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
704                                                                      refclk * clock.m1);
705
706                                         vlv_clock(refclk, &clock);
707
708                                         if (!intel_PLL_is_valid(dev, limit,
709                                                                 &clock))
710                                                 continue;
711
712                                         diff = abs(clock.dot - target);
713                                         ppm = div_u64(1000000ULL * diff, target);
714
715                                         if (ppm < 100 && clock.p > best_clock->p) {
716                                                 bestppm = 0;
717                                                 *best_clock = clock;
718                                                 found = true;
719                                         }
720
721                                         if (bestppm >= 10 && ppm < bestppm - 10) {
722                                                 bestppm = ppm;
723                                                 *best_clock = clock;
724                                                 found = true;
725                                         }
726                                 }
727                         }
728                 }
729         }
730
731         return found;
732 }
733
734 bool intel_crtc_active(struct drm_crtc *crtc)
735 {
736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
737
738         /* Be paranoid as we can arrive here with only partial
739          * state retrieved from the hardware during setup.
740          *
741          * We can ditch the adjusted_mode.crtc_clock check as soon
742          * as Haswell has gained clock readout/fastboot support.
743          *
744          * We can ditch the crtc->fb check as soon as we can
745          * properly reconstruct framebuffers.
746          */
747         return intel_crtc->active && crtc->fb &&
748                 intel_crtc->config.adjusted_mode.crtc_clock;
749 }
750
751 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
752                                              enum pipe pipe)
753 {
754         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756
757         return intel_crtc->config.cpu_transcoder;
758 }
759
760 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
761 {
762         struct drm_i915_private *dev_priv = dev->dev_private;
763         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
764
765         frame = I915_READ(frame_reg);
766
767         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
768                 DRM_DEBUG_KMS("vblank wait timed out\n");
769 }
770
771 /**
772  * intel_wait_for_vblank - wait for vblank on a given pipe
773  * @dev: drm device
774  * @pipe: pipe to wait for
775  *
776  * Wait for vblank to occur on a given pipe.  Needed for various bits of
777  * mode setting code.
778  */
779 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
780 {
781         struct drm_i915_private *dev_priv = dev->dev_private;
782         int pipestat_reg = PIPESTAT(pipe);
783
784         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
785                 g4x_wait_for_vblank(dev, pipe);
786                 return;
787         }
788
789         /* Clear existing vblank status. Note this will clear any other
790          * sticky status fields as well.
791          *
792          * This races with i915_driver_irq_handler() with the result
793          * that either function could miss a vblank event.  Here it is not
794          * fatal, as we will either wait upon the next vblank interrupt or
795          * timeout.  Generally speaking intel_wait_for_vblank() is only
796          * called during modeset at which time the GPU should be idle and
797          * should *not* be performing page flips and thus not waiting on
798          * vblanks...
799          * Currently, the result of us stealing a vblank from the irq
800          * handler is that a single frame will be skipped during swapbuffers.
801          */
802         I915_WRITE(pipestat_reg,
803                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
804
805         /* Wait for vblank interrupt bit to set */
806         if (wait_for(I915_READ(pipestat_reg) &
807                      PIPE_VBLANK_INTERRUPT_STATUS,
808                      50))
809                 DRM_DEBUG_KMS("vblank wait timed out\n");
810 }
811
812 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
813 {
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         u32 reg = PIPEDSL(pipe);
816         u32 line1, line2;
817         u32 line_mask;
818
819         if (IS_GEN2(dev))
820                 line_mask = DSL_LINEMASK_GEN2;
821         else
822                 line_mask = DSL_LINEMASK_GEN3;
823
824         line1 = I915_READ(reg) & line_mask;
825         mdelay(5);
826         line2 = I915_READ(reg) & line_mask;
827
828         return line1 == line2;
829 }
830
831 /*
832  * intel_wait_for_pipe_off - wait for pipe to turn off
833  * @dev: drm device
834  * @pipe: pipe to wait for
835  *
836  * After disabling a pipe, we can't wait for vblank in the usual way,
837  * spinning on the vblank interrupt status bit, since we won't actually
838  * see an interrupt when the pipe is disabled.
839  *
840  * On Gen4 and above:
841  *   wait for the pipe register state bit to turn off
842  *
843  * Otherwise:
844  *   wait for the display line value to settle (it usually
845  *   ends up stopping at the start of the next frame).
846  *
847  */
848 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
849 {
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
852                                                                       pipe);
853
854         if (INTEL_INFO(dev)->gen >= 4) {
855                 int reg = PIPECONF(cpu_transcoder);
856
857                 /* Wait for the Pipe State to go off */
858                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
859                              100))
860                         WARN(1, "pipe_off wait timed out\n");
861         } else {
862                 /* Wait for the display line to settle */
863                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
864                         WARN(1, "pipe_off wait timed out\n");
865         }
866 }
867
868 /*
869  * ibx_digital_port_connected - is the specified port connected?
870  * @dev_priv: i915 private structure
871  * @port: the port to test
872  *
873  * Returns true if @port is connected, false otherwise.
874  */
875 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
876                                 struct intel_digital_port *port)
877 {
878         u32 bit;
879
880         if (HAS_PCH_IBX(dev_priv->dev)) {
881                 switch(port->port) {
882                 case PORT_B:
883                         bit = SDE_PORTB_HOTPLUG;
884                         break;
885                 case PORT_C:
886                         bit = SDE_PORTC_HOTPLUG;
887                         break;
888                 case PORT_D:
889                         bit = SDE_PORTD_HOTPLUG;
890                         break;
891                 default:
892                         return true;
893                 }
894         } else {
895                 switch(port->port) {
896                 case PORT_B:
897                         bit = SDE_PORTB_HOTPLUG_CPT;
898                         break;
899                 case PORT_C:
900                         bit = SDE_PORTC_HOTPLUG_CPT;
901                         break;
902                 case PORT_D:
903                         bit = SDE_PORTD_HOTPLUG_CPT;
904                         break;
905                 default:
906                         return true;
907                 }
908         }
909
910         return I915_READ(SDEISR) & bit;
911 }
912
913 static const char *state_string(bool enabled)
914 {
915         return enabled ? "on" : "off";
916 }
917
918 /* Only for pre-ILK configs */
919 void assert_pll(struct drm_i915_private *dev_priv,
920                 enum pipe pipe, bool state)
921 {
922         int reg;
923         u32 val;
924         bool cur_state;
925
926         reg = DPLL(pipe);
927         val = I915_READ(reg);
928         cur_state = !!(val & DPLL_VCO_ENABLE);
929         WARN(cur_state != state,
930              "PLL state assertion failure (expected %s, current %s)\n",
931              state_string(state), state_string(cur_state));
932 }
933
934 /* XXX: the dsi pll is shared between MIPI DSI ports */
935 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
936 {
937         u32 val;
938         bool cur_state;
939
940         mutex_lock(&dev_priv->dpio_lock);
941         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
942         mutex_unlock(&dev_priv->dpio_lock);
943
944         cur_state = val & DSI_PLL_VCO_EN;
945         WARN(cur_state != state,
946              "DSI PLL state assertion failure (expected %s, current %s)\n",
947              state_string(state), state_string(cur_state));
948 }
949 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
950 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
951
952 struct intel_shared_dpll *
953 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
954 {
955         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
956
957         if (crtc->config.shared_dpll < 0)
958                 return NULL;
959
960         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
961 }
962
963 /* For ILK+ */
964 void assert_shared_dpll(struct drm_i915_private *dev_priv,
965                         struct intel_shared_dpll *pll,
966                         bool state)
967 {
968         bool cur_state;
969         struct intel_dpll_hw_state hw_state;
970
971         if (HAS_PCH_LPT(dev_priv->dev)) {
972                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
973                 return;
974         }
975
976         if (WARN (!pll,
977                   "asserting DPLL %s with no DPLL\n", state_string(state)))
978                 return;
979
980         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
981         WARN(cur_state != state,
982              "%s assertion failure (expected %s, current %s)\n",
983              pll->name, state_string(state), state_string(cur_state));
984 }
985
986 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
987                           enum pipe pipe, bool state)
988 {
989         int reg;
990         u32 val;
991         bool cur_state;
992         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
993                                                                       pipe);
994
995         if (HAS_DDI(dev_priv->dev)) {
996                 /* DDI does not have a specific FDI_TX register */
997                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
998                 val = I915_READ(reg);
999                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1000         } else {
1001                 reg = FDI_TX_CTL(pipe);
1002                 val = I915_READ(reg);
1003                 cur_state = !!(val & FDI_TX_ENABLE);
1004         }
1005         WARN(cur_state != state,
1006              "FDI TX state assertion failure (expected %s, current %s)\n",
1007              state_string(state), state_string(cur_state));
1008 }
1009 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1010 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1011
1012 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1013                           enum pipe pipe, bool state)
1014 {
1015         int reg;
1016         u32 val;
1017         bool cur_state;
1018
1019         reg = FDI_RX_CTL(pipe);
1020         val = I915_READ(reg);
1021         cur_state = !!(val & FDI_RX_ENABLE);
1022         WARN(cur_state != state,
1023              "FDI RX state assertion failure (expected %s, current %s)\n",
1024              state_string(state), state_string(cur_state));
1025 }
1026 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1027 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1028
1029 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1030                                       enum pipe pipe)
1031 {
1032         int reg;
1033         u32 val;
1034
1035         /* ILK FDI PLL is always enabled */
1036         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1037                 return;
1038
1039         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1040         if (HAS_DDI(dev_priv->dev))
1041                 return;
1042
1043         reg = FDI_TX_CTL(pipe);
1044         val = I915_READ(reg);
1045         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1046 }
1047
1048 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1049                        enum pipe pipe, bool state)
1050 {
1051         int reg;
1052         u32 val;
1053         bool cur_state;
1054
1055         reg = FDI_RX_CTL(pipe);
1056         val = I915_READ(reg);
1057         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1058         WARN(cur_state != state,
1059              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1060              state_string(state), state_string(cur_state));
1061 }
1062
1063 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1064                                   enum pipe pipe)
1065 {
1066         int pp_reg, lvds_reg;
1067         u32 val;
1068         enum pipe panel_pipe = PIPE_A;
1069         bool locked = true;
1070
1071         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1072                 pp_reg = PCH_PP_CONTROL;
1073                 lvds_reg = PCH_LVDS;
1074         } else {
1075                 pp_reg = PP_CONTROL;
1076                 lvds_reg = LVDS;
1077         }
1078
1079         val = I915_READ(pp_reg);
1080         if (!(val & PANEL_POWER_ON) ||
1081             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1082                 locked = false;
1083
1084         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1085                 panel_pipe = PIPE_B;
1086
1087         WARN(panel_pipe == pipe && locked,
1088              "panel assertion failure, pipe %c regs locked\n",
1089              pipe_name(pipe));
1090 }
1091
1092 static void assert_cursor(struct drm_i915_private *dev_priv,
1093                           enum pipe pipe, bool state)
1094 {
1095         struct drm_device *dev = dev_priv->dev;
1096         bool cur_state;
1097
1098         if (IS_845G(dev) || IS_I865G(dev))
1099                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1100         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1101                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1102         else
1103                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1104
1105         WARN(cur_state != state,
1106              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1107              pipe_name(pipe), state_string(state), state_string(cur_state));
1108 }
1109 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1110 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1111
1112 void assert_pipe(struct drm_i915_private *dev_priv,
1113                  enum pipe pipe, bool state)
1114 {
1115         int reg;
1116         u32 val;
1117         bool cur_state;
1118         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119                                                                       pipe);
1120
1121         /* if we need the pipe A quirk it must be always on */
1122         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1123                 state = true;
1124
1125         if (!intel_display_power_enabled(dev_priv,
1126                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1127                 cur_state = false;
1128         } else {
1129                 reg = PIPECONF(cpu_transcoder);
1130                 val = I915_READ(reg);
1131                 cur_state = !!(val & PIPECONF_ENABLE);
1132         }
1133
1134         WARN(cur_state != state,
1135              "pipe %c assertion failure (expected %s, current %s)\n",
1136              pipe_name(pipe), state_string(state), state_string(cur_state));
1137 }
1138
1139 static void assert_plane(struct drm_i915_private *dev_priv,
1140                          enum plane plane, bool state)
1141 {
1142         int reg;
1143         u32 val;
1144         bool cur_state;
1145
1146         reg = DSPCNTR(plane);
1147         val = I915_READ(reg);
1148         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1149         WARN(cur_state != state,
1150              "plane %c assertion failure (expected %s, current %s)\n",
1151              plane_name(plane), state_string(state), state_string(cur_state));
1152 }
1153
1154 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1155 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1156
1157 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1158                                    enum pipe pipe)
1159 {
1160         struct drm_device *dev = dev_priv->dev;
1161         int reg, i;
1162         u32 val;
1163         int cur_pipe;
1164
1165         /* Primary planes are fixed to pipes on gen4+ */
1166         if (INTEL_INFO(dev)->gen >= 4) {
1167                 reg = DSPCNTR(pipe);
1168                 val = I915_READ(reg);
1169                 WARN(val & DISPLAY_PLANE_ENABLE,
1170                      "plane %c assertion failure, should be disabled but not\n",
1171                      plane_name(pipe));
1172                 return;
1173         }
1174
1175         /* Need to check both planes against the pipe */
1176         for_each_pipe(i) {
1177                 reg = DSPCNTR(i);
1178                 val = I915_READ(reg);
1179                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1180                         DISPPLANE_SEL_PIPE_SHIFT;
1181                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1182                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1183                      plane_name(i), pipe_name(pipe));
1184         }
1185 }
1186
1187 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1188                                     enum pipe pipe)
1189 {
1190         struct drm_device *dev = dev_priv->dev;
1191         int reg, sprite;
1192         u32 val;
1193
1194         if (IS_VALLEYVIEW(dev)) {
1195                 for_each_sprite(pipe, sprite) {
1196                         reg = SPCNTR(pipe, sprite);
1197                         val = I915_READ(reg);
1198                         WARN(val & SP_ENABLE,
1199                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1200                              sprite_name(pipe, sprite), pipe_name(pipe));
1201                 }
1202         } else if (INTEL_INFO(dev)->gen >= 7) {
1203                 reg = SPRCTL(pipe);
1204                 val = I915_READ(reg);
1205                 WARN(val & SPRITE_ENABLE,
1206                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1207                      plane_name(pipe), pipe_name(pipe));
1208         } else if (INTEL_INFO(dev)->gen >= 5) {
1209                 reg = DVSCNTR(pipe);
1210                 val = I915_READ(reg);
1211                 WARN(val & DVS_ENABLE,
1212                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1213                      plane_name(pipe), pipe_name(pipe));
1214         }
1215 }
1216
1217 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1218 {
1219         u32 val;
1220         bool enabled;
1221
1222         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1223
1224         val = I915_READ(PCH_DREF_CONTROL);
1225         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226                             DREF_SUPERSPREAD_SOURCE_MASK));
1227         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231                                            enum pipe pipe)
1232 {
1233         int reg;
1234         u32 val;
1235         bool enabled;
1236
1237         reg = PCH_TRANSCONF(pipe);
1238         val = I915_READ(reg);
1239         enabled = !!(val & TRANS_ENABLE);
1240         WARN(enabled,
1241              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242              pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246                             enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248         if ((val & DP_PORT_EN) == 0)
1249                 return false;
1250
1251         if (HAS_PCH_CPT(dev_priv->dev)) {
1252                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255                         return false;
1256         } else {
1257                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258                         return false;
1259         }
1260         return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264                               enum pipe pipe, u32 val)
1265 {
1266         if ((val & SDVO_ENABLE) == 0)
1267                 return false;
1268
1269         if (HAS_PCH_CPT(dev_priv->dev)) {
1270                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271                         return false;
1272         } else {
1273                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274                         return false;
1275         }
1276         return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280                               enum pipe pipe, u32 val)
1281 {
1282         if ((val & LVDS_PORT_EN) == 0)
1283                 return false;
1284
1285         if (HAS_PCH_CPT(dev_priv->dev)) {
1286                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287                         return false;
1288         } else {
1289                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290                         return false;
1291         }
1292         return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296                               enum pipe pipe, u32 val)
1297 {
1298         if ((val & ADPA_DAC_ENABLE) == 0)
1299                 return false;
1300         if (HAS_PCH_CPT(dev_priv->dev)) {
1301                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302                         return false;
1303         } else {
1304                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305                         return false;
1306         }
1307         return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311                                    enum pipe pipe, int reg, u32 port_sel)
1312 {
1313         u32 val = I915_READ(reg);
1314         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316              reg, pipe_name(pipe));
1317
1318         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319              && (val & DP_PIPEB_SELECT),
1320              "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324                                      enum pipe pipe, int reg)
1325 {
1326         u32 val = I915_READ(reg);
1327         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329              reg, pipe_name(pipe));
1330
1331         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332              && (val & SDVO_PIPE_B_SELECT),
1333              "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337                                       enum pipe pipe)
1338 {
1339         int reg;
1340         u32 val;
1341
1342         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346         reg = PCH_ADPA;
1347         val = I915_READ(reg);
1348         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349              "PCH VGA enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         reg = PCH_LVDS;
1353         val = I915_READ(reg);
1354         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356              pipe_name(pipe));
1357
1358         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void intel_init_dpio(struct drm_device *dev)
1364 {
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366
1367         if (!IS_VALLEYVIEW(dev))
1368                 return;
1369
1370         DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1371 }
1372
1373 static void intel_reset_dpio(struct drm_device *dev)
1374 {
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376
1377         if (!IS_VALLEYVIEW(dev))
1378                 return;
1379
1380         /*
1381          * Enable the CRI clock source so we can get at the display and the
1382          * reference clock for VGA hotplug / manual detection.
1383          */
1384         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1385                    DPLL_REFA_CLK_ENABLE_VLV |
1386                    DPLL_INTEGRATED_CRI_CLK_VLV);
1387
1388         /*
1389          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1390          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1391          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1392          *   b. The other bits such as sfr settings / modesel may all be set
1393          *      to 0.
1394          *
1395          * This should only be done on init and resume from S3 with both
1396          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1397          */
1398         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1399 }
1400
1401 static void vlv_enable_pll(struct intel_crtc *crtc)
1402 {
1403         struct drm_device *dev = crtc->base.dev;
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405         int reg = DPLL(crtc->pipe);
1406         u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408         assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410         /* No really, not for ILK+ */
1411         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1412
1413         /* PLL is protected by panel, make sure we can write it */
1414         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1415                 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417         I915_WRITE(reg, dpll);
1418         POSTING_READ(reg);
1419         udelay(150);
1420
1421         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1422                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1423
1424         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1425         POSTING_READ(DPLL_MD(crtc->pipe));
1426
1427         /* We do this three times for luck */
1428         I915_WRITE(reg, dpll);
1429         POSTING_READ(reg);
1430         udelay(150); /* wait for warmup */
1431         I915_WRITE(reg, dpll);
1432         POSTING_READ(reg);
1433         udelay(150); /* wait for warmup */
1434         I915_WRITE(reg, dpll);
1435         POSTING_READ(reg);
1436         udelay(150); /* wait for warmup */
1437 }
1438
1439 static void i9xx_enable_pll(struct intel_crtc *crtc)
1440 {
1441         struct drm_device *dev = crtc->base.dev;
1442         struct drm_i915_private *dev_priv = dev->dev_private;
1443         int reg = DPLL(crtc->pipe);
1444         u32 dpll = crtc->config.dpll_hw_state.dpll;
1445
1446         assert_pipe_disabled(dev_priv, crtc->pipe);
1447
1448         /* No really, not for ILK+ */
1449         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1450
1451         /* PLL is protected by panel, make sure we can write it */
1452         if (IS_MOBILE(dev) && !IS_I830(dev))
1453                 assert_panel_unlocked(dev_priv, crtc->pipe);
1454
1455         I915_WRITE(reg, dpll);
1456
1457         /* Wait for the clocks to stabilize. */
1458         POSTING_READ(reg);
1459         udelay(150);
1460
1461         if (INTEL_INFO(dev)->gen >= 4) {
1462                 I915_WRITE(DPLL_MD(crtc->pipe),
1463                            crtc->config.dpll_hw_state.dpll_md);
1464         } else {
1465                 /* The pixel multiplier can only be updated once the
1466                  * DPLL is enabled and the clocks are stable.
1467                  *
1468                  * So write it again.
1469                  */
1470                 I915_WRITE(reg, dpll);
1471         }
1472
1473         /* We do this three times for luck */
1474         I915_WRITE(reg, dpll);
1475         POSTING_READ(reg);
1476         udelay(150); /* wait for warmup */
1477         I915_WRITE(reg, dpll);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480         I915_WRITE(reg, dpll);
1481         POSTING_READ(reg);
1482         udelay(150); /* wait for warmup */
1483 }
1484
1485 /**
1486  * i9xx_disable_pll - disable a PLL
1487  * @dev_priv: i915 private structure
1488  * @pipe: pipe PLL to disable
1489  *
1490  * Disable the PLL for @pipe, making sure the pipe is off first.
1491  *
1492  * Note!  This is for pre-ILK only.
1493  */
1494 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1495 {
1496         /* Don't disable pipe A or pipe A PLLs if needed */
1497         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1498                 return;
1499
1500         /* Make sure the pipe isn't still relying on us */
1501         assert_pipe_disabled(dev_priv, pipe);
1502
1503         I915_WRITE(DPLL(pipe), 0);
1504         POSTING_READ(DPLL(pipe));
1505 }
1506
1507 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1508 {
1509         u32 val = 0;
1510
1511         /* Make sure the pipe isn't still relying on us */
1512         assert_pipe_disabled(dev_priv, pipe);
1513
1514         /*
1515          * Leave integrated clock source and reference clock enabled for pipe B.
1516          * The latter is needed for VGA hotplug / manual detection.
1517          */
1518         if (pipe == PIPE_B)
1519                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1520         I915_WRITE(DPLL(pipe), val);
1521         POSTING_READ(DPLL(pipe));
1522 }
1523
1524 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1525                 struct intel_digital_port *dport)
1526 {
1527         u32 port_mask;
1528
1529         switch (dport->port) {
1530         case PORT_B:
1531                 port_mask = DPLL_PORTB_READY_MASK;
1532                 break;
1533         case PORT_C:
1534                 port_mask = DPLL_PORTC_READY_MASK;
1535                 break;
1536         default:
1537                 BUG();
1538         }
1539
1540         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1541                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1542                      port_name(dport->port), I915_READ(DPLL(0)));
1543 }
1544
1545 /**
1546  * ironlake_enable_shared_dpll - enable PCH PLL
1547  * @dev_priv: i915 private structure
1548  * @pipe: pipe PLL to enable
1549  *
1550  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1551  * drives the transcoder clock.
1552  */
1553 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1554 {
1555         struct drm_device *dev = crtc->base.dev;
1556         struct drm_i915_private *dev_priv = dev->dev_private;
1557         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1558
1559         /* PCH PLLs only available on ILK, SNB and IVB */
1560         BUG_ON(INTEL_INFO(dev)->gen < 5);
1561         if (WARN_ON(pll == NULL))
1562                 return;
1563
1564         if (WARN_ON(pll->refcount == 0))
1565                 return;
1566
1567         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1568                       pll->name, pll->active, pll->on,
1569                       crtc->base.base.id);
1570
1571         if (pll->active++) {
1572                 WARN_ON(!pll->on);
1573                 assert_shared_dpll_enabled(dev_priv, pll);
1574                 return;
1575         }
1576         WARN_ON(pll->on);
1577
1578         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1579         pll->enable(dev_priv, pll);
1580         pll->on = true;
1581 }
1582
1583 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1584 {
1585         struct drm_device *dev = crtc->base.dev;
1586         struct drm_i915_private *dev_priv = dev->dev_private;
1587         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1588
1589         /* PCH only available on ILK+ */
1590         BUG_ON(INTEL_INFO(dev)->gen < 5);
1591         if (WARN_ON(pll == NULL))
1592                return;
1593
1594         if (WARN_ON(pll->refcount == 0))
1595                 return;
1596
1597         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1598                       pll->name, pll->active, pll->on,
1599                       crtc->base.base.id);
1600
1601         if (WARN_ON(pll->active == 0)) {
1602                 assert_shared_dpll_disabled(dev_priv, pll);
1603                 return;
1604         }
1605
1606         assert_shared_dpll_enabled(dev_priv, pll);
1607         WARN_ON(!pll->on);
1608         if (--pll->active)
1609                 return;
1610
1611         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1612         pll->disable(dev_priv, pll);
1613         pll->on = false;
1614 }
1615
1616 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1617                                            enum pipe pipe)
1618 {
1619         struct drm_device *dev = dev_priv->dev;
1620         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1622         uint32_t reg, val, pipeconf_val;
1623
1624         /* PCH only available on ILK+ */
1625         BUG_ON(INTEL_INFO(dev)->gen < 5);
1626
1627         /* Make sure PCH DPLL is enabled */
1628         assert_shared_dpll_enabled(dev_priv,
1629                                    intel_crtc_to_shared_dpll(intel_crtc));
1630
1631         /* FDI must be feeding us bits for PCH ports */
1632         assert_fdi_tx_enabled(dev_priv, pipe);
1633         assert_fdi_rx_enabled(dev_priv, pipe);
1634
1635         if (HAS_PCH_CPT(dev)) {
1636                 /* Workaround: Set the timing override bit before enabling the
1637                  * pch transcoder. */
1638                 reg = TRANS_CHICKEN2(pipe);
1639                 val = I915_READ(reg);
1640                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1641                 I915_WRITE(reg, val);
1642         }
1643
1644         reg = PCH_TRANSCONF(pipe);
1645         val = I915_READ(reg);
1646         pipeconf_val = I915_READ(PIPECONF(pipe));
1647
1648         if (HAS_PCH_IBX(dev_priv->dev)) {
1649                 /*
1650                  * make the BPC in transcoder be consistent with
1651                  * that in pipeconf reg.
1652                  */
1653                 val &= ~PIPECONF_BPC_MASK;
1654                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1655         }
1656
1657         val &= ~TRANS_INTERLACE_MASK;
1658         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1659                 if (HAS_PCH_IBX(dev_priv->dev) &&
1660                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1661                         val |= TRANS_LEGACY_INTERLACED_ILK;
1662                 else
1663                         val |= TRANS_INTERLACED;
1664         else
1665                 val |= TRANS_PROGRESSIVE;
1666
1667         I915_WRITE(reg, val | TRANS_ENABLE);
1668         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1669                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1670 }
1671
1672 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1673                                       enum transcoder cpu_transcoder)
1674 {
1675         u32 val, pipeconf_val;
1676
1677         /* PCH only available on ILK+ */
1678         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1679
1680         /* FDI must be feeding us bits for PCH ports */
1681         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1682         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1683
1684         /* Workaround: set timing override bit. */
1685         val = I915_READ(_TRANSA_CHICKEN2);
1686         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687         I915_WRITE(_TRANSA_CHICKEN2, val);
1688
1689         val = TRANS_ENABLE;
1690         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1691
1692         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1693             PIPECONF_INTERLACED_ILK)
1694                 val |= TRANS_INTERLACED;
1695         else
1696                 val |= TRANS_PROGRESSIVE;
1697
1698         I915_WRITE(LPT_TRANSCONF, val);
1699         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1700                 DRM_ERROR("Failed to enable PCH transcoder\n");
1701 }
1702
1703 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1704                                             enum pipe pipe)
1705 {
1706         struct drm_device *dev = dev_priv->dev;
1707         uint32_t reg, val;
1708
1709         /* FDI relies on the transcoder */
1710         assert_fdi_tx_disabled(dev_priv, pipe);
1711         assert_fdi_rx_disabled(dev_priv, pipe);
1712
1713         /* Ports must be off as well */
1714         assert_pch_ports_disabled(dev_priv, pipe);
1715
1716         reg = PCH_TRANSCONF(pipe);
1717         val = I915_READ(reg);
1718         val &= ~TRANS_ENABLE;
1719         I915_WRITE(reg, val);
1720         /* wait for PCH transcoder off, transcoder state */
1721         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1722                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1723
1724         if (!HAS_PCH_IBX(dev)) {
1725                 /* Workaround: Clear the timing override chicken bit again. */
1726                 reg = TRANS_CHICKEN2(pipe);
1727                 val = I915_READ(reg);
1728                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1729                 I915_WRITE(reg, val);
1730         }
1731 }
1732
1733 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1734 {
1735         u32 val;
1736
1737         val = I915_READ(LPT_TRANSCONF);
1738         val &= ~TRANS_ENABLE;
1739         I915_WRITE(LPT_TRANSCONF, val);
1740         /* wait for PCH transcoder off, transcoder state */
1741         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1742                 DRM_ERROR("Failed to disable PCH transcoder\n");
1743
1744         /* Workaround: clear timing override bit. */
1745         val = I915_READ(_TRANSA_CHICKEN2);
1746         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1747         I915_WRITE(_TRANSA_CHICKEN2, val);
1748 }
1749
1750 /**
1751  * intel_enable_pipe - enable a pipe, asserting requirements
1752  * @crtc: crtc responsible for the pipe
1753  *
1754  * Enable @crtc's pipe, making sure that various hardware specific requirements
1755  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1756  */
1757 static void intel_enable_pipe(struct intel_crtc *crtc)
1758 {
1759         struct drm_device *dev = crtc->base.dev;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         enum pipe pipe = crtc->pipe;
1762         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763                                                                       pipe);
1764         enum pipe pch_transcoder;
1765         int reg;
1766         u32 val;
1767
1768         assert_planes_disabled(dev_priv, pipe);
1769         assert_cursor_disabled(dev_priv, pipe);
1770         assert_sprites_disabled(dev_priv, pipe);
1771
1772         if (HAS_PCH_LPT(dev_priv->dev))
1773                 pch_transcoder = TRANSCODER_A;
1774         else
1775                 pch_transcoder = pipe;
1776
1777         /*
1778          * A pipe without a PLL won't actually be able to drive bits from
1779          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1780          * need the check.
1781          */
1782         if (!HAS_PCH_SPLIT(dev_priv->dev))
1783                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
1784                         assert_dsi_pll_enabled(dev_priv);
1785                 else
1786                         assert_pll_enabled(dev_priv, pipe);
1787         else {
1788                 if (crtc->config.has_pch_encoder) {
1789                         /* if driving the PCH, we need FDI enabled */
1790                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1791                         assert_fdi_tx_pll_enabled(dev_priv,
1792                                                   (enum pipe) cpu_transcoder);
1793                 }
1794                 /* FIXME: assert CPU port conditions for SNB+ */
1795         }
1796
1797         reg = PIPECONF(cpu_transcoder);
1798         val = I915_READ(reg);
1799         if (val & PIPECONF_ENABLE) {
1800                 WARN_ON(!(pipe == PIPE_A &&
1801                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
1802                 return;
1803         }
1804
1805         I915_WRITE(reg, val | PIPECONF_ENABLE);
1806         POSTING_READ(reg);
1807
1808         /*
1809          * There's no guarantee the pipe will really start running now. It
1810          * depends on the Gen, the output type and the relative order between
1811          * pipe and plane enabling. Avoid waiting on HSW+ since it's not
1812          * necessary.
1813          * TODO: audit the previous gens.
1814          */
1815         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
1816                 intel_wait_for_vblank(dev_priv->dev, pipe);
1817 }
1818
1819 /**
1820  * intel_disable_pipe - disable a pipe, asserting requirements
1821  * @dev_priv: i915 private structure
1822  * @pipe: pipe to disable
1823  *
1824  * Disable @pipe, making sure that various hardware specific requirements
1825  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1826  *
1827  * @pipe should be %PIPE_A or %PIPE_B.
1828  *
1829  * Will wait until the pipe has shut down before returning.
1830  */
1831 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1832                                enum pipe pipe)
1833 {
1834         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1835                                                                       pipe);
1836         int reg;
1837         u32 val;
1838
1839         /*
1840          * Make sure planes won't keep trying to pump pixels to us,
1841          * or we might hang the display.
1842          */
1843         assert_planes_disabled(dev_priv, pipe);
1844         assert_cursor_disabled(dev_priv, pipe);
1845         assert_sprites_disabled(dev_priv, pipe);
1846
1847         /* Don't disable pipe A or pipe A PLLs if needed */
1848         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1849                 return;
1850
1851         reg = PIPECONF(cpu_transcoder);
1852         val = I915_READ(reg);
1853         if ((val & PIPECONF_ENABLE) == 0)
1854                 return;
1855
1856         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1857         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1858 }
1859
1860 /*
1861  * Plane regs are double buffered, going from enabled->disabled needs a
1862  * trigger in order to latch.  The display address reg provides this.
1863  */
1864 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1865                                enum plane plane)
1866 {
1867         struct drm_device *dev = dev_priv->dev;
1868         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1869
1870         I915_WRITE(reg, I915_READ(reg));
1871         POSTING_READ(reg);
1872 }
1873
1874 /**
1875  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
1876  * @dev_priv: i915 private structure
1877  * @plane: plane to enable
1878  * @pipe: pipe being fed
1879  *
1880  * Enable @plane on @pipe, making sure that @pipe is running first.
1881  */
1882 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
1883                                           enum plane plane, enum pipe pipe)
1884 {
1885         struct intel_crtc *intel_crtc =
1886                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1887         int reg;
1888         u32 val;
1889
1890         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1891         assert_pipe_enabled(dev_priv, pipe);
1892
1893         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1894
1895         intel_crtc->primary_enabled = true;
1896
1897         reg = DSPCNTR(plane);
1898         val = I915_READ(reg);
1899         if (val & DISPLAY_PLANE_ENABLE)
1900                 return;
1901
1902         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1903         intel_flush_primary_plane(dev_priv, plane);
1904         intel_wait_for_vblank(dev_priv->dev, pipe);
1905 }
1906
1907 /**
1908  * intel_disable_primary_hw_plane - disable the primary hardware plane
1909  * @dev_priv: i915 private structure
1910  * @plane: plane to disable
1911  * @pipe: pipe consuming the data
1912  *
1913  * Disable @plane; should be an independent operation.
1914  */
1915 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
1916                                            enum plane plane, enum pipe pipe)
1917 {
1918         struct intel_crtc *intel_crtc =
1919                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1920         int reg;
1921         u32 val;
1922
1923         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1924
1925         intel_crtc->primary_enabled = false;
1926
1927         reg = DSPCNTR(plane);
1928         val = I915_READ(reg);
1929         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1930                 return;
1931
1932         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1933         intel_flush_primary_plane(dev_priv, plane);
1934         intel_wait_for_vblank(dev_priv->dev, pipe);
1935 }
1936
1937 static bool need_vtd_wa(struct drm_device *dev)
1938 {
1939 #ifdef CONFIG_INTEL_IOMMU
1940         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1941                 return true;
1942 #endif
1943         return false;
1944 }
1945
1946 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
1947 {
1948         int tile_height;
1949
1950         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
1951         return ALIGN(height, tile_height);
1952 }
1953
1954 int
1955 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1956                            struct drm_i915_gem_object *obj,
1957                            struct intel_ring_buffer *pipelined)
1958 {
1959         struct drm_i915_private *dev_priv = dev->dev_private;
1960         u32 alignment;
1961         int ret;
1962
1963         switch (obj->tiling_mode) {
1964         case I915_TILING_NONE:
1965                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1966                         alignment = 128 * 1024;
1967                 else if (INTEL_INFO(dev)->gen >= 4)
1968                         alignment = 4 * 1024;
1969                 else
1970                         alignment = 64 * 1024;
1971                 break;
1972         case I915_TILING_X:
1973                 /* pin() will align the object as required by fence */
1974                 alignment = 0;
1975                 break;
1976         case I915_TILING_Y:
1977                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1978                 return -EINVAL;
1979         default:
1980                 BUG();
1981         }
1982
1983         /* Note that the w/a also requires 64 PTE of padding following the
1984          * bo. We currently fill all unused PTE with the shadow page and so
1985          * we should always have valid PTE following the scanout preventing
1986          * the VT-d warning.
1987          */
1988         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1989                 alignment = 256 * 1024;
1990
1991         dev_priv->mm.interruptible = false;
1992         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1993         if (ret)
1994                 goto err_interruptible;
1995
1996         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1997          * fence, whereas 965+ only requires a fence if using
1998          * framebuffer compression.  For simplicity, we always install
1999          * a fence as the cost is not that onerous.
2000          */
2001         ret = i915_gem_object_get_fence(obj);
2002         if (ret)
2003                 goto err_unpin;
2004
2005         i915_gem_object_pin_fence(obj);
2006
2007         dev_priv->mm.interruptible = true;
2008         return 0;
2009
2010 err_unpin:
2011         i915_gem_object_unpin_from_display_plane(obj);
2012 err_interruptible:
2013         dev_priv->mm.interruptible = true;
2014         return ret;
2015 }
2016
2017 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2018 {
2019         i915_gem_object_unpin_fence(obj);
2020         i915_gem_object_unpin_from_display_plane(obj);
2021 }
2022
2023 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2024  * is assumed to be a power-of-two. */
2025 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2026                                              unsigned int tiling_mode,
2027                                              unsigned int cpp,
2028                                              unsigned int pitch)
2029 {
2030         if (tiling_mode != I915_TILING_NONE) {
2031                 unsigned int tile_rows, tiles;
2032
2033                 tile_rows = *y / 8;
2034                 *y %= 8;
2035
2036                 tiles = *x / (512/cpp);
2037                 *x %= 512/cpp;
2038
2039                 return tile_rows * pitch * 8 + tiles * 4096;
2040         } else {
2041                 unsigned int offset;
2042
2043                 offset = *y * pitch + *x * cpp;
2044                 *y = 0;
2045                 *x = (offset & 4095) / cpp;
2046                 return offset & -4096;
2047         }
2048 }
2049
2050 int intel_format_to_fourcc(int format)
2051 {
2052         switch (format) {
2053         case DISPPLANE_8BPP:
2054                 return DRM_FORMAT_C8;
2055         case DISPPLANE_BGRX555:
2056                 return DRM_FORMAT_XRGB1555;
2057         case DISPPLANE_BGRX565:
2058                 return DRM_FORMAT_RGB565;
2059         default:
2060         case DISPPLANE_BGRX888:
2061                 return DRM_FORMAT_XRGB8888;
2062         case DISPPLANE_RGBX888:
2063                 return DRM_FORMAT_XBGR8888;
2064         case DISPPLANE_BGRX101010:
2065                 return DRM_FORMAT_XRGB2101010;
2066         case DISPPLANE_RGBX101010:
2067                 return DRM_FORMAT_XBGR2101010;
2068         }
2069 }
2070
2071 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2072                                   struct intel_plane_config *plane_config)
2073 {
2074         struct drm_device *dev = crtc->base.dev;
2075         struct drm_i915_gem_object *obj = NULL;
2076         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2077         u32 base = plane_config->base;
2078
2079         if (plane_config->size == 0)
2080                 return false;
2081
2082         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2083                                                              plane_config->size);
2084         if (!obj)
2085                 return false;
2086
2087         if (plane_config->tiled) {
2088                 obj->tiling_mode = I915_TILING_X;
2089                 obj->stride = crtc->base.fb->pitches[0];
2090         }
2091
2092         mode_cmd.pixel_format = crtc->base.fb->pixel_format;
2093         mode_cmd.width = crtc->base.fb->width;
2094         mode_cmd.height = crtc->base.fb->height;
2095         mode_cmd.pitches[0] = crtc->base.fb->pitches[0];
2096
2097         mutex_lock(&dev->struct_mutex);
2098
2099         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.fb),
2100                                    &mode_cmd, obj)) {
2101                 DRM_DEBUG_KMS("intel fb init failed\n");
2102                 goto out_unref_obj;
2103         }
2104
2105         mutex_unlock(&dev->struct_mutex);
2106
2107         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2108         return true;
2109
2110 out_unref_obj:
2111         drm_gem_object_unreference(&obj->base);
2112         mutex_unlock(&dev->struct_mutex);
2113         return false;
2114 }
2115
2116 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2117                                  struct intel_plane_config *plane_config)
2118 {
2119         struct drm_device *dev = intel_crtc->base.dev;
2120         struct drm_crtc *c;
2121         struct intel_crtc *i;
2122         struct intel_framebuffer *fb;
2123
2124         if (!intel_crtc->base.fb)
2125                 return;
2126
2127         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2128                 return;
2129
2130         kfree(intel_crtc->base.fb);
2131         intel_crtc->base.fb = NULL;
2132
2133         /*
2134          * Failed to alloc the obj, check to see if we should share
2135          * an fb with another CRTC instead
2136          */
2137         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
2138                 i = to_intel_crtc(c);
2139
2140                 if (c == &intel_crtc->base)
2141                         continue;
2142
2143                 if (!i->active || !c->fb)
2144                         continue;
2145
2146                 fb = to_intel_framebuffer(c->fb);
2147                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2148                         drm_framebuffer_reference(c->fb);
2149                         intel_crtc->base.fb = c->fb;
2150                         break;
2151                 }
2152         }
2153 }
2154
2155 static int i9xx_update_primary_plane(struct drm_crtc *crtc,
2156                                      struct drm_framebuffer *fb,
2157                                      int x, int y)
2158 {
2159         struct drm_device *dev = crtc->dev;
2160         struct drm_i915_private *dev_priv = dev->dev_private;
2161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2162         struct intel_framebuffer *intel_fb;
2163         struct drm_i915_gem_object *obj;
2164         int plane = intel_crtc->plane;
2165         unsigned long linear_offset;
2166         u32 dspcntr;
2167         u32 reg;
2168
2169         switch (plane) {
2170         case 0:
2171         case 1:
2172                 break;
2173         default:
2174                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2175                 return -EINVAL;
2176         }
2177
2178         intel_fb = to_intel_framebuffer(fb);
2179         obj = intel_fb->obj;
2180
2181         reg = DSPCNTR(plane);
2182         dspcntr = I915_READ(reg);
2183         /* Mask out pixel format bits in case we change it */
2184         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2185         switch (fb->pixel_format) {
2186         case DRM_FORMAT_C8:
2187                 dspcntr |= DISPPLANE_8BPP;
2188                 break;
2189         case DRM_FORMAT_XRGB1555:
2190         case DRM_FORMAT_ARGB1555:
2191                 dspcntr |= DISPPLANE_BGRX555;
2192                 break;
2193         case DRM_FORMAT_RGB565:
2194                 dspcntr |= DISPPLANE_BGRX565;
2195                 break;
2196         case DRM_FORMAT_XRGB8888:
2197         case DRM_FORMAT_ARGB8888:
2198                 dspcntr |= DISPPLANE_BGRX888;
2199                 break;
2200         case DRM_FORMAT_XBGR8888:
2201         case DRM_FORMAT_ABGR8888:
2202                 dspcntr |= DISPPLANE_RGBX888;
2203                 break;
2204         case DRM_FORMAT_XRGB2101010:
2205         case DRM_FORMAT_ARGB2101010:
2206                 dspcntr |= DISPPLANE_BGRX101010;
2207                 break;
2208         case DRM_FORMAT_XBGR2101010:
2209         case DRM_FORMAT_ABGR2101010:
2210                 dspcntr |= DISPPLANE_RGBX101010;
2211                 break;
2212         default:
2213                 BUG();
2214         }
2215
2216         if (INTEL_INFO(dev)->gen >= 4) {
2217                 if (obj->tiling_mode != I915_TILING_NONE)
2218                         dspcntr |= DISPPLANE_TILED;
2219                 else
2220                         dspcntr &= ~DISPPLANE_TILED;
2221         }
2222
2223         if (IS_G4X(dev))
2224                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2225
2226         I915_WRITE(reg, dspcntr);
2227
2228         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2229
2230         if (INTEL_INFO(dev)->gen >= 4) {
2231                 intel_crtc->dspaddr_offset =
2232                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2233                                                        fb->bits_per_pixel / 8,
2234                                                        fb->pitches[0]);
2235                 linear_offset -= intel_crtc->dspaddr_offset;
2236         } else {
2237                 intel_crtc->dspaddr_offset = linear_offset;
2238         }
2239
2240         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2241                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2242                       fb->pitches[0]);
2243         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2244         if (INTEL_INFO(dev)->gen >= 4) {
2245                 I915_WRITE(DSPSURF(plane),
2246                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2247                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2248                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2249         } else
2250                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2251         POSTING_READ(reg);
2252
2253         return 0;
2254 }
2255
2256 static int ironlake_update_primary_plane(struct drm_crtc *crtc,
2257                                          struct drm_framebuffer *fb,
2258                                          int x, int y)
2259 {
2260         struct drm_device *dev = crtc->dev;
2261         struct drm_i915_private *dev_priv = dev->dev_private;
2262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263         struct intel_framebuffer *intel_fb;
2264         struct drm_i915_gem_object *obj;
2265         int plane = intel_crtc->plane;
2266         unsigned long linear_offset;
2267         u32 dspcntr;
2268         u32 reg;
2269
2270         switch (plane) {
2271         case 0:
2272         case 1:
2273         case 2:
2274                 break;
2275         default:
2276                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2277                 return -EINVAL;
2278         }
2279
2280         intel_fb = to_intel_framebuffer(fb);
2281         obj = intel_fb->obj;
2282
2283         reg = DSPCNTR(plane);
2284         dspcntr = I915_READ(reg);
2285         /* Mask out pixel format bits in case we change it */
2286         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2287         switch (fb->pixel_format) {
2288         case DRM_FORMAT_C8:
2289                 dspcntr |= DISPPLANE_8BPP;
2290                 break;
2291         case DRM_FORMAT_RGB565:
2292                 dspcntr |= DISPPLANE_BGRX565;
2293                 break;
2294         case DRM_FORMAT_XRGB8888:
2295         case DRM_FORMAT_ARGB8888:
2296                 dspcntr |= DISPPLANE_BGRX888;
2297                 break;
2298         case DRM_FORMAT_XBGR8888:
2299         case DRM_FORMAT_ABGR8888:
2300                 dspcntr |= DISPPLANE_RGBX888;
2301                 break;
2302         case DRM_FORMAT_XRGB2101010:
2303         case DRM_FORMAT_ARGB2101010:
2304                 dspcntr |= DISPPLANE_BGRX101010;
2305                 break;
2306         case DRM_FORMAT_XBGR2101010:
2307         case DRM_FORMAT_ABGR2101010:
2308                 dspcntr |= DISPPLANE_RGBX101010;
2309                 break;
2310         default:
2311                 BUG();
2312         }
2313
2314         if (obj->tiling_mode != I915_TILING_NONE)
2315                 dspcntr |= DISPPLANE_TILED;
2316         else
2317                 dspcntr &= ~DISPPLANE_TILED;
2318
2319         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2321         else
2322                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2323
2324         I915_WRITE(reg, dspcntr);
2325
2326         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327         intel_crtc->dspaddr_offset =
2328                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2329                                                fb->bits_per_pixel / 8,
2330                                                fb->pitches[0]);
2331         linear_offset -= intel_crtc->dspaddr_offset;
2332
2333         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2334                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2335                       fb->pitches[0]);
2336         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2337         I915_WRITE(DSPSURF(plane),
2338                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2339         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2340                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2341         } else {
2342                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2343                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2344         }
2345         POSTING_READ(reg);
2346
2347         return 0;
2348 }
2349
2350 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2351 static int
2352 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2353                            int x, int y, enum mode_set_atomic state)
2354 {
2355         struct drm_device *dev = crtc->dev;
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358         if (dev_priv->display.disable_fbc)
2359                 dev_priv->display.disable_fbc(dev);
2360         intel_increase_pllclock(crtc);
2361
2362         return dev_priv->display.update_primary_plane(crtc, fb, x, y);
2363 }
2364
2365 void intel_display_handle_reset(struct drm_device *dev)
2366 {
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         struct drm_crtc *crtc;
2369
2370         /*
2371          * Flips in the rings have been nuked by the reset,
2372          * so complete all pending flips so that user space
2373          * will get its events and not get stuck.
2374          *
2375          * Also update the base address of all primary
2376          * planes to the the last fb to make sure we're
2377          * showing the correct fb after a reset.
2378          *
2379          * Need to make two loops over the crtcs so that we
2380          * don't try to grab a crtc mutex before the
2381          * pending_flip_queue really got woken up.
2382          */
2383
2384         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2385                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2386                 enum plane plane = intel_crtc->plane;
2387
2388                 intel_prepare_page_flip(dev, plane);
2389                 intel_finish_page_flip_plane(dev, plane);
2390         }
2391
2392         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2393                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2394
2395                 mutex_lock(&crtc->mutex);
2396                 /*
2397                  * FIXME: Once we have proper support for primary planes (and
2398                  * disabling them without disabling the entire crtc) allow again
2399                  * a NULL crtc->fb.
2400                  */
2401                 if (intel_crtc->active && crtc->fb)
2402                         dev_priv->display.update_primary_plane(crtc,
2403                                                                crtc->fb,
2404                                                                crtc->x,
2405                                                                crtc->y);
2406                 mutex_unlock(&crtc->mutex);
2407         }
2408 }
2409
2410 static int
2411 intel_finish_fb(struct drm_framebuffer *old_fb)
2412 {
2413         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2414         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2415         bool was_interruptible = dev_priv->mm.interruptible;
2416         int ret;
2417
2418         /* Big Hammer, we also need to ensure that any pending
2419          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2420          * current scanout is retired before unpinning the old
2421          * framebuffer.
2422          *
2423          * This should only fail upon a hung GPU, in which case we
2424          * can safely continue.
2425          */
2426         dev_priv->mm.interruptible = false;
2427         ret = i915_gem_object_finish_gpu(obj);
2428         dev_priv->mm.interruptible = was_interruptible;
2429
2430         return ret;
2431 }
2432
2433 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2434 {
2435         struct drm_device *dev = crtc->dev;
2436         struct drm_i915_private *dev_priv = dev->dev_private;
2437         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2438         unsigned long flags;
2439         bool pending;
2440
2441         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2442             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2443                 return false;
2444
2445         spin_lock_irqsave(&dev->event_lock, flags);
2446         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2447         spin_unlock_irqrestore(&dev->event_lock, flags);
2448
2449         return pending;
2450 }
2451
2452 static int
2453 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2454                     struct drm_framebuffer *fb)
2455 {
2456         struct drm_device *dev = crtc->dev;
2457         struct drm_i915_private *dev_priv = dev->dev_private;
2458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2459         struct drm_framebuffer *old_fb;
2460         int ret;
2461
2462         if (intel_crtc_has_pending_flip(crtc)) {
2463                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2464                 return -EBUSY;
2465         }
2466
2467         /* no fb bound */
2468         if (!fb) {
2469                 DRM_ERROR("No FB bound\n");
2470                 return 0;
2471         }
2472
2473         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2474                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2475                           plane_name(intel_crtc->plane),
2476                           INTEL_INFO(dev)->num_pipes);
2477                 return -EINVAL;
2478         }
2479
2480         mutex_lock(&dev->struct_mutex);
2481         ret = intel_pin_and_fence_fb_obj(dev,
2482                                          to_intel_framebuffer(fb)->obj,
2483                                          NULL);
2484         mutex_unlock(&dev->struct_mutex);
2485         if (ret != 0) {
2486                 DRM_ERROR("pin & fence failed\n");
2487                 return ret;
2488         }
2489
2490         /*
2491          * Update pipe size and adjust fitter if needed: the reason for this is
2492          * that in compute_mode_changes we check the native mode (not the pfit
2493          * mode) to see if we can flip rather than do a full mode set. In the
2494          * fastboot case, we'll flip, but if we don't update the pipesrc and
2495          * pfit state, we'll end up with a big fb scanned out into the wrong
2496          * sized surface.
2497          *
2498          * To fix this properly, we need to hoist the checks up into
2499          * compute_mode_changes (or above), check the actual pfit state and
2500          * whether the platform allows pfit disable with pipe active, and only
2501          * then update the pipesrc and pfit state, even on the flip path.
2502          */
2503         if (i915.fastboot) {
2504                 const struct drm_display_mode *adjusted_mode =
2505                         &intel_crtc->config.adjusted_mode;
2506
2507                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2508                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2509                            (adjusted_mode->crtc_vdisplay - 1));
2510                 if (!intel_crtc->config.pch_pfit.enabled &&
2511                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2512                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2513                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2514                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2515                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2516                 }
2517                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2518                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2519         }
2520
2521         ret = dev_priv->display.update_primary_plane(crtc, fb, x, y);
2522         if (ret) {
2523                 mutex_lock(&dev->struct_mutex);
2524                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2525                 mutex_unlock(&dev->struct_mutex);
2526                 DRM_ERROR("failed to update base address\n");
2527                 return ret;
2528         }
2529
2530         old_fb = crtc->fb;
2531         crtc->fb = fb;
2532         crtc->x = x;
2533         crtc->y = y;
2534
2535         if (old_fb) {
2536                 if (intel_crtc->active && old_fb != fb)
2537                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2538                 mutex_lock(&dev->struct_mutex);
2539                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2540                 mutex_unlock(&dev->struct_mutex);
2541         }
2542
2543         mutex_lock(&dev->struct_mutex);
2544         intel_update_fbc(dev);
2545         intel_edp_psr_update(dev);
2546         mutex_unlock(&dev->struct_mutex);
2547
2548         return 0;
2549 }
2550
2551 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2552 {
2553         struct drm_device *dev = crtc->dev;
2554         struct drm_i915_private *dev_priv = dev->dev_private;
2555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2556         int pipe = intel_crtc->pipe;
2557         u32 reg, temp;
2558
2559         /* enable normal train */
2560         reg = FDI_TX_CTL(pipe);
2561         temp = I915_READ(reg);
2562         if (IS_IVYBRIDGE(dev)) {
2563                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2564                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2565         } else {
2566                 temp &= ~FDI_LINK_TRAIN_NONE;
2567                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2568         }
2569         I915_WRITE(reg, temp);
2570
2571         reg = FDI_RX_CTL(pipe);
2572         temp = I915_READ(reg);
2573         if (HAS_PCH_CPT(dev)) {
2574                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2575                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2576         } else {
2577                 temp &= ~FDI_LINK_TRAIN_NONE;
2578                 temp |= FDI_LINK_TRAIN_NONE;
2579         }
2580         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2581
2582         /* wait one idle pattern time */
2583         POSTING_READ(reg);
2584         udelay(1000);
2585
2586         /* IVB wants error correction enabled */
2587         if (IS_IVYBRIDGE(dev))
2588                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2589                            FDI_FE_ERRC_ENABLE);
2590 }
2591
2592 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2593 {
2594         return crtc->base.enabled && crtc->active &&
2595                 crtc->config.has_pch_encoder;
2596 }
2597
2598 static void ivb_modeset_global_resources(struct drm_device *dev)
2599 {
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601         struct intel_crtc *pipe_B_crtc =
2602                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2603         struct intel_crtc *pipe_C_crtc =
2604                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2605         uint32_t temp;
2606
2607         /*
2608          * When everything is off disable fdi C so that we could enable fdi B
2609          * with all lanes. Note that we don't care about enabled pipes without
2610          * an enabled pch encoder.
2611          */
2612         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2613             !pipe_has_enabled_pch(pipe_C_crtc)) {
2614                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2615                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2616
2617                 temp = I915_READ(SOUTH_CHICKEN1);
2618                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2619                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2620                 I915_WRITE(SOUTH_CHICKEN1, temp);
2621         }
2622 }
2623
2624 /* The FDI link training functions for ILK/Ibexpeak. */
2625 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2626 {
2627         struct drm_device *dev = crtc->dev;
2628         struct drm_i915_private *dev_priv = dev->dev_private;
2629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2630         int pipe = intel_crtc->pipe;
2631         int plane = intel_crtc->plane;
2632         u32 reg, temp, tries;
2633
2634         /* FDI needs bits from pipe & plane first */
2635         assert_pipe_enabled(dev_priv, pipe);
2636         assert_plane_enabled(dev_priv, plane);
2637
2638         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2639            for train result */
2640         reg = FDI_RX_IMR(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~FDI_RX_SYMBOL_LOCK;
2643         temp &= ~FDI_RX_BIT_LOCK;
2644         I915_WRITE(reg, temp);
2645         I915_READ(reg);
2646         udelay(150);
2647
2648         /* enable CPU FDI TX and PCH FDI RX */
2649         reg = FDI_TX_CTL(pipe);
2650         temp = I915_READ(reg);
2651         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2652         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2653         temp &= ~FDI_LINK_TRAIN_NONE;
2654         temp |= FDI_LINK_TRAIN_PATTERN_1;
2655         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2656
2657         reg = FDI_RX_CTL(pipe);
2658         temp = I915_READ(reg);
2659         temp &= ~FDI_LINK_TRAIN_NONE;
2660         temp |= FDI_LINK_TRAIN_PATTERN_1;
2661         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2662
2663         POSTING_READ(reg);
2664         udelay(150);
2665
2666         /* Ironlake workaround, enable clock pointer after FDI enable*/
2667         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2668         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2669                    FDI_RX_PHASE_SYNC_POINTER_EN);
2670
2671         reg = FDI_RX_IIR(pipe);
2672         for (tries = 0; tries < 5; tries++) {
2673                 temp = I915_READ(reg);
2674                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2675
2676                 if ((temp & FDI_RX_BIT_LOCK)) {
2677                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2678                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2679                         break;
2680                 }
2681         }
2682         if (tries == 5)
2683                 DRM_ERROR("FDI train 1 fail!\n");
2684
2685         /* Train 2 */
2686         reg = FDI_TX_CTL(pipe);
2687         temp = I915_READ(reg);
2688         temp &= ~FDI_LINK_TRAIN_NONE;
2689         temp |= FDI_LINK_TRAIN_PATTERN_2;
2690         I915_WRITE(reg, temp);
2691
2692         reg = FDI_RX_CTL(pipe);
2693         temp = I915_READ(reg);
2694         temp &= ~FDI_LINK_TRAIN_NONE;
2695         temp |= FDI_LINK_TRAIN_PATTERN_2;
2696         I915_WRITE(reg, temp);
2697
2698         POSTING_READ(reg);
2699         udelay(150);
2700
2701         reg = FDI_RX_IIR(pipe);
2702         for (tries = 0; tries < 5; tries++) {
2703                 temp = I915_READ(reg);
2704                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2705
2706                 if (temp & FDI_RX_SYMBOL_LOCK) {
2707                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2708                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2709                         break;
2710                 }
2711         }
2712         if (tries == 5)
2713                 DRM_ERROR("FDI train 2 fail!\n");
2714
2715         DRM_DEBUG_KMS("FDI train done\n");
2716
2717 }
2718
2719 static const int snb_b_fdi_train_param[] = {
2720         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2721         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2722         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2723         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2724 };
2725
2726 /* The FDI link training functions for SNB/Cougarpoint. */
2727 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2728 {
2729         struct drm_device *dev = crtc->dev;
2730         struct drm_i915_private *dev_priv = dev->dev_private;
2731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2732         int pipe = intel_crtc->pipe;
2733         u32 reg, temp, i, retry;
2734
2735         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2736            for train result */
2737         reg = FDI_RX_IMR(pipe);
2738         temp = I915_READ(reg);
2739         temp &= ~FDI_RX_SYMBOL_LOCK;
2740         temp &= ~FDI_RX_BIT_LOCK;
2741         I915_WRITE(reg, temp);
2742
2743         POSTING_READ(reg);
2744         udelay(150);
2745
2746         /* enable CPU FDI TX and PCH FDI RX */
2747         reg = FDI_TX_CTL(pipe);
2748         temp = I915_READ(reg);
2749         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2750         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2751         temp &= ~FDI_LINK_TRAIN_NONE;
2752         temp |= FDI_LINK_TRAIN_PATTERN_1;
2753         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2754         /* SNB-B */
2755         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2756         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2757
2758         I915_WRITE(FDI_RX_MISC(pipe),
2759                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2760
2761         reg = FDI_RX_CTL(pipe);
2762         temp = I915_READ(reg);
2763         if (HAS_PCH_CPT(dev)) {
2764                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2765                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2766         } else {
2767                 temp &= ~FDI_LINK_TRAIN_NONE;
2768                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2769         }
2770         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2771
2772         POSTING_READ(reg);
2773         udelay(150);
2774
2775         for (i = 0; i < 4; i++) {
2776                 reg = FDI_TX_CTL(pipe);
2777                 temp = I915_READ(reg);
2778                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2779                 temp |= snb_b_fdi_train_param[i];
2780                 I915_WRITE(reg, temp);
2781
2782                 POSTING_READ(reg);
2783                 udelay(500);
2784
2785                 for (retry = 0; retry < 5; retry++) {
2786                         reg = FDI_RX_IIR(pipe);
2787                         temp = I915_READ(reg);
2788                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2789                         if (temp & FDI_RX_BIT_LOCK) {
2790                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2792                                 break;
2793                         }
2794                         udelay(50);
2795                 }
2796                 if (retry < 5)
2797                         break;
2798         }
2799         if (i == 4)
2800                 DRM_ERROR("FDI train 1 fail!\n");
2801
2802         /* Train 2 */
2803         reg = FDI_TX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         temp &= ~FDI_LINK_TRAIN_NONE;
2806         temp |= FDI_LINK_TRAIN_PATTERN_2;
2807         if (IS_GEN6(dev)) {
2808                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2809                 /* SNB-B */
2810                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2811         }
2812         I915_WRITE(reg, temp);
2813
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         if (HAS_PCH_CPT(dev)) {
2817                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2818                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2819         } else {
2820                 temp &= ~FDI_LINK_TRAIN_NONE;
2821                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2822         }
2823         I915_WRITE(reg, temp);
2824
2825         POSTING_READ(reg);
2826         udelay(150);
2827
2828         for (i = 0; i < 4; i++) {
2829                 reg = FDI_TX_CTL(pipe);
2830                 temp = I915_READ(reg);
2831                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2832                 temp |= snb_b_fdi_train_param[i];
2833                 I915_WRITE(reg, temp);
2834
2835                 POSTING_READ(reg);
2836                 udelay(500);
2837
2838                 for (retry = 0; retry < 5; retry++) {
2839                         reg = FDI_RX_IIR(pipe);
2840                         temp = I915_READ(reg);
2841                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2842                         if (temp & FDI_RX_SYMBOL_LOCK) {
2843                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2844                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2845                                 break;
2846                         }
2847                         udelay(50);
2848                 }
2849                 if (retry < 5)
2850                         break;
2851         }
2852         if (i == 4)
2853                 DRM_ERROR("FDI train 2 fail!\n");
2854
2855         DRM_DEBUG_KMS("FDI train done.\n");
2856 }
2857
2858 /* Manual link training for Ivy Bridge A0 parts */
2859 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2860 {
2861         struct drm_device *dev = crtc->dev;
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2864         int pipe = intel_crtc->pipe;
2865         u32 reg, temp, i, j;
2866
2867         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2868            for train result */
2869         reg = FDI_RX_IMR(pipe);
2870         temp = I915_READ(reg);
2871         temp &= ~FDI_RX_SYMBOL_LOCK;
2872         temp &= ~FDI_RX_BIT_LOCK;
2873         I915_WRITE(reg, temp);
2874
2875         POSTING_READ(reg);
2876         udelay(150);
2877
2878         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2879                       I915_READ(FDI_RX_IIR(pipe)));
2880
2881         /* Try each vswing and preemphasis setting twice before moving on */
2882         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2883                 /* disable first in case we need to retry */
2884                 reg = FDI_TX_CTL(pipe);
2885                 temp = I915_READ(reg);
2886                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2887                 temp &= ~FDI_TX_ENABLE;
2888                 I915_WRITE(reg, temp);
2889
2890                 reg = FDI_RX_CTL(pipe);
2891                 temp = I915_READ(reg);
2892                 temp &= ~FDI_LINK_TRAIN_AUTO;
2893                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2894                 temp &= ~FDI_RX_ENABLE;
2895                 I915_WRITE(reg, temp);
2896
2897                 /* enable CPU FDI TX and PCH FDI RX */
2898                 reg = FDI_TX_CTL(pipe);
2899                 temp = I915_READ(reg);
2900                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2901                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2902                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2903                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2904                 temp |= snb_b_fdi_train_param[j/2];
2905                 temp |= FDI_COMPOSITE_SYNC;
2906                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2907
2908                 I915_WRITE(FDI_RX_MISC(pipe),
2909                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2910
2911                 reg = FDI_RX_CTL(pipe);
2912                 temp = I915_READ(reg);
2913                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2914                 temp |= FDI_COMPOSITE_SYNC;
2915                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2916
2917                 POSTING_READ(reg);
2918                 udelay(1); /* should be 0.5us */
2919
2920                 for (i = 0; i < 4; i++) {
2921                         reg = FDI_RX_IIR(pipe);
2922                         temp = I915_READ(reg);
2923                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2924
2925                         if (temp & FDI_RX_BIT_LOCK ||
2926                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2927                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2928                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2929                                               i);
2930                                 break;
2931                         }
2932                         udelay(1); /* should be 0.5us */
2933                 }
2934                 if (i == 4) {
2935                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2936                         continue;
2937                 }
2938
2939                 /* Train 2 */
2940                 reg = FDI_TX_CTL(pipe);
2941                 temp = I915_READ(reg);
2942                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2943                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2944                 I915_WRITE(reg, temp);
2945
2946                 reg = FDI_RX_CTL(pipe);
2947                 temp = I915_READ(reg);
2948                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2950                 I915_WRITE(reg, temp);
2951
2952                 POSTING_READ(reg);
2953                 udelay(2); /* should be 1.5us */
2954
2955                 for (i = 0; i < 4; i++) {
2956                         reg = FDI_RX_IIR(pipe);
2957                         temp = I915_READ(reg);
2958                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2959
2960                         if (temp & FDI_RX_SYMBOL_LOCK ||
2961                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2962                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2963                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2964                                               i);
2965                                 goto train_done;
2966                         }
2967                         udelay(2); /* should be 1.5us */
2968                 }
2969                 if (i == 4)
2970                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2971         }
2972
2973 train_done:
2974         DRM_DEBUG_KMS("FDI train done.\n");
2975 }
2976
2977 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2978 {
2979         struct drm_device *dev = intel_crtc->base.dev;
2980         struct drm_i915_private *dev_priv = dev->dev_private;
2981         int pipe = intel_crtc->pipe;
2982         u32 reg, temp;
2983
2984
2985         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2986         reg = FDI_RX_CTL(pipe);
2987         temp = I915_READ(reg);
2988         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2989         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2990         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2991         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2992
2993         POSTING_READ(reg);
2994         udelay(200);
2995
2996         /* Switch from Rawclk to PCDclk */
2997         temp = I915_READ(reg);
2998         I915_WRITE(reg, temp | FDI_PCDCLK);
2999
3000         POSTING_READ(reg);
3001         udelay(200);
3002
3003         /* Enable CPU FDI TX PLL, always on for Ironlake */
3004         reg = FDI_TX_CTL(pipe);
3005         temp = I915_READ(reg);
3006         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3007                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3008
3009                 POSTING_READ(reg);
3010                 udelay(100);
3011         }
3012 }
3013
3014 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3015 {
3016         struct drm_device *dev = intel_crtc->base.dev;
3017         struct drm_i915_private *dev_priv = dev->dev_private;
3018         int pipe = intel_crtc->pipe;
3019         u32 reg, temp;
3020
3021         /* Switch from PCDclk to Rawclk */
3022         reg = FDI_RX_CTL(pipe);
3023         temp = I915_READ(reg);
3024         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3025
3026         /* Disable CPU FDI TX PLL */
3027         reg = FDI_TX_CTL(pipe);
3028         temp = I915_READ(reg);
3029         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3030
3031         POSTING_READ(reg);
3032         udelay(100);
3033
3034         reg = FDI_RX_CTL(pipe);
3035         temp = I915_READ(reg);
3036         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3037
3038         /* Wait for the clocks to turn off. */
3039         POSTING_READ(reg);
3040         udelay(100);
3041 }
3042
3043 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3044 {
3045         struct drm_device *dev = crtc->dev;
3046         struct drm_i915_private *dev_priv = dev->dev_private;
3047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3048         int pipe = intel_crtc->pipe;
3049         u32 reg, temp;
3050
3051         /* disable CPU FDI tx and PCH FDI rx */
3052         reg = FDI_TX_CTL(pipe);
3053         temp = I915_READ(reg);
3054         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3055         POSTING_READ(reg);
3056
3057         reg = FDI_RX_CTL(pipe);
3058         temp = I915_READ(reg);
3059         temp &= ~(0x7 << 16);
3060         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3061         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3062
3063         POSTING_READ(reg);
3064         udelay(100);
3065
3066         /* Ironlake workaround, disable clock pointer after downing FDI */
3067         if (HAS_PCH_IBX(dev)) {
3068                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3069         }
3070
3071         /* still set train pattern 1 */
3072         reg = FDI_TX_CTL(pipe);
3073         temp = I915_READ(reg);
3074         temp &= ~FDI_LINK_TRAIN_NONE;
3075         temp |= FDI_LINK_TRAIN_PATTERN_1;
3076         I915_WRITE(reg, temp);
3077
3078         reg = FDI_RX_CTL(pipe);
3079         temp = I915_READ(reg);
3080         if (HAS_PCH_CPT(dev)) {
3081                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3082                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3083         } else {
3084                 temp &= ~FDI_LINK_TRAIN_NONE;
3085                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3086         }
3087         /* BPC in FDI rx is consistent with that in PIPECONF */
3088         temp &= ~(0x07 << 16);
3089         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3090         I915_WRITE(reg, temp);
3091
3092         POSTING_READ(reg);
3093         udelay(100);
3094 }
3095
3096 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3097 {
3098         struct intel_crtc *crtc;
3099
3100         /* Note that we don't need to be called with mode_config.lock here
3101          * as our list of CRTC objects is static for the lifetime of the
3102          * device and so cannot disappear as we iterate. Similarly, we can
3103          * happily treat the predicates as racy, atomic checks as userspace
3104          * cannot claim and pin a new fb without at least acquring the
3105          * struct_mutex and so serialising with us.
3106          */
3107         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3108                 if (atomic_read(&crtc->unpin_work_count) == 0)
3109                         continue;
3110
3111                 if (crtc->unpin_work)
3112                         intel_wait_for_vblank(dev, crtc->pipe);
3113
3114                 return true;
3115         }
3116
3117         return false;
3118 }
3119
3120 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3121 {
3122         struct drm_device *dev = crtc->dev;
3123         struct drm_i915_private *dev_priv = dev->dev_private;
3124
3125         if (crtc->fb == NULL)
3126                 return;
3127
3128         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3129
3130         wait_event(dev_priv->pending_flip_queue,
3131                    !intel_crtc_has_pending_flip(crtc));
3132
3133         mutex_lock(&dev->struct_mutex);
3134         intel_finish_fb(crtc->fb);
3135         mutex_unlock(&dev->struct_mutex);
3136 }
3137
3138 /* Program iCLKIP clock to the desired frequency */
3139 static void lpt_program_iclkip(struct drm_crtc *crtc)
3140 {
3141         struct drm_device *dev = crtc->dev;
3142         struct drm_i915_private *dev_priv = dev->dev_private;
3143         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3144         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3145         u32 temp;
3146
3147         mutex_lock(&dev_priv->dpio_lock);
3148
3149         /* It is necessary to ungate the pixclk gate prior to programming
3150          * the divisors, and gate it back when it is done.
3151          */
3152         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3153
3154         /* Disable SSCCTL */
3155         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3156                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3157                                 SBI_SSCCTL_DISABLE,
3158                         SBI_ICLK);
3159
3160         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3161         if (clock == 20000) {
3162                 auxdiv = 1;
3163                 divsel = 0x41;
3164                 phaseinc = 0x20;
3165         } else {
3166                 /* The iCLK virtual clock root frequency is in MHz,
3167                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3168                  * divisors, it is necessary to divide one by another, so we
3169                  * convert the virtual clock precision to KHz here for higher
3170                  * precision.
3171                  */
3172                 u32 iclk_virtual_root_freq = 172800 * 1000;
3173                 u32 iclk_pi_range = 64;
3174                 u32 desired_divisor, msb_divisor_value, pi_value;
3175
3176                 desired_divisor = (iclk_virtual_root_freq / clock);
3177                 msb_divisor_value = desired_divisor / iclk_pi_range;
3178                 pi_value = desired_divisor % iclk_pi_range;
3179
3180                 auxdiv = 0;
3181                 divsel = msb_divisor_value - 2;
3182                 phaseinc = pi_value;
3183         }
3184
3185         /* This should not happen with any sane values */
3186         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3187                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3188         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3189                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3190
3191         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3192                         clock,
3193                         auxdiv,
3194                         divsel,
3195                         phasedir,
3196                         phaseinc);
3197
3198         /* Program SSCDIVINTPHASE6 */
3199         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3200         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3201         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3202         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3203         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3204         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3205         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3206         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3207
3208         /* Program SSCAUXDIV */
3209         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3210         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3211         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3212         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3213
3214         /* Enable modulator and associated divider */
3215         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3216         temp &= ~SBI_SSCCTL_DISABLE;
3217         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3218
3219         /* Wait for initialization time */
3220         udelay(24);
3221
3222         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3223
3224         mutex_unlock(&dev_priv->dpio_lock);
3225 }
3226
3227 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3228                                                 enum pipe pch_transcoder)
3229 {
3230         struct drm_device *dev = crtc->base.dev;
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3233
3234         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3235                    I915_READ(HTOTAL(cpu_transcoder)));
3236         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3237                    I915_READ(HBLANK(cpu_transcoder)));
3238         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3239                    I915_READ(HSYNC(cpu_transcoder)));
3240
3241         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3242                    I915_READ(VTOTAL(cpu_transcoder)));
3243         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3244                    I915_READ(VBLANK(cpu_transcoder)));
3245         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3246                    I915_READ(VSYNC(cpu_transcoder)));
3247         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3248                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3249 }
3250
3251 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3252 {
3253         struct drm_i915_private *dev_priv = dev->dev_private;
3254         uint32_t temp;
3255
3256         temp = I915_READ(SOUTH_CHICKEN1);
3257         if (temp & FDI_BC_BIFURCATION_SELECT)
3258                 return;
3259
3260         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3261         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3262
3263         temp |= FDI_BC_BIFURCATION_SELECT;
3264         DRM_DEBUG_KMS("enabling fdi C rx\n");
3265         I915_WRITE(SOUTH_CHICKEN1, temp);
3266         POSTING_READ(SOUTH_CHICKEN1);
3267 }
3268
3269 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3270 {
3271         struct drm_device *dev = intel_crtc->base.dev;
3272         struct drm_i915_private *dev_priv = dev->dev_private;
3273
3274         switch (intel_crtc->pipe) {
3275         case PIPE_A:
3276                 break;
3277         case PIPE_B:
3278                 if (intel_crtc->config.fdi_lanes > 2)
3279                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3280                 else
3281                         cpt_enable_fdi_bc_bifurcation(dev);
3282
3283                 break;
3284         case PIPE_C:
3285                 cpt_enable_fdi_bc_bifurcation(dev);
3286
3287                 break;
3288         default:
3289                 BUG();
3290         }
3291 }
3292
3293 /*
3294  * Enable PCH resources required for PCH ports:
3295  *   - PCH PLLs
3296  *   - FDI training & RX/TX
3297  *   - update transcoder timings
3298  *   - DP transcoding bits
3299  *   - transcoder
3300  */
3301 static void ironlake_pch_enable(struct drm_crtc *crtc)
3302 {
3303         struct drm_device *dev = crtc->dev;
3304         struct drm_i915_private *dev_priv = dev->dev_private;
3305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3306         int pipe = intel_crtc->pipe;
3307         u32 reg, temp;
3308
3309         assert_pch_transcoder_disabled(dev_priv, pipe);
3310
3311         if (IS_IVYBRIDGE(dev))
3312                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3313
3314         /* Write the TU size bits before fdi link training, so that error
3315          * detection works. */
3316         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3317                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3318
3319         /* For PCH output, training FDI link */
3320         dev_priv->display.fdi_link_train(crtc);
3321
3322         /* We need to program the right clock selection before writing the pixel
3323          * mutliplier into the DPLL. */
3324         if (HAS_PCH_CPT(dev)) {
3325                 u32 sel;
3326
3327                 temp = I915_READ(PCH_DPLL_SEL);
3328                 temp |= TRANS_DPLL_ENABLE(pipe);
3329                 sel = TRANS_DPLLB_SEL(pipe);
3330                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3331                         temp |= sel;
3332                 else
3333                         temp &= ~sel;
3334                 I915_WRITE(PCH_DPLL_SEL, temp);
3335         }
3336
3337         /* XXX: pch pll's can be enabled any time before we enable the PCH
3338          * transcoder, and we actually should do this to not upset any PCH
3339          * transcoder that already use the clock when we share it.
3340          *
3341          * Note that enable_shared_dpll tries to do the right thing, but
3342          * get_shared_dpll unconditionally resets the pll - we need that to have
3343          * the right LVDS enable sequence. */
3344         ironlake_enable_shared_dpll(intel_crtc);
3345
3346         /* set transcoder timing, panel must allow it */
3347         assert_panel_unlocked(dev_priv, pipe);
3348         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3349
3350         intel_fdi_normal_train(crtc);
3351
3352         /* For PCH DP, enable TRANS_DP_CTL */
3353         if (HAS_PCH_CPT(dev) &&
3354             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3355              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3356                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3357                 reg = TRANS_DP_CTL(pipe);
3358                 temp = I915_READ(reg);
3359                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3360                           TRANS_DP_SYNC_MASK |
3361                           TRANS_DP_BPC_MASK);
3362                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3363                          TRANS_DP_ENH_FRAMING);
3364                 temp |= bpc << 9; /* same format but at 11:9 */
3365
3366                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3367                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3368                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3369                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3370
3371                 switch (intel_trans_dp_port_sel(crtc)) {
3372                 case PCH_DP_B:
3373                         temp |= TRANS_DP_PORT_SEL_B;
3374                         break;
3375                 case PCH_DP_C:
3376                         temp |= TRANS_DP_PORT_SEL_C;
3377                         break;
3378                 case PCH_DP_D:
3379                         temp |= TRANS_DP_PORT_SEL_D;
3380                         break;
3381                 default:
3382                         BUG();
3383                 }
3384
3385                 I915_WRITE(reg, temp);
3386         }
3387
3388         ironlake_enable_pch_transcoder(dev_priv, pipe);
3389 }
3390
3391 static void lpt_pch_enable(struct drm_crtc *crtc)
3392 {
3393         struct drm_device *dev = crtc->dev;
3394         struct drm_i915_private *dev_priv = dev->dev_private;
3395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3397
3398         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3399
3400         lpt_program_iclkip(crtc);
3401
3402         /* Set transcoder timing. */
3403         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3404
3405         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3406 }
3407
3408 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3409 {
3410         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3411
3412         if (pll == NULL)
3413                 return;
3414
3415         if (pll->refcount == 0) {
3416                 WARN(1, "bad %s refcount\n", pll->name);
3417                 return;
3418         }
3419
3420         if (--pll->refcount == 0) {
3421                 WARN_ON(pll->on);
3422                 WARN_ON(pll->active);
3423         }
3424
3425         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3426 }
3427
3428 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3429 {
3430         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3431         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3432         enum intel_dpll_id i;
3433
3434         if (pll) {
3435                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3436                               crtc->base.base.id, pll->name);
3437                 intel_put_shared_dpll(crtc);
3438         }
3439
3440         if (HAS_PCH_IBX(dev_priv->dev)) {
3441                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3442                 i = (enum intel_dpll_id) crtc->pipe;
3443                 pll = &dev_priv->shared_dplls[i];
3444
3445                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3446                               crtc->base.base.id, pll->name);
3447
3448                 goto found;
3449         }
3450
3451         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3452                 pll = &dev_priv->shared_dplls[i];
3453
3454                 /* Only want to check enabled timings first */
3455                 if (pll->refcount == 0)
3456                         continue;
3457
3458                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3459                            sizeof(pll->hw_state)) == 0) {
3460                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3461                                       crtc->base.base.id,
3462                                       pll->name, pll->refcount, pll->active);
3463
3464                         goto found;
3465                 }
3466         }
3467
3468         /* Ok no matching timings, maybe there's a free one? */
3469         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3470                 pll = &dev_priv->shared_dplls[i];
3471                 if (pll->refcount == 0) {
3472                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3473                                       crtc->base.base.id, pll->name);
3474                         goto found;
3475                 }
3476         }
3477
3478         return NULL;
3479
3480 found:
3481         crtc->config.shared_dpll = i;
3482         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3483                          pipe_name(crtc->pipe));
3484
3485         if (pll->active == 0) {
3486                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3487                        sizeof(pll->hw_state));
3488
3489                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3490                 WARN_ON(pll->on);
3491                 assert_shared_dpll_disabled(dev_priv, pll);
3492
3493                 pll->mode_set(dev_priv, pll);
3494         }
3495         pll->refcount++;
3496
3497         return pll;
3498 }
3499
3500 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3501 {
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         int dslreg = PIPEDSL(pipe);
3504         u32 temp;
3505
3506         temp = I915_READ(dslreg);
3507         udelay(500);
3508         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3509                 if (wait_for(I915_READ(dslreg) != temp, 5))
3510                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3511         }
3512 }
3513
3514 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3515 {
3516         struct drm_device *dev = crtc->base.dev;
3517         struct drm_i915_private *dev_priv = dev->dev_private;
3518         int pipe = crtc->pipe;
3519
3520         if (crtc->config.pch_pfit.enabled) {
3521                 /* Force use of hard-coded filter coefficients
3522                  * as some pre-programmed values are broken,
3523                  * e.g. x201.
3524                  */
3525                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3526                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3527                                                  PF_PIPE_SEL_IVB(pipe));
3528                 else
3529                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3530                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3531                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3532         }
3533 }
3534
3535 static void intel_enable_planes(struct drm_crtc *crtc)
3536 {
3537         struct drm_device *dev = crtc->dev;
3538         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3539         struct intel_plane *intel_plane;
3540
3541         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3542                 if (intel_plane->pipe == pipe)
3543                         intel_plane_restore(&intel_plane->base);
3544 }
3545
3546 static void intel_disable_planes(struct drm_crtc *crtc)
3547 {
3548         struct drm_device *dev = crtc->dev;
3549         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3550         struct intel_plane *intel_plane;
3551
3552         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3553                 if (intel_plane->pipe == pipe)
3554                         intel_plane_disable(&intel_plane->base);
3555 }
3556
3557 void hsw_enable_ips(struct intel_crtc *crtc)
3558 {
3559         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3560
3561         if (!crtc->config.ips_enabled)
3562                 return;
3563
3564         /* We can only enable IPS after we enable a plane and wait for a vblank.
3565          * We guarantee that the plane is enabled by calling intel_enable_ips
3566          * only after intel_enable_plane. And intel_enable_plane already waits
3567          * for a vblank, so all we need to do here is to enable the IPS bit. */
3568         assert_plane_enabled(dev_priv, crtc->plane);
3569         if (IS_BROADWELL(crtc->base.dev)) {
3570                 mutex_lock(&dev_priv->rps.hw_lock);
3571                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3572                 mutex_unlock(&dev_priv->rps.hw_lock);
3573                 /* Quoting Art Runyan: "its not safe to expect any particular
3574                  * value in IPS_CTL bit 31 after enabling IPS through the
3575                  * mailbox." Moreover, the mailbox may return a bogus state,
3576                  * so we need to just enable it and continue on.
3577                  */
3578         } else {
3579                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3580                 /* The bit only becomes 1 in the next vblank, so this wait here
3581                  * is essentially intel_wait_for_vblank. If we don't have this
3582                  * and don't wait for vblanks until the end of crtc_enable, then
3583                  * the HW state readout code will complain that the expected
3584                  * IPS_CTL value is not the one we read. */
3585                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3586                         DRM_ERROR("Timed out waiting for IPS enable\n");
3587         }
3588 }
3589
3590 void hsw_disable_ips(struct intel_crtc *crtc)
3591 {
3592         struct drm_device *dev = crtc->base.dev;
3593         struct drm_i915_private *dev_priv = dev->dev_private;
3594
3595         if (!crtc->config.ips_enabled)
3596                 return;
3597
3598         assert_plane_enabled(dev_priv, crtc->plane);
3599         if (IS_BROADWELL(crtc->base.dev)) {
3600                 mutex_lock(&dev_priv->rps.hw_lock);
3601                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3602                 mutex_unlock(&dev_priv->rps.hw_lock);
3603         } else {
3604                 I915_WRITE(IPS_CTL, 0);
3605                 POSTING_READ(IPS_CTL);
3606         }
3607
3608         /* We need to wait for a vblank before we can disable the plane. */
3609         intel_wait_for_vblank(dev, crtc->pipe);
3610 }
3611
3612 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3613 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3614 {
3615         struct drm_device *dev = crtc->dev;
3616         struct drm_i915_private *dev_priv = dev->dev_private;
3617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3618         enum pipe pipe = intel_crtc->pipe;
3619         int palreg = PALETTE(pipe);
3620         int i;
3621         bool reenable_ips = false;
3622
3623         /* The clocks have to be on to load the palette. */
3624         if (!crtc->enabled || !intel_crtc->active)
3625                 return;
3626
3627         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3628                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3629                         assert_dsi_pll_enabled(dev_priv);
3630                 else
3631                         assert_pll_enabled(dev_priv, pipe);
3632         }
3633
3634         /* use legacy palette for Ironlake */
3635         if (HAS_PCH_SPLIT(dev))
3636                 palreg = LGC_PALETTE(pipe);
3637
3638         /* Workaround : Do not read or write the pipe palette/gamma data while
3639          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3640          */
3641         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3642             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3643              GAMMA_MODE_MODE_SPLIT)) {
3644                 hsw_disable_ips(intel_crtc);
3645                 reenable_ips = true;
3646         }
3647
3648         for (i = 0; i < 256; i++) {
3649                 I915_WRITE(palreg + 4 * i,
3650                            (intel_crtc->lut_r[i] << 16) |
3651                            (intel_crtc->lut_g[i] << 8) |
3652                            intel_crtc->lut_b[i]);
3653         }
3654
3655         if (reenable_ips)
3656                 hsw_enable_ips(intel_crtc);
3657 }
3658
3659 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3660 {
3661         struct drm_device *dev = crtc->dev;
3662         struct drm_i915_private *dev_priv = dev->dev_private;
3663         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3664         struct intel_encoder *encoder;
3665         int pipe = intel_crtc->pipe;
3666         int plane = intel_crtc->plane;
3667
3668         WARN_ON(!crtc->enabled);
3669
3670         if (intel_crtc->active)
3671                 return;
3672
3673         intel_crtc->active = true;
3674
3675         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3676         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3677
3678         for_each_encoder_on_crtc(dev, crtc, encoder)
3679                 if (encoder->pre_enable)
3680                         encoder->pre_enable(encoder);
3681
3682         if (intel_crtc->config.has_pch_encoder) {
3683                 /* Note: FDI PLL enabling _must_ be done before we enable the
3684                  * cpu pipes, hence this is separate from all the other fdi/pch
3685                  * enabling. */
3686                 ironlake_fdi_pll_enable(intel_crtc);
3687         } else {
3688                 assert_fdi_tx_disabled(dev_priv, pipe);
3689                 assert_fdi_rx_disabled(dev_priv, pipe);
3690         }
3691
3692         ironlake_pfit_enable(intel_crtc);
3693
3694         /*
3695          * On ILK+ LUT must be loaded before the pipe is running but with
3696          * clocks enabled
3697          */
3698         intel_crtc_load_lut(crtc);
3699
3700         intel_update_watermarks(crtc);
3701         intel_enable_pipe(intel_crtc);
3702         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3703         intel_enable_planes(crtc);
3704         intel_crtc_update_cursor(crtc, true);
3705
3706         if (intel_crtc->config.has_pch_encoder)
3707                 ironlake_pch_enable(crtc);
3708
3709         mutex_lock(&dev->struct_mutex);
3710         intel_update_fbc(dev);
3711         mutex_unlock(&dev->struct_mutex);
3712
3713         for_each_encoder_on_crtc(dev, crtc, encoder)
3714                 encoder->enable(encoder);
3715
3716         if (HAS_PCH_CPT(dev))
3717                 cpt_verify_modeset(dev, intel_crtc->pipe);
3718
3719         /*
3720          * There seems to be a race in PCH platform hw (at least on some
3721          * outputs) where an enabled pipe still completes any pageflip right
3722          * away (as if the pipe is off) instead of waiting for vblank. As soon
3723          * as the first vblank happend, everything works as expected. Hence just
3724          * wait for one vblank before returning to avoid strange things
3725          * happening.
3726          */
3727         intel_wait_for_vblank(dev, intel_crtc->pipe);
3728 }
3729
3730 /* IPS only exists on ULT machines and is tied to pipe A. */
3731 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3732 {
3733         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3734 }
3735
3736 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3737 {
3738         struct drm_device *dev = crtc->dev;
3739         struct drm_i915_private *dev_priv = dev->dev_private;
3740         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3741         int pipe = intel_crtc->pipe;
3742         int plane = intel_crtc->plane;
3743
3744         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3745         intel_enable_planes(crtc);
3746         intel_crtc_update_cursor(crtc, true);
3747
3748         hsw_enable_ips(intel_crtc);
3749
3750         mutex_lock(&dev->struct_mutex);
3751         intel_update_fbc(dev);
3752         mutex_unlock(&dev->struct_mutex);
3753 }
3754
3755 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3756 {
3757         struct drm_device *dev = crtc->dev;
3758         struct drm_i915_private *dev_priv = dev->dev_private;
3759         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3760         int pipe = intel_crtc->pipe;
3761         int plane = intel_crtc->plane;
3762
3763         intel_crtc_wait_for_pending_flips(crtc);
3764         drm_vblank_off(dev, pipe);
3765
3766         /* FBC must be disabled before disabling the plane on HSW. */
3767         if (dev_priv->fbc.plane == plane)
3768                 intel_disable_fbc(dev);
3769
3770         hsw_disable_ips(intel_crtc);
3771
3772         intel_crtc_update_cursor(crtc, false);
3773         intel_disable_planes(crtc);
3774         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3775 }
3776
3777 /*
3778  * This implements the workaround described in the "notes" section of the mode
3779  * set sequence documentation. When going from no pipes or single pipe to
3780  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3781  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3782  */
3783 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3784 {
3785         struct drm_device *dev = crtc->base.dev;
3786         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3787
3788         /* We want to get the other_active_crtc only if there's only 1 other
3789          * active crtc. */
3790         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3791                 if (!crtc_it->active || crtc_it == crtc)
3792                         continue;
3793
3794                 if (other_active_crtc)
3795                         return;
3796
3797                 other_active_crtc = crtc_it;
3798         }
3799         if (!other_active_crtc)
3800                 return;
3801
3802         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3803         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3804 }
3805
3806 static void haswell_crtc_enable(struct drm_crtc *crtc)
3807 {
3808         struct drm_device *dev = crtc->dev;
3809         struct drm_i915_private *dev_priv = dev->dev_private;
3810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3811         struct intel_encoder *encoder;
3812         int pipe = intel_crtc->pipe;
3813
3814         WARN_ON(!crtc->enabled);
3815
3816         if (intel_crtc->active)
3817                 return;
3818
3819         intel_crtc->active = true;
3820
3821         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3822         if (intel_crtc->config.has_pch_encoder)
3823                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3824
3825         if (intel_crtc->config.has_pch_encoder)
3826                 dev_priv->display.fdi_link_train(crtc);
3827
3828         for_each_encoder_on_crtc(dev, crtc, encoder)
3829                 if (encoder->pre_enable)
3830                         encoder->pre_enable(encoder);
3831
3832         intel_ddi_enable_pipe_clock(intel_crtc);
3833
3834         ironlake_pfit_enable(intel_crtc);
3835
3836         /*
3837          * On ILK+ LUT must be loaded before the pipe is running but with
3838          * clocks enabled
3839          */
3840         intel_crtc_load_lut(crtc);
3841
3842         intel_ddi_set_pipe_settings(crtc);
3843         intel_ddi_enable_transcoder_func(crtc);
3844
3845         intel_update_watermarks(crtc);
3846         intel_enable_pipe(intel_crtc);
3847
3848         if (intel_crtc->config.has_pch_encoder)
3849                 lpt_pch_enable(crtc);
3850
3851         for_each_encoder_on_crtc(dev, crtc, encoder) {
3852                 encoder->enable(encoder);
3853                 intel_opregion_notify_encoder(encoder, true);
3854         }
3855
3856         /* If we change the relative order between pipe/planes enabling, we need
3857          * to change the workaround. */
3858         haswell_mode_set_planes_workaround(intel_crtc);
3859         haswell_crtc_enable_planes(crtc);
3860 }
3861
3862 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3863 {
3864         struct drm_device *dev = crtc->base.dev;
3865         struct drm_i915_private *dev_priv = dev->dev_private;
3866         int pipe = crtc->pipe;
3867
3868         /* To avoid upsetting the power well on haswell only disable the pfit if
3869          * it's in use. The hw state code will make sure we get this right. */
3870         if (crtc->config.pch_pfit.enabled) {
3871                 I915_WRITE(PF_CTL(pipe), 0);
3872                 I915_WRITE(PF_WIN_POS(pipe), 0);
3873                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3874         }
3875 }
3876
3877 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3878 {
3879         struct drm_device *dev = crtc->dev;
3880         struct drm_i915_private *dev_priv = dev->dev_private;
3881         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3882         struct intel_encoder *encoder;
3883         int pipe = intel_crtc->pipe;
3884         int plane = intel_crtc->plane;
3885         u32 reg, temp;
3886
3887
3888         if (!intel_crtc->active)
3889                 return;
3890
3891         for_each_encoder_on_crtc(dev, crtc, encoder)
3892                 encoder->disable(encoder);
3893
3894         intel_crtc_wait_for_pending_flips(crtc);
3895         drm_vblank_off(dev, pipe);
3896
3897         if (dev_priv->fbc.plane == plane)
3898                 intel_disable_fbc(dev);
3899
3900         intel_crtc_update_cursor(crtc, false);
3901         intel_disable_planes(crtc);
3902         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3903
3904         if (intel_crtc->config.has_pch_encoder)
3905                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3906
3907         intel_disable_pipe(dev_priv, pipe);
3908
3909         ironlake_pfit_disable(intel_crtc);
3910
3911         for_each_encoder_on_crtc(dev, crtc, encoder)
3912                 if (encoder->post_disable)
3913                         encoder->post_disable(encoder);
3914
3915         if (intel_crtc->config.has_pch_encoder) {
3916                 ironlake_fdi_disable(crtc);
3917
3918                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3919                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3920
3921                 if (HAS_PCH_CPT(dev)) {
3922                         /* disable TRANS_DP_CTL */
3923                         reg = TRANS_DP_CTL(pipe);
3924                         temp = I915_READ(reg);
3925                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3926                                   TRANS_DP_PORT_SEL_MASK);
3927                         temp |= TRANS_DP_PORT_SEL_NONE;
3928                         I915_WRITE(reg, temp);
3929
3930                         /* disable DPLL_SEL */
3931                         temp = I915_READ(PCH_DPLL_SEL);
3932                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3933                         I915_WRITE(PCH_DPLL_SEL, temp);
3934                 }
3935
3936                 /* disable PCH DPLL */
3937                 intel_disable_shared_dpll(intel_crtc);
3938
3939                 ironlake_fdi_pll_disable(intel_crtc);
3940         }
3941
3942         intel_crtc->active = false;
3943         intel_update_watermarks(crtc);
3944
3945         mutex_lock(&dev->struct_mutex);
3946         intel_update_fbc(dev);
3947         mutex_unlock(&dev->struct_mutex);
3948 }
3949
3950 static void haswell_crtc_disable(struct drm_crtc *crtc)
3951 {
3952         struct drm_device *dev = crtc->dev;
3953         struct drm_i915_private *dev_priv = dev->dev_private;
3954         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3955         struct intel_encoder *encoder;
3956         int pipe = intel_crtc->pipe;
3957         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3958
3959         if (!intel_crtc->active)
3960                 return;
3961
3962         haswell_crtc_disable_planes(crtc);
3963
3964         for_each_encoder_on_crtc(dev, crtc, encoder) {
3965                 intel_opregion_notify_encoder(encoder, false);
3966                 encoder->disable(encoder);
3967         }
3968
3969         if (intel_crtc->config.has_pch_encoder)
3970                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3971         intel_disable_pipe(dev_priv, pipe);
3972
3973         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3974
3975         ironlake_pfit_disable(intel_crtc);
3976
3977         intel_ddi_disable_pipe_clock(intel_crtc);
3978
3979         for_each_encoder_on_crtc(dev, crtc, encoder)
3980                 if (encoder->post_disable)
3981                         encoder->post_disable(encoder);
3982
3983         if (intel_crtc->config.has_pch_encoder) {
3984                 lpt_disable_pch_transcoder(dev_priv);
3985                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3986                 intel_ddi_fdi_disable(crtc);
3987         }
3988
3989         intel_crtc->active = false;
3990         intel_update_watermarks(crtc);
3991
3992         mutex_lock(&dev->struct_mutex);
3993         intel_update_fbc(dev);
3994         mutex_unlock(&dev->struct_mutex);
3995 }
3996
3997 static void ironlake_crtc_off(struct drm_crtc *crtc)
3998 {
3999         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4000         intel_put_shared_dpll(intel_crtc);
4001 }
4002
4003 static void haswell_crtc_off(struct drm_crtc *crtc)
4004 {
4005         intel_ddi_put_crtc_pll(crtc);
4006 }
4007
4008 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4009 {
4010         if (!enable && intel_crtc->overlay) {
4011                 struct drm_device *dev = intel_crtc->base.dev;
4012                 struct drm_i915_private *dev_priv = dev->dev_private;
4013
4014                 mutex_lock(&dev->struct_mutex);
4015                 dev_priv->mm.interruptible = false;
4016                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4017                 dev_priv->mm.interruptible = true;
4018                 mutex_unlock(&dev->struct_mutex);
4019         }
4020
4021         /* Let userspace switch the overlay on again. In most cases userspace
4022          * has to recompute where to put it anyway.
4023          */
4024 }
4025
4026 /**
4027  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
4028  * cursor plane briefly if not already running after enabling the display
4029  * plane.
4030  * This workaround avoids occasional blank screens when self refresh is
4031  * enabled.
4032  */
4033 static void
4034 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
4035 {
4036         u32 cntl = I915_READ(CURCNTR(pipe));
4037
4038         if ((cntl & CURSOR_MODE) == 0) {
4039                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
4040
4041                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
4042                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
4043                 intel_wait_for_vblank(dev_priv->dev, pipe);
4044                 I915_WRITE(CURCNTR(pipe), cntl);
4045                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
4046                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
4047         }
4048 }
4049
4050 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4051 {
4052         struct drm_device *dev = crtc->base.dev;
4053         struct drm_i915_private *dev_priv = dev->dev_private;
4054         struct intel_crtc_config *pipe_config = &crtc->config;
4055
4056         if (!crtc->config.gmch_pfit.control)
4057                 return;
4058
4059         /*
4060          * The panel fitter should only be adjusted whilst the pipe is disabled,
4061          * according to register description and PRM.
4062          */
4063         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4064         assert_pipe_disabled(dev_priv, crtc->pipe);
4065
4066         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4067         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4068
4069         /* Border color in case we don't scale up to the full screen. Black by
4070          * default, change to something else for debugging. */
4071         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4072 }
4073
4074 #define for_each_power_domain(domain, mask)                             \
4075         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4076                 if ((1 << (domain)) & (mask))
4077
4078 enum intel_display_power_domain
4079 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4080 {
4081         struct drm_device *dev = intel_encoder->base.dev;
4082         struct intel_digital_port *intel_dig_port;
4083
4084         switch (intel_encoder->type) {
4085         case INTEL_OUTPUT_UNKNOWN:
4086                 /* Only DDI platforms should ever use this output type */
4087                 WARN_ON_ONCE(!HAS_DDI(dev));
4088         case INTEL_OUTPUT_DISPLAYPORT:
4089         case INTEL_OUTPUT_HDMI:
4090         case INTEL_OUTPUT_EDP:
4091                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4092                 switch (intel_dig_port->port) {
4093                 case PORT_A:
4094                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4095                 case PORT_B:
4096                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4097                 case PORT_C:
4098                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4099                 case PORT_D:
4100                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4101                 default:
4102                         WARN_ON_ONCE(1);
4103                         return POWER_DOMAIN_PORT_OTHER;
4104                 }
4105         case INTEL_OUTPUT_ANALOG:
4106                 return POWER_DOMAIN_PORT_CRT;
4107         case INTEL_OUTPUT_DSI:
4108                 return POWER_DOMAIN_PORT_DSI;
4109         default:
4110                 return POWER_DOMAIN_PORT_OTHER;
4111         }
4112 }
4113
4114 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4115 {
4116         struct drm_device *dev = crtc->dev;
4117         struct intel_encoder *intel_encoder;
4118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119         enum pipe pipe = intel_crtc->pipe;
4120         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4121         unsigned long mask;
4122         enum transcoder transcoder;
4123
4124         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4125
4126         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4127         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4128         if (pfit_enabled)
4129                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4130
4131         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4132                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4133
4134         return mask;
4135 }
4136
4137 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4138                                   bool enable)
4139 {
4140         if (dev_priv->power_domains.init_power_on == enable)
4141                 return;
4142
4143         if (enable)
4144                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4145         else
4146                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4147
4148         dev_priv->power_domains.init_power_on = enable;
4149 }
4150
4151 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4152 {
4153         struct drm_i915_private *dev_priv = dev->dev_private;
4154         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4155         struct intel_crtc *crtc;
4156
4157         /*
4158          * First get all needed power domains, then put all unneeded, to avoid
4159          * any unnecessary toggling of the power wells.
4160          */
4161         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4162                 enum intel_display_power_domain domain;
4163
4164                 if (!crtc->base.enabled)
4165                         continue;
4166
4167                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4168
4169                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4170                         intel_display_power_get(dev_priv, domain);
4171         }
4172
4173         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4174                 enum intel_display_power_domain domain;
4175
4176                 for_each_power_domain(domain, crtc->enabled_power_domains)
4177                         intel_display_power_put(dev_priv, domain);
4178
4179                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4180         }
4181
4182         intel_display_set_init_power(dev_priv, false);
4183 }
4184
4185 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4186 {
4187         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4188
4189         /* Obtain SKU information */
4190         mutex_lock(&dev_priv->dpio_lock);
4191         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4192                 CCK_FUSE_HPLL_FREQ_MASK;
4193         mutex_unlock(&dev_priv->dpio_lock);
4194
4195         return vco_freq[hpll_freq];
4196 }
4197
4198 /* Adjust CDclk dividers to allow high res or save power if possible */
4199 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4200 {
4201         struct drm_i915_private *dev_priv = dev->dev_private;
4202         u32 val, cmd;
4203
4204         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4205                 cmd = 2;
4206         else if (cdclk == 266)
4207                 cmd = 1;
4208         else
4209                 cmd = 0;
4210
4211         mutex_lock(&dev_priv->rps.hw_lock);
4212         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4213         val &= ~DSPFREQGUAR_MASK;
4214         val |= (cmd << DSPFREQGUAR_SHIFT);
4215         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4216         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4217                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4218                      50)) {
4219                 DRM_ERROR("timed out waiting for CDclk change\n");
4220         }
4221         mutex_unlock(&dev_priv->rps.hw_lock);
4222
4223         if (cdclk == 400) {
4224                 u32 divider, vco;
4225
4226                 vco = valleyview_get_vco(dev_priv);
4227                 divider = ((vco << 1) / cdclk) - 1;
4228
4229                 mutex_lock(&dev_priv->dpio_lock);
4230                 /* adjust cdclk divider */
4231                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4232                 val &= ~0xf;
4233                 val |= divider;
4234                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4235                 mutex_unlock(&dev_priv->dpio_lock);
4236         }
4237
4238         mutex_lock(&dev_priv->dpio_lock);
4239         /* adjust self-refresh exit latency value */
4240         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4241         val &= ~0x7f;
4242
4243         /*
4244          * For high bandwidth configs, we set a higher latency in the bunit
4245          * so that the core display fetch happens in time to avoid underruns.
4246          */
4247         if (cdclk == 400)
4248                 val |= 4500 / 250; /* 4.5 usec */
4249         else
4250                 val |= 3000 / 250; /* 3.0 usec */
4251         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4252         mutex_unlock(&dev_priv->dpio_lock);
4253
4254         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4255         intel_i2c_reset(dev);
4256 }
4257
4258 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4259 {
4260         int cur_cdclk, vco;
4261         int divider;
4262
4263         vco = valleyview_get_vco(dev_priv);
4264
4265         mutex_lock(&dev_priv->dpio_lock);
4266         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4267         mutex_unlock(&dev_priv->dpio_lock);
4268
4269         divider &= 0xf;
4270
4271         cur_cdclk = (vco << 1) / (divider + 1);
4272
4273         return cur_cdclk;
4274 }
4275
4276 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4277                                  int max_pixclk)
4278 {
4279         int cur_cdclk;
4280
4281         cur_cdclk = valleyview_cur_cdclk(dev_priv);
4282
4283         /*
4284          * Really only a few cases to deal with, as only 4 CDclks are supported:
4285          *   200MHz
4286          *   267MHz
4287          *   320MHz
4288          *   400MHz
4289          * So we check to see whether we're above 90% of the lower bin and
4290          * adjust if needed.
4291          */
4292         if (max_pixclk > 288000) {
4293                 return 400;
4294         } else if (max_pixclk > 240000) {
4295                 return 320;
4296         } else
4297                 return 266;
4298         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4299 }
4300
4301 /* compute the max pixel clock for new configuration */
4302 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4303 {
4304         struct drm_device *dev = dev_priv->dev;
4305         struct intel_crtc *intel_crtc;
4306         int max_pixclk = 0;
4307
4308         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4309                             base.head) {
4310                 if (intel_crtc->new_enabled)
4311                         max_pixclk = max(max_pixclk,
4312                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4313         }
4314
4315         return max_pixclk;
4316 }
4317
4318 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4319                                             unsigned *prepare_pipes)
4320 {
4321         struct drm_i915_private *dev_priv = dev->dev_private;
4322         struct intel_crtc *intel_crtc;
4323         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4324         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4325
4326         if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4327                 return;
4328
4329         /* disable/enable all currently active pipes while we change cdclk */
4330         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4331                             base.head)
4332                 if (intel_crtc->base.enabled)
4333                         *prepare_pipes |= (1 << intel_crtc->pipe);
4334 }
4335
4336 static void valleyview_modeset_global_resources(struct drm_device *dev)
4337 {
4338         struct drm_i915_private *dev_priv = dev->dev_private;
4339         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4340         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4341         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4342
4343         if (req_cdclk != cur_cdclk)
4344                 valleyview_set_cdclk(dev, req_cdclk);
4345         modeset_update_crtc_power_domains(dev);
4346 }
4347
4348 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4349 {
4350         struct drm_device *dev = crtc->dev;
4351         struct drm_i915_private *dev_priv = dev->dev_private;
4352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4353         struct intel_encoder *encoder;
4354         int pipe = intel_crtc->pipe;
4355         int plane = intel_crtc->plane;
4356         bool is_dsi;
4357
4358         WARN_ON(!crtc->enabled);
4359
4360         if (intel_crtc->active)
4361                 return;
4362
4363         intel_crtc->active = true;
4364
4365         for_each_encoder_on_crtc(dev, crtc, encoder)
4366                 if (encoder->pre_pll_enable)
4367                         encoder->pre_pll_enable(encoder);
4368
4369         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4370
4371         if (!is_dsi)
4372                 vlv_enable_pll(intel_crtc);
4373
4374         for_each_encoder_on_crtc(dev, crtc, encoder)
4375                 if (encoder->pre_enable)
4376                         encoder->pre_enable(encoder);
4377
4378         i9xx_pfit_enable(intel_crtc);
4379
4380         intel_crtc_load_lut(crtc);
4381
4382         intel_update_watermarks(crtc);
4383         intel_enable_pipe(intel_crtc);
4384         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4385         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4386         intel_enable_planes(crtc);
4387         intel_crtc_update_cursor(crtc, true);
4388
4389         intel_update_fbc(dev);
4390
4391         for_each_encoder_on_crtc(dev, crtc, encoder)
4392                 encoder->enable(encoder);
4393 }
4394
4395 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4396 {
4397         struct drm_device *dev = crtc->dev;
4398         struct drm_i915_private *dev_priv = dev->dev_private;
4399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4400         struct intel_encoder *encoder;
4401         int pipe = intel_crtc->pipe;
4402         int plane = intel_crtc->plane;
4403
4404         WARN_ON(!crtc->enabled);
4405
4406         if (intel_crtc->active)
4407                 return;
4408
4409         intel_crtc->active = true;
4410
4411         for_each_encoder_on_crtc(dev, crtc, encoder)
4412                 if (encoder->pre_enable)
4413                         encoder->pre_enable(encoder);
4414
4415         i9xx_enable_pll(intel_crtc);
4416
4417         i9xx_pfit_enable(intel_crtc);
4418
4419         intel_crtc_load_lut(crtc);
4420
4421         intel_update_watermarks(crtc);
4422         intel_enable_pipe(intel_crtc);
4423         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4424         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
4425         intel_enable_planes(crtc);
4426         /* The fixup needs to happen before cursor is enabled */
4427         if (IS_G4X(dev))
4428                 g4x_fixup_plane(dev_priv, pipe);
4429         intel_crtc_update_cursor(crtc, true);
4430
4431         /* Give the overlay scaler a chance to enable if it's on this pipe */
4432         intel_crtc_dpms_overlay(intel_crtc, true);
4433
4434         intel_update_fbc(dev);
4435
4436         for_each_encoder_on_crtc(dev, crtc, encoder)
4437                 encoder->enable(encoder);
4438 }
4439
4440 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4441 {
4442         struct drm_device *dev = crtc->base.dev;
4443         struct drm_i915_private *dev_priv = dev->dev_private;
4444
4445         if (!crtc->config.gmch_pfit.control)
4446                 return;
4447
4448         assert_pipe_disabled(dev_priv, crtc->pipe);
4449
4450         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4451                          I915_READ(PFIT_CONTROL));
4452         I915_WRITE(PFIT_CONTROL, 0);
4453 }
4454
4455 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4456 {
4457         struct drm_device *dev = crtc->dev;
4458         struct drm_i915_private *dev_priv = dev->dev_private;
4459         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4460         struct intel_encoder *encoder;
4461         int pipe = intel_crtc->pipe;
4462         int plane = intel_crtc->plane;
4463
4464         if (!intel_crtc->active)
4465                 return;
4466
4467         for_each_encoder_on_crtc(dev, crtc, encoder)
4468                 encoder->disable(encoder);
4469
4470         /* Give the overlay scaler a chance to disable if it's on this pipe */
4471         intel_crtc_wait_for_pending_flips(crtc);
4472         drm_vblank_off(dev, pipe);
4473
4474         if (dev_priv->fbc.plane == plane)
4475                 intel_disable_fbc(dev);
4476
4477         intel_crtc_dpms_overlay(intel_crtc, false);
4478         intel_crtc_update_cursor(crtc, false);
4479         intel_disable_planes(crtc);
4480         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
4481
4482         intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4483         intel_disable_pipe(dev_priv, pipe);
4484
4485         i9xx_pfit_disable(intel_crtc);
4486
4487         for_each_encoder_on_crtc(dev, crtc, encoder)
4488                 if (encoder->post_disable)
4489                         encoder->post_disable(encoder);
4490
4491         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4492                 vlv_disable_pll(dev_priv, pipe);
4493         else if (!IS_VALLEYVIEW(dev))
4494                 i9xx_disable_pll(dev_priv, pipe);
4495
4496         intel_crtc->active = false;
4497         intel_update_watermarks(crtc);
4498
4499         intel_update_fbc(dev);
4500 }
4501
4502 static void i9xx_crtc_off(struct drm_crtc *crtc)
4503 {
4504 }
4505
4506 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4507                                     bool enabled)
4508 {
4509         struct drm_device *dev = crtc->dev;
4510         struct drm_i915_master_private *master_priv;
4511         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4512         int pipe = intel_crtc->pipe;
4513
4514         if (!dev->primary->master)
4515                 return;
4516
4517         master_priv = dev->primary->master->driver_priv;
4518         if (!master_priv->sarea_priv)
4519                 return;
4520
4521         switch (pipe) {
4522         case 0:
4523                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4524                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4525                 break;
4526         case 1:
4527                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4528                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4529                 break;
4530         default:
4531                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4532                 break;
4533         }
4534 }
4535
4536 /**
4537  * Sets the power management mode of the pipe and plane.
4538  */
4539 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4540 {
4541         struct drm_device *dev = crtc->dev;
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         struct intel_encoder *intel_encoder;
4544         bool enable = false;
4545
4546         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4547                 enable |= intel_encoder->connectors_active;
4548
4549         if (enable)
4550                 dev_priv->display.crtc_enable(crtc);
4551         else
4552                 dev_priv->display.crtc_disable(crtc);
4553
4554         intel_crtc_update_sarea(crtc, enable);
4555 }
4556
4557 static void intel_crtc_disable(struct drm_crtc *crtc)
4558 {
4559         struct drm_device *dev = crtc->dev;
4560         struct drm_connector *connector;
4561         struct drm_i915_private *dev_priv = dev->dev_private;
4562         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4563
4564         /* crtc should still be enabled when we disable it. */
4565         WARN_ON(!crtc->enabled);
4566
4567         dev_priv->display.crtc_disable(crtc);
4568         intel_crtc->eld_vld = false;
4569         intel_crtc_update_sarea(crtc, false);
4570         dev_priv->display.off(crtc);
4571
4572         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4573         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4574         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4575
4576         if (crtc->fb) {
4577                 mutex_lock(&dev->struct_mutex);
4578                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4579                 mutex_unlock(&dev->struct_mutex);
4580                 crtc->fb = NULL;
4581         }
4582
4583         /* Update computed state. */
4584         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4585                 if (!connector->encoder || !connector->encoder->crtc)
4586                         continue;
4587
4588                 if (connector->encoder->crtc != crtc)
4589                         continue;
4590
4591                 connector->dpms = DRM_MODE_DPMS_OFF;
4592                 to_intel_encoder(connector->encoder)->connectors_active = false;
4593         }
4594 }
4595
4596 void intel_encoder_destroy(struct drm_encoder *encoder)
4597 {
4598         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4599
4600         drm_encoder_cleanup(encoder);
4601         kfree(intel_encoder);
4602 }
4603
4604 /* Simple dpms helper for encoders with just one connector, no cloning and only
4605  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4606  * state of the entire output pipe. */
4607 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4608 {
4609         if (mode == DRM_MODE_DPMS_ON) {
4610                 encoder->connectors_active = true;
4611
4612                 intel_crtc_update_dpms(encoder->base.crtc);
4613         } else {
4614                 encoder->connectors_active = false;
4615
4616                 intel_crtc_update_dpms(encoder->base.crtc);
4617         }
4618 }
4619
4620 /* Cross check the actual hw state with our own modeset state tracking (and it's
4621  * internal consistency). */
4622 static void intel_connector_check_state(struct intel_connector *connector)
4623 {
4624         if (connector->get_hw_state(connector)) {
4625                 struct intel_encoder *encoder = connector->encoder;
4626                 struct drm_crtc *crtc;
4627                 bool encoder_enabled;
4628                 enum pipe pipe;
4629
4630                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4631                               connector->base.base.id,
4632                               drm_get_connector_name(&connector->base));
4633
4634                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4635                      "wrong connector dpms state\n");
4636                 WARN(connector->base.encoder != &encoder->base,
4637                      "active connector not linked to encoder\n");
4638                 WARN(!encoder->connectors_active,
4639                      "encoder->connectors_active not set\n");
4640
4641                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4642                 WARN(!encoder_enabled, "encoder not enabled\n");
4643                 if (WARN_ON(!encoder->base.crtc))
4644                         return;
4645
4646                 crtc = encoder->base.crtc;
4647
4648                 WARN(!crtc->enabled, "crtc not enabled\n");
4649                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4650                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4651                      "encoder active on the wrong pipe\n");
4652         }
4653 }
4654
4655 /* Even simpler default implementation, if there's really no special case to
4656  * consider. */
4657 void intel_connector_dpms(struct drm_connector *connector, int mode)
4658 {
4659         /* All the simple cases only support two dpms states. */
4660         if (mode != DRM_MODE_DPMS_ON)
4661                 mode = DRM_MODE_DPMS_OFF;
4662
4663         if (mode == connector->dpms)
4664                 return;
4665
4666         connector->dpms = mode;
4667
4668         /* Only need to change hw state when actually enabled */
4669         if (connector->encoder)
4670                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4671
4672         intel_modeset_check_state(connector->dev);
4673 }
4674
4675 /* Simple connector->get_hw_state implementation for encoders that support only
4676  * one connector and no cloning and hence the encoder state determines the state
4677  * of the connector. */
4678 bool intel_connector_get_hw_state(struct intel_connector *connector)
4679 {
4680         enum pipe pipe = 0;
4681         struct intel_encoder *encoder = connector->encoder;
4682
4683         return encoder->get_hw_state(encoder, &pipe);
4684 }
4685
4686 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4687                                      struct intel_crtc_config *pipe_config)
4688 {
4689         struct drm_i915_private *dev_priv = dev->dev_private;
4690         struct intel_crtc *pipe_B_crtc =
4691                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4692
4693         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4694                       pipe_name(pipe), pipe_config->fdi_lanes);
4695         if (pipe_config->fdi_lanes > 4) {
4696                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4697                               pipe_name(pipe), pipe_config->fdi_lanes);
4698                 return false;
4699         }
4700
4701         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4702                 if (pipe_config->fdi_lanes > 2) {
4703                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4704                                       pipe_config->fdi_lanes);
4705                         return false;
4706                 } else {
4707                         return true;
4708                 }
4709         }
4710
4711         if (INTEL_INFO(dev)->num_pipes == 2)
4712                 return true;
4713
4714         /* Ivybridge 3 pipe is really complicated */
4715         switch (pipe) {
4716         case PIPE_A:
4717                 return true;
4718         case PIPE_B:
4719                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4720                     pipe_config->fdi_lanes > 2) {
4721                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4722                                       pipe_name(pipe), pipe_config->fdi_lanes);
4723                         return false;
4724                 }
4725                 return true;
4726         case PIPE_C:
4727                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4728                     pipe_B_crtc->config.fdi_lanes <= 2) {
4729                         if (pipe_config->fdi_lanes > 2) {
4730                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4731                                               pipe_name(pipe), pipe_config->fdi_lanes);
4732                                 return false;
4733                         }
4734                 } else {
4735                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4736                         return false;
4737                 }
4738                 return true;
4739         default:
4740                 BUG();
4741         }
4742 }
4743
4744 #define RETRY 1
4745 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4746                                        struct intel_crtc_config *pipe_config)
4747 {
4748         struct drm_device *dev = intel_crtc->base.dev;
4749         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4750         int lane, link_bw, fdi_dotclock;
4751         bool setup_ok, needs_recompute = false;
4752
4753 retry:
4754         /* FDI is a binary signal running at ~2.7GHz, encoding
4755          * each output octet as 10 bits. The actual frequency
4756          * is stored as a divider into a 100MHz clock, and the
4757          * mode pixel clock is stored in units of 1KHz.
4758          * Hence the bw of each lane in terms of the mode signal
4759          * is:
4760          */
4761         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4762
4763         fdi_dotclock = adjusted_mode->crtc_clock;
4764
4765         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4766                                            pipe_config->pipe_bpp);
4767
4768         pipe_config->fdi_lanes = lane;
4769
4770         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4771                                link_bw, &pipe_config->fdi_m_n);
4772
4773         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4774                                             intel_crtc->pipe, pipe_config);
4775         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4776                 pipe_config->pipe_bpp -= 2*3;
4777                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4778                               pipe_config->pipe_bpp);
4779                 needs_recompute = true;
4780                 pipe_config->bw_constrained = true;
4781
4782                 goto retry;
4783         }
4784
4785         if (needs_recompute)
4786                 return RETRY;
4787
4788         return setup_ok ? 0 : -EINVAL;
4789 }
4790
4791 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4792                                    struct intel_crtc_config *pipe_config)
4793 {
4794         pipe_config->ips_enabled = i915.enable_ips &&
4795                                    hsw_crtc_supports_ips(crtc) &&
4796                                    pipe_config->pipe_bpp <= 24;
4797 }
4798
4799 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4800                                      struct intel_crtc_config *pipe_config)
4801 {
4802         struct drm_device *dev = crtc->base.dev;
4803         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4804
4805         /* FIXME should check pixel clock limits on all platforms */
4806         if (INTEL_INFO(dev)->gen < 4) {
4807                 struct drm_i915_private *dev_priv = dev->dev_private;
4808                 int clock_limit =
4809                         dev_priv->display.get_display_clock_speed(dev);
4810
4811                 /*
4812                  * Enable pixel doubling when the dot clock
4813                  * is > 90% of the (display) core speed.
4814                  *
4815                  * GDG double wide on either pipe,
4816                  * otherwise pipe A only.
4817                  */
4818                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4819                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4820                         clock_limit *= 2;
4821                         pipe_config->double_wide = true;
4822                 }
4823
4824                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4825                         return -EINVAL;
4826         }
4827
4828         /*
4829          * Pipe horizontal size must be even in:
4830          * - DVO ganged mode
4831          * - LVDS dual channel mode
4832          * - Double wide pipe
4833          */
4834         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4835              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4836                 pipe_config->pipe_src_w &= ~1;
4837
4838         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4839          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4840          */
4841         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4842                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4843                 return -EINVAL;
4844
4845         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4846                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4847         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4848                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4849                  * for lvds. */
4850                 pipe_config->pipe_bpp = 8*3;
4851         }
4852
4853         if (HAS_IPS(dev))
4854                 hsw_compute_ips_config(crtc, pipe_config);
4855
4856         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4857          * clock survives for now. */
4858         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4859                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4860
4861         if (pipe_config->has_pch_encoder)
4862                 return ironlake_fdi_compute_config(crtc, pipe_config);
4863
4864         return 0;
4865 }
4866
4867 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4868 {
4869         return 400000; /* FIXME */
4870 }
4871
4872 static int i945_get_display_clock_speed(struct drm_device *dev)
4873 {
4874         return 400000;
4875 }
4876
4877 static int i915_get_display_clock_speed(struct drm_device *dev)
4878 {
4879         return 333000;
4880 }
4881
4882 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4883 {
4884         return 200000;
4885 }
4886
4887 static int pnv_get_display_clock_speed(struct drm_device *dev)
4888 {
4889         u16 gcfgc = 0;
4890
4891         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4892
4893         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4894         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4895                 return 267000;
4896         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4897                 return 333000;
4898         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4899                 return 444000;
4900         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4901                 return 200000;
4902         default:
4903                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4904         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4905                 return 133000;
4906         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4907                 return 167000;
4908         }
4909 }
4910
4911 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4912 {
4913         u16 gcfgc = 0;
4914
4915         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4916
4917         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4918                 return 133000;
4919         else {
4920                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4921                 case GC_DISPLAY_CLOCK_333_MHZ:
4922                         return 333000;
4923                 default:
4924                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4925                         return 190000;
4926                 }
4927         }
4928 }
4929
4930 static int i865_get_display_clock_speed(struct drm_device *dev)
4931 {
4932         return 266000;
4933 }
4934
4935 static int i855_get_display_clock_speed(struct drm_device *dev)
4936 {
4937         u16 hpllcc = 0;
4938         /* Assume that the hardware is in the high speed state.  This
4939          * should be the default.
4940          */
4941         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4942         case GC_CLOCK_133_200:
4943         case GC_CLOCK_100_200:
4944                 return 200000;
4945         case GC_CLOCK_166_250:
4946                 return 250000;
4947         case GC_CLOCK_100_133:
4948                 return 133000;
4949         }
4950
4951         /* Shouldn't happen */
4952         return 0;
4953 }
4954
4955 static int i830_get_display_clock_speed(struct drm_device *dev)
4956 {
4957         return 133000;
4958 }
4959
4960 static void
4961 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4962 {
4963         while (*num > DATA_LINK_M_N_MASK ||
4964                *den > DATA_LINK_M_N_MASK) {
4965                 *num >>= 1;
4966                 *den >>= 1;
4967         }
4968 }
4969
4970 static void compute_m_n(unsigned int m, unsigned int n,
4971                         uint32_t *ret_m, uint32_t *ret_n)
4972 {
4973         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4974         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4975         intel_reduce_m_n_ratio(ret_m, ret_n);
4976 }
4977
4978 void
4979 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4980                        int pixel_clock, int link_clock,
4981                        struct intel_link_m_n *m_n)
4982 {
4983         m_n->tu = 64;
4984
4985         compute_m_n(bits_per_pixel * pixel_clock,
4986                     link_clock * nlanes * 8,
4987                     &m_n->gmch_m, &m_n->gmch_n);
4988
4989         compute_m_n(pixel_clock, link_clock,
4990                     &m_n->link_m, &m_n->link_n);
4991 }
4992
4993 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4994 {
4995         if (i915.panel_use_ssc >= 0)
4996                 return i915.panel_use_ssc != 0;
4997         return dev_priv->vbt.lvds_use_ssc
4998                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4999 }
5000
5001 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5002 {
5003         struct drm_device *dev = crtc->dev;
5004         struct drm_i915_private *dev_priv = dev->dev_private;
5005         int refclk;
5006
5007         if (IS_VALLEYVIEW(dev)) {
5008                 refclk = 100000;
5009         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5010             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5011                 refclk = dev_priv->vbt.lvds_ssc_freq;
5012                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5013         } else if (!IS_GEN2(dev)) {
5014                 refclk = 96000;
5015         } else {
5016                 refclk = 48000;
5017         }
5018
5019         return refclk;
5020 }
5021
5022 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5023 {
5024         return (1 << dpll->n) << 16 | dpll->m2;
5025 }
5026
5027 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5028 {
5029         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5030 }
5031
5032 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5033                                      intel_clock_t *reduced_clock)
5034 {
5035         struct drm_device *dev = crtc->base.dev;
5036         struct drm_i915_private *dev_priv = dev->dev_private;
5037         int pipe = crtc->pipe;
5038         u32 fp, fp2 = 0;
5039
5040         if (IS_PINEVIEW(dev)) {
5041                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5042                 if (reduced_clock)
5043                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5044         } else {
5045                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5046                 if (reduced_clock)
5047                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5048         }
5049
5050         I915_WRITE(FP0(pipe), fp);
5051         crtc->config.dpll_hw_state.fp0 = fp;
5052
5053         crtc->lowfreq_avail = false;
5054         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5055             reduced_clock && i915.powersave) {
5056                 I915_WRITE(FP1(pipe), fp2);
5057                 crtc->config.dpll_hw_state.fp1 = fp2;
5058                 crtc->lowfreq_avail = true;
5059         } else {
5060                 I915_WRITE(FP1(pipe), fp);
5061                 crtc->config.dpll_hw_state.fp1 = fp;
5062         }
5063 }
5064
5065 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5066                 pipe)
5067 {
5068         u32 reg_val;
5069
5070         /*
5071          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5072          * and set it to a reasonable value instead.
5073          */
5074         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5075         reg_val &= 0xffffff00;
5076         reg_val |= 0x00000030;
5077         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5078
5079         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5080         reg_val &= 0x8cffffff;
5081         reg_val = 0x8c000000;
5082         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5083
5084         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5085         reg_val &= 0xffffff00;
5086         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5087
5088         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5089         reg_val &= 0x00ffffff;
5090         reg_val |= 0xb0000000;
5091         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5092 }
5093
5094 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5095                                          struct intel_link_m_n *m_n)
5096 {
5097         struct drm_device *dev = crtc->base.dev;
5098         struct drm_i915_private *dev_priv = dev->dev_private;
5099         int pipe = crtc->pipe;
5100
5101         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5102         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5103         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5104         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5105 }
5106
5107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5108                                          struct intel_link_m_n *m_n)
5109 {
5110         struct drm_device *dev = crtc->base.dev;
5111         struct drm_i915_private *dev_priv = dev->dev_private;
5112         int pipe = crtc->pipe;
5113         enum transcoder transcoder = crtc->config.cpu_transcoder;
5114
5115         if (INTEL_INFO(dev)->gen >= 5) {
5116                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5117                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5118                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5119                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5120         } else {
5121                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5122                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5123                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5124                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5125         }
5126 }
5127
5128 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5129 {
5130         if (crtc->config.has_pch_encoder)
5131                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5132         else
5133                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5134 }
5135
5136 static void vlv_update_pll(struct intel_crtc *crtc)
5137 {
5138         struct drm_device *dev = crtc->base.dev;
5139         struct drm_i915_private *dev_priv = dev->dev_private;
5140         int pipe = crtc->pipe;
5141         u32 dpll, mdiv;
5142         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5143         u32 coreclk, reg_val, dpll_md;
5144
5145         mutex_lock(&dev_priv->dpio_lock);
5146
5147         bestn = crtc->config.dpll.n;
5148         bestm1 = crtc->config.dpll.m1;
5149         bestm2 = crtc->config.dpll.m2;
5150         bestp1 = crtc->config.dpll.p1;
5151         bestp2 = crtc->config.dpll.p2;
5152
5153         /* See eDP HDMI DPIO driver vbios notes doc */
5154
5155         /* PLL B needs special handling */
5156         if (pipe)
5157                 vlv_pllb_recal_opamp(dev_priv, pipe);
5158
5159         /* Set up Tx target for periodic Rcomp update */
5160         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5161
5162         /* Disable target IRef on PLL */
5163         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5164         reg_val &= 0x00ffffff;
5165         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5166
5167         /* Disable fast lock */
5168         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5169
5170         /* Set idtafcrecal before PLL is enabled */
5171         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5172         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5173         mdiv |= ((bestn << DPIO_N_SHIFT));
5174         mdiv |= (1 << DPIO_K_SHIFT);
5175
5176         /*
5177          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5178          * but we don't support that).
5179          * Note: don't use the DAC post divider as it seems unstable.
5180          */
5181         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5182         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5183
5184         mdiv |= DPIO_ENABLE_CALIBRATION;
5185         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5186
5187         /* Set HBR and RBR LPF coefficients */
5188         if (crtc->config.port_clock == 162000 ||
5189             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5190             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5191                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5192                                  0x009f0003);
5193         else
5194                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5195                                  0x00d0000f);
5196
5197         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5198             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5199                 /* Use SSC source */
5200                 if (!pipe)
5201                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5202                                          0x0df40000);
5203                 else
5204                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5205                                          0x0df70000);
5206         } else { /* HDMI or VGA */
5207                 /* Use bend source */
5208                 if (!pipe)
5209                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5210                                          0x0df70000);
5211                 else
5212                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5213                                          0x0df40000);
5214         }
5215
5216         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5217         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5218         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5219             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5220                 coreclk |= 0x01000000;
5221         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5222
5223         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5224
5225         /*
5226          * Enable DPIO clock input. We should never disable the reference
5227          * clock for pipe B, since VGA hotplug / manual detection depends
5228          * on it.
5229          */
5230         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5231                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5232         /* We should never disable this, set it here for state tracking */
5233         if (pipe == PIPE_B)
5234                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5235         dpll |= DPLL_VCO_ENABLE;
5236         crtc->config.dpll_hw_state.dpll = dpll;
5237
5238         dpll_md = (crtc->config.pixel_multiplier - 1)
5239                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5240         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5241
5242         if (crtc->config.has_dp_encoder)
5243                 intel_dp_set_m_n(crtc);
5244
5245         mutex_unlock(&dev_priv->dpio_lock);
5246 }
5247
5248 static void i9xx_update_pll(struct intel_crtc *crtc,
5249                             intel_clock_t *reduced_clock,
5250                             int num_connectors)
5251 {
5252         struct drm_device *dev = crtc->base.dev;
5253         struct drm_i915_private *dev_priv = dev->dev_private;
5254         u32 dpll;
5255         bool is_sdvo;
5256         struct dpll *clock = &crtc->config.dpll;
5257
5258         i9xx_update_pll_dividers(crtc, reduced_clock);
5259
5260         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5261                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5262
5263         dpll = DPLL_VGA_MODE_DIS;
5264
5265         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5266                 dpll |= DPLLB_MODE_LVDS;
5267         else
5268                 dpll |= DPLLB_MODE_DAC_SERIAL;
5269
5270         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5271                 dpll |= (crtc->config.pixel_multiplier - 1)
5272                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5273         }
5274
5275         if (is_sdvo)
5276                 dpll |= DPLL_SDVO_HIGH_SPEED;
5277
5278         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5279                 dpll |= DPLL_SDVO_HIGH_SPEED;
5280
5281         /* compute bitmask from p1 value */
5282         if (IS_PINEVIEW(dev))
5283                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5284         else {
5285                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5286                 if (IS_G4X(dev) && reduced_clock)
5287                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5288         }
5289         switch (clock->p2) {
5290         case 5:
5291                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5292                 break;
5293         case 7:
5294                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5295                 break;
5296         case 10:
5297                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5298                 break;
5299         case 14:
5300                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5301                 break;
5302         }
5303         if (INTEL_INFO(dev)->gen >= 4)
5304                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5305
5306         if (crtc->config.sdvo_tv_clock)
5307                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5308         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5309                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5310                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5311         else
5312                 dpll |= PLL_REF_INPUT_DREFCLK;
5313
5314         dpll |= DPLL_VCO_ENABLE;
5315         crtc->config.dpll_hw_state.dpll = dpll;
5316
5317         if (INTEL_INFO(dev)->gen >= 4) {
5318                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5319                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5320                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5321         }
5322
5323         if (crtc->config.has_dp_encoder)
5324                 intel_dp_set_m_n(crtc);
5325 }
5326
5327 static void i8xx_update_pll(struct intel_crtc *crtc,
5328                             intel_clock_t *reduced_clock,
5329                             int num_connectors)
5330 {
5331         struct drm_device *dev = crtc->base.dev;
5332         struct drm_i915_private *dev_priv = dev->dev_private;
5333         u32 dpll;
5334         struct dpll *clock = &crtc->config.dpll;
5335
5336         i9xx_update_pll_dividers(crtc, reduced_clock);
5337
5338         dpll = DPLL_VGA_MODE_DIS;
5339
5340         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5341                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5342         } else {
5343                 if (clock->p1 == 2)
5344                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5345                 else
5346                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5347                 if (clock->p2 == 4)
5348                         dpll |= PLL_P2_DIVIDE_BY_4;
5349         }
5350
5351         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5352                 dpll |= DPLL_DVO_2X_MODE;
5353
5354         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5355                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5356                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5357         else
5358                 dpll |= PLL_REF_INPUT_DREFCLK;
5359
5360         dpll |= DPLL_VCO_ENABLE;
5361         crtc->config.dpll_hw_state.dpll = dpll;
5362 }
5363
5364 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5365 {
5366         struct drm_device *dev = intel_crtc->base.dev;
5367         struct drm_i915_private *dev_priv = dev->dev_private;
5368         enum pipe pipe = intel_crtc->pipe;
5369         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5370         struct drm_display_mode *adjusted_mode =
5371                 &intel_crtc->config.adjusted_mode;
5372         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5373
5374         /* We need to be careful not to changed the adjusted mode, for otherwise
5375          * the hw state checker will get angry at the mismatch. */
5376         crtc_vtotal = adjusted_mode->crtc_vtotal;
5377         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5378
5379         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5380                 /* the chip adds 2 halflines automatically */
5381                 crtc_vtotal -= 1;
5382                 crtc_vblank_end -= 1;
5383                 vsyncshift = adjusted_mode->crtc_hsync_start
5384                              - adjusted_mode->crtc_htotal / 2;
5385         } else {
5386                 vsyncshift = 0;
5387         }
5388
5389         if (INTEL_INFO(dev)->gen > 3)
5390                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5391
5392         I915_WRITE(HTOTAL(cpu_transcoder),
5393                    (adjusted_mode->crtc_hdisplay - 1) |
5394                    ((adjusted_mode->crtc_htotal - 1) << 16));
5395         I915_WRITE(HBLANK(cpu_transcoder),
5396                    (adjusted_mode->crtc_hblank_start - 1) |
5397                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5398         I915_WRITE(HSYNC(cpu_transcoder),
5399                    (adjusted_mode->crtc_hsync_start - 1) |
5400                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5401
5402         I915_WRITE(VTOTAL(cpu_transcoder),
5403                    (adjusted_mode->crtc_vdisplay - 1) |
5404                    ((crtc_vtotal - 1) << 16));
5405         I915_WRITE(VBLANK(cpu_transcoder),
5406                    (adjusted_mode->crtc_vblank_start - 1) |
5407                    ((crtc_vblank_end - 1) << 16));
5408         I915_WRITE(VSYNC(cpu_transcoder),
5409                    (adjusted_mode->crtc_vsync_start - 1) |
5410                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5411
5412         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5413          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5414          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5415          * bits. */
5416         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5417             (pipe == PIPE_B || pipe == PIPE_C))
5418                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5419
5420         /* pipesrc controls the size that is scaled from, which should
5421          * always be the user's requested size.
5422          */
5423         I915_WRITE(PIPESRC(pipe),
5424                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5425                    (intel_crtc->config.pipe_src_h - 1));
5426 }
5427
5428 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5429                                    struct intel_crtc_config *pipe_config)
5430 {
5431         struct drm_device *dev = crtc->base.dev;
5432         struct drm_i915_private *dev_priv = dev->dev_private;
5433         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5434         uint32_t tmp;
5435
5436         tmp = I915_READ(HTOTAL(cpu_transcoder));
5437         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5438         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5439         tmp = I915_READ(HBLANK(cpu_transcoder));
5440         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5441         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5442         tmp = I915_READ(HSYNC(cpu_transcoder));
5443         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5444         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5445
5446         tmp = I915_READ(VTOTAL(cpu_transcoder));
5447         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5448         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5449         tmp = I915_READ(VBLANK(cpu_transcoder));
5450         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5451         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5452         tmp = I915_READ(VSYNC(cpu_transcoder));
5453         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5454         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5455
5456         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5457                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5458                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5459                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5460         }
5461
5462         tmp = I915_READ(PIPESRC(crtc->pipe));
5463         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5464         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5465
5466         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5467         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5468 }
5469
5470 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5471                                  struct intel_crtc_config *pipe_config)
5472 {
5473         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5474         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5475         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5476         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5477
5478         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5479         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5480         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5481         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5482
5483         mode->flags = pipe_config->adjusted_mode.flags;
5484
5485         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5486         mode->flags |= pipe_config->adjusted_mode.flags;
5487 }
5488
5489 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5490 {
5491         struct drm_device *dev = intel_crtc->base.dev;
5492         struct drm_i915_private *dev_priv = dev->dev_private;
5493         uint32_t pipeconf;
5494
5495         pipeconf = 0;
5496
5497         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5498             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5499                 pipeconf |= PIPECONF_ENABLE;
5500
5501         if (intel_crtc->config.double_wide)
5502                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5503
5504         /* only g4x and later have fancy bpc/dither controls */
5505         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5506                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5507                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5508                         pipeconf |= PIPECONF_DITHER_EN |
5509                                     PIPECONF_DITHER_TYPE_SP;
5510
5511                 switch (intel_crtc->config.pipe_bpp) {
5512                 case 18:
5513                         pipeconf |= PIPECONF_6BPC;
5514                         break;
5515                 case 24:
5516                         pipeconf |= PIPECONF_8BPC;
5517                         break;
5518                 case 30:
5519                         pipeconf |= PIPECONF_10BPC;
5520                         break;
5521                 default:
5522                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5523                         BUG();
5524                 }
5525         }
5526
5527         if (HAS_PIPE_CXSR(dev)) {
5528                 if (intel_crtc->lowfreq_avail) {
5529                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5530                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5531                 } else {
5532                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5533                 }
5534         }
5535
5536         if (!IS_GEN2(dev) &&
5537             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5538                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5539         else
5540                 pipeconf |= PIPECONF_PROGRESSIVE;
5541
5542         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5543                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5544
5545         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5546         POSTING_READ(PIPECONF(intel_crtc->pipe));
5547 }
5548
5549 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5550                               int x, int y,
5551                               struct drm_framebuffer *fb)
5552 {
5553         struct drm_device *dev = crtc->dev;
5554         struct drm_i915_private *dev_priv = dev->dev_private;
5555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5556         int pipe = intel_crtc->pipe;
5557         int plane = intel_crtc->plane;
5558         int refclk, num_connectors = 0;
5559         intel_clock_t clock, reduced_clock;
5560         u32 dspcntr;
5561         bool ok, has_reduced_clock = false;
5562         bool is_lvds = false, is_dsi = false;
5563         struct intel_encoder *encoder;
5564         const intel_limit_t *limit;
5565         int ret;
5566
5567         for_each_encoder_on_crtc(dev, crtc, encoder) {
5568                 switch (encoder->type) {
5569                 case INTEL_OUTPUT_LVDS:
5570                         is_lvds = true;
5571                         break;
5572                 case INTEL_OUTPUT_DSI:
5573                         is_dsi = true;
5574                         break;
5575                 }
5576
5577                 num_connectors++;
5578         }
5579
5580         if (is_dsi)
5581                 goto skip_dpll;
5582
5583         if (!intel_crtc->config.clock_set) {
5584                 refclk = i9xx_get_refclk(crtc, num_connectors);
5585
5586                 /*
5587                  * Returns a set of divisors for the desired target clock with
5588                  * the given refclk, or FALSE.  The returned values represent
5589                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5590                  * 2) / p1 / p2.
5591                  */
5592                 limit = intel_limit(crtc, refclk);
5593                 ok = dev_priv->display.find_dpll(limit, crtc,
5594                                                  intel_crtc->config.port_clock,
5595                                                  refclk, NULL, &clock);
5596                 if (!ok) {
5597                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5598                         return -EINVAL;
5599                 }
5600
5601                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5602                         /*
5603                          * Ensure we match the reduced clock's P to the target
5604                          * clock.  If the clocks don't match, we can't switch
5605                          * the display clock by using the FP0/FP1. In such case
5606                          * we will disable the LVDS downclock feature.
5607                          */
5608                         has_reduced_clock =
5609                                 dev_priv->display.find_dpll(limit, crtc,
5610                                                             dev_priv->lvds_downclock,
5611                                                             refclk, &clock,
5612                                                             &reduced_clock);
5613                 }
5614                 /* Compat-code for transition, will disappear. */
5615                 intel_crtc->config.dpll.n = clock.n;
5616                 intel_crtc->config.dpll.m1 = clock.m1;
5617                 intel_crtc->config.dpll.m2 = clock.m2;
5618                 intel_crtc->config.dpll.p1 = clock.p1;
5619                 intel_crtc->config.dpll.p2 = clock.p2;
5620         }
5621
5622         if (IS_GEN2(dev)) {
5623                 i8xx_update_pll(intel_crtc,
5624                                 has_reduced_clock ? &reduced_clock : NULL,
5625                                 num_connectors);
5626         } else if (IS_VALLEYVIEW(dev)) {
5627                 vlv_update_pll(intel_crtc);
5628         } else {
5629                 i9xx_update_pll(intel_crtc,
5630                                 has_reduced_clock ? &reduced_clock : NULL,
5631                                 num_connectors);
5632         }
5633
5634 skip_dpll:
5635         /* Set up the display plane register */
5636         dspcntr = DISPPLANE_GAMMA_ENABLE;
5637
5638         if (!IS_VALLEYVIEW(dev)) {
5639                 if (pipe == 0)
5640                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5641                 else
5642                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5643         }
5644
5645         intel_set_pipe_timings(intel_crtc);
5646
5647         /* pipesrc and dspsize control the size that is scaled from,
5648          * which should always be the user's requested size.
5649          */
5650         I915_WRITE(DSPSIZE(plane),
5651                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5652                    (intel_crtc->config.pipe_src_w - 1));
5653         I915_WRITE(DSPPOS(plane), 0);
5654
5655         i9xx_set_pipeconf(intel_crtc);
5656
5657         I915_WRITE(DSPCNTR(plane), dspcntr);
5658         POSTING_READ(DSPCNTR(plane));
5659
5660         ret = intel_pipe_set_base(crtc, x, y, fb);
5661
5662         return ret;
5663 }
5664
5665 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5666                                  struct intel_crtc_config *pipe_config)
5667 {
5668         struct drm_device *dev = crtc->base.dev;
5669         struct drm_i915_private *dev_priv = dev->dev_private;
5670         uint32_t tmp;
5671
5672         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5673                 return;
5674
5675         tmp = I915_READ(PFIT_CONTROL);
5676         if (!(tmp & PFIT_ENABLE))
5677                 return;
5678
5679         /* Check whether the pfit is attached to our pipe. */
5680         if (INTEL_INFO(dev)->gen < 4) {
5681                 if (crtc->pipe != PIPE_B)
5682                         return;
5683         } else {
5684                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5685                         return;
5686         }
5687
5688         pipe_config->gmch_pfit.control = tmp;
5689         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5690         if (INTEL_INFO(dev)->gen < 5)
5691                 pipe_config->gmch_pfit.lvds_border_bits =
5692                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5693 }
5694
5695 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5696                                struct intel_crtc_config *pipe_config)
5697 {
5698         struct drm_device *dev = crtc->base.dev;
5699         struct drm_i915_private *dev_priv = dev->dev_private;
5700         int pipe = pipe_config->cpu_transcoder;
5701         intel_clock_t clock;
5702         u32 mdiv;
5703         int refclk = 100000;
5704
5705         mutex_lock(&dev_priv->dpio_lock);
5706         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5707         mutex_unlock(&dev_priv->dpio_lock);
5708
5709         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5710         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5711         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5712         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5713         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5714
5715         vlv_clock(refclk, &clock);
5716
5717         /* clock.dot is the fast clock */
5718         pipe_config->port_clock = clock.dot / 5;
5719 }
5720
5721 static void i9xx_get_plane_config(struct intel_crtc *crtc,
5722                                   struct intel_plane_config *plane_config)
5723 {
5724         struct drm_device *dev = crtc->base.dev;
5725         struct drm_i915_private *dev_priv = dev->dev_private;
5726         u32 val, base, offset;
5727         int pipe = crtc->pipe, plane = crtc->plane;
5728         int fourcc, pixel_format;
5729         int aligned_height;
5730
5731         crtc->base.fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
5732         if (!crtc->base.fb) {
5733                 DRM_DEBUG_KMS("failed to alloc fb\n");
5734                 return;
5735         }
5736
5737         val = I915_READ(DSPCNTR(plane));
5738
5739         if (INTEL_INFO(dev)->gen >= 4)
5740                 if (val & DISPPLANE_TILED)
5741                         plane_config->tiled = true;
5742
5743         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
5744         fourcc = intel_format_to_fourcc(pixel_format);
5745         crtc->base.fb->pixel_format = fourcc;
5746         crtc->base.fb->bits_per_pixel =
5747                 drm_format_plane_cpp(fourcc, 0) * 8;
5748
5749         if (INTEL_INFO(dev)->gen >= 4) {
5750                 if (plane_config->tiled)
5751                         offset = I915_READ(DSPTILEOFF(plane));
5752                 else
5753                         offset = I915_READ(DSPLINOFF(plane));
5754                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
5755         } else {
5756                 base = I915_READ(DSPADDR(plane));
5757         }
5758         plane_config->base = base;
5759
5760         val = I915_READ(PIPESRC(pipe));
5761         crtc->base.fb->width = ((val >> 16) & 0xfff) + 1;
5762         crtc->base.fb->height = ((val >> 0) & 0xfff) + 1;
5763
5764         val = I915_READ(DSPSTRIDE(pipe));
5765         crtc->base.fb->pitches[0] = val & 0xffffff80;
5766
5767         aligned_height = intel_align_height(dev, crtc->base.fb->height,
5768                                             plane_config->tiled);
5769
5770         plane_config->size = ALIGN(crtc->base.fb->pitches[0] *
5771                                    aligned_height, PAGE_SIZE);
5772
5773         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
5774                       pipe, plane, crtc->base.fb->width,
5775                       crtc->base.fb->height,
5776                       crtc->base.fb->bits_per_pixel, base,
5777                       crtc->base.fb->pitches[0],
5778                       plane_config->size);
5779
5780 }
5781
5782 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5783                                  struct intel_crtc_config *pipe_config)
5784 {
5785         struct drm_device *dev = crtc->base.dev;
5786         struct drm_i915_private *dev_priv = dev->dev_private;
5787         uint32_t tmp;
5788
5789         if (!intel_display_power_enabled(dev_priv,
5790                                          POWER_DOMAIN_PIPE(crtc->pipe)))
5791                 return false;
5792
5793         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5794         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5795
5796         tmp = I915_READ(PIPECONF(crtc->pipe));
5797         if (!(tmp & PIPECONF_ENABLE))
5798                 return false;
5799
5800         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5801                 switch (tmp & PIPECONF_BPC_MASK) {
5802                 case PIPECONF_6BPC:
5803                         pipe_config->pipe_bpp = 18;
5804                         break;
5805                 case PIPECONF_8BPC:
5806                         pipe_config->pipe_bpp = 24;
5807                         break;
5808                 case PIPECONF_10BPC:
5809                         pipe_config->pipe_bpp = 30;
5810                         break;
5811                 default:
5812                         break;
5813                 }
5814         }
5815
5816         if (INTEL_INFO(dev)->gen < 4)
5817                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5818
5819         intel_get_pipe_timings(crtc, pipe_config);
5820
5821         i9xx_get_pfit_config(crtc, pipe_config);
5822
5823         if (INTEL_INFO(dev)->gen >= 4) {
5824                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5825                 pipe_config->pixel_multiplier =
5826                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5827                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5828                 pipe_config->dpll_hw_state.dpll_md = tmp;
5829         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5830                 tmp = I915_READ(DPLL(crtc->pipe));
5831                 pipe_config->pixel_multiplier =
5832                         ((tmp & SDVO_MULTIPLIER_MASK)
5833                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5834         } else {
5835                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5836                  * port and will be fixed up in the encoder->get_config
5837                  * function. */
5838                 pipe_config->pixel_multiplier = 1;
5839         }
5840         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5841         if (!IS_VALLEYVIEW(dev)) {
5842                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5843                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5844         } else {
5845                 /* Mask out read-only status bits. */
5846                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5847                                                      DPLL_PORTC_READY_MASK |
5848                                                      DPLL_PORTB_READY_MASK);
5849         }
5850
5851         if (IS_VALLEYVIEW(dev))
5852                 vlv_crtc_clock_get(crtc, pipe_config);
5853         else
5854                 i9xx_crtc_clock_get(crtc, pipe_config);
5855
5856         return true;
5857 }
5858
5859 static void ironlake_init_pch_refclk(struct drm_device *dev)
5860 {
5861         struct drm_i915_private *dev_priv = dev->dev_private;
5862         struct drm_mode_config *mode_config = &dev->mode_config;
5863         struct intel_encoder *encoder;
5864         u32 val, final;
5865         bool has_lvds = false;
5866         bool has_cpu_edp = false;
5867         bool has_panel = false;
5868         bool has_ck505 = false;
5869         bool can_ssc = false;
5870
5871         /* We need to take the global config into account */
5872         list_for_each_entry(encoder, &mode_config->encoder_list,
5873                             base.head) {
5874                 switch (encoder->type) {
5875                 case INTEL_OUTPUT_LVDS:
5876                         has_panel = true;
5877                         has_lvds = true;
5878                         break;
5879                 case INTEL_OUTPUT_EDP:
5880                         has_panel = true;
5881                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5882                                 has_cpu_edp = true;
5883                         break;
5884                 }
5885         }
5886
5887         if (HAS_PCH_IBX(dev)) {
5888                 has_ck505 = dev_priv->vbt.display_clock_mode;
5889                 can_ssc = has_ck505;
5890         } else {
5891                 has_ck505 = false;
5892                 can_ssc = true;
5893         }
5894
5895         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5896                       has_panel, has_lvds, has_ck505);
5897
5898         /* Ironlake: try to setup display ref clock before DPLL
5899          * enabling. This is only under driver's control after
5900          * PCH B stepping, previous chipset stepping should be
5901          * ignoring this setting.
5902          */
5903         val = I915_READ(PCH_DREF_CONTROL);
5904
5905         /* As we must carefully and slowly disable/enable each source in turn,
5906          * compute the final state we want first and check if we need to
5907          * make any changes at all.
5908          */
5909         final = val;
5910         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5911         if (has_ck505)
5912                 final |= DREF_NONSPREAD_CK505_ENABLE;
5913         else
5914                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5915
5916         final &= ~DREF_SSC_SOURCE_MASK;
5917         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5918         final &= ~DREF_SSC1_ENABLE;
5919
5920         if (has_panel) {
5921                 final |= DREF_SSC_SOURCE_ENABLE;
5922
5923                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5924                         final |= DREF_SSC1_ENABLE;
5925
5926                 if (has_cpu_edp) {
5927                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5928                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5929                         else
5930                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5931                 } else
5932                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5933         } else {
5934                 final |= DREF_SSC_SOURCE_DISABLE;
5935                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5936         }
5937
5938         if (final == val)
5939                 return;
5940
5941         /* Always enable nonspread source */
5942         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5943
5944         if (has_ck505)
5945                 val |= DREF_NONSPREAD_CK505_ENABLE;
5946         else
5947                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5948
5949         if (has_panel) {
5950                 val &= ~DREF_SSC_SOURCE_MASK;
5951                 val |= DREF_SSC_SOURCE_ENABLE;
5952
5953                 /* SSC must be turned on before enabling the CPU output  */
5954                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5955                         DRM_DEBUG_KMS("Using SSC on panel\n");
5956                         val |= DREF_SSC1_ENABLE;
5957                 } else
5958                         val &= ~DREF_SSC1_ENABLE;
5959
5960                 /* Get SSC going before enabling the outputs */
5961                 I915_WRITE(PCH_DREF_CONTROL, val);
5962                 POSTING_READ(PCH_DREF_CONTROL);
5963                 udelay(200);
5964
5965                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5966
5967                 /* Enable CPU source on CPU attached eDP */
5968                 if (has_cpu_edp) {
5969                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5970                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5971                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5972                         }
5973                         else
5974                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5975                 } else
5976                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5977
5978                 I915_WRITE(PCH_DREF_CONTROL, val);
5979                 POSTING_READ(PCH_DREF_CONTROL);
5980                 udelay(200);
5981         } else {
5982                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5983
5984                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5985
5986                 /* Turn off CPU output */
5987                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5988
5989                 I915_WRITE(PCH_DREF_CONTROL, val);
5990                 POSTING_READ(PCH_DREF_CONTROL);
5991                 udelay(200);
5992
5993                 /* Turn off the SSC source */
5994                 val &= ~DREF_SSC_SOURCE_MASK;
5995                 val |= DREF_SSC_SOURCE_DISABLE;
5996
5997                 /* Turn off SSC1 */
5998                 val &= ~DREF_SSC1_ENABLE;
5999
6000                 I915_WRITE(PCH_DREF_CONTROL, val);
6001                 POSTING_READ(PCH_DREF_CONTROL);
6002                 udelay(200);
6003         }
6004
6005         BUG_ON(val != final);
6006 }
6007
6008 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6009 {
6010         uint32_t tmp;
6011
6012         tmp = I915_READ(SOUTH_CHICKEN2);
6013         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6014         I915_WRITE(SOUTH_CHICKEN2, tmp);
6015
6016         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6017                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6018                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6019
6020         tmp = I915_READ(SOUTH_CHICKEN2);
6021         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6022         I915_WRITE(SOUTH_CHICKEN2, tmp);
6023
6024         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6025                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6026                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6027 }
6028
6029 /* WaMPhyProgramming:hsw */
6030 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6031 {
6032         uint32_t tmp;
6033
6034         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6035         tmp &= ~(0xFF << 24);
6036         tmp |= (0x12 << 24);
6037         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6038
6039         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6040         tmp |= (1 << 11);
6041         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6042
6043         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6044         tmp |= (1 << 11);
6045         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6046
6047         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6048         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6049         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6050
6051         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6052         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6053         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6054
6055         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6056         tmp &= ~(7 << 13);
6057         tmp |= (5 << 13);
6058         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6059
6060         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6061         tmp &= ~(7 << 13);
6062         tmp |= (5 << 13);
6063         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6064
6065         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6066         tmp &= ~0xFF;
6067         tmp |= 0x1C;
6068         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6069
6070         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6071         tmp &= ~0xFF;
6072         tmp |= 0x1C;
6073         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6074
6075         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6076         tmp &= ~(0xFF << 16);
6077         tmp |= (0x1C << 16);
6078         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6079
6080         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6081         tmp &= ~(0xFF << 16);
6082         tmp |= (0x1C << 16);
6083         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6084
6085         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6086         tmp |= (1 << 27);
6087         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6088
6089         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6090         tmp |= (1 << 27);
6091         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6092
6093         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6094         tmp &= ~(0xF << 28);
6095         tmp |= (4 << 28);
6096         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6097
6098         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6099         tmp &= ~(0xF << 28);
6100         tmp |= (4 << 28);
6101         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6102 }
6103
6104 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6105  * Programming" based on the parameters passed:
6106  * - Sequence to enable CLKOUT_DP
6107  * - Sequence to enable CLKOUT_DP without spread
6108  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6109  */
6110 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6111                                  bool with_fdi)
6112 {
6113         struct drm_i915_private *dev_priv = dev->dev_private;
6114         uint32_t reg, tmp;
6115
6116         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6117                 with_spread = true;
6118         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6119                  with_fdi, "LP PCH doesn't have FDI\n"))
6120                 with_fdi = false;
6121
6122         mutex_lock(&dev_priv->dpio_lock);
6123
6124         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6125         tmp &= ~SBI_SSCCTL_DISABLE;
6126         tmp |= SBI_SSCCTL_PATHALT;
6127         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6128
6129         udelay(24);
6130
6131         if (with_spread) {
6132                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6133                 tmp &= ~SBI_SSCCTL_PATHALT;
6134                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6135
6136                 if (with_fdi) {
6137                         lpt_reset_fdi_mphy(dev_priv);
6138                         lpt_program_fdi_mphy(dev_priv);
6139                 }
6140         }
6141
6142         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6143                SBI_GEN0 : SBI_DBUFF0;
6144         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6145         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6146         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6147
6148         mutex_unlock(&dev_priv->dpio_lock);
6149 }
6150
6151 /* Sequence to disable CLKOUT_DP */
6152 static void lpt_disable_clkout_dp(struct drm_device *dev)
6153 {
6154         struct drm_i915_private *dev_priv = dev->dev_private;
6155         uint32_t reg, tmp;
6156
6157         mutex_lock(&dev_priv->dpio_lock);
6158
6159         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6160                SBI_GEN0 : SBI_DBUFF0;
6161         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6162         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6163         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6164
6165         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6166         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6167                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6168                         tmp |= SBI_SSCCTL_PATHALT;
6169                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6170                         udelay(32);
6171                 }
6172                 tmp |= SBI_SSCCTL_DISABLE;
6173                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6174         }
6175
6176         mutex_unlock(&dev_priv->dpio_lock);
6177 }
6178
6179 static void lpt_init_pch_refclk(struct drm_device *dev)
6180 {
6181         struct drm_mode_config *mode_config = &dev->mode_config;
6182         struct intel_encoder *encoder;
6183         bool has_vga = false;
6184
6185         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6186                 switch (encoder->type) {
6187                 case INTEL_OUTPUT_ANALOG:
6188                         has_vga = true;
6189                         break;
6190                 }
6191         }
6192
6193         if (has_vga)
6194                 lpt_enable_clkout_dp(dev, true, true);
6195         else
6196                 lpt_disable_clkout_dp(dev);
6197 }
6198
6199 /*
6200  * Initialize reference clocks when the driver loads
6201  */
6202 void intel_init_pch_refclk(struct drm_device *dev)
6203 {
6204         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6205                 ironlake_init_pch_refclk(dev);
6206         else if (HAS_PCH_LPT(dev))
6207                 lpt_init_pch_refclk(dev);
6208 }
6209
6210 static int ironlake_get_refclk(struct drm_crtc *crtc)
6211 {
6212         struct drm_device *dev = crtc->dev;
6213         struct drm_i915_private *dev_priv = dev->dev_private;
6214         struct intel_encoder *encoder;
6215         int num_connectors = 0;
6216         bool is_lvds = false;
6217
6218         for_each_encoder_on_crtc(dev, crtc, encoder) {
6219                 switch (encoder->type) {
6220                 case INTEL_OUTPUT_LVDS:
6221                         is_lvds = true;
6222                         break;
6223                 }
6224                 num_connectors++;
6225         }
6226
6227         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6228                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6229                               dev_priv->vbt.lvds_ssc_freq);
6230                 return dev_priv->vbt.lvds_ssc_freq;
6231         }
6232
6233         return 120000;
6234 }
6235
6236 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6237 {
6238         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240         int pipe = intel_crtc->pipe;
6241         uint32_t val;
6242
6243         val = 0;
6244
6245         switch (intel_crtc->config.pipe_bpp) {
6246         case 18:
6247                 val |= PIPECONF_6BPC;
6248                 break;
6249         case 24:
6250                 val |= PIPECONF_8BPC;
6251                 break;
6252         case 30:
6253                 val |= PIPECONF_10BPC;
6254                 break;
6255         case 36:
6256                 val |= PIPECONF_12BPC;
6257                 break;
6258         default:
6259                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6260                 BUG();
6261         }
6262
6263         if (intel_crtc->config.dither)
6264                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6265
6266         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6267                 val |= PIPECONF_INTERLACED_ILK;
6268         else
6269                 val |= PIPECONF_PROGRESSIVE;
6270
6271         if (intel_crtc->config.limited_color_range)
6272                 val |= PIPECONF_COLOR_RANGE_SELECT;
6273
6274         I915_WRITE(PIPECONF(pipe), val);
6275         POSTING_READ(PIPECONF(pipe));
6276 }
6277
6278 /*
6279  * Set up the pipe CSC unit.
6280  *
6281  * Currently only full range RGB to limited range RGB conversion
6282  * is supported, but eventually this should handle various
6283  * RGB<->YCbCr scenarios as well.
6284  */
6285 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6286 {
6287         struct drm_device *dev = crtc->dev;
6288         struct drm_i915_private *dev_priv = dev->dev_private;
6289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6290         int pipe = intel_crtc->pipe;
6291         uint16_t coeff = 0x7800; /* 1.0 */
6292
6293         /*
6294          * TODO: Check what kind of values actually come out of the pipe
6295          * with these coeff/postoff values and adjust to get the best
6296          * accuracy. Perhaps we even need to take the bpc value into
6297          * consideration.
6298          */
6299
6300         if (intel_crtc->config.limited_color_range)
6301                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6302
6303         /*
6304          * GY/GU and RY/RU should be the other way around according
6305          * to BSpec, but reality doesn't agree. Just set them up in
6306          * a way that results in the correct picture.
6307          */
6308         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6309         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6310
6311         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6312         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6313
6314         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6315         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6316
6317         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6318         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6319         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6320
6321         if (INTEL_INFO(dev)->gen > 6) {
6322                 uint16_t postoff = 0;
6323
6324                 if (intel_crtc->config.limited_color_range)
6325                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6326
6327                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6328                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6329                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6330
6331                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6332         } else {
6333                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6334
6335                 if (intel_crtc->config.limited_color_range)
6336                         mode |= CSC_BLACK_SCREEN_OFFSET;
6337
6338                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6339         }
6340 }
6341
6342 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6343 {
6344         struct drm_device *dev = crtc->dev;
6345         struct drm_i915_private *dev_priv = dev->dev_private;
6346         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6347         enum pipe pipe = intel_crtc->pipe;
6348         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6349         uint32_t val;
6350
6351         val = 0;
6352
6353         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6354                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6355
6356         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6357                 val |= PIPECONF_INTERLACED_ILK;
6358         else
6359                 val |= PIPECONF_PROGRESSIVE;
6360
6361         I915_WRITE(PIPECONF(cpu_transcoder), val);
6362         POSTING_READ(PIPECONF(cpu_transcoder));
6363
6364         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6365         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6366
6367         if (IS_BROADWELL(dev)) {
6368                 val = 0;
6369
6370                 switch (intel_crtc->config.pipe_bpp) {
6371                 case 18:
6372                         val |= PIPEMISC_DITHER_6_BPC;
6373                         break;
6374                 case 24:
6375                         val |= PIPEMISC_DITHER_8_BPC;
6376                         break;
6377                 case 30:
6378                         val |= PIPEMISC_DITHER_10_BPC;
6379                         break;
6380                 case 36:
6381                         val |= PIPEMISC_DITHER_12_BPC;
6382                         break;
6383                 default:
6384                         /* Case prevented by pipe_config_set_bpp. */
6385                         BUG();
6386                 }
6387
6388                 if (intel_crtc->config.dither)
6389                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6390
6391                 I915_WRITE(PIPEMISC(pipe), val);
6392         }
6393 }
6394
6395 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6396                                     intel_clock_t *clock,
6397                                     bool *has_reduced_clock,
6398                                     intel_clock_t *reduced_clock)
6399 {
6400         struct drm_device *dev = crtc->dev;
6401         struct drm_i915_private *dev_priv = dev->dev_private;
6402         struct intel_encoder *intel_encoder;
6403         int refclk;
6404         const intel_limit_t *limit;
6405         bool ret, is_lvds = false;
6406
6407         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6408                 switch (intel_encoder->type) {
6409                 case INTEL_OUTPUT_LVDS:
6410                         is_lvds = true;
6411                         break;
6412                 }
6413         }
6414
6415         refclk = ironlake_get_refclk(crtc);
6416
6417         /*
6418          * Returns a set of divisors for the desired target clock with the given
6419          * refclk, or FALSE.  The returned values represent the clock equation:
6420          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6421          */
6422         limit = intel_limit(crtc, refclk);
6423         ret = dev_priv->display.find_dpll(limit, crtc,
6424                                           to_intel_crtc(crtc)->config.port_clock,
6425                                           refclk, NULL, clock);
6426         if (!ret)
6427                 return false;
6428
6429         if (is_lvds && dev_priv->lvds_downclock_avail) {
6430                 /*
6431                  * Ensure we match the reduced clock's P to the target clock.
6432                  * If the clocks don't match, we can't switch the display clock
6433                  * by using the FP0/FP1. In such case we will disable the LVDS
6434                  * downclock feature.
6435                 */
6436                 *has_reduced_clock =
6437                         dev_priv->display.find_dpll(limit, crtc,
6438                                                     dev_priv->lvds_downclock,
6439                                                     refclk, clock,
6440                                                     reduced_clock);
6441         }
6442
6443         return true;
6444 }
6445
6446 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6447 {
6448         /*
6449          * Account for spread spectrum to avoid
6450          * oversubscribing the link. Max center spread
6451          * is 2.5%; use 5% for safety's sake.
6452          */
6453         u32 bps = target_clock * bpp * 21 / 20;
6454         return DIV_ROUND_UP(bps, link_bw * 8);
6455 }
6456
6457 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6458 {
6459         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6460 }
6461
6462 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6463                                       u32 *fp,
6464                                       intel_clock_t *reduced_clock, u32 *fp2)
6465 {
6466         struct drm_crtc *crtc = &intel_crtc->base;
6467         struct drm_device *dev = crtc->dev;
6468         struct drm_i915_private *dev_priv = dev->dev_private;
6469         struct intel_encoder *intel_encoder;
6470         uint32_t dpll;
6471         int factor, num_connectors = 0;
6472         bool is_lvds = false, is_sdvo = false;
6473
6474         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6475                 switch (intel_encoder->type) {
6476                 case INTEL_OUTPUT_LVDS:
6477                         is_lvds = true;
6478                         break;
6479                 case INTEL_OUTPUT_SDVO:
6480                 case INTEL_OUTPUT_HDMI:
6481                         is_sdvo = true;
6482                         break;
6483                 }
6484
6485                 num_connectors++;
6486         }
6487
6488         /* Enable autotuning of the PLL clock (if permissible) */
6489         factor = 21;
6490         if (is_lvds) {
6491                 if ((intel_panel_use_ssc(dev_priv) &&
6492                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6493                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6494                         factor = 25;
6495         } else if (intel_crtc->config.sdvo_tv_clock)
6496                 factor = 20;
6497
6498         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6499                 *fp |= FP_CB_TUNE;
6500
6501         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6502                 *fp2 |= FP_CB_TUNE;
6503
6504         dpll = 0;
6505
6506         if (is_lvds)
6507                 dpll |= DPLLB_MODE_LVDS;
6508         else
6509                 dpll |= DPLLB_MODE_DAC_SERIAL;
6510
6511         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6512                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6513
6514         if (is_sdvo)
6515                 dpll |= DPLL_SDVO_HIGH_SPEED;
6516         if (intel_crtc->config.has_dp_encoder)
6517                 dpll |= DPLL_SDVO_HIGH_SPEED;
6518
6519         /* compute bitmask from p1 value */
6520         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6521         /* also FPA1 */
6522         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6523
6524         switch (intel_crtc->config.dpll.p2) {
6525         case 5:
6526                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6527                 break;
6528         case 7:
6529                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6530                 break;
6531         case 10:
6532                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6533                 break;
6534         case 14:
6535                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6536                 break;
6537         }
6538
6539         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6540                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6541         else
6542                 dpll |= PLL_REF_INPUT_DREFCLK;
6543
6544         return dpll | DPLL_VCO_ENABLE;
6545 }
6546
6547 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6548                                   int x, int y,
6549                                   struct drm_framebuffer *fb)
6550 {
6551         struct drm_device *dev = crtc->dev;
6552         struct drm_i915_private *dev_priv = dev->dev_private;
6553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6554         int pipe = intel_crtc->pipe;
6555         int plane = intel_crtc->plane;
6556         int num_connectors = 0;
6557         intel_clock_t clock, reduced_clock;
6558         u32 dpll = 0, fp = 0, fp2 = 0;
6559         bool ok, has_reduced_clock = false;
6560         bool is_lvds = false;
6561         struct intel_encoder *encoder;
6562         struct intel_shared_dpll *pll;
6563         int ret;
6564
6565         for_each_encoder_on_crtc(dev, crtc, encoder) {
6566                 switch (encoder->type) {
6567                 case INTEL_OUTPUT_LVDS:
6568                         is_lvds = true;
6569                         break;
6570                 }
6571
6572                 num_connectors++;
6573         }
6574
6575         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6576              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6577
6578         ok = ironlake_compute_clocks(crtc, &clock,
6579                                      &has_reduced_clock, &reduced_clock);
6580         if (!ok && !intel_crtc->config.clock_set) {
6581                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6582                 return -EINVAL;
6583         }
6584         /* Compat-code for transition, will disappear. */
6585         if (!intel_crtc->config.clock_set) {
6586                 intel_crtc->config.dpll.n = clock.n;
6587                 intel_crtc->config.dpll.m1 = clock.m1;
6588                 intel_crtc->config.dpll.m2 = clock.m2;
6589                 intel_crtc->config.dpll.p1 = clock.p1;
6590                 intel_crtc->config.dpll.p2 = clock.p2;
6591         }
6592
6593         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6594         if (intel_crtc->config.has_pch_encoder) {
6595                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6596                 if (has_reduced_clock)
6597                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6598
6599                 dpll = ironlake_compute_dpll(intel_crtc,
6600                                              &fp, &reduced_clock,
6601                                              has_reduced_clock ? &fp2 : NULL);
6602
6603                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6604                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6605                 if (has_reduced_clock)
6606                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6607                 else
6608                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6609
6610                 pll = intel_get_shared_dpll(intel_crtc);
6611                 if (pll == NULL) {
6612                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6613                                          pipe_name(pipe));
6614                         return -EINVAL;
6615                 }
6616         } else
6617                 intel_put_shared_dpll(intel_crtc);
6618
6619         if (intel_crtc->config.has_dp_encoder)
6620                 intel_dp_set_m_n(intel_crtc);
6621
6622         if (is_lvds && has_reduced_clock && i915.powersave)
6623                 intel_crtc->lowfreq_avail = true;
6624         else
6625                 intel_crtc->lowfreq_avail = false;
6626
6627         intel_set_pipe_timings(intel_crtc);
6628
6629         if (intel_crtc->config.has_pch_encoder) {
6630                 intel_cpu_transcoder_set_m_n(intel_crtc,
6631                                              &intel_crtc->config.fdi_m_n);
6632         }
6633
6634         ironlake_set_pipeconf(crtc);
6635
6636         /* Set up the display plane register */
6637         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6638         POSTING_READ(DSPCNTR(plane));
6639
6640         ret = intel_pipe_set_base(crtc, x, y, fb);
6641
6642         return ret;
6643 }
6644
6645 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6646                                          struct intel_link_m_n *m_n)
6647 {
6648         struct drm_device *dev = crtc->base.dev;
6649         struct drm_i915_private *dev_priv = dev->dev_private;
6650         enum pipe pipe = crtc->pipe;
6651
6652         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6653         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6654         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6655                 & ~TU_SIZE_MASK;
6656         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6657         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6658                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6659 }
6660
6661 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6662                                          enum transcoder transcoder,
6663                                          struct intel_link_m_n *m_n)
6664 {
6665         struct drm_device *dev = crtc->base.dev;
6666         struct drm_i915_private *dev_priv = dev->dev_private;
6667         enum pipe pipe = crtc->pipe;
6668
6669         if (INTEL_INFO(dev)->gen >= 5) {
6670                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6671                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6672                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6673                         & ~TU_SIZE_MASK;
6674                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6675                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6676                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6677         } else {
6678                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6679                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6680                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6681                         & ~TU_SIZE_MASK;
6682                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6683                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6684                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6685         }
6686 }
6687
6688 void intel_dp_get_m_n(struct intel_crtc *crtc,
6689                       struct intel_crtc_config *pipe_config)
6690 {
6691         if (crtc->config.has_pch_encoder)
6692                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6693         else
6694                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6695                                              &pipe_config->dp_m_n);
6696 }
6697
6698 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6699                                         struct intel_crtc_config *pipe_config)
6700 {
6701         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6702                                      &pipe_config->fdi_m_n);
6703 }
6704
6705 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6706                                      struct intel_crtc_config *pipe_config)
6707 {
6708         struct drm_device *dev = crtc->base.dev;
6709         struct drm_i915_private *dev_priv = dev->dev_private;
6710         uint32_t tmp;
6711
6712         tmp = I915_READ(PF_CTL(crtc->pipe));
6713
6714         if (tmp & PF_ENABLE) {
6715                 pipe_config->pch_pfit.enabled = true;
6716                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6717                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6718
6719                 /* We currently do not free assignements of panel fitters on
6720                  * ivb/hsw (since we don't use the higher upscaling modes which
6721                  * differentiates them) so just WARN about this case for now. */
6722                 if (IS_GEN7(dev)) {
6723                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6724                                 PF_PIPE_SEL_IVB(crtc->pipe));
6725                 }
6726         }
6727 }
6728
6729 static void ironlake_get_plane_config(struct intel_crtc *crtc,
6730                                       struct intel_plane_config *plane_config)
6731 {
6732         struct drm_device *dev = crtc->base.dev;
6733         struct drm_i915_private *dev_priv = dev->dev_private;
6734         u32 val, base, offset;
6735         int pipe = crtc->pipe, plane = crtc->plane;
6736         int fourcc, pixel_format;
6737         int aligned_height;
6738
6739         crtc->base.fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6740         if (!crtc->base.fb) {
6741                 DRM_DEBUG_KMS("failed to alloc fb\n");
6742                 return;
6743         }
6744
6745         val = I915_READ(DSPCNTR(plane));
6746
6747         if (INTEL_INFO(dev)->gen >= 4)
6748                 if (val & DISPPLANE_TILED)
6749                         plane_config->tiled = true;
6750
6751         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6752         fourcc = intel_format_to_fourcc(pixel_format);
6753         crtc->base.fb->pixel_format = fourcc;
6754         crtc->base.fb->bits_per_pixel =
6755                 drm_format_plane_cpp(fourcc, 0) * 8;
6756
6757         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6758         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6759                 offset = I915_READ(DSPOFFSET(plane));
6760         } else {
6761                 if (plane_config->tiled)
6762                         offset = I915_READ(DSPTILEOFF(plane));
6763                 else
6764                         offset = I915_READ(DSPLINOFF(plane));
6765         }
6766         plane_config->base = base;
6767
6768         val = I915_READ(PIPESRC(pipe));
6769         crtc->base.fb->width = ((val >> 16) & 0xfff) + 1;
6770         crtc->base.fb->height = ((val >> 0) & 0xfff) + 1;
6771
6772         val = I915_READ(DSPSTRIDE(pipe));
6773         crtc->base.fb->pitches[0] = val & 0xffffff80;
6774
6775         aligned_height = intel_align_height(dev, crtc->base.fb->height,
6776                                             plane_config->tiled);
6777
6778         plane_config->size = ALIGN(crtc->base.fb->pitches[0] *
6779                                    aligned_height, PAGE_SIZE);
6780
6781         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6782                       pipe, plane, crtc->base.fb->width,
6783                       crtc->base.fb->height,
6784                       crtc->base.fb->bits_per_pixel, base,
6785                       crtc->base.fb->pitches[0],
6786                       plane_config->size);
6787 }
6788
6789 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6790                                      struct intel_crtc_config *pipe_config)
6791 {
6792         struct drm_device *dev = crtc->base.dev;
6793         struct drm_i915_private *dev_priv = dev->dev_private;
6794         uint32_t tmp;
6795
6796         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6797         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6798
6799         tmp = I915_READ(PIPECONF(crtc->pipe));
6800         if (!(tmp & PIPECONF_ENABLE))
6801                 return false;
6802
6803         switch (tmp & PIPECONF_BPC_MASK) {
6804         case PIPECONF_6BPC:
6805                 pipe_config->pipe_bpp = 18;
6806                 break;
6807         case PIPECONF_8BPC:
6808                 pipe_config->pipe_bpp = 24;
6809                 break;
6810         case PIPECONF_10BPC:
6811                 pipe_config->pipe_bpp = 30;
6812                 break;
6813         case PIPECONF_12BPC:
6814                 pipe_config->pipe_bpp = 36;
6815                 break;
6816         default:
6817                 break;
6818         }
6819
6820         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6821                 struct intel_shared_dpll *pll;
6822
6823                 pipe_config->has_pch_encoder = true;
6824
6825                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6826                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6827                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6828
6829                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6830
6831                 if (HAS_PCH_IBX(dev_priv->dev)) {
6832                         pipe_config->shared_dpll =
6833                                 (enum intel_dpll_id) crtc->pipe;
6834                 } else {
6835                         tmp = I915_READ(PCH_DPLL_SEL);
6836                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6837                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6838                         else
6839                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6840                 }
6841
6842                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6843
6844                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6845                                            &pipe_config->dpll_hw_state));
6846
6847                 tmp = pipe_config->dpll_hw_state.dpll;
6848                 pipe_config->pixel_multiplier =
6849                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6850                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6851
6852                 ironlake_pch_clock_get(crtc, pipe_config);
6853         } else {
6854                 pipe_config->pixel_multiplier = 1;
6855         }
6856
6857         intel_get_pipe_timings(crtc, pipe_config);
6858
6859         ironlake_get_pfit_config(crtc, pipe_config);
6860
6861         return true;
6862 }
6863
6864 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6865 {
6866         struct drm_device *dev = dev_priv->dev;
6867         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6868         struct intel_crtc *crtc;
6869         unsigned long irqflags;
6870         uint32_t val;
6871
6872         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6873                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6874                      pipe_name(crtc->pipe));
6875
6876         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6877         WARN(plls->spll_refcount, "SPLL enabled\n");
6878         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6879         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6880         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6881         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6882              "CPU PWM1 enabled\n");
6883         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6884              "CPU PWM2 enabled\n");
6885         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6886              "PCH PWM1 enabled\n");
6887         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6888              "Utility pin enabled\n");
6889         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6890
6891         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6892         val = I915_READ(DEIMR);
6893         WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6894              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6895         val = I915_READ(SDEIMR);
6896         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6897              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6898         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6899 }
6900
6901 /*
6902  * This function implements pieces of two sequences from BSpec:
6903  * - Sequence for display software to disable LCPLL
6904  * - Sequence for display software to allow package C8+
6905  * The steps implemented here are just the steps that actually touch the LCPLL
6906  * register. Callers should take care of disabling all the display engine
6907  * functions, doing the mode unset, fixing interrupts, etc.
6908  */
6909 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6910                               bool switch_to_fclk, bool allow_power_down)
6911 {
6912         uint32_t val;
6913
6914         assert_can_disable_lcpll(dev_priv);
6915
6916         val = I915_READ(LCPLL_CTL);
6917
6918         if (switch_to_fclk) {
6919                 val |= LCPLL_CD_SOURCE_FCLK;
6920                 I915_WRITE(LCPLL_CTL, val);
6921
6922                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6923                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6924                         DRM_ERROR("Switching to FCLK failed\n");
6925
6926                 val = I915_READ(LCPLL_CTL);
6927         }
6928
6929         val |= LCPLL_PLL_DISABLE;
6930         I915_WRITE(LCPLL_CTL, val);
6931         POSTING_READ(LCPLL_CTL);
6932
6933         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6934                 DRM_ERROR("LCPLL still locked\n");
6935
6936         val = I915_READ(D_COMP);
6937         val |= D_COMP_COMP_DISABLE;
6938         mutex_lock(&dev_priv->rps.hw_lock);
6939         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6940                 DRM_ERROR("Failed to disable D_COMP\n");
6941         mutex_unlock(&dev_priv->rps.hw_lock);
6942         POSTING_READ(D_COMP);
6943         ndelay(100);
6944
6945         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6946                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6947
6948         if (allow_power_down) {
6949                 val = I915_READ(LCPLL_CTL);
6950                 val |= LCPLL_POWER_DOWN_ALLOW;
6951                 I915_WRITE(LCPLL_CTL, val);
6952                 POSTING_READ(LCPLL_CTL);
6953         }
6954 }
6955
6956 /*
6957  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6958  * source.
6959  */
6960 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6961 {
6962         uint32_t val;
6963         unsigned long irqflags;
6964
6965         val = I915_READ(LCPLL_CTL);
6966
6967         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6968                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6969                 return;
6970
6971         /*
6972          * Make sure we're not on PC8 state before disabling PC8, otherwise
6973          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
6974          *
6975          * The other problem is that hsw_restore_lcpll() is called as part of
6976          * the runtime PM resume sequence, so we can't just call
6977          * gen6_gt_force_wake_get() because that function calls
6978          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
6979          * while we are on the resume sequence. So to solve this problem we have
6980          * to call special forcewake code that doesn't touch runtime PM and
6981          * doesn't enable the forcewake delayed work.
6982          */
6983         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
6984         if (dev_priv->uncore.forcewake_count++ == 0)
6985                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
6986         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
6987
6988         if (val & LCPLL_POWER_DOWN_ALLOW) {
6989                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6990                 I915_WRITE(LCPLL_CTL, val);
6991                 POSTING_READ(LCPLL_CTL);
6992         }
6993
6994         val = I915_READ(D_COMP);
6995         val |= D_COMP_COMP_FORCE;
6996         val &= ~D_COMP_COMP_DISABLE;
6997         mutex_lock(&dev_priv->rps.hw_lock);
6998         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6999                 DRM_ERROR("Failed to enable D_COMP\n");
7000         mutex_unlock(&dev_priv->rps.hw_lock);
7001         POSTING_READ(D_COMP);
7002
7003         val = I915_READ(LCPLL_CTL);
7004         val &= ~LCPLL_PLL_DISABLE;
7005         I915_WRITE(LCPLL_CTL, val);
7006
7007         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7008                 DRM_ERROR("LCPLL not locked yet\n");
7009
7010         if (val & LCPLL_CD_SOURCE_FCLK) {
7011                 val = I915_READ(LCPLL_CTL);
7012                 val &= ~LCPLL_CD_SOURCE_FCLK;
7013                 I915_WRITE(LCPLL_CTL, val);
7014
7015                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7016                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7017                         DRM_ERROR("Switching back to LCPLL failed\n");
7018         }
7019
7020         /* See the big comment above. */
7021         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7022         if (--dev_priv->uncore.forcewake_count == 0)
7023                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7024         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7025 }
7026
7027 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7028 {
7029         struct drm_device *dev = dev_priv->dev;
7030         uint32_t val;
7031
7032         WARN_ON(!HAS_PC8(dev));
7033
7034         DRM_DEBUG_KMS("Enabling package C8+\n");
7035
7036         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7037                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7038                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7039                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7040         }
7041
7042         lpt_disable_clkout_dp(dev);
7043         hsw_runtime_pm_disable_interrupts(dev);
7044         hsw_disable_lcpll(dev_priv, true, true);
7045 }
7046
7047 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7048 {
7049         struct drm_device *dev = dev_priv->dev;
7050         uint32_t val;
7051
7052         WARN_ON(!HAS_PC8(dev));
7053
7054         DRM_DEBUG_KMS("Disabling package C8+\n");
7055
7056         hsw_restore_lcpll(dev_priv);
7057         hsw_runtime_pm_restore_interrupts(dev);
7058         lpt_init_pch_refclk(dev);
7059
7060         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7061                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7062                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7063                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7064         }
7065
7066         intel_prepare_ddi(dev);
7067         i915_gem_init_swizzling(dev);
7068         mutex_lock(&dev_priv->rps.hw_lock);
7069         gen6_update_ring_freq(dev);
7070         mutex_unlock(&dev_priv->rps.hw_lock);
7071 }
7072
7073 static void haswell_modeset_global_resources(struct drm_device *dev)
7074 {
7075         modeset_update_crtc_power_domains(dev);
7076 }
7077
7078 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7079                                  int x, int y,
7080                                  struct drm_framebuffer *fb)
7081 {
7082         struct drm_device *dev = crtc->dev;
7083         struct drm_i915_private *dev_priv = dev->dev_private;
7084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7085         int plane = intel_crtc->plane;
7086         int ret;
7087
7088         if (!intel_ddi_pll_select(intel_crtc))
7089                 return -EINVAL;
7090         intel_ddi_pll_enable(intel_crtc);
7091
7092         if (intel_crtc->config.has_dp_encoder)
7093                 intel_dp_set_m_n(intel_crtc);
7094
7095         intel_crtc->lowfreq_avail = false;
7096
7097         intel_set_pipe_timings(intel_crtc);
7098
7099         if (intel_crtc->config.has_pch_encoder) {
7100                 intel_cpu_transcoder_set_m_n(intel_crtc,
7101                                              &intel_crtc->config.fdi_m_n);
7102         }
7103
7104         haswell_set_pipeconf(crtc);
7105
7106         intel_set_pipe_csc(crtc);
7107
7108         /* Set up the display plane register */
7109         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
7110         POSTING_READ(DSPCNTR(plane));
7111
7112         ret = intel_pipe_set_base(crtc, x, y, fb);
7113
7114         return ret;
7115 }
7116
7117 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7118                                     struct intel_crtc_config *pipe_config)
7119 {
7120         struct drm_device *dev = crtc->base.dev;
7121         struct drm_i915_private *dev_priv = dev->dev_private;
7122         enum intel_display_power_domain pfit_domain;
7123         uint32_t tmp;
7124
7125         if (!intel_display_power_enabled(dev_priv,
7126                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7127                 return false;
7128
7129         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7130         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7131
7132         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7133         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7134                 enum pipe trans_edp_pipe;
7135                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7136                 default:
7137                         WARN(1, "unknown pipe linked to edp transcoder\n");
7138                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7139                 case TRANS_DDI_EDP_INPUT_A_ON:
7140                         trans_edp_pipe = PIPE_A;
7141                         break;
7142                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7143                         trans_edp_pipe = PIPE_B;
7144                         break;
7145                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7146                         trans_edp_pipe = PIPE_C;
7147                         break;
7148                 }
7149
7150                 if (trans_edp_pipe == crtc->pipe)
7151                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7152         }
7153
7154         if (!intel_display_power_enabled(dev_priv,
7155                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7156                 return false;
7157
7158         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7159         if (!(tmp & PIPECONF_ENABLE))
7160                 return false;
7161
7162         /*
7163          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7164          * DDI E. So just check whether this pipe is wired to DDI E and whether
7165          * the PCH transcoder is on.
7166          */
7167         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7168         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7169             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7170                 pipe_config->has_pch_encoder = true;
7171
7172                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7173                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7174                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7175
7176                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7177         }
7178
7179         intel_get_pipe_timings(crtc, pipe_config);
7180
7181         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7182         if (intel_display_power_enabled(dev_priv, pfit_domain))
7183                 ironlake_get_pfit_config(crtc, pipe_config);
7184
7185         if (IS_HASWELL(dev))
7186                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7187                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7188
7189         pipe_config->pixel_multiplier = 1;
7190
7191         return true;
7192 }
7193
7194 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7195                                int x, int y,
7196                                struct drm_framebuffer *fb)
7197 {
7198         struct drm_device *dev = crtc->dev;
7199         struct drm_i915_private *dev_priv = dev->dev_private;
7200         struct intel_encoder *encoder;
7201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7202         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7203         int pipe = intel_crtc->pipe;
7204         int ret;
7205
7206         drm_vblank_pre_modeset(dev, pipe);
7207
7208         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7209
7210         drm_vblank_post_modeset(dev, pipe);
7211
7212         if (ret != 0)
7213                 return ret;
7214
7215         for_each_encoder_on_crtc(dev, crtc, encoder) {
7216                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7217                         encoder->base.base.id,
7218                         drm_get_encoder_name(&encoder->base),
7219                         mode->base.id, mode->name);
7220                 encoder->mode_set(encoder);
7221         }
7222
7223         return 0;
7224 }
7225
7226 static struct {
7227         int clock;
7228         u32 config;
7229 } hdmi_audio_clock[] = {
7230         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7231         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7232         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7233         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7234         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7235         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7236         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7237         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7238         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7239         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7240 };
7241
7242 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7243 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7244 {
7245         int i;
7246
7247         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7248                 if (mode->clock == hdmi_audio_clock[i].clock)
7249                         break;
7250         }
7251
7252         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7253                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7254                 i = 1;
7255         }
7256
7257         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7258                       hdmi_audio_clock[i].clock,
7259                       hdmi_audio_clock[i].config);
7260
7261         return hdmi_audio_clock[i].config;
7262 }
7263
7264 static bool intel_eld_uptodate(struct drm_connector *connector,
7265                                int reg_eldv, uint32_t bits_eldv,
7266                                int reg_elda, uint32_t bits_elda,
7267                                int reg_edid)
7268 {
7269         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7270         uint8_t *eld = connector->eld;
7271         uint32_t i;
7272
7273         i = I915_READ(reg_eldv);
7274         i &= bits_eldv;
7275
7276         if (!eld[0])
7277                 return !i;
7278
7279         if (!i)
7280                 return false;
7281
7282         i = I915_READ(reg_elda);
7283         i &= ~bits_elda;
7284         I915_WRITE(reg_elda, i);
7285
7286         for (i = 0; i < eld[2]; i++)
7287                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7288                         return false;
7289
7290         return true;
7291 }
7292
7293 static void g4x_write_eld(struct drm_connector *connector,
7294                           struct drm_crtc *crtc,
7295                           struct drm_display_mode *mode)
7296 {
7297         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7298         uint8_t *eld = connector->eld;
7299         uint32_t eldv;
7300         uint32_t len;
7301         uint32_t i;
7302
7303         i = I915_READ(G4X_AUD_VID_DID);
7304
7305         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7306                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7307         else
7308                 eldv = G4X_ELDV_DEVCTG;
7309
7310         if (intel_eld_uptodate(connector,
7311                                G4X_AUD_CNTL_ST, eldv,
7312                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7313                                G4X_HDMIW_HDMIEDID))
7314                 return;
7315
7316         i = I915_READ(G4X_AUD_CNTL_ST);
7317         i &= ~(eldv | G4X_ELD_ADDR);
7318         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7319         I915_WRITE(G4X_AUD_CNTL_ST, i);
7320
7321         if (!eld[0])
7322                 return;
7323
7324         len = min_t(uint8_t, eld[2], len);
7325         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7326         for (i = 0; i < len; i++)
7327                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7328
7329         i = I915_READ(G4X_AUD_CNTL_ST);
7330         i |= eldv;
7331         I915_WRITE(G4X_AUD_CNTL_ST, i);
7332 }
7333
7334 static void haswell_write_eld(struct drm_connector *connector,
7335                               struct drm_crtc *crtc,
7336                               struct drm_display_mode *mode)
7337 {
7338         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7339         uint8_t *eld = connector->eld;
7340         struct drm_device *dev = crtc->dev;
7341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7342         uint32_t eldv;
7343         uint32_t i;
7344         int len;
7345         int pipe = to_intel_crtc(crtc)->pipe;
7346         int tmp;
7347
7348         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7349         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7350         int aud_config = HSW_AUD_CFG(pipe);
7351         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7352
7353
7354         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7355
7356         /* Audio output enable */
7357         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7358         tmp = I915_READ(aud_cntrl_st2);
7359         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7360         I915_WRITE(aud_cntrl_st2, tmp);
7361
7362         /* Wait for 1 vertical blank */
7363         intel_wait_for_vblank(dev, pipe);
7364
7365         /* Set ELD valid state */
7366         tmp = I915_READ(aud_cntrl_st2);
7367         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7368         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7369         I915_WRITE(aud_cntrl_st2, tmp);
7370         tmp = I915_READ(aud_cntrl_st2);
7371         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7372
7373         /* Enable HDMI mode */
7374         tmp = I915_READ(aud_config);
7375         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7376         /* clear N_programing_enable and N_value_index */
7377         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7378         I915_WRITE(aud_config, tmp);
7379
7380         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7381
7382         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7383         intel_crtc->eld_vld = true;
7384
7385         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7386                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7387                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7388                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7389         } else {
7390                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7391         }
7392
7393         if (intel_eld_uptodate(connector,
7394                                aud_cntrl_st2, eldv,
7395                                aud_cntl_st, IBX_ELD_ADDRESS,
7396                                hdmiw_hdmiedid))
7397                 return;
7398
7399         i = I915_READ(aud_cntrl_st2);
7400         i &= ~eldv;
7401         I915_WRITE(aud_cntrl_st2, i);
7402
7403         if (!eld[0])
7404                 return;
7405
7406         i = I915_READ(aud_cntl_st);
7407         i &= ~IBX_ELD_ADDRESS;
7408         I915_WRITE(aud_cntl_st, i);
7409         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7410         DRM_DEBUG_DRIVER("port num:%d\n", i);
7411
7412         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7413         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7414         for (i = 0; i < len; i++)
7415                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7416
7417         i = I915_READ(aud_cntrl_st2);
7418         i |= eldv;
7419         I915_WRITE(aud_cntrl_st2, i);
7420
7421 }
7422
7423 static void ironlake_write_eld(struct drm_connector *connector,
7424                                struct drm_crtc *crtc,
7425                                struct drm_display_mode *mode)
7426 {
7427         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7428         uint8_t *eld = connector->eld;
7429         uint32_t eldv;
7430         uint32_t i;
7431         int len;
7432         int hdmiw_hdmiedid;
7433         int aud_config;
7434         int aud_cntl_st;
7435         int aud_cntrl_st2;
7436         int pipe = to_intel_crtc(crtc)->pipe;
7437
7438         if (HAS_PCH_IBX(connector->dev)) {
7439                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7440                 aud_config = IBX_AUD_CFG(pipe);
7441                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7442                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7443         } else if (IS_VALLEYVIEW(connector->dev)) {
7444                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7445                 aud_config = VLV_AUD_CFG(pipe);
7446                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7447                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7448         } else {
7449                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7450                 aud_config = CPT_AUD_CFG(pipe);
7451                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7452                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7453         }
7454
7455         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7456
7457         if (IS_VALLEYVIEW(connector->dev))  {
7458                 struct intel_encoder *intel_encoder;
7459                 struct intel_digital_port *intel_dig_port;
7460
7461                 intel_encoder = intel_attached_encoder(connector);
7462                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7463                 i = intel_dig_port->port;
7464         } else {
7465                 i = I915_READ(aud_cntl_st);
7466                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7467                 /* DIP_Port_Select, 0x1 = PortB */
7468         }
7469
7470         if (!i) {
7471                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7472                 /* operate blindly on all ports */
7473                 eldv = IBX_ELD_VALIDB;
7474                 eldv |= IBX_ELD_VALIDB << 4;
7475                 eldv |= IBX_ELD_VALIDB << 8;
7476         } else {
7477                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7478                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7479         }
7480
7481         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7482                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7483                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7484                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7485         } else {
7486                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7487         }
7488
7489         if (intel_eld_uptodate(connector,
7490                                aud_cntrl_st2, eldv,
7491                                aud_cntl_st, IBX_ELD_ADDRESS,
7492                                hdmiw_hdmiedid))
7493                 return;
7494
7495         i = I915_READ(aud_cntrl_st2);
7496         i &= ~eldv;
7497         I915_WRITE(aud_cntrl_st2, i);
7498
7499         if (!eld[0])
7500                 return;
7501
7502         i = I915_READ(aud_cntl_st);
7503         i &= ~IBX_ELD_ADDRESS;
7504         I915_WRITE(aud_cntl_st, i);
7505
7506         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7507         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7508         for (i = 0; i < len; i++)
7509                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7510
7511         i = I915_READ(aud_cntrl_st2);
7512         i |= eldv;
7513         I915_WRITE(aud_cntrl_st2, i);
7514 }
7515
7516 void intel_write_eld(struct drm_encoder *encoder,
7517                      struct drm_display_mode *mode)
7518 {
7519         struct drm_crtc *crtc = encoder->crtc;
7520         struct drm_connector *connector;
7521         struct drm_device *dev = encoder->dev;
7522         struct drm_i915_private *dev_priv = dev->dev_private;
7523
7524         connector = drm_select_eld(encoder, mode);
7525         if (!connector)
7526                 return;
7527
7528         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7529                          connector->base.id,
7530                          drm_get_connector_name(connector),
7531                          connector->encoder->base.id,
7532                          drm_get_encoder_name(connector->encoder));
7533
7534         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7535
7536         if (dev_priv->display.write_eld)
7537                 dev_priv->display.write_eld(connector, crtc, mode);
7538 }
7539
7540 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7541 {
7542         struct drm_device *dev = crtc->dev;
7543         struct drm_i915_private *dev_priv = dev->dev_private;
7544         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7545         bool visible = base != 0;
7546         u32 cntl;
7547
7548         if (intel_crtc->cursor_visible == visible)
7549                 return;
7550
7551         cntl = I915_READ(_CURACNTR);
7552         if (visible) {
7553                 /* On these chipsets we can only modify the base whilst
7554                  * the cursor is disabled.
7555                  */
7556                 I915_WRITE(_CURABASE, base);
7557
7558                 cntl &= ~(CURSOR_FORMAT_MASK);
7559                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7560                 cntl |= CURSOR_ENABLE |
7561                         CURSOR_GAMMA_ENABLE |
7562                         CURSOR_FORMAT_ARGB;
7563         } else
7564                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7565         I915_WRITE(_CURACNTR, cntl);
7566
7567         intel_crtc->cursor_visible = visible;
7568 }
7569
7570 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7571 {
7572         struct drm_device *dev = crtc->dev;
7573         struct drm_i915_private *dev_priv = dev->dev_private;
7574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7575         int pipe = intel_crtc->pipe;
7576         bool visible = base != 0;
7577
7578         if (intel_crtc->cursor_visible != visible) {
7579                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7580                 if (base) {
7581                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7582                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7583                         cntl |= pipe << 28; /* Connect to correct pipe */
7584                 } else {
7585                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7586                         cntl |= CURSOR_MODE_DISABLE;
7587                 }
7588                 I915_WRITE(CURCNTR(pipe), cntl);
7589
7590                 intel_crtc->cursor_visible = visible;
7591         }
7592         /* and commit changes on next vblank */
7593         POSTING_READ(CURCNTR(pipe));
7594         I915_WRITE(CURBASE(pipe), base);
7595         POSTING_READ(CURBASE(pipe));
7596 }
7597
7598 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7599 {
7600         struct drm_device *dev = crtc->dev;
7601         struct drm_i915_private *dev_priv = dev->dev_private;
7602         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7603         int pipe = intel_crtc->pipe;
7604         bool visible = base != 0;
7605
7606         if (intel_crtc->cursor_visible != visible) {
7607                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7608                 if (base) {
7609                         cntl &= ~CURSOR_MODE;
7610                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7611                 } else {
7612                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7613                         cntl |= CURSOR_MODE_DISABLE;
7614                 }
7615                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7616                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7617                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7618                 }
7619                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7620
7621                 intel_crtc->cursor_visible = visible;
7622         }
7623         /* and commit changes on next vblank */
7624         POSTING_READ(CURCNTR_IVB(pipe));
7625         I915_WRITE(CURBASE_IVB(pipe), base);
7626         POSTING_READ(CURBASE_IVB(pipe));
7627 }
7628
7629 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7630 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7631                                      bool on)
7632 {
7633         struct drm_device *dev = crtc->dev;
7634         struct drm_i915_private *dev_priv = dev->dev_private;
7635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7636         int pipe = intel_crtc->pipe;
7637         int x = intel_crtc->cursor_x;
7638         int y = intel_crtc->cursor_y;
7639         u32 base = 0, pos = 0;
7640         bool visible;
7641
7642         if (on)
7643                 base = intel_crtc->cursor_addr;
7644
7645         if (x >= intel_crtc->config.pipe_src_w)
7646                 base = 0;
7647
7648         if (y >= intel_crtc->config.pipe_src_h)
7649                 base = 0;
7650
7651         if (x < 0) {
7652                 if (x + intel_crtc->cursor_width <= 0)
7653                         base = 0;
7654
7655                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7656                 x = -x;
7657         }
7658         pos |= x << CURSOR_X_SHIFT;
7659
7660         if (y < 0) {
7661                 if (y + intel_crtc->cursor_height <= 0)
7662                         base = 0;
7663
7664                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7665                 y = -y;
7666         }
7667         pos |= y << CURSOR_Y_SHIFT;
7668
7669         visible = base != 0;
7670         if (!visible && !intel_crtc->cursor_visible)
7671                 return;
7672
7673         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7674                 I915_WRITE(CURPOS_IVB(pipe), pos);
7675                 ivb_update_cursor(crtc, base);
7676         } else {
7677                 I915_WRITE(CURPOS(pipe), pos);
7678                 if (IS_845G(dev) || IS_I865G(dev))
7679                         i845_update_cursor(crtc, base);
7680                 else
7681                         i9xx_update_cursor(crtc, base);
7682         }
7683 }
7684
7685 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7686                                  struct drm_file *file,
7687                                  uint32_t handle,
7688                                  uint32_t width, uint32_t height)
7689 {
7690         struct drm_device *dev = crtc->dev;
7691         struct drm_i915_private *dev_priv = dev->dev_private;
7692         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7693         struct drm_i915_gem_object *obj;
7694         uint32_t addr;
7695         int ret;
7696
7697         /* if we want to turn off the cursor ignore width and height */
7698         if (!handle) {
7699                 DRM_DEBUG_KMS("cursor off\n");
7700                 addr = 0;
7701                 obj = NULL;
7702                 mutex_lock(&dev->struct_mutex);
7703                 goto finish;
7704         }
7705
7706         /* Currently we only support 64x64 cursors */
7707         if (width != 64 || height != 64) {
7708                 DRM_ERROR("we currently only support 64x64 cursors\n");
7709                 return -EINVAL;
7710         }
7711
7712         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7713         if (&obj->base == NULL)
7714                 return -ENOENT;
7715
7716         if (obj->base.size < width * height * 4) {
7717                 DRM_DEBUG_KMS("buffer is to small\n");
7718                 ret = -ENOMEM;
7719                 goto fail;
7720         }
7721
7722         /* we only need to pin inside GTT if cursor is non-phy */
7723         mutex_lock(&dev->struct_mutex);
7724         if (!INTEL_INFO(dev)->cursor_needs_physical) {
7725                 unsigned alignment;
7726
7727                 if (obj->tiling_mode) {
7728                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
7729                         ret = -EINVAL;
7730                         goto fail_locked;
7731                 }
7732
7733                 /* Note that the w/a also requires 2 PTE of padding following
7734                  * the bo. We currently fill all unused PTE with the shadow
7735                  * page and so we should always have valid PTE following the
7736                  * cursor preventing the VT-d warning.
7737                  */
7738                 alignment = 0;
7739                 if (need_vtd_wa(dev))
7740                         alignment = 64*1024;
7741
7742                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7743                 if (ret) {
7744                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
7745                         goto fail_locked;
7746                 }
7747
7748                 ret = i915_gem_object_put_fence(obj);
7749                 if (ret) {
7750                         DRM_DEBUG_KMS("failed to release fence for cursor");
7751                         goto fail_unpin;
7752                 }
7753
7754                 addr = i915_gem_obj_ggtt_offset(obj);
7755         } else {
7756                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7757                 ret = i915_gem_attach_phys_object(dev, obj,
7758                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7759                                                   align);
7760                 if (ret) {
7761                         DRM_DEBUG_KMS("failed to attach phys object\n");
7762                         goto fail_locked;
7763                 }
7764                 addr = obj->phys_obj->handle->busaddr;
7765         }
7766
7767         if (IS_GEN2(dev))
7768                 I915_WRITE(CURSIZE, (height << 12) | width);
7769
7770  finish:
7771         if (intel_crtc->cursor_bo) {
7772                 if (INTEL_INFO(dev)->cursor_needs_physical) {
7773                         if (intel_crtc->cursor_bo != obj)
7774                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7775                 } else
7776                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7777                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7778         }
7779
7780         mutex_unlock(&dev->struct_mutex);
7781
7782         intel_crtc->cursor_addr = addr;
7783         intel_crtc->cursor_bo = obj;
7784         intel_crtc->cursor_width = width;
7785         intel_crtc->cursor_height = height;
7786
7787         if (intel_crtc->active)
7788                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7789
7790         return 0;
7791 fail_unpin:
7792         i915_gem_object_unpin_from_display_plane(obj);
7793 fail_locked:
7794         mutex_unlock(&dev->struct_mutex);
7795 fail:
7796         drm_gem_object_unreference_unlocked(&obj->base);
7797         return ret;
7798 }
7799
7800 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7801 {
7802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7803
7804         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7805         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7806
7807         if (intel_crtc->active)
7808                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7809
7810         return 0;
7811 }
7812
7813 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7814                                  u16 *blue, uint32_t start, uint32_t size)
7815 {
7816         int end = (start + size > 256) ? 256 : start + size, i;
7817         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7818
7819         for (i = start; i < end; i++) {
7820                 intel_crtc->lut_r[i] = red[i] >> 8;
7821                 intel_crtc->lut_g[i] = green[i] >> 8;
7822                 intel_crtc->lut_b[i] = blue[i] >> 8;
7823         }
7824
7825         intel_crtc_load_lut(crtc);
7826 }
7827
7828 /* VESA 640x480x72Hz mode to set on the pipe */
7829 static struct drm_display_mode load_detect_mode = {
7830         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7831                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7832 };
7833
7834 struct drm_framebuffer *
7835 __intel_framebuffer_create(struct drm_device *dev,
7836                            struct drm_mode_fb_cmd2 *mode_cmd,
7837                            struct drm_i915_gem_object *obj)
7838 {
7839         struct intel_framebuffer *intel_fb;
7840         int ret;
7841
7842         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7843         if (!intel_fb) {
7844                 drm_gem_object_unreference_unlocked(&obj->base);
7845                 return ERR_PTR(-ENOMEM);
7846         }
7847
7848         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7849         if (ret)
7850                 goto err;
7851
7852         return &intel_fb->base;
7853 err:
7854         drm_gem_object_unreference_unlocked(&obj->base);
7855         kfree(intel_fb);
7856
7857         return ERR_PTR(ret);
7858 }
7859
7860 static struct drm_framebuffer *
7861 intel_framebuffer_create(struct drm_device *dev,
7862                          struct drm_mode_fb_cmd2 *mode_cmd,
7863                          struct drm_i915_gem_object *obj)
7864 {
7865         struct drm_framebuffer *fb;
7866         int ret;
7867
7868         ret = i915_mutex_lock_interruptible(dev);
7869         if (ret)
7870                 return ERR_PTR(ret);
7871         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
7872         mutex_unlock(&dev->struct_mutex);
7873
7874         return fb;
7875 }
7876
7877 static u32
7878 intel_framebuffer_pitch_for_width(int width, int bpp)
7879 {
7880         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7881         return ALIGN(pitch, 64);
7882 }
7883
7884 static u32
7885 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7886 {
7887         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7888         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7889 }
7890
7891 static struct drm_framebuffer *
7892 intel_framebuffer_create_for_mode(struct drm_device *dev,
7893                                   struct drm_display_mode *mode,
7894                                   int depth, int bpp)
7895 {
7896         struct drm_i915_gem_object *obj;
7897         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7898
7899         obj = i915_gem_alloc_object(dev,
7900                                     intel_framebuffer_size_for_mode(mode, bpp));
7901         if (obj == NULL)
7902                 return ERR_PTR(-ENOMEM);
7903
7904         mode_cmd.width = mode->hdisplay;
7905         mode_cmd.height = mode->vdisplay;
7906         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7907                                                                 bpp);
7908         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7909
7910         return intel_framebuffer_create(dev, &mode_cmd, obj);
7911 }
7912
7913 static struct drm_framebuffer *
7914 mode_fits_in_fbdev(struct drm_device *dev,
7915                    struct drm_display_mode *mode)
7916 {
7917 #ifdef CONFIG_DRM_I915_FBDEV
7918         struct drm_i915_private *dev_priv = dev->dev_private;
7919         struct drm_i915_gem_object *obj;
7920         struct drm_framebuffer *fb;
7921
7922         if (!dev_priv->fbdev)
7923                 return NULL;
7924
7925         if (!dev_priv->fbdev->fb)
7926                 return NULL;
7927
7928         obj = dev_priv->fbdev->fb->obj;
7929         BUG_ON(!obj);
7930
7931         fb = &dev_priv->fbdev->fb->base;
7932         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7933                                                                fb->bits_per_pixel))
7934                 return NULL;
7935
7936         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7937                 return NULL;
7938
7939         return fb;
7940 #else
7941         return NULL;
7942 #endif
7943 }
7944
7945 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7946                                 struct drm_display_mode *mode,
7947                                 struct intel_load_detect_pipe *old)
7948 {
7949         struct intel_crtc *intel_crtc;
7950         struct intel_encoder *intel_encoder =
7951                 intel_attached_encoder(connector);
7952         struct drm_crtc *possible_crtc;
7953         struct drm_encoder *encoder = &intel_encoder->base;
7954         struct drm_crtc *crtc = NULL;
7955         struct drm_device *dev = encoder->dev;
7956         struct drm_framebuffer *fb;
7957         int i = -1;
7958
7959         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7960                       connector->base.id, drm_get_connector_name(connector),
7961                       encoder->base.id, drm_get_encoder_name(encoder));
7962
7963         /*
7964          * Algorithm gets a little messy:
7965          *
7966          *   - if the connector already has an assigned crtc, use it (but make
7967          *     sure it's on first)
7968          *
7969          *   - try to find the first unused crtc that can drive this connector,
7970          *     and use that if we find one
7971          */
7972
7973         /* See if we already have a CRTC for this connector */
7974         if (encoder->crtc) {
7975                 crtc = encoder->crtc;
7976
7977                 mutex_lock(&crtc->mutex);
7978
7979                 old->dpms_mode = connector->dpms;
7980                 old->load_detect_temp = false;
7981
7982                 /* Make sure the crtc and connector are running */
7983                 if (connector->dpms != DRM_MODE_DPMS_ON)
7984                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7985
7986                 return true;
7987         }
7988
7989         /* Find an unused one (if possible) */
7990         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7991                 i++;
7992                 if (!(encoder->possible_crtcs & (1 << i)))
7993                         continue;
7994                 if (!possible_crtc->enabled) {
7995                         crtc = possible_crtc;
7996                         break;
7997                 }
7998         }
7999
8000         /*
8001          * If we didn't find an unused CRTC, don't use any.
8002          */
8003         if (!crtc) {
8004                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8005                 return false;
8006         }
8007
8008         mutex_lock(&crtc->mutex);
8009         intel_encoder->new_crtc = to_intel_crtc(crtc);
8010         to_intel_connector(connector)->new_encoder = intel_encoder;
8011
8012         intel_crtc = to_intel_crtc(crtc);
8013         intel_crtc->new_enabled = true;
8014         intel_crtc->new_config = &intel_crtc->config;
8015         old->dpms_mode = connector->dpms;
8016         old->load_detect_temp = true;
8017         old->release_fb = NULL;
8018
8019         if (!mode)
8020                 mode = &load_detect_mode;
8021
8022         /* We need a framebuffer large enough to accommodate all accesses
8023          * that the plane may generate whilst we perform load detection.
8024          * We can not rely on the fbcon either being present (we get called
8025          * during its initialisation to detect all boot displays, or it may
8026          * not even exist) or that it is large enough to satisfy the
8027          * requested mode.
8028          */
8029         fb = mode_fits_in_fbdev(dev, mode);
8030         if (fb == NULL) {
8031                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8032                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8033                 old->release_fb = fb;
8034         } else
8035                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8036         if (IS_ERR(fb)) {
8037                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8038                 goto fail;
8039         }
8040
8041         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8042                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8043                 if (old->release_fb)
8044                         old->release_fb->funcs->destroy(old->release_fb);
8045                 goto fail;
8046         }
8047
8048         /* let the connector get through one full cycle before testing */
8049         intel_wait_for_vblank(dev, intel_crtc->pipe);
8050         return true;
8051
8052  fail:
8053         intel_crtc->new_enabled = crtc->enabled;
8054         if (intel_crtc->new_enabled)
8055                 intel_crtc->new_config = &intel_crtc->config;
8056         else
8057                 intel_crtc->new_config = NULL;
8058         mutex_unlock(&crtc->mutex);
8059         return false;
8060 }
8061
8062 void intel_release_load_detect_pipe(struct drm_connector *connector,
8063                                     struct intel_load_detect_pipe *old)
8064 {
8065         struct intel_encoder *intel_encoder =
8066                 intel_attached_encoder(connector);
8067         struct drm_encoder *encoder = &intel_encoder->base;
8068         struct drm_crtc *crtc = encoder->crtc;
8069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8070
8071         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8072                       connector->base.id, drm_get_connector_name(connector),
8073                       encoder->base.id, drm_get_encoder_name(encoder));
8074
8075         if (old->load_detect_temp) {
8076                 to_intel_connector(connector)->new_encoder = NULL;
8077                 intel_encoder->new_crtc = NULL;
8078                 intel_crtc->new_enabled = false;
8079                 intel_crtc->new_config = NULL;
8080                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8081
8082                 if (old->release_fb) {
8083                         drm_framebuffer_unregister_private(old->release_fb);
8084                         drm_framebuffer_unreference(old->release_fb);
8085                 }
8086
8087                 mutex_unlock(&crtc->mutex);
8088                 return;
8089         }
8090
8091         /* Switch crtc and encoder back off if necessary */
8092         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8093                 connector->funcs->dpms(connector, old->dpms_mode);
8094
8095         mutex_unlock(&crtc->mutex);
8096 }
8097
8098 static int i9xx_pll_refclk(struct drm_device *dev,
8099                            const struct intel_crtc_config *pipe_config)
8100 {
8101         struct drm_i915_private *dev_priv = dev->dev_private;
8102         u32 dpll = pipe_config->dpll_hw_state.dpll;
8103
8104         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8105                 return dev_priv->vbt.lvds_ssc_freq;
8106         else if (HAS_PCH_SPLIT(dev))
8107                 return 120000;
8108         else if (!IS_GEN2(dev))
8109                 return 96000;
8110         else
8111                 return 48000;
8112 }
8113
8114 /* Returns the clock of the currently programmed mode of the given pipe. */
8115 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8116                                 struct intel_crtc_config *pipe_config)
8117 {
8118         struct drm_device *dev = crtc->base.dev;
8119         struct drm_i915_private *dev_priv = dev->dev_private;
8120         int pipe = pipe_config->cpu_transcoder;
8121         u32 dpll = pipe_config->dpll_hw_state.dpll;
8122         u32 fp;
8123         intel_clock_t clock;
8124         int refclk = i9xx_pll_refclk(dev, pipe_config);
8125
8126         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8127                 fp = pipe_config->dpll_hw_state.fp0;
8128         else
8129                 fp = pipe_config->dpll_hw_state.fp1;
8130
8131         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8132         if (IS_PINEVIEW(dev)) {
8133                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8134                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8135         } else {
8136                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8137                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8138         }
8139
8140         if (!IS_GEN2(dev)) {
8141                 if (IS_PINEVIEW(dev))
8142                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8143                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8144                 else
8145                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8146                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8147
8148                 switch (dpll & DPLL_MODE_MASK) {
8149                 case DPLLB_MODE_DAC_SERIAL:
8150                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8151                                 5 : 10;
8152                         break;
8153                 case DPLLB_MODE_LVDS:
8154                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8155                                 7 : 14;
8156                         break;
8157                 default:
8158                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8159                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8160                         return;
8161                 }
8162
8163                 if (IS_PINEVIEW(dev))
8164                         pineview_clock(refclk, &clock);
8165                 else
8166                         i9xx_clock(refclk, &clock);
8167         } else {
8168                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8169                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8170
8171                 if (is_lvds) {
8172                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8173                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8174
8175                         if (lvds & LVDS_CLKB_POWER_UP)
8176                                 clock.p2 = 7;
8177                         else
8178                                 clock.p2 = 14;
8179                 } else {
8180                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8181                                 clock.p1 = 2;
8182                         else {
8183                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8184                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8185                         }
8186                         if (dpll & PLL_P2_DIVIDE_BY_4)
8187                                 clock.p2 = 4;
8188                         else
8189                                 clock.p2 = 2;
8190                 }
8191
8192                 i9xx_clock(refclk, &clock);
8193         }
8194
8195         /*
8196          * This value includes pixel_multiplier. We will use
8197          * port_clock to compute adjusted_mode.crtc_clock in the
8198          * encoder's get_config() function.
8199          */
8200         pipe_config->port_clock = clock.dot;
8201 }
8202
8203 int intel_dotclock_calculate(int link_freq,
8204                              const struct intel_link_m_n *m_n)
8205 {
8206         /*
8207          * The calculation for the data clock is:
8208          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8209          * But we want to avoid losing precison if possible, so:
8210          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8211          *
8212          * and the link clock is simpler:
8213          * link_clock = (m * link_clock) / n
8214          */
8215
8216         if (!m_n->link_n)
8217                 return 0;
8218
8219         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8220 }
8221
8222 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8223                                    struct intel_crtc_config *pipe_config)
8224 {
8225         struct drm_device *dev = crtc->base.dev;
8226
8227         /* read out port_clock from the DPLL */
8228         i9xx_crtc_clock_get(crtc, pipe_config);
8229
8230         /*
8231          * This value does not include pixel_multiplier.
8232          * We will check that port_clock and adjusted_mode.crtc_clock
8233          * agree once we know their relationship in the encoder's
8234          * get_config() function.
8235          */
8236         pipe_config->adjusted_mode.crtc_clock =
8237                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8238                                          &pipe_config->fdi_m_n);
8239 }
8240
8241 /** Returns the currently programmed mode of the given pipe. */
8242 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8243                                              struct drm_crtc *crtc)
8244 {
8245         struct drm_i915_private *dev_priv = dev->dev_private;
8246         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8247         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8248         struct drm_display_mode *mode;
8249         struct intel_crtc_config pipe_config;
8250         int htot = I915_READ(HTOTAL(cpu_transcoder));
8251         int hsync = I915_READ(HSYNC(cpu_transcoder));
8252         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8253         int vsync = I915_READ(VSYNC(cpu_transcoder));
8254         enum pipe pipe = intel_crtc->pipe;
8255
8256         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8257         if (!mode)
8258                 return NULL;
8259
8260         /*
8261          * Construct a pipe_config sufficient for getting the clock info
8262          * back out of crtc_clock_get.
8263          *
8264          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8265          * to use a real value here instead.
8266          */
8267         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8268         pipe_config.pixel_multiplier = 1;
8269         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8270         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8271         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8272         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8273
8274         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8275         mode->hdisplay = (htot & 0xffff) + 1;
8276         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8277         mode->hsync_start = (hsync & 0xffff) + 1;
8278         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8279         mode->vdisplay = (vtot & 0xffff) + 1;
8280         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8281         mode->vsync_start = (vsync & 0xffff) + 1;
8282         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8283
8284         drm_mode_set_name(mode);
8285
8286         return mode;
8287 }
8288
8289 static void intel_increase_pllclock(struct drm_crtc *crtc)
8290 {
8291         struct drm_device *dev = crtc->dev;
8292         drm_i915_private_t *dev_priv = dev->dev_private;
8293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8294         int pipe = intel_crtc->pipe;
8295         int dpll_reg = DPLL(pipe);
8296         int dpll;
8297
8298         if (HAS_PCH_SPLIT(dev))
8299                 return;
8300
8301         if (!dev_priv->lvds_downclock_avail)
8302                 return;
8303
8304         dpll = I915_READ(dpll_reg);
8305         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8306                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8307
8308                 assert_panel_unlocked(dev_priv, pipe);
8309
8310                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8311                 I915_WRITE(dpll_reg, dpll);
8312                 intel_wait_for_vblank(dev, pipe);
8313
8314                 dpll = I915_READ(dpll_reg);
8315                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8316                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8317         }
8318 }
8319
8320 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8321 {
8322         struct drm_device *dev = crtc->dev;
8323         drm_i915_private_t *dev_priv = dev->dev_private;
8324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8325
8326         if (HAS_PCH_SPLIT(dev))
8327                 return;
8328
8329         if (!dev_priv->lvds_downclock_avail)
8330                 return;
8331
8332         /*
8333          * Since this is called by a timer, we should never get here in
8334          * the manual case.
8335          */
8336         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8337                 int pipe = intel_crtc->pipe;
8338                 int dpll_reg = DPLL(pipe);
8339                 int dpll;
8340
8341                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8342
8343                 assert_panel_unlocked(dev_priv, pipe);
8344
8345                 dpll = I915_READ(dpll_reg);
8346                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8347                 I915_WRITE(dpll_reg, dpll);
8348                 intel_wait_for_vblank(dev, pipe);
8349                 dpll = I915_READ(dpll_reg);
8350                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8351                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8352         }
8353
8354 }
8355
8356 void intel_mark_busy(struct drm_device *dev)
8357 {
8358         struct drm_i915_private *dev_priv = dev->dev_private;
8359
8360         if (dev_priv->mm.busy)
8361                 return;
8362
8363         intel_runtime_pm_get(dev_priv);
8364         i915_update_gfx_val(dev_priv);
8365         dev_priv->mm.busy = true;
8366 }
8367
8368 void intel_mark_idle(struct drm_device *dev)
8369 {
8370         struct drm_i915_private *dev_priv = dev->dev_private;
8371         struct drm_crtc *crtc;
8372
8373         if (!dev_priv->mm.busy)
8374                 return;
8375
8376         dev_priv->mm.busy = false;
8377
8378         if (!i915.powersave)
8379                 goto out;
8380
8381         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8382                 if (!crtc->fb)
8383                         continue;
8384
8385                 intel_decrease_pllclock(crtc);
8386         }
8387
8388         if (INTEL_INFO(dev)->gen >= 6)
8389                 gen6_rps_idle(dev->dev_private);
8390
8391 out:
8392         intel_runtime_pm_put(dev_priv);
8393 }
8394
8395 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8396                         struct intel_ring_buffer *ring)
8397 {
8398         struct drm_device *dev = obj->base.dev;
8399         struct drm_crtc *crtc;
8400
8401         if (!i915.powersave)
8402                 return;
8403
8404         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8405                 if (!crtc->fb)
8406                         continue;
8407
8408                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8409                         continue;
8410
8411                 intel_increase_pllclock(crtc);
8412                 if (ring && intel_fbc_enabled(dev))
8413                         ring->fbc_dirty = true;
8414         }
8415 }
8416
8417 static void intel_crtc_destroy(struct drm_crtc *crtc)
8418 {
8419         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8420         struct drm_device *dev = crtc->dev;
8421         struct intel_unpin_work *work;
8422         unsigned long flags;
8423
8424         spin_lock_irqsave(&dev->event_lock, flags);
8425         work = intel_crtc->unpin_work;
8426         intel_crtc->unpin_work = NULL;
8427         spin_unlock_irqrestore(&dev->event_lock, flags);
8428
8429         if (work) {
8430                 cancel_work_sync(&work->work);
8431                 kfree(work);
8432         }
8433
8434         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8435
8436         drm_crtc_cleanup(crtc);
8437
8438         kfree(intel_crtc);
8439 }
8440
8441 static void intel_unpin_work_fn(struct work_struct *__work)
8442 {
8443         struct intel_unpin_work *work =
8444                 container_of(__work, struct intel_unpin_work, work);
8445         struct drm_device *dev = work->crtc->dev;
8446
8447         mutex_lock(&dev->struct_mutex);
8448         intel_unpin_fb_obj(work->old_fb_obj);
8449         drm_gem_object_unreference(&work->pending_flip_obj->base);
8450         drm_gem_object_unreference(&work->old_fb_obj->base);
8451
8452         intel_update_fbc(dev);
8453         mutex_unlock(&dev->struct_mutex);
8454
8455         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8456         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8457
8458         kfree(work);
8459 }
8460
8461 static void do_intel_finish_page_flip(struct drm_device *dev,
8462                                       struct drm_crtc *crtc)
8463 {
8464         drm_i915_private_t *dev_priv = dev->dev_private;
8465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8466         struct intel_unpin_work *work;
8467         unsigned long flags;
8468
8469         /* Ignore early vblank irqs */
8470         if (intel_crtc == NULL)
8471                 return;
8472
8473         spin_lock_irqsave(&dev->event_lock, flags);
8474         work = intel_crtc->unpin_work;
8475
8476         /* Ensure we don't miss a work->pending update ... */
8477         smp_rmb();
8478
8479         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8480                 spin_unlock_irqrestore(&dev->event_lock, flags);
8481                 return;
8482         }
8483
8484         /* and that the unpin work is consistent wrt ->pending. */
8485         smp_rmb();
8486
8487         intel_crtc->unpin_work = NULL;
8488
8489         if (work->event)
8490                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8491
8492         drm_vblank_put(dev, intel_crtc->pipe);
8493
8494         spin_unlock_irqrestore(&dev->event_lock, flags);
8495
8496         wake_up_all(&dev_priv->pending_flip_queue);
8497
8498         queue_work(dev_priv->wq, &work->work);
8499
8500         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8501 }
8502
8503 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8504 {
8505         drm_i915_private_t *dev_priv = dev->dev_private;
8506         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8507
8508         do_intel_finish_page_flip(dev, crtc);
8509 }
8510
8511 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8512 {
8513         drm_i915_private_t *dev_priv = dev->dev_private;
8514         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8515
8516         do_intel_finish_page_flip(dev, crtc);
8517 }
8518
8519 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8520 {
8521         drm_i915_private_t *dev_priv = dev->dev_private;
8522         struct intel_crtc *intel_crtc =
8523                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8524         unsigned long flags;
8525
8526         /* NB: An MMIO update of the plane base pointer will also
8527          * generate a page-flip completion irq, i.e. every modeset
8528          * is also accompanied by a spurious intel_prepare_page_flip().
8529          */
8530         spin_lock_irqsave(&dev->event_lock, flags);
8531         if (intel_crtc->unpin_work)
8532                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8533         spin_unlock_irqrestore(&dev->event_lock, flags);
8534 }
8535
8536 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8537 {
8538         /* Ensure that the work item is consistent when activating it ... */
8539         smp_wmb();
8540         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8541         /* and that it is marked active as soon as the irq could fire. */
8542         smp_wmb();
8543 }
8544
8545 static int intel_gen2_queue_flip(struct drm_device *dev,
8546                                  struct drm_crtc *crtc,
8547                                  struct drm_framebuffer *fb,
8548                                  struct drm_i915_gem_object *obj,
8549                                  uint32_t flags)
8550 {
8551         struct drm_i915_private *dev_priv = dev->dev_private;
8552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8553         u32 flip_mask;
8554         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8555         int ret;
8556
8557         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8558         if (ret)
8559                 goto err;
8560
8561         ret = intel_ring_begin(ring, 6);
8562         if (ret)
8563                 goto err_unpin;
8564
8565         /* Can't queue multiple flips, so wait for the previous
8566          * one to finish before executing the next.
8567          */
8568         if (intel_crtc->plane)
8569                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8570         else
8571                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8572         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8573         intel_ring_emit(ring, MI_NOOP);
8574         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8575                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8576         intel_ring_emit(ring, fb->pitches[0]);
8577         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8578         intel_ring_emit(ring, 0); /* aux display base address, unused */
8579
8580         intel_mark_page_flip_active(intel_crtc);
8581         __intel_ring_advance(ring);
8582         return 0;
8583
8584 err_unpin:
8585         intel_unpin_fb_obj(obj);
8586 err:
8587         return ret;
8588 }
8589
8590 static int intel_gen3_queue_flip(struct drm_device *dev,
8591                                  struct drm_crtc *crtc,
8592                                  struct drm_framebuffer *fb,
8593                                  struct drm_i915_gem_object *obj,
8594                                  uint32_t flags)
8595 {
8596         struct drm_i915_private *dev_priv = dev->dev_private;
8597         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8598         u32 flip_mask;
8599         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8600         int ret;
8601
8602         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8603         if (ret)
8604                 goto err;
8605
8606         ret = intel_ring_begin(ring, 6);
8607         if (ret)
8608                 goto err_unpin;
8609
8610         if (intel_crtc->plane)
8611                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8612         else
8613                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8614         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8615         intel_ring_emit(ring, MI_NOOP);
8616         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8617                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8618         intel_ring_emit(ring, fb->pitches[0]);
8619         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8620         intel_ring_emit(ring, MI_NOOP);
8621
8622         intel_mark_page_flip_active(intel_crtc);
8623         __intel_ring_advance(ring);
8624         return 0;
8625
8626 err_unpin:
8627         intel_unpin_fb_obj(obj);
8628 err:
8629         return ret;
8630 }
8631
8632 static int intel_gen4_queue_flip(struct drm_device *dev,
8633                                  struct drm_crtc *crtc,
8634                                  struct drm_framebuffer *fb,
8635                                  struct drm_i915_gem_object *obj,
8636                                  uint32_t flags)
8637 {
8638         struct drm_i915_private *dev_priv = dev->dev_private;
8639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8640         uint32_t pf, pipesrc;
8641         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8642         int ret;
8643
8644         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8645         if (ret)
8646                 goto err;
8647
8648         ret = intel_ring_begin(ring, 4);
8649         if (ret)
8650                 goto err_unpin;
8651
8652         /* i965+ uses the linear or tiled offsets from the
8653          * Display Registers (which do not change across a page-flip)
8654          * so we need only reprogram the base address.
8655          */
8656         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8657                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8658         intel_ring_emit(ring, fb->pitches[0]);
8659         intel_ring_emit(ring,
8660                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8661                         obj->tiling_mode);
8662
8663         /* XXX Enabling the panel-fitter across page-flip is so far
8664          * untested on non-native modes, so ignore it for now.
8665          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8666          */
8667         pf = 0;
8668         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8669         intel_ring_emit(ring, pf | pipesrc);
8670
8671         intel_mark_page_flip_active(intel_crtc);
8672         __intel_ring_advance(ring);
8673         return 0;
8674
8675 err_unpin:
8676         intel_unpin_fb_obj(obj);
8677 err:
8678         return ret;
8679 }
8680
8681 static int intel_gen6_queue_flip(struct drm_device *dev,
8682                                  struct drm_crtc *crtc,
8683                                  struct drm_framebuffer *fb,
8684                                  struct drm_i915_gem_object *obj,
8685                                  uint32_t flags)
8686 {
8687         struct drm_i915_private *dev_priv = dev->dev_private;
8688         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8689         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8690         uint32_t pf, pipesrc;
8691         int ret;
8692
8693         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8694         if (ret)
8695                 goto err;
8696
8697         ret = intel_ring_begin(ring, 4);
8698         if (ret)
8699                 goto err_unpin;
8700
8701         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8702                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8703         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8704         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8705
8706         /* Contrary to the suggestions in the documentation,
8707          * "Enable Panel Fitter" does not seem to be required when page
8708          * flipping with a non-native mode, and worse causes a normal
8709          * modeset to fail.
8710          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8711          */
8712         pf = 0;
8713         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8714         intel_ring_emit(ring, pf | pipesrc);
8715
8716         intel_mark_page_flip_active(intel_crtc);
8717         __intel_ring_advance(ring);
8718         return 0;
8719
8720 err_unpin:
8721         intel_unpin_fb_obj(obj);
8722 err:
8723         return ret;
8724 }
8725
8726 static int intel_gen7_queue_flip(struct drm_device *dev,
8727                                  struct drm_crtc *crtc,
8728                                  struct drm_framebuffer *fb,
8729                                  struct drm_i915_gem_object *obj,
8730                                  uint32_t flags)
8731 {
8732         struct drm_i915_private *dev_priv = dev->dev_private;
8733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8734         struct intel_ring_buffer *ring;
8735         uint32_t plane_bit = 0;
8736         int len, ret;
8737
8738         ring = obj->ring;
8739         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8740                 ring = &dev_priv->ring[BCS];
8741
8742         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8743         if (ret)
8744                 goto err;
8745
8746         switch(intel_crtc->plane) {
8747         case PLANE_A:
8748                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8749                 break;
8750         case PLANE_B:
8751                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8752                 break;
8753         case PLANE_C:
8754                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8755                 break;
8756         default:
8757                 WARN_ONCE(1, "unknown plane in flip command\n");
8758                 ret = -ENODEV;
8759                 goto err_unpin;
8760         }
8761
8762         len = 4;
8763         if (ring->id == RCS)
8764                 len += 6;
8765
8766         /*
8767          * BSpec MI_DISPLAY_FLIP for IVB:
8768          * "The full packet must be contained within the same cache line."
8769          *
8770          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
8771          * cacheline, if we ever start emitting more commands before
8772          * the MI_DISPLAY_FLIP we may need to first emit everything else,
8773          * then do the cacheline alignment, and finally emit the
8774          * MI_DISPLAY_FLIP.
8775          */
8776         ret = intel_ring_cacheline_align(ring);
8777         if (ret)
8778                 goto err_unpin;
8779
8780         ret = intel_ring_begin(ring, len);
8781         if (ret)
8782                 goto err_unpin;
8783
8784         /* Unmask the flip-done completion message. Note that the bspec says that
8785          * we should do this for both the BCS and RCS, and that we must not unmask
8786          * more than one flip event at any time (or ensure that one flip message
8787          * can be sent by waiting for flip-done prior to queueing new flips).
8788          * Experimentation says that BCS works despite DERRMR masking all
8789          * flip-done completion events and that unmasking all planes at once
8790          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8791          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8792          */
8793         if (ring->id == RCS) {
8794                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8795                 intel_ring_emit(ring, DERRMR);
8796                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8797                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8798                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8799                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8800                                 MI_SRM_LRM_GLOBAL_GTT);
8801                 intel_ring_emit(ring, DERRMR);
8802                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8803         }
8804
8805         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8806         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8807         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8808         intel_ring_emit(ring, (MI_NOOP));
8809
8810         intel_mark_page_flip_active(intel_crtc);
8811         __intel_ring_advance(ring);
8812         return 0;
8813
8814 err_unpin:
8815         intel_unpin_fb_obj(obj);
8816 err:
8817         return ret;
8818 }
8819
8820 static int intel_default_queue_flip(struct drm_device *dev,
8821                                     struct drm_crtc *crtc,
8822                                     struct drm_framebuffer *fb,
8823                                     struct drm_i915_gem_object *obj,
8824                                     uint32_t flags)
8825 {
8826         return -ENODEV;
8827 }
8828
8829 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8830                                 struct drm_framebuffer *fb,
8831                                 struct drm_pending_vblank_event *event,
8832                                 uint32_t page_flip_flags)
8833 {
8834         struct drm_device *dev = crtc->dev;
8835         struct drm_i915_private *dev_priv = dev->dev_private;
8836         struct drm_framebuffer *old_fb = crtc->fb;
8837         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8839         struct intel_unpin_work *work;
8840         unsigned long flags;
8841         int ret;
8842
8843         /* Can't change pixel format via MI display flips. */
8844         if (fb->pixel_format != crtc->fb->pixel_format)
8845                 return -EINVAL;
8846
8847         /*
8848          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8849          * Note that pitch changes could also affect these register.
8850          */
8851         if (INTEL_INFO(dev)->gen > 3 &&
8852             (fb->offsets[0] != crtc->fb->offsets[0] ||
8853              fb->pitches[0] != crtc->fb->pitches[0]))
8854                 return -EINVAL;
8855
8856         if (i915_terminally_wedged(&dev_priv->gpu_error))
8857                 goto out_hang;
8858
8859         work = kzalloc(sizeof(*work), GFP_KERNEL);
8860         if (work == NULL)
8861                 return -ENOMEM;
8862
8863         work->event = event;
8864         work->crtc = crtc;
8865         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8866         INIT_WORK(&work->work, intel_unpin_work_fn);
8867
8868         ret = drm_vblank_get(dev, intel_crtc->pipe);
8869         if (ret)
8870                 goto free_work;
8871
8872         /* We borrow the event spin lock for protecting unpin_work */
8873         spin_lock_irqsave(&dev->event_lock, flags);
8874         if (intel_crtc->unpin_work) {
8875                 spin_unlock_irqrestore(&dev->event_lock, flags);
8876                 kfree(work);
8877                 drm_vblank_put(dev, intel_crtc->pipe);
8878
8879                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8880                 return -EBUSY;
8881         }
8882         intel_crtc->unpin_work = work;
8883         spin_unlock_irqrestore(&dev->event_lock, flags);
8884
8885         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8886                 flush_workqueue(dev_priv->wq);
8887
8888         ret = i915_mutex_lock_interruptible(dev);
8889         if (ret)
8890                 goto cleanup;
8891
8892         /* Reference the objects for the scheduled work. */
8893         drm_gem_object_reference(&work->old_fb_obj->base);
8894         drm_gem_object_reference(&obj->base);
8895
8896         crtc->fb = fb;
8897
8898         work->pending_flip_obj = obj;
8899
8900         work->enable_stall_check = true;
8901
8902         atomic_inc(&intel_crtc->unpin_work_count);
8903         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8904
8905         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8906         if (ret)
8907                 goto cleanup_pending;
8908
8909         intel_disable_fbc(dev);
8910         intel_mark_fb_busy(obj, NULL);
8911         mutex_unlock(&dev->struct_mutex);
8912
8913         trace_i915_flip_request(intel_crtc->plane, obj);
8914
8915         return 0;
8916
8917 cleanup_pending:
8918         atomic_dec(&intel_crtc->unpin_work_count);
8919         crtc->fb = old_fb;
8920         drm_gem_object_unreference(&work->old_fb_obj->base);
8921         drm_gem_object_unreference(&obj->base);
8922         mutex_unlock(&dev->struct_mutex);
8923
8924 cleanup:
8925         spin_lock_irqsave(&dev->event_lock, flags);
8926         intel_crtc->unpin_work = NULL;
8927         spin_unlock_irqrestore(&dev->event_lock, flags);
8928
8929         drm_vblank_put(dev, intel_crtc->pipe);
8930 free_work:
8931         kfree(work);
8932
8933         if (ret == -EIO) {
8934 out_hang:
8935                 intel_crtc_wait_for_pending_flips(crtc);
8936                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
8937                 if (ret == 0 && event)
8938                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
8939         }
8940         return ret;
8941 }
8942
8943 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8944         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8945         .load_lut = intel_crtc_load_lut,
8946 };
8947
8948 /**
8949  * intel_modeset_update_staged_output_state
8950  *
8951  * Updates the staged output configuration state, e.g. after we've read out the
8952  * current hw state.
8953  */
8954 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8955 {
8956         struct intel_crtc *crtc;
8957         struct intel_encoder *encoder;
8958         struct intel_connector *connector;
8959
8960         list_for_each_entry(connector, &dev->mode_config.connector_list,
8961                             base.head) {
8962                 connector->new_encoder =
8963                         to_intel_encoder(connector->base.encoder);
8964         }
8965
8966         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8967                             base.head) {
8968                 encoder->new_crtc =
8969                         to_intel_crtc(encoder->base.crtc);
8970         }
8971
8972         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8973                             base.head) {
8974                 crtc->new_enabled = crtc->base.enabled;
8975
8976                 if (crtc->new_enabled)
8977                         crtc->new_config = &crtc->config;
8978                 else
8979                         crtc->new_config = NULL;
8980         }
8981 }
8982
8983 /**
8984  * intel_modeset_commit_output_state
8985  *
8986  * This function copies the stage display pipe configuration to the real one.
8987  */
8988 static void intel_modeset_commit_output_state(struct drm_device *dev)
8989 {
8990         struct intel_crtc *crtc;
8991         struct intel_encoder *encoder;
8992         struct intel_connector *connector;
8993
8994         list_for_each_entry(connector, &dev->mode_config.connector_list,
8995                             base.head) {
8996                 connector->base.encoder = &connector->new_encoder->base;
8997         }
8998
8999         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9000                             base.head) {
9001                 encoder->base.crtc = &encoder->new_crtc->base;
9002         }
9003
9004         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9005                             base.head) {
9006                 crtc->base.enabled = crtc->new_enabled;
9007         }
9008 }
9009
9010 static void
9011 connected_sink_compute_bpp(struct intel_connector * connector,
9012                            struct intel_crtc_config *pipe_config)
9013 {
9014         int bpp = pipe_config->pipe_bpp;
9015
9016         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9017                 connector->base.base.id,
9018                 drm_get_connector_name(&connector->base));
9019
9020         /* Don't use an invalid EDID bpc value */
9021         if (connector->base.display_info.bpc &&
9022             connector->base.display_info.bpc * 3 < bpp) {
9023                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9024                               bpp, connector->base.display_info.bpc*3);
9025                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9026         }
9027
9028         /* Clamp bpp to 8 on screens without EDID 1.4 */
9029         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9030                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9031                               bpp);
9032                 pipe_config->pipe_bpp = 24;
9033         }
9034 }
9035
9036 static int
9037 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9038                           struct drm_framebuffer *fb,
9039                           struct intel_crtc_config *pipe_config)
9040 {
9041         struct drm_device *dev = crtc->base.dev;
9042         struct intel_connector *connector;
9043         int bpp;
9044
9045         switch (fb->pixel_format) {
9046         case DRM_FORMAT_C8:
9047                 bpp = 8*3; /* since we go through a colormap */
9048                 break;
9049         case DRM_FORMAT_XRGB1555:
9050         case DRM_FORMAT_ARGB1555:
9051                 /* checked in intel_framebuffer_init already */
9052                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9053                         return -EINVAL;
9054         case DRM_FORMAT_RGB565:
9055                 bpp = 6*3; /* min is 18bpp */
9056                 break;
9057         case DRM_FORMAT_XBGR8888:
9058         case DRM_FORMAT_ABGR8888:
9059                 /* checked in intel_framebuffer_init already */
9060                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9061                         return -EINVAL;
9062         case DRM_FORMAT_XRGB8888:
9063         case DRM_FORMAT_ARGB8888:
9064                 bpp = 8*3;
9065                 break;
9066         case DRM_FORMAT_XRGB2101010:
9067         case DRM_FORMAT_ARGB2101010:
9068         case DRM_FORMAT_XBGR2101010:
9069         case DRM_FORMAT_ABGR2101010:
9070                 /* checked in intel_framebuffer_init already */
9071                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9072                         return -EINVAL;
9073                 bpp = 10*3;
9074                 break;
9075         /* TODO: gen4+ supports 16 bpc floating point, too. */
9076         default:
9077                 DRM_DEBUG_KMS("unsupported depth\n");
9078                 return -EINVAL;
9079         }
9080
9081         pipe_config->pipe_bpp = bpp;
9082
9083         /* Clamp display bpp to EDID value */
9084         list_for_each_entry(connector, &dev->mode_config.connector_list,
9085                             base.head) {
9086                 if (!connector->new_encoder ||
9087                     connector->new_encoder->new_crtc != crtc)
9088                         continue;
9089
9090                 connected_sink_compute_bpp(connector, pipe_config);
9091         }
9092
9093         return bpp;
9094 }
9095
9096 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9097 {
9098         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9099                         "type: 0x%x flags: 0x%x\n",
9100                 mode->crtc_clock,
9101                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9102                 mode->crtc_hsync_end, mode->crtc_htotal,
9103                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9104                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9105 }
9106
9107 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9108                                    struct intel_crtc_config *pipe_config,
9109                                    const char *context)
9110 {
9111         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9112                       context, pipe_name(crtc->pipe));
9113
9114         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9115         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9116                       pipe_config->pipe_bpp, pipe_config->dither);
9117         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9118                       pipe_config->has_pch_encoder,
9119                       pipe_config->fdi_lanes,
9120                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9121                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9122                       pipe_config->fdi_m_n.tu);
9123         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9124                       pipe_config->has_dp_encoder,
9125                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9126                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9127                       pipe_config->dp_m_n.tu);
9128         DRM_DEBUG_KMS("requested mode:\n");
9129         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9130         DRM_DEBUG_KMS("adjusted mode:\n");
9131         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9132         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9133         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9134         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9135                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9136         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9137                       pipe_config->gmch_pfit.control,
9138                       pipe_config->gmch_pfit.pgm_ratios,
9139                       pipe_config->gmch_pfit.lvds_border_bits);
9140         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9141                       pipe_config->pch_pfit.pos,
9142                       pipe_config->pch_pfit.size,
9143                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9144         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9145         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9146 }
9147
9148 static bool encoders_cloneable(const struct intel_encoder *a,
9149                                const struct intel_encoder *b)
9150 {
9151         /* masks could be asymmetric, so check both ways */
9152         return a == b || (a->cloneable & (1 << b->type) &&
9153                           b->cloneable & (1 << a->type));
9154 }
9155
9156 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9157                                          struct intel_encoder *encoder)
9158 {
9159         struct drm_device *dev = crtc->base.dev;
9160         struct intel_encoder *source_encoder;
9161
9162         list_for_each_entry(source_encoder,
9163                             &dev->mode_config.encoder_list, base.head) {
9164                 if (source_encoder->new_crtc != crtc)
9165                         continue;
9166
9167                 if (!encoders_cloneable(encoder, source_encoder))
9168                         return false;
9169         }
9170
9171         return true;
9172 }
9173
9174 static bool check_encoder_cloning(struct intel_crtc *crtc)
9175 {
9176         struct drm_device *dev = crtc->base.dev;
9177         struct intel_encoder *encoder;
9178
9179         list_for_each_entry(encoder,
9180                             &dev->mode_config.encoder_list, base.head) {
9181                 if (encoder->new_crtc != crtc)
9182                         continue;
9183
9184                 if (!check_single_encoder_cloning(crtc, encoder))
9185                         return false;
9186         }
9187
9188         return true;
9189 }
9190
9191 static struct intel_crtc_config *
9192 intel_modeset_pipe_config(struct drm_crtc *crtc,
9193                           struct drm_framebuffer *fb,
9194                           struct drm_display_mode *mode)
9195 {
9196         struct drm_device *dev = crtc->dev;
9197         struct intel_encoder *encoder;
9198         struct intel_crtc_config *pipe_config;
9199         int plane_bpp, ret = -EINVAL;
9200         bool retry = true;
9201
9202         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9203                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9204                 return ERR_PTR(-EINVAL);
9205         }
9206
9207         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9208         if (!pipe_config)
9209                 return ERR_PTR(-ENOMEM);
9210
9211         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9212         drm_mode_copy(&pipe_config->requested_mode, mode);
9213
9214         pipe_config->cpu_transcoder =
9215                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9216         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9217
9218         /*
9219          * Sanitize sync polarity flags based on requested ones. If neither
9220          * positive or negative polarity is requested, treat this as meaning
9221          * negative polarity.
9222          */
9223         if (!(pipe_config->adjusted_mode.flags &
9224               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9225                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9226
9227         if (!(pipe_config->adjusted_mode.flags &
9228               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9229                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9230
9231         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9232          * plane pixel format and any sink constraints into account. Returns the
9233          * source plane bpp so that dithering can be selected on mismatches
9234          * after encoders and crtc also have had their say. */
9235         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9236                                               fb, pipe_config);
9237         if (plane_bpp < 0)
9238                 goto fail;
9239
9240         /*
9241          * Determine the real pipe dimensions. Note that stereo modes can
9242          * increase the actual pipe size due to the frame doubling and
9243          * insertion of additional space for blanks between the frame. This
9244          * is stored in the crtc timings. We use the requested mode to do this
9245          * computation to clearly distinguish it from the adjusted mode, which
9246          * can be changed by the connectors in the below retry loop.
9247          */
9248         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9249         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9250         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9251
9252 encoder_retry:
9253         /* Ensure the port clock defaults are reset when retrying. */
9254         pipe_config->port_clock = 0;
9255         pipe_config->pixel_multiplier = 1;
9256
9257         /* Fill in default crtc timings, allow encoders to overwrite them. */
9258         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9259
9260         /* Pass our mode to the connectors and the CRTC to give them a chance to
9261          * adjust it according to limitations or connector properties, and also
9262          * a chance to reject the mode entirely.
9263          */
9264         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9265                             base.head) {
9266
9267                 if (&encoder->new_crtc->base != crtc)
9268                         continue;
9269
9270                 if (!(encoder->compute_config(encoder, pipe_config))) {
9271                         DRM_DEBUG_KMS("Encoder config failure\n");
9272                         goto fail;
9273                 }
9274         }
9275
9276         /* Set default port clock if not overwritten by the encoder. Needs to be
9277          * done afterwards in case the encoder adjusts the mode. */
9278         if (!pipe_config->port_clock)
9279                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9280                         * pipe_config->pixel_multiplier;
9281
9282         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9283         if (ret < 0) {
9284                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9285                 goto fail;
9286         }
9287
9288         if (ret == RETRY) {
9289                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9290                         ret = -EINVAL;
9291                         goto fail;
9292                 }
9293
9294                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9295                 retry = false;
9296                 goto encoder_retry;
9297         }
9298
9299         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9300         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9301                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9302
9303         return pipe_config;
9304 fail:
9305         kfree(pipe_config);
9306         return ERR_PTR(ret);
9307 }
9308
9309 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9310  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9311 static void
9312 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9313                              unsigned *prepare_pipes, unsigned *disable_pipes)
9314 {
9315         struct intel_crtc *intel_crtc;
9316         struct drm_device *dev = crtc->dev;
9317         struct intel_encoder *encoder;
9318         struct intel_connector *connector;
9319         struct drm_crtc *tmp_crtc;
9320
9321         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9322
9323         /* Check which crtcs have changed outputs connected to them, these need
9324          * to be part of the prepare_pipes mask. We don't (yet) support global
9325          * modeset across multiple crtcs, so modeset_pipes will only have one
9326          * bit set at most. */
9327         list_for_each_entry(connector, &dev->mode_config.connector_list,
9328                             base.head) {
9329                 if (connector->base.encoder == &connector->new_encoder->base)
9330                         continue;
9331
9332                 if (connector->base.encoder) {
9333                         tmp_crtc = connector->base.encoder->crtc;
9334
9335                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9336                 }
9337
9338                 if (connector->new_encoder)
9339                         *prepare_pipes |=
9340                                 1 << connector->new_encoder->new_crtc->pipe;
9341         }
9342
9343         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9344                             base.head) {
9345                 if (encoder->base.crtc == &encoder->new_crtc->base)
9346                         continue;
9347
9348                 if (encoder->base.crtc) {
9349                         tmp_crtc = encoder->base.crtc;
9350
9351                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9352                 }
9353
9354                 if (encoder->new_crtc)
9355                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9356         }
9357
9358         /* Check for pipes that will be enabled/disabled ... */
9359         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9360                             base.head) {
9361                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9362                         continue;
9363
9364                 if (!intel_crtc->new_enabled)
9365                         *disable_pipes |= 1 << intel_crtc->pipe;
9366                 else
9367                         *prepare_pipes |= 1 << intel_crtc->pipe;
9368         }
9369
9370
9371         /* set_mode is also used to update properties on life display pipes. */
9372         intel_crtc = to_intel_crtc(crtc);
9373         if (intel_crtc->new_enabled)
9374                 *prepare_pipes |= 1 << intel_crtc->pipe;
9375
9376         /*
9377          * For simplicity do a full modeset on any pipe where the output routing
9378          * changed. We could be more clever, but that would require us to be
9379          * more careful with calling the relevant encoder->mode_set functions.
9380          */
9381         if (*prepare_pipes)
9382                 *modeset_pipes = *prepare_pipes;
9383
9384         /* ... and mask these out. */
9385         *modeset_pipes &= ~(*disable_pipes);
9386         *prepare_pipes &= ~(*disable_pipes);
9387
9388         /*
9389          * HACK: We don't (yet) fully support global modesets. intel_set_config
9390          * obies this rule, but the modeset restore mode of
9391          * intel_modeset_setup_hw_state does not.
9392          */
9393         *modeset_pipes &= 1 << intel_crtc->pipe;
9394         *prepare_pipes &= 1 << intel_crtc->pipe;
9395
9396         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9397                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9398 }
9399
9400 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9401 {
9402         struct drm_encoder *encoder;
9403         struct drm_device *dev = crtc->dev;
9404
9405         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9406                 if (encoder->crtc == crtc)
9407                         return true;
9408
9409         return false;
9410 }
9411
9412 static void
9413 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9414 {
9415         struct intel_encoder *intel_encoder;
9416         struct intel_crtc *intel_crtc;
9417         struct drm_connector *connector;
9418
9419         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9420                             base.head) {
9421                 if (!intel_encoder->base.crtc)
9422                         continue;
9423
9424                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9425
9426                 if (prepare_pipes & (1 << intel_crtc->pipe))
9427                         intel_encoder->connectors_active = false;
9428         }
9429
9430         intel_modeset_commit_output_state(dev);
9431
9432         /* Double check state. */
9433         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9434                             base.head) {
9435                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9436                 WARN_ON(intel_crtc->new_config &&
9437                         intel_crtc->new_config != &intel_crtc->config);
9438                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9439         }
9440
9441         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9442                 if (!connector->encoder || !connector->encoder->crtc)
9443                         continue;
9444
9445                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9446
9447                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9448                         struct drm_property *dpms_property =
9449                                 dev->mode_config.dpms_property;
9450
9451                         connector->dpms = DRM_MODE_DPMS_ON;
9452                         drm_object_property_set_value(&connector->base,
9453                                                          dpms_property,
9454                                                          DRM_MODE_DPMS_ON);
9455
9456                         intel_encoder = to_intel_encoder(connector->encoder);
9457                         intel_encoder->connectors_active = true;
9458                 }
9459         }
9460
9461 }
9462
9463 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9464 {
9465         int diff;
9466
9467         if (clock1 == clock2)
9468                 return true;
9469
9470         if (!clock1 || !clock2)
9471                 return false;
9472
9473         diff = abs(clock1 - clock2);
9474
9475         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9476                 return true;
9477
9478         return false;
9479 }
9480
9481 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9482         list_for_each_entry((intel_crtc), \
9483                             &(dev)->mode_config.crtc_list, \
9484                             base.head) \
9485                 if (mask & (1 <<(intel_crtc)->pipe))
9486
9487 static bool
9488 intel_pipe_config_compare(struct drm_device *dev,
9489                           struct intel_crtc_config *current_config,
9490                           struct intel_crtc_config *pipe_config)
9491 {
9492 #define PIPE_CONF_CHECK_X(name) \
9493         if (current_config->name != pipe_config->name) { \
9494                 DRM_ERROR("mismatch in " #name " " \
9495                           "(expected 0x%08x, found 0x%08x)\n", \
9496                           current_config->name, \
9497                           pipe_config->name); \
9498                 return false; \
9499         }
9500
9501 #define PIPE_CONF_CHECK_I(name) \
9502         if (current_config->name != pipe_config->name) { \
9503                 DRM_ERROR("mismatch in " #name " " \
9504                           "(expected %i, found %i)\n", \
9505                           current_config->name, \
9506                           pipe_config->name); \
9507                 return false; \
9508         }
9509
9510 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9511         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9512                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9513                           "(expected %i, found %i)\n", \
9514                           current_config->name & (mask), \
9515                           pipe_config->name & (mask)); \
9516                 return false; \
9517         }
9518
9519 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9520         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9521                 DRM_ERROR("mismatch in " #name " " \
9522                           "(expected %i, found %i)\n", \
9523                           current_config->name, \
9524                           pipe_config->name); \
9525                 return false; \
9526         }
9527
9528 #define PIPE_CONF_QUIRK(quirk)  \
9529         ((current_config->quirks | pipe_config->quirks) & (quirk))
9530
9531         PIPE_CONF_CHECK_I(cpu_transcoder);
9532
9533         PIPE_CONF_CHECK_I(has_pch_encoder);
9534         PIPE_CONF_CHECK_I(fdi_lanes);
9535         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9536         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9537         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9538         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9539         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9540
9541         PIPE_CONF_CHECK_I(has_dp_encoder);
9542         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9543         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9544         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9545         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9546         PIPE_CONF_CHECK_I(dp_m_n.tu);
9547
9548         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9549         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9550         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9551         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9552         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9553         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9554
9555         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9556         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9557         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9558         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9559         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9560         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9561
9562         PIPE_CONF_CHECK_I(pixel_multiplier);
9563
9564         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9565                               DRM_MODE_FLAG_INTERLACE);
9566
9567         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9568                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9569                                       DRM_MODE_FLAG_PHSYNC);
9570                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9571                                       DRM_MODE_FLAG_NHSYNC);
9572                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9573                                       DRM_MODE_FLAG_PVSYNC);
9574                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9575                                       DRM_MODE_FLAG_NVSYNC);
9576         }
9577
9578         PIPE_CONF_CHECK_I(pipe_src_w);
9579         PIPE_CONF_CHECK_I(pipe_src_h);
9580
9581         PIPE_CONF_CHECK_I(gmch_pfit.control);
9582         /* pfit ratios are autocomputed by the hw on gen4+ */
9583         if (INTEL_INFO(dev)->gen < 4)
9584                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9585         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9586         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9587         if (current_config->pch_pfit.enabled) {
9588                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9589                 PIPE_CONF_CHECK_I(pch_pfit.size);
9590         }
9591
9592         /* BDW+ don't expose a synchronous way to read the state */
9593         if (IS_HASWELL(dev))
9594                 PIPE_CONF_CHECK_I(ips_enabled);
9595
9596         PIPE_CONF_CHECK_I(double_wide);
9597
9598         PIPE_CONF_CHECK_I(shared_dpll);
9599         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9600         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9601         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9602         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9603
9604         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9605                 PIPE_CONF_CHECK_I(pipe_bpp);
9606
9607         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9608         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9609
9610 #undef PIPE_CONF_CHECK_X
9611 #undef PIPE_CONF_CHECK_I
9612 #undef PIPE_CONF_CHECK_FLAGS
9613 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9614 #undef PIPE_CONF_QUIRK
9615
9616         return true;
9617 }
9618
9619 static void
9620 check_connector_state(struct drm_device *dev)
9621 {
9622         struct intel_connector *connector;
9623
9624         list_for_each_entry(connector, &dev->mode_config.connector_list,
9625                             base.head) {
9626                 /* This also checks the encoder/connector hw state with the
9627                  * ->get_hw_state callbacks. */
9628                 intel_connector_check_state(connector);
9629
9630                 WARN(&connector->new_encoder->base != connector->base.encoder,
9631                      "connector's staged encoder doesn't match current encoder\n");
9632         }
9633 }
9634
9635 static void
9636 check_encoder_state(struct drm_device *dev)
9637 {
9638         struct intel_encoder *encoder;
9639         struct intel_connector *connector;
9640
9641         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9642                             base.head) {
9643                 bool enabled = false;
9644                 bool active = false;
9645                 enum pipe pipe, tracked_pipe;
9646
9647                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9648                               encoder->base.base.id,
9649                               drm_get_encoder_name(&encoder->base));
9650
9651                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9652                      "encoder's stage crtc doesn't match current crtc\n");
9653                 WARN(encoder->connectors_active && !encoder->base.crtc,
9654                      "encoder's active_connectors set, but no crtc\n");
9655
9656                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9657                                     base.head) {
9658                         if (connector->base.encoder != &encoder->base)
9659                                 continue;
9660                         enabled = true;
9661                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9662                                 active = true;
9663                 }
9664                 WARN(!!encoder->base.crtc != enabled,
9665                      "encoder's enabled state mismatch "
9666                      "(expected %i, found %i)\n",
9667                      !!encoder->base.crtc, enabled);
9668                 WARN(active && !encoder->base.crtc,
9669                      "active encoder with no crtc\n");
9670
9671                 WARN(encoder->connectors_active != active,
9672                      "encoder's computed active state doesn't match tracked active state "
9673                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9674
9675                 active = encoder->get_hw_state(encoder, &pipe);
9676                 WARN(active != encoder->connectors_active,
9677                      "encoder's hw state doesn't match sw tracking "
9678                      "(expected %i, found %i)\n",
9679                      encoder->connectors_active, active);
9680
9681                 if (!encoder->base.crtc)
9682                         continue;
9683
9684                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9685                 WARN(active && pipe != tracked_pipe,
9686                      "active encoder's pipe doesn't match"
9687                      "(expected %i, found %i)\n",
9688                      tracked_pipe, pipe);
9689
9690         }
9691 }
9692
9693 static void
9694 check_crtc_state(struct drm_device *dev)
9695 {
9696         drm_i915_private_t *dev_priv = dev->dev_private;
9697         struct intel_crtc *crtc;
9698         struct intel_encoder *encoder;
9699         struct intel_crtc_config pipe_config;
9700
9701         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9702                             base.head) {
9703                 bool enabled = false;
9704                 bool active = false;
9705
9706                 memset(&pipe_config, 0, sizeof(pipe_config));
9707
9708                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9709                               crtc->base.base.id);
9710
9711                 WARN(crtc->active && !crtc->base.enabled,
9712                      "active crtc, but not enabled in sw tracking\n");
9713
9714                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9715                                     base.head) {
9716                         if (encoder->base.crtc != &crtc->base)
9717                                 continue;
9718                         enabled = true;
9719                         if (encoder->connectors_active)
9720                                 active = true;
9721                 }
9722
9723                 WARN(active != crtc->active,
9724                      "crtc's computed active state doesn't match tracked active state "
9725                      "(expected %i, found %i)\n", active, crtc->active);
9726                 WARN(enabled != crtc->base.enabled,
9727                      "crtc's computed enabled state doesn't match tracked enabled state "
9728                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9729
9730                 active = dev_priv->display.get_pipe_config(crtc,
9731                                                            &pipe_config);
9732
9733                 /* hw state is inconsistent with the pipe A quirk */
9734                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9735                         active = crtc->active;
9736
9737                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9738                                     base.head) {
9739                         enum pipe pipe;
9740                         if (encoder->base.crtc != &crtc->base)
9741                                 continue;
9742                         if (encoder->get_hw_state(encoder, &pipe))
9743                                 encoder->get_config(encoder, &pipe_config);
9744                 }
9745
9746                 WARN(crtc->active != active,
9747                      "crtc active state doesn't match with hw state "
9748                      "(expected %i, found %i)\n", crtc->active, active);
9749
9750                 if (active &&
9751                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9752                         WARN(1, "pipe state doesn't match!\n");
9753                         intel_dump_pipe_config(crtc, &pipe_config,
9754                                                "[hw state]");
9755                         intel_dump_pipe_config(crtc, &crtc->config,
9756                                                "[sw state]");
9757                 }
9758         }
9759 }
9760
9761 static void
9762 check_shared_dpll_state(struct drm_device *dev)
9763 {
9764         drm_i915_private_t *dev_priv = dev->dev_private;
9765         struct intel_crtc *crtc;
9766         struct intel_dpll_hw_state dpll_hw_state;
9767         int i;
9768
9769         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9770                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9771                 int enabled_crtcs = 0, active_crtcs = 0;
9772                 bool active;
9773
9774                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9775
9776                 DRM_DEBUG_KMS("%s\n", pll->name);
9777
9778                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9779
9780                 WARN(pll->active > pll->refcount,
9781                      "more active pll users than references: %i vs %i\n",
9782                      pll->active, pll->refcount);
9783                 WARN(pll->active && !pll->on,
9784                      "pll in active use but not on in sw tracking\n");
9785                 WARN(pll->on && !pll->active,
9786                      "pll in on but not on in use in sw tracking\n");
9787                 WARN(pll->on != active,
9788                      "pll on state mismatch (expected %i, found %i)\n",
9789                      pll->on, active);
9790
9791                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9792                                     base.head) {
9793                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9794                                 enabled_crtcs++;
9795                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9796                                 active_crtcs++;
9797                 }
9798                 WARN(pll->active != active_crtcs,
9799                      "pll active crtcs mismatch (expected %i, found %i)\n",
9800                      pll->active, active_crtcs);
9801                 WARN(pll->refcount != enabled_crtcs,
9802                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9803                      pll->refcount, enabled_crtcs);
9804
9805                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9806                                        sizeof(dpll_hw_state)),
9807                      "pll hw state mismatch\n");
9808         }
9809 }
9810
9811 void
9812 intel_modeset_check_state(struct drm_device *dev)
9813 {
9814         check_connector_state(dev);
9815         check_encoder_state(dev);
9816         check_crtc_state(dev);
9817         check_shared_dpll_state(dev);
9818 }
9819
9820 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9821                                      int dotclock)
9822 {
9823         /*
9824          * FDI already provided one idea for the dotclock.
9825          * Yell if the encoder disagrees.
9826          */
9827         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9828              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9829              pipe_config->adjusted_mode.crtc_clock, dotclock);
9830 }
9831
9832 static int __intel_set_mode(struct drm_crtc *crtc,
9833                             struct drm_display_mode *mode,
9834                             int x, int y, struct drm_framebuffer *fb)
9835 {
9836         struct drm_device *dev = crtc->dev;
9837         drm_i915_private_t *dev_priv = dev->dev_private;
9838         struct drm_display_mode *saved_mode;
9839         struct intel_crtc_config *pipe_config = NULL;
9840         struct intel_crtc *intel_crtc;
9841         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9842         int ret = 0;
9843
9844         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
9845         if (!saved_mode)
9846                 return -ENOMEM;
9847
9848         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9849                                      &prepare_pipes, &disable_pipes);
9850
9851         *saved_mode = crtc->mode;
9852
9853         /* Hack: Because we don't (yet) support global modeset on multiple
9854          * crtcs, we don't keep track of the new mode for more than one crtc.
9855          * Hence simply check whether any bit is set in modeset_pipes in all the
9856          * pieces of code that are not yet converted to deal with mutliple crtcs
9857          * changing their mode at the same time. */
9858         if (modeset_pipes) {
9859                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9860                 if (IS_ERR(pipe_config)) {
9861                         ret = PTR_ERR(pipe_config);
9862                         pipe_config = NULL;
9863
9864                         goto out;
9865                 }
9866                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9867                                        "[modeset]");
9868                 to_intel_crtc(crtc)->new_config = pipe_config;
9869         }
9870
9871         /*
9872          * See if the config requires any additional preparation, e.g.
9873          * to adjust global state with pipes off.  We need to do this
9874          * here so we can get the modeset_pipe updated config for the new
9875          * mode set on this crtc.  For other crtcs we need to use the
9876          * adjusted_mode bits in the crtc directly.
9877          */
9878         if (IS_VALLEYVIEW(dev)) {
9879                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
9880
9881                 /* may have added more to prepare_pipes than we should */
9882                 prepare_pipes &= ~disable_pipes;
9883         }
9884
9885         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9886                 intel_crtc_disable(&intel_crtc->base);
9887
9888         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9889                 if (intel_crtc->base.enabled)
9890                         dev_priv->display.crtc_disable(&intel_crtc->base);
9891         }
9892
9893         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9894          * to set it here already despite that we pass it down the callchain.
9895          */
9896         if (modeset_pipes) {
9897                 crtc->mode = *mode;
9898                 /* mode_set/enable/disable functions rely on a correct pipe
9899                  * config. */
9900                 to_intel_crtc(crtc)->config = *pipe_config;
9901                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
9902
9903                 /*
9904                  * Calculate and store various constants which
9905                  * are later needed by vblank and swap-completion
9906                  * timestamping. They are derived from true hwmode.
9907                  */
9908                 drm_calc_timestamping_constants(crtc,
9909                                                 &pipe_config->adjusted_mode);
9910         }
9911
9912         /* Only after disabling all output pipelines that will be changed can we
9913          * update the the output configuration. */
9914         intel_modeset_update_state(dev, prepare_pipes);
9915
9916         if (dev_priv->display.modeset_global_resources)
9917                 dev_priv->display.modeset_global_resources(dev);
9918
9919         /* Set up the DPLL and any encoders state that needs to adjust or depend
9920          * on the DPLL.
9921          */
9922         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9923                 ret = intel_crtc_mode_set(&intel_crtc->base,
9924                                           x, y, fb);
9925                 if (ret)
9926                         goto done;
9927         }
9928
9929         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9930         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9931                 dev_priv->display.crtc_enable(&intel_crtc->base);
9932
9933         /* FIXME: add subpixel order */
9934 done:
9935         if (ret && crtc->enabled)
9936                 crtc->mode = *saved_mode;
9937
9938 out:
9939         kfree(pipe_config);
9940         kfree(saved_mode);
9941         return ret;
9942 }
9943
9944 static int intel_set_mode(struct drm_crtc *crtc,
9945                           struct drm_display_mode *mode,
9946                           int x, int y, struct drm_framebuffer *fb)
9947 {
9948         int ret;
9949
9950         ret = __intel_set_mode(crtc, mode, x, y, fb);
9951
9952         if (ret == 0)
9953                 intel_modeset_check_state(crtc->dev);
9954
9955         return ret;
9956 }
9957
9958 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9959 {
9960         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9961 }
9962
9963 #undef for_each_intel_crtc_masked
9964
9965 static void intel_set_config_free(struct intel_set_config *config)
9966 {
9967         if (!config)
9968                 return;
9969
9970         kfree(config->save_connector_encoders);
9971         kfree(config->save_encoder_crtcs);
9972         kfree(config->save_crtc_enabled);
9973         kfree(config);
9974 }
9975
9976 static int intel_set_config_save_state(struct drm_device *dev,
9977                                        struct intel_set_config *config)
9978 {
9979         struct drm_crtc *crtc;
9980         struct drm_encoder *encoder;
9981         struct drm_connector *connector;
9982         int count;
9983
9984         config->save_crtc_enabled =
9985                 kcalloc(dev->mode_config.num_crtc,
9986                         sizeof(bool), GFP_KERNEL);
9987         if (!config->save_crtc_enabled)
9988                 return -ENOMEM;
9989
9990         config->save_encoder_crtcs =
9991                 kcalloc(dev->mode_config.num_encoder,
9992                         sizeof(struct drm_crtc *), GFP_KERNEL);
9993         if (!config->save_encoder_crtcs)
9994                 return -ENOMEM;
9995
9996         config->save_connector_encoders =
9997                 kcalloc(dev->mode_config.num_connector,
9998                         sizeof(struct drm_encoder *), GFP_KERNEL);
9999         if (!config->save_connector_encoders)
10000                 return -ENOMEM;
10001
10002         /* Copy data. Note that driver private data is not affected.
10003          * Should anything bad happen only the expected state is
10004          * restored, not the drivers personal bookkeeping.
10005          */
10006         count = 0;
10007         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10008                 config->save_crtc_enabled[count++] = crtc->enabled;
10009         }
10010
10011         count = 0;
10012         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10013                 config->save_encoder_crtcs[count++] = encoder->crtc;
10014         }
10015
10016         count = 0;
10017         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10018                 config->save_connector_encoders[count++] = connector->encoder;
10019         }
10020
10021         return 0;
10022 }
10023
10024 static void intel_set_config_restore_state(struct drm_device *dev,
10025                                            struct intel_set_config *config)
10026 {
10027         struct intel_crtc *crtc;
10028         struct intel_encoder *encoder;
10029         struct intel_connector *connector;
10030         int count;
10031
10032         count = 0;
10033         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10034                 crtc->new_enabled = config->save_crtc_enabled[count++];
10035
10036                 if (crtc->new_enabled)
10037                         crtc->new_config = &crtc->config;
10038                 else
10039                         crtc->new_config = NULL;
10040         }
10041
10042         count = 0;
10043         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10044                 encoder->new_crtc =
10045                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10046         }
10047
10048         count = 0;
10049         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10050                 connector->new_encoder =
10051                         to_intel_encoder(config->save_connector_encoders[count++]);
10052         }
10053 }
10054
10055 static bool
10056 is_crtc_connector_off(struct drm_mode_set *set)
10057 {
10058         int i;
10059
10060         if (set->num_connectors == 0)
10061                 return false;
10062
10063         if (WARN_ON(set->connectors == NULL))
10064                 return false;
10065
10066         for (i = 0; i < set->num_connectors; i++)
10067                 if (set->connectors[i]->encoder &&
10068                     set->connectors[i]->encoder->crtc == set->crtc &&
10069                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10070                         return true;
10071
10072         return false;
10073 }
10074
10075 static void
10076 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10077                                       struct intel_set_config *config)
10078 {
10079
10080         /* We should be able to check here if the fb has the same properties
10081          * and then just flip_or_move it */
10082         if (is_crtc_connector_off(set)) {
10083                 config->mode_changed = true;
10084         } else if (set->crtc->fb != set->fb) {
10085                 /* If we have no fb then treat it as a full mode set */
10086                 if (set->crtc->fb == NULL) {
10087                         struct intel_crtc *intel_crtc =
10088                                 to_intel_crtc(set->crtc);
10089
10090                         if (intel_crtc->active && i915.fastboot) {
10091                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10092                                 config->fb_changed = true;
10093                         } else {
10094                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10095                                 config->mode_changed = true;
10096                         }
10097                 } else if (set->fb == NULL) {
10098                         config->mode_changed = true;
10099                 } else if (set->fb->pixel_format !=
10100                            set->crtc->fb->pixel_format) {
10101                         config->mode_changed = true;
10102                 } else {
10103                         config->fb_changed = true;
10104                 }
10105         }
10106
10107         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10108                 config->fb_changed = true;
10109
10110         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10111                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10112                 drm_mode_debug_printmodeline(&set->crtc->mode);
10113                 drm_mode_debug_printmodeline(set->mode);
10114                 config->mode_changed = true;
10115         }
10116
10117         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10118                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10119 }
10120
10121 static int
10122 intel_modeset_stage_output_state(struct drm_device *dev,
10123                                  struct drm_mode_set *set,
10124                                  struct intel_set_config *config)
10125 {
10126         struct intel_connector *connector;
10127         struct intel_encoder *encoder;
10128         struct intel_crtc *crtc;
10129         int ro;
10130
10131         /* The upper layers ensure that we either disable a crtc or have a list
10132          * of connectors. For paranoia, double-check this. */
10133         WARN_ON(!set->fb && (set->num_connectors != 0));
10134         WARN_ON(set->fb && (set->num_connectors == 0));
10135
10136         list_for_each_entry(connector, &dev->mode_config.connector_list,
10137                             base.head) {
10138                 /* Otherwise traverse passed in connector list and get encoders
10139                  * for them. */
10140                 for (ro = 0; ro < set->num_connectors; ro++) {
10141                         if (set->connectors[ro] == &connector->base) {
10142                                 connector->new_encoder = connector->encoder;
10143                                 break;
10144                         }
10145                 }
10146
10147                 /* If we disable the crtc, disable all its connectors. Also, if
10148                  * the connector is on the changing crtc but not on the new
10149                  * connector list, disable it. */
10150                 if ((!set->fb || ro == set->num_connectors) &&
10151                     connector->base.encoder &&
10152                     connector->base.encoder->crtc == set->crtc) {
10153                         connector->new_encoder = NULL;
10154
10155                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10156                                 connector->base.base.id,
10157                                 drm_get_connector_name(&connector->base));
10158                 }
10159
10160
10161                 if (&connector->new_encoder->base != connector->base.encoder) {
10162                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10163                         config->mode_changed = true;
10164                 }
10165         }
10166         /* connector->new_encoder is now updated for all connectors. */
10167
10168         /* Update crtc of enabled connectors. */
10169         list_for_each_entry(connector, &dev->mode_config.connector_list,
10170                             base.head) {
10171                 struct drm_crtc *new_crtc;
10172
10173                 if (!connector->new_encoder)
10174                         continue;
10175
10176                 new_crtc = connector->new_encoder->base.crtc;
10177
10178                 for (ro = 0; ro < set->num_connectors; ro++) {
10179                         if (set->connectors[ro] == &connector->base)
10180                                 new_crtc = set->crtc;
10181                 }
10182
10183                 /* Make sure the new CRTC will work with the encoder */
10184                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10185                                          new_crtc)) {
10186                         return -EINVAL;
10187                 }
10188                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10189
10190                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10191                         connector->base.base.id,
10192                         drm_get_connector_name(&connector->base),
10193                         new_crtc->base.id);
10194         }
10195
10196         /* Check for any encoders that needs to be disabled. */
10197         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10198                             base.head) {
10199                 int num_connectors = 0;
10200                 list_for_each_entry(connector,
10201                                     &dev->mode_config.connector_list,
10202                                     base.head) {
10203                         if (connector->new_encoder == encoder) {
10204                                 WARN_ON(!connector->new_encoder->new_crtc);
10205                                 num_connectors++;
10206                         }
10207                 }
10208
10209                 if (num_connectors == 0)
10210                         encoder->new_crtc = NULL;
10211                 else if (num_connectors > 1)
10212                         return -EINVAL;
10213
10214                 /* Only now check for crtc changes so we don't miss encoders
10215                  * that will be disabled. */
10216                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10217                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10218                         config->mode_changed = true;
10219                 }
10220         }
10221         /* Now we've also updated encoder->new_crtc for all encoders. */
10222
10223         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10224                             base.head) {
10225                 crtc->new_enabled = false;
10226
10227                 list_for_each_entry(encoder,
10228                                     &dev->mode_config.encoder_list,
10229                                     base.head) {
10230                         if (encoder->new_crtc == crtc) {
10231                                 crtc->new_enabled = true;
10232                                 break;
10233                         }
10234                 }
10235
10236                 if (crtc->new_enabled != crtc->base.enabled) {
10237                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10238                                       crtc->new_enabled ? "en" : "dis");
10239                         config->mode_changed = true;
10240                 }
10241
10242                 if (crtc->new_enabled)
10243                         crtc->new_config = &crtc->config;
10244                 else
10245                         crtc->new_config = NULL;
10246         }
10247
10248         return 0;
10249 }
10250
10251 static void disable_crtc_nofb(struct intel_crtc *crtc)
10252 {
10253         struct drm_device *dev = crtc->base.dev;
10254         struct intel_encoder *encoder;
10255         struct intel_connector *connector;
10256
10257         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10258                       pipe_name(crtc->pipe));
10259
10260         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10261                 if (connector->new_encoder &&
10262                     connector->new_encoder->new_crtc == crtc)
10263                         connector->new_encoder = NULL;
10264         }
10265
10266         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10267                 if (encoder->new_crtc == crtc)
10268                         encoder->new_crtc = NULL;
10269         }
10270
10271         crtc->new_enabled = false;
10272         crtc->new_config = NULL;
10273 }
10274
10275 static int intel_crtc_set_config(struct drm_mode_set *set)
10276 {
10277         struct drm_device *dev;
10278         struct drm_mode_set save_set;
10279         struct intel_set_config *config;
10280         int ret;
10281
10282         BUG_ON(!set);
10283         BUG_ON(!set->crtc);
10284         BUG_ON(!set->crtc->helper_private);
10285
10286         /* Enforce sane interface api - has been abused by the fb helper. */
10287         BUG_ON(!set->mode && set->fb);
10288         BUG_ON(set->fb && set->num_connectors == 0);
10289
10290         if (set->fb) {
10291                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10292                                 set->crtc->base.id, set->fb->base.id,
10293                                 (int)set->num_connectors, set->x, set->y);
10294         } else {
10295                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10296         }
10297
10298         dev = set->crtc->dev;
10299
10300         ret = -ENOMEM;
10301         config = kzalloc(sizeof(*config), GFP_KERNEL);
10302         if (!config)
10303                 goto out_config;
10304
10305         ret = intel_set_config_save_state(dev, config);
10306         if (ret)
10307                 goto out_config;
10308
10309         save_set.crtc = set->crtc;
10310         save_set.mode = &set->crtc->mode;
10311         save_set.x = set->crtc->x;
10312         save_set.y = set->crtc->y;
10313         save_set.fb = set->crtc->fb;
10314
10315         /* Compute whether we need a full modeset, only an fb base update or no
10316          * change at all. In the future we might also check whether only the
10317          * mode changed, e.g. for LVDS where we only change the panel fitter in
10318          * such cases. */
10319         intel_set_config_compute_mode_changes(set, config);
10320
10321         ret = intel_modeset_stage_output_state(dev, set, config);
10322         if (ret)
10323                 goto fail;
10324
10325         if (config->mode_changed) {
10326                 ret = intel_set_mode(set->crtc, set->mode,
10327                                      set->x, set->y, set->fb);
10328         } else if (config->fb_changed) {
10329                 intel_crtc_wait_for_pending_flips(set->crtc);
10330
10331                 ret = intel_pipe_set_base(set->crtc,
10332                                           set->x, set->y, set->fb);
10333                 /*
10334                  * In the fastboot case this may be our only check of the
10335                  * state after boot.  It would be better to only do it on
10336                  * the first update, but we don't have a nice way of doing that
10337                  * (and really, set_config isn't used much for high freq page
10338                  * flipping, so increasing its cost here shouldn't be a big
10339                  * deal).
10340                  */
10341                 if (i915.fastboot && ret == 0)
10342                         intel_modeset_check_state(set->crtc->dev);
10343         }
10344
10345         if (ret) {
10346                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10347                               set->crtc->base.id, ret);
10348 fail:
10349                 intel_set_config_restore_state(dev, config);
10350
10351                 /*
10352                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10353                  * force the pipe off to avoid oopsing in the modeset code
10354                  * due to fb==NULL. This should only happen during boot since
10355                  * we don't yet reconstruct the FB from the hardware state.
10356                  */
10357                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10358                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10359
10360                 /* Try to restore the config */
10361                 if (config->mode_changed &&
10362                     intel_set_mode(save_set.crtc, save_set.mode,
10363                                    save_set.x, save_set.y, save_set.fb))
10364                         DRM_ERROR("failed to restore config after modeset failure\n");
10365         }
10366
10367 out_config:
10368         intel_set_config_free(config);
10369         return ret;
10370 }
10371
10372 static const struct drm_crtc_funcs intel_crtc_funcs = {
10373         .cursor_set = intel_crtc_cursor_set,
10374         .cursor_move = intel_crtc_cursor_move,
10375         .gamma_set = intel_crtc_gamma_set,
10376         .set_config = intel_crtc_set_config,
10377         .destroy = intel_crtc_destroy,
10378         .page_flip = intel_crtc_page_flip,
10379 };
10380
10381 static void intel_cpu_pll_init(struct drm_device *dev)
10382 {
10383         if (HAS_DDI(dev))
10384                 intel_ddi_pll_init(dev);
10385 }
10386
10387 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10388                                       struct intel_shared_dpll *pll,
10389                                       struct intel_dpll_hw_state *hw_state)
10390 {
10391         uint32_t val;
10392
10393         val = I915_READ(PCH_DPLL(pll->id));
10394         hw_state->dpll = val;
10395         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10396         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10397
10398         return val & DPLL_VCO_ENABLE;
10399 }
10400
10401 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10402                                   struct intel_shared_dpll *pll)
10403 {
10404         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10405         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10406 }
10407
10408 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10409                                 struct intel_shared_dpll *pll)
10410 {
10411         /* PCH refclock must be enabled first */
10412         ibx_assert_pch_refclk_enabled(dev_priv);
10413
10414         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10415
10416         /* Wait for the clocks to stabilize. */
10417         POSTING_READ(PCH_DPLL(pll->id));
10418         udelay(150);
10419
10420         /* The pixel multiplier can only be updated once the
10421          * DPLL is enabled and the clocks are stable.
10422          *
10423          * So write it again.
10424          */
10425         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10426         POSTING_READ(PCH_DPLL(pll->id));
10427         udelay(200);
10428 }
10429
10430 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10431                                  struct intel_shared_dpll *pll)
10432 {
10433         struct drm_device *dev = dev_priv->dev;
10434         struct intel_crtc *crtc;
10435
10436         /* Make sure no transcoder isn't still depending on us. */
10437         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10438                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10439                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10440         }
10441
10442         I915_WRITE(PCH_DPLL(pll->id), 0);
10443         POSTING_READ(PCH_DPLL(pll->id));
10444         udelay(200);
10445 }
10446
10447 static char *ibx_pch_dpll_names[] = {
10448         "PCH DPLL A",
10449         "PCH DPLL B",
10450 };
10451
10452 static void ibx_pch_dpll_init(struct drm_device *dev)
10453 {
10454         struct drm_i915_private *dev_priv = dev->dev_private;
10455         int i;
10456
10457         dev_priv->num_shared_dpll = 2;
10458
10459         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10460                 dev_priv->shared_dplls[i].id = i;
10461                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10462                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10463                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10464                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10465                 dev_priv->shared_dplls[i].get_hw_state =
10466                         ibx_pch_dpll_get_hw_state;
10467         }
10468 }
10469
10470 static void intel_shared_dpll_init(struct drm_device *dev)
10471 {
10472         struct drm_i915_private *dev_priv = dev->dev_private;
10473
10474         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10475                 ibx_pch_dpll_init(dev);
10476         else
10477                 dev_priv->num_shared_dpll = 0;
10478
10479         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10480 }
10481
10482 static void intel_crtc_init(struct drm_device *dev, int pipe)
10483 {
10484         drm_i915_private_t *dev_priv = dev->dev_private;
10485         struct intel_crtc *intel_crtc;
10486         int i;
10487
10488         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10489         if (intel_crtc == NULL)
10490                 return;
10491
10492         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10493
10494         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10495         for (i = 0; i < 256; i++) {
10496                 intel_crtc->lut_r[i] = i;
10497                 intel_crtc->lut_g[i] = i;
10498                 intel_crtc->lut_b[i] = i;
10499         }
10500
10501         /*
10502          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10503          * is hooked to plane B. Hence we want plane A feeding pipe B.
10504          */
10505         intel_crtc->pipe = pipe;
10506         intel_crtc->plane = pipe;
10507         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10508                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10509                 intel_crtc->plane = !pipe;
10510         }
10511
10512         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10513                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10514         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10515         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10516
10517         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10518 }
10519
10520 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10521 {
10522         struct drm_encoder *encoder = connector->base.encoder;
10523
10524         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10525
10526         if (!encoder)
10527                 return INVALID_PIPE;
10528
10529         return to_intel_crtc(encoder->crtc)->pipe;
10530 }
10531
10532 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10533                                 struct drm_file *file)
10534 {
10535         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10536         struct drm_mode_object *drmmode_obj;
10537         struct intel_crtc *crtc;
10538
10539         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10540                 return -ENODEV;
10541
10542         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10543                         DRM_MODE_OBJECT_CRTC);
10544
10545         if (!drmmode_obj) {
10546                 DRM_ERROR("no such CRTC id\n");
10547                 return -ENOENT;
10548         }
10549
10550         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10551         pipe_from_crtc_id->pipe = crtc->pipe;
10552
10553         return 0;
10554 }
10555
10556 static int intel_encoder_clones(struct intel_encoder *encoder)
10557 {
10558         struct drm_device *dev = encoder->base.dev;
10559         struct intel_encoder *source_encoder;
10560         int index_mask = 0;
10561         int entry = 0;
10562
10563         list_for_each_entry(source_encoder,
10564                             &dev->mode_config.encoder_list, base.head) {
10565                 if (encoders_cloneable(encoder, source_encoder))
10566                         index_mask |= (1 << entry);
10567
10568                 entry++;
10569         }
10570
10571         return index_mask;
10572 }
10573
10574 static bool has_edp_a(struct drm_device *dev)
10575 {
10576         struct drm_i915_private *dev_priv = dev->dev_private;
10577
10578         if (!IS_MOBILE(dev))
10579                 return false;
10580
10581         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10582                 return false;
10583
10584         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
10585                 return false;
10586
10587         return true;
10588 }
10589
10590 const char *intel_output_name(int output)
10591 {
10592         static const char *names[] = {
10593                 [INTEL_OUTPUT_UNUSED] = "Unused",
10594                 [INTEL_OUTPUT_ANALOG] = "Analog",
10595                 [INTEL_OUTPUT_DVO] = "DVO",
10596                 [INTEL_OUTPUT_SDVO] = "SDVO",
10597                 [INTEL_OUTPUT_LVDS] = "LVDS",
10598                 [INTEL_OUTPUT_TVOUT] = "TV",
10599                 [INTEL_OUTPUT_HDMI] = "HDMI",
10600                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10601                 [INTEL_OUTPUT_EDP] = "eDP",
10602                 [INTEL_OUTPUT_DSI] = "DSI",
10603                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10604         };
10605
10606         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10607                 return "Invalid";
10608
10609         return names[output];
10610 }
10611
10612 static void intel_setup_outputs(struct drm_device *dev)
10613 {
10614         struct drm_i915_private *dev_priv = dev->dev_private;
10615         struct intel_encoder *encoder;
10616         bool dpd_is_edp = false;
10617
10618         intel_lvds_init(dev);
10619
10620         if (!IS_ULT(dev))
10621                 intel_crt_init(dev);
10622
10623         if (HAS_DDI(dev)) {
10624                 int found;
10625
10626                 /* Haswell uses DDI functions to detect digital outputs */
10627                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10628                 /* DDI A only supports eDP */
10629                 if (found)
10630                         intel_ddi_init(dev, PORT_A);
10631
10632                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10633                  * register */
10634                 found = I915_READ(SFUSE_STRAP);
10635
10636                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10637                         intel_ddi_init(dev, PORT_B);
10638                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10639                         intel_ddi_init(dev, PORT_C);
10640                 if (found & SFUSE_STRAP_DDID_DETECTED)
10641                         intel_ddi_init(dev, PORT_D);
10642         } else if (HAS_PCH_SPLIT(dev)) {
10643                 int found;
10644                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10645
10646                 if (has_edp_a(dev))
10647                         intel_dp_init(dev, DP_A, PORT_A);
10648
10649                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10650                         /* PCH SDVOB multiplex with HDMIB */
10651                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10652                         if (!found)
10653                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10654                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10655                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10656                 }
10657
10658                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10659                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10660
10661                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10662                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10663
10664                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10665                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10666
10667                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10668                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10669         } else if (IS_VALLEYVIEW(dev)) {
10670                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10671                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10672                                         PORT_B);
10673                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10674                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10675                 }
10676
10677                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10678                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10679                                         PORT_C);
10680                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10681                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10682                 }
10683
10684                 intel_dsi_init(dev);
10685         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10686                 bool found = false;
10687
10688                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10689                         DRM_DEBUG_KMS("probing SDVOB\n");
10690                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10691                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10692                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10693                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10694                         }
10695
10696                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10697                                 intel_dp_init(dev, DP_B, PORT_B);
10698                 }
10699
10700                 /* Before G4X SDVOC doesn't have its own detect register */
10701
10702                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10703                         DRM_DEBUG_KMS("probing SDVOC\n");
10704                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10705                 }
10706
10707                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10708
10709                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10710                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10711                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10712                         }
10713                         if (SUPPORTS_INTEGRATED_DP(dev))
10714                                 intel_dp_init(dev, DP_C, PORT_C);
10715                 }
10716
10717                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10718                     (I915_READ(DP_D) & DP_DETECTED))
10719                         intel_dp_init(dev, DP_D, PORT_D);
10720         } else if (IS_GEN2(dev))
10721                 intel_dvo_init(dev);
10722
10723         if (SUPPORTS_TV(dev))
10724                 intel_tv_init(dev);
10725
10726         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10727                 encoder->base.possible_crtcs = encoder->crtc_mask;
10728                 encoder->base.possible_clones =
10729                         intel_encoder_clones(encoder);
10730         }
10731
10732         intel_init_pch_refclk(dev);
10733
10734         drm_helper_move_panel_connectors_to_head(dev);
10735 }
10736
10737 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10738 {
10739         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10740
10741         drm_framebuffer_cleanup(fb);
10742         WARN_ON(!intel_fb->obj->framebuffer_references--);
10743         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
10744         kfree(intel_fb);
10745 }
10746
10747 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10748                                                 struct drm_file *file,
10749                                                 unsigned int *handle)
10750 {
10751         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10752         struct drm_i915_gem_object *obj = intel_fb->obj;
10753
10754         return drm_gem_handle_create(file, &obj->base, handle);
10755 }
10756
10757 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10758         .destroy = intel_user_framebuffer_destroy,
10759         .create_handle = intel_user_framebuffer_create_handle,
10760 };
10761
10762 static int intel_framebuffer_init(struct drm_device *dev,
10763                                   struct intel_framebuffer *intel_fb,
10764                                   struct drm_mode_fb_cmd2 *mode_cmd,
10765                                   struct drm_i915_gem_object *obj)
10766 {
10767         int aligned_height;
10768         int pitch_limit;
10769         int ret;
10770
10771         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10772
10773         if (obj->tiling_mode == I915_TILING_Y) {
10774                 DRM_DEBUG("hardware does not support tiling Y\n");
10775                 return -EINVAL;
10776         }
10777
10778         if (mode_cmd->pitches[0] & 63) {
10779                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10780                           mode_cmd->pitches[0]);
10781                 return -EINVAL;
10782         }
10783
10784         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10785                 pitch_limit = 32*1024;
10786         } else if (INTEL_INFO(dev)->gen >= 4) {
10787                 if (obj->tiling_mode)
10788                         pitch_limit = 16*1024;
10789                 else
10790                         pitch_limit = 32*1024;
10791         } else if (INTEL_INFO(dev)->gen >= 3) {
10792                 if (obj->tiling_mode)
10793                         pitch_limit = 8*1024;
10794                 else
10795                         pitch_limit = 16*1024;
10796         } else
10797                 /* XXX DSPC is limited to 4k tiled */
10798                 pitch_limit = 8*1024;
10799
10800         if (mode_cmd->pitches[0] > pitch_limit) {
10801                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10802                           obj->tiling_mode ? "tiled" : "linear",
10803                           mode_cmd->pitches[0], pitch_limit);
10804                 return -EINVAL;
10805         }
10806
10807         if (obj->tiling_mode != I915_TILING_NONE &&
10808             mode_cmd->pitches[0] != obj->stride) {
10809                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10810                           mode_cmd->pitches[0], obj->stride);
10811                 return -EINVAL;
10812         }
10813
10814         /* Reject formats not supported by any plane early. */
10815         switch (mode_cmd->pixel_format) {
10816         case DRM_FORMAT_C8:
10817         case DRM_FORMAT_RGB565:
10818         case DRM_FORMAT_XRGB8888:
10819         case DRM_FORMAT_ARGB8888:
10820                 break;
10821         case DRM_FORMAT_XRGB1555:
10822         case DRM_FORMAT_ARGB1555:
10823                 if (INTEL_INFO(dev)->gen > 3) {
10824                         DRM_DEBUG("unsupported pixel format: %s\n",
10825                                   drm_get_format_name(mode_cmd->pixel_format));
10826                         return -EINVAL;
10827                 }
10828                 break;
10829         case DRM_FORMAT_XBGR8888:
10830         case DRM_FORMAT_ABGR8888:
10831         case DRM_FORMAT_XRGB2101010:
10832         case DRM_FORMAT_ARGB2101010:
10833         case DRM_FORMAT_XBGR2101010:
10834         case DRM_FORMAT_ABGR2101010:
10835                 if (INTEL_INFO(dev)->gen < 4) {
10836                         DRM_DEBUG("unsupported pixel format: %s\n",
10837                                   drm_get_format_name(mode_cmd->pixel_format));
10838                         return -EINVAL;
10839                 }
10840                 break;
10841         case DRM_FORMAT_YUYV:
10842         case DRM_FORMAT_UYVY:
10843         case DRM_FORMAT_YVYU:
10844         case DRM_FORMAT_VYUY:
10845                 if (INTEL_INFO(dev)->gen < 5) {
10846                         DRM_DEBUG("unsupported pixel format: %s\n",
10847                                   drm_get_format_name(mode_cmd->pixel_format));
10848                         return -EINVAL;
10849                 }
10850                 break;
10851         default:
10852                 DRM_DEBUG("unsupported pixel format: %s\n",
10853                           drm_get_format_name(mode_cmd->pixel_format));
10854                 return -EINVAL;
10855         }
10856
10857         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10858         if (mode_cmd->offsets[0] != 0)
10859                 return -EINVAL;
10860
10861         aligned_height = intel_align_height(dev, mode_cmd->height,
10862                                             obj->tiling_mode);
10863         /* FIXME drm helper for size checks (especially planar formats)? */
10864         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10865                 return -EINVAL;
10866
10867         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10868         intel_fb->obj = obj;
10869         intel_fb->obj->framebuffer_references++;
10870
10871         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10872         if (ret) {
10873                 DRM_ERROR("framebuffer init failed %d\n", ret);
10874                 return ret;
10875         }
10876
10877         return 0;
10878 }
10879
10880 static struct drm_framebuffer *
10881 intel_user_framebuffer_create(struct drm_device *dev,
10882                               struct drm_file *filp,
10883                               struct drm_mode_fb_cmd2 *mode_cmd)
10884 {
10885         struct drm_i915_gem_object *obj;
10886
10887         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10888                                                 mode_cmd->handles[0]));
10889         if (&obj->base == NULL)
10890                 return ERR_PTR(-ENOENT);
10891
10892         return intel_framebuffer_create(dev, mode_cmd, obj);
10893 }
10894
10895 #ifndef CONFIG_DRM_I915_FBDEV
10896 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10897 {
10898 }
10899 #endif
10900
10901 static const struct drm_mode_config_funcs intel_mode_funcs = {
10902         .fb_create = intel_user_framebuffer_create,
10903         .output_poll_changed = intel_fbdev_output_poll_changed,
10904 };
10905
10906 /* Set up chip specific display functions */
10907 static void intel_init_display(struct drm_device *dev)
10908 {
10909         struct drm_i915_private *dev_priv = dev->dev_private;
10910
10911         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10912                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10913         else if (IS_VALLEYVIEW(dev))
10914                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10915         else if (IS_PINEVIEW(dev))
10916                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10917         else
10918                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10919
10920         if (HAS_DDI(dev)) {
10921                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10922                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
10923                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10924                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10925                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10926                 dev_priv->display.off = haswell_crtc_off;
10927                 dev_priv->display.update_primary_plane =
10928                         ironlake_update_primary_plane;
10929         } else if (HAS_PCH_SPLIT(dev)) {
10930                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10931                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
10932                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10933                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10934                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10935                 dev_priv->display.off = ironlake_crtc_off;
10936                 dev_priv->display.update_primary_plane =
10937                         ironlake_update_primary_plane;
10938         } else if (IS_VALLEYVIEW(dev)) {
10939                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10940                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
10941                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10942                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10943                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10944                 dev_priv->display.off = i9xx_crtc_off;
10945                 dev_priv->display.update_primary_plane =
10946                         i9xx_update_primary_plane;
10947         } else {
10948                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10949                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
10950                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10951                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10952                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10953                 dev_priv->display.off = i9xx_crtc_off;
10954                 dev_priv->display.update_primary_plane =
10955                         i9xx_update_primary_plane;
10956         }
10957
10958         /* Returns the core display clock speed */
10959         if (IS_VALLEYVIEW(dev))
10960                 dev_priv->display.get_display_clock_speed =
10961                         valleyview_get_display_clock_speed;
10962         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10963                 dev_priv->display.get_display_clock_speed =
10964                         i945_get_display_clock_speed;
10965         else if (IS_I915G(dev))
10966                 dev_priv->display.get_display_clock_speed =
10967                         i915_get_display_clock_speed;
10968         else if (IS_I945GM(dev) || IS_845G(dev))
10969                 dev_priv->display.get_display_clock_speed =
10970                         i9xx_misc_get_display_clock_speed;
10971         else if (IS_PINEVIEW(dev))
10972                 dev_priv->display.get_display_clock_speed =
10973                         pnv_get_display_clock_speed;
10974         else if (IS_I915GM(dev))
10975                 dev_priv->display.get_display_clock_speed =
10976                         i915gm_get_display_clock_speed;
10977         else if (IS_I865G(dev))
10978                 dev_priv->display.get_display_clock_speed =
10979                         i865_get_display_clock_speed;
10980         else if (IS_I85X(dev))
10981                 dev_priv->display.get_display_clock_speed =
10982                         i855_get_display_clock_speed;
10983         else /* 852, 830 */
10984                 dev_priv->display.get_display_clock_speed =
10985                         i830_get_display_clock_speed;
10986
10987         if (HAS_PCH_SPLIT(dev)) {
10988                 if (IS_GEN5(dev)) {
10989                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10990                         dev_priv->display.write_eld = ironlake_write_eld;
10991                 } else if (IS_GEN6(dev)) {
10992                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10993                         dev_priv->display.write_eld = ironlake_write_eld;
10994                 } else if (IS_IVYBRIDGE(dev)) {
10995                         /* FIXME: detect B0+ stepping and use auto training */
10996                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10997                         dev_priv->display.write_eld = ironlake_write_eld;
10998                         dev_priv->display.modeset_global_resources =
10999                                 ivb_modeset_global_resources;
11000                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11001                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11002                         dev_priv->display.write_eld = haswell_write_eld;
11003                         dev_priv->display.modeset_global_resources =
11004                                 haswell_modeset_global_resources;
11005                 }
11006         } else if (IS_G4X(dev)) {
11007                 dev_priv->display.write_eld = g4x_write_eld;
11008         } else if (IS_VALLEYVIEW(dev)) {
11009                 dev_priv->display.modeset_global_resources =
11010                         valleyview_modeset_global_resources;
11011                 dev_priv->display.write_eld = ironlake_write_eld;
11012         }
11013
11014         /* Default just returns -ENODEV to indicate unsupported */
11015         dev_priv->display.queue_flip = intel_default_queue_flip;
11016
11017         switch (INTEL_INFO(dev)->gen) {
11018         case 2:
11019                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11020                 break;
11021
11022         case 3:
11023                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11024                 break;
11025
11026         case 4:
11027         case 5:
11028                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11029                 break;
11030
11031         case 6:
11032                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11033                 break;
11034         case 7:
11035         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11036                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11037                 break;
11038         }
11039
11040         intel_panel_init_backlight_funcs(dev);
11041 }
11042
11043 /*
11044  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11045  * resume, or other times.  This quirk makes sure that's the case for
11046  * affected systems.
11047  */
11048 static void quirk_pipea_force(struct drm_device *dev)
11049 {
11050         struct drm_i915_private *dev_priv = dev->dev_private;
11051
11052         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11053         DRM_INFO("applying pipe a force quirk\n");
11054 }
11055
11056 /*
11057  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11058  */
11059 static void quirk_ssc_force_disable(struct drm_device *dev)
11060 {
11061         struct drm_i915_private *dev_priv = dev->dev_private;
11062         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11063         DRM_INFO("applying lvds SSC disable quirk\n");
11064 }
11065
11066 /*
11067  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11068  * brightness value
11069  */
11070 static void quirk_invert_brightness(struct drm_device *dev)
11071 {
11072         struct drm_i915_private *dev_priv = dev->dev_private;
11073         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11074         DRM_INFO("applying inverted panel brightness quirk\n");
11075 }
11076
11077 struct intel_quirk {
11078         int device;
11079         int subsystem_vendor;
11080         int subsystem_device;
11081         void (*hook)(struct drm_device *dev);
11082 };
11083
11084 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11085 struct intel_dmi_quirk {
11086         void (*hook)(struct drm_device *dev);
11087         const struct dmi_system_id (*dmi_id_list)[];
11088 };
11089
11090 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11091 {
11092         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11093         return 1;
11094 }
11095
11096 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11097         {
11098                 .dmi_id_list = &(const struct dmi_system_id[]) {
11099                         {
11100                                 .callback = intel_dmi_reverse_brightness,
11101                                 .ident = "NCR Corporation",
11102                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11103                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11104                                 },
11105                         },
11106                         { }  /* terminating entry */
11107                 },
11108                 .hook = quirk_invert_brightness,
11109         },
11110 };
11111
11112 static struct intel_quirk intel_quirks[] = {
11113         /* HP Mini needs pipe A force quirk (LP: #322104) */
11114         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11115
11116         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11117         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11118
11119         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11120         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11121
11122         /* 830 needs to leave pipe A & dpll A up */
11123         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11124
11125         /* Lenovo U160 cannot use SSC on LVDS */
11126         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11127
11128         /* Sony Vaio Y cannot use SSC on LVDS */
11129         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11130
11131         /* Acer Aspire 5734Z must invert backlight brightness */
11132         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11133
11134         /* Acer/eMachines G725 */
11135         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11136
11137         /* Acer/eMachines e725 */
11138         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11139
11140         /* Acer/Packard Bell NCL20 */
11141         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11142
11143         /* Acer Aspire 4736Z */
11144         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11145
11146         /* Acer Aspire 5336 */
11147         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11148 };
11149
11150 static void intel_init_quirks(struct drm_device *dev)
11151 {
11152         struct pci_dev *d = dev->pdev;
11153         int i;
11154
11155         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11156                 struct intel_quirk *q = &intel_quirks[i];
11157
11158                 if (d->device == q->device &&
11159                     (d->subsystem_vendor == q->subsystem_vendor ||
11160                      q->subsystem_vendor == PCI_ANY_ID) &&
11161                     (d->subsystem_device == q->subsystem_device ||
11162                      q->subsystem_device == PCI_ANY_ID))
11163                         q->hook(dev);
11164         }
11165         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11166                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11167                         intel_dmi_quirks[i].hook(dev);
11168         }
11169 }
11170
11171 /* Disable the VGA plane that we never use */
11172 static void i915_disable_vga(struct drm_device *dev)
11173 {
11174         struct drm_i915_private *dev_priv = dev->dev_private;
11175         u8 sr1;
11176         u32 vga_reg = i915_vgacntrl_reg(dev);
11177
11178         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11179         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11180         outb(SR01, VGA_SR_INDEX);
11181         sr1 = inb(VGA_SR_DATA);
11182         outb(sr1 | 1<<5, VGA_SR_DATA);
11183         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11184         udelay(300);
11185
11186         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11187         POSTING_READ(vga_reg);
11188 }
11189
11190 void intel_modeset_init_hw(struct drm_device *dev)
11191 {
11192         intel_prepare_ddi(dev);
11193
11194         intel_init_clock_gating(dev);
11195
11196         intel_reset_dpio(dev);
11197
11198         mutex_lock(&dev->struct_mutex);
11199         intel_enable_gt_powersave(dev);
11200         mutex_unlock(&dev->struct_mutex);
11201 }
11202
11203 void intel_modeset_suspend_hw(struct drm_device *dev)
11204 {
11205         intel_suspend_hw(dev);
11206 }
11207
11208 void intel_modeset_init(struct drm_device *dev)
11209 {
11210         struct drm_i915_private *dev_priv = dev->dev_private;
11211         int sprite, ret;
11212         enum pipe pipe;
11213         struct intel_crtc *crtc;
11214
11215         drm_mode_config_init(dev);
11216
11217         dev->mode_config.min_width = 0;
11218         dev->mode_config.min_height = 0;
11219
11220         dev->mode_config.preferred_depth = 24;
11221         dev->mode_config.prefer_shadow = 1;
11222
11223         dev->mode_config.funcs = &intel_mode_funcs;
11224
11225         intel_init_quirks(dev);
11226
11227         intel_init_pm(dev);
11228
11229         if (INTEL_INFO(dev)->num_pipes == 0)
11230                 return;
11231
11232         intel_init_display(dev);
11233
11234         if (IS_GEN2(dev)) {
11235                 dev->mode_config.max_width = 2048;
11236                 dev->mode_config.max_height = 2048;
11237         } else if (IS_GEN3(dev)) {
11238                 dev->mode_config.max_width = 4096;
11239                 dev->mode_config.max_height = 4096;
11240         } else {
11241                 dev->mode_config.max_width = 8192;
11242                 dev->mode_config.max_height = 8192;
11243         }
11244         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11245
11246         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11247                       INTEL_INFO(dev)->num_pipes,
11248                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11249
11250         for_each_pipe(pipe) {
11251                 intel_crtc_init(dev, pipe);
11252                 for_each_sprite(pipe, sprite) {
11253                         ret = intel_plane_init(dev, pipe, sprite);
11254                         if (ret)
11255                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11256                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11257                 }
11258         }
11259
11260         intel_init_dpio(dev);
11261         intel_reset_dpio(dev);
11262
11263         intel_cpu_pll_init(dev);
11264         intel_shared_dpll_init(dev);
11265
11266         /* Just disable it once at startup */
11267         i915_disable_vga(dev);
11268         intel_setup_outputs(dev);
11269
11270         /* Just in case the BIOS is doing something questionable. */
11271         intel_disable_fbc(dev);
11272
11273         mutex_lock(&dev->mode_config.mutex);
11274         intel_modeset_setup_hw_state(dev, false);
11275         mutex_unlock(&dev->mode_config.mutex);
11276
11277         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11278                             base.head) {
11279                 if (!crtc->active)
11280                         continue;
11281
11282                 /*
11283                  * Note that reserving the BIOS fb up front prevents us
11284                  * from stuffing other stolen allocations like the ring
11285                  * on top.  This prevents some ugliness at boot time, and
11286                  * can even allow for smooth boot transitions if the BIOS
11287                  * fb is large enough for the active pipe configuration.
11288                  */
11289                 if (dev_priv->display.get_plane_config) {
11290                         dev_priv->display.get_plane_config(crtc,
11291                                                            &crtc->plane_config);
11292                         /*
11293                          * If the fb is shared between multiple heads, we'll
11294                          * just get the first one.
11295                          */
11296                         intel_find_plane_obj(crtc, &crtc->plane_config);
11297                 }
11298         }
11299 }
11300
11301 static void
11302 intel_connector_break_all_links(struct intel_connector *connector)
11303 {
11304         connector->base.dpms = DRM_MODE_DPMS_OFF;
11305         connector->base.encoder = NULL;
11306         connector->encoder->connectors_active = false;
11307         connector->encoder->base.crtc = NULL;
11308 }
11309
11310 static void intel_enable_pipe_a(struct drm_device *dev)
11311 {
11312         struct intel_connector *connector;
11313         struct drm_connector *crt = NULL;
11314         struct intel_load_detect_pipe load_detect_temp;
11315
11316         /* We can't just switch on the pipe A, we need to set things up with a
11317          * proper mode and output configuration. As a gross hack, enable pipe A
11318          * by enabling the load detect pipe once. */
11319         list_for_each_entry(connector,
11320                             &dev->mode_config.connector_list,
11321                             base.head) {
11322                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11323                         crt = &connector->base;
11324                         break;
11325                 }
11326         }
11327
11328         if (!crt)
11329                 return;
11330
11331         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11332                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11333
11334
11335 }
11336
11337 static bool
11338 intel_check_plane_mapping(struct intel_crtc *crtc)
11339 {
11340         struct drm_device *dev = crtc->base.dev;
11341         struct drm_i915_private *dev_priv = dev->dev_private;
11342         u32 reg, val;
11343
11344         if (INTEL_INFO(dev)->num_pipes == 1)
11345                 return true;
11346
11347         reg = DSPCNTR(!crtc->plane);
11348         val = I915_READ(reg);
11349
11350         if ((val & DISPLAY_PLANE_ENABLE) &&
11351             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11352                 return false;
11353
11354         return true;
11355 }
11356
11357 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11358 {
11359         struct drm_device *dev = crtc->base.dev;
11360         struct drm_i915_private *dev_priv = dev->dev_private;
11361         u32 reg;
11362
11363         /* Clear any frame start delays used for debugging left by the BIOS */
11364         reg = PIPECONF(crtc->config.cpu_transcoder);
11365         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11366
11367         /* We need to sanitize the plane -> pipe mapping first because this will
11368          * disable the crtc (and hence change the state) if it is wrong. Note
11369          * that gen4+ has a fixed plane -> pipe mapping.  */
11370         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11371                 struct intel_connector *connector;
11372                 bool plane;
11373
11374                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11375                               crtc->base.base.id);
11376
11377                 /* Pipe has the wrong plane attached and the plane is active.
11378                  * Temporarily change the plane mapping and disable everything
11379                  * ...  */
11380                 plane = crtc->plane;
11381                 crtc->plane = !plane;
11382                 dev_priv->display.crtc_disable(&crtc->base);
11383                 crtc->plane = plane;
11384
11385                 /* ... and break all links. */
11386                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11387                                     base.head) {
11388                         if (connector->encoder->base.crtc != &crtc->base)
11389                                 continue;
11390
11391                         intel_connector_break_all_links(connector);
11392                 }
11393
11394                 WARN_ON(crtc->active);
11395                 crtc->base.enabled = false;
11396         }
11397
11398         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11399             crtc->pipe == PIPE_A && !crtc->active) {
11400                 /* BIOS forgot to enable pipe A, this mostly happens after
11401                  * resume. Force-enable the pipe to fix this, the update_dpms
11402                  * call below we restore the pipe to the right state, but leave
11403                  * the required bits on. */
11404                 intel_enable_pipe_a(dev);
11405         }
11406
11407         /* Adjust the state of the output pipe according to whether we
11408          * have active connectors/encoders. */
11409         intel_crtc_update_dpms(&crtc->base);
11410
11411         if (crtc->active != crtc->base.enabled) {
11412                 struct intel_encoder *encoder;
11413
11414                 /* This can happen either due to bugs in the get_hw_state
11415                  * functions or because the pipe is force-enabled due to the
11416                  * pipe A quirk. */
11417                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11418                               crtc->base.base.id,
11419                               crtc->base.enabled ? "enabled" : "disabled",
11420                               crtc->active ? "enabled" : "disabled");
11421
11422                 crtc->base.enabled = crtc->active;
11423
11424                 /* Because we only establish the connector -> encoder ->
11425                  * crtc links if something is active, this means the
11426                  * crtc is now deactivated. Break the links. connector
11427                  * -> encoder links are only establish when things are
11428                  *  actually up, hence no need to break them. */
11429                 WARN_ON(crtc->active);
11430
11431                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11432                         WARN_ON(encoder->connectors_active);
11433                         encoder->base.crtc = NULL;
11434                 }
11435         }
11436 }
11437
11438 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11439 {
11440         struct intel_connector *connector;
11441         struct drm_device *dev = encoder->base.dev;
11442
11443         /* We need to check both for a crtc link (meaning that the
11444          * encoder is active and trying to read from a pipe) and the
11445          * pipe itself being active. */
11446         bool has_active_crtc = encoder->base.crtc &&
11447                 to_intel_crtc(encoder->base.crtc)->active;
11448
11449         if (encoder->connectors_active && !has_active_crtc) {
11450                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11451                               encoder->base.base.id,
11452                               drm_get_encoder_name(&encoder->base));
11453
11454                 /* Connector is active, but has no active pipe. This is
11455                  * fallout from our resume register restoring. Disable
11456                  * the encoder manually again. */
11457                 if (encoder->base.crtc) {
11458                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11459                                       encoder->base.base.id,
11460                                       drm_get_encoder_name(&encoder->base));
11461                         encoder->disable(encoder);
11462                 }
11463
11464                 /* Inconsistent output/port/pipe state happens presumably due to
11465                  * a bug in one of the get_hw_state functions. Or someplace else
11466                  * in our code, like the register restore mess on resume. Clamp
11467                  * things to off as a safer default. */
11468                 list_for_each_entry(connector,
11469                                     &dev->mode_config.connector_list,
11470                                     base.head) {
11471                         if (connector->encoder != encoder)
11472                                 continue;
11473
11474                         intel_connector_break_all_links(connector);
11475                 }
11476         }
11477         /* Enabled encoders without active connectors will be fixed in
11478          * the crtc fixup. */
11479 }
11480
11481 void i915_redisable_vga_power_on(struct drm_device *dev)
11482 {
11483         struct drm_i915_private *dev_priv = dev->dev_private;
11484         u32 vga_reg = i915_vgacntrl_reg(dev);
11485
11486         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11487                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11488                 i915_disable_vga(dev);
11489         }
11490 }
11491
11492 void i915_redisable_vga(struct drm_device *dev)
11493 {
11494         struct drm_i915_private *dev_priv = dev->dev_private;
11495
11496         /* This function can be called both from intel_modeset_setup_hw_state or
11497          * at a very early point in our resume sequence, where the power well
11498          * structures are not yet restored. Since this function is at a very
11499          * paranoid "someone might have enabled VGA while we were not looking"
11500          * level, just check if the power well is enabled instead of trying to
11501          * follow the "don't touch the power well if we don't need it" policy
11502          * the rest of the driver uses. */
11503         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11504                 return;
11505
11506         i915_redisable_vga_power_on(dev);
11507 }
11508
11509 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11510 {
11511         struct drm_i915_private *dev_priv = dev->dev_private;
11512         enum pipe pipe;
11513         struct intel_crtc *crtc;
11514         struct intel_encoder *encoder;
11515         struct intel_connector *connector;
11516         int i;
11517
11518         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11519                             base.head) {
11520                 memset(&crtc->config, 0, sizeof(crtc->config));
11521
11522                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11523                                                                  &crtc->config);
11524
11525                 crtc->base.enabled = crtc->active;
11526                 crtc->primary_enabled = crtc->active;
11527
11528                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11529                               crtc->base.base.id,
11530                               crtc->active ? "enabled" : "disabled");
11531         }
11532
11533         /* FIXME: Smash this into the new shared dpll infrastructure. */
11534         if (HAS_DDI(dev))
11535                 intel_ddi_setup_hw_pll_state(dev);
11536
11537         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11538                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11539
11540                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11541                 pll->active = 0;
11542                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11543                                     base.head) {
11544                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11545                                 pll->active++;
11546                 }
11547                 pll->refcount = pll->active;
11548
11549                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11550                               pll->name, pll->refcount, pll->on);
11551         }
11552
11553         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11554                             base.head) {
11555                 pipe = 0;
11556
11557                 if (encoder->get_hw_state(encoder, &pipe)) {
11558                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11559                         encoder->base.crtc = &crtc->base;
11560                         encoder->get_config(encoder, &crtc->config);
11561                 } else {
11562                         encoder->base.crtc = NULL;
11563                 }
11564
11565                 encoder->connectors_active = false;
11566                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11567                               encoder->base.base.id,
11568                               drm_get_encoder_name(&encoder->base),
11569                               encoder->base.crtc ? "enabled" : "disabled",
11570                               pipe_name(pipe));
11571         }
11572
11573         list_for_each_entry(connector, &dev->mode_config.connector_list,
11574                             base.head) {
11575                 if (connector->get_hw_state(connector)) {
11576                         connector->base.dpms = DRM_MODE_DPMS_ON;
11577                         connector->encoder->connectors_active = true;
11578                         connector->base.encoder = &connector->encoder->base;
11579                 } else {
11580                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11581                         connector->base.encoder = NULL;
11582                 }
11583                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11584                               connector->base.base.id,
11585                               drm_get_connector_name(&connector->base),
11586                               connector->base.encoder ? "enabled" : "disabled");
11587         }
11588 }
11589
11590 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11591  * and i915 state tracking structures. */
11592 void intel_modeset_setup_hw_state(struct drm_device *dev,
11593                                   bool force_restore)
11594 {
11595         struct drm_i915_private *dev_priv = dev->dev_private;
11596         enum pipe pipe;
11597         struct intel_crtc *crtc;
11598         struct intel_encoder *encoder;
11599         int i;
11600
11601         intel_modeset_readout_hw_state(dev);
11602
11603         /*
11604          * Now that we have the config, copy it to each CRTC struct
11605          * Note that this could go away if we move to using crtc_config
11606          * checking everywhere.
11607          */
11608         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11609                             base.head) {
11610                 if (crtc->active && i915.fastboot) {
11611                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
11612                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11613                                       crtc->base.base.id);
11614                         drm_mode_debug_printmodeline(&crtc->base.mode);
11615                 }
11616         }
11617
11618         /* HW state is read out, now we need to sanitize this mess. */
11619         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11620                             base.head) {
11621                 intel_sanitize_encoder(encoder);
11622         }
11623
11624         for_each_pipe(pipe) {
11625                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11626                 intel_sanitize_crtc(crtc);
11627                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11628         }
11629
11630         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11631                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11632
11633                 if (!pll->on || pll->active)
11634                         continue;
11635
11636                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11637
11638                 pll->disable(dev_priv, pll);
11639                 pll->on = false;
11640         }
11641
11642         if (HAS_PCH_SPLIT(dev))
11643                 ilk_wm_get_hw_state(dev);
11644
11645         if (force_restore) {
11646                 i915_redisable_vga(dev);
11647
11648                 /*
11649                  * We need to use raw interfaces for restoring state to avoid
11650                  * checking (bogus) intermediate states.
11651                  */
11652                 for_each_pipe(pipe) {
11653                         struct drm_crtc *crtc =
11654                                 dev_priv->pipe_to_crtc_mapping[pipe];
11655
11656                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11657                                          crtc->fb);
11658                 }
11659         } else {
11660                 intel_modeset_update_staged_output_state(dev);
11661         }
11662
11663         intel_modeset_check_state(dev);
11664 }
11665
11666 void intel_modeset_gem_init(struct drm_device *dev)
11667 {
11668         struct drm_crtc *c;
11669         struct intel_framebuffer *fb;
11670
11671         intel_modeset_init_hw(dev);
11672
11673         intel_setup_overlay(dev);
11674
11675         /*
11676          * Make sure any fbs we allocated at startup are properly
11677          * pinned & fenced.  When we do the allocation it's too early
11678          * for this.
11679          */
11680         mutex_lock(&dev->struct_mutex);
11681         list_for_each_entry(c, &dev->mode_config.crtc_list, head) {
11682                 if (!c->fb)
11683                         continue;
11684
11685                 fb = to_intel_framebuffer(c->fb);
11686                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
11687                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
11688                                   to_intel_crtc(c)->pipe);
11689                         drm_framebuffer_unreference(c->fb);
11690                         c->fb = NULL;
11691                 }
11692         }
11693         mutex_unlock(&dev->struct_mutex);
11694 }
11695
11696 void intel_connector_unregister(struct intel_connector *intel_connector)
11697 {
11698         struct drm_connector *connector = &intel_connector->base;
11699
11700         intel_panel_destroy_backlight(connector);
11701         drm_sysfs_connector_remove(connector);
11702 }
11703
11704 void intel_modeset_cleanup(struct drm_device *dev)
11705 {
11706         struct drm_i915_private *dev_priv = dev->dev_private;
11707         struct drm_crtc *crtc;
11708         struct drm_connector *connector;
11709
11710         /*
11711          * Interrupts and polling as the first thing to avoid creating havoc.
11712          * Too much stuff here (turning of rps, connectors, ...) would
11713          * experience fancy races otherwise.
11714          */
11715         drm_irq_uninstall(dev);
11716         cancel_work_sync(&dev_priv->hotplug_work);
11717         /*
11718          * Due to the hpd irq storm handling the hotplug work can re-arm the
11719          * poll handlers. Hence disable polling after hpd handling is shut down.
11720          */
11721         drm_kms_helper_poll_fini(dev);
11722
11723         mutex_lock(&dev->struct_mutex);
11724
11725         intel_unregister_dsm_handler();
11726
11727         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11728                 /* Skip inactive CRTCs */
11729                 if (!crtc->fb)
11730                         continue;
11731
11732                 intel_increase_pllclock(crtc);
11733         }
11734
11735         intel_disable_fbc(dev);
11736
11737         intel_disable_gt_powersave(dev);
11738
11739         ironlake_teardown_rc6(dev);
11740
11741         mutex_unlock(&dev->struct_mutex);
11742
11743         /* flush any delayed tasks or pending work */
11744         flush_scheduled_work();
11745
11746         /* destroy the backlight and sysfs files before encoders/connectors */
11747         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11748                 struct intel_connector *intel_connector;
11749
11750                 intel_connector = to_intel_connector(connector);
11751                 intel_connector->unregister(intel_connector);
11752         }
11753
11754         drm_mode_config_cleanup(dev);
11755
11756         intel_cleanup_overlay(dev);
11757 }
11758
11759 /*
11760  * Return which encoder is currently attached for connector.
11761  */
11762 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11763 {
11764         return &intel_attached_encoder(connector)->base;
11765 }
11766
11767 void intel_connector_attach_encoder(struct intel_connector *connector,
11768                                     struct intel_encoder *encoder)
11769 {
11770         connector->encoder = encoder;
11771         drm_mode_connector_attach_encoder(&connector->base,
11772                                           &encoder->base);
11773 }
11774
11775 /*
11776  * set vga decode state - true == enable VGA decode
11777  */
11778 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11779 {
11780         struct drm_i915_private *dev_priv = dev->dev_private;
11781         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11782         u16 gmch_ctrl;
11783
11784         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
11785                 DRM_ERROR("failed to read control word\n");
11786                 return -EIO;
11787         }
11788
11789         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
11790                 return 0;
11791
11792         if (state)
11793                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11794         else
11795                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11796
11797         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
11798                 DRM_ERROR("failed to write control word\n");
11799                 return -EIO;
11800         }
11801
11802         return 0;
11803 }
11804
11805 struct intel_display_error_state {
11806
11807         u32 power_well_driver;
11808
11809         int num_transcoders;
11810
11811         struct intel_cursor_error_state {
11812                 u32 control;
11813                 u32 position;
11814                 u32 base;
11815                 u32 size;
11816         } cursor[I915_MAX_PIPES];
11817
11818         struct intel_pipe_error_state {
11819                 bool power_domain_on;
11820                 u32 source;
11821         } pipe[I915_MAX_PIPES];
11822
11823         struct intel_plane_error_state {
11824                 u32 control;
11825                 u32 stride;
11826                 u32 size;
11827                 u32 pos;
11828                 u32 addr;
11829                 u32 surface;
11830                 u32 tile_offset;
11831         } plane[I915_MAX_PIPES];
11832
11833         struct intel_transcoder_error_state {
11834                 bool power_domain_on;
11835                 enum transcoder cpu_transcoder;
11836
11837                 u32 conf;
11838
11839                 u32 htotal;
11840                 u32 hblank;
11841                 u32 hsync;
11842                 u32 vtotal;
11843                 u32 vblank;
11844                 u32 vsync;
11845         } transcoder[4];
11846 };
11847
11848 struct intel_display_error_state *
11849 intel_display_capture_error_state(struct drm_device *dev)
11850 {
11851         drm_i915_private_t *dev_priv = dev->dev_private;
11852         struct intel_display_error_state *error;
11853         int transcoders[] = {
11854                 TRANSCODER_A,
11855                 TRANSCODER_B,
11856                 TRANSCODER_C,
11857                 TRANSCODER_EDP,
11858         };
11859         int i;
11860
11861         if (INTEL_INFO(dev)->num_pipes == 0)
11862                 return NULL;
11863
11864         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11865         if (error == NULL)
11866                 return NULL;
11867
11868         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11869                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11870
11871         for_each_pipe(i) {
11872                 error->pipe[i].power_domain_on =
11873                         intel_display_power_enabled_sw(dev_priv,
11874                                                        POWER_DOMAIN_PIPE(i));
11875                 if (!error->pipe[i].power_domain_on)
11876                         continue;
11877
11878                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11879                         error->cursor[i].control = I915_READ(CURCNTR(i));
11880                         error->cursor[i].position = I915_READ(CURPOS(i));
11881                         error->cursor[i].base = I915_READ(CURBASE(i));
11882                 } else {
11883                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11884                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11885                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11886                 }
11887
11888                 error->plane[i].control = I915_READ(DSPCNTR(i));
11889                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11890                 if (INTEL_INFO(dev)->gen <= 3) {
11891                         error->plane[i].size = I915_READ(DSPSIZE(i));
11892                         error->plane[i].pos = I915_READ(DSPPOS(i));
11893                 }
11894                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11895                         error->plane[i].addr = I915_READ(DSPADDR(i));
11896                 if (INTEL_INFO(dev)->gen >= 4) {
11897                         error->plane[i].surface = I915_READ(DSPSURF(i));
11898                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11899                 }
11900
11901                 error->pipe[i].source = I915_READ(PIPESRC(i));
11902         }
11903
11904         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11905         if (HAS_DDI(dev_priv->dev))
11906                 error->num_transcoders++; /* Account for eDP. */
11907
11908         for (i = 0; i < error->num_transcoders; i++) {
11909                 enum transcoder cpu_transcoder = transcoders[i];
11910
11911                 error->transcoder[i].power_domain_on =
11912                         intel_display_power_enabled_sw(dev_priv,
11913                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
11914                 if (!error->transcoder[i].power_domain_on)
11915                         continue;
11916
11917                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11918
11919                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11920                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11921                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11922                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11923                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11924                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11925                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11926         }
11927
11928         return error;
11929 }
11930
11931 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11932
11933 void
11934 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11935                                 struct drm_device *dev,
11936                                 struct intel_display_error_state *error)
11937 {
11938         int i;
11939
11940         if (!error)
11941                 return;
11942
11943         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11944         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11945                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11946                            error->power_well_driver);
11947         for_each_pipe(i) {
11948                 err_printf(m, "Pipe [%d]:\n", i);
11949                 err_printf(m, "  Power: %s\n",
11950                            error->pipe[i].power_domain_on ? "on" : "off");
11951                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11952
11953                 err_printf(m, "Plane [%d]:\n", i);
11954                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11955                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11956                 if (INTEL_INFO(dev)->gen <= 3) {
11957                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11958                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11959                 }
11960                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11961                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11962                 if (INTEL_INFO(dev)->gen >= 4) {
11963                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11964                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
11965                 }
11966
11967                 err_printf(m, "Cursor [%d]:\n", i);
11968                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
11969                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
11970                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
11971         }
11972
11973         for (i = 0; i < error->num_transcoders; i++) {
11974                 err_printf(m, "CPU transcoder: %c\n",
11975                            transcoder_name(error->transcoder[i].cpu_transcoder));
11976                 err_printf(m, "  Power: %s\n",
11977                            error->transcoder[i].power_domain_on ? "on" : "off");
11978                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
11979                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
11980                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
11981                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
11982                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
11983                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
11984                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
11985         }
11986 }