drm/i915: Read wm values from hardware at init on CHV
[linux-block.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79         DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85                                 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87                                    struct intel_crtc_state *pipe_config);
88
89 static int intel_set_mode(struct drm_atomic_state *state);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97                                          struct intel_link_m_n *m_n,
98                                          struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc,
103                             const struct intel_crtc_state *pipe_config);
104 static void chv_prepare_pll(struct intel_crtc *crtc,
105                             const struct intel_crtc_state *pipe_config);
106 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
107 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
108 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
109         struct intel_crtc_state *crtc_state);
110 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
111                            int num_connectors);
112
113 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
114 {
115         if (!connector->mst_port)
116                 return connector->encoder;
117         else
118                 return &connector->mst_port->mst_encoders[pipe]->base;
119 }
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 int
137 intel_pch_rawclk(struct drm_device *dev)
138 {
139         struct drm_i915_private *dev_priv = dev->dev_private;
140
141         WARN_ON(!HAS_PCH_SPLIT(dev));
142
143         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
144 }
145
146 static inline u32 /* units of 100MHz */
147 intel_fdi_link_freq(struct drm_device *dev)
148 {
149         if (IS_GEN5(dev)) {
150                 struct drm_i915_private *dev_priv = dev->dev_private;
151                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
152         } else
153                 return 27;
154 }
155
156 static const intel_limit_t intel_limits_i8xx_dac = {
157         .dot = { .min = 25000, .max = 350000 },
158         .vco = { .min = 908000, .max = 1512000 },
159         .n = { .min = 2, .max = 16 },
160         .m = { .min = 96, .max = 140 },
161         .m1 = { .min = 18, .max = 26 },
162         .m2 = { .min = 6, .max = 16 },
163         .p = { .min = 4, .max = 128 },
164         .p1 = { .min = 2, .max = 33 },
165         .p2 = { .dot_limit = 165000,
166                 .p2_slow = 4, .p2_fast = 2 },
167 };
168
169 static const intel_limit_t intel_limits_i8xx_dvo = {
170         .dot = { .min = 25000, .max = 350000 },
171         .vco = { .min = 908000, .max = 1512000 },
172         .n = { .min = 2, .max = 16 },
173         .m = { .min = 96, .max = 140 },
174         .m1 = { .min = 18, .max = 26 },
175         .m2 = { .min = 6, .max = 16 },
176         .p = { .min = 4, .max = 128 },
177         .p1 = { .min = 2, .max = 33 },
178         .p2 = { .dot_limit = 165000,
179                 .p2_slow = 4, .p2_fast = 4 },
180 };
181
182 static const intel_limit_t intel_limits_i8xx_lvds = {
183         .dot = { .min = 25000, .max = 350000 },
184         .vco = { .min = 908000, .max = 1512000 },
185         .n = { .min = 2, .max = 16 },
186         .m = { .min = 96, .max = 140 },
187         .m1 = { .min = 18, .max = 26 },
188         .m2 = { .min = 6, .max = 16 },
189         .p = { .min = 4, .max = 128 },
190         .p1 = { .min = 1, .max = 6 },
191         .p2 = { .dot_limit = 165000,
192                 .p2_slow = 14, .p2_fast = 7 },
193 };
194
195 static const intel_limit_t intel_limits_i9xx_sdvo = {
196         .dot = { .min = 20000, .max = 400000 },
197         .vco = { .min = 1400000, .max = 2800000 },
198         .n = { .min = 1, .max = 6 },
199         .m = { .min = 70, .max = 120 },
200         .m1 = { .min = 8, .max = 18 },
201         .m2 = { .min = 3, .max = 7 },
202         .p = { .min = 5, .max = 80 },
203         .p1 = { .min = 1, .max = 8 },
204         .p2 = { .dot_limit = 200000,
205                 .p2_slow = 10, .p2_fast = 5 },
206 };
207
208 static const intel_limit_t intel_limits_i9xx_lvds = {
209         .dot = { .min = 20000, .max = 400000 },
210         .vco = { .min = 1400000, .max = 2800000 },
211         .n = { .min = 1, .max = 6 },
212         .m = { .min = 70, .max = 120 },
213         .m1 = { .min = 8, .max = 18 },
214         .m2 = { .min = 3, .max = 7 },
215         .p = { .min = 7, .max = 98 },
216         .p1 = { .min = 1, .max = 8 },
217         .p2 = { .dot_limit = 112000,
218                 .p2_slow = 14, .p2_fast = 7 },
219 };
220
221
222 static const intel_limit_t intel_limits_g4x_sdvo = {
223         .dot = { .min = 25000, .max = 270000 },
224         .vco = { .min = 1750000, .max = 3500000},
225         .n = { .min = 1, .max = 4 },
226         .m = { .min = 104, .max = 138 },
227         .m1 = { .min = 17, .max = 23 },
228         .m2 = { .min = 5, .max = 11 },
229         .p = { .min = 10, .max = 30 },
230         .p1 = { .min = 1, .max = 3},
231         .p2 = { .dot_limit = 270000,
232                 .p2_slow = 10,
233                 .p2_fast = 10
234         },
235 };
236
237 static const intel_limit_t intel_limits_g4x_hdmi = {
238         .dot = { .min = 22000, .max = 400000 },
239         .vco = { .min = 1750000, .max = 3500000},
240         .n = { .min = 1, .max = 4 },
241         .m = { .min = 104, .max = 138 },
242         .m1 = { .min = 16, .max = 23 },
243         .m2 = { .min = 5, .max = 11 },
244         .p = { .min = 5, .max = 80 },
245         .p1 = { .min = 1, .max = 8},
246         .p2 = { .dot_limit = 165000,
247                 .p2_slow = 10, .p2_fast = 5 },
248 };
249
250 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
251         .dot = { .min = 20000, .max = 115000 },
252         .vco = { .min = 1750000, .max = 3500000 },
253         .n = { .min = 1, .max = 3 },
254         .m = { .min = 104, .max = 138 },
255         .m1 = { .min = 17, .max = 23 },
256         .m2 = { .min = 5, .max = 11 },
257         .p = { .min = 28, .max = 112 },
258         .p1 = { .min = 2, .max = 8 },
259         .p2 = { .dot_limit = 0,
260                 .p2_slow = 14, .p2_fast = 14
261         },
262 };
263
264 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
265         .dot = { .min = 80000, .max = 224000 },
266         .vco = { .min = 1750000, .max = 3500000 },
267         .n = { .min = 1, .max = 3 },
268         .m = { .min = 104, .max = 138 },
269         .m1 = { .min = 17, .max = 23 },
270         .m2 = { .min = 5, .max = 11 },
271         .p = { .min = 14, .max = 42 },
272         .p1 = { .min = 2, .max = 6 },
273         .p2 = { .dot_limit = 0,
274                 .p2_slow = 7, .p2_fast = 7
275         },
276 };
277
278 static const intel_limit_t intel_limits_pineview_sdvo = {
279         .dot = { .min = 20000, .max = 400000},
280         .vco = { .min = 1700000, .max = 3500000 },
281         /* Pineview's Ncounter is a ring counter */
282         .n = { .min = 3, .max = 6 },
283         .m = { .min = 2, .max = 256 },
284         /* Pineview only has one combined m divider, which we treat as m2. */
285         .m1 = { .min = 0, .max = 0 },
286         .m2 = { .min = 0, .max = 254 },
287         .p = { .min = 5, .max = 80 },
288         .p1 = { .min = 1, .max = 8 },
289         .p2 = { .dot_limit = 200000,
290                 .p2_slow = 10, .p2_fast = 5 },
291 };
292
293 static const intel_limit_t intel_limits_pineview_lvds = {
294         .dot = { .min = 20000, .max = 400000 },
295         .vco = { .min = 1700000, .max = 3500000 },
296         .n = { .min = 3, .max = 6 },
297         .m = { .min = 2, .max = 256 },
298         .m1 = { .min = 0, .max = 0 },
299         .m2 = { .min = 0, .max = 254 },
300         .p = { .min = 7, .max = 112 },
301         .p1 = { .min = 1, .max = 8 },
302         .p2 = { .dot_limit = 112000,
303                 .p2_slow = 14, .p2_fast = 14 },
304 };
305
306 /* Ironlake / Sandybridge
307  *
308  * We calculate clock using (register_value + 2) for N/M1/M2, so here
309  * the range value for them is (actual_value - 2).
310  */
311 static const intel_limit_t intel_limits_ironlake_dac = {
312         .dot = { .min = 25000, .max = 350000 },
313         .vco = { .min = 1760000, .max = 3510000 },
314         .n = { .min = 1, .max = 5 },
315         .m = { .min = 79, .max = 127 },
316         .m1 = { .min = 12, .max = 22 },
317         .m2 = { .min = 5, .max = 9 },
318         .p = { .min = 5, .max = 80 },
319         .p1 = { .min = 1, .max = 8 },
320         .p2 = { .dot_limit = 225000,
321                 .p2_slow = 10, .p2_fast = 5 },
322 };
323
324 static const intel_limit_t intel_limits_ironlake_single_lvds = {
325         .dot = { .min = 25000, .max = 350000 },
326         .vco = { .min = 1760000, .max = 3510000 },
327         .n = { .min = 1, .max = 3 },
328         .m = { .min = 79, .max = 118 },
329         .m1 = { .min = 12, .max = 22 },
330         .m2 = { .min = 5, .max = 9 },
331         .p = { .min = 28, .max = 112 },
332         .p1 = { .min = 2, .max = 8 },
333         .p2 = { .dot_limit = 225000,
334                 .p2_slow = 14, .p2_fast = 14 },
335 };
336
337 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
338         .dot = { .min = 25000, .max = 350000 },
339         .vco = { .min = 1760000, .max = 3510000 },
340         .n = { .min = 1, .max = 3 },
341         .m = { .min = 79, .max = 127 },
342         .m1 = { .min = 12, .max = 22 },
343         .m2 = { .min = 5, .max = 9 },
344         .p = { .min = 14, .max = 56 },
345         .p1 = { .min = 2, .max = 8 },
346         .p2 = { .dot_limit = 225000,
347                 .p2_slow = 7, .p2_fast = 7 },
348 };
349
350 /* LVDS 100mhz refclk limits. */
351 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
352         .dot = { .min = 25000, .max = 350000 },
353         .vco = { .min = 1760000, .max = 3510000 },
354         .n = { .min = 1, .max = 2 },
355         .m = { .min = 79, .max = 126 },
356         .m1 = { .min = 12, .max = 22 },
357         .m2 = { .min = 5, .max = 9 },
358         .p = { .min = 28, .max = 112 },
359         .p1 = { .min = 2, .max = 8 },
360         .p2 = { .dot_limit = 225000,
361                 .p2_slow = 14, .p2_fast = 14 },
362 };
363
364 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
365         .dot = { .min = 25000, .max = 350000 },
366         .vco = { .min = 1760000, .max = 3510000 },
367         .n = { .min = 1, .max = 3 },
368         .m = { .min = 79, .max = 126 },
369         .m1 = { .min = 12, .max = 22 },
370         .m2 = { .min = 5, .max = 9 },
371         .p = { .min = 14, .max = 42 },
372         .p1 = { .min = 2, .max = 6 },
373         .p2 = { .dot_limit = 225000,
374                 .p2_slow = 7, .p2_fast = 7 },
375 };
376
377 static const intel_limit_t intel_limits_vlv = {
378          /*
379           * These are the data rate limits (measured in fast clocks)
380           * since those are the strictest limits we have. The fast
381           * clock and actual rate limits are more relaxed, so checking
382           * them would make no difference.
383           */
384         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
385         .vco = { .min = 4000000, .max = 6000000 },
386         .n = { .min = 1, .max = 7 },
387         .m1 = { .min = 2, .max = 3 },
388         .m2 = { .min = 11, .max = 156 },
389         .p1 = { .min = 2, .max = 3 },
390         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
391 };
392
393 static const intel_limit_t intel_limits_chv = {
394         /*
395          * These are the data rate limits (measured in fast clocks)
396          * since those are the strictest limits we have.  The fast
397          * clock and actual rate limits are more relaxed, so checking
398          * them would make no difference.
399          */
400         .dot = { .min = 25000 * 5, .max = 540000 * 5},
401         .vco = { .min = 4800000, .max = 6480000 },
402         .n = { .min = 1, .max = 1 },
403         .m1 = { .min = 2, .max = 2 },
404         .m2 = { .min = 24 << 22, .max = 175 << 22 },
405         .p1 = { .min = 2, .max = 4 },
406         .p2 = { .p2_slow = 1, .p2_fast = 14 },
407 };
408
409 static const intel_limit_t intel_limits_bxt = {
410         /* FIXME: find real dot limits */
411         .dot = { .min = 0, .max = INT_MAX },
412         .vco = { .min = 4800000, .max = 6480000 },
413         .n = { .min = 1, .max = 1 },
414         .m1 = { .min = 2, .max = 2 },
415         /* FIXME: find real m2 limits */
416         .m2 = { .min = 2 << 22, .max = 255 << 22 },
417         .p1 = { .min = 2, .max = 4 },
418         .p2 = { .p2_slow = 1, .p2_fast = 20 },
419 };
420
421 static void vlv_clock(int refclk, intel_clock_t *clock)
422 {
423         clock->m = clock->m1 * clock->m2;
424         clock->p = clock->p1 * clock->p2;
425         if (WARN_ON(clock->n == 0 || clock->p == 0))
426                 return;
427         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
428         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
429 }
430
431 static bool
432 needs_modeset(struct drm_crtc_state *state)
433 {
434         return state->mode_changed || state->active_changed;
435 }
436
437 /**
438  * Returns whether any output on the specified pipe is of the specified type
439  */
440 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
441 {
442         struct drm_device *dev = crtc->base.dev;
443         struct intel_encoder *encoder;
444
445         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
446                 if (encoder->type == type)
447                         return true;
448
449         return false;
450 }
451
452 /**
453  * Returns whether any output on the specified pipe will have the specified
454  * type after a staged modeset is complete, i.e., the same as
455  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
456  * encoder->crtc.
457  */
458 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
459                                       int type)
460 {
461         struct drm_atomic_state *state = crtc_state->base.state;
462         struct drm_connector *connector;
463         struct drm_connector_state *connector_state;
464         struct intel_encoder *encoder;
465         int i, num_connectors = 0;
466
467         for_each_connector_in_state(state, connector, connector_state, i) {
468                 if (connector_state->crtc != crtc_state->base.crtc)
469                         continue;
470
471                 num_connectors++;
472
473                 encoder = to_intel_encoder(connector_state->best_encoder);
474                 if (encoder->type == type)
475                         return true;
476         }
477
478         WARN_ON(num_connectors == 0);
479
480         return false;
481 }
482
483 static const intel_limit_t *
484 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
485 {
486         struct drm_device *dev = crtc_state->base.crtc->dev;
487         const intel_limit_t *limit;
488
489         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
490                 if (intel_is_dual_link_lvds(dev)) {
491                         if (refclk == 100000)
492                                 limit = &intel_limits_ironlake_dual_lvds_100m;
493                         else
494                                 limit = &intel_limits_ironlake_dual_lvds;
495                 } else {
496                         if (refclk == 100000)
497                                 limit = &intel_limits_ironlake_single_lvds_100m;
498                         else
499                                 limit = &intel_limits_ironlake_single_lvds;
500                 }
501         } else
502                 limit = &intel_limits_ironlake_dac;
503
504         return limit;
505 }
506
507 static const intel_limit_t *
508 intel_g4x_limit(struct intel_crtc_state *crtc_state)
509 {
510         struct drm_device *dev = crtc_state->base.crtc->dev;
511         const intel_limit_t *limit;
512
513         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
514                 if (intel_is_dual_link_lvds(dev))
515                         limit = &intel_limits_g4x_dual_channel_lvds;
516                 else
517                         limit = &intel_limits_g4x_single_channel_lvds;
518         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
519                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
520                 limit = &intel_limits_g4x_hdmi;
521         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
522                 limit = &intel_limits_g4x_sdvo;
523         } else /* The option is for other outputs */
524                 limit = &intel_limits_i9xx_sdvo;
525
526         return limit;
527 }
528
529 static const intel_limit_t *
530 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
531 {
532         struct drm_device *dev = crtc_state->base.crtc->dev;
533         const intel_limit_t *limit;
534
535         if (IS_BROXTON(dev))
536                 limit = &intel_limits_bxt;
537         else if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc_state, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc_state);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_CHERRYVIEW(dev)) {
547                 limit = &intel_limits_chv;
548         } else if (IS_VALLEYVIEW(dev)) {
549                 limit = &intel_limits_vlv;
550         } else if (!IS_GEN2(dev)) {
551                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
552                         limit = &intel_limits_i9xx_lvds;
553                 else
554                         limit = &intel_limits_i9xx_sdvo;
555         } else {
556                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
557                         limit = &intel_limits_i8xx_lvds;
558                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
559                         limit = &intel_limits_i8xx_dvo;
560                 else
561                         limit = &intel_limits_i8xx_dac;
562         }
563         return limit;
564 }
565
566 /* m1 is reserved as 0 in Pineview, n is a ring counter */
567 static void pineview_clock(int refclk, intel_clock_t *clock)
568 {
569         clock->m = clock->m2 + 2;
570         clock->p = clock->p1 * clock->p2;
571         if (WARN_ON(clock->n == 0 || clock->p == 0))
572                 return;
573         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
574         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
575 }
576
577 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
578 {
579         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
580 }
581
582 static void i9xx_clock(int refclk, intel_clock_t *clock)
583 {
584         clock->m = i9xx_dpll_compute_m(clock);
585         clock->p = clock->p1 * clock->p2;
586         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
587                 return;
588         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
589         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
590 }
591
592 static void chv_clock(int refclk, intel_clock_t *clock)
593 {
594         clock->m = clock->m1 * clock->m2;
595         clock->p = clock->p1 * clock->p2;
596         if (WARN_ON(clock->n == 0 || clock->p == 0))
597                 return;
598         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
599                         clock->n << 22);
600         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
614                 INTELPllInvalid("n out of range\n");
615         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
616                 INTELPllInvalid("p1 out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621
622         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
623                 if (clock->m1 <= clock->m2)
624                         INTELPllInvalid("m1 <= m2\n");
625
626         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
627                 if (clock->p < limit->p.min || limit->p.max < clock->p)
628                         INTELPllInvalid("p out of range\n");
629                 if (clock->m < limit->m.min || limit->m.max < clock->m)
630                         INTELPllInvalid("m out of range\n");
631         }
632
633         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
634                 INTELPllInvalid("vco out of range\n");
635         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
636          * connector, etc., rather than just a single range.
637          */
638         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
639                 INTELPllInvalid("dot out of range\n");
640
641         return true;
642 }
643
644 static int
645 i9xx_select_p2_div(const intel_limit_t *limit,
646                    const struct intel_crtc_state *crtc_state,
647                    int target)
648 {
649         struct drm_device *dev = crtc_state->base.crtc->dev;
650
651         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
652                 /*
653                  * For LVDS just rely on its current settings for dual-channel.
654                  * We haven't figured out how to reliably set up different
655                  * single/dual channel state, if we even can.
656                  */
657                 if (intel_is_dual_link_lvds(dev))
658                         return limit->p2.p2_fast;
659                 else
660                         return limit->p2.p2_slow;
661         } else {
662                 if (target < limit->p2.dot_limit)
663                         return limit->p2.p2_slow;
664                 else
665                         return limit->p2.p2_fast;
666         }
667 }
668
669 static bool
670 i9xx_find_best_dpll(const intel_limit_t *limit,
671                     struct intel_crtc_state *crtc_state,
672                     int target, int refclk, intel_clock_t *match_clock,
673                     intel_clock_t *best_clock)
674 {
675         struct drm_device *dev = crtc_state->base.crtc->dev;
676         intel_clock_t clock;
677         int err = target;
678
679         memset(best_clock, 0, sizeof(*best_clock));
680
681         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
682
683         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
684              clock.m1++) {
685                 for (clock.m2 = limit->m2.min;
686                      clock.m2 <= limit->m2.max; clock.m2++) {
687                         if (clock.m2 >= clock.m1)
688                                 break;
689                         for (clock.n = limit->n.min;
690                              clock.n <= limit->n.max; clock.n++) {
691                                 for (clock.p1 = limit->p1.min;
692                                         clock.p1 <= limit->p1.max; clock.p1++) {
693                                         int this_err;
694
695                                         i9xx_clock(refclk, &clock);
696                                         if (!intel_PLL_is_valid(dev, limit,
697                                                                 &clock))
698                                                 continue;
699                                         if (match_clock &&
700                                             clock.p != match_clock->p)
701                                                 continue;
702
703                                         this_err = abs(clock.dot - target);
704                                         if (this_err < err) {
705                                                 *best_clock = clock;
706                                                 err = this_err;
707                                         }
708                                 }
709                         }
710                 }
711         }
712
713         return (err != target);
714 }
715
716 static bool
717 pnv_find_best_dpll(const intel_limit_t *limit,
718                    struct intel_crtc_state *crtc_state,
719                    int target, int refclk, intel_clock_t *match_clock,
720                    intel_clock_t *best_clock)
721 {
722         struct drm_device *dev = crtc_state->base.crtc->dev;
723         intel_clock_t clock;
724         int err = target;
725
726         memset(best_clock, 0, sizeof(*best_clock));
727
728         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
729
730         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
731              clock.m1++) {
732                 for (clock.m2 = limit->m2.min;
733                      clock.m2 <= limit->m2.max; clock.m2++) {
734                         for (clock.n = limit->n.min;
735                              clock.n <= limit->n.max; clock.n++) {
736                                 for (clock.p1 = limit->p1.min;
737                                         clock.p1 <= limit->p1.max; clock.p1++) {
738                                         int this_err;
739
740                                         pineview_clock(refclk, &clock);
741                                         if (!intel_PLL_is_valid(dev, limit,
742                                                                 &clock))
743                                                 continue;
744                                         if (match_clock &&
745                                             clock.p != match_clock->p)
746                                                 continue;
747
748                                         this_err = abs(clock.dot - target);
749                                         if (this_err < err) {
750                                                 *best_clock = clock;
751                                                 err = this_err;
752                                         }
753                                 }
754                         }
755                 }
756         }
757
758         return (err != target);
759 }
760
761 static bool
762 g4x_find_best_dpll(const intel_limit_t *limit,
763                    struct intel_crtc_state *crtc_state,
764                    int target, int refclk, intel_clock_t *match_clock,
765                    intel_clock_t *best_clock)
766 {
767         struct drm_device *dev = crtc_state->base.crtc->dev;
768         intel_clock_t clock;
769         int max_n;
770         bool found = false;
771         /* approximately equals target * 0.00585 */
772         int err_most = (target >> 8) + (target >> 9);
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778         max_n = limit->n.max;
779         /* based on hardware requirement, prefer smaller n to precision */
780         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
781                 /* based on hardware requirement, prefere larger m1,m2 */
782                 for (clock.m1 = limit->m1.max;
783                      clock.m1 >= limit->m1.min; clock.m1--) {
784                         for (clock.m2 = limit->m2.max;
785                              clock.m2 >= limit->m2.min; clock.m2--) {
786                                 for (clock.p1 = limit->p1.max;
787                                      clock.p1 >= limit->p1.min; clock.p1--) {
788                                         int this_err;
789
790                                         i9xx_clock(refclk, &clock);
791                                         if (!intel_PLL_is_valid(dev, limit,
792                                                                 &clock))
793                                                 continue;
794
795                                         this_err = abs(clock.dot - target);
796                                         if (this_err < err_most) {
797                                                 *best_clock = clock;
798                                                 err_most = this_err;
799                                                 max_n = clock.n;
800                                                 found = true;
801                                         }
802                                 }
803                         }
804                 }
805         }
806         return found;
807 }
808
809 /*
810  * Check if the calculated PLL configuration is more optimal compared to the
811  * best configuration and error found so far. Return the calculated error.
812  */
813 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
814                                const intel_clock_t *calculated_clock,
815                                const intel_clock_t *best_clock,
816                                unsigned int best_error_ppm,
817                                unsigned int *error_ppm)
818 {
819         /*
820          * For CHV ignore the error and consider only the P value.
821          * Prefer a bigger P value based on HW requirements.
822          */
823         if (IS_CHERRYVIEW(dev)) {
824                 *error_ppm = 0;
825
826                 return calculated_clock->p > best_clock->p;
827         }
828
829         if (WARN_ON_ONCE(!target_freq))
830                 return false;
831
832         *error_ppm = div_u64(1000000ULL *
833                                 abs(target_freq - calculated_clock->dot),
834                              target_freq);
835         /*
836          * Prefer a better P value over a better (smaller) error if the error
837          * is small. Ensure this preference for future configurations too by
838          * setting the error to 0.
839          */
840         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
841                 *error_ppm = 0;
842
843                 return true;
844         }
845
846         return *error_ppm + 10 < best_error_ppm;
847 }
848
849 static bool
850 vlv_find_best_dpll(const intel_limit_t *limit,
851                    struct intel_crtc_state *crtc_state,
852                    int target, int refclk, intel_clock_t *match_clock,
853                    intel_clock_t *best_clock)
854 {
855         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
856         struct drm_device *dev = crtc->base.dev;
857         intel_clock_t clock;
858         unsigned int bestppm = 1000000;
859         /* min update 19.2 MHz */
860         int max_n = min(limit->n.max, refclk / 19200);
861         bool found = false;
862
863         target *= 5; /* fast clock */
864
865         memset(best_clock, 0, sizeof(*best_clock));
866
867         /* based on hardware requirement, prefer smaller n to precision */
868         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
869                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
870                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
871                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
872                                 clock.p = clock.p1 * clock.p2;
873                                 /* based on hardware requirement, prefer bigger m1,m2 values */
874                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
875                                         unsigned int ppm;
876
877                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
878                                                                      refclk * clock.m1);
879
880                                         vlv_clock(refclk, &clock);
881
882                                         if (!intel_PLL_is_valid(dev, limit,
883                                                                 &clock))
884                                                 continue;
885
886                                         if (!vlv_PLL_is_optimal(dev, target,
887                                                                 &clock,
888                                                                 best_clock,
889                                                                 bestppm, &ppm))
890                                                 continue;
891
892                                         *best_clock = clock;
893                                         bestppm = ppm;
894                                         found = true;
895                                 }
896                         }
897                 }
898         }
899
900         return found;
901 }
902
903 static bool
904 chv_find_best_dpll(const intel_limit_t *limit,
905                    struct intel_crtc_state *crtc_state,
906                    int target, int refclk, intel_clock_t *match_clock,
907                    intel_clock_t *best_clock)
908 {
909         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
910         struct drm_device *dev = crtc->base.dev;
911         unsigned int best_error_ppm;
912         intel_clock_t clock;
913         uint64_t m2;
914         int found = false;
915
916         memset(best_clock, 0, sizeof(*best_clock));
917         best_error_ppm = 1000000;
918
919         /*
920          * Based on hardware doc, the n always set to 1, and m1 always
921          * set to 2.  If requires to support 200Mhz refclk, we need to
922          * revisit this because n may not 1 anymore.
923          */
924         clock.n = 1, clock.m1 = 2;
925         target *= 5;    /* fast clock */
926
927         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
928                 for (clock.p2 = limit->p2.p2_fast;
929                                 clock.p2 >= limit->p2.p2_slow;
930                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
931                         unsigned int error_ppm;
932
933                         clock.p = clock.p1 * clock.p2;
934
935                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
936                                         clock.n) << 22, refclk * clock.m1);
937
938                         if (m2 > INT_MAX/clock.m1)
939                                 continue;
940
941                         clock.m2 = m2;
942
943                         chv_clock(refclk, &clock);
944
945                         if (!intel_PLL_is_valid(dev, limit, &clock))
946                                 continue;
947
948                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
949                                                 best_error_ppm, &error_ppm))
950                                 continue;
951
952                         *best_clock = clock;
953                         best_error_ppm = error_ppm;
954                         found = true;
955                 }
956         }
957
958         return found;
959 }
960
961 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
962                         intel_clock_t *best_clock)
963 {
964         int refclk = i9xx_get_refclk(crtc_state, 0);
965
966         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
967                                   target_clock, refclk, NULL, best_clock);
968 }
969
970 bool intel_crtc_active(struct drm_crtc *crtc)
971 {
972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
973
974         /* Be paranoid as we can arrive here with only partial
975          * state retrieved from the hardware during setup.
976          *
977          * We can ditch the adjusted_mode.crtc_clock check as soon
978          * as Haswell has gained clock readout/fastboot support.
979          *
980          * We can ditch the crtc->primary->fb check as soon as we can
981          * properly reconstruct framebuffers.
982          *
983          * FIXME: The intel_crtc->active here should be switched to
984          * crtc->state->active once we have proper CRTC states wired up
985          * for atomic.
986          */
987         return intel_crtc->active && crtc->primary->state->fb &&
988                 intel_crtc->config->base.adjusted_mode.crtc_clock;
989 }
990
991 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
992                                              enum pipe pipe)
993 {
994         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
996
997         return intel_crtc->config->cpu_transcoder;
998 }
999
1000 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1001 {
1002         struct drm_i915_private *dev_priv = dev->dev_private;
1003         u32 reg = PIPEDSL(pipe);
1004         u32 line1, line2;
1005         u32 line_mask;
1006
1007         if (IS_GEN2(dev))
1008                 line_mask = DSL_LINEMASK_GEN2;
1009         else
1010                 line_mask = DSL_LINEMASK_GEN3;
1011
1012         line1 = I915_READ(reg) & line_mask;
1013         mdelay(5);
1014         line2 = I915_READ(reg) & line_mask;
1015
1016         return line1 == line2;
1017 }
1018
1019 /*
1020  * intel_wait_for_pipe_off - wait for pipe to turn off
1021  * @crtc: crtc whose pipe to wait for
1022  *
1023  * After disabling a pipe, we can't wait for vblank in the usual way,
1024  * spinning on the vblank interrupt status bit, since we won't actually
1025  * see an interrupt when the pipe is disabled.
1026  *
1027  * On Gen4 and above:
1028  *   wait for the pipe register state bit to turn off
1029  *
1030  * Otherwise:
1031  *   wait for the display line value to settle (it usually
1032  *   ends up stopping at the start of the next frame).
1033  *
1034  */
1035 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1036 {
1037         struct drm_device *dev = crtc->base.dev;
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1040         enum pipe pipe = crtc->pipe;
1041
1042         if (INTEL_INFO(dev)->gen >= 4) {
1043                 int reg = PIPECONF(cpu_transcoder);
1044
1045                 /* Wait for the Pipe State to go off */
1046                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1047                              100))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         } else {
1050                 /* Wait for the display line to settle */
1051                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1052                         WARN(1, "pipe_off wait timed out\n");
1053         }
1054 }
1055
1056 /*
1057  * ibx_digital_port_connected - is the specified port connected?
1058  * @dev_priv: i915 private structure
1059  * @port: the port to test
1060  *
1061  * Returns true if @port is connected, false otherwise.
1062  */
1063 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1064                                 struct intel_digital_port *port)
1065 {
1066         u32 bit;
1067
1068         if (HAS_PCH_IBX(dev_priv->dev)) {
1069                 switch (port->port) {
1070                 case PORT_B:
1071                         bit = SDE_PORTB_HOTPLUG;
1072                         break;
1073                 case PORT_C:
1074                         bit = SDE_PORTC_HOTPLUG;
1075                         break;
1076                 case PORT_D:
1077                         bit = SDE_PORTD_HOTPLUG;
1078                         break;
1079                 default:
1080                         return true;
1081                 }
1082         } else {
1083                 switch (port->port) {
1084                 case PORT_B:
1085                         bit = SDE_PORTB_HOTPLUG_CPT;
1086                         break;
1087                 case PORT_C:
1088                         bit = SDE_PORTC_HOTPLUG_CPT;
1089                         break;
1090                 case PORT_D:
1091                         bit = SDE_PORTD_HOTPLUG_CPT;
1092                         break;
1093                 default:
1094                         return true;
1095                 }
1096         }
1097
1098         return I915_READ(SDEISR) & bit;
1099 }
1100
1101 static const char *state_string(bool enabled)
1102 {
1103         return enabled ? "on" : "off";
1104 }
1105
1106 /* Only for pre-ILK configs */
1107 void assert_pll(struct drm_i915_private *dev_priv,
1108                 enum pipe pipe, bool state)
1109 {
1110         int reg;
1111         u32 val;
1112         bool cur_state;
1113
1114         reg = DPLL(pipe);
1115         val = I915_READ(reg);
1116         cur_state = !!(val & DPLL_VCO_ENABLE);
1117         I915_STATE_WARN(cur_state != state,
1118              "PLL state assertion failure (expected %s, current %s)\n",
1119              state_string(state), state_string(cur_state));
1120 }
1121
1122 /* XXX: the dsi pll is shared between MIPI DSI ports */
1123 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1124 {
1125         u32 val;
1126         bool cur_state;
1127
1128         mutex_lock(&dev_priv->sb_lock);
1129         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1130         mutex_unlock(&dev_priv->sb_lock);
1131
1132         cur_state = val & DSI_PLL_VCO_EN;
1133         I915_STATE_WARN(cur_state != state,
1134              "DSI PLL state assertion failure (expected %s, current %s)\n",
1135              state_string(state), state_string(cur_state));
1136 }
1137 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1138 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1139
1140 struct intel_shared_dpll *
1141 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1142 {
1143         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1144
1145         if (crtc->config->shared_dpll < 0)
1146                 return NULL;
1147
1148         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1149 }
1150
1151 /* For ILK+ */
1152 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1153                         struct intel_shared_dpll *pll,
1154                         bool state)
1155 {
1156         bool cur_state;
1157         struct intel_dpll_hw_state hw_state;
1158
1159         if (WARN (!pll,
1160                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1161                 return;
1162
1163         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1164         I915_STATE_WARN(cur_state != state,
1165              "%s assertion failure (expected %s, current %s)\n",
1166              pll->name, state_string(state), state_string(cur_state));
1167 }
1168
1169 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1170                           enum pipe pipe, bool state)
1171 {
1172         int reg;
1173         u32 val;
1174         bool cur_state;
1175         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1176                                                                       pipe);
1177
1178         if (HAS_DDI(dev_priv->dev)) {
1179                 /* DDI does not have a specific FDI_TX register */
1180                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1181                 val = I915_READ(reg);
1182                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1183         } else {
1184                 reg = FDI_TX_CTL(pipe);
1185                 val = I915_READ(reg);
1186                 cur_state = !!(val & FDI_TX_ENABLE);
1187         }
1188         I915_STATE_WARN(cur_state != state,
1189              "FDI TX state assertion failure (expected %s, current %s)\n",
1190              state_string(state), state_string(cur_state));
1191 }
1192 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1193 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1194
1195 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1196                           enum pipe pipe, bool state)
1197 {
1198         int reg;
1199         u32 val;
1200         bool cur_state;
1201
1202         reg = FDI_RX_CTL(pipe);
1203         val = I915_READ(reg);
1204         cur_state = !!(val & FDI_RX_ENABLE);
1205         I915_STATE_WARN(cur_state != state,
1206              "FDI RX state assertion failure (expected %s, current %s)\n",
1207              state_string(state), state_string(cur_state));
1208 }
1209 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1210 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1211
1212 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1213                                       enum pipe pipe)
1214 {
1215         int reg;
1216         u32 val;
1217
1218         /* ILK FDI PLL is always enabled */
1219         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1220                 return;
1221
1222         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1223         if (HAS_DDI(dev_priv->dev))
1224                 return;
1225
1226         reg = FDI_TX_CTL(pipe);
1227         val = I915_READ(reg);
1228         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1229 }
1230
1231 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1232                        enum pipe pipe, bool state)
1233 {
1234         int reg;
1235         u32 val;
1236         bool cur_state;
1237
1238         reg = FDI_RX_CTL(pipe);
1239         val = I915_READ(reg);
1240         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1241         I915_STATE_WARN(cur_state != state,
1242              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1243              state_string(state), state_string(cur_state));
1244 }
1245
1246 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1247                            enum pipe pipe)
1248 {
1249         struct drm_device *dev = dev_priv->dev;
1250         int pp_reg;
1251         u32 val;
1252         enum pipe panel_pipe = PIPE_A;
1253         bool locked = true;
1254
1255         if (WARN_ON(HAS_DDI(dev)))
1256                 return;
1257
1258         if (HAS_PCH_SPLIT(dev)) {
1259                 u32 port_sel;
1260
1261                 pp_reg = PCH_PP_CONTROL;
1262                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1263
1264                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1265                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1266                         panel_pipe = PIPE_B;
1267                 /* XXX: else fix for eDP */
1268         } else if (IS_VALLEYVIEW(dev)) {
1269                 /* presumably write lock depends on pipe, not port select */
1270                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1271                 panel_pipe = pipe;
1272         } else {
1273                 pp_reg = PP_CONTROL;
1274                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1275                         panel_pipe = PIPE_B;
1276         }
1277
1278         val = I915_READ(pp_reg);
1279         if (!(val & PANEL_POWER_ON) ||
1280             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1281                 locked = false;
1282
1283         I915_STATE_WARN(panel_pipe == pipe && locked,
1284              "panel assertion failure, pipe %c regs locked\n",
1285              pipe_name(pipe));
1286 }
1287
1288 static void assert_cursor(struct drm_i915_private *dev_priv,
1289                           enum pipe pipe, bool state)
1290 {
1291         struct drm_device *dev = dev_priv->dev;
1292         bool cur_state;
1293
1294         if (IS_845G(dev) || IS_I865G(dev))
1295                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1296         else
1297                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1298
1299         I915_STATE_WARN(cur_state != state,
1300              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1301              pipe_name(pipe), state_string(state), state_string(cur_state));
1302 }
1303 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1304 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1305
1306 void assert_pipe(struct drm_i915_private *dev_priv,
1307                  enum pipe pipe, bool state)
1308 {
1309         int reg;
1310         u32 val;
1311         bool cur_state;
1312         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1313                                                                       pipe);
1314
1315         /* if we need the pipe quirk it must be always on */
1316         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1317             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1318                 state = true;
1319
1320         if (!intel_display_power_is_enabled(dev_priv,
1321                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1322                 cur_state = false;
1323         } else {
1324                 reg = PIPECONF(cpu_transcoder);
1325                 val = I915_READ(reg);
1326                 cur_state = !!(val & PIPECONF_ENABLE);
1327         }
1328
1329         I915_STATE_WARN(cur_state != state,
1330              "pipe %c assertion failure (expected %s, current %s)\n",
1331              pipe_name(pipe), state_string(state), state_string(cur_state));
1332 }
1333
1334 static void assert_plane(struct drm_i915_private *dev_priv,
1335                          enum plane plane, bool state)
1336 {
1337         int reg;
1338         u32 val;
1339         bool cur_state;
1340
1341         reg = DSPCNTR(plane);
1342         val = I915_READ(reg);
1343         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1344         I915_STATE_WARN(cur_state != state,
1345              "plane %c assertion failure (expected %s, current %s)\n",
1346              plane_name(plane), state_string(state), state_string(cur_state));
1347 }
1348
1349 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1350 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1351
1352 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1353                                    enum pipe pipe)
1354 {
1355         struct drm_device *dev = dev_priv->dev;
1356         int reg, i;
1357         u32 val;
1358         int cur_pipe;
1359
1360         /* Primary planes are fixed to pipes on gen4+ */
1361         if (INTEL_INFO(dev)->gen >= 4) {
1362                 reg = DSPCNTR(pipe);
1363                 val = I915_READ(reg);
1364                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1365                      "plane %c assertion failure, should be disabled but not\n",
1366                      plane_name(pipe));
1367                 return;
1368         }
1369
1370         /* Need to check both planes against the pipe */
1371         for_each_pipe(dev_priv, i) {
1372                 reg = DSPCNTR(i);
1373                 val = I915_READ(reg);
1374                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1375                         DISPPLANE_SEL_PIPE_SHIFT;
1376                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1377                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1378                      plane_name(i), pipe_name(pipe));
1379         }
1380 }
1381
1382 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1383                                     enum pipe pipe)
1384 {
1385         struct drm_device *dev = dev_priv->dev;
1386         int reg, sprite;
1387         u32 val;
1388
1389         if (INTEL_INFO(dev)->gen >= 9) {
1390                 for_each_sprite(dev_priv, pipe, sprite) {
1391                         val = I915_READ(PLANE_CTL(pipe, sprite));
1392                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1393                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1394                              sprite, pipe_name(pipe));
1395                 }
1396         } else if (IS_VALLEYVIEW(dev)) {
1397                 for_each_sprite(dev_priv, pipe, sprite) {
1398                         reg = SPCNTR(pipe, sprite);
1399                         val = I915_READ(reg);
1400                         I915_STATE_WARN(val & SP_ENABLE,
1401                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1402                              sprite_name(pipe, sprite), pipe_name(pipe));
1403                 }
1404         } else if (INTEL_INFO(dev)->gen >= 7) {
1405                 reg = SPRCTL(pipe);
1406                 val = I915_READ(reg);
1407                 I915_STATE_WARN(val & SPRITE_ENABLE,
1408                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1409                      plane_name(pipe), pipe_name(pipe));
1410         } else if (INTEL_INFO(dev)->gen >= 5) {
1411                 reg = DVSCNTR(pipe);
1412                 val = I915_READ(reg);
1413                 I915_STATE_WARN(val & DVS_ENABLE,
1414                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1415                      plane_name(pipe), pipe_name(pipe));
1416         }
1417 }
1418
1419 static void assert_vblank_disabled(struct drm_crtc *crtc)
1420 {
1421         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1422                 drm_crtc_vblank_put(crtc);
1423 }
1424
1425 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1426 {
1427         u32 val;
1428         bool enabled;
1429
1430         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1431
1432         val = I915_READ(PCH_DREF_CONTROL);
1433         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1434                             DREF_SUPERSPREAD_SOURCE_MASK));
1435         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1436 }
1437
1438 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1439                                            enum pipe pipe)
1440 {
1441         int reg;
1442         u32 val;
1443         bool enabled;
1444
1445         reg = PCH_TRANSCONF(pipe);
1446         val = I915_READ(reg);
1447         enabled = !!(val & TRANS_ENABLE);
1448         I915_STATE_WARN(enabled,
1449              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1450              pipe_name(pipe));
1451 }
1452
1453 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1454                             enum pipe pipe, u32 port_sel, u32 val)
1455 {
1456         if ((val & DP_PORT_EN) == 0)
1457                 return false;
1458
1459         if (HAS_PCH_CPT(dev_priv->dev)) {
1460                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1461                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1462                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1463                         return false;
1464         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1465                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1466                         return false;
1467         } else {
1468                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1469                         return false;
1470         }
1471         return true;
1472 }
1473
1474 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1475                               enum pipe pipe, u32 val)
1476 {
1477         if ((val & SDVO_ENABLE) == 0)
1478                 return false;
1479
1480         if (HAS_PCH_CPT(dev_priv->dev)) {
1481                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1482                         return false;
1483         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1484                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1485                         return false;
1486         } else {
1487                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1488                         return false;
1489         }
1490         return true;
1491 }
1492
1493 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1494                               enum pipe pipe, u32 val)
1495 {
1496         if ((val & LVDS_PORT_EN) == 0)
1497                 return false;
1498
1499         if (HAS_PCH_CPT(dev_priv->dev)) {
1500                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1501                         return false;
1502         } else {
1503                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1504                         return false;
1505         }
1506         return true;
1507 }
1508
1509 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1510                               enum pipe pipe, u32 val)
1511 {
1512         if ((val & ADPA_DAC_ENABLE) == 0)
1513                 return false;
1514         if (HAS_PCH_CPT(dev_priv->dev)) {
1515                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1516                         return false;
1517         } else {
1518                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1519                         return false;
1520         }
1521         return true;
1522 }
1523
1524 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1525                                    enum pipe pipe, int reg, u32 port_sel)
1526 {
1527         u32 val = I915_READ(reg);
1528         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1529              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1530              reg, pipe_name(pipe));
1531
1532         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1533              && (val & DP_PIPEB_SELECT),
1534              "IBX PCH dp port still using transcoder B\n");
1535 }
1536
1537 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1538                                      enum pipe pipe, int reg)
1539 {
1540         u32 val = I915_READ(reg);
1541         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1542              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1543              reg, pipe_name(pipe));
1544
1545         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1546              && (val & SDVO_PIPE_B_SELECT),
1547              "IBX PCH hdmi port still using transcoder B\n");
1548 }
1549
1550 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1551                                       enum pipe pipe)
1552 {
1553         int reg;
1554         u32 val;
1555
1556         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1557         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1558         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1559
1560         reg = PCH_ADPA;
1561         val = I915_READ(reg);
1562         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1563              "PCH VGA enabled on transcoder %c, should be disabled\n",
1564              pipe_name(pipe));
1565
1566         reg = PCH_LVDS;
1567         val = I915_READ(reg);
1568         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1569              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1570              pipe_name(pipe));
1571
1572         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1573         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1574         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1575 }
1576
1577 static void intel_init_dpio(struct drm_device *dev)
1578 {
1579         struct drm_i915_private *dev_priv = dev->dev_private;
1580
1581         if (!IS_VALLEYVIEW(dev))
1582                 return;
1583
1584         /*
1585          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1586          * CHV x1 PHY (DP/HDMI D)
1587          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1588          */
1589         if (IS_CHERRYVIEW(dev)) {
1590                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1591                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1592         } else {
1593                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1594         }
1595 }
1596
1597 static void vlv_enable_pll(struct intel_crtc *crtc,
1598                            const struct intel_crtc_state *pipe_config)
1599 {
1600         struct drm_device *dev = crtc->base.dev;
1601         struct drm_i915_private *dev_priv = dev->dev_private;
1602         int reg = DPLL(crtc->pipe);
1603         u32 dpll = pipe_config->dpll_hw_state.dpll;
1604
1605         assert_pipe_disabled(dev_priv, crtc->pipe);
1606
1607         /* No really, not for ILK+ */
1608         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610         /* PLL is protected by panel, make sure we can write it */
1611         if (IS_MOBILE(dev_priv->dev))
1612                 assert_panel_unlocked(dev_priv, crtc->pipe);
1613
1614         I915_WRITE(reg, dpll);
1615         POSTING_READ(reg);
1616         udelay(150);
1617
1618         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
1621         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1622         POSTING_READ(DPLL_MD(crtc->pipe));
1623
1624         /* We do this three times for luck */
1625         I915_WRITE(reg, dpll);
1626         POSTING_READ(reg);
1627         udelay(150); /* wait for warmup */
1628         I915_WRITE(reg, dpll);
1629         POSTING_READ(reg);
1630         udelay(150); /* wait for warmup */
1631         I915_WRITE(reg, dpll);
1632         POSTING_READ(reg);
1633         udelay(150); /* wait for warmup */
1634 }
1635
1636 static void chv_enable_pll(struct intel_crtc *crtc,
1637                            const struct intel_crtc_state *pipe_config)
1638 {
1639         struct drm_device *dev = crtc->base.dev;
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         int pipe = crtc->pipe;
1642         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1643         u32 tmp;
1644
1645         assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
1649         mutex_lock(&dev_priv->sb_lock);
1650
1651         /* Enable back the 10bit clock to display controller */
1652         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653         tmp |= DPIO_DCLKP_EN;
1654         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
1656         mutex_unlock(&dev_priv->sb_lock);
1657
1658         /*
1659          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660          */
1661         udelay(1);
1662
1663         /* Enable PLL */
1664         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1665
1666         /* Check PLL is locked */
1667         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1668                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
1670         /* not sure when this should be written */
1671         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1672         POSTING_READ(DPLL_MD(pipe));
1673 }
1674
1675 static int intel_num_dvo_pipes(struct drm_device *dev)
1676 {
1677         struct intel_crtc *crtc;
1678         int count = 0;
1679
1680         for_each_intel_crtc(dev, crtc)
1681                 count += crtc->base.state->active &&
1682                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1683
1684         return count;
1685 }
1686
1687 static void i9xx_enable_pll(struct intel_crtc *crtc)
1688 {
1689         struct drm_device *dev = crtc->base.dev;
1690         struct drm_i915_private *dev_priv = dev->dev_private;
1691         int reg = DPLL(crtc->pipe);
1692         u32 dpll = crtc->config->dpll_hw_state.dpll;
1693
1694         assert_pipe_disabled(dev_priv, crtc->pipe);
1695
1696         /* No really, not for ILK+ */
1697         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1698
1699         /* PLL is protected by panel, make sure we can write it */
1700         if (IS_MOBILE(dev) && !IS_I830(dev))
1701                 assert_panel_unlocked(dev_priv, crtc->pipe);
1702
1703         /* Enable DVO 2x clock on both PLLs if necessary */
1704         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705                 /*
1706                  * It appears to be important that we don't enable this
1707                  * for the current pipe before otherwise configuring the
1708                  * PLL. No idea how this should be handled if multiple
1709                  * DVO outputs are enabled simultaneosly.
1710                  */
1711                 dpll |= DPLL_DVO_2X_MODE;
1712                 I915_WRITE(DPLL(!crtc->pipe),
1713                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714         }
1715
1716         /* Wait for the clocks to stabilize. */
1717         POSTING_READ(reg);
1718         udelay(150);
1719
1720         if (INTEL_INFO(dev)->gen >= 4) {
1721                 I915_WRITE(DPLL_MD(crtc->pipe),
1722                            crtc->config->dpll_hw_state.dpll_md);
1723         } else {
1724                 /* The pixel multiplier can only be updated once the
1725                  * DPLL is enabled and the clocks are stable.
1726                  *
1727                  * So write it again.
1728                  */
1729                 I915_WRITE(reg, dpll);
1730         }
1731
1732         /* We do this three times for luck */
1733         I915_WRITE(reg, dpll);
1734         POSTING_READ(reg);
1735         udelay(150); /* wait for warmup */
1736         I915_WRITE(reg, dpll);
1737         POSTING_READ(reg);
1738         udelay(150); /* wait for warmup */
1739         I915_WRITE(reg, dpll);
1740         POSTING_READ(reg);
1741         udelay(150); /* wait for warmup */
1742 }
1743
1744 /**
1745  * i9xx_disable_pll - disable a PLL
1746  * @dev_priv: i915 private structure
1747  * @pipe: pipe PLL to disable
1748  *
1749  * Disable the PLL for @pipe, making sure the pipe is off first.
1750  *
1751  * Note!  This is for pre-ILK only.
1752  */
1753 static void i9xx_disable_pll(struct intel_crtc *crtc)
1754 {
1755         struct drm_device *dev = crtc->base.dev;
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757         enum pipe pipe = crtc->pipe;
1758
1759         /* Disable DVO 2x clock on both PLLs if necessary */
1760         if (IS_I830(dev) &&
1761             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1762             !intel_num_dvo_pipes(dev)) {
1763                 I915_WRITE(DPLL(PIPE_B),
1764                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1765                 I915_WRITE(DPLL(PIPE_A),
1766                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1767         }
1768
1769         /* Don't disable pipe or pipe PLLs if needed */
1770         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1771             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1772                 return;
1773
1774         /* Make sure the pipe isn't still relying on us */
1775         assert_pipe_disabled(dev_priv, pipe);
1776
1777         I915_WRITE(DPLL(pipe), 0);
1778         POSTING_READ(DPLL(pipe));
1779 }
1780
1781 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1782 {
1783         u32 val = 0;
1784
1785         /* Make sure the pipe isn't still relying on us */
1786         assert_pipe_disabled(dev_priv, pipe);
1787
1788         /*
1789          * Leave integrated clock source and reference clock enabled for pipe B.
1790          * The latter is needed for VGA hotplug / manual detection.
1791          */
1792         if (pipe == PIPE_B)
1793                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1794         I915_WRITE(DPLL(pipe), val);
1795         POSTING_READ(DPLL(pipe));
1796
1797 }
1798
1799 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1800 {
1801         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1802         u32 val;
1803
1804         /* Make sure the pipe isn't still relying on us */
1805         assert_pipe_disabled(dev_priv, pipe);
1806
1807         /* Set PLL en = 0 */
1808         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1809         if (pipe != PIPE_A)
1810                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1811         I915_WRITE(DPLL(pipe), val);
1812         POSTING_READ(DPLL(pipe));
1813
1814         mutex_lock(&dev_priv->sb_lock);
1815
1816         /* Disable 10bit clock to display controller */
1817         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1818         val &= ~DPIO_DCLKP_EN;
1819         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1820
1821         /* disable left/right clock distribution */
1822         if (pipe != PIPE_B) {
1823                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1824                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1825                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1826         } else {
1827                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1828                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1829                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1830         }
1831
1832         mutex_unlock(&dev_priv->sb_lock);
1833 }
1834
1835 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1836                          struct intel_digital_port *dport,
1837                          unsigned int expected_mask)
1838 {
1839         u32 port_mask;
1840         int dpll_reg;
1841
1842         switch (dport->port) {
1843         case PORT_B:
1844                 port_mask = DPLL_PORTB_READY_MASK;
1845                 dpll_reg = DPLL(0);
1846                 break;
1847         case PORT_C:
1848                 port_mask = DPLL_PORTC_READY_MASK;
1849                 dpll_reg = DPLL(0);
1850                 expected_mask <<= 4;
1851                 break;
1852         case PORT_D:
1853                 port_mask = DPLL_PORTD_READY_MASK;
1854                 dpll_reg = DPIO_PHY_STATUS;
1855                 break;
1856         default:
1857                 BUG();
1858         }
1859
1860         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1861                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1862                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1863 }
1864
1865 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1866 {
1867         struct drm_device *dev = crtc->base.dev;
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1870
1871         if (WARN_ON(pll == NULL))
1872                 return;
1873
1874         WARN_ON(!pll->config.crtc_mask);
1875         if (pll->active == 0) {
1876                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1877                 WARN_ON(pll->on);
1878                 assert_shared_dpll_disabled(dev_priv, pll);
1879
1880                 pll->mode_set(dev_priv, pll);
1881         }
1882 }
1883
1884 /**
1885  * intel_enable_shared_dpll - enable PCH PLL
1886  * @dev_priv: i915 private structure
1887  * @pipe: pipe PLL to enable
1888  *
1889  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1890  * drives the transcoder clock.
1891  */
1892 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1893 {
1894         struct drm_device *dev = crtc->base.dev;
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1897
1898         if (WARN_ON(pll == NULL))
1899                 return;
1900
1901         if (WARN_ON(pll->config.crtc_mask == 0))
1902                 return;
1903
1904         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1905                       pll->name, pll->active, pll->on,
1906                       crtc->base.base.id);
1907
1908         if (pll->active++) {
1909                 WARN_ON(!pll->on);
1910                 assert_shared_dpll_enabled(dev_priv, pll);
1911                 return;
1912         }
1913         WARN_ON(pll->on);
1914
1915         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1916
1917         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1918         pll->enable(dev_priv, pll);
1919         pll->on = true;
1920 }
1921
1922 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1923 {
1924         struct drm_device *dev = crtc->base.dev;
1925         struct drm_i915_private *dev_priv = dev->dev_private;
1926         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1927
1928         /* PCH only available on ILK+ */
1929         BUG_ON(INTEL_INFO(dev)->gen < 5);
1930         if (pll == NULL)
1931                 return;
1932
1933         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1934                 return;
1935
1936         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1937                       pll->name, pll->active, pll->on,
1938                       crtc->base.base.id);
1939
1940         if (WARN_ON(pll->active == 0)) {
1941                 assert_shared_dpll_disabled(dev_priv, pll);
1942                 return;
1943         }
1944
1945         assert_shared_dpll_enabled(dev_priv, pll);
1946         WARN_ON(!pll->on);
1947         if (--pll->active)
1948                 return;
1949
1950         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1951         pll->disable(dev_priv, pll);
1952         pll->on = false;
1953
1954         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1955 }
1956
1957 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1958                                            enum pipe pipe)
1959 {
1960         struct drm_device *dev = dev_priv->dev;
1961         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1962         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1963         uint32_t reg, val, pipeconf_val;
1964
1965         /* PCH only available on ILK+ */
1966         BUG_ON(!HAS_PCH_SPLIT(dev));
1967
1968         /* Make sure PCH DPLL is enabled */
1969         assert_shared_dpll_enabled(dev_priv,
1970                                    intel_crtc_to_shared_dpll(intel_crtc));
1971
1972         /* FDI must be feeding us bits for PCH ports */
1973         assert_fdi_tx_enabled(dev_priv, pipe);
1974         assert_fdi_rx_enabled(dev_priv, pipe);
1975
1976         if (HAS_PCH_CPT(dev)) {
1977                 /* Workaround: Set the timing override bit before enabling the
1978                  * pch transcoder. */
1979                 reg = TRANS_CHICKEN2(pipe);
1980                 val = I915_READ(reg);
1981                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1982                 I915_WRITE(reg, val);
1983         }
1984
1985         reg = PCH_TRANSCONF(pipe);
1986         val = I915_READ(reg);
1987         pipeconf_val = I915_READ(PIPECONF(pipe));
1988
1989         if (HAS_PCH_IBX(dev_priv->dev)) {
1990                 /*
1991                  * Make the BPC in transcoder be consistent with
1992                  * that in pipeconf reg. For HDMI we must use 8bpc
1993                  * here for both 8bpc and 12bpc.
1994                  */
1995                 val &= ~PIPECONF_BPC_MASK;
1996                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1997                         val |= PIPECONF_8BPC;
1998                 else
1999                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2000         }
2001
2002         val &= ~TRANS_INTERLACE_MASK;
2003         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2004                 if (HAS_PCH_IBX(dev_priv->dev) &&
2005                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2006                         val |= TRANS_LEGACY_INTERLACED_ILK;
2007                 else
2008                         val |= TRANS_INTERLACED;
2009         else
2010                 val |= TRANS_PROGRESSIVE;
2011
2012         I915_WRITE(reg, val | TRANS_ENABLE);
2013         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2014                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2015 }
2016
2017 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2018                                       enum transcoder cpu_transcoder)
2019 {
2020         u32 val, pipeconf_val;
2021
2022         /* PCH only available on ILK+ */
2023         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2024
2025         /* FDI must be feeding us bits for PCH ports */
2026         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2027         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2028
2029         /* Workaround: set timing override bit. */
2030         val = I915_READ(_TRANSA_CHICKEN2);
2031         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2032         I915_WRITE(_TRANSA_CHICKEN2, val);
2033
2034         val = TRANS_ENABLE;
2035         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2036
2037         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2038             PIPECONF_INTERLACED_ILK)
2039                 val |= TRANS_INTERLACED;
2040         else
2041                 val |= TRANS_PROGRESSIVE;
2042
2043         I915_WRITE(LPT_TRANSCONF, val);
2044         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2045                 DRM_ERROR("Failed to enable PCH transcoder\n");
2046 }
2047
2048 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2049                                             enum pipe pipe)
2050 {
2051         struct drm_device *dev = dev_priv->dev;
2052         uint32_t reg, val;
2053
2054         /* FDI relies on the transcoder */
2055         assert_fdi_tx_disabled(dev_priv, pipe);
2056         assert_fdi_rx_disabled(dev_priv, pipe);
2057
2058         /* Ports must be off as well */
2059         assert_pch_ports_disabled(dev_priv, pipe);
2060
2061         reg = PCH_TRANSCONF(pipe);
2062         val = I915_READ(reg);
2063         val &= ~TRANS_ENABLE;
2064         I915_WRITE(reg, val);
2065         /* wait for PCH transcoder off, transcoder state */
2066         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2067                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2068
2069         if (!HAS_PCH_IBX(dev)) {
2070                 /* Workaround: Clear the timing override chicken bit again. */
2071                 reg = TRANS_CHICKEN2(pipe);
2072                 val = I915_READ(reg);
2073                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2074                 I915_WRITE(reg, val);
2075         }
2076 }
2077
2078 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2079 {
2080         u32 val;
2081
2082         val = I915_READ(LPT_TRANSCONF);
2083         val &= ~TRANS_ENABLE;
2084         I915_WRITE(LPT_TRANSCONF, val);
2085         /* wait for PCH transcoder off, transcoder state */
2086         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2087                 DRM_ERROR("Failed to disable PCH transcoder\n");
2088
2089         /* Workaround: clear timing override bit. */
2090         val = I915_READ(_TRANSA_CHICKEN2);
2091         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2092         I915_WRITE(_TRANSA_CHICKEN2, val);
2093 }
2094
2095 /**
2096  * intel_enable_pipe - enable a pipe, asserting requirements
2097  * @crtc: crtc responsible for the pipe
2098  *
2099  * Enable @crtc's pipe, making sure that various hardware specific requirements
2100  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2101  */
2102 static void intel_enable_pipe(struct intel_crtc *crtc)
2103 {
2104         struct drm_device *dev = crtc->base.dev;
2105         struct drm_i915_private *dev_priv = dev->dev_private;
2106         enum pipe pipe = crtc->pipe;
2107         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2108                                                                       pipe);
2109         enum pipe pch_transcoder;
2110         int reg;
2111         u32 val;
2112
2113         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2114
2115         assert_planes_disabled(dev_priv, pipe);
2116         assert_cursor_disabled(dev_priv, pipe);
2117         assert_sprites_disabled(dev_priv, pipe);
2118
2119         if (HAS_PCH_LPT(dev_priv->dev))
2120                 pch_transcoder = TRANSCODER_A;
2121         else
2122                 pch_transcoder = pipe;
2123
2124         /*
2125          * A pipe without a PLL won't actually be able to drive bits from
2126          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2127          * need the check.
2128          */
2129         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2130                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2131                         assert_dsi_pll_enabled(dev_priv);
2132                 else
2133                         assert_pll_enabled(dev_priv, pipe);
2134         else {
2135                 if (crtc->config->has_pch_encoder) {
2136                         /* if driving the PCH, we need FDI enabled */
2137                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2138                         assert_fdi_tx_pll_enabled(dev_priv,
2139                                                   (enum pipe) cpu_transcoder);
2140                 }
2141                 /* FIXME: assert CPU port conditions for SNB+ */
2142         }
2143
2144         reg = PIPECONF(cpu_transcoder);
2145         val = I915_READ(reg);
2146         if (val & PIPECONF_ENABLE) {
2147                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2148                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2149                 return;
2150         }
2151
2152         I915_WRITE(reg, val | PIPECONF_ENABLE);
2153         POSTING_READ(reg);
2154 }
2155
2156 /**
2157  * intel_disable_pipe - disable a pipe, asserting requirements
2158  * @crtc: crtc whose pipes is to be disabled
2159  *
2160  * Disable the pipe of @crtc, making sure that various hardware
2161  * specific requirements are met, if applicable, e.g. plane
2162  * disabled, panel fitter off, etc.
2163  *
2164  * Will wait until the pipe has shut down before returning.
2165  */
2166 static void intel_disable_pipe(struct intel_crtc *crtc)
2167 {
2168         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2169         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2170         enum pipe pipe = crtc->pipe;
2171         int reg;
2172         u32 val;
2173
2174         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2175
2176         /*
2177          * Make sure planes won't keep trying to pump pixels to us,
2178          * or we might hang the display.
2179          */
2180         assert_planes_disabled(dev_priv, pipe);
2181         assert_cursor_disabled(dev_priv, pipe);
2182         assert_sprites_disabled(dev_priv, pipe);
2183
2184         reg = PIPECONF(cpu_transcoder);
2185         val = I915_READ(reg);
2186         if ((val & PIPECONF_ENABLE) == 0)
2187                 return;
2188
2189         /*
2190          * Double wide has implications for planes
2191          * so best keep it disabled when not needed.
2192          */
2193         if (crtc->config->double_wide)
2194                 val &= ~PIPECONF_DOUBLE_WIDE;
2195
2196         /* Don't disable pipe or pipe PLLs if needed */
2197         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2198             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2199                 val &= ~PIPECONF_ENABLE;
2200
2201         I915_WRITE(reg, val);
2202         if ((val & PIPECONF_ENABLE) == 0)
2203                 intel_wait_for_pipe_off(crtc);
2204 }
2205
2206 static bool need_vtd_wa(struct drm_device *dev)
2207 {
2208 #ifdef CONFIG_INTEL_IOMMU
2209         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2210                 return true;
2211 #endif
2212         return false;
2213 }
2214
2215 unsigned int
2216 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2217                   uint64_t fb_format_modifier)
2218 {
2219         unsigned int tile_height;
2220         uint32_t pixel_bytes;
2221
2222         switch (fb_format_modifier) {
2223         case DRM_FORMAT_MOD_NONE:
2224                 tile_height = 1;
2225                 break;
2226         case I915_FORMAT_MOD_X_TILED:
2227                 tile_height = IS_GEN2(dev) ? 16 : 8;
2228                 break;
2229         case I915_FORMAT_MOD_Y_TILED:
2230                 tile_height = 32;
2231                 break;
2232         case I915_FORMAT_MOD_Yf_TILED:
2233                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2234                 switch (pixel_bytes) {
2235                 default:
2236                 case 1:
2237                         tile_height = 64;
2238                         break;
2239                 case 2:
2240                 case 4:
2241                         tile_height = 32;
2242                         break;
2243                 case 8:
2244                         tile_height = 16;
2245                         break;
2246                 case 16:
2247                         WARN_ONCE(1,
2248                                   "128-bit pixels are not supported for display!");
2249                         tile_height = 16;
2250                         break;
2251                 }
2252                 break;
2253         default:
2254                 MISSING_CASE(fb_format_modifier);
2255                 tile_height = 1;
2256                 break;
2257         }
2258
2259         return tile_height;
2260 }
2261
2262 unsigned int
2263 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2264                       uint32_t pixel_format, uint64_t fb_format_modifier)
2265 {
2266         return ALIGN(height, intel_tile_height(dev, pixel_format,
2267                                                fb_format_modifier));
2268 }
2269
2270 static int
2271 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2272                         const struct drm_plane_state *plane_state)
2273 {
2274         struct intel_rotation_info *info = &view->rotation_info;
2275         unsigned int tile_height, tile_pitch;
2276
2277         *view = i915_ggtt_view_normal;
2278
2279         if (!plane_state)
2280                 return 0;
2281
2282         if (!intel_rotation_90_or_270(plane_state->rotation))
2283                 return 0;
2284
2285         *view = i915_ggtt_view_rotated;
2286
2287         info->height = fb->height;
2288         info->pixel_format = fb->pixel_format;
2289         info->pitch = fb->pitches[0];
2290         info->fb_modifier = fb->modifier[0];
2291
2292         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2293                                         fb->modifier[0]);
2294         tile_pitch = PAGE_SIZE / tile_height;
2295         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2296         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2297         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2298
2299         return 0;
2300 }
2301
2302 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2303 {
2304         if (INTEL_INFO(dev_priv)->gen >= 9)
2305                 return 256 * 1024;
2306         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2307                  IS_VALLEYVIEW(dev_priv))
2308                 return 128 * 1024;
2309         else if (INTEL_INFO(dev_priv)->gen >= 4)
2310                 return 4 * 1024;
2311         else
2312                 return 0;
2313 }
2314
2315 int
2316 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2317                            struct drm_framebuffer *fb,
2318                            const struct drm_plane_state *plane_state,
2319                            struct intel_engine_cs *pipelined,
2320                            struct drm_i915_gem_request **pipelined_request)
2321 {
2322         struct drm_device *dev = fb->dev;
2323         struct drm_i915_private *dev_priv = dev->dev_private;
2324         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2325         struct i915_ggtt_view view;
2326         u32 alignment;
2327         int ret;
2328
2329         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2330
2331         switch (fb->modifier[0]) {
2332         case DRM_FORMAT_MOD_NONE:
2333                 alignment = intel_linear_alignment(dev_priv);
2334                 break;
2335         case I915_FORMAT_MOD_X_TILED:
2336                 if (INTEL_INFO(dev)->gen >= 9)
2337                         alignment = 256 * 1024;
2338                 else {
2339                         /* pin() will align the object as required by fence */
2340                         alignment = 0;
2341                 }
2342                 break;
2343         case I915_FORMAT_MOD_Y_TILED:
2344         case I915_FORMAT_MOD_Yf_TILED:
2345                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2346                           "Y tiling bo slipped through, driver bug!\n"))
2347                         return -EINVAL;
2348                 alignment = 1 * 1024 * 1024;
2349                 break;
2350         default:
2351                 MISSING_CASE(fb->modifier[0]);
2352                 return -EINVAL;
2353         }
2354
2355         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2356         if (ret)
2357                 return ret;
2358
2359         /* Note that the w/a also requires 64 PTE of padding following the
2360          * bo. We currently fill all unused PTE with the shadow page and so
2361          * we should always have valid PTE following the scanout preventing
2362          * the VT-d warning.
2363          */
2364         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2365                 alignment = 256 * 1024;
2366
2367         /*
2368          * Global gtt pte registers are special registers which actually forward
2369          * writes to a chunk of system memory. Which means that there is no risk
2370          * that the register values disappear as soon as we call
2371          * intel_runtime_pm_put(), so it is correct to wrap only the
2372          * pin/unpin/fence and not more.
2373          */
2374         intel_runtime_pm_get(dev_priv);
2375
2376         dev_priv->mm.interruptible = false;
2377         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2378                                                    pipelined_request, &view);
2379         if (ret)
2380                 goto err_interruptible;
2381
2382         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2383          * fence, whereas 965+ only requires a fence if using
2384          * framebuffer compression.  For simplicity, we always install
2385          * a fence as the cost is not that onerous.
2386          */
2387         ret = i915_gem_object_get_fence(obj);
2388         if (ret)
2389                 goto err_unpin;
2390
2391         i915_gem_object_pin_fence(obj);
2392
2393         dev_priv->mm.interruptible = true;
2394         intel_runtime_pm_put(dev_priv);
2395         return 0;
2396
2397 err_unpin:
2398         i915_gem_object_unpin_from_display_plane(obj, &view);
2399 err_interruptible:
2400         dev_priv->mm.interruptible = true;
2401         intel_runtime_pm_put(dev_priv);
2402         return ret;
2403 }
2404
2405 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2406                                const struct drm_plane_state *plane_state)
2407 {
2408         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2409         struct i915_ggtt_view view;
2410         int ret;
2411
2412         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2413
2414         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2415         WARN_ONCE(ret, "Couldn't get view from plane state!");
2416
2417         i915_gem_object_unpin_fence(obj);
2418         i915_gem_object_unpin_from_display_plane(obj, &view);
2419 }
2420
2421 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2422  * is assumed to be a power-of-two. */
2423 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2424                                              int *x, int *y,
2425                                              unsigned int tiling_mode,
2426                                              unsigned int cpp,
2427                                              unsigned int pitch)
2428 {
2429         if (tiling_mode != I915_TILING_NONE) {
2430                 unsigned int tile_rows, tiles;
2431
2432                 tile_rows = *y / 8;
2433                 *y %= 8;
2434
2435                 tiles = *x / (512/cpp);
2436                 *x %= 512/cpp;
2437
2438                 return tile_rows * pitch * 8 + tiles * 4096;
2439         } else {
2440                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2441                 unsigned int offset;
2442
2443                 offset = *y * pitch + *x * cpp;
2444                 *y = (offset & alignment) / pitch;
2445                 *x = ((offset & alignment) - *y * pitch) / cpp;
2446                 return offset & ~alignment;
2447         }
2448 }
2449
2450 static int i9xx_format_to_fourcc(int format)
2451 {
2452         switch (format) {
2453         case DISPPLANE_8BPP:
2454                 return DRM_FORMAT_C8;
2455         case DISPPLANE_BGRX555:
2456                 return DRM_FORMAT_XRGB1555;
2457         case DISPPLANE_BGRX565:
2458                 return DRM_FORMAT_RGB565;
2459         default:
2460         case DISPPLANE_BGRX888:
2461                 return DRM_FORMAT_XRGB8888;
2462         case DISPPLANE_RGBX888:
2463                 return DRM_FORMAT_XBGR8888;
2464         case DISPPLANE_BGRX101010:
2465                 return DRM_FORMAT_XRGB2101010;
2466         case DISPPLANE_RGBX101010:
2467                 return DRM_FORMAT_XBGR2101010;
2468         }
2469 }
2470
2471 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2472 {
2473         switch (format) {
2474         case PLANE_CTL_FORMAT_RGB_565:
2475                 return DRM_FORMAT_RGB565;
2476         default:
2477         case PLANE_CTL_FORMAT_XRGB_8888:
2478                 if (rgb_order) {
2479                         if (alpha)
2480                                 return DRM_FORMAT_ABGR8888;
2481                         else
2482                                 return DRM_FORMAT_XBGR8888;
2483                 } else {
2484                         if (alpha)
2485                                 return DRM_FORMAT_ARGB8888;
2486                         else
2487                                 return DRM_FORMAT_XRGB8888;
2488                 }
2489         case PLANE_CTL_FORMAT_XRGB_2101010:
2490                 if (rgb_order)
2491                         return DRM_FORMAT_XBGR2101010;
2492                 else
2493                         return DRM_FORMAT_XRGB2101010;
2494         }
2495 }
2496
2497 static bool
2498 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2499                               struct intel_initial_plane_config *plane_config)
2500 {
2501         struct drm_device *dev = crtc->base.dev;
2502         struct drm_i915_gem_object *obj = NULL;
2503         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2504         struct drm_framebuffer *fb = &plane_config->fb->base;
2505         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2506         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2507                                     PAGE_SIZE);
2508
2509         size_aligned -= base_aligned;
2510
2511         if (plane_config->size == 0)
2512                 return false;
2513
2514         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2515                                                              base_aligned,
2516                                                              base_aligned,
2517                                                              size_aligned);
2518         if (!obj)
2519                 return false;
2520
2521         obj->tiling_mode = plane_config->tiling;
2522         if (obj->tiling_mode == I915_TILING_X)
2523                 obj->stride = fb->pitches[0];
2524
2525         mode_cmd.pixel_format = fb->pixel_format;
2526         mode_cmd.width = fb->width;
2527         mode_cmd.height = fb->height;
2528         mode_cmd.pitches[0] = fb->pitches[0];
2529         mode_cmd.modifier[0] = fb->modifier[0];
2530         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2531
2532         mutex_lock(&dev->struct_mutex);
2533         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2534                                    &mode_cmd, obj)) {
2535                 DRM_DEBUG_KMS("intel fb init failed\n");
2536                 goto out_unref_obj;
2537         }
2538         mutex_unlock(&dev->struct_mutex);
2539
2540         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2541         return true;
2542
2543 out_unref_obj:
2544         drm_gem_object_unreference(&obj->base);
2545         mutex_unlock(&dev->struct_mutex);
2546         return false;
2547 }
2548
2549 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2550 static void
2551 update_state_fb(struct drm_plane *plane)
2552 {
2553         if (plane->fb == plane->state->fb)
2554                 return;
2555
2556         if (plane->state->fb)
2557                 drm_framebuffer_unreference(plane->state->fb);
2558         plane->state->fb = plane->fb;
2559         if (plane->state->fb)
2560                 drm_framebuffer_reference(plane->state->fb);
2561 }
2562
2563 static void
2564 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2565                              struct intel_initial_plane_config *plane_config)
2566 {
2567         struct drm_device *dev = intel_crtc->base.dev;
2568         struct drm_i915_private *dev_priv = dev->dev_private;
2569         struct drm_crtc *c;
2570         struct intel_crtc *i;
2571         struct drm_i915_gem_object *obj;
2572         struct drm_plane *primary = intel_crtc->base.primary;
2573         struct drm_framebuffer *fb;
2574
2575         if (!plane_config->fb)
2576                 return;
2577
2578         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2579                 fb = &plane_config->fb->base;
2580                 goto valid_fb;
2581         }
2582
2583         kfree(plane_config->fb);
2584
2585         /*
2586          * Failed to alloc the obj, check to see if we should share
2587          * an fb with another CRTC instead
2588          */
2589         for_each_crtc(dev, c) {
2590                 i = to_intel_crtc(c);
2591
2592                 if (c == &intel_crtc->base)
2593                         continue;
2594
2595                 if (!i->active)
2596                         continue;
2597
2598                 fb = c->primary->fb;
2599                 if (!fb)
2600                         continue;
2601
2602                 obj = intel_fb_obj(fb);
2603                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2604                         drm_framebuffer_reference(fb);
2605                         goto valid_fb;
2606                 }
2607         }
2608
2609         return;
2610
2611 valid_fb:
2612         obj = intel_fb_obj(fb);
2613         if (obj->tiling_mode != I915_TILING_NONE)
2614                 dev_priv->preserve_bios_swizzle = true;
2615
2616         primary->fb = fb;
2617         primary->crtc = primary->state->crtc = &intel_crtc->base;
2618         update_state_fb(primary);
2619         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2620         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2621 }
2622
2623 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2624                                       struct drm_framebuffer *fb,
2625                                       int x, int y)
2626 {
2627         struct drm_device *dev = crtc->dev;
2628         struct drm_i915_private *dev_priv = dev->dev_private;
2629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2630         struct drm_plane *primary = crtc->primary;
2631         bool visible = to_intel_plane_state(primary->state)->visible;
2632         struct drm_i915_gem_object *obj;
2633         int plane = intel_crtc->plane;
2634         unsigned long linear_offset;
2635         u32 dspcntr;
2636         u32 reg = DSPCNTR(plane);
2637         int pixel_size;
2638
2639         if (!visible || !fb) {
2640                 I915_WRITE(reg, 0);
2641                 if (INTEL_INFO(dev)->gen >= 4)
2642                         I915_WRITE(DSPSURF(plane), 0);
2643                 else
2644                         I915_WRITE(DSPADDR(plane), 0);
2645                 POSTING_READ(reg);
2646                 return;
2647         }
2648
2649         obj = intel_fb_obj(fb);
2650         if (WARN_ON(obj == NULL))
2651                 return;
2652
2653         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2654
2655         dspcntr = DISPPLANE_GAMMA_ENABLE;
2656
2657         dspcntr |= DISPLAY_PLANE_ENABLE;
2658
2659         if (INTEL_INFO(dev)->gen < 4) {
2660                 if (intel_crtc->pipe == PIPE_B)
2661                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2662
2663                 /* pipesrc and dspsize control the size that is scaled from,
2664                  * which should always be the user's requested size.
2665                  */
2666                 I915_WRITE(DSPSIZE(plane),
2667                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2668                            (intel_crtc->config->pipe_src_w - 1));
2669                 I915_WRITE(DSPPOS(plane), 0);
2670         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2671                 I915_WRITE(PRIMSIZE(plane),
2672                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2673                            (intel_crtc->config->pipe_src_w - 1));
2674                 I915_WRITE(PRIMPOS(plane), 0);
2675                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2676         }
2677
2678         switch (fb->pixel_format) {
2679         case DRM_FORMAT_C8:
2680                 dspcntr |= DISPPLANE_8BPP;
2681                 break;
2682         case DRM_FORMAT_XRGB1555:
2683                 dspcntr |= DISPPLANE_BGRX555;
2684                 break;
2685         case DRM_FORMAT_RGB565:
2686                 dspcntr |= DISPPLANE_BGRX565;
2687                 break;
2688         case DRM_FORMAT_XRGB8888:
2689                 dspcntr |= DISPPLANE_BGRX888;
2690                 break;
2691         case DRM_FORMAT_XBGR8888:
2692                 dspcntr |= DISPPLANE_RGBX888;
2693                 break;
2694         case DRM_FORMAT_XRGB2101010:
2695                 dspcntr |= DISPPLANE_BGRX101010;
2696                 break;
2697         case DRM_FORMAT_XBGR2101010:
2698                 dspcntr |= DISPPLANE_RGBX101010;
2699                 break;
2700         default:
2701                 BUG();
2702         }
2703
2704         if (INTEL_INFO(dev)->gen >= 4 &&
2705             obj->tiling_mode != I915_TILING_NONE)
2706                 dspcntr |= DISPPLANE_TILED;
2707
2708         if (IS_G4X(dev))
2709                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2710
2711         linear_offset = y * fb->pitches[0] + x * pixel_size;
2712
2713         if (INTEL_INFO(dev)->gen >= 4) {
2714                 intel_crtc->dspaddr_offset =
2715                         intel_gen4_compute_page_offset(dev_priv,
2716                                                        &x, &y, obj->tiling_mode,
2717                                                        pixel_size,
2718                                                        fb->pitches[0]);
2719                 linear_offset -= intel_crtc->dspaddr_offset;
2720         } else {
2721                 intel_crtc->dspaddr_offset = linear_offset;
2722         }
2723
2724         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2725                 dspcntr |= DISPPLANE_ROTATE_180;
2726
2727                 x += (intel_crtc->config->pipe_src_w - 1);
2728                 y += (intel_crtc->config->pipe_src_h - 1);
2729
2730                 /* Finding the last pixel of the last line of the display
2731                 data and adding to linear_offset*/
2732                 linear_offset +=
2733                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2734                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2735         }
2736
2737         I915_WRITE(reg, dspcntr);
2738
2739         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2740         if (INTEL_INFO(dev)->gen >= 4) {
2741                 I915_WRITE(DSPSURF(plane),
2742                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2743                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2744                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2745         } else
2746                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2747         POSTING_READ(reg);
2748 }
2749
2750 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2751                                           struct drm_framebuffer *fb,
2752                                           int x, int y)
2753 {
2754         struct drm_device *dev = crtc->dev;
2755         struct drm_i915_private *dev_priv = dev->dev_private;
2756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2757         struct drm_plane *primary = crtc->primary;
2758         bool visible = to_intel_plane_state(primary->state)->visible;
2759         struct drm_i915_gem_object *obj;
2760         int plane = intel_crtc->plane;
2761         unsigned long linear_offset;
2762         u32 dspcntr;
2763         u32 reg = DSPCNTR(plane);
2764         int pixel_size;
2765
2766         if (!visible || !fb) {
2767                 I915_WRITE(reg, 0);
2768                 I915_WRITE(DSPSURF(plane), 0);
2769                 POSTING_READ(reg);
2770                 return;
2771         }
2772
2773         obj = intel_fb_obj(fb);
2774         if (WARN_ON(obj == NULL))
2775                 return;
2776
2777         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2778
2779         dspcntr = DISPPLANE_GAMMA_ENABLE;
2780
2781         dspcntr |= DISPLAY_PLANE_ENABLE;
2782
2783         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2784                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2785
2786         switch (fb->pixel_format) {
2787         case DRM_FORMAT_C8:
2788                 dspcntr |= DISPPLANE_8BPP;
2789                 break;
2790         case DRM_FORMAT_RGB565:
2791                 dspcntr |= DISPPLANE_BGRX565;
2792                 break;
2793         case DRM_FORMAT_XRGB8888:
2794                 dspcntr |= DISPPLANE_BGRX888;
2795                 break;
2796         case DRM_FORMAT_XBGR8888:
2797                 dspcntr |= DISPPLANE_RGBX888;
2798                 break;
2799         case DRM_FORMAT_XRGB2101010:
2800                 dspcntr |= DISPPLANE_BGRX101010;
2801                 break;
2802         case DRM_FORMAT_XBGR2101010:
2803                 dspcntr |= DISPPLANE_RGBX101010;
2804                 break;
2805         default:
2806                 BUG();
2807         }
2808
2809         if (obj->tiling_mode != I915_TILING_NONE)
2810                 dspcntr |= DISPPLANE_TILED;
2811
2812         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2813                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2814
2815         linear_offset = y * fb->pitches[0] + x * pixel_size;
2816         intel_crtc->dspaddr_offset =
2817                 intel_gen4_compute_page_offset(dev_priv,
2818                                                &x, &y, obj->tiling_mode,
2819                                                pixel_size,
2820                                                fb->pitches[0]);
2821         linear_offset -= intel_crtc->dspaddr_offset;
2822         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2823                 dspcntr |= DISPPLANE_ROTATE_180;
2824
2825                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2826                         x += (intel_crtc->config->pipe_src_w - 1);
2827                         y += (intel_crtc->config->pipe_src_h - 1);
2828
2829                         /* Finding the last pixel of the last line of the display
2830                         data and adding to linear_offset*/
2831                         linear_offset +=
2832                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2833                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2834                 }
2835         }
2836
2837         I915_WRITE(reg, dspcntr);
2838
2839         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2840         I915_WRITE(DSPSURF(plane),
2841                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2842         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2843                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2844         } else {
2845                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2846                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2847         }
2848         POSTING_READ(reg);
2849 }
2850
2851 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2852                               uint32_t pixel_format)
2853 {
2854         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2855
2856         /*
2857          * The stride is either expressed as a multiple of 64 bytes
2858          * chunks for linear buffers or in number of tiles for tiled
2859          * buffers.
2860          */
2861         switch (fb_modifier) {
2862         case DRM_FORMAT_MOD_NONE:
2863                 return 64;
2864         case I915_FORMAT_MOD_X_TILED:
2865                 if (INTEL_INFO(dev)->gen == 2)
2866                         return 128;
2867                 return 512;
2868         case I915_FORMAT_MOD_Y_TILED:
2869                 /* No need to check for old gens and Y tiling since this is
2870                  * about the display engine and those will be blocked before
2871                  * we get here.
2872                  */
2873                 return 128;
2874         case I915_FORMAT_MOD_Yf_TILED:
2875                 if (bits_per_pixel == 8)
2876                         return 64;
2877                 else
2878                         return 128;
2879         default:
2880                 MISSING_CASE(fb_modifier);
2881                 return 64;
2882         }
2883 }
2884
2885 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2886                                      struct drm_i915_gem_object *obj)
2887 {
2888         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2889
2890         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2891                 view = &i915_ggtt_view_rotated;
2892
2893         return i915_gem_obj_ggtt_offset_view(obj, view);
2894 }
2895
2896 /*
2897  * This function detaches (aka. unbinds) unused scalers in hardware
2898  */
2899 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2900 {
2901         struct drm_device *dev;
2902         struct drm_i915_private *dev_priv;
2903         struct intel_crtc_scaler_state *scaler_state;
2904         int i;
2905
2906         dev = intel_crtc->base.dev;
2907         dev_priv = dev->dev_private;
2908         scaler_state = &intel_crtc->config->scaler_state;
2909
2910         /* loop through and disable scalers that aren't in use */
2911         for (i = 0; i < intel_crtc->num_scalers; i++) {
2912                 if (!scaler_state->scalers[i].in_use) {
2913                         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2914                         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2915                         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2916                         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2917                                 intel_crtc->base.base.id, intel_crtc->pipe, i);
2918                 }
2919         }
2920 }
2921
2922 u32 skl_plane_ctl_format(uint32_t pixel_format)
2923 {
2924         switch (pixel_format) {
2925         case DRM_FORMAT_C8:
2926                 return PLANE_CTL_FORMAT_INDEXED;
2927         case DRM_FORMAT_RGB565:
2928                 return PLANE_CTL_FORMAT_RGB_565;
2929         case DRM_FORMAT_XBGR8888:
2930                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2931         case DRM_FORMAT_XRGB8888:
2932                 return PLANE_CTL_FORMAT_XRGB_8888;
2933         /*
2934          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2935          * to be already pre-multiplied. We need to add a knob (or a different
2936          * DRM_FORMAT) for user-space to configure that.
2937          */
2938         case DRM_FORMAT_ABGR8888:
2939                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2940                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2941         case DRM_FORMAT_ARGB8888:
2942                 return PLANE_CTL_FORMAT_XRGB_8888 |
2943                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2944         case DRM_FORMAT_XRGB2101010:
2945                 return PLANE_CTL_FORMAT_XRGB_2101010;
2946         case DRM_FORMAT_XBGR2101010:
2947                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2948         case DRM_FORMAT_YUYV:
2949                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2950         case DRM_FORMAT_YVYU:
2951                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2952         case DRM_FORMAT_UYVY:
2953                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2954         case DRM_FORMAT_VYUY:
2955                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2956         default:
2957                 MISSING_CASE(pixel_format);
2958         }
2959
2960         return 0;
2961 }
2962
2963 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2964 {
2965         switch (fb_modifier) {
2966         case DRM_FORMAT_MOD_NONE:
2967                 break;
2968         case I915_FORMAT_MOD_X_TILED:
2969                 return PLANE_CTL_TILED_X;
2970         case I915_FORMAT_MOD_Y_TILED:
2971                 return PLANE_CTL_TILED_Y;
2972         case I915_FORMAT_MOD_Yf_TILED:
2973                 return PLANE_CTL_TILED_YF;
2974         default:
2975                 MISSING_CASE(fb_modifier);
2976         }
2977
2978         return 0;
2979 }
2980
2981 u32 skl_plane_ctl_rotation(unsigned int rotation)
2982 {
2983         switch (rotation) {
2984         case BIT(DRM_ROTATE_0):
2985                 break;
2986         /*
2987          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2988          * while i915 HW rotation is clockwise, thats why this swapping.
2989          */
2990         case BIT(DRM_ROTATE_90):
2991                 return PLANE_CTL_ROTATE_270;
2992         case BIT(DRM_ROTATE_180):
2993                 return PLANE_CTL_ROTATE_180;
2994         case BIT(DRM_ROTATE_270):
2995                 return PLANE_CTL_ROTATE_90;
2996         default:
2997                 MISSING_CASE(rotation);
2998         }
2999
3000         return 0;
3001 }
3002
3003 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3004                                          struct drm_framebuffer *fb,
3005                                          int x, int y)
3006 {
3007         struct drm_device *dev = crtc->dev;
3008         struct drm_i915_private *dev_priv = dev->dev_private;
3009         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3010         struct drm_plane *plane = crtc->primary;
3011         bool visible = to_intel_plane_state(plane->state)->visible;
3012         struct drm_i915_gem_object *obj;
3013         int pipe = intel_crtc->pipe;
3014         u32 plane_ctl, stride_div, stride;
3015         u32 tile_height, plane_offset, plane_size;
3016         unsigned int rotation;
3017         int x_offset, y_offset;
3018         unsigned long surf_addr;
3019         struct intel_crtc_state *crtc_state = intel_crtc->config;
3020         struct intel_plane_state *plane_state;
3021         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3022         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3023         int scaler_id = -1;
3024
3025         plane_state = to_intel_plane_state(plane->state);
3026
3027         if (!visible || !fb) {
3028                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3029                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3030                 POSTING_READ(PLANE_CTL(pipe, 0));
3031                 return;
3032         }
3033
3034         plane_ctl = PLANE_CTL_ENABLE |
3035                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3036                     PLANE_CTL_PIPE_CSC_ENABLE;
3037
3038         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3039         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3040         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3041
3042         rotation = plane->state->rotation;
3043         plane_ctl |= skl_plane_ctl_rotation(rotation);
3044
3045         obj = intel_fb_obj(fb);
3046         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3047                                                fb->pixel_format);
3048         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3049
3050         /*
3051          * FIXME: intel_plane_state->src, dst aren't set when transitional
3052          * update_plane helpers are called from legacy paths.
3053          * Once full atomic crtc is available, below check can be avoided.
3054          */
3055         if (drm_rect_width(&plane_state->src)) {
3056                 scaler_id = plane_state->scaler_id;
3057                 src_x = plane_state->src.x1 >> 16;
3058                 src_y = plane_state->src.y1 >> 16;
3059                 src_w = drm_rect_width(&plane_state->src) >> 16;
3060                 src_h = drm_rect_height(&plane_state->src) >> 16;
3061                 dst_x = plane_state->dst.x1;
3062                 dst_y = plane_state->dst.y1;
3063                 dst_w = drm_rect_width(&plane_state->dst);
3064                 dst_h = drm_rect_height(&plane_state->dst);
3065
3066                 WARN_ON(x != src_x || y != src_y);
3067         } else {
3068                 src_w = intel_crtc->config->pipe_src_w;
3069                 src_h = intel_crtc->config->pipe_src_h;
3070         }
3071
3072         if (intel_rotation_90_or_270(rotation)) {
3073                 /* stride = Surface height in tiles */
3074                 tile_height = intel_tile_height(dev, fb->pixel_format,
3075                                                 fb->modifier[0]);
3076                 stride = DIV_ROUND_UP(fb->height, tile_height);
3077                 x_offset = stride * tile_height - y - src_h;
3078                 y_offset = x;
3079                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3080         } else {
3081                 stride = fb->pitches[0] / stride_div;
3082                 x_offset = x;
3083                 y_offset = y;
3084                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3085         }
3086         plane_offset = y_offset << 16 | x_offset;
3087
3088         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3089         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3090         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3091         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3092
3093         if (scaler_id >= 0) {
3094                 uint32_t ps_ctrl = 0;
3095
3096                 WARN_ON(!dst_w || !dst_h);
3097                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3098                         crtc_state->scaler_state.scalers[scaler_id].mode;
3099                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3100                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3101                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3102                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3103                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3104         } else {
3105                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3106         }
3107
3108         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3109
3110         POSTING_READ(PLANE_SURF(pipe, 0));
3111 }
3112
3113 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3114 static int
3115 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3116                            int x, int y, enum mode_set_atomic state)
3117 {
3118         struct drm_device *dev = crtc->dev;
3119         struct drm_i915_private *dev_priv = dev->dev_private;
3120
3121         if (dev_priv->display.disable_fbc)
3122                 dev_priv->display.disable_fbc(dev);
3123
3124         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3125
3126         return 0;
3127 }
3128
3129 static void intel_complete_page_flips(struct drm_device *dev)
3130 {
3131         struct drm_crtc *crtc;
3132
3133         for_each_crtc(dev, crtc) {
3134                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3135                 enum plane plane = intel_crtc->plane;
3136
3137                 intel_prepare_page_flip(dev, plane);
3138                 intel_finish_page_flip_plane(dev, plane);
3139         }
3140 }
3141
3142 static void intel_update_primary_planes(struct drm_device *dev)
3143 {
3144         struct drm_i915_private *dev_priv = dev->dev_private;
3145         struct drm_crtc *crtc;
3146
3147         for_each_crtc(dev, crtc) {
3148                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3149
3150                 drm_modeset_lock(&crtc->mutex, NULL);
3151                 /*
3152                  * FIXME: Once we have proper support for primary planes (and
3153                  * disabling them without disabling the entire crtc) allow again
3154                  * a NULL crtc->primary->fb.
3155                  */
3156                 if (intel_crtc->active && crtc->primary->fb)
3157                         dev_priv->display.update_primary_plane(crtc,
3158                                                                crtc->primary->fb,
3159                                                                crtc->x,
3160                                                                crtc->y);
3161                 drm_modeset_unlock(&crtc->mutex);
3162         }
3163 }
3164
3165 void intel_prepare_reset(struct drm_device *dev)
3166 {
3167         /* no reset support for gen2 */
3168         if (IS_GEN2(dev))
3169                 return;
3170
3171         /* reset doesn't touch the display */
3172         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3173                 return;
3174
3175         drm_modeset_lock_all(dev);
3176         /*
3177          * Disabling the crtcs gracefully seems nicer. Also the
3178          * g33 docs say we should at least disable all the planes.
3179          */
3180         intel_display_suspend(dev);
3181 }
3182
3183 void intel_finish_reset(struct drm_device *dev)
3184 {
3185         struct drm_i915_private *dev_priv = to_i915(dev);
3186
3187         /*
3188          * Flips in the rings will be nuked by the reset,
3189          * so complete all pending flips so that user space
3190          * will get its events and not get stuck.
3191          */
3192         intel_complete_page_flips(dev);
3193
3194         /* no reset support for gen2 */
3195         if (IS_GEN2(dev))
3196                 return;
3197
3198         /* reset doesn't touch the display */
3199         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3200                 /*
3201                  * Flips in the rings have been nuked by the reset,
3202                  * so update the base address of all primary
3203                  * planes to the the last fb to make sure we're
3204                  * showing the correct fb after a reset.
3205                  */
3206                 intel_update_primary_planes(dev);
3207                 return;
3208         }
3209
3210         /*
3211          * The display has been reset as well,
3212          * so need a full re-initialization.
3213          */
3214         intel_runtime_pm_disable_interrupts(dev_priv);
3215         intel_runtime_pm_enable_interrupts(dev_priv);
3216
3217         intel_modeset_init_hw(dev);
3218
3219         spin_lock_irq(&dev_priv->irq_lock);
3220         if (dev_priv->display.hpd_irq_setup)
3221                 dev_priv->display.hpd_irq_setup(dev);
3222         spin_unlock_irq(&dev_priv->irq_lock);
3223
3224         intel_modeset_setup_hw_state(dev, true);
3225
3226         intel_hpd_init(dev_priv);
3227
3228         drm_modeset_unlock_all(dev);
3229 }
3230
3231 static void
3232 intel_finish_fb(struct drm_framebuffer *old_fb)
3233 {
3234         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3235         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3236         bool was_interruptible = dev_priv->mm.interruptible;
3237         int ret;
3238
3239         /* Big Hammer, we also need to ensure that any pending
3240          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3241          * current scanout is retired before unpinning the old
3242          * framebuffer. Note that we rely on userspace rendering
3243          * into the buffer attached to the pipe they are waiting
3244          * on. If not, userspace generates a GPU hang with IPEHR
3245          * point to the MI_WAIT_FOR_EVENT.
3246          *
3247          * This should only fail upon a hung GPU, in which case we
3248          * can safely continue.
3249          */
3250         dev_priv->mm.interruptible = false;
3251         ret = i915_gem_object_wait_rendering(obj, true);
3252         dev_priv->mm.interruptible = was_interruptible;
3253
3254         WARN_ON(ret);
3255 }
3256
3257 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3258 {
3259         struct drm_device *dev = crtc->dev;
3260         struct drm_i915_private *dev_priv = dev->dev_private;
3261         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3262         bool pending;
3263
3264         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3265             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3266                 return false;
3267
3268         spin_lock_irq(&dev->event_lock);
3269         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3270         spin_unlock_irq(&dev->event_lock);
3271
3272         return pending;
3273 }
3274
3275 static void intel_update_pipe_size(struct intel_crtc *crtc)
3276 {
3277         struct drm_device *dev = crtc->base.dev;
3278         struct drm_i915_private *dev_priv = dev->dev_private;
3279         const struct drm_display_mode *adjusted_mode;
3280
3281         if (!i915.fastboot)
3282                 return;
3283
3284         /*
3285          * Update pipe size and adjust fitter if needed: the reason for this is
3286          * that in compute_mode_changes we check the native mode (not the pfit
3287          * mode) to see if we can flip rather than do a full mode set. In the
3288          * fastboot case, we'll flip, but if we don't update the pipesrc and
3289          * pfit state, we'll end up with a big fb scanned out into the wrong
3290          * sized surface.
3291          *
3292          * To fix this properly, we need to hoist the checks up into
3293          * compute_mode_changes (or above), check the actual pfit state and
3294          * whether the platform allows pfit disable with pipe active, and only
3295          * then update the pipesrc and pfit state, even on the flip path.
3296          */
3297
3298         adjusted_mode = &crtc->config->base.adjusted_mode;
3299
3300         I915_WRITE(PIPESRC(crtc->pipe),
3301                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3302                    (adjusted_mode->crtc_vdisplay - 1));
3303         if (!crtc->config->pch_pfit.enabled &&
3304             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3305              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3306                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3307                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3308                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3309         }
3310         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3311         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3312 }
3313
3314 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3315 {
3316         struct drm_device *dev = crtc->dev;
3317         struct drm_i915_private *dev_priv = dev->dev_private;
3318         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3319         int pipe = intel_crtc->pipe;
3320         u32 reg, temp;
3321
3322         /* enable normal train */
3323         reg = FDI_TX_CTL(pipe);
3324         temp = I915_READ(reg);
3325         if (IS_IVYBRIDGE(dev)) {
3326                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3327                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3328         } else {
3329                 temp &= ~FDI_LINK_TRAIN_NONE;
3330                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3331         }
3332         I915_WRITE(reg, temp);
3333
3334         reg = FDI_RX_CTL(pipe);
3335         temp = I915_READ(reg);
3336         if (HAS_PCH_CPT(dev)) {
3337                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3338                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3339         } else {
3340                 temp &= ~FDI_LINK_TRAIN_NONE;
3341                 temp |= FDI_LINK_TRAIN_NONE;
3342         }
3343         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3344
3345         /* wait one idle pattern time */
3346         POSTING_READ(reg);
3347         udelay(1000);
3348
3349         /* IVB wants error correction enabled */
3350         if (IS_IVYBRIDGE(dev))
3351                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3352                            FDI_FE_ERRC_ENABLE);
3353 }
3354
3355 /* The FDI link training functions for ILK/Ibexpeak. */
3356 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3357 {
3358         struct drm_device *dev = crtc->dev;
3359         struct drm_i915_private *dev_priv = dev->dev_private;
3360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3361         int pipe = intel_crtc->pipe;
3362         u32 reg, temp, tries;
3363
3364         /* FDI needs bits from pipe first */
3365         assert_pipe_enabled(dev_priv, pipe);
3366
3367         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3368            for train result */
3369         reg = FDI_RX_IMR(pipe);
3370         temp = I915_READ(reg);
3371         temp &= ~FDI_RX_SYMBOL_LOCK;
3372         temp &= ~FDI_RX_BIT_LOCK;
3373         I915_WRITE(reg, temp);
3374         I915_READ(reg);
3375         udelay(150);
3376
3377         /* enable CPU FDI TX and PCH FDI RX */
3378         reg = FDI_TX_CTL(pipe);
3379         temp = I915_READ(reg);
3380         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3381         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3382         temp &= ~FDI_LINK_TRAIN_NONE;
3383         temp |= FDI_LINK_TRAIN_PATTERN_1;
3384         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3385
3386         reg = FDI_RX_CTL(pipe);
3387         temp = I915_READ(reg);
3388         temp &= ~FDI_LINK_TRAIN_NONE;
3389         temp |= FDI_LINK_TRAIN_PATTERN_1;
3390         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3391
3392         POSTING_READ(reg);
3393         udelay(150);
3394
3395         /* Ironlake workaround, enable clock pointer after FDI enable*/
3396         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3397         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3398                    FDI_RX_PHASE_SYNC_POINTER_EN);
3399
3400         reg = FDI_RX_IIR(pipe);
3401         for (tries = 0; tries < 5; tries++) {
3402                 temp = I915_READ(reg);
3403                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3404
3405                 if ((temp & FDI_RX_BIT_LOCK)) {
3406                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3407                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3408                         break;
3409                 }
3410         }
3411         if (tries == 5)
3412                 DRM_ERROR("FDI train 1 fail!\n");
3413
3414         /* Train 2 */
3415         reg = FDI_TX_CTL(pipe);
3416         temp = I915_READ(reg);
3417         temp &= ~FDI_LINK_TRAIN_NONE;
3418         temp |= FDI_LINK_TRAIN_PATTERN_2;
3419         I915_WRITE(reg, temp);
3420
3421         reg = FDI_RX_CTL(pipe);
3422         temp = I915_READ(reg);
3423         temp &= ~FDI_LINK_TRAIN_NONE;
3424         temp |= FDI_LINK_TRAIN_PATTERN_2;
3425         I915_WRITE(reg, temp);
3426
3427         POSTING_READ(reg);
3428         udelay(150);
3429
3430         reg = FDI_RX_IIR(pipe);
3431         for (tries = 0; tries < 5; tries++) {
3432                 temp = I915_READ(reg);
3433                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3434
3435                 if (temp & FDI_RX_SYMBOL_LOCK) {
3436                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3437                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3438                         break;
3439                 }
3440         }
3441         if (tries == 5)
3442                 DRM_ERROR("FDI train 2 fail!\n");
3443
3444         DRM_DEBUG_KMS("FDI train done\n");
3445
3446 }
3447
3448 static const int snb_b_fdi_train_param[] = {
3449         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3450         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3451         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3452         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3453 };
3454
3455 /* The FDI link training functions for SNB/Cougarpoint. */
3456 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3457 {
3458         struct drm_device *dev = crtc->dev;
3459         struct drm_i915_private *dev_priv = dev->dev_private;
3460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3461         int pipe = intel_crtc->pipe;
3462         u32 reg, temp, i, retry;
3463
3464         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3465            for train result */
3466         reg = FDI_RX_IMR(pipe);
3467         temp = I915_READ(reg);
3468         temp &= ~FDI_RX_SYMBOL_LOCK;
3469         temp &= ~FDI_RX_BIT_LOCK;
3470         I915_WRITE(reg, temp);
3471
3472         POSTING_READ(reg);
3473         udelay(150);
3474
3475         /* enable CPU FDI TX and PCH FDI RX */
3476         reg = FDI_TX_CTL(pipe);
3477         temp = I915_READ(reg);
3478         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3479         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3480         temp &= ~FDI_LINK_TRAIN_NONE;
3481         temp |= FDI_LINK_TRAIN_PATTERN_1;
3482         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3483         /* SNB-B */
3484         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3485         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3486
3487         I915_WRITE(FDI_RX_MISC(pipe),
3488                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3489
3490         reg = FDI_RX_CTL(pipe);
3491         temp = I915_READ(reg);
3492         if (HAS_PCH_CPT(dev)) {
3493                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3494                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3495         } else {
3496                 temp &= ~FDI_LINK_TRAIN_NONE;
3497                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3498         }
3499         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3500
3501         POSTING_READ(reg);
3502         udelay(150);
3503
3504         for (i = 0; i < 4; i++) {
3505                 reg = FDI_TX_CTL(pipe);
3506                 temp = I915_READ(reg);
3507                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3508                 temp |= snb_b_fdi_train_param[i];
3509                 I915_WRITE(reg, temp);
3510
3511                 POSTING_READ(reg);
3512                 udelay(500);
3513
3514                 for (retry = 0; retry < 5; retry++) {
3515                         reg = FDI_RX_IIR(pipe);
3516                         temp = I915_READ(reg);
3517                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3518                         if (temp & FDI_RX_BIT_LOCK) {
3519                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3520                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3521                                 break;
3522                         }
3523                         udelay(50);
3524                 }
3525                 if (retry < 5)
3526                         break;
3527         }
3528         if (i == 4)
3529                 DRM_ERROR("FDI train 1 fail!\n");
3530
3531         /* Train 2 */
3532         reg = FDI_TX_CTL(pipe);
3533         temp = I915_READ(reg);
3534         temp &= ~FDI_LINK_TRAIN_NONE;
3535         temp |= FDI_LINK_TRAIN_PATTERN_2;
3536         if (IS_GEN6(dev)) {
3537                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3538                 /* SNB-B */
3539                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3540         }
3541         I915_WRITE(reg, temp);
3542
3543         reg = FDI_RX_CTL(pipe);
3544         temp = I915_READ(reg);
3545         if (HAS_PCH_CPT(dev)) {
3546                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3547                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3548         } else {
3549                 temp &= ~FDI_LINK_TRAIN_NONE;
3550                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3551         }
3552         I915_WRITE(reg, temp);
3553
3554         POSTING_READ(reg);
3555         udelay(150);
3556
3557         for (i = 0; i < 4; i++) {
3558                 reg = FDI_TX_CTL(pipe);
3559                 temp = I915_READ(reg);
3560                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3561                 temp |= snb_b_fdi_train_param[i];
3562                 I915_WRITE(reg, temp);
3563
3564                 POSTING_READ(reg);
3565                 udelay(500);
3566
3567                 for (retry = 0; retry < 5; retry++) {
3568                         reg = FDI_RX_IIR(pipe);
3569                         temp = I915_READ(reg);
3570                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3571                         if (temp & FDI_RX_SYMBOL_LOCK) {
3572                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3573                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3574                                 break;
3575                         }
3576                         udelay(50);
3577                 }
3578                 if (retry < 5)
3579                         break;
3580         }
3581         if (i == 4)
3582                 DRM_ERROR("FDI train 2 fail!\n");
3583
3584         DRM_DEBUG_KMS("FDI train done.\n");
3585 }
3586
3587 /* Manual link training for Ivy Bridge A0 parts */
3588 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3589 {
3590         struct drm_device *dev = crtc->dev;
3591         struct drm_i915_private *dev_priv = dev->dev_private;
3592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3593         int pipe = intel_crtc->pipe;
3594         u32 reg, temp, i, j;
3595
3596         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3597            for train result */
3598         reg = FDI_RX_IMR(pipe);
3599         temp = I915_READ(reg);
3600         temp &= ~FDI_RX_SYMBOL_LOCK;
3601         temp &= ~FDI_RX_BIT_LOCK;
3602         I915_WRITE(reg, temp);
3603
3604         POSTING_READ(reg);
3605         udelay(150);
3606
3607         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3608                       I915_READ(FDI_RX_IIR(pipe)));
3609
3610         /* Try each vswing and preemphasis setting twice before moving on */
3611         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3612                 /* disable first in case we need to retry */
3613                 reg = FDI_TX_CTL(pipe);
3614                 temp = I915_READ(reg);
3615                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3616                 temp &= ~FDI_TX_ENABLE;
3617                 I915_WRITE(reg, temp);
3618
3619                 reg = FDI_RX_CTL(pipe);
3620                 temp = I915_READ(reg);
3621                 temp &= ~FDI_LINK_TRAIN_AUTO;
3622                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3623                 temp &= ~FDI_RX_ENABLE;
3624                 I915_WRITE(reg, temp);
3625
3626                 /* enable CPU FDI TX and PCH FDI RX */
3627                 reg = FDI_TX_CTL(pipe);
3628                 temp = I915_READ(reg);
3629                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3630                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3631                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3632                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3633                 temp |= snb_b_fdi_train_param[j/2];
3634                 temp |= FDI_COMPOSITE_SYNC;
3635                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3636
3637                 I915_WRITE(FDI_RX_MISC(pipe),
3638                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3639
3640                 reg = FDI_RX_CTL(pipe);
3641                 temp = I915_READ(reg);
3642                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3643                 temp |= FDI_COMPOSITE_SYNC;
3644                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3645
3646                 POSTING_READ(reg);
3647                 udelay(1); /* should be 0.5us */
3648
3649                 for (i = 0; i < 4; i++) {
3650                         reg = FDI_RX_IIR(pipe);
3651                         temp = I915_READ(reg);
3652                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3653
3654                         if (temp & FDI_RX_BIT_LOCK ||
3655                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3656                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3657                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3658                                               i);
3659                                 break;
3660                         }
3661                         udelay(1); /* should be 0.5us */
3662                 }
3663                 if (i == 4) {
3664                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3665                         continue;
3666                 }
3667
3668                 /* Train 2 */
3669                 reg = FDI_TX_CTL(pipe);
3670                 temp = I915_READ(reg);
3671                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3672                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3673                 I915_WRITE(reg, temp);
3674
3675                 reg = FDI_RX_CTL(pipe);
3676                 temp = I915_READ(reg);
3677                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3678                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3679                 I915_WRITE(reg, temp);
3680
3681                 POSTING_READ(reg);
3682                 udelay(2); /* should be 1.5us */
3683
3684                 for (i = 0; i < 4; i++) {
3685                         reg = FDI_RX_IIR(pipe);
3686                         temp = I915_READ(reg);
3687                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3688
3689                         if (temp & FDI_RX_SYMBOL_LOCK ||
3690                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3691                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3692                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3693                                               i);
3694                                 goto train_done;
3695                         }
3696                         udelay(2); /* should be 1.5us */
3697                 }
3698                 if (i == 4)
3699                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3700         }
3701
3702 train_done:
3703         DRM_DEBUG_KMS("FDI train done.\n");
3704 }
3705
3706 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3707 {
3708         struct drm_device *dev = intel_crtc->base.dev;
3709         struct drm_i915_private *dev_priv = dev->dev_private;
3710         int pipe = intel_crtc->pipe;
3711         u32 reg, temp;
3712
3713
3714         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3715         reg = FDI_RX_CTL(pipe);
3716         temp = I915_READ(reg);
3717         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3718         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3719         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3720         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3721
3722         POSTING_READ(reg);
3723         udelay(200);
3724
3725         /* Switch from Rawclk to PCDclk */
3726         temp = I915_READ(reg);
3727         I915_WRITE(reg, temp | FDI_PCDCLK);
3728
3729         POSTING_READ(reg);
3730         udelay(200);
3731
3732         /* Enable CPU FDI TX PLL, always on for Ironlake */
3733         reg = FDI_TX_CTL(pipe);
3734         temp = I915_READ(reg);
3735         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3736                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3737
3738                 POSTING_READ(reg);
3739                 udelay(100);
3740         }
3741 }
3742
3743 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3744 {
3745         struct drm_device *dev = intel_crtc->base.dev;
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747         int pipe = intel_crtc->pipe;
3748         u32 reg, temp;
3749
3750         /* Switch from PCDclk to Rawclk */
3751         reg = FDI_RX_CTL(pipe);
3752         temp = I915_READ(reg);
3753         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3754
3755         /* Disable CPU FDI TX PLL */
3756         reg = FDI_TX_CTL(pipe);
3757         temp = I915_READ(reg);
3758         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3759
3760         POSTING_READ(reg);
3761         udelay(100);
3762
3763         reg = FDI_RX_CTL(pipe);
3764         temp = I915_READ(reg);
3765         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3766
3767         /* Wait for the clocks to turn off. */
3768         POSTING_READ(reg);
3769         udelay(100);
3770 }
3771
3772 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3773 {
3774         struct drm_device *dev = crtc->dev;
3775         struct drm_i915_private *dev_priv = dev->dev_private;
3776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3777         int pipe = intel_crtc->pipe;
3778         u32 reg, temp;
3779
3780         /* disable CPU FDI tx and PCH FDI rx */
3781         reg = FDI_TX_CTL(pipe);
3782         temp = I915_READ(reg);
3783         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3784         POSTING_READ(reg);
3785
3786         reg = FDI_RX_CTL(pipe);
3787         temp = I915_READ(reg);
3788         temp &= ~(0x7 << 16);
3789         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3790         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3791
3792         POSTING_READ(reg);
3793         udelay(100);
3794
3795         /* Ironlake workaround, disable clock pointer after downing FDI */
3796         if (HAS_PCH_IBX(dev))
3797                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3798
3799         /* still set train pattern 1 */
3800         reg = FDI_TX_CTL(pipe);
3801         temp = I915_READ(reg);
3802         temp &= ~FDI_LINK_TRAIN_NONE;
3803         temp |= FDI_LINK_TRAIN_PATTERN_1;
3804         I915_WRITE(reg, temp);
3805
3806         reg = FDI_RX_CTL(pipe);
3807         temp = I915_READ(reg);
3808         if (HAS_PCH_CPT(dev)) {
3809                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3810                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3811         } else {
3812                 temp &= ~FDI_LINK_TRAIN_NONE;
3813                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3814         }
3815         /* BPC in FDI rx is consistent with that in PIPECONF */
3816         temp &= ~(0x07 << 16);
3817         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3818         I915_WRITE(reg, temp);
3819
3820         POSTING_READ(reg);
3821         udelay(100);
3822 }
3823
3824 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3825 {
3826         struct intel_crtc *crtc;
3827
3828         /* Note that we don't need to be called with mode_config.lock here
3829          * as our list of CRTC objects is static for the lifetime of the
3830          * device and so cannot disappear as we iterate. Similarly, we can
3831          * happily treat the predicates as racy, atomic checks as userspace
3832          * cannot claim and pin a new fb without at least acquring the
3833          * struct_mutex and so serialising with us.
3834          */
3835         for_each_intel_crtc(dev, crtc) {
3836                 if (atomic_read(&crtc->unpin_work_count) == 0)
3837                         continue;
3838
3839                 if (crtc->unpin_work)
3840                         intel_wait_for_vblank(dev, crtc->pipe);
3841
3842                 return true;
3843         }
3844
3845         return false;
3846 }
3847
3848 static void page_flip_completed(struct intel_crtc *intel_crtc)
3849 {
3850         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3851         struct intel_unpin_work *work = intel_crtc->unpin_work;
3852
3853         /* ensure that the unpin work is consistent wrt ->pending. */
3854         smp_rmb();
3855         intel_crtc->unpin_work = NULL;
3856
3857         if (work->event)
3858                 drm_send_vblank_event(intel_crtc->base.dev,
3859                                       intel_crtc->pipe,
3860                                       work->event);
3861
3862         drm_crtc_vblank_put(&intel_crtc->base);
3863
3864         wake_up_all(&dev_priv->pending_flip_queue);
3865         queue_work(dev_priv->wq, &work->work);
3866
3867         trace_i915_flip_complete(intel_crtc->plane,
3868                                  work->pending_flip_obj);
3869 }
3870
3871 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3872 {
3873         struct drm_device *dev = crtc->dev;
3874         struct drm_i915_private *dev_priv = dev->dev_private;
3875
3876         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3877         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3878                                        !intel_crtc_has_pending_flip(crtc),
3879                                        60*HZ) == 0)) {
3880                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3881
3882                 spin_lock_irq(&dev->event_lock);
3883                 if (intel_crtc->unpin_work) {
3884                         WARN_ONCE(1, "Removing stuck page flip\n");
3885                         page_flip_completed(intel_crtc);
3886                 }
3887                 spin_unlock_irq(&dev->event_lock);
3888         }
3889
3890         if (crtc->primary->fb) {
3891                 mutex_lock(&dev->struct_mutex);
3892                 intel_finish_fb(crtc->primary->fb);
3893                 mutex_unlock(&dev->struct_mutex);
3894         }
3895 }
3896
3897 /* Program iCLKIP clock to the desired frequency */
3898 static void lpt_program_iclkip(struct drm_crtc *crtc)
3899 {
3900         struct drm_device *dev = crtc->dev;
3901         struct drm_i915_private *dev_priv = dev->dev_private;
3902         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3903         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3904         u32 temp;
3905
3906         mutex_lock(&dev_priv->sb_lock);
3907
3908         /* It is necessary to ungate the pixclk gate prior to programming
3909          * the divisors, and gate it back when it is done.
3910          */
3911         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3912
3913         /* Disable SSCCTL */
3914         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3915                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3916                                 SBI_SSCCTL_DISABLE,
3917                         SBI_ICLK);
3918
3919         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3920         if (clock == 20000) {
3921                 auxdiv = 1;
3922                 divsel = 0x41;
3923                 phaseinc = 0x20;
3924         } else {
3925                 /* The iCLK virtual clock root frequency is in MHz,
3926                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3927                  * divisors, it is necessary to divide one by another, so we
3928                  * convert the virtual clock precision to KHz here for higher
3929                  * precision.
3930                  */
3931                 u32 iclk_virtual_root_freq = 172800 * 1000;
3932                 u32 iclk_pi_range = 64;
3933                 u32 desired_divisor, msb_divisor_value, pi_value;
3934
3935                 desired_divisor = (iclk_virtual_root_freq / clock);
3936                 msb_divisor_value = desired_divisor / iclk_pi_range;
3937                 pi_value = desired_divisor % iclk_pi_range;
3938
3939                 auxdiv = 0;
3940                 divsel = msb_divisor_value - 2;
3941                 phaseinc = pi_value;
3942         }
3943
3944         /* This should not happen with any sane values */
3945         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3946                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3947         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3948                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3949
3950         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3951                         clock,
3952                         auxdiv,
3953                         divsel,
3954                         phasedir,
3955                         phaseinc);
3956
3957         /* Program SSCDIVINTPHASE6 */
3958         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3959         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3960         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3961         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3962         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3963         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3964         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3965         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3966
3967         /* Program SSCAUXDIV */
3968         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3969         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3970         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3971         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3972
3973         /* Enable modulator and associated divider */
3974         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3975         temp &= ~SBI_SSCCTL_DISABLE;
3976         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3977
3978         /* Wait for initialization time */
3979         udelay(24);
3980
3981         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3982
3983         mutex_unlock(&dev_priv->sb_lock);
3984 }
3985
3986 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3987                                                 enum pipe pch_transcoder)
3988 {
3989         struct drm_device *dev = crtc->base.dev;
3990         struct drm_i915_private *dev_priv = dev->dev_private;
3991         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3992
3993         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3994                    I915_READ(HTOTAL(cpu_transcoder)));
3995         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3996                    I915_READ(HBLANK(cpu_transcoder)));
3997         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3998                    I915_READ(HSYNC(cpu_transcoder)));
3999
4000         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4001                    I915_READ(VTOTAL(cpu_transcoder)));
4002         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4003                    I915_READ(VBLANK(cpu_transcoder)));
4004         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4005                    I915_READ(VSYNC(cpu_transcoder)));
4006         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4007                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4008 }
4009
4010 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4011 {
4012         struct drm_i915_private *dev_priv = dev->dev_private;
4013         uint32_t temp;
4014
4015         temp = I915_READ(SOUTH_CHICKEN1);
4016         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4017                 return;
4018
4019         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4020         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4021
4022         temp &= ~FDI_BC_BIFURCATION_SELECT;
4023         if (enable)
4024                 temp |= FDI_BC_BIFURCATION_SELECT;
4025
4026         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4027         I915_WRITE(SOUTH_CHICKEN1, temp);
4028         POSTING_READ(SOUTH_CHICKEN1);
4029 }
4030
4031 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4032 {
4033         struct drm_device *dev = intel_crtc->base.dev;
4034
4035         switch (intel_crtc->pipe) {
4036         case PIPE_A:
4037                 break;
4038         case PIPE_B:
4039                 if (intel_crtc->config->fdi_lanes > 2)
4040                         cpt_set_fdi_bc_bifurcation(dev, false);
4041                 else
4042                         cpt_set_fdi_bc_bifurcation(dev, true);
4043
4044                 break;
4045         case PIPE_C:
4046                 cpt_set_fdi_bc_bifurcation(dev, true);
4047
4048                 break;
4049         default:
4050                 BUG();
4051         }
4052 }
4053
4054 /*
4055  * Enable PCH resources required for PCH ports:
4056  *   - PCH PLLs
4057  *   - FDI training & RX/TX
4058  *   - update transcoder timings
4059  *   - DP transcoding bits
4060  *   - transcoder
4061  */
4062 static void ironlake_pch_enable(struct drm_crtc *crtc)
4063 {
4064         struct drm_device *dev = crtc->dev;
4065         struct drm_i915_private *dev_priv = dev->dev_private;
4066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4067         int pipe = intel_crtc->pipe;
4068         u32 reg, temp;
4069
4070         assert_pch_transcoder_disabled(dev_priv, pipe);
4071
4072         if (IS_IVYBRIDGE(dev))
4073                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4074
4075         /* Write the TU size bits before fdi link training, so that error
4076          * detection works. */
4077         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4078                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4079
4080         /* For PCH output, training FDI link */
4081         dev_priv->display.fdi_link_train(crtc);
4082
4083         /* We need to program the right clock selection before writing the pixel
4084          * mutliplier into the DPLL. */
4085         if (HAS_PCH_CPT(dev)) {
4086                 u32 sel;
4087
4088                 temp = I915_READ(PCH_DPLL_SEL);
4089                 temp |= TRANS_DPLL_ENABLE(pipe);
4090                 sel = TRANS_DPLLB_SEL(pipe);
4091                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4092                         temp |= sel;
4093                 else
4094                         temp &= ~sel;
4095                 I915_WRITE(PCH_DPLL_SEL, temp);
4096         }
4097
4098         /* XXX: pch pll's can be enabled any time before we enable the PCH
4099          * transcoder, and we actually should do this to not upset any PCH
4100          * transcoder that already use the clock when we share it.
4101          *
4102          * Note that enable_shared_dpll tries to do the right thing, but
4103          * get_shared_dpll unconditionally resets the pll - we need that to have
4104          * the right LVDS enable sequence. */
4105         intel_enable_shared_dpll(intel_crtc);
4106
4107         /* set transcoder timing, panel must allow it */
4108         assert_panel_unlocked(dev_priv, pipe);
4109         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4110
4111         intel_fdi_normal_train(crtc);
4112
4113         /* For PCH DP, enable TRANS_DP_CTL */
4114         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4115                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4116                 reg = TRANS_DP_CTL(pipe);
4117                 temp = I915_READ(reg);
4118                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4119                           TRANS_DP_SYNC_MASK |
4120                           TRANS_DP_BPC_MASK);
4121                 temp |= TRANS_DP_OUTPUT_ENABLE;
4122                 temp |= bpc << 9; /* same format but at 11:9 */
4123
4124                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4125                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4126                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4127                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4128
4129                 switch (intel_trans_dp_port_sel(crtc)) {
4130                 case PCH_DP_B:
4131                         temp |= TRANS_DP_PORT_SEL_B;
4132                         break;
4133                 case PCH_DP_C:
4134                         temp |= TRANS_DP_PORT_SEL_C;
4135                         break;
4136                 case PCH_DP_D:
4137                         temp |= TRANS_DP_PORT_SEL_D;
4138                         break;
4139                 default:
4140                         BUG();
4141                 }
4142
4143                 I915_WRITE(reg, temp);
4144         }
4145
4146         ironlake_enable_pch_transcoder(dev_priv, pipe);
4147 }
4148
4149 static void lpt_pch_enable(struct drm_crtc *crtc)
4150 {
4151         struct drm_device *dev = crtc->dev;
4152         struct drm_i915_private *dev_priv = dev->dev_private;
4153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4154         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4155
4156         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4157
4158         lpt_program_iclkip(crtc);
4159
4160         /* Set transcoder timing. */
4161         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4162
4163         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4164 }
4165
4166 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4167                                                 struct intel_crtc_state *crtc_state)
4168 {
4169         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4170         struct intel_shared_dpll *pll;
4171         struct intel_shared_dpll_config *shared_dpll;
4172         enum intel_dpll_id i;
4173
4174         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4175
4176         if (HAS_PCH_IBX(dev_priv->dev)) {
4177                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4178                 i = (enum intel_dpll_id) crtc->pipe;
4179                 pll = &dev_priv->shared_dplls[i];
4180
4181                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4182                               crtc->base.base.id, pll->name);
4183
4184                 WARN_ON(shared_dpll[i].crtc_mask);
4185
4186                 goto found;
4187         }
4188
4189         if (IS_BROXTON(dev_priv->dev)) {
4190                 /* PLL is attached to port in bxt */
4191                 struct intel_encoder *encoder;
4192                 struct intel_digital_port *intel_dig_port;
4193
4194                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4195                 if (WARN_ON(!encoder))
4196                         return NULL;
4197
4198                 intel_dig_port = enc_to_dig_port(&encoder->base);
4199                 /* 1:1 mapping between ports and PLLs */
4200                 i = (enum intel_dpll_id)intel_dig_port->port;
4201                 pll = &dev_priv->shared_dplls[i];
4202                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4203                         crtc->base.base.id, pll->name);
4204                 WARN_ON(shared_dpll[i].crtc_mask);
4205
4206                 goto found;
4207         }
4208
4209         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4210                 pll = &dev_priv->shared_dplls[i];
4211
4212                 /* Only want to check enabled timings first */
4213                 if (shared_dpll[i].crtc_mask == 0)
4214                         continue;
4215
4216                 if (memcmp(&crtc_state->dpll_hw_state,
4217                            &shared_dpll[i].hw_state,
4218                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4219                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4220                                       crtc->base.base.id, pll->name,
4221                                       shared_dpll[i].crtc_mask,
4222                                       pll->active);
4223                         goto found;
4224                 }
4225         }
4226
4227         /* Ok no matching timings, maybe there's a free one? */
4228         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4229                 pll = &dev_priv->shared_dplls[i];
4230                 if (shared_dpll[i].crtc_mask == 0) {
4231                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4232                                       crtc->base.base.id, pll->name);
4233                         goto found;
4234                 }
4235         }
4236
4237         return NULL;
4238
4239 found:
4240         if (shared_dpll[i].crtc_mask == 0)
4241                 shared_dpll[i].hw_state =
4242                         crtc_state->dpll_hw_state;
4243
4244         crtc_state->shared_dpll = i;
4245         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4246                          pipe_name(crtc->pipe));
4247
4248         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4249
4250         return pll;
4251 }
4252
4253 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4254 {
4255         struct drm_i915_private *dev_priv = to_i915(state->dev);
4256         struct intel_shared_dpll_config *shared_dpll;
4257         struct intel_shared_dpll *pll;
4258         enum intel_dpll_id i;
4259
4260         if (!to_intel_atomic_state(state)->dpll_set)
4261                 return;
4262
4263         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4264         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4265                 pll = &dev_priv->shared_dplls[i];
4266                 pll->config = shared_dpll[i];
4267         }
4268 }
4269
4270 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4271 {
4272         struct drm_i915_private *dev_priv = dev->dev_private;
4273         int dslreg = PIPEDSL(pipe);
4274         u32 temp;
4275
4276         temp = I915_READ(dslreg);
4277         udelay(500);
4278         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4279                 if (wait_for(I915_READ(dslreg) != temp, 5))
4280                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4281         }
4282 }
4283
4284 static int
4285 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4286                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4287                   int src_w, int src_h, int dst_w, int dst_h)
4288 {
4289         struct intel_crtc_scaler_state *scaler_state =
4290                 &crtc_state->scaler_state;
4291         struct intel_crtc *intel_crtc =
4292                 to_intel_crtc(crtc_state->base.crtc);
4293         int need_scaling;
4294
4295         need_scaling = intel_rotation_90_or_270(rotation) ?
4296                 (src_h != dst_w || src_w != dst_h):
4297                 (src_w != dst_w || src_h != dst_h);
4298
4299         /*
4300          * if plane is being disabled or scaler is no more required or force detach
4301          *  - free scaler binded to this plane/crtc
4302          *  - in order to do this, update crtc->scaler_usage
4303          *
4304          * Here scaler state in crtc_state is set free so that
4305          * scaler can be assigned to other user. Actual register
4306          * update to free the scaler is done in plane/panel-fit programming.
4307          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4308          */
4309         if (force_detach || !need_scaling) {
4310                 if (*scaler_id >= 0) {
4311                         scaler_state->scaler_users &= ~(1 << scaler_user);
4312                         scaler_state->scalers[*scaler_id].in_use = 0;
4313
4314                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4315                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4316                                 intel_crtc->pipe, scaler_user, *scaler_id,
4317                                 scaler_state->scaler_users);
4318                         *scaler_id = -1;
4319                 }
4320                 return 0;
4321         }
4322
4323         /* range checks */
4324         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4325                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4326
4327                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4328                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4329                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4330                         "size is out of scaler range\n",
4331                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4332                 return -EINVAL;
4333         }
4334
4335         /* mark this plane as a scaler user in crtc_state */
4336         scaler_state->scaler_users |= (1 << scaler_user);
4337         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4338                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4339                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4340                 scaler_state->scaler_users);
4341
4342         return 0;
4343 }
4344
4345 /**
4346  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4347  *
4348  * @state: crtc's scaler state
4349  * @force_detach: whether to forcibly disable scaler
4350  *
4351  * Return
4352  *     0 - scaler_usage updated successfully
4353  *    error - requested scaling cannot be supported or other error condition
4354  */
4355 int skl_update_scaler_crtc(struct intel_crtc_state *state, int force_detach)
4356 {
4357         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4358         struct drm_display_mode *adjusted_mode =
4359                 &state->base.adjusted_mode;
4360
4361         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4362                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4363
4364         return skl_update_scaler(state, force_detach, SKL_CRTC_INDEX,
4365                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4366                 state->pipe_src_w, state->pipe_src_h,
4367                 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4368 }
4369
4370 /**
4371  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4372  *
4373  * @state: crtc's scaler state
4374  * @plane_state: atomic plane state to update
4375  *
4376  * Return
4377  *     0 - scaler_usage updated successfully
4378  *    error - requested scaling cannot be supported or other error condition
4379  */
4380 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4381                                    struct intel_plane_state *plane_state)
4382 {
4383
4384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4385         struct intel_plane *intel_plane =
4386                 to_intel_plane(plane_state->base.plane);
4387         struct drm_framebuffer *fb = plane_state->base.fb;
4388         int ret;
4389
4390         bool force_detach = !fb || !plane_state->visible;
4391
4392         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4393                       intel_plane->base.base.id, intel_crtc->pipe,
4394                       drm_plane_index(&intel_plane->base));
4395
4396         ret = skl_update_scaler(crtc_state, force_detach,
4397                                 drm_plane_index(&intel_plane->base),
4398                                 &plane_state->scaler_id,
4399                                 plane_state->base.rotation,
4400                                 drm_rect_width(&plane_state->src) >> 16,
4401                                 drm_rect_height(&plane_state->src) >> 16,
4402                                 drm_rect_width(&plane_state->dst),
4403                                 drm_rect_height(&plane_state->dst));
4404
4405         if (ret || plane_state->scaler_id < 0)
4406                 return ret;
4407
4408         /* check colorkey */
4409         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4410                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4411                               intel_plane->base.base.id);
4412                 return -EINVAL;
4413         }
4414
4415         /* Check src format */
4416         switch (fb->pixel_format) {
4417         case DRM_FORMAT_RGB565:
4418         case DRM_FORMAT_XBGR8888:
4419         case DRM_FORMAT_XRGB8888:
4420         case DRM_FORMAT_ABGR8888:
4421         case DRM_FORMAT_ARGB8888:
4422         case DRM_FORMAT_XRGB2101010:
4423         case DRM_FORMAT_XBGR2101010:
4424         case DRM_FORMAT_YUYV:
4425         case DRM_FORMAT_YVYU:
4426         case DRM_FORMAT_UYVY:
4427         case DRM_FORMAT_VYUY:
4428                 break;
4429         default:
4430                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4431                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4432                 return -EINVAL;
4433         }
4434
4435         return 0;
4436 }
4437
4438 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4439 {
4440         struct drm_device *dev = crtc->base.dev;
4441         struct drm_i915_private *dev_priv = dev->dev_private;
4442         int pipe = crtc->pipe;
4443         struct intel_crtc_scaler_state *scaler_state =
4444                 &crtc->config->scaler_state;
4445
4446         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4447
4448         /* To update pfit, first update scaler state */
4449         skl_update_scaler_crtc(crtc->config, !enable);
4450         intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4451         skl_detach_scalers(crtc);
4452         if (!enable)
4453                 return;
4454
4455         if (crtc->config->pch_pfit.enabled) {
4456                 int id;
4457
4458                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4459                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4460                         return;
4461                 }
4462
4463                 id = scaler_state->scaler_id;
4464                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4465                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4466                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4467                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4468
4469                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4470         }
4471 }
4472
4473 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4474 {
4475         struct drm_device *dev = crtc->base.dev;
4476         struct drm_i915_private *dev_priv = dev->dev_private;
4477         int pipe = crtc->pipe;
4478
4479         if (crtc->config->pch_pfit.enabled) {
4480                 /* Force use of hard-coded filter coefficients
4481                  * as some pre-programmed values are broken,
4482                  * e.g. x201.
4483                  */
4484                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4485                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4486                                                  PF_PIPE_SEL_IVB(pipe));
4487                 else
4488                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4489                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4490                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4491         }
4492 }
4493
4494 void hsw_enable_ips(struct intel_crtc *crtc)
4495 {
4496         struct drm_device *dev = crtc->base.dev;
4497         struct drm_i915_private *dev_priv = dev->dev_private;
4498
4499         if (!crtc->config->ips_enabled)
4500                 return;
4501
4502         /* We can only enable IPS after we enable a plane and wait for a vblank */
4503         intel_wait_for_vblank(dev, crtc->pipe);
4504
4505         assert_plane_enabled(dev_priv, crtc->plane);
4506         if (IS_BROADWELL(dev)) {
4507                 mutex_lock(&dev_priv->rps.hw_lock);
4508                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4509                 mutex_unlock(&dev_priv->rps.hw_lock);
4510                 /* Quoting Art Runyan: "its not safe to expect any particular
4511                  * value in IPS_CTL bit 31 after enabling IPS through the
4512                  * mailbox." Moreover, the mailbox may return a bogus state,
4513                  * so we need to just enable it and continue on.
4514                  */
4515         } else {
4516                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4517                 /* The bit only becomes 1 in the next vblank, so this wait here
4518                  * is essentially intel_wait_for_vblank. If we don't have this
4519                  * and don't wait for vblanks until the end of crtc_enable, then
4520                  * the HW state readout code will complain that the expected
4521                  * IPS_CTL value is not the one we read. */
4522                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4523                         DRM_ERROR("Timed out waiting for IPS enable\n");
4524         }
4525 }
4526
4527 void hsw_disable_ips(struct intel_crtc *crtc)
4528 {
4529         struct drm_device *dev = crtc->base.dev;
4530         struct drm_i915_private *dev_priv = dev->dev_private;
4531
4532         if (!crtc->config->ips_enabled)
4533                 return;
4534
4535         assert_plane_enabled(dev_priv, crtc->plane);
4536         if (IS_BROADWELL(dev)) {
4537                 mutex_lock(&dev_priv->rps.hw_lock);
4538                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4539                 mutex_unlock(&dev_priv->rps.hw_lock);
4540                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4541                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4542                         DRM_ERROR("Timed out waiting for IPS disable\n");
4543         } else {
4544                 I915_WRITE(IPS_CTL, 0);
4545                 POSTING_READ(IPS_CTL);
4546         }
4547
4548         /* We need to wait for a vblank before we can disable the plane. */
4549         intel_wait_for_vblank(dev, crtc->pipe);
4550 }
4551
4552 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4553 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4554 {
4555         struct drm_device *dev = crtc->dev;
4556         struct drm_i915_private *dev_priv = dev->dev_private;
4557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4558         enum pipe pipe = intel_crtc->pipe;
4559         int palreg = PALETTE(pipe);
4560         int i;
4561         bool reenable_ips = false;
4562
4563         /* The clocks have to be on to load the palette. */
4564         if (!crtc->state->active)
4565                 return;
4566
4567         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4568                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4569                         assert_dsi_pll_enabled(dev_priv);
4570                 else
4571                         assert_pll_enabled(dev_priv, pipe);
4572         }
4573
4574         /* use legacy palette for Ironlake */
4575         if (!HAS_GMCH_DISPLAY(dev))
4576                 palreg = LGC_PALETTE(pipe);
4577
4578         /* Workaround : Do not read or write the pipe palette/gamma data while
4579          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4580          */
4581         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4582             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4583              GAMMA_MODE_MODE_SPLIT)) {
4584                 hsw_disable_ips(intel_crtc);
4585                 reenable_ips = true;
4586         }
4587
4588         for (i = 0; i < 256; i++) {
4589                 I915_WRITE(palreg + 4 * i,
4590                            (intel_crtc->lut_r[i] << 16) |
4591                            (intel_crtc->lut_g[i] << 8) |
4592                            intel_crtc->lut_b[i]);
4593         }
4594
4595         if (reenable_ips)
4596                 hsw_enable_ips(intel_crtc);
4597 }
4598
4599 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4600 {
4601         if (intel_crtc->overlay) {
4602                 struct drm_device *dev = intel_crtc->base.dev;
4603                 struct drm_i915_private *dev_priv = dev->dev_private;
4604
4605                 mutex_lock(&dev->struct_mutex);
4606                 dev_priv->mm.interruptible = false;
4607                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4608                 dev_priv->mm.interruptible = true;
4609                 mutex_unlock(&dev->struct_mutex);
4610         }
4611
4612         /* Let userspace switch the overlay on again. In most cases userspace
4613          * has to recompute where to put it anyway.
4614          */
4615 }
4616
4617 /**
4618  * intel_post_enable_primary - Perform operations after enabling primary plane
4619  * @crtc: the CRTC whose primary plane was just enabled
4620  *
4621  * Performs potentially sleeping operations that must be done after the primary
4622  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4623  * called due to an explicit primary plane update, or due to an implicit
4624  * re-enable that is caused when a sprite plane is updated to no longer
4625  * completely hide the primary plane.
4626  */
4627 static void
4628 intel_post_enable_primary(struct drm_crtc *crtc)
4629 {
4630         struct drm_device *dev = crtc->dev;
4631         struct drm_i915_private *dev_priv = dev->dev_private;
4632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4633         int pipe = intel_crtc->pipe;
4634
4635         /*
4636          * BDW signals flip done immediately if the plane
4637          * is disabled, even if the plane enable is already
4638          * armed to occur at the next vblank :(
4639          */
4640         if (IS_BROADWELL(dev))
4641                 intel_wait_for_vblank(dev, pipe);
4642
4643         /*
4644          * FIXME IPS should be fine as long as one plane is
4645          * enabled, but in practice it seems to have problems
4646          * when going from primary only to sprite only and vice
4647          * versa.
4648          */
4649         hsw_enable_ips(intel_crtc);
4650
4651         /*
4652          * Gen2 reports pipe underruns whenever all planes are disabled.
4653          * So don't enable underrun reporting before at least some planes
4654          * are enabled.
4655          * FIXME: Need to fix the logic to work when we turn off all planes
4656          * but leave the pipe running.
4657          */
4658         if (IS_GEN2(dev))
4659                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4660
4661         /* Underruns don't raise interrupts, so check manually. */
4662         if (HAS_GMCH_DISPLAY(dev))
4663                 i9xx_check_fifo_underruns(dev_priv);
4664 }
4665
4666 /**
4667  * intel_pre_disable_primary - Perform operations before disabling primary plane
4668  * @crtc: the CRTC whose primary plane is to be disabled
4669  *
4670  * Performs potentially sleeping operations that must be done before the
4671  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4672  * be called due to an explicit primary plane update, or due to an implicit
4673  * disable that is caused when a sprite plane completely hides the primary
4674  * plane.
4675  */
4676 static void
4677 intel_pre_disable_primary(struct drm_crtc *crtc)
4678 {
4679         struct drm_device *dev = crtc->dev;
4680         struct drm_i915_private *dev_priv = dev->dev_private;
4681         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4682         int pipe = intel_crtc->pipe;
4683
4684         /*
4685          * Gen2 reports pipe underruns whenever all planes are disabled.
4686          * So diasble underrun reporting before all the planes get disabled.
4687          * FIXME: Need to fix the logic to work when we turn off all planes
4688          * but leave the pipe running.
4689          */
4690         if (IS_GEN2(dev))
4691                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4692
4693         /*
4694          * Vblank time updates from the shadow to live plane control register
4695          * are blocked if the memory self-refresh mode is active at that
4696          * moment. So to make sure the plane gets truly disabled, disable
4697          * first the self-refresh mode. The self-refresh enable bit in turn
4698          * will be checked/applied by the HW only at the next frame start
4699          * event which is after the vblank start event, so we need to have a
4700          * wait-for-vblank between disabling the plane and the pipe.
4701          */
4702         if (HAS_GMCH_DISPLAY(dev))
4703                 intel_set_memory_cxsr(dev_priv, false);
4704
4705         /*
4706          * FIXME IPS should be fine as long as one plane is
4707          * enabled, but in practice it seems to have problems
4708          * when going from primary only to sprite only and vice
4709          * versa.
4710          */
4711         hsw_disable_ips(intel_crtc);
4712 }
4713
4714 static void intel_post_plane_update(struct intel_crtc *crtc)
4715 {
4716         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4717         struct drm_device *dev = crtc->base.dev;
4718         struct drm_plane *plane;
4719
4720         if (atomic->wait_vblank)
4721                 intel_wait_for_vblank(dev, crtc->pipe);
4722
4723         intel_frontbuffer_flip(dev, atomic->fb_bits);
4724
4725         if (crtc->atomic.update_wm_post)
4726                 intel_update_watermarks(&crtc->base);
4727
4728         if (atomic->update_fbc) {
4729                 mutex_lock(&dev->struct_mutex);
4730                 intel_fbc_update(dev);
4731                 mutex_unlock(&dev->struct_mutex);
4732         }
4733
4734         if (atomic->post_enable_primary)
4735                 intel_post_enable_primary(&crtc->base);
4736
4737         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4738                 intel_update_sprite_watermarks(plane, &crtc->base,
4739                                                0, 0, 0, false, false);
4740
4741         memset(atomic, 0, sizeof(*atomic));
4742 }
4743
4744 static void intel_pre_plane_update(struct intel_crtc *crtc)
4745 {
4746         struct drm_device *dev = crtc->base.dev;
4747         struct drm_i915_private *dev_priv = dev->dev_private;
4748         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4749         struct drm_plane *p;
4750
4751         /* Track fb's for any planes being disabled */
4752         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4753                 struct intel_plane *plane = to_intel_plane(p);
4754
4755                 mutex_lock(&dev->struct_mutex);
4756                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4757                                   plane->frontbuffer_bit);
4758                 mutex_unlock(&dev->struct_mutex);
4759         }
4760
4761         if (atomic->wait_for_flips)
4762                 intel_crtc_wait_for_pending_flips(&crtc->base);
4763
4764         if (atomic->disable_fbc &&
4765             dev_priv->fbc.crtc == crtc) {
4766                 mutex_lock(&dev->struct_mutex);
4767                 if (dev_priv->fbc.crtc == crtc)
4768                         intel_fbc_disable(dev);
4769                 mutex_unlock(&dev->struct_mutex);
4770         }
4771
4772         if (crtc->atomic.disable_ips)
4773                 hsw_disable_ips(crtc);
4774
4775         if (atomic->pre_disable_primary)
4776                 intel_pre_disable_primary(&crtc->base);
4777 }
4778
4779 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4780 {
4781         struct drm_device *dev = crtc->dev;
4782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4783         struct drm_plane *p;
4784         int pipe = intel_crtc->pipe;
4785
4786         intel_crtc_dpms_overlay_disable(intel_crtc);
4787
4788         drm_for_each_plane_mask(p, dev, plane_mask)
4789                 to_intel_plane(p)->disable_plane(p, crtc);
4790
4791         /*
4792          * FIXME: Once we grow proper nuclear flip support out of this we need
4793          * to compute the mask of flip planes precisely. For the time being
4794          * consider this a flip to a NULL plane.
4795          */
4796         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4797 }
4798
4799 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4800 {
4801         struct drm_device *dev = crtc->dev;
4802         struct drm_i915_private *dev_priv = dev->dev_private;
4803         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4804         struct intel_encoder *encoder;
4805         int pipe = intel_crtc->pipe;
4806
4807         if (WARN_ON(intel_crtc->active))
4808                 return;
4809
4810         if (intel_crtc->config->has_pch_encoder)
4811                 intel_prepare_shared_dpll(intel_crtc);
4812
4813         if (intel_crtc->config->has_dp_encoder)
4814                 intel_dp_set_m_n(intel_crtc, M1_N1);
4815
4816         intel_set_pipe_timings(intel_crtc);
4817
4818         if (intel_crtc->config->has_pch_encoder) {
4819                 intel_cpu_transcoder_set_m_n(intel_crtc,
4820                                      &intel_crtc->config->fdi_m_n, NULL);
4821         }
4822
4823         ironlake_set_pipeconf(crtc);
4824
4825         intel_crtc->active = true;
4826
4827         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4828         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4829
4830         for_each_encoder_on_crtc(dev, crtc, encoder)
4831                 if (encoder->pre_enable)
4832                         encoder->pre_enable(encoder);
4833
4834         if (intel_crtc->config->has_pch_encoder) {
4835                 /* Note: FDI PLL enabling _must_ be done before we enable the
4836                  * cpu pipes, hence this is separate from all the other fdi/pch
4837                  * enabling. */
4838                 ironlake_fdi_pll_enable(intel_crtc);
4839         } else {
4840                 assert_fdi_tx_disabled(dev_priv, pipe);
4841                 assert_fdi_rx_disabled(dev_priv, pipe);
4842         }
4843
4844         ironlake_pfit_enable(intel_crtc);
4845
4846         /*
4847          * On ILK+ LUT must be loaded before the pipe is running but with
4848          * clocks enabled
4849          */
4850         intel_crtc_load_lut(crtc);
4851
4852         intel_update_watermarks(crtc);
4853         intel_enable_pipe(intel_crtc);
4854
4855         if (intel_crtc->config->has_pch_encoder)
4856                 ironlake_pch_enable(crtc);
4857
4858         assert_vblank_disabled(crtc);
4859         drm_crtc_vblank_on(crtc);
4860
4861         for_each_encoder_on_crtc(dev, crtc, encoder)
4862                 encoder->enable(encoder);
4863
4864         if (HAS_PCH_CPT(dev))
4865                 cpt_verify_modeset(dev, intel_crtc->pipe);
4866 }
4867
4868 /* IPS only exists on ULT machines and is tied to pipe A. */
4869 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4870 {
4871         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4872 }
4873
4874 static void haswell_crtc_enable(struct drm_crtc *crtc)
4875 {
4876         struct drm_device *dev = crtc->dev;
4877         struct drm_i915_private *dev_priv = dev->dev_private;
4878         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4879         struct intel_encoder *encoder;
4880         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4881         struct intel_crtc_state *pipe_config =
4882                 to_intel_crtc_state(crtc->state);
4883
4884         if (WARN_ON(intel_crtc->active))
4885                 return;
4886
4887         if (intel_crtc_to_shared_dpll(intel_crtc))
4888                 intel_enable_shared_dpll(intel_crtc);
4889
4890         if (intel_crtc->config->has_dp_encoder)
4891                 intel_dp_set_m_n(intel_crtc, M1_N1);
4892
4893         intel_set_pipe_timings(intel_crtc);
4894
4895         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4896                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4897                            intel_crtc->config->pixel_multiplier - 1);
4898         }
4899
4900         if (intel_crtc->config->has_pch_encoder) {
4901                 intel_cpu_transcoder_set_m_n(intel_crtc,
4902                                      &intel_crtc->config->fdi_m_n, NULL);
4903         }
4904
4905         haswell_set_pipeconf(crtc);
4906
4907         intel_set_pipe_csc(crtc);
4908
4909         intel_crtc->active = true;
4910
4911         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4912         for_each_encoder_on_crtc(dev, crtc, encoder)
4913                 if (encoder->pre_enable)
4914                         encoder->pre_enable(encoder);
4915
4916         if (intel_crtc->config->has_pch_encoder) {
4917                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4918                                                       true);
4919                 dev_priv->display.fdi_link_train(crtc);
4920         }
4921
4922         intel_ddi_enable_pipe_clock(intel_crtc);
4923
4924         if (INTEL_INFO(dev)->gen == 9)
4925                 skylake_pfit_update(intel_crtc, 1);
4926         else if (INTEL_INFO(dev)->gen < 9)
4927                 ironlake_pfit_enable(intel_crtc);
4928         else
4929                 MISSING_CASE(INTEL_INFO(dev)->gen);
4930
4931         /*
4932          * On ILK+ LUT must be loaded before the pipe is running but with
4933          * clocks enabled
4934          */
4935         intel_crtc_load_lut(crtc);
4936
4937         intel_ddi_set_pipe_settings(crtc);
4938         intel_ddi_enable_transcoder_func(crtc);
4939
4940         intel_update_watermarks(crtc);
4941         intel_enable_pipe(intel_crtc);
4942
4943         if (intel_crtc->config->has_pch_encoder)
4944                 lpt_pch_enable(crtc);
4945
4946         if (intel_crtc->config->dp_encoder_is_mst)
4947                 intel_ddi_set_vc_payload_alloc(crtc, true);
4948
4949         assert_vblank_disabled(crtc);
4950         drm_crtc_vblank_on(crtc);
4951
4952         for_each_encoder_on_crtc(dev, crtc, encoder) {
4953                 encoder->enable(encoder);
4954                 intel_opregion_notify_encoder(encoder, true);
4955         }
4956
4957         /* If we change the relative order between pipe/planes enabling, we need
4958          * to change the workaround. */
4959         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4960         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4961                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4962                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4963         }
4964 }
4965
4966 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4967 {
4968         struct drm_device *dev = crtc->base.dev;
4969         struct drm_i915_private *dev_priv = dev->dev_private;
4970         int pipe = crtc->pipe;
4971
4972         /* To avoid upsetting the power well on haswell only disable the pfit if
4973          * it's in use. The hw state code will make sure we get this right. */
4974         if (crtc->config->pch_pfit.enabled) {
4975                 I915_WRITE(PF_CTL(pipe), 0);
4976                 I915_WRITE(PF_WIN_POS(pipe), 0);
4977                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4978         }
4979 }
4980
4981 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4982 {
4983         struct drm_device *dev = crtc->dev;
4984         struct drm_i915_private *dev_priv = dev->dev_private;
4985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4986         struct intel_encoder *encoder;
4987         int pipe = intel_crtc->pipe;
4988         u32 reg, temp;
4989
4990         for_each_encoder_on_crtc(dev, crtc, encoder)
4991                 encoder->disable(encoder);
4992
4993         drm_crtc_vblank_off(crtc);
4994         assert_vblank_disabled(crtc);
4995
4996         if (intel_crtc->config->has_pch_encoder)
4997                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4998
4999         intel_disable_pipe(intel_crtc);
5000
5001         ironlake_pfit_disable(intel_crtc);
5002
5003         if (intel_crtc->config->has_pch_encoder)
5004                 ironlake_fdi_disable(crtc);
5005
5006         for_each_encoder_on_crtc(dev, crtc, encoder)
5007                 if (encoder->post_disable)
5008                         encoder->post_disable(encoder);
5009
5010         if (intel_crtc->config->has_pch_encoder) {
5011                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5012
5013                 if (HAS_PCH_CPT(dev)) {
5014                         /* disable TRANS_DP_CTL */
5015                         reg = TRANS_DP_CTL(pipe);
5016                         temp = I915_READ(reg);
5017                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5018                                   TRANS_DP_PORT_SEL_MASK);
5019                         temp |= TRANS_DP_PORT_SEL_NONE;
5020                         I915_WRITE(reg, temp);
5021
5022                         /* disable DPLL_SEL */
5023                         temp = I915_READ(PCH_DPLL_SEL);
5024                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5025                         I915_WRITE(PCH_DPLL_SEL, temp);
5026                 }
5027
5028                 ironlake_fdi_pll_disable(intel_crtc);
5029         }
5030 }
5031
5032 static void haswell_crtc_disable(struct drm_crtc *crtc)
5033 {
5034         struct drm_device *dev = crtc->dev;
5035         struct drm_i915_private *dev_priv = dev->dev_private;
5036         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5037         struct intel_encoder *encoder;
5038         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5039
5040         for_each_encoder_on_crtc(dev, crtc, encoder) {
5041                 intel_opregion_notify_encoder(encoder, false);
5042                 encoder->disable(encoder);
5043         }
5044
5045         drm_crtc_vblank_off(crtc);
5046         assert_vblank_disabled(crtc);
5047
5048         if (intel_crtc->config->has_pch_encoder)
5049                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5050                                                       false);
5051         intel_disable_pipe(intel_crtc);
5052
5053         if (intel_crtc->config->dp_encoder_is_mst)
5054                 intel_ddi_set_vc_payload_alloc(crtc, false);
5055
5056         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5057
5058         if (INTEL_INFO(dev)->gen == 9)
5059                 skylake_pfit_update(intel_crtc, 0);
5060         else if (INTEL_INFO(dev)->gen < 9)
5061                 ironlake_pfit_disable(intel_crtc);
5062         else
5063                 MISSING_CASE(INTEL_INFO(dev)->gen);
5064
5065         intel_ddi_disable_pipe_clock(intel_crtc);
5066
5067         if (intel_crtc->config->has_pch_encoder) {
5068                 lpt_disable_pch_transcoder(dev_priv);
5069                 intel_ddi_fdi_disable(crtc);
5070         }
5071
5072         for_each_encoder_on_crtc(dev, crtc, encoder)
5073                 if (encoder->post_disable)
5074                         encoder->post_disable(encoder);
5075 }
5076
5077 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5078 {
5079         struct drm_device *dev = crtc->base.dev;
5080         struct drm_i915_private *dev_priv = dev->dev_private;
5081         struct intel_crtc_state *pipe_config = crtc->config;
5082
5083         if (!pipe_config->gmch_pfit.control)
5084                 return;
5085
5086         /*
5087          * The panel fitter should only be adjusted whilst the pipe is disabled,
5088          * according to register description and PRM.
5089          */
5090         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5091         assert_pipe_disabled(dev_priv, crtc->pipe);
5092
5093         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5094         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5095
5096         /* Border color in case we don't scale up to the full screen. Black by
5097          * default, change to something else for debugging. */
5098         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5099 }
5100
5101 static enum intel_display_power_domain port_to_power_domain(enum port port)
5102 {
5103         switch (port) {
5104         case PORT_A:
5105                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5106         case PORT_B:
5107                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5108         case PORT_C:
5109                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5110         case PORT_D:
5111                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5112         default:
5113                 WARN_ON_ONCE(1);
5114                 return POWER_DOMAIN_PORT_OTHER;
5115         }
5116 }
5117
5118 #define for_each_power_domain(domain, mask)                             \
5119         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5120                 if ((1 << (domain)) & (mask))
5121
5122 enum intel_display_power_domain
5123 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5124 {
5125         struct drm_device *dev = intel_encoder->base.dev;
5126         struct intel_digital_port *intel_dig_port;
5127
5128         switch (intel_encoder->type) {
5129         case INTEL_OUTPUT_UNKNOWN:
5130                 /* Only DDI platforms should ever use this output type */
5131                 WARN_ON_ONCE(!HAS_DDI(dev));
5132         case INTEL_OUTPUT_DISPLAYPORT:
5133         case INTEL_OUTPUT_HDMI:
5134         case INTEL_OUTPUT_EDP:
5135                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5136                 return port_to_power_domain(intel_dig_port->port);
5137         case INTEL_OUTPUT_DP_MST:
5138                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5139                 return port_to_power_domain(intel_dig_port->port);
5140         case INTEL_OUTPUT_ANALOG:
5141                 return POWER_DOMAIN_PORT_CRT;
5142         case INTEL_OUTPUT_DSI:
5143                 return POWER_DOMAIN_PORT_DSI;
5144         default:
5145                 return POWER_DOMAIN_PORT_OTHER;
5146         }
5147 }
5148
5149 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5150 {
5151         struct drm_device *dev = crtc->dev;
5152         struct intel_encoder *intel_encoder;
5153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5154         enum pipe pipe = intel_crtc->pipe;
5155         unsigned long mask;
5156         enum transcoder transcoder;
5157
5158         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5159
5160         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5161         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5162         if (intel_crtc->config->pch_pfit.enabled ||
5163             intel_crtc->config->pch_pfit.force_thru)
5164                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5165
5166         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5167                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5168
5169         return mask;
5170 }
5171
5172 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5173 {
5174         struct drm_device *dev = state->dev;
5175         struct drm_i915_private *dev_priv = dev->dev_private;
5176         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5177         struct intel_crtc *crtc;
5178
5179         /*
5180          * First get all needed power domains, then put all unneeded, to avoid
5181          * any unnecessary toggling of the power wells.
5182          */
5183         for_each_intel_crtc(dev, crtc) {
5184                 enum intel_display_power_domain domain;
5185
5186                 if (!crtc->base.state->enable)
5187                         continue;
5188
5189                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5190
5191                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5192                         intel_display_power_get(dev_priv, domain);
5193         }
5194
5195         if (dev_priv->display.modeset_commit_cdclk) {
5196                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5197
5198                 if (cdclk != dev_priv->cdclk_freq &&
5199                     !WARN_ON(!state->allow_modeset))
5200                         dev_priv->display.modeset_commit_cdclk(state);
5201         }
5202
5203         for_each_intel_crtc(dev, crtc) {
5204                 enum intel_display_power_domain domain;
5205
5206                 for_each_power_domain(domain, crtc->enabled_power_domains)
5207                         intel_display_power_put(dev_priv, domain);
5208
5209                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5210         }
5211
5212         intel_display_set_init_power(dev_priv, false);
5213 }
5214
5215 static void intel_update_max_cdclk(struct drm_device *dev)
5216 {
5217         struct drm_i915_private *dev_priv = dev->dev_private;
5218
5219         if (IS_SKYLAKE(dev)) {
5220                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5221
5222                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5223                         dev_priv->max_cdclk_freq = 675000;
5224                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5225                         dev_priv->max_cdclk_freq = 540000;
5226                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5227                         dev_priv->max_cdclk_freq = 450000;
5228                 else
5229                         dev_priv->max_cdclk_freq = 337500;
5230         } else if (IS_BROADWELL(dev))  {
5231                 /*
5232                  * FIXME with extra cooling we can allow
5233                  * 540 MHz for ULX and 675 Mhz for ULT.
5234                  * How can we know if extra cooling is
5235                  * available? PCI ID, VTB, something else?
5236                  */
5237                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5238                         dev_priv->max_cdclk_freq = 450000;
5239                 else if (IS_BDW_ULX(dev))
5240                         dev_priv->max_cdclk_freq = 450000;
5241                 else if (IS_BDW_ULT(dev))
5242                         dev_priv->max_cdclk_freq = 540000;
5243                 else
5244                         dev_priv->max_cdclk_freq = 675000;
5245         } else if (IS_CHERRYVIEW(dev)) {
5246                 dev_priv->max_cdclk_freq = 320000;
5247         } else if (IS_VALLEYVIEW(dev)) {
5248                 dev_priv->max_cdclk_freq = 400000;
5249         } else {
5250                 /* otherwise assume cdclk is fixed */
5251                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5252         }
5253
5254         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5255                          dev_priv->max_cdclk_freq);
5256 }
5257
5258 static void intel_update_cdclk(struct drm_device *dev)
5259 {
5260         struct drm_i915_private *dev_priv = dev->dev_private;
5261
5262         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5263         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5264                          dev_priv->cdclk_freq);
5265
5266         /*
5267          * Program the gmbus_freq based on the cdclk frequency.
5268          * BSpec erroneously claims we should aim for 4MHz, but
5269          * in fact 1MHz is the correct frequency.
5270          */
5271         if (IS_VALLEYVIEW(dev)) {
5272                 /*
5273                  * Program the gmbus_freq based on the cdclk frequency.
5274                  * BSpec erroneously claims we should aim for 4MHz, but
5275                  * in fact 1MHz is the correct frequency.
5276                  */
5277                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5278         }
5279
5280         if (dev_priv->max_cdclk_freq == 0)
5281                 intel_update_max_cdclk(dev);
5282 }
5283
5284 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5285 {
5286         struct drm_i915_private *dev_priv = dev->dev_private;
5287         uint32_t divider;
5288         uint32_t ratio;
5289         uint32_t current_freq;
5290         int ret;
5291
5292         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5293         switch (frequency) {
5294         case 144000:
5295                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5296                 ratio = BXT_DE_PLL_RATIO(60);
5297                 break;
5298         case 288000:
5299                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5300                 ratio = BXT_DE_PLL_RATIO(60);
5301                 break;
5302         case 384000:
5303                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5304                 ratio = BXT_DE_PLL_RATIO(60);
5305                 break;
5306         case 576000:
5307                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5308                 ratio = BXT_DE_PLL_RATIO(60);
5309                 break;
5310         case 624000:
5311                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5312                 ratio = BXT_DE_PLL_RATIO(65);
5313                 break;
5314         case 19200:
5315                 /*
5316                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5317                  * to suppress GCC warning.
5318                  */
5319                 ratio = 0;
5320                 divider = 0;
5321                 break;
5322         default:
5323                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5324
5325                 return;
5326         }
5327
5328         mutex_lock(&dev_priv->rps.hw_lock);
5329         /* Inform power controller of upcoming frequency change */
5330         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5331                                       0x80000000);
5332         mutex_unlock(&dev_priv->rps.hw_lock);
5333
5334         if (ret) {
5335                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5336                           ret, frequency);
5337                 return;
5338         }
5339
5340         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5341         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5342         current_freq = current_freq * 500 + 1000;
5343
5344         /*
5345          * DE PLL has to be disabled when
5346          * - setting to 19.2MHz (bypass, PLL isn't used)
5347          * - before setting to 624MHz (PLL needs toggling)
5348          * - before setting to any frequency from 624MHz (PLL needs toggling)
5349          */
5350         if (frequency == 19200 || frequency == 624000 ||
5351             current_freq == 624000) {
5352                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5353                 /* Timeout 200us */
5354                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5355                              1))
5356                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5357         }
5358
5359         if (frequency != 19200) {
5360                 uint32_t val;
5361
5362                 val = I915_READ(BXT_DE_PLL_CTL);
5363                 val &= ~BXT_DE_PLL_RATIO_MASK;
5364                 val |= ratio;
5365                 I915_WRITE(BXT_DE_PLL_CTL, val);
5366
5367                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5368                 /* Timeout 200us */
5369                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5370                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5371
5372                 val = I915_READ(CDCLK_CTL);
5373                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5374                 val |= divider;
5375                 /*
5376                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5377                  * enable otherwise.
5378                  */
5379                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5380                 if (frequency >= 500000)
5381                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5382
5383                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5384                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5385                 val |= (frequency - 1000) / 500;
5386                 I915_WRITE(CDCLK_CTL, val);
5387         }
5388
5389         mutex_lock(&dev_priv->rps.hw_lock);
5390         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5391                                       DIV_ROUND_UP(frequency, 25000));
5392         mutex_unlock(&dev_priv->rps.hw_lock);
5393
5394         if (ret) {
5395                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5396                           ret, frequency);
5397                 return;
5398         }
5399
5400         intel_update_cdclk(dev);
5401 }
5402
5403 void broxton_init_cdclk(struct drm_device *dev)
5404 {
5405         struct drm_i915_private *dev_priv = dev->dev_private;
5406         uint32_t val;
5407
5408         /*
5409          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5410          * or else the reset will hang because there is no PCH to respond.
5411          * Move the handshake programming to initialization sequence.
5412          * Previously was left up to BIOS.
5413          */
5414         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5415         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5416         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5417
5418         /* Enable PG1 for cdclk */
5419         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5420
5421         /* check if cd clock is enabled */
5422         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5423                 DRM_DEBUG_KMS("Display already initialized\n");
5424                 return;
5425         }
5426
5427         /*
5428          * FIXME:
5429          * - The initial CDCLK needs to be read from VBT.
5430          *   Need to make this change after VBT has changes for BXT.
5431          * - check if setting the max (or any) cdclk freq is really necessary
5432          *   here, it belongs to modeset time
5433          */
5434         broxton_set_cdclk(dev, 624000);
5435
5436         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5437         POSTING_READ(DBUF_CTL);
5438
5439         udelay(10);
5440
5441         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5442                 DRM_ERROR("DBuf power enable timeout!\n");
5443 }
5444
5445 void broxton_uninit_cdclk(struct drm_device *dev)
5446 {
5447         struct drm_i915_private *dev_priv = dev->dev_private;
5448
5449         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5450         POSTING_READ(DBUF_CTL);
5451
5452         udelay(10);
5453
5454         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5455                 DRM_ERROR("DBuf power disable timeout!\n");
5456
5457         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5458         broxton_set_cdclk(dev, 19200);
5459
5460         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5461 }
5462
5463 static const struct skl_cdclk_entry {
5464         unsigned int freq;
5465         unsigned int vco;
5466 } skl_cdclk_frequencies[] = {
5467         { .freq = 308570, .vco = 8640 },
5468         { .freq = 337500, .vco = 8100 },
5469         { .freq = 432000, .vco = 8640 },
5470         { .freq = 450000, .vco = 8100 },
5471         { .freq = 540000, .vco = 8100 },
5472         { .freq = 617140, .vco = 8640 },
5473         { .freq = 675000, .vco = 8100 },
5474 };
5475
5476 static unsigned int skl_cdclk_decimal(unsigned int freq)
5477 {
5478         return (freq - 1000) / 500;
5479 }
5480
5481 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5482 {
5483         unsigned int i;
5484
5485         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5486                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5487
5488                 if (e->freq == freq)
5489                         return e->vco;
5490         }
5491
5492         return 8100;
5493 }
5494
5495 static void
5496 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5497 {
5498         unsigned int min_freq;
5499         u32 val;
5500
5501         /* select the minimum CDCLK before enabling DPLL 0 */
5502         val = I915_READ(CDCLK_CTL);
5503         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5504         val |= CDCLK_FREQ_337_308;
5505
5506         if (required_vco == 8640)
5507                 min_freq = 308570;
5508         else
5509                 min_freq = 337500;
5510
5511         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5512
5513         I915_WRITE(CDCLK_CTL, val);
5514         POSTING_READ(CDCLK_CTL);
5515
5516         /*
5517          * We always enable DPLL0 with the lowest link rate possible, but still
5518          * taking into account the VCO required to operate the eDP panel at the
5519          * desired frequency. The usual DP link rates operate with a VCO of
5520          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5521          * The modeset code is responsible for the selection of the exact link
5522          * rate later on, with the constraint of choosing a frequency that
5523          * works with required_vco.
5524          */
5525         val = I915_READ(DPLL_CTRL1);
5526
5527         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5528                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5529         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5530         if (required_vco == 8640)
5531                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5532                                             SKL_DPLL0);
5533         else
5534                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5535                                             SKL_DPLL0);
5536
5537         I915_WRITE(DPLL_CTRL1, val);
5538         POSTING_READ(DPLL_CTRL1);
5539
5540         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5541
5542         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5543                 DRM_ERROR("DPLL0 not locked\n");
5544 }
5545
5546 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5547 {
5548         int ret;
5549         u32 val;
5550
5551         /* inform PCU we want to change CDCLK */
5552         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5553         mutex_lock(&dev_priv->rps.hw_lock);
5554         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5555         mutex_unlock(&dev_priv->rps.hw_lock);
5556
5557         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5558 }
5559
5560 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5561 {
5562         unsigned int i;
5563
5564         for (i = 0; i < 15; i++) {
5565                 if (skl_cdclk_pcu_ready(dev_priv))
5566                         return true;
5567                 udelay(10);
5568         }
5569
5570         return false;
5571 }
5572
5573 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5574 {
5575         struct drm_device *dev = dev_priv->dev;
5576         u32 freq_select, pcu_ack;
5577
5578         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5579
5580         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5581                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5582                 return;
5583         }
5584
5585         /* set CDCLK_CTL */
5586         switch(freq) {
5587         case 450000:
5588         case 432000:
5589                 freq_select = CDCLK_FREQ_450_432;
5590                 pcu_ack = 1;
5591                 break;
5592         case 540000:
5593                 freq_select = CDCLK_FREQ_540;
5594                 pcu_ack = 2;
5595                 break;
5596         case 308570:
5597         case 337500:
5598         default:
5599                 freq_select = CDCLK_FREQ_337_308;
5600                 pcu_ack = 0;
5601                 break;
5602         case 617140:
5603         case 675000:
5604                 freq_select = CDCLK_FREQ_675_617;
5605                 pcu_ack = 3;
5606                 break;
5607         }
5608
5609         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5610         POSTING_READ(CDCLK_CTL);
5611
5612         /* inform PCU of the change */
5613         mutex_lock(&dev_priv->rps.hw_lock);
5614         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5615         mutex_unlock(&dev_priv->rps.hw_lock);
5616
5617         intel_update_cdclk(dev);
5618 }
5619
5620 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5621 {
5622         /* disable DBUF power */
5623         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5624         POSTING_READ(DBUF_CTL);
5625
5626         udelay(10);
5627
5628         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5629                 DRM_ERROR("DBuf power disable timeout\n");
5630
5631         /* disable DPLL0 */
5632         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5633         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5634                 DRM_ERROR("Couldn't disable DPLL0\n");
5635
5636         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5637 }
5638
5639 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5640 {
5641         u32 val;
5642         unsigned int required_vco;
5643
5644         /* enable PCH reset handshake */
5645         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5646         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5647
5648         /* enable PG1 and Misc I/O */
5649         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5650
5651         /* DPLL0 already enabed !? */
5652         if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5653                 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5654                 return;
5655         }
5656
5657         /* enable DPLL0 */
5658         required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5659         skl_dpll0_enable(dev_priv, required_vco);
5660
5661         /* set CDCLK to the frequency the BIOS chose */
5662         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5663
5664         /* enable DBUF power */
5665         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5666         POSTING_READ(DBUF_CTL);
5667
5668         udelay(10);
5669
5670         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5671                 DRM_ERROR("DBuf power enable timeout\n");
5672 }
5673
5674 /* returns HPLL frequency in kHz */
5675 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5676 {
5677         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5678
5679         /* Obtain SKU information */
5680         mutex_lock(&dev_priv->sb_lock);
5681         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5682                 CCK_FUSE_HPLL_FREQ_MASK;
5683         mutex_unlock(&dev_priv->sb_lock);
5684
5685         return vco_freq[hpll_freq] * 1000;
5686 }
5687
5688 /* Adjust CDclk dividers to allow high res or save power if possible */
5689 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5690 {
5691         struct drm_i915_private *dev_priv = dev->dev_private;
5692         u32 val, cmd;
5693
5694         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5695                                         != dev_priv->cdclk_freq);
5696
5697         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5698                 cmd = 2;
5699         else if (cdclk == 266667)
5700                 cmd = 1;
5701         else
5702                 cmd = 0;
5703
5704         mutex_lock(&dev_priv->rps.hw_lock);
5705         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5706         val &= ~DSPFREQGUAR_MASK;
5707         val |= (cmd << DSPFREQGUAR_SHIFT);
5708         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5709         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5710                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5711                      50)) {
5712                 DRM_ERROR("timed out waiting for CDclk change\n");
5713         }
5714         mutex_unlock(&dev_priv->rps.hw_lock);
5715
5716         mutex_lock(&dev_priv->sb_lock);
5717
5718         if (cdclk == 400000) {
5719                 u32 divider;
5720
5721                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5722
5723                 /* adjust cdclk divider */
5724                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5725                 val &= ~DISPLAY_FREQUENCY_VALUES;
5726                 val |= divider;
5727                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5728
5729                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5730                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5731                              50))
5732                         DRM_ERROR("timed out waiting for CDclk change\n");
5733         }
5734
5735         /* adjust self-refresh exit latency value */
5736         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5737         val &= ~0x7f;
5738
5739         /*
5740          * For high bandwidth configs, we set a higher latency in the bunit
5741          * so that the core display fetch happens in time to avoid underruns.
5742          */
5743         if (cdclk == 400000)
5744                 val |= 4500 / 250; /* 4.5 usec */
5745         else
5746                 val |= 3000 / 250; /* 3.0 usec */
5747         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5748
5749         mutex_unlock(&dev_priv->sb_lock);
5750
5751         intel_update_cdclk(dev);
5752 }
5753
5754 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5755 {
5756         struct drm_i915_private *dev_priv = dev->dev_private;
5757         u32 val, cmd;
5758
5759         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5760                                                 != dev_priv->cdclk_freq);
5761
5762         switch (cdclk) {
5763         case 333333:
5764         case 320000:
5765         case 266667:
5766         case 200000:
5767                 break;
5768         default:
5769                 MISSING_CASE(cdclk);
5770                 return;
5771         }
5772
5773         /*
5774          * Specs are full of misinformation, but testing on actual
5775          * hardware has shown that we just need to write the desired
5776          * CCK divider into the Punit register.
5777          */
5778         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5779
5780         mutex_lock(&dev_priv->rps.hw_lock);
5781         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5782         val &= ~DSPFREQGUAR_MASK_CHV;
5783         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5784         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5785         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5786                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5787                      50)) {
5788                 DRM_ERROR("timed out waiting for CDclk change\n");
5789         }
5790         mutex_unlock(&dev_priv->rps.hw_lock);
5791
5792         intel_update_cdclk(dev);
5793 }
5794
5795 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5796                                  int max_pixclk)
5797 {
5798         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5799         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5800
5801         /*
5802          * Really only a few cases to deal with, as only 4 CDclks are supported:
5803          *   200MHz
5804          *   267MHz
5805          *   320/333MHz (depends on HPLL freq)
5806          *   400MHz (VLV only)
5807          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5808          * of the lower bin and adjust if needed.
5809          *
5810          * We seem to get an unstable or solid color picture at 200MHz.
5811          * Not sure what's wrong. For now use 200MHz only when all pipes
5812          * are off.
5813          */
5814         if (!IS_CHERRYVIEW(dev_priv) &&
5815             max_pixclk > freq_320*limit/100)
5816                 return 400000;
5817         else if (max_pixclk > 266667*limit/100)
5818                 return freq_320;
5819         else if (max_pixclk > 0)
5820                 return 266667;
5821         else
5822                 return 200000;
5823 }
5824
5825 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5826                               int max_pixclk)
5827 {
5828         /*
5829          * FIXME:
5830          * - remove the guardband, it's not needed on BXT
5831          * - set 19.2MHz bypass frequency if there are no active pipes
5832          */
5833         if (max_pixclk > 576000*9/10)
5834                 return 624000;
5835         else if (max_pixclk > 384000*9/10)
5836                 return 576000;
5837         else if (max_pixclk > 288000*9/10)
5838                 return 384000;
5839         else if (max_pixclk > 144000*9/10)
5840                 return 288000;
5841         else
5842                 return 144000;
5843 }
5844
5845 /* Compute the max pixel clock for new configuration. Uses atomic state if
5846  * that's non-NULL, look at current state otherwise. */
5847 static int intel_mode_max_pixclk(struct drm_device *dev,
5848                                  struct drm_atomic_state *state)
5849 {
5850         struct intel_crtc *intel_crtc;
5851         struct intel_crtc_state *crtc_state;
5852         int max_pixclk = 0;
5853
5854         for_each_intel_crtc(dev, intel_crtc) {
5855                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5856                 if (IS_ERR(crtc_state))
5857                         return PTR_ERR(crtc_state);
5858
5859                 if (!crtc_state->base.enable)
5860                         continue;
5861
5862                 max_pixclk = max(max_pixclk,
5863                                  crtc_state->base.adjusted_mode.crtc_clock);
5864         }
5865
5866         return max_pixclk;
5867 }
5868
5869 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5870 {
5871         struct drm_device *dev = state->dev;
5872         struct drm_i915_private *dev_priv = dev->dev_private;
5873         int max_pixclk = intel_mode_max_pixclk(dev, state);
5874
5875         if (max_pixclk < 0)
5876                 return max_pixclk;
5877
5878         to_intel_atomic_state(state)->cdclk =
5879                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5880
5881         return 0;
5882 }
5883
5884 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5885 {
5886         struct drm_device *dev = state->dev;
5887         struct drm_i915_private *dev_priv = dev->dev_private;
5888         int max_pixclk = intel_mode_max_pixclk(dev, state);
5889
5890         if (max_pixclk < 0)
5891                 return max_pixclk;
5892
5893         to_intel_atomic_state(state)->cdclk =
5894                 broxton_calc_cdclk(dev_priv, max_pixclk);
5895
5896         return 0;
5897 }
5898
5899 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5900 {
5901         unsigned int credits, default_credits;
5902
5903         if (IS_CHERRYVIEW(dev_priv))
5904                 default_credits = PFI_CREDIT(12);
5905         else
5906                 default_credits = PFI_CREDIT(8);
5907
5908         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5909                 /* CHV suggested value is 31 or 63 */
5910                 if (IS_CHERRYVIEW(dev_priv))
5911                         credits = PFI_CREDIT_63;
5912                 else
5913                         credits = PFI_CREDIT(15);
5914         } else {
5915                 credits = default_credits;
5916         }
5917
5918         /*
5919          * WA - write default credits before re-programming
5920          * FIXME: should we also set the resend bit here?
5921          */
5922         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5923                    default_credits);
5924
5925         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5926                    credits | PFI_CREDIT_RESEND);
5927
5928         /*
5929          * FIXME is this guaranteed to clear
5930          * immediately or should we poll for it?
5931          */
5932         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5933 }
5934
5935 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5936 {
5937         struct drm_device *dev = old_state->dev;
5938         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
5939         struct drm_i915_private *dev_priv = dev->dev_private;
5940
5941         /*
5942          * FIXME: We can end up here with all power domains off, yet
5943          * with a CDCLK frequency other than the minimum. To account
5944          * for this take the PIPE-A power domain, which covers the HW
5945          * blocks needed for the following programming. This can be
5946          * removed once it's guaranteed that we get here either with
5947          * the minimum CDCLK set, or the required power domains
5948          * enabled.
5949          */
5950         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5951
5952         if (IS_CHERRYVIEW(dev))
5953                 cherryview_set_cdclk(dev, req_cdclk);
5954         else
5955                 valleyview_set_cdclk(dev, req_cdclk);
5956
5957         vlv_program_pfi_credits(dev_priv);
5958
5959         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5960 }
5961
5962 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5963 {
5964         struct drm_device *dev = crtc->dev;
5965         struct drm_i915_private *dev_priv = to_i915(dev);
5966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5967         struct intel_encoder *encoder;
5968         int pipe = intel_crtc->pipe;
5969         bool is_dsi;
5970
5971         if (WARN_ON(intel_crtc->active))
5972                 return;
5973
5974         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5975
5976         if (!is_dsi) {
5977                 if (IS_CHERRYVIEW(dev))
5978                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5979                 else
5980                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
5981         }
5982
5983         if (intel_crtc->config->has_dp_encoder)
5984                 intel_dp_set_m_n(intel_crtc, M1_N1);
5985
5986         intel_set_pipe_timings(intel_crtc);
5987
5988         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5989                 struct drm_i915_private *dev_priv = dev->dev_private;
5990
5991                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5992                 I915_WRITE(CHV_CANVAS(pipe), 0);
5993         }
5994
5995         i9xx_set_pipeconf(intel_crtc);
5996
5997         intel_crtc->active = true;
5998
5999         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6000
6001         for_each_encoder_on_crtc(dev, crtc, encoder)
6002                 if (encoder->pre_pll_enable)
6003                         encoder->pre_pll_enable(encoder);
6004
6005         if (!is_dsi) {
6006                 if (IS_CHERRYVIEW(dev))
6007                         chv_enable_pll(intel_crtc, intel_crtc->config);
6008                 else
6009                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6010         }
6011
6012         for_each_encoder_on_crtc(dev, crtc, encoder)
6013                 if (encoder->pre_enable)
6014                         encoder->pre_enable(encoder);
6015
6016         i9xx_pfit_enable(intel_crtc);
6017
6018         intel_crtc_load_lut(crtc);
6019
6020         intel_update_watermarks(crtc);
6021         intel_enable_pipe(intel_crtc);
6022
6023         assert_vblank_disabled(crtc);
6024         drm_crtc_vblank_on(crtc);
6025
6026         for_each_encoder_on_crtc(dev, crtc, encoder)
6027                 encoder->enable(encoder);
6028 }
6029
6030 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6031 {
6032         struct drm_device *dev = crtc->base.dev;
6033         struct drm_i915_private *dev_priv = dev->dev_private;
6034
6035         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6036         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6037 }
6038
6039 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6040 {
6041         struct drm_device *dev = crtc->dev;
6042         struct drm_i915_private *dev_priv = to_i915(dev);
6043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6044         struct intel_encoder *encoder;
6045         int pipe = intel_crtc->pipe;
6046
6047         if (WARN_ON(intel_crtc->active))
6048                 return;
6049
6050         i9xx_set_pll_dividers(intel_crtc);
6051
6052         if (intel_crtc->config->has_dp_encoder)
6053                 intel_dp_set_m_n(intel_crtc, M1_N1);
6054
6055         intel_set_pipe_timings(intel_crtc);
6056
6057         i9xx_set_pipeconf(intel_crtc);
6058
6059         intel_crtc->active = true;
6060
6061         if (!IS_GEN2(dev))
6062                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6063
6064         for_each_encoder_on_crtc(dev, crtc, encoder)
6065                 if (encoder->pre_enable)
6066                         encoder->pre_enable(encoder);
6067
6068         i9xx_enable_pll(intel_crtc);
6069
6070         i9xx_pfit_enable(intel_crtc);
6071
6072         intel_crtc_load_lut(crtc);
6073
6074         intel_update_watermarks(crtc);
6075         intel_enable_pipe(intel_crtc);
6076
6077         assert_vblank_disabled(crtc);
6078         drm_crtc_vblank_on(crtc);
6079
6080         for_each_encoder_on_crtc(dev, crtc, encoder)
6081                 encoder->enable(encoder);
6082 }
6083
6084 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6085 {
6086         struct drm_device *dev = crtc->base.dev;
6087         struct drm_i915_private *dev_priv = dev->dev_private;
6088
6089         if (!crtc->config->gmch_pfit.control)
6090                 return;
6091
6092         assert_pipe_disabled(dev_priv, crtc->pipe);
6093
6094         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6095                          I915_READ(PFIT_CONTROL));
6096         I915_WRITE(PFIT_CONTROL, 0);
6097 }
6098
6099 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6100 {
6101         struct drm_device *dev = crtc->dev;
6102         struct drm_i915_private *dev_priv = dev->dev_private;
6103         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6104         struct intel_encoder *encoder;
6105         int pipe = intel_crtc->pipe;
6106
6107         /*
6108          * On gen2 planes are double buffered but the pipe isn't, so we must
6109          * wait for planes to fully turn off before disabling the pipe.
6110          * We also need to wait on all gmch platforms because of the
6111          * self-refresh mode constraint explained above.
6112          */
6113         intel_wait_for_vblank(dev, pipe);
6114
6115         for_each_encoder_on_crtc(dev, crtc, encoder)
6116                 encoder->disable(encoder);
6117
6118         drm_crtc_vblank_off(crtc);
6119         assert_vblank_disabled(crtc);
6120
6121         intel_disable_pipe(intel_crtc);
6122
6123         i9xx_pfit_disable(intel_crtc);
6124
6125         for_each_encoder_on_crtc(dev, crtc, encoder)
6126                 if (encoder->post_disable)
6127                         encoder->post_disable(encoder);
6128
6129         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6130                 if (IS_CHERRYVIEW(dev))
6131                         chv_disable_pll(dev_priv, pipe);
6132                 else if (IS_VALLEYVIEW(dev))
6133                         vlv_disable_pll(dev_priv, pipe);
6134                 else
6135                         i9xx_disable_pll(intel_crtc);
6136         }
6137
6138         if (!IS_GEN2(dev))
6139                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6140 }
6141
6142 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6143 {
6144         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6145         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6146         enum intel_display_power_domain domain;
6147         unsigned long domains;
6148
6149         if (!intel_crtc->active)
6150                 return;
6151
6152         if (to_intel_plane_state(crtc->primary->state)->visible) {
6153                 intel_crtc_wait_for_pending_flips(crtc);
6154                 intel_pre_disable_primary(crtc);
6155         }
6156
6157         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6158         dev_priv->display.crtc_disable(crtc);
6159
6160         domains = intel_crtc->enabled_power_domains;
6161         for_each_power_domain(domain, domains)
6162                 intel_display_power_put(dev_priv, domain);
6163         intel_crtc->enabled_power_domains = 0;
6164 }
6165
6166 /*
6167  * turn all crtc's off, but do not adjust state
6168  * This has to be paired with a call to intel_modeset_setup_hw_state.
6169  */
6170 void intel_display_suspend(struct drm_device *dev)
6171 {
6172         struct drm_crtc *crtc;
6173
6174         for_each_crtc(dev, crtc)
6175                 intel_crtc_disable_noatomic(crtc);
6176 }
6177
6178 /* Master function to enable/disable CRTC and corresponding power wells */
6179 int intel_crtc_control(struct drm_crtc *crtc, bool enable)
6180 {
6181         struct drm_device *dev = crtc->dev;
6182         struct drm_mode_config *config = &dev->mode_config;
6183         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6184         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6185         struct intel_crtc_state *pipe_config;
6186         struct drm_atomic_state *state;
6187         int ret;
6188
6189         if (enable == intel_crtc->active)
6190                 return 0;
6191
6192         if (enable && !crtc->state->enable)
6193                 return 0;
6194
6195         /* this function should be called with drm_modeset_lock_all for now */
6196         if (WARN_ON(!ctx))
6197                 return -EIO;
6198         lockdep_assert_held(&ctx->ww_ctx);
6199
6200         state = drm_atomic_state_alloc(dev);
6201         if (WARN_ON(!state))
6202                 return -ENOMEM;
6203
6204         state->acquire_ctx = ctx;
6205         state->allow_modeset = true;
6206
6207         pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6208         if (IS_ERR(pipe_config)) {
6209                 ret = PTR_ERR(pipe_config);
6210                 goto err;
6211         }
6212         pipe_config->base.active = enable;
6213
6214         ret = intel_set_mode(state);
6215         if (!ret)
6216                 return ret;
6217
6218 err:
6219         DRM_ERROR("Updating crtc active failed with %i\n", ret);
6220         drm_atomic_state_free(state);
6221         return ret;
6222 }
6223
6224 /**
6225  * Sets the power management mode of the pipe and plane.
6226  */
6227 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6228 {
6229         struct drm_device *dev = crtc->dev;
6230         struct intel_encoder *intel_encoder;
6231         bool enable = false;
6232
6233         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6234                 enable |= intel_encoder->connectors_active;
6235
6236         intel_crtc_control(crtc, enable);
6237 }
6238
6239 void intel_encoder_destroy(struct drm_encoder *encoder)
6240 {
6241         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6242
6243         drm_encoder_cleanup(encoder);
6244         kfree(intel_encoder);
6245 }
6246
6247 /* Simple dpms helper for encoders with just one connector, no cloning and only
6248  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6249  * state of the entire output pipe. */
6250 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6251 {
6252         if (mode == DRM_MODE_DPMS_ON) {
6253                 encoder->connectors_active = true;
6254
6255                 intel_crtc_update_dpms(encoder->base.crtc);
6256         } else {
6257                 encoder->connectors_active = false;
6258
6259                 intel_crtc_update_dpms(encoder->base.crtc);
6260         }
6261 }
6262
6263 /* Cross check the actual hw state with our own modeset state tracking (and it's
6264  * internal consistency). */
6265 static void intel_connector_check_state(struct intel_connector *connector)
6266 {
6267         if (connector->get_hw_state(connector)) {
6268                 struct intel_encoder *encoder = connector->encoder;
6269                 struct drm_crtc *crtc;
6270                 bool encoder_enabled;
6271                 enum pipe pipe;
6272
6273                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6274                               connector->base.base.id,
6275                               connector->base.name);
6276
6277                 /* there is no real hw state for MST connectors */
6278                 if (connector->mst_port)
6279                         return;
6280
6281                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6282                      "wrong connector dpms state\n");
6283                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6284                      "active connector not linked to encoder\n");
6285
6286                 if (encoder) {
6287                         I915_STATE_WARN(!encoder->connectors_active,
6288                              "encoder->connectors_active not set\n");
6289
6290                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6291                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6292                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
6293                                 return;
6294
6295                         crtc = encoder->base.crtc;
6296
6297                         I915_STATE_WARN(!crtc->state->enable,
6298                                         "crtc not enabled\n");
6299                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6300                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6301                              "encoder active on the wrong pipe\n");
6302                 }
6303         }
6304 }
6305
6306 int intel_connector_init(struct intel_connector *connector)
6307 {
6308         struct drm_connector_state *connector_state;
6309
6310         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6311         if (!connector_state)
6312                 return -ENOMEM;
6313
6314         connector->base.state = connector_state;
6315         return 0;
6316 }
6317
6318 struct intel_connector *intel_connector_alloc(void)
6319 {
6320         struct intel_connector *connector;
6321
6322         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6323         if (!connector)
6324                 return NULL;
6325
6326         if (intel_connector_init(connector) < 0) {
6327                 kfree(connector);
6328                 return NULL;
6329         }
6330
6331         return connector;
6332 }
6333
6334 /* Even simpler default implementation, if there's really no special case to
6335  * consider. */
6336 void intel_connector_dpms(struct drm_connector *connector, int mode)
6337 {
6338         /* All the simple cases only support two dpms states. */
6339         if (mode != DRM_MODE_DPMS_ON)
6340                 mode = DRM_MODE_DPMS_OFF;
6341
6342         if (mode == connector->dpms)
6343                 return;
6344
6345         connector->dpms = mode;
6346
6347         /* Only need to change hw state when actually enabled */
6348         if (connector->encoder)
6349                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6350
6351         intel_modeset_check_state(connector->dev);
6352 }
6353
6354 /* Simple connector->get_hw_state implementation for encoders that support only
6355  * one connector and no cloning and hence the encoder state determines the state
6356  * of the connector. */
6357 bool intel_connector_get_hw_state(struct intel_connector *connector)
6358 {
6359         enum pipe pipe = 0;
6360         struct intel_encoder *encoder = connector->encoder;
6361
6362         return encoder->get_hw_state(encoder, &pipe);
6363 }
6364
6365 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6366 {
6367         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6368                 return crtc_state->fdi_lanes;
6369
6370         return 0;
6371 }
6372
6373 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6374                                      struct intel_crtc_state *pipe_config)
6375 {
6376         struct drm_atomic_state *state = pipe_config->base.state;
6377         struct intel_crtc *other_crtc;
6378         struct intel_crtc_state *other_crtc_state;
6379
6380         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6381                       pipe_name(pipe), pipe_config->fdi_lanes);
6382         if (pipe_config->fdi_lanes > 4) {
6383                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6384                               pipe_name(pipe), pipe_config->fdi_lanes);
6385                 return -EINVAL;
6386         }
6387
6388         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6389                 if (pipe_config->fdi_lanes > 2) {
6390                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6391                                       pipe_config->fdi_lanes);
6392                         return -EINVAL;
6393                 } else {
6394                         return 0;
6395                 }
6396         }
6397
6398         if (INTEL_INFO(dev)->num_pipes == 2)
6399                 return 0;
6400
6401         /* Ivybridge 3 pipe is really complicated */
6402         switch (pipe) {
6403         case PIPE_A:
6404                 return 0;
6405         case PIPE_B:
6406                 if (pipe_config->fdi_lanes <= 2)
6407                         return 0;
6408
6409                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6410                 other_crtc_state =
6411                         intel_atomic_get_crtc_state(state, other_crtc);
6412                 if (IS_ERR(other_crtc_state))
6413                         return PTR_ERR(other_crtc_state);
6414
6415                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6416                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6417                                       pipe_name(pipe), pipe_config->fdi_lanes);
6418                         return -EINVAL;
6419                 }
6420                 return 0;
6421         case PIPE_C:
6422                 if (pipe_config->fdi_lanes > 2) {
6423                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6424                                       pipe_name(pipe), pipe_config->fdi_lanes);
6425                         return -EINVAL;
6426                 }
6427
6428                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6429                 other_crtc_state =
6430                         intel_atomic_get_crtc_state(state, other_crtc);
6431                 if (IS_ERR(other_crtc_state))
6432                         return PTR_ERR(other_crtc_state);
6433
6434                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6435                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6436                         return -EINVAL;
6437                 }
6438                 return 0;
6439         default:
6440                 BUG();
6441         }
6442 }
6443
6444 #define RETRY 1
6445 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6446                                        struct intel_crtc_state *pipe_config)
6447 {
6448         struct drm_device *dev = intel_crtc->base.dev;
6449         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6450         int lane, link_bw, fdi_dotclock, ret;
6451         bool needs_recompute = false;
6452
6453 retry:
6454         /* FDI is a binary signal running at ~2.7GHz, encoding
6455          * each output octet as 10 bits. The actual frequency
6456          * is stored as a divider into a 100MHz clock, and the
6457          * mode pixel clock is stored in units of 1KHz.
6458          * Hence the bw of each lane in terms of the mode signal
6459          * is:
6460          */
6461         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6462
6463         fdi_dotclock = adjusted_mode->crtc_clock;
6464
6465         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6466                                            pipe_config->pipe_bpp);
6467
6468         pipe_config->fdi_lanes = lane;
6469
6470         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6471                                link_bw, &pipe_config->fdi_m_n);
6472
6473         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6474                                        intel_crtc->pipe, pipe_config);
6475         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6476                 pipe_config->pipe_bpp -= 2*3;
6477                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6478                               pipe_config->pipe_bpp);
6479                 needs_recompute = true;
6480                 pipe_config->bw_constrained = true;
6481
6482                 goto retry;
6483         }
6484
6485         if (needs_recompute)
6486                 return RETRY;
6487
6488         return ret;
6489 }
6490
6491 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6492                                      struct intel_crtc_state *pipe_config)
6493 {
6494         if (pipe_config->pipe_bpp > 24)
6495                 return false;
6496
6497         /* HSW can handle pixel rate up to cdclk? */
6498         if (IS_HASWELL(dev_priv->dev))
6499                 return true;
6500
6501         /*
6502          * We compare against max which means we must take
6503          * the increased cdclk requirement into account when
6504          * calculating the new cdclk.
6505          *
6506          * Should measure whether using a lower cdclk w/o IPS
6507          */
6508         return ilk_pipe_pixel_rate(pipe_config) <=
6509                 dev_priv->max_cdclk_freq * 95 / 100;
6510 }
6511
6512 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6513                                    struct intel_crtc_state *pipe_config)
6514 {
6515         struct drm_device *dev = crtc->base.dev;
6516         struct drm_i915_private *dev_priv = dev->dev_private;
6517
6518         pipe_config->ips_enabled = i915.enable_ips &&
6519                 hsw_crtc_supports_ips(crtc) &&
6520                 pipe_config_supports_ips(dev_priv, pipe_config);
6521 }
6522
6523 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6524                                      struct intel_crtc_state *pipe_config)
6525 {
6526         struct drm_device *dev = crtc->base.dev;
6527         struct drm_i915_private *dev_priv = dev->dev_private;
6528         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6529
6530         /* FIXME should check pixel clock limits on all platforms */
6531         if (INTEL_INFO(dev)->gen < 4) {
6532                 int clock_limit = dev_priv->max_cdclk_freq;
6533
6534                 /*
6535                  * Enable pixel doubling when the dot clock
6536                  * is > 90% of the (display) core speed.
6537                  *
6538                  * GDG double wide on either pipe,
6539                  * otherwise pipe A only.
6540                  */
6541                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6542                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6543                         clock_limit *= 2;
6544                         pipe_config->double_wide = true;
6545                 }
6546
6547                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6548                         return -EINVAL;
6549         }
6550
6551         /*
6552          * Pipe horizontal size must be even in:
6553          * - DVO ganged mode
6554          * - LVDS dual channel mode
6555          * - Double wide pipe
6556          */
6557         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6558              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6559                 pipe_config->pipe_src_w &= ~1;
6560
6561         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6562          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6563          */
6564         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6565                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6566                 return -EINVAL;
6567
6568         if (HAS_IPS(dev))
6569                 hsw_compute_ips_config(crtc, pipe_config);
6570
6571         if (pipe_config->has_pch_encoder)
6572                 return ironlake_fdi_compute_config(crtc, pipe_config);
6573
6574         return 0;
6575 }
6576
6577 static int skylake_get_display_clock_speed(struct drm_device *dev)
6578 {
6579         struct drm_i915_private *dev_priv = to_i915(dev);
6580         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6581         uint32_t cdctl = I915_READ(CDCLK_CTL);
6582         uint32_t linkrate;
6583
6584         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6585                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6586
6587         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6588                 return 540000;
6589
6590         linkrate = (I915_READ(DPLL_CTRL1) &
6591                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6592
6593         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6594             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6595                 /* vco 8640 */
6596                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6597                 case CDCLK_FREQ_450_432:
6598                         return 432000;
6599                 case CDCLK_FREQ_337_308:
6600                         return 308570;
6601                 case CDCLK_FREQ_675_617:
6602                         return 617140;
6603                 default:
6604                         WARN(1, "Unknown cd freq selection\n");
6605                 }
6606         } else {
6607                 /* vco 8100 */
6608                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6609                 case CDCLK_FREQ_450_432:
6610                         return 450000;
6611                 case CDCLK_FREQ_337_308:
6612                         return 337500;
6613                 case CDCLK_FREQ_675_617:
6614                         return 675000;
6615                 default:
6616                         WARN(1, "Unknown cd freq selection\n");
6617                 }
6618         }
6619
6620         /* error case, do as if DPLL0 isn't enabled */
6621         return 24000;
6622 }
6623
6624 static int broxton_get_display_clock_speed(struct drm_device *dev)
6625 {
6626         struct drm_i915_private *dev_priv = to_i915(dev);
6627         uint32_t cdctl = I915_READ(CDCLK_CTL);
6628         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6629         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6630         int cdclk;
6631
6632         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6633                 return 19200;
6634
6635         cdclk = 19200 * pll_ratio / 2;
6636
6637         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6638         case BXT_CDCLK_CD2X_DIV_SEL_1:
6639                 return cdclk;  /* 576MHz or 624MHz */
6640         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6641                 return cdclk * 2 / 3; /* 384MHz */
6642         case BXT_CDCLK_CD2X_DIV_SEL_2:
6643                 return cdclk / 2; /* 288MHz */
6644         case BXT_CDCLK_CD2X_DIV_SEL_4:
6645                 return cdclk / 4; /* 144MHz */
6646         }
6647
6648         /* error case, do as if DE PLL isn't enabled */
6649         return 19200;
6650 }
6651
6652 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6653 {
6654         struct drm_i915_private *dev_priv = dev->dev_private;
6655         uint32_t lcpll = I915_READ(LCPLL_CTL);
6656         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6657
6658         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6659                 return 800000;
6660         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6661                 return 450000;
6662         else if (freq == LCPLL_CLK_FREQ_450)
6663                 return 450000;
6664         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6665                 return 540000;
6666         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6667                 return 337500;
6668         else
6669                 return 675000;
6670 }
6671
6672 static int haswell_get_display_clock_speed(struct drm_device *dev)
6673 {
6674         struct drm_i915_private *dev_priv = dev->dev_private;
6675         uint32_t lcpll = I915_READ(LCPLL_CTL);
6676         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6677
6678         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6679                 return 800000;
6680         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6681                 return 450000;
6682         else if (freq == LCPLL_CLK_FREQ_450)
6683                 return 450000;
6684         else if (IS_HSW_ULT(dev))
6685                 return 337500;
6686         else
6687                 return 540000;
6688 }
6689
6690 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6691 {
6692         struct drm_i915_private *dev_priv = dev->dev_private;
6693         u32 val;
6694         int divider;
6695
6696         if (dev_priv->hpll_freq == 0)
6697                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6698
6699         mutex_lock(&dev_priv->sb_lock);
6700         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6701         mutex_unlock(&dev_priv->sb_lock);
6702
6703         divider = val & DISPLAY_FREQUENCY_VALUES;
6704
6705         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6706              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6707              "cdclk change in progress\n");
6708
6709         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6710 }
6711
6712 static int ilk_get_display_clock_speed(struct drm_device *dev)
6713 {
6714         return 450000;
6715 }
6716
6717 static int i945_get_display_clock_speed(struct drm_device *dev)
6718 {
6719         return 400000;
6720 }
6721
6722 static int i915_get_display_clock_speed(struct drm_device *dev)
6723 {
6724         return 333333;
6725 }
6726
6727 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6728 {
6729         return 200000;
6730 }
6731
6732 static int pnv_get_display_clock_speed(struct drm_device *dev)
6733 {
6734         u16 gcfgc = 0;
6735
6736         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6737
6738         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6739         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6740                 return 266667;
6741         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6742                 return 333333;
6743         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6744                 return 444444;
6745         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6746                 return 200000;
6747         default:
6748                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6749         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6750                 return 133333;
6751         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6752                 return 166667;
6753         }
6754 }
6755
6756 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6757 {
6758         u16 gcfgc = 0;
6759
6760         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6761
6762         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6763                 return 133333;
6764         else {
6765                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6766                 case GC_DISPLAY_CLOCK_333_MHZ:
6767                         return 333333;
6768                 default:
6769                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6770                         return 190000;
6771                 }
6772         }
6773 }
6774
6775 static int i865_get_display_clock_speed(struct drm_device *dev)
6776 {
6777         return 266667;
6778 }
6779
6780 static int i85x_get_display_clock_speed(struct drm_device *dev)
6781 {
6782         u16 hpllcc = 0;
6783
6784         /*
6785          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6786          * encoding is different :(
6787          * FIXME is this the right way to detect 852GM/852GMV?
6788          */
6789         if (dev->pdev->revision == 0x1)
6790                 return 133333;
6791
6792         pci_bus_read_config_word(dev->pdev->bus,
6793                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6794
6795         /* Assume that the hardware is in the high speed state.  This
6796          * should be the default.
6797          */
6798         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6799         case GC_CLOCK_133_200:
6800         case GC_CLOCK_133_200_2:
6801         case GC_CLOCK_100_200:
6802                 return 200000;
6803         case GC_CLOCK_166_250:
6804                 return 250000;
6805         case GC_CLOCK_100_133:
6806                 return 133333;
6807         case GC_CLOCK_133_266:
6808         case GC_CLOCK_133_266_2:
6809         case GC_CLOCK_166_266:
6810                 return 266667;
6811         }
6812
6813         /* Shouldn't happen */
6814         return 0;
6815 }
6816
6817 static int i830_get_display_clock_speed(struct drm_device *dev)
6818 {
6819         return 133333;
6820 }
6821
6822 static unsigned int intel_hpll_vco(struct drm_device *dev)
6823 {
6824         struct drm_i915_private *dev_priv = dev->dev_private;
6825         static const unsigned int blb_vco[8] = {
6826                 [0] = 3200000,
6827                 [1] = 4000000,
6828                 [2] = 5333333,
6829                 [3] = 4800000,
6830                 [4] = 6400000,
6831         };
6832         static const unsigned int pnv_vco[8] = {
6833                 [0] = 3200000,
6834                 [1] = 4000000,
6835                 [2] = 5333333,
6836                 [3] = 4800000,
6837                 [4] = 2666667,
6838         };
6839         static const unsigned int cl_vco[8] = {
6840                 [0] = 3200000,
6841                 [1] = 4000000,
6842                 [2] = 5333333,
6843                 [3] = 6400000,
6844                 [4] = 3333333,
6845                 [5] = 3566667,
6846                 [6] = 4266667,
6847         };
6848         static const unsigned int elk_vco[8] = {
6849                 [0] = 3200000,
6850                 [1] = 4000000,
6851                 [2] = 5333333,
6852                 [3] = 4800000,
6853         };
6854         static const unsigned int ctg_vco[8] = {
6855                 [0] = 3200000,
6856                 [1] = 4000000,
6857                 [2] = 5333333,
6858                 [3] = 6400000,
6859                 [4] = 2666667,
6860                 [5] = 4266667,
6861         };
6862         const unsigned int *vco_table;
6863         unsigned int vco;
6864         uint8_t tmp = 0;
6865
6866         /* FIXME other chipsets? */
6867         if (IS_GM45(dev))
6868                 vco_table = ctg_vco;
6869         else if (IS_G4X(dev))
6870                 vco_table = elk_vco;
6871         else if (IS_CRESTLINE(dev))
6872                 vco_table = cl_vco;
6873         else if (IS_PINEVIEW(dev))
6874                 vco_table = pnv_vco;
6875         else if (IS_G33(dev))
6876                 vco_table = blb_vco;
6877         else
6878                 return 0;
6879
6880         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6881
6882         vco = vco_table[tmp & 0x7];
6883         if (vco == 0)
6884                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6885         else
6886                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6887
6888         return vco;
6889 }
6890
6891 static int gm45_get_display_clock_speed(struct drm_device *dev)
6892 {
6893         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6894         uint16_t tmp = 0;
6895
6896         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6897
6898         cdclk_sel = (tmp >> 12) & 0x1;
6899
6900         switch (vco) {
6901         case 2666667:
6902         case 4000000:
6903         case 5333333:
6904                 return cdclk_sel ? 333333 : 222222;
6905         case 3200000:
6906                 return cdclk_sel ? 320000 : 228571;
6907         default:
6908                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6909                 return 222222;
6910         }
6911 }
6912
6913 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6914 {
6915         static const uint8_t div_3200[] = { 16, 10,  8 };
6916         static const uint8_t div_4000[] = { 20, 12, 10 };
6917         static const uint8_t div_5333[] = { 24, 16, 14 };
6918         const uint8_t *div_table;
6919         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6920         uint16_t tmp = 0;
6921
6922         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6923
6924         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6925
6926         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6927                 goto fail;
6928
6929         switch (vco) {
6930         case 3200000:
6931                 div_table = div_3200;
6932                 break;
6933         case 4000000:
6934                 div_table = div_4000;
6935                 break;
6936         case 5333333:
6937                 div_table = div_5333;
6938                 break;
6939         default:
6940                 goto fail;
6941         }
6942
6943         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6944
6945 fail:
6946         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6947         return 200000;
6948 }
6949
6950 static int g33_get_display_clock_speed(struct drm_device *dev)
6951 {
6952         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6953         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6954         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6955         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6956         const uint8_t *div_table;
6957         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6958         uint16_t tmp = 0;
6959
6960         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6961
6962         cdclk_sel = (tmp >> 4) & 0x7;
6963
6964         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6965                 goto fail;
6966
6967         switch (vco) {
6968         case 3200000:
6969                 div_table = div_3200;
6970                 break;
6971         case 4000000:
6972                 div_table = div_4000;
6973                 break;
6974         case 4800000:
6975                 div_table = div_4800;
6976                 break;
6977         case 5333333:
6978                 div_table = div_5333;
6979                 break;
6980         default:
6981                 goto fail;
6982         }
6983
6984         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6985
6986 fail:
6987         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6988         return 190476;
6989 }
6990
6991 static void
6992 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6993 {
6994         while (*num > DATA_LINK_M_N_MASK ||
6995                *den > DATA_LINK_M_N_MASK) {
6996                 *num >>= 1;
6997                 *den >>= 1;
6998         }
6999 }
7000
7001 static void compute_m_n(unsigned int m, unsigned int n,
7002                         uint32_t *ret_m, uint32_t *ret_n)
7003 {
7004         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7005         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7006         intel_reduce_m_n_ratio(ret_m, ret_n);
7007 }
7008
7009 void
7010 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7011                        int pixel_clock, int link_clock,
7012                        struct intel_link_m_n *m_n)
7013 {
7014         m_n->tu = 64;
7015
7016         compute_m_n(bits_per_pixel * pixel_clock,
7017                     link_clock * nlanes * 8,
7018                     &m_n->gmch_m, &m_n->gmch_n);
7019
7020         compute_m_n(pixel_clock, link_clock,
7021                     &m_n->link_m, &m_n->link_n);
7022 }
7023
7024 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7025 {
7026         if (i915.panel_use_ssc >= 0)
7027                 return i915.panel_use_ssc != 0;
7028         return dev_priv->vbt.lvds_use_ssc
7029                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7030 }
7031
7032 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7033                            int num_connectors)
7034 {
7035         struct drm_device *dev = crtc_state->base.crtc->dev;
7036         struct drm_i915_private *dev_priv = dev->dev_private;
7037         int refclk;
7038
7039         WARN_ON(!crtc_state->base.state);
7040
7041         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7042                 refclk = 100000;
7043         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7044             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7045                 refclk = dev_priv->vbt.lvds_ssc_freq;
7046                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7047         } else if (!IS_GEN2(dev)) {
7048                 refclk = 96000;
7049         } else {
7050                 refclk = 48000;
7051         }
7052
7053         return refclk;
7054 }
7055
7056 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7057 {
7058         return (1 << dpll->n) << 16 | dpll->m2;
7059 }
7060
7061 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7062 {
7063         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7064 }
7065
7066 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7067                                      struct intel_crtc_state *crtc_state,
7068                                      intel_clock_t *reduced_clock)
7069 {
7070         struct drm_device *dev = crtc->base.dev;
7071         u32 fp, fp2 = 0;
7072
7073         if (IS_PINEVIEW(dev)) {
7074                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7075                 if (reduced_clock)
7076                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7077         } else {
7078                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7079                 if (reduced_clock)
7080                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7081         }
7082
7083         crtc_state->dpll_hw_state.fp0 = fp;
7084
7085         crtc->lowfreq_avail = false;
7086         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7087             reduced_clock) {
7088                 crtc_state->dpll_hw_state.fp1 = fp2;
7089                 crtc->lowfreq_avail = true;
7090         } else {
7091                 crtc_state->dpll_hw_state.fp1 = fp;
7092         }
7093 }
7094
7095 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7096                 pipe)
7097 {
7098         u32 reg_val;
7099
7100         /*
7101          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7102          * and set it to a reasonable value instead.
7103          */
7104         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7105         reg_val &= 0xffffff00;
7106         reg_val |= 0x00000030;
7107         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7108
7109         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7110         reg_val &= 0x8cffffff;
7111         reg_val = 0x8c000000;
7112         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7113
7114         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7115         reg_val &= 0xffffff00;
7116         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7117
7118         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7119         reg_val &= 0x00ffffff;
7120         reg_val |= 0xb0000000;
7121         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7122 }
7123
7124 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7125                                          struct intel_link_m_n *m_n)
7126 {
7127         struct drm_device *dev = crtc->base.dev;
7128         struct drm_i915_private *dev_priv = dev->dev_private;
7129         int pipe = crtc->pipe;
7130
7131         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7132         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7133         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7134         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7135 }
7136
7137 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7138                                          struct intel_link_m_n *m_n,
7139                                          struct intel_link_m_n *m2_n2)
7140 {
7141         struct drm_device *dev = crtc->base.dev;
7142         struct drm_i915_private *dev_priv = dev->dev_private;
7143         int pipe = crtc->pipe;
7144         enum transcoder transcoder = crtc->config->cpu_transcoder;
7145
7146         if (INTEL_INFO(dev)->gen >= 5) {
7147                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7148                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7149                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7150                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7151                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7152                  * for gen < 8) and if DRRS is supported (to make sure the
7153                  * registers are not unnecessarily accessed).
7154                  */
7155                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7156                         crtc->config->has_drrs) {
7157                         I915_WRITE(PIPE_DATA_M2(transcoder),
7158                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7159                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7160                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7161                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7162                 }
7163         } else {
7164                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7165                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7166                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7167                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7168         }
7169 }
7170
7171 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7172 {
7173         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7174
7175         if (m_n == M1_N1) {
7176                 dp_m_n = &crtc->config->dp_m_n;
7177                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7178         } else if (m_n == M2_N2) {
7179
7180                 /*
7181                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7182                  * needs to be programmed into M1_N1.
7183                  */
7184                 dp_m_n = &crtc->config->dp_m2_n2;
7185         } else {
7186                 DRM_ERROR("Unsupported divider value\n");
7187                 return;
7188         }
7189
7190         if (crtc->config->has_pch_encoder)
7191                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7192         else
7193                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7194 }
7195
7196 static void vlv_compute_dpll(struct intel_crtc *crtc,
7197                              struct intel_crtc_state *pipe_config)
7198 {
7199         u32 dpll, dpll_md;
7200
7201         /*
7202          * Enable DPIO clock input. We should never disable the reference
7203          * clock for pipe B, since VGA hotplug / manual detection depends
7204          * on it.
7205          */
7206         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7207                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7208         /* We should never disable this, set it here for state tracking */
7209         if (crtc->pipe == PIPE_B)
7210                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7211         dpll |= DPLL_VCO_ENABLE;
7212         pipe_config->dpll_hw_state.dpll = dpll;
7213
7214         dpll_md = (pipe_config->pixel_multiplier - 1)
7215                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7216         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7217 }
7218
7219 static void vlv_prepare_pll(struct intel_crtc *crtc,
7220                             const struct intel_crtc_state *pipe_config)
7221 {
7222         struct drm_device *dev = crtc->base.dev;
7223         struct drm_i915_private *dev_priv = dev->dev_private;
7224         int pipe = crtc->pipe;
7225         u32 mdiv;
7226         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7227         u32 coreclk, reg_val;
7228
7229         mutex_lock(&dev_priv->sb_lock);
7230
7231         bestn = pipe_config->dpll.n;
7232         bestm1 = pipe_config->dpll.m1;
7233         bestm2 = pipe_config->dpll.m2;
7234         bestp1 = pipe_config->dpll.p1;
7235         bestp2 = pipe_config->dpll.p2;
7236
7237         /* See eDP HDMI DPIO driver vbios notes doc */
7238
7239         /* PLL B needs special handling */
7240         if (pipe == PIPE_B)
7241                 vlv_pllb_recal_opamp(dev_priv, pipe);
7242
7243         /* Set up Tx target for periodic Rcomp update */
7244         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7245
7246         /* Disable target IRef on PLL */
7247         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7248         reg_val &= 0x00ffffff;
7249         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7250
7251         /* Disable fast lock */
7252         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7253
7254         /* Set idtafcrecal before PLL is enabled */
7255         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7256         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7257         mdiv |= ((bestn << DPIO_N_SHIFT));
7258         mdiv |= (1 << DPIO_K_SHIFT);
7259
7260         /*
7261          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7262          * but we don't support that).
7263          * Note: don't use the DAC post divider as it seems unstable.
7264          */
7265         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7266         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7267
7268         mdiv |= DPIO_ENABLE_CALIBRATION;
7269         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7270
7271         /* Set HBR and RBR LPF coefficients */
7272         if (pipe_config->port_clock == 162000 ||
7273             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7274             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7275                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7276                                  0x009f0003);
7277         else
7278                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7279                                  0x00d0000f);
7280
7281         if (pipe_config->has_dp_encoder) {
7282                 /* Use SSC source */
7283                 if (pipe == PIPE_A)
7284                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7285                                          0x0df40000);
7286                 else
7287                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7288                                          0x0df70000);
7289         } else { /* HDMI or VGA */
7290                 /* Use bend source */
7291                 if (pipe == PIPE_A)
7292                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7293                                          0x0df70000);
7294                 else
7295                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7296                                          0x0df40000);
7297         }
7298
7299         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7300         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7301         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7302             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7303                 coreclk |= 0x01000000;
7304         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7305
7306         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7307         mutex_unlock(&dev_priv->sb_lock);
7308 }
7309
7310 static void chv_compute_dpll(struct intel_crtc *crtc,
7311                              struct intel_crtc_state *pipe_config)
7312 {
7313         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7314                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7315                 DPLL_VCO_ENABLE;
7316         if (crtc->pipe != PIPE_A)
7317                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7318
7319         pipe_config->dpll_hw_state.dpll_md =
7320                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7321 }
7322
7323 static void chv_prepare_pll(struct intel_crtc *crtc,
7324                             const struct intel_crtc_state *pipe_config)
7325 {
7326         struct drm_device *dev = crtc->base.dev;
7327         struct drm_i915_private *dev_priv = dev->dev_private;
7328         int pipe = crtc->pipe;
7329         int dpll_reg = DPLL(crtc->pipe);
7330         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7331         u32 loopfilter, tribuf_calcntr;
7332         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7333         u32 dpio_val;
7334         int vco;
7335
7336         bestn = pipe_config->dpll.n;
7337         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7338         bestm1 = pipe_config->dpll.m1;
7339         bestm2 = pipe_config->dpll.m2 >> 22;
7340         bestp1 = pipe_config->dpll.p1;
7341         bestp2 = pipe_config->dpll.p2;
7342         vco = pipe_config->dpll.vco;
7343         dpio_val = 0;
7344         loopfilter = 0;
7345
7346         /*
7347          * Enable Refclk and SSC
7348          */
7349         I915_WRITE(dpll_reg,
7350                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7351
7352         mutex_lock(&dev_priv->sb_lock);
7353
7354         /* p1 and p2 divider */
7355         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7356                         5 << DPIO_CHV_S1_DIV_SHIFT |
7357                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7358                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7359                         1 << DPIO_CHV_K_DIV_SHIFT);
7360
7361         /* Feedback post-divider - m2 */
7362         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7363
7364         /* Feedback refclk divider - n and m1 */
7365         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7366                         DPIO_CHV_M1_DIV_BY_2 |
7367                         1 << DPIO_CHV_N_DIV_SHIFT);
7368
7369         /* M2 fraction division */
7370         if (bestm2_frac)
7371                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7372
7373         /* M2 fraction division enable */
7374         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7375         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7376         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7377         if (bestm2_frac)
7378                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7379         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7380
7381         /* Program digital lock detect threshold */
7382         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7383         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7384                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7385         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7386         if (!bestm2_frac)
7387                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7388         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7389
7390         /* Loop filter */
7391         if (vco == 5400000) {
7392                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7393                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7394                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7395                 tribuf_calcntr = 0x9;
7396         } else if (vco <= 6200000) {
7397                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7398                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7399                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7400                 tribuf_calcntr = 0x9;
7401         } else if (vco <= 6480000) {
7402                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7403                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7404                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7405                 tribuf_calcntr = 0x8;
7406         } else {
7407                 /* Not supported. Apply the same limits as in the max case */
7408                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7409                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7410                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7411                 tribuf_calcntr = 0;
7412         }
7413         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7414
7415         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7416         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7417         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7418         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7419
7420         /* AFC Recal */
7421         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7422                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7423                         DPIO_AFC_RECAL);
7424
7425         mutex_unlock(&dev_priv->sb_lock);
7426 }
7427
7428 /**
7429  * vlv_force_pll_on - forcibly enable just the PLL
7430  * @dev_priv: i915 private structure
7431  * @pipe: pipe PLL to enable
7432  * @dpll: PLL configuration
7433  *
7434  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7435  * in cases where we need the PLL enabled even when @pipe is not going to
7436  * be enabled.
7437  */
7438 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7439                       const struct dpll *dpll)
7440 {
7441         struct intel_crtc *crtc =
7442                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7443         struct intel_crtc_state pipe_config = {
7444                 .base.crtc = &crtc->base,
7445                 .pixel_multiplier = 1,
7446                 .dpll = *dpll,
7447         };
7448
7449         if (IS_CHERRYVIEW(dev)) {
7450                 chv_compute_dpll(crtc, &pipe_config);
7451                 chv_prepare_pll(crtc, &pipe_config);
7452                 chv_enable_pll(crtc, &pipe_config);
7453         } else {
7454                 vlv_compute_dpll(crtc, &pipe_config);
7455                 vlv_prepare_pll(crtc, &pipe_config);
7456                 vlv_enable_pll(crtc, &pipe_config);
7457         }
7458 }
7459
7460 /**
7461  * vlv_force_pll_off - forcibly disable just the PLL
7462  * @dev_priv: i915 private structure
7463  * @pipe: pipe PLL to disable
7464  *
7465  * Disable the PLL for @pipe. To be used in cases where we need
7466  * the PLL enabled even when @pipe is not going to be enabled.
7467  */
7468 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7469 {
7470         if (IS_CHERRYVIEW(dev))
7471                 chv_disable_pll(to_i915(dev), pipe);
7472         else
7473                 vlv_disable_pll(to_i915(dev), pipe);
7474 }
7475
7476 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7477                               struct intel_crtc_state *crtc_state,
7478                               intel_clock_t *reduced_clock,
7479                               int num_connectors)
7480 {
7481         struct drm_device *dev = crtc->base.dev;
7482         struct drm_i915_private *dev_priv = dev->dev_private;
7483         u32 dpll;
7484         bool is_sdvo;
7485         struct dpll *clock = &crtc_state->dpll;
7486
7487         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7488
7489         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7490                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7491
7492         dpll = DPLL_VGA_MODE_DIS;
7493
7494         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7495                 dpll |= DPLLB_MODE_LVDS;
7496         else
7497                 dpll |= DPLLB_MODE_DAC_SERIAL;
7498
7499         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7500                 dpll |= (crtc_state->pixel_multiplier - 1)
7501                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7502         }
7503
7504         if (is_sdvo)
7505                 dpll |= DPLL_SDVO_HIGH_SPEED;
7506
7507         if (crtc_state->has_dp_encoder)
7508                 dpll |= DPLL_SDVO_HIGH_SPEED;
7509
7510         /* compute bitmask from p1 value */
7511         if (IS_PINEVIEW(dev))
7512                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7513         else {
7514                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7515                 if (IS_G4X(dev) && reduced_clock)
7516                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7517         }
7518         switch (clock->p2) {
7519         case 5:
7520                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7521                 break;
7522         case 7:
7523                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7524                 break;
7525         case 10:
7526                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7527                 break;
7528         case 14:
7529                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7530                 break;
7531         }
7532         if (INTEL_INFO(dev)->gen >= 4)
7533                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7534
7535         if (crtc_state->sdvo_tv_clock)
7536                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7537         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7538                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7539                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7540         else
7541                 dpll |= PLL_REF_INPUT_DREFCLK;
7542
7543         dpll |= DPLL_VCO_ENABLE;
7544         crtc_state->dpll_hw_state.dpll = dpll;
7545
7546         if (INTEL_INFO(dev)->gen >= 4) {
7547                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7548                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7549                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7550         }
7551 }
7552
7553 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7554                               struct intel_crtc_state *crtc_state,
7555                               intel_clock_t *reduced_clock,
7556                               int num_connectors)
7557 {
7558         struct drm_device *dev = crtc->base.dev;
7559         struct drm_i915_private *dev_priv = dev->dev_private;
7560         u32 dpll;
7561         struct dpll *clock = &crtc_state->dpll;
7562
7563         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7564
7565         dpll = DPLL_VGA_MODE_DIS;
7566
7567         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7568                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7569         } else {
7570                 if (clock->p1 == 2)
7571                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7572                 else
7573                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7574                 if (clock->p2 == 4)
7575                         dpll |= PLL_P2_DIVIDE_BY_4;
7576         }
7577
7578         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7579                 dpll |= DPLL_DVO_2X_MODE;
7580
7581         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7582                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7583                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7584         else
7585                 dpll |= PLL_REF_INPUT_DREFCLK;
7586
7587         dpll |= DPLL_VCO_ENABLE;
7588         crtc_state->dpll_hw_state.dpll = dpll;
7589 }
7590
7591 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7592 {
7593         struct drm_device *dev = intel_crtc->base.dev;
7594         struct drm_i915_private *dev_priv = dev->dev_private;
7595         enum pipe pipe = intel_crtc->pipe;
7596         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7597         struct drm_display_mode *adjusted_mode =
7598                 &intel_crtc->config->base.adjusted_mode;
7599         uint32_t crtc_vtotal, crtc_vblank_end;
7600         int vsyncshift = 0;
7601
7602         /* We need to be careful not to changed the adjusted mode, for otherwise
7603          * the hw state checker will get angry at the mismatch. */
7604         crtc_vtotal = adjusted_mode->crtc_vtotal;
7605         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7606
7607         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7608                 /* the chip adds 2 halflines automatically */
7609                 crtc_vtotal -= 1;
7610                 crtc_vblank_end -= 1;
7611
7612                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7613                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7614                 else
7615                         vsyncshift = adjusted_mode->crtc_hsync_start -
7616                                 adjusted_mode->crtc_htotal / 2;
7617                 if (vsyncshift < 0)
7618                         vsyncshift += adjusted_mode->crtc_htotal;
7619         }
7620
7621         if (INTEL_INFO(dev)->gen > 3)
7622                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7623
7624         I915_WRITE(HTOTAL(cpu_transcoder),
7625                    (adjusted_mode->crtc_hdisplay - 1) |
7626                    ((adjusted_mode->crtc_htotal - 1) << 16));
7627         I915_WRITE(HBLANK(cpu_transcoder),
7628                    (adjusted_mode->crtc_hblank_start - 1) |
7629                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7630         I915_WRITE(HSYNC(cpu_transcoder),
7631                    (adjusted_mode->crtc_hsync_start - 1) |
7632                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7633
7634         I915_WRITE(VTOTAL(cpu_transcoder),
7635                    (adjusted_mode->crtc_vdisplay - 1) |
7636                    ((crtc_vtotal - 1) << 16));
7637         I915_WRITE(VBLANK(cpu_transcoder),
7638                    (adjusted_mode->crtc_vblank_start - 1) |
7639                    ((crtc_vblank_end - 1) << 16));
7640         I915_WRITE(VSYNC(cpu_transcoder),
7641                    (adjusted_mode->crtc_vsync_start - 1) |
7642                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7643
7644         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7645          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7646          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7647          * bits. */
7648         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7649             (pipe == PIPE_B || pipe == PIPE_C))
7650                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7651
7652         /* pipesrc controls the size that is scaled from, which should
7653          * always be the user's requested size.
7654          */
7655         I915_WRITE(PIPESRC(pipe),
7656                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7657                    (intel_crtc->config->pipe_src_h - 1));
7658 }
7659
7660 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7661                                    struct intel_crtc_state *pipe_config)
7662 {
7663         struct drm_device *dev = crtc->base.dev;
7664         struct drm_i915_private *dev_priv = dev->dev_private;
7665         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7666         uint32_t tmp;
7667
7668         tmp = I915_READ(HTOTAL(cpu_transcoder));
7669         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7670         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7671         tmp = I915_READ(HBLANK(cpu_transcoder));
7672         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7673         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7674         tmp = I915_READ(HSYNC(cpu_transcoder));
7675         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7676         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7677
7678         tmp = I915_READ(VTOTAL(cpu_transcoder));
7679         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7680         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7681         tmp = I915_READ(VBLANK(cpu_transcoder));
7682         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7683         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7684         tmp = I915_READ(VSYNC(cpu_transcoder));
7685         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7686         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7687
7688         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7689                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7690                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7691                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7692         }
7693
7694         tmp = I915_READ(PIPESRC(crtc->pipe));
7695         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7696         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7697
7698         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7699         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7700 }
7701
7702 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7703                                  struct intel_crtc_state *pipe_config)
7704 {
7705         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7706         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7707         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7708         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7709
7710         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7711         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7712         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7713         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7714
7715         mode->flags = pipe_config->base.adjusted_mode.flags;
7716
7717         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7718         mode->flags |= pipe_config->base.adjusted_mode.flags;
7719 }
7720
7721 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7722 {
7723         struct drm_device *dev = intel_crtc->base.dev;
7724         struct drm_i915_private *dev_priv = dev->dev_private;
7725         uint32_t pipeconf;
7726
7727         pipeconf = 0;
7728
7729         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7730             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7731                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7732
7733         if (intel_crtc->config->double_wide)
7734                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7735
7736         /* only g4x and later have fancy bpc/dither controls */
7737         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7738                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7739                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7740                         pipeconf |= PIPECONF_DITHER_EN |
7741                                     PIPECONF_DITHER_TYPE_SP;
7742
7743                 switch (intel_crtc->config->pipe_bpp) {
7744                 case 18:
7745                         pipeconf |= PIPECONF_6BPC;
7746                         break;
7747                 case 24:
7748                         pipeconf |= PIPECONF_8BPC;
7749                         break;
7750                 case 30:
7751                         pipeconf |= PIPECONF_10BPC;
7752                         break;
7753                 default:
7754                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7755                         BUG();
7756                 }
7757         }
7758
7759         if (HAS_PIPE_CXSR(dev)) {
7760                 if (intel_crtc->lowfreq_avail) {
7761                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7762                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7763                 } else {
7764                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7765                 }
7766         }
7767
7768         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7769                 if (INTEL_INFO(dev)->gen < 4 ||
7770                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7771                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7772                 else
7773                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7774         } else
7775                 pipeconf |= PIPECONF_PROGRESSIVE;
7776
7777         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7778                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7779
7780         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7781         POSTING_READ(PIPECONF(intel_crtc->pipe));
7782 }
7783
7784 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7785                                    struct intel_crtc_state *crtc_state)
7786 {
7787         struct drm_device *dev = crtc->base.dev;
7788         struct drm_i915_private *dev_priv = dev->dev_private;
7789         int refclk, num_connectors = 0;
7790         intel_clock_t clock;
7791         bool ok;
7792         bool is_dsi = false;
7793         struct intel_encoder *encoder;
7794         const intel_limit_t *limit;
7795         struct drm_atomic_state *state = crtc_state->base.state;
7796         struct drm_connector *connector;
7797         struct drm_connector_state *connector_state;
7798         int i;
7799
7800         memset(&crtc_state->dpll_hw_state, 0,
7801                sizeof(crtc_state->dpll_hw_state));
7802
7803         for_each_connector_in_state(state, connector, connector_state, i) {
7804                 if (connector_state->crtc != &crtc->base)
7805                         continue;
7806
7807                 encoder = to_intel_encoder(connector_state->best_encoder);
7808
7809                 switch (encoder->type) {
7810                 case INTEL_OUTPUT_DSI:
7811                         is_dsi = true;
7812                         break;
7813                 default:
7814                         break;
7815                 }
7816
7817                 num_connectors++;
7818         }
7819
7820         if (is_dsi)
7821                 return 0;
7822
7823         if (!crtc_state->clock_set) {
7824                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7825
7826                 /*
7827                  * Returns a set of divisors for the desired target clock with
7828                  * the given refclk, or FALSE.  The returned values represent
7829                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7830                  * 2) / p1 / p2.
7831                  */
7832                 limit = intel_limit(crtc_state, refclk);
7833                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7834                                                  crtc_state->port_clock,
7835                                                  refclk, NULL, &clock);
7836                 if (!ok) {
7837                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7838                         return -EINVAL;
7839                 }
7840
7841                 /* Compat-code for transition, will disappear. */
7842                 crtc_state->dpll.n = clock.n;
7843                 crtc_state->dpll.m1 = clock.m1;
7844                 crtc_state->dpll.m2 = clock.m2;
7845                 crtc_state->dpll.p1 = clock.p1;
7846                 crtc_state->dpll.p2 = clock.p2;
7847         }
7848
7849         if (IS_GEN2(dev)) {
7850                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7851                                   num_connectors);
7852         } else if (IS_CHERRYVIEW(dev)) {
7853                 chv_compute_dpll(crtc, crtc_state);
7854         } else if (IS_VALLEYVIEW(dev)) {
7855                 vlv_compute_dpll(crtc, crtc_state);
7856         } else {
7857                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7858                                   num_connectors);
7859         }
7860
7861         return 0;
7862 }
7863
7864 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7865                                  struct intel_crtc_state *pipe_config)
7866 {
7867         struct drm_device *dev = crtc->base.dev;
7868         struct drm_i915_private *dev_priv = dev->dev_private;
7869         uint32_t tmp;
7870
7871         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7872                 return;
7873
7874         tmp = I915_READ(PFIT_CONTROL);
7875         if (!(tmp & PFIT_ENABLE))
7876                 return;
7877
7878         /* Check whether the pfit is attached to our pipe. */
7879         if (INTEL_INFO(dev)->gen < 4) {
7880                 if (crtc->pipe != PIPE_B)
7881                         return;
7882         } else {
7883                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7884                         return;
7885         }
7886
7887         pipe_config->gmch_pfit.control = tmp;
7888         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7889         if (INTEL_INFO(dev)->gen < 5)
7890                 pipe_config->gmch_pfit.lvds_border_bits =
7891                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7892 }
7893
7894 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7895                                struct intel_crtc_state *pipe_config)
7896 {
7897         struct drm_device *dev = crtc->base.dev;
7898         struct drm_i915_private *dev_priv = dev->dev_private;
7899         int pipe = pipe_config->cpu_transcoder;
7900         intel_clock_t clock;
7901         u32 mdiv;
7902         int refclk = 100000;
7903
7904         /* In case of MIPI DPLL will not even be used */
7905         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7906                 return;
7907
7908         mutex_lock(&dev_priv->sb_lock);
7909         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7910         mutex_unlock(&dev_priv->sb_lock);
7911
7912         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7913         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7914         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7915         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7916         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7917
7918         vlv_clock(refclk, &clock);
7919
7920         /* clock.dot is the fast clock */
7921         pipe_config->port_clock = clock.dot / 5;
7922 }
7923
7924 static void
7925 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7926                               struct intel_initial_plane_config *plane_config)
7927 {
7928         struct drm_device *dev = crtc->base.dev;
7929         struct drm_i915_private *dev_priv = dev->dev_private;
7930         u32 val, base, offset;
7931         int pipe = crtc->pipe, plane = crtc->plane;
7932         int fourcc, pixel_format;
7933         unsigned int aligned_height;
7934         struct drm_framebuffer *fb;
7935         struct intel_framebuffer *intel_fb;
7936
7937         val = I915_READ(DSPCNTR(plane));
7938         if (!(val & DISPLAY_PLANE_ENABLE))
7939                 return;
7940
7941         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7942         if (!intel_fb) {
7943                 DRM_DEBUG_KMS("failed to alloc fb\n");
7944                 return;
7945         }
7946
7947         fb = &intel_fb->base;
7948
7949         if (INTEL_INFO(dev)->gen >= 4) {
7950                 if (val & DISPPLANE_TILED) {
7951                         plane_config->tiling = I915_TILING_X;
7952                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7953                 }
7954         }
7955
7956         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7957         fourcc = i9xx_format_to_fourcc(pixel_format);
7958         fb->pixel_format = fourcc;
7959         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7960
7961         if (INTEL_INFO(dev)->gen >= 4) {
7962                 if (plane_config->tiling)
7963                         offset = I915_READ(DSPTILEOFF(plane));
7964                 else
7965                         offset = I915_READ(DSPLINOFF(plane));
7966                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7967         } else {
7968                 base = I915_READ(DSPADDR(plane));
7969         }
7970         plane_config->base = base;
7971
7972         val = I915_READ(PIPESRC(pipe));
7973         fb->width = ((val >> 16) & 0xfff) + 1;
7974         fb->height = ((val >> 0) & 0xfff) + 1;
7975
7976         val = I915_READ(DSPSTRIDE(pipe));
7977         fb->pitches[0] = val & 0xffffffc0;
7978
7979         aligned_height = intel_fb_align_height(dev, fb->height,
7980                                                fb->pixel_format,
7981                                                fb->modifier[0]);
7982
7983         plane_config->size = fb->pitches[0] * aligned_height;
7984
7985         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7986                       pipe_name(pipe), plane, fb->width, fb->height,
7987                       fb->bits_per_pixel, base, fb->pitches[0],
7988                       plane_config->size);
7989
7990         plane_config->fb = intel_fb;
7991 }
7992
7993 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7994                                struct intel_crtc_state *pipe_config)
7995 {
7996         struct drm_device *dev = crtc->base.dev;
7997         struct drm_i915_private *dev_priv = dev->dev_private;
7998         int pipe = pipe_config->cpu_transcoder;
7999         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8000         intel_clock_t clock;
8001         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
8002         int refclk = 100000;
8003
8004         mutex_lock(&dev_priv->sb_lock);
8005         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8006         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8007         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8008         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8009         mutex_unlock(&dev_priv->sb_lock);
8010
8011         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8012         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
8013         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8014         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8015         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8016
8017         chv_clock(refclk, &clock);
8018
8019         /* clock.dot is the fast clock */
8020         pipe_config->port_clock = clock.dot / 5;
8021 }
8022
8023 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8024                                  struct intel_crtc_state *pipe_config)
8025 {
8026         struct drm_device *dev = crtc->base.dev;
8027         struct drm_i915_private *dev_priv = dev->dev_private;
8028         uint32_t tmp;
8029
8030         if (!intel_display_power_is_enabled(dev_priv,
8031                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8032                 return false;
8033
8034         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8035         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8036
8037         tmp = I915_READ(PIPECONF(crtc->pipe));
8038         if (!(tmp & PIPECONF_ENABLE))
8039                 return false;
8040
8041         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8042                 switch (tmp & PIPECONF_BPC_MASK) {
8043                 case PIPECONF_6BPC:
8044                         pipe_config->pipe_bpp = 18;
8045                         break;
8046                 case PIPECONF_8BPC:
8047                         pipe_config->pipe_bpp = 24;
8048                         break;
8049                 case PIPECONF_10BPC:
8050                         pipe_config->pipe_bpp = 30;
8051                         break;
8052                 default:
8053                         break;
8054                 }
8055         }
8056
8057         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8058                 pipe_config->limited_color_range = true;
8059
8060         if (INTEL_INFO(dev)->gen < 4)
8061                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8062
8063         intel_get_pipe_timings(crtc, pipe_config);
8064
8065         i9xx_get_pfit_config(crtc, pipe_config);
8066
8067         if (INTEL_INFO(dev)->gen >= 4) {
8068                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8069                 pipe_config->pixel_multiplier =
8070                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8071                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8072                 pipe_config->dpll_hw_state.dpll_md = tmp;
8073         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8074                 tmp = I915_READ(DPLL(crtc->pipe));
8075                 pipe_config->pixel_multiplier =
8076                         ((tmp & SDVO_MULTIPLIER_MASK)
8077                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8078         } else {
8079                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8080                  * port and will be fixed up in the encoder->get_config
8081                  * function. */
8082                 pipe_config->pixel_multiplier = 1;
8083         }
8084         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8085         if (!IS_VALLEYVIEW(dev)) {
8086                 /*
8087                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8088                  * on 830. Filter it out here so that we don't
8089                  * report errors due to that.
8090                  */
8091                 if (IS_I830(dev))
8092                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8093
8094                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8095                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8096         } else {
8097                 /* Mask out read-only status bits. */
8098                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8099                                                      DPLL_PORTC_READY_MASK |
8100                                                      DPLL_PORTB_READY_MASK);
8101         }
8102
8103         if (IS_CHERRYVIEW(dev))
8104                 chv_crtc_clock_get(crtc, pipe_config);
8105         else if (IS_VALLEYVIEW(dev))
8106                 vlv_crtc_clock_get(crtc, pipe_config);
8107         else
8108                 i9xx_crtc_clock_get(crtc, pipe_config);
8109
8110         return true;
8111 }
8112
8113 static void ironlake_init_pch_refclk(struct drm_device *dev)
8114 {
8115         struct drm_i915_private *dev_priv = dev->dev_private;
8116         struct intel_encoder *encoder;
8117         u32 val, final;
8118         bool has_lvds = false;
8119         bool has_cpu_edp = false;
8120         bool has_panel = false;
8121         bool has_ck505 = false;
8122         bool can_ssc = false;
8123
8124         /* We need to take the global config into account */
8125         for_each_intel_encoder(dev, encoder) {
8126                 switch (encoder->type) {
8127                 case INTEL_OUTPUT_LVDS:
8128                         has_panel = true;
8129                         has_lvds = true;
8130                         break;
8131                 case INTEL_OUTPUT_EDP:
8132                         has_panel = true;
8133                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8134                                 has_cpu_edp = true;
8135                         break;
8136                 default:
8137                         break;
8138                 }
8139         }
8140
8141         if (HAS_PCH_IBX(dev)) {
8142                 has_ck505 = dev_priv->vbt.display_clock_mode;
8143                 can_ssc = has_ck505;
8144         } else {
8145                 has_ck505 = false;
8146                 can_ssc = true;
8147         }
8148
8149         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8150                       has_panel, has_lvds, has_ck505);
8151
8152         /* Ironlake: try to setup display ref clock before DPLL
8153          * enabling. This is only under driver's control after
8154          * PCH B stepping, previous chipset stepping should be
8155          * ignoring this setting.
8156          */
8157         val = I915_READ(PCH_DREF_CONTROL);
8158
8159         /* As we must carefully and slowly disable/enable each source in turn,
8160          * compute the final state we want first and check if we need to
8161          * make any changes at all.
8162          */
8163         final = val;
8164         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8165         if (has_ck505)
8166                 final |= DREF_NONSPREAD_CK505_ENABLE;
8167         else
8168                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8169
8170         final &= ~DREF_SSC_SOURCE_MASK;
8171         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8172         final &= ~DREF_SSC1_ENABLE;
8173
8174         if (has_panel) {
8175                 final |= DREF_SSC_SOURCE_ENABLE;
8176
8177                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8178                         final |= DREF_SSC1_ENABLE;
8179
8180                 if (has_cpu_edp) {
8181                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8182                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8183                         else
8184                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8185                 } else
8186                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8187         } else {
8188                 final |= DREF_SSC_SOURCE_DISABLE;
8189                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8190         }
8191
8192         if (final == val)
8193                 return;
8194
8195         /* Always enable nonspread source */
8196         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8197
8198         if (has_ck505)
8199                 val |= DREF_NONSPREAD_CK505_ENABLE;
8200         else
8201                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8202
8203         if (has_panel) {
8204                 val &= ~DREF_SSC_SOURCE_MASK;
8205                 val |= DREF_SSC_SOURCE_ENABLE;
8206
8207                 /* SSC must be turned on before enabling the CPU output  */
8208                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8209                         DRM_DEBUG_KMS("Using SSC on panel\n");
8210                         val |= DREF_SSC1_ENABLE;
8211                 } else
8212                         val &= ~DREF_SSC1_ENABLE;
8213
8214                 /* Get SSC going before enabling the outputs */
8215                 I915_WRITE(PCH_DREF_CONTROL, val);
8216                 POSTING_READ(PCH_DREF_CONTROL);
8217                 udelay(200);
8218
8219                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8220
8221                 /* Enable CPU source on CPU attached eDP */
8222                 if (has_cpu_edp) {
8223                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8224                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8225                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8226                         } else
8227                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8228                 } else
8229                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8230
8231                 I915_WRITE(PCH_DREF_CONTROL, val);
8232                 POSTING_READ(PCH_DREF_CONTROL);
8233                 udelay(200);
8234         } else {
8235                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8236
8237                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8238
8239                 /* Turn off CPU output */
8240                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8241
8242                 I915_WRITE(PCH_DREF_CONTROL, val);
8243                 POSTING_READ(PCH_DREF_CONTROL);
8244                 udelay(200);
8245
8246                 /* Turn off the SSC source */
8247                 val &= ~DREF_SSC_SOURCE_MASK;
8248                 val |= DREF_SSC_SOURCE_DISABLE;
8249
8250                 /* Turn off SSC1 */
8251                 val &= ~DREF_SSC1_ENABLE;
8252
8253                 I915_WRITE(PCH_DREF_CONTROL, val);
8254                 POSTING_READ(PCH_DREF_CONTROL);
8255                 udelay(200);
8256         }
8257
8258         BUG_ON(val != final);
8259 }
8260
8261 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8262 {
8263         uint32_t tmp;
8264
8265         tmp = I915_READ(SOUTH_CHICKEN2);
8266         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8267         I915_WRITE(SOUTH_CHICKEN2, tmp);
8268
8269         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8270                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8271                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8272
8273         tmp = I915_READ(SOUTH_CHICKEN2);
8274         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8275         I915_WRITE(SOUTH_CHICKEN2, tmp);
8276
8277         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8278                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8279                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8280 }
8281
8282 /* WaMPhyProgramming:hsw */
8283 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8284 {
8285         uint32_t tmp;
8286
8287         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8288         tmp &= ~(0xFF << 24);
8289         tmp |= (0x12 << 24);
8290         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8291
8292         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8293         tmp |= (1 << 11);
8294         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8295
8296         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8297         tmp |= (1 << 11);
8298         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8299
8300         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8301         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8302         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8303
8304         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8305         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8306         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8307
8308         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8309         tmp &= ~(7 << 13);
8310         tmp |= (5 << 13);
8311         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8312
8313         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8314         tmp &= ~(7 << 13);
8315         tmp |= (5 << 13);
8316         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8317
8318         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8319         tmp &= ~0xFF;
8320         tmp |= 0x1C;
8321         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8322
8323         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8324         tmp &= ~0xFF;
8325         tmp |= 0x1C;
8326         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8327
8328         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8329         tmp &= ~(0xFF << 16);
8330         tmp |= (0x1C << 16);
8331         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8332
8333         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8334         tmp &= ~(0xFF << 16);
8335         tmp |= (0x1C << 16);
8336         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8337
8338         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8339         tmp |= (1 << 27);
8340         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8341
8342         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8343         tmp |= (1 << 27);
8344         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8345
8346         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8347         tmp &= ~(0xF << 28);
8348         tmp |= (4 << 28);
8349         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8350
8351         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8352         tmp &= ~(0xF << 28);
8353         tmp |= (4 << 28);
8354         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8355 }
8356
8357 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8358  * Programming" based on the parameters passed:
8359  * - Sequence to enable CLKOUT_DP
8360  * - Sequence to enable CLKOUT_DP without spread
8361  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8362  */
8363 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8364                                  bool with_fdi)
8365 {
8366         struct drm_i915_private *dev_priv = dev->dev_private;
8367         uint32_t reg, tmp;
8368
8369         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8370                 with_spread = true;
8371         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8372                  with_fdi, "LP PCH doesn't have FDI\n"))
8373                 with_fdi = false;
8374
8375         mutex_lock(&dev_priv->sb_lock);
8376
8377         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8378         tmp &= ~SBI_SSCCTL_DISABLE;
8379         tmp |= SBI_SSCCTL_PATHALT;
8380         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8381
8382         udelay(24);
8383
8384         if (with_spread) {
8385                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8386                 tmp &= ~SBI_SSCCTL_PATHALT;
8387                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8388
8389                 if (with_fdi) {
8390                         lpt_reset_fdi_mphy(dev_priv);
8391                         lpt_program_fdi_mphy(dev_priv);
8392                 }
8393         }
8394
8395         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8396                SBI_GEN0 : SBI_DBUFF0;
8397         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8398         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8399         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8400
8401         mutex_unlock(&dev_priv->sb_lock);
8402 }
8403
8404 /* Sequence to disable CLKOUT_DP */
8405 static void lpt_disable_clkout_dp(struct drm_device *dev)
8406 {
8407         struct drm_i915_private *dev_priv = dev->dev_private;
8408         uint32_t reg, tmp;
8409
8410         mutex_lock(&dev_priv->sb_lock);
8411
8412         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8413                SBI_GEN0 : SBI_DBUFF0;
8414         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8415         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8416         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8417
8418         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8419         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8420                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8421                         tmp |= SBI_SSCCTL_PATHALT;
8422                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8423                         udelay(32);
8424                 }
8425                 tmp |= SBI_SSCCTL_DISABLE;
8426                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8427         }
8428
8429         mutex_unlock(&dev_priv->sb_lock);
8430 }
8431
8432 static void lpt_init_pch_refclk(struct drm_device *dev)
8433 {
8434         struct intel_encoder *encoder;
8435         bool has_vga = false;
8436
8437         for_each_intel_encoder(dev, encoder) {
8438                 switch (encoder->type) {
8439                 case INTEL_OUTPUT_ANALOG:
8440                         has_vga = true;
8441                         break;
8442                 default:
8443                         break;
8444                 }
8445         }
8446
8447         if (has_vga)
8448                 lpt_enable_clkout_dp(dev, true, true);
8449         else
8450                 lpt_disable_clkout_dp(dev);
8451 }
8452
8453 /*
8454  * Initialize reference clocks when the driver loads
8455  */
8456 void intel_init_pch_refclk(struct drm_device *dev)
8457 {
8458         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8459                 ironlake_init_pch_refclk(dev);
8460         else if (HAS_PCH_LPT(dev))
8461                 lpt_init_pch_refclk(dev);
8462 }
8463
8464 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8465 {
8466         struct drm_device *dev = crtc_state->base.crtc->dev;
8467         struct drm_i915_private *dev_priv = dev->dev_private;
8468         struct drm_atomic_state *state = crtc_state->base.state;
8469         struct drm_connector *connector;
8470         struct drm_connector_state *connector_state;
8471         struct intel_encoder *encoder;
8472         int num_connectors = 0, i;
8473         bool is_lvds = false;
8474
8475         for_each_connector_in_state(state, connector, connector_state, i) {
8476                 if (connector_state->crtc != crtc_state->base.crtc)
8477                         continue;
8478
8479                 encoder = to_intel_encoder(connector_state->best_encoder);
8480
8481                 switch (encoder->type) {
8482                 case INTEL_OUTPUT_LVDS:
8483                         is_lvds = true;
8484                         break;
8485                 default:
8486                         break;
8487                 }
8488                 num_connectors++;
8489         }
8490
8491         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8492                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8493                               dev_priv->vbt.lvds_ssc_freq);
8494                 return dev_priv->vbt.lvds_ssc_freq;
8495         }
8496
8497         return 120000;
8498 }
8499
8500 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8501 {
8502         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8504         int pipe = intel_crtc->pipe;
8505         uint32_t val;
8506
8507         val = 0;
8508
8509         switch (intel_crtc->config->pipe_bpp) {
8510         case 18:
8511                 val |= PIPECONF_6BPC;
8512                 break;
8513         case 24:
8514                 val |= PIPECONF_8BPC;
8515                 break;
8516         case 30:
8517                 val |= PIPECONF_10BPC;
8518                 break;
8519         case 36:
8520                 val |= PIPECONF_12BPC;
8521                 break;
8522         default:
8523                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8524                 BUG();
8525         }
8526
8527         if (intel_crtc->config->dither)
8528                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8529
8530         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8531                 val |= PIPECONF_INTERLACED_ILK;
8532         else
8533                 val |= PIPECONF_PROGRESSIVE;
8534
8535         if (intel_crtc->config->limited_color_range)
8536                 val |= PIPECONF_COLOR_RANGE_SELECT;
8537
8538         I915_WRITE(PIPECONF(pipe), val);
8539         POSTING_READ(PIPECONF(pipe));
8540 }
8541
8542 /*
8543  * Set up the pipe CSC unit.
8544  *
8545  * Currently only full range RGB to limited range RGB conversion
8546  * is supported, but eventually this should handle various
8547  * RGB<->YCbCr scenarios as well.
8548  */
8549 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8550 {
8551         struct drm_device *dev = crtc->dev;
8552         struct drm_i915_private *dev_priv = dev->dev_private;
8553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8554         int pipe = intel_crtc->pipe;
8555         uint16_t coeff = 0x7800; /* 1.0 */
8556
8557         /*
8558          * TODO: Check what kind of values actually come out of the pipe
8559          * with these coeff/postoff values and adjust to get the best
8560          * accuracy. Perhaps we even need to take the bpc value into
8561          * consideration.
8562          */
8563
8564         if (intel_crtc->config->limited_color_range)
8565                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8566
8567         /*
8568          * GY/GU and RY/RU should be the other way around according
8569          * to BSpec, but reality doesn't agree. Just set them up in
8570          * a way that results in the correct picture.
8571          */
8572         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8573         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8574
8575         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8576         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8577
8578         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8579         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8580
8581         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8582         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8583         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8584
8585         if (INTEL_INFO(dev)->gen > 6) {
8586                 uint16_t postoff = 0;
8587
8588                 if (intel_crtc->config->limited_color_range)
8589                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8590
8591                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8592                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8593                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8594
8595                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8596         } else {
8597                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8598
8599                 if (intel_crtc->config->limited_color_range)
8600                         mode |= CSC_BLACK_SCREEN_OFFSET;
8601
8602                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8603         }
8604 }
8605
8606 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8607 {
8608         struct drm_device *dev = crtc->dev;
8609         struct drm_i915_private *dev_priv = dev->dev_private;
8610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8611         enum pipe pipe = intel_crtc->pipe;
8612         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8613         uint32_t val;
8614
8615         val = 0;
8616
8617         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8618                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8619
8620         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8621                 val |= PIPECONF_INTERLACED_ILK;
8622         else
8623                 val |= PIPECONF_PROGRESSIVE;
8624
8625         I915_WRITE(PIPECONF(cpu_transcoder), val);
8626         POSTING_READ(PIPECONF(cpu_transcoder));
8627
8628         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8629         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8630
8631         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8632                 val = 0;
8633
8634                 switch (intel_crtc->config->pipe_bpp) {
8635                 case 18:
8636                         val |= PIPEMISC_DITHER_6_BPC;
8637                         break;
8638                 case 24:
8639                         val |= PIPEMISC_DITHER_8_BPC;
8640                         break;
8641                 case 30:
8642                         val |= PIPEMISC_DITHER_10_BPC;
8643                         break;
8644                 case 36:
8645                         val |= PIPEMISC_DITHER_12_BPC;
8646                         break;
8647                 default:
8648                         /* Case prevented by pipe_config_set_bpp. */
8649                         BUG();
8650                 }
8651
8652                 if (intel_crtc->config->dither)
8653                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8654
8655                 I915_WRITE(PIPEMISC(pipe), val);
8656         }
8657 }
8658
8659 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8660                                     struct intel_crtc_state *crtc_state,
8661                                     intel_clock_t *clock,
8662                                     bool *has_reduced_clock,
8663                                     intel_clock_t *reduced_clock)
8664 {
8665         struct drm_device *dev = crtc->dev;
8666         struct drm_i915_private *dev_priv = dev->dev_private;
8667         int refclk;
8668         const intel_limit_t *limit;
8669         bool ret;
8670
8671         refclk = ironlake_get_refclk(crtc_state);
8672
8673         /*
8674          * Returns a set of divisors for the desired target clock with the given
8675          * refclk, or FALSE.  The returned values represent the clock equation:
8676          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8677          */
8678         limit = intel_limit(crtc_state, refclk);
8679         ret = dev_priv->display.find_dpll(limit, crtc_state,
8680                                           crtc_state->port_clock,
8681                                           refclk, NULL, clock);
8682         if (!ret)
8683                 return false;
8684
8685         return true;
8686 }
8687
8688 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8689 {
8690         /*
8691          * Account for spread spectrum to avoid
8692          * oversubscribing the link. Max center spread
8693          * is 2.5%; use 5% for safety's sake.
8694          */
8695         u32 bps = target_clock * bpp * 21 / 20;
8696         return DIV_ROUND_UP(bps, link_bw * 8);
8697 }
8698
8699 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8700 {
8701         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8702 }
8703
8704 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8705                                       struct intel_crtc_state *crtc_state,
8706                                       u32 *fp,
8707                                       intel_clock_t *reduced_clock, u32 *fp2)
8708 {
8709         struct drm_crtc *crtc = &intel_crtc->base;
8710         struct drm_device *dev = crtc->dev;
8711         struct drm_i915_private *dev_priv = dev->dev_private;
8712         struct drm_atomic_state *state = crtc_state->base.state;
8713         struct drm_connector *connector;
8714         struct drm_connector_state *connector_state;
8715         struct intel_encoder *encoder;
8716         uint32_t dpll;
8717         int factor, num_connectors = 0, i;
8718         bool is_lvds = false, is_sdvo = false;
8719
8720         for_each_connector_in_state(state, connector, connector_state, i) {
8721                 if (connector_state->crtc != crtc_state->base.crtc)
8722                         continue;
8723
8724                 encoder = to_intel_encoder(connector_state->best_encoder);
8725
8726                 switch (encoder->type) {
8727                 case INTEL_OUTPUT_LVDS:
8728                         is_lvds = true;
8729                         break;
8730                 case INTEL_OUTPUT_SDVO:
8731                 case INTEL_OUTPUT_HDMI:
8732                         is_sdvo = true;
8733                         break;
8734                 default:
8735                         break;
8736                 }
8737
8738                 num_connectors++;
8739         }
8740
8741         /* Enable autotuning of the PLL clock (if permissible) */
8742         factor = 21;
8743         if (is_lvds) {
8744                 if ((intel_panel_use_ssc(dev_priv) &&
8745                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8746                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8747                         factor = 25;
8748         } else if (crtc_state->sdvo_tv_clock)
8749                 factor = 20;
8750
8751         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8752                 *fp |= FP_CB_TUNE;
8753
8754         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8755                 *fp2 |= FP_CB_TUNE;
8756
8757         dpll = 0;
8758
8759         if (is_lvds)
8760                 dpll |= DPLLB_MODE_LVDS;
8761         else
8762                 dpll |= DPLLB_MODE_DAC_SERIAL;
8763
8764         dpll |= (crtc_state->pixel_multiplier - 1)
8765                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8766
8767         if (is_sdvo)
8768                 dpll |= DPLL_SDVO_HIGH_SPEED;
8769         if (crtc_state->has_dp_encoder)
8770                 dpll |= DPLL_SDVO_HIGH_SPEED;
8771
8772         /* compute bitmask from p1 value */
8773         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8774         /* also FPA1 */
8775         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8776
8777         switch (crtc_state->dpll.p2) {
8778         case 5:
8779                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8780                 break;
8781         case 7:
8782                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8783                 break;
8784         case 10:
8785                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8786                 break;
8787         case 14:
8788                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8789                 break;
8790         }
8791
8792         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8793                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8794         else
8795                 dpll |= PLL_REF_INPUT_DREFCLK;
8796
8797         return dpll | DPLL_VCO_ENABLE;
8798 }
8799
8800 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8801                                        struct intel_crtc_state *crtc_state)
8802 {
8803         struct drm_device *dev = crtc->base.dev;
8804         intel_clock_t clock, reduced_clock;
8805         u32 dpll = 0, fp = 0, fp2 = 0;
8806         bool ok, has_reduced_clock = false;
8807         bool is_lvds = false;
8808         struct intel_shared_dpll *pll;
8809
8810         memset(&crtc_state->dpll_hw_state, 0,
8811                sizeof(crtc_state->dpll_hw_state));
8812
8813         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8814
8815         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8816              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8817
8818         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8819                                      &has_reduced_clock, &reduced_clock);
8820         if (!ok && !crtc_state->clock_set) {
8821                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8822                 return -EINVAL;
8823         }
8824         /* Compat-code for transition, will disappear. */
8825         if (!crtc_state->clock_set) {
8826                 crtc_state->dpll.n = clock.n;
8827                 crtc_state->dpll.m1 = clock.m1;
8828                 crtc_state->dpll.m2 = clock.m2;
8829                 crtc_state->dpll.p1 = clock.p1;
8830                 crtc_state->dpll.p2 = clock.p2;
8831         }
8832
8833         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8834         if (crtc_state->has_pch_encoder) {
8835                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8836                 if (has_reduced_clock)
8837                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8838
8839                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8840                                              &fp, &reduced_clock,
8841                                              has_reduced_clock ? &fp2 : NULL);
8842
8843                 crtc_state->dpll_hw_state.dpll = dpll;
8844                 crtc_state->dpll_hw_state.fp0 = fp;
8845                 if (has_reduced_clock)
8846                         crtc_state->dpll_hw_state.fp1 = fp2;
8847                 else
8848                         crtc_state->dpll_hw_state.fp1 = fp;
8849
8850                 pll = intel_get_shared_dpll(crtc, crtc_state);
8851                 if (pll == NULL) {
8852                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8853                                          pipe_name(crtc->pipe));
8854                         return -EINVAL;
8855                 }
8856         }
8857
8858         if (is_lvds && has_reduced_clock)
8859                 crtc->lowfreq_avail = true;
8860         else
8861                 crtc->lowfreq_avail = false;
8862
8863         return 0;
8864 }
8865
8866 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8867                                          struct intel_link_m_n *m_n)
8868 {
8869         struct drm_device *dev = crtc->base.dev;
8870         struct drm_i915_private *dev_priv = dev->dev_private;
8871         enum pipe pipe = crtc->pipe;
8872
8873         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8874         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8875         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8876                 & ~TU_SIZE_MASK;
8877         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8878         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8879                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8880 }
8881
8882 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8883                                          enum transcoder transcoder,
8884                                          struct intel_link_m_n *m_n,
8885                                          struct intel_link_m_n *m2_n2)
8886 {
8887         struct drm_device *dev = crtc->base.dev;
8888         struct drm_i915_private *dev_priv = dev->dev_private;
8889         enum pipe pipe = crtc->pipe;
8890
8891         if (INTEL_INFO(dev)->gen >= 5) {
8892                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8893                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8894                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8895                         & ~TU_SIZE_MASK;
8896                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8897                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8898                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8899                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8900                  * gen < 8) and if DRRS is supported (to make sure the
8901                  * registers are not unnecessarily read).
8902                  */
8903                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8904                         crtc->config->has_drrs) {
8905                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8906                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8907                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8908                                         & ~TU_SIZE_MASK;
8909                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8910                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8911                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8912                 }
8913         } else {
8914                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8915                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8916                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8917                         & ~TU_SIZE_MASK;
8918                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8919                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8920                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8921         }
8922 }
8923
8924 void intel_dp_get_m_n(struct intel_crtc *crtc,
8925                       struct intel_crtc_state *pipe_config)
8926 {
8927         if (pipe_config->has_pch_encoder)
8928                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8929         else
8930                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8931                                              &pipe_config->dp_m_n,
8932                                              &pipe_config->dp_m2_n2);
8933 }
8934
8935 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8936                                         struct intel_crtc_state *pipe_config)
8937 {
8938         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8939                                      &pipe_config->fdi_m_n, NULL);
8940 }
8941
8942 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8943                                     struct intel_crtc_state *pipe_config)
8944 {
8945         struct drm_device *dev = crtc->base.dev;
8946         struct drm_i915_private *dev_priv = dev->dev_private;
8947         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8948         uint32_t ps_ctrl = 0;
8949         int id = -1;
8950         int i;
8951
8952         /* find scaler attached to this pipe */
8953         for (i = 0; i < crtc->num_scalers; i++) {
8954                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8955                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8956                         id = i;
8957                         pipe_config->pch_pfit.enabled = true;
8958                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8959                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8960                         break;
8961                 }
8962         }
8963
8964         scaler_state->scaler_id = id;
8965         if (id >= 0) {
8966                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8967         } else {
8968                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8969         }
8970 }
8971
8972 static void
8973 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8974                                  struct intel_initial_plane_config *plane_config)
8975 {
8976         struct drm_device *dev = crtc->base.dev;
8977         struct drm_i915_private *dev_priv = dev->dev_private;
8978         u32 val, base, offset, stride_mult, tiling;
8979         int pipe = crtc->pipe;
8980         int fourcc, pixel_format;
8981         unsigned int aligned_height;
8982         struct drm_framebuffer *fb;
8983         struct intel_framebuffer *intel_fb;
8984
8985         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8986         if (!intel_fb) {
8987                 DRM_DEBUG_KMS("failed to alloc fb\n");
8988                 return;
8989         }
8990
8991         fb = &intel_fb->base;
8992
8993         val = I915_READ(PLANE_CTL(pipe, 0));
8994         if (!(val & PLANE_CTL_ENABLE))
8995                 goto error;
8996
8997         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8998         fourcc = skl_format_to_fourcc(pixel_format,
8999                                       val & PLANE_CTL_ORDER_RGBX,
9000                                       val & PLANE_CTL_ALPHA_MASK);
9001         fb->pixel_format = fourcc;
9002         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9003
9004         tiling = val & PLANE_CTL_TILED_MASK;
9005         switch (tiling) {
9006         case PLANE_CTL_TILED_LINEAR:
9007                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9008                 break;
9009         case PLANE_CTL_TILED_X:
9010                 plane_config->tiling = I915_TILING_X;
9011                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9012                 break;
9013         case PLANE_CTL_TILED_Y:
9014                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9015                 break;
9016         case PLANE_CTL_TILED_YF:
9017                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9018                 break;
9019         default:
9020                 MISSING_CASE(tiling);
9021                 goto error;
9022         }
9023
9024         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9025         plane_config->base = base;
9026
9027         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9028
9029         val = I915_READ(PLANE_SIZE(pipe, 0));
9030         fb->height = ((val >> 16) & 0xfff) + 1;
9031         fb->width = ((val >> 0) & 0x1fff) + 1;
9032
9033         val = I915_READ(PLANE_STRIDE(pipe, 0));
9034         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9035                                                 fb->pixel_format);
9036         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9037
9038         aligned_height = intel_fb_align_height(dev, fb->height,
9039                                                fb->pixel_format,
9040                                                fb->modifier[0]);
9041
9042         plane_config->size = fb->pitches[0] * aligned_height;
9043
9044         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9045                       pipe_name(pipe), fb->width, fb->height,
9046                       fb->bits_per_pixel, base, fb->pitches[0],
9047                       plane_config->size);
9048
9049         plane_config->fb = intel_fb;
9050         return;
9051
9052 error:
9053         kfree(fb);
9054 }
9055
9056 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9057                                      struct intel_crtc_state *pipe_config)
9058 {
9059         struct drm_device *dev = crtc->base.dev;
9060         struct drm_i915_private *dev_priv = dev->dev_private;
9061         uint32_t tmp;
9062
9063         tmp = I915_READ(PF_CTL(crtc->pipe));
9064
9065         if (tmp & PF_ENABLE) {
9066                 pipe_config->pch_pfit.enabled = true;
9067                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9068                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9069
9070                 /* We currently do not free assignements of panel fitters on
9071                  * ivb/hsw (since we don't use the higher upscaling modes which
9072                  * differentiates them) so just WARN about this case for now. */
9073                 if (IS_GEN7(dev)) {
9074                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9075                                 PF_PIPE_SEL_IVB(crtc->pipe));
9076                 }
9077         }
9078 }
9079
9080 static void
9081 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9082                                   struct intel_initial_plane_config *plane_config)
9083 {
9084         struct drm_device *dev = crtc->base.dev;
9085         struct drm_i915_private *dev_priv = dev->dev_private;
9086         u32 val, base, offset;
9087         int pipe = crtc->pipe;
9088         int fourcc, pixel_format;
9089         unsigned int aligned_height;
9090         struct drm_framebuffer *fb;
9091         struct intel_framebuffer *intel_fb;
9092
9093         val = I915_READ(DSPCNTR(pipe));
9094         if (!(val & DISPLAY_PLANE_ENABLE))
9095                 return;
9096
9097         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9098         if (!intel_fb) {
9099                 DRM_DEBUG_KMS("failed to alloc fb\n");
9100                 return;
9101         }
9102
9103         fb = &intel_fb->base;
9104
9105         if (INTEL_INFO(dev)->gen >= 4) {
9106                 if (val & DISPPLANE_TILED) {
9107                         plane_config->tiling = I915_TILING_X;
9108                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9109                 }
9110         }
9111
9112         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9113         fourcc = i9xx_format_to_fourcc(pixel_format);
9114         fb->pixel_format = fourcc;
9115         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9116
9117         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9118         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9119                 offset = I915_READ(DSPOFFSET(pipe));
9120         } else {
9121                 if (plane_config->tiling)
9122                         offset = I915_READ(DSPTILEOFF(pipe));
9123                 else
9124                         offset = I915_READ(DSPLINOFF(pipe));
9125         }
9126         plane_config->base = base;
9127
9128         val = I915_READ(PIPESRC(pipe));
9129         fb->width = ((val >> 16) & 0xfff) + 1;
9130         fb->height = ((val >> 0) & 0xfff) + 1;
9131
9132         val = I915_READ(DSPSTRIDE(pipe));
9133         fb->pitches[0] = val & 0xffffffc0;
9134
9135         aligned_height = intel_fb_align_height(dev, fb->height,
9136                                                fb->pixel_format,
9137                                                fb->modifier[0]);
9138
9139         plane_config->size = fb->pitches[0] * aligned_height;
9140
9141         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9142                       pipe_name(pipe), fb->width, fb->height,
9143                       fb->bits_per_pixel, base, fb->pitches[0],
9144                       plane_config->size);
9145
9146         plane_config->fb = intel_fb;
9147 }
9148
9149 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9150                                      struct intel_crtc_state *pipe_config)
9151 {
9152         struct drm_device *dev = crtc->base.dev;
9153         struct drm_i915_private *dev_priv = dev->dev_private;
9154         uint32_t tmp;
9155
9156         if (!intel_display_power_is_enabled(dev_priv,
9157                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9158                 return false;
9159
9160         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9161         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9162
9163         tmp = I915_READ(PIPECONF(crtc->pipe));
9164         if (!(tmp & PIPECONF_ENABLE))
9165                 return false;
9166
9167         switch (tmp & PIPECONF_BPC_MASK) {
9168         case PIPECONF_6BPC:
9169                 pipe_config->pipe_bpp = 18;
9170                 break;
9171         case PIPECONF_8BPC:
9172                 pipe_config->pipe_bpp = 24;
9173                 break;
9174         case PIPECONF_10BPC:
9175                 pipe_config->pipe_bpp = 30;
9176                 break;
9177         case PIPECONF_12BPC:
9178                 pipe_config->pipe_bpp = 36;
9179                 break;
9180         default:
9181                 break;
9182         }
9183
9184         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9185                 pipe_config->limited_color_range = true;
9186
9187         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9188                 struct intel_shared_dpll *pll;
9189
9190                 pipe_config->has_pch_encoder = true;
9191
9192                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9193                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9194                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9195
9196                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9197
9198                 if (HAS_PCH_IBX(dev_priv->dev)) {
9199                         pipe_config->shared_dpll =
9200                                 (enum intel_dpll_id) crtc->pipe;
9201                 } else {
9202                         tmp = I915_READ(PCH_DPLL_SEL);
9203                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9204                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9205                         else
9206                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9207                 }
9208
9209                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9210
9211                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9212                                            &pipe_config->dpll_hw_state));
9213
9214                 tmp = pipe_config->dpll_hw_state.dpll;
9215                 pipe_config->pixel_multiplier =
9216                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9217                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9218
9219                 ironlake_pch_clock_get(crtc, pipe_config);
9220         } else {
9221                 pipe_config->pixel_multiplier = 1;
9222         }
9223
9224         intel_get_pipe_timings(crtc, pipe_config);
9225
9226         ironlake_get_pfit_config(crtc, pipe_config);
9227
9228         return true;
9229 }
9230
9231 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9232 {
9233         struct drm_device *dev = dev_priv->dev;
9234         struct intel_crtc *crtc;
9235
9236         for_each_intel_crtc(dev, crtc)
9237                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9238                      pipe_name(crtc->pipe));
9239
9240         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9241         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9242         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9243         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9244         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9245         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9246              "CPU PWM1 enabled\n");
9247         if (IS_HASWELL(dev))
9248                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9249                      "CPU PWM2 enabled\n");
9250         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9251              "PCH PWM1 enabled\n");
9252         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9253              "Utility pin enabled\n");
9254         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9255
9256         /*
9257          * In theory we can still leave IRQs enabled, as long as only the HPD
9258          * interrupts remain enabled. We used to check for that, but since it's
9259          * gen-specific and since we only disable LCPLL after we fully disable
9260          * the interrupts, the check below should be enough.
9261          */
9262         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9263 }
9264
9265 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9266 {
9267         struct drm_device *dev = dev_priv->dev;
9268
9269         if (IS_HASWELL(dev))
9270                 return I915_READ(D_COMP_HSW);
9271         else
9272                 return I915_READ(D_COMP_BDW);
9273 }
9274
9275 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9276 {
9277         struct drm_device *dev = dev_priv->dev;
9278
9279         if (IS_HASWELL(dev)) {
9280                 mutex_lock(&dev_priv->rps.hw_lock);
9281                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9282                                             val))
9283                         DRM_ERROR("Failed to write to D_COMP\n");
9284                 mutex_unlock(&dev_priv->rps.hw_lock);
9285         } else {
9286                 I915_WRITE(D_COMP_BDW, val);
9287                 POSTING_READ(D_COMP_BDW);
9288         }
9289 }
9290
9291 /*
9292  * This function implements pieces of two sequences from BSpec:
9293  * - Sequence for display software to disable LCPLL
9294  * - Sequence for display software to allow package C8+
9295  * The steps implemented here are just the steps that actually touch the LCPLL
9296  * register. Callers should take care of disabling all the display engine
9297  * functions, doing the mode unset, fixing interrupts, etc.
9298  */
9299 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9300                               bool switch_to_fclk, bool allow_power_down)
9301 {
9302         uint32_t val;
9303
9304         assert_can_disable_lcpll(dev_priv);
9305
9306         val = I915_READ(LCPLL_CTL);
9307
9308         if (switch_to_fclk) {
9309                 val |= LCPLL_CD_SOURCE_FCLK;
9310                 I915_WRITE(LCPLL_CTL, val);
9311
9312                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9313                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9314                         DRM_ERROR("Switching to FCLK failed\n");
9315
9316                 val = I915_READ(LCPLL_CTL);
9317         }
9318
9319         val |= LCPLL_PLL_DISABLE;
9320         I915_WRITE(LCPLL_CTL, val);
9321         POSTING_READ(LCPLL_CTL);
9322
9323         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9324                 DRM_ERROR("LCPLL still locked\n");
9325
9326         val = hsw_read_dcomp(dev_priv);
9327         val |= D_COMP_COMP_DISABLE;
9328         hsw_write_dcomp(dev_priv, val);
9329         ndelay(100);
9330
9331         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9332                      1))
9333                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9334
9335         if (allow_power_down) {
9336                 val = I915_READ(LCPLL_CTL);
9337                 val |= LCPLL_POWER_DOWN_ALLOW;
9338                 I915_WRITE(LCPLL_CTL, val);
9339                 POSTING_READ(LCPLL_CTL);
9340         }
9341 }
9342
9343 /*
9344  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9345  * source.
9346  */
9347 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9348 {
9349         uint32_t val;
9350
9351         val = I915_READ(LCPLL_CTL);
9352
9353         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9354                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9355                 return;
9356
9357         /*
9358          * Make sure we're not on PC8 state before disabling PC8, otherwise
9359          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9360          */
9361         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9362
9363         if (val & LCPLL_POWER_DOWN_ALLOW) {
9364                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9365                 I915_WRITE(LCPLL_CTL, val);
9366                 POSTING_READ(LCPLL_CTL);
9367         }
9368
9369         val = hsw_read_dcomp(dev_priv);
9370         val |= D_COMP_COMP_FORCE;
9371         val &= ~D_COMP_COMP_DISABLE;
9372         hsw_write_dcomp(dev_priv, val);
9373
9374         val = I915_READ(LCPLL_CTL);
9375         val &= ~LCPLL_PLL_DISABLE;
9376         I915_WRITE(LCPLL_CTL, val);
9377
9378         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9379                 DRM_ERROR("LCPLL not locked yet\n");
9380
9381         if (val & LCPLL_CD_SOURCE_FCLK) {
9382                 val = I915_READ(LCPLL_CTL);
9383                 val &= ~LCPLL_CD_SOURCE_FCLK;
9384                 I915_WRITE(LCPLL_CTL, val);
9385
9386                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9387                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9388                         DRM_ERROR("Switching back to LCPLL failed\n");
9389         }
9390
9391         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9392         intel_update_cdclk(dev_priv->dev);
9393 }
9394
9395 /*
9396  * Package states C8 and deeper are really deep PC states that can only be
9397  * reached when all the devices on the system allow it, so even if the graphics
9398  * device allows PC8+, it doesn't mean the system will actually get to these
9399  * states. Our driver only allows PC8+ when going into runtime PM.
9400  *
9401  * The requirements for PC8+ are that all the outputs are disabled, the power
9402  * well is disabled and most interrupts are disabled, and these are also
9403  * requirements for runtime PM. When these conditions are met, we manually do
9404  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9405  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9406  * hang the machine.
9407  *
9408  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9409  * the state of some registers, so when we come back from PC8+ we need to
9410  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9411  * need to take care of the registers kept by RC6. Notice that this happens even
9412  * if we don't put the device in PCI D3 state (which is what currently happens
9413  * because of the runtime PM support).
9414  *
9415  * For more, read "Display Sequences for Package C8" on the hardware
9416  * documentation.
9417  */
9418 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9419 {
9420         struct drm_device *dev = dev_priv->dev;
9421         uint32_t val;
9422
9423         DRM_DEBUG_KMS("Enabling package C8+\n");
9424
9425         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9426                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9427                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9428                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9429         }
9430
9431         lpt_disable_clkout_dp(dev);
9432         hsw_disable_lcpll(dev_priv, true, true);
9433 }
9434
9435 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9436 {
9437         struct drm_device *dev = dev_priv->dev;
9438         uint32_t val;
9439
9440         DRM_DEBUG_KMS("Disabling package C8+\n");
9441
9442         hsw_restore_lcpll(dev_priv);
9443         lpt_init_pch_refclk(dev);
9444
9445         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9446                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9447                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9448                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9449         }
9450
9451         intel_prepare_ddi(dev);
9452 }
9453
9454 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9455 {
9456         struct drm_device *dev = old_state->dev;
9457         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9458
9459         broxton_set_cdclk(dev, req_cdclk);
9460 }
9461
9462 /* compute the max rate for new configuration */
9463 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9464 {
9465         struct intel_crtc *intel_crtc;
9466         struct intel_crtc_state *crtc_state;
9467         int max_pixel_rate = 0;
9468
9469         for_each_intel_crtc(state->dev, intel_crtc) {
9470                 int pixel_rate;
9471
9472                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9473                 if (IS_ERR(crtc_state))
9474                         return PTR_ERR(crtc_state);
9475
9476                 if (!crtc_state->base.enable)
9477                         continue;
9478
9479                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9480
9481                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9482                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9483                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9484
9485                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9486         }
9487
9488         return max_pixel_rate;
9489 }
9490
9491 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9492 {
9493         struct drm_i915_private *dev_priv = dev->dev_private;
9494         uint32_t val, data;
9495         int ret;
9496
9497         if (WARN((I915_READ(LCPLL_CTL) &
9498                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9499                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9500                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9501                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9502                  "trying to change cdclk frequency with cdclk not enabled\n"))
9503                 return;
9504
9505         mutex_lock(&dev_priv->rps.hw_lock);
9506         ret = sandybridge_pcode_write(dev_priv,
9507                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9508         mutex_unlock(&dev_priv->rps.hw_lock);
9509         if (ret) {
9510                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9511                 return;
9512         }
9513
9514         val = I915_READ(LCPLL_CTL);
9515         val |= LCPLL_CD_SOURCE_FCLK;
9516         I915_WRITE(LCPLL_CTL, val);
9517
9518         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9519                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9520                 DRM_ERROR("Switching to FCLK failed\n");
9521
9522         val = I915_READ(LCPLL_CTL);
9523         val &= ~LCPLL_CLK_FREQ_MASK;
9524
9525         switch (cdclk) {
9526         case 450000:
9527                 val |= LCPLL_CLK_FREQ_450;
9528                 data = 0;
9529                 break;
9530         case 540000:
9531                 val |= LCPLL_CLK_FREQ_54O_BDW;
9532                 data = 1;
9533                 break;
9534         case 337500:
9535                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9536                 data = 2;
9537                 break;
9538         case 675000:
9539                 val |= LCPLL_CLK_FREQ_675_BDW;
9540                 data = 3;
9541                 break;
9542         default:
9543                 WARN(1, "invalid cdclk frequency\n");
9544                 return;
9545         }
9546
9547         I915_WRITE(LCPLL_CTL, val);
9548
9549         val = I915_READ(LCPLL_CTL);
9550         val &= ~LCPLL_CD_SOURCE_FCLK;
9551         I915_WRITE(LCPLL_CTL, val);
9552
9553         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9554                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9555                 DRM_ERROR("Switching back to LCPLL failed\n");
9556
9557         mutex_lock(&dev_priv->rps.hw_lock);
9558         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9559         mutex_unlock(&dev_priv->rps.hw_lock);
9560
9561         intel_update_cdclk(dev);
9562
9563         WARN(cdclk != dev_priv->cdclk_freq,
9564              "cdclk requested %d kHz but got %d kHz\n",
9565              cdclk, dev_priv->cdclk_freq);
9566 }
9567
9568 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9569 {
9570         struct drm_i915_private *dev_priv = to_i915(state->dev);
9571         int max_pixclk = ilk_max_pixel_rate(state);
9572         int cdclk;
9573
9574         /*
9575          * FIXME should also account for plane ratio
9576          * once 64bpp pixel formats are supported.
9577          */
9578         if (max_pixclk > 540000)
9579                 cdclk = 675000;
9580         else if (max_pixclk > 450000)
9581                 cdclk = 540000;
9582         else if (max_pixclk > 337500)
9583                 cdclk = 450000;
9584         else
9585                 cdclk = 337500;
9586
9587         /*
9588          * FIXME move the cdclk caclulation to
9589          * compute_config() so we can fail gracegully.
9590          */
9591         if (cdclk > dev_priv->max_cdclk_freq) {
9592                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9593                           cdclk, dev_priv->max_cdclk_freq);
9594                 cdclk = dev_priv->max_cdclk_freq;
9595         }
9596
9597         to_intel_atomic_state(state)->cdclk = cdclk;
9598
9599         return 0;
9600 }
9601
9602 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9603 {
9604         struct drm_device *dev = old_state->dev;
9605         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9606
9607         broadwell_set_cdclk(dev, req_cdclk);
9608 }
9609
9610 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9611                                       struct intel_crtc_state *crtc_state)
9612 {
9613         if (!intel_ddi_pll_select(crtc, crtc_state))
9614                 return -EINVAL;
9615
9616         crtc->lowfreq_avail = false;
9617
9618         return 0;
9619 }
9620
9621 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9622                                 enum port port,
9623                                 struct intel_crtc_state *pipe_config)
9624 {
9625         switch (port) {
9626         case PORT_A:
9627                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9628                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9629                 break;
9630         case PORT_B:
9631                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9632                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9633                 break;
9634         case PORT_C:
9635                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9636                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9637                 break;
9638         default:
9639                 DRM_ERROR("Incorrect port type\n");
9640         }
9641 }
9642
9643 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9644                                 enum port port,
9645                                 struct intel_crtc_state *pipe_config)
9646 {
9647         u32 temp, dpll_ctl1;
9648
9649         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9650         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9651
9652         switch (pipe_config->ddi_pll_sel) {
9653         case SKL_DPLL0:
9654                 /*
9655                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9656                  * of the shared DPLL framework and thus needs to be read out
9657                  * separately
9658                  */
9659                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9660                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9661                 break;
9662         case SKL_DPLL1:
9663                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9664                 break;
9665         case SKL_DPLL2:
9666                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9667                 break;
9668         case SKL_DPLL3:
9669                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9670                 break;
9671         }
9672 }
9673
9674 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9675                                 enum port port,
9676                                 struct intel_crtc_state *pipe_config)
9677 {
9678         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9679
9680         switch (pipe_config->ddi_pll_sel) {
9681         case PORT_CLK_SEL_WRPLL1:
9682                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9683                 break;
9684         case PORT_CLK_SEL_WRPLL2:
9685                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9686                 break;
9687         }
9688 }
9689
9690 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9691                                        struct intel_crtc_state *pipe_config)
9692 {
9693         struct drm_device *dev = crtc->base.dev;
9694         struct drm_i915_private *dev_priv = dev->dev_private;
9695         struct intel_shared_dpll *pll;
9696         enum port port;
9697         uint32_t tmp;
9698
9699         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9700
9701         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9702
9703         if (IS_SKYLAKE(dev))
9704                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9705         else if (IS_BROXTON(dev))
9706                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9707         else
9708                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9709
9710         if (pipe_config->shared_dpll >= 0) {
9711                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9712
9713                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9714                                            &pipe_config->dpll_hw_state));
9715         }
9716
9717         /*
9718          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9719          * DDI E. So just check whether this pipe is wired to DDI E and whether
9720          * the PCH transcoder is on.
9721          */
9722         if (INTEL_INFO(dev)->gen < 9 &&
9723             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9724                 pipe_config->has_pch_encoder = true;
9725
9726                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9727                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9728                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9729
9730                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9731         }
9732 }
9733
9734 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9735                                     struct intel_crtc_state *pipe_config)
9736 {
9737         struct drm_device *dev = crtc->base.dev;
9738         struct drm_i915_private *dev_priv = dev->dev_private;
9739         enum intel_display_power_domain pfit_domain;
9740         uint32_t tmp;
9741
9742         if (!intel_display_power_is_enabled(dev_priv,
9743                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9744                 return false;
9745
9746         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9747         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9748
9749         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9750         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9751                 enum pipe trans_edp_pipe;
9752                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9753                 default:
9754                         WARN(1, "unknown pipe linked to edp transcoder\n");
9755                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9756                 case TRANS_DDI_EDP_INPUT_A_ON:
9757                         trans_edp_pipe = PIPE_A;
9758                         break;
9759                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9760                         trans_edp_pipe = PIPE_B;
9761                         break;
9762                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9763                         trans_edp_pipe = PIPE_C;
9764                         break;
9765                 }
9766
9767                 if (trans_edp_pipe == crtc->pipe)
9768                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9769         }
9770
9771         if (!intel_display_power_is_enabled(dev_priv,
9772                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9773                 return false;
9774
9775         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9776         if (!(tmp & PIPECONF_ENABLE))
9777                 return false;
9778
9779         haswell_get_ddi_port_state(crtc, pipe_config);
9780
9781         intel_get_pipe_timings(crtc, pipe_config);
9782
9783         if (INTEL_INFO(dev)->gen >= 9) {
9784                 skl_init_scalers(dev, crtc, pipe_config);
9785         }
9786
9787         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9788
9789         if (INTEL_INFO(dev)->gen >= 9) {
9790                 pipe_config->scaler_state.scaler_id = -1;
9791                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9792         }
9793
9794         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9795                 if (INTEL_INFO(dev)->gen == 9)
9796                         skylake_get_pfit_config(crtc, pipe_config);
9797                 else if (INTEL_INFO(dev)->gen < 9)
9798                         ironlake_get_pfit_config(crtc, pipe_config);
9799                 else
9800                         MISSING_CASE(INTEL_INFO(dev)->gen);
9801         }
9802
9803         if (IS_HASWELL(dev))
9804                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9805                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9806
9807         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9808                 pipe_config->pixel_multiplier =
9809                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9810         } else {
9811                 pipe_config->pixel_multiplier = 1;
9812         }
9813
9814         return true;
9815 }
9816
9817 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9818 {
9819         struct drm_device *dev = crtc->dev;
9820         struct drm_i915_private *dev_priv = dev->dev_private;
9821         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9822         uint32_t cntl = 0, size = 0;
9823
9824         if (base) {
9825                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9826                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9827                 unsigned int stride = roundup_pow_of_two(width) * 4;
9828
9829                 switch (stride) {
9830                 default:
9831                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9832                                   width, stride);
9833                         stride = 256;
9834                         /* fallthrough */
9835                 case 256:
9836                 case 512:
9837                 case 1024:
9838                 case 2048:
9839                         break;
9840                 }
9841
9842                 cntl |= CURSOR_ENABLE |
9843                         CURSOR_GAMMA_ENABLE |
9844                         CURSOR_FORMAT_ARGB |
9845                         CURSOR_STRIDE(stride);
9846
9847                 size = (height << 12) | width;
9848         }
9849
9850         if (intel_crtc->cursor_cntl != 0 &&
9851             (intel_crtc->cursor_base != base ||
9852              intel_crtc->cursor_size != size ||
9853              intel_crtc->cursor_cntl != cntl)) {
9854                 /* On these chipsets we can only modify the base/size/stride
9855                  * whilst the cursor is disabled.
9856                  */
9857                 I915_WRITE(_CURACNTR, 0);
9858                 POSTING_READ(_CURACNTR);
9859                 intel_crtc->cursor_cntl = 0;
9860         }
9861
9862         if (intel_crtc->cursor_base != base) {
9863                 I915_WRITE(_CURABASE, base);
9864                 intel_crtc->cursor_base = base;
9865         }
9866
9867         if (intel_crtc->cursor_size != size) {
9868                 I915_WRITE(CURSIZE, size);
9869                 intel_crtc->cursor_size = size;
9870         }
9871
9872         if (intel_crtc->cursor_cntl != cntl) {
9873                 I915_WRITE(_CURACNTR, cntl);
9874                 POSTING_READ(_CURACNTR);
9875                 intel_crtc->cursor_cntl = cntl;
9876         }
9877 }
9878
9879 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9880 {
9881         struct drm_device *dev = crtc->dev;
9882         struct drm_i915_private *dev_priv = dev->dev_private;
9883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9884         int pipe = intel_crtc->pipe;
9885         uint32_t cntl;
9886
9887         cntl = 0;
9888         if (base) {
9889                 cntl = MCURSOR_GAMMA_ENABLE;
9890                 switch (intel_crtc->base.cursor->state->crtc_w) {
9891                         case 64:
9892                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9893                                 break;
9894                         case 128:
9895                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9896                                 break;
9897                         case 256:
9898                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9899                                 break;
9900                         default:
9901                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9902                                 return;
9903                 }
9904                 cntl |= pipe << 28; /* Connect to correct pipe */
9905
9906                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9907                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9908         }
9909
9910         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9911                 cntl |= CURSOR_ROTATE_180;
9912
9913         if (intel_crtc->cursor_cntl != cntl) {
9914                 I915_WRITE(CURCNTR(pipe), cntl);
9915                 POSTING_READ(CURCNTR(pipe));
9916                 intel_crtc->cursor_cntl = cntl;
9917         }
9918
9919         /* and commit changes on next vblank */
9920         I915_WRITE(CURBASE(pipe), base);
9921         POSTING_READ(CURBASE(pipe));
9922
9923         intel_crtc->cursor_base = base;
9924 }
9925
9926 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9927 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9928                                      bool on)
9929 {
9930         struct drm_device *dev = crtc->dev;
9931         struct drm_i915_private *dev_priv = dev->dev_private;
9932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9933         int pipe = intel_crtc->pipe;
9934         int x = crtc->cursor_x;
9935         int y = crtc->cursor_y;
9936         u32 base = 0, pos = 0;
9937
9938         if (on)
9939                 base = intel_crtc->cursor_addr;
9940
9941         if (x >= intel_crtc->config->pipe_src_w)
9942                 base = 0;
9943
9944         if (y >= intel_crtc->config->pipe_src_h)
9945                 base = 0;
9946
9947         if (x < 0) {
9948                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9949                         base = 0;
9950
9951                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9952                 x = -x;
9953         }
9954         pos |= x << CURSOR_X_SHIFT;
9955
9956         if (y < 0) {
9957                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9958                         base = 0;
9959
9960                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9961                 y = -y;
9962         }
9963         pos |= y << CURSOR_Y_SHIFT;
9964
9965         if (base == 0 && intel_crtc->cursor_base == 0)
9966                 return;
9967
9968         I915_WRITE(CURPOS(pipe), pos);
9969
9970         /* ILK+ do this automagically */
9971         if (HAS_GMCH_DISPLAY(dev) &&
9972             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9973                 base += (intel_crtc->base.cursor->state->crtc_h *
9974                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9975         }
9976
9977         if (IS_845G(dev) || IS_I865G(dev))
9978                 i845_update_cursor(crtc, base);
9979         else
9980                 i9xx_update_cursor(crtc, base);
9981 }
9982
9983 static bool cursor_size_ok(struct drm_device *dev,
9984                            uint32_t width, uint32_t height)
9985 {
9986         if (width == 0 || height == 0)
9987                 return false;
9988
9989         /*
9990          * 845g/865g are special in that they are only limited by
9991          * the width of their cursors, the height is arbitrary up to
9992          * the precision of the register. Everything else requires
9993          * square cursors, limited to a few power-of-two sizes.
9994          */
9995         if (IS_845G(dev) || IS_I865G(dev)) {
9996                 if ((width & 63) != 0)
9997                         return false;
9998
9999                 if (width > (IS_845G(dev) ? 64 : 512))
10000                         return false;
10001
10002                 if (height > 1023)
10003                         return false;
10004         } else {
10005                 switch (width | height) {
10006                 case 256:
10007                 case 128:
10008                         if (IS_GEN2(dev))
10009                                 return false;
10010                 case 64:
10011                         break;
10012                 default:
10013                         return false;
10014                 }
10015         }
10016
10017         return true;
10018 }
10019
10020 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10021                                  u16 *blue, uint32_t start, uint32_t size)
10022 {
10023         int end = (start + size > 256) ? 256 : start + size, i;
10024         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10025
10026         for (i = start; i < end; i++) {
10027                 intel_crtc->lut_r[i] = red[i] >> 8;
10028                 intel_crtc->lut_g[i] = green[i] >> 8;
10029                 intel_crtc->lut_b[i] = blue[i] >> 8;
10030         }
10031
10032         intel_crtc_load_lut(crtc);
10033 }
10034
10035 /* VESA 640x480x72Hz mode to set on the pipe */
10036 static struct drm_display_mode load_detect_mode = {
10037         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10038                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10039 };
10040
10041 struct drm_framebuffer *
10042 __intel_framebuffer_create(struct drm_device *dev,
10043                            struct drm_mode_fb_cmd2 *mode_cmd,
10044                            struct drm_i915_gem_object *obj)
10045 {
10046         struct intel_framebuffer *intel_fb;
10047         int ret;
10048
10049         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10050         if (!intel_fb) {
10051                 drm_gem_object_unreference(&obj->base);
10052                 return ERR_PTR(-ENOMEM);
10053         }
10054
10055         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10056         if (ret)
10057                 goto err;
10058
10059         return &intel_fb->base;
10060 err:
10061         drm_gem_object_unreference(&obj->base);
10062         kfree(intel_fb);
10063
10064         return ERR_PTR(ret);
10065 }
10066
10067 static struct drm_framebuffer *
10068 intel_framebuffer_create(struct drm_device *dev,
10069                          struct drm_mode_fb_cmd2 *mode_cmd,
10070                          struct drm_i915_gem_object *obj)
10071 {
10072         struct drm_framebuffer *fb;
10073         int ret;
10074
10075         ret = i915_mutex_lock_interruptible(dev);
10076         if (ret)
10077                 return ERR_PTR(ret);
10078         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10079         mutex_unlock(&dev->struct_mutex);
10080
10081         return fb;
10082 }
10083
10084 static u32
10085 intel_framebuffer_pitch_for_width(int width, int bpp)
10086 {
10087         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10088         return ALIGN(pitch, 64);
10089 }
10090
10091 static u32
10092 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10093 {
10094         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10095         return PAGE_ALIGN(pitch * mode->vdisplay);
10096 }
10097
10098 static struct drm_framebuffer *
10099 intel_framebuffer_create_for_mode(struct drm_device *dev,
10100                                   struct drm_display_mode *mode,
10101                                   int depth, int bpp)
10102 {
10103         struct drm_i915_gem_object *obj;
10104         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10105
10106         obj = i915_gem_alloc_object(dev,
10107                                     intel_framebuffer_size_for_mode(mode, bpp));
10108         if (obj == NULL)
10109                 return ERR_PTR(-ENOMEM);
10110
10111         mode_cmd.width = mode->hdisplay;
10112         mode_cmd.height = mode->vdisplay;
10113         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10114                                                                 bpp);
10115         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10116
10117         return intel_framebuffer_create(dev, &mode_cmd, obj);
10118 }
10119
10120 static struct drm_framebuffer *
10121 mode_fits_in_fbdev(struct drm_device *dev,
10122                    struct drm_display_mode *mode)
10123 {
10124 #ifdef CONFIG_DRM_I915_FBDEV
10125         struct drm_i915_private *dev_priv = dev->dev_private;
10126         struct drm_i915_gem_object *obj;
10127         struct drm_framebuffer *fb;
10128
10129         if (!dev_priv->fbdev)
10130                 return NULL;
10131
10132         if (!dev_priv->fbdev->fb)
10133                 return NULL;
10134
10135         obj = dev_priv->fbdev->fb->obj;
10136         BUG_ON(!obj);
10137
10138         fb = &dev_priv->fbdev->fb->base;
10139         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10140                                                                fb->bits_per_pixel))
10141                 return NULL;
10142
10143         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10144                 return NULL;
10145
10146         return fb;
10147 #else
10148         return NULL;
10149 #endif
10150 }
10151
10152 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10153                                            struct drm_crtc *crtc,
10154                                            struct drm_display_mode *mode,
10155                                            struct drm_framebuffer *fb,
10156                                            int x, int y)
10157 {
10158         struct drm_plane_state *plane_state;
10159         int hdisplay, vdisplay;
10160         int ret;
10161
10162         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10163         if (IS_ERR(plane_state))
10164                 return PTR_ERR(plane_state);
10165
10166         if (mode)
10167                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10168         else
10169                 hdisplay = vdisplay = 0;
10170
10171         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10172         if (ret)
10173                 return ret;
10174         drm_atomic_set_fb_for_plane(plane_state, fb);
10175         plane_state->crtc_x = 0;
10176         plane_state->crtc_y = 0;
10177         plane_state->crtc_w = hdisplay;
10178         plane_state->crtc_h = vdisplay;
10179         plane_state->src_x = x << 16;
10180         plane_state->src_y = y << 16;
10181         plane_state->src_w = hdisplay << 16;
10182         plane_state->src_h = vdisplay << 16;
10183
10184         return 0;
10185 }
10186
10187 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10188                                 struct drm_display_mode *mode,
10189                                 struct intel_load_detect_pipe *old,
10190                                 struct drm_modeset_acquire_ctx *ctx)
10191 {
10192         struct intel_crtc *intel_crtc;
10193         struct intel_encoder *intel_encoder =
10194                 intel_attached_encoder(connector);
10195         struct drm_crtc *possible_crtc;
10196         struct drm_encoder *encoder = &intel_encoder->base;
10197         struct drm_crtc *crtc = NULL;
10198         struct drm_device *dev = encoder->dev;
10199         struct drm_framebuffer *fb;
10200         struct drm_mode_config *config = &dev->mode_config;
10201         struct drm_atomic_state *state = NULL;
10202         struct drm_connector_state *connector_state;
10203         struct intel_crtc_state *crtc_state;
10204         int ret, i = -1;
10205
10206         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10207                       connector->base.id, connector->name,
10208                       encoder->base.id, encoder->name);
10209
10210 retry:
10211         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10212         if (ret)
10213                 goto fail_unlock;
10214
10215         /*
10216          * Algorithm gets a little messy:
10217          *
10218          *   - if the connector already has an assigned crtc, use it (but make
10219          *     sure it's on first)
10220          *
10221          *   - try to find the first unused crtc that can drive this connector,
10222          *     and use that if we find one
10223          */
10224
10225         /* See if we already have a CRTC for this connector */
10226         if (encoder->crtc) {
10227                 crtc = encoder->crtc;
10228
10229                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10230                 if (ret)
10231                         goto fail_unlock;
10232                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10233                 if (ret)
10234                         goto fail_unlock;
10235
10236                 old->dpms_mode = connector->dpms;
10237                 old->load_detect_temp = false;
10238
10239                 /* Make sure the crtc and connector are running */
10240                 if (connector->dpms != DRM_MODE_DPMS_ON)
10241                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10242
10243                 return true;
10244         }
10245
10246         /* Find an unused one (if possible) */
10247         for_each_crtc(dev, possible_crtc) {
10248                 i++;
10249                 if (!(encoder->possible_crtcs & (1 << i)))
10250                         continue;
10251                 if (possible_crtc->state->enable)
10252                         continue;
10253                 /* This can occur when applying the pipe A quirk on resume. */
10254                 if (to_intel_crtc(possible_crtc)->new_enabled)
10255                         continue;
10256
10257                 crtc = possible_crtc;
10258                 break;
10259         }
10260
10261         /*
10262          * If we didn't find an unused CRTC, don't use any.
10263          */
10264         if (!crtc) {
10265                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10266                 goto fail_unlock;
10267         }
10268
10269         ret = drm_modeset_lock(&crtc->mutex, ctx);
10270         if (ret)
10271                 goto fail_unlock;
10272         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10273         if (ret)
10274                 goto fail_unlock;
10275         intel_encoder->new_crtc = to_intel_crtc(crtc);
10276         to_intel_connector(connector)->new_encoder = intel_encoder;
10277
10278         intel_crtc = to_intel_crtc(crtc);
10279         intel_crtc->new_enabled = true;
10280         old->dpms_mode = connector->dpms;
10281         old->load_detect_temp = true;
10282         old->release_fb = NULL;
10283
10284         state = drm_atomic_state_alloc(dev);
10285         if (!state)
10286                 return false;
10287
10288         state->acquire_ctx = ctx;
10289
10290         connector_state = drm_atomic_get_connector_state(state, connector);
10291         if (IS_ERR(connector_state)) {
10292                 ret = PTR_ERR(connector_state);
10293                 goto fail;
10294         }
10295
10296         connector_state->crtc = crtc;
10297         connector_state->best_encoder = &intel_encoder->base;
10298
10299         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10300         if (IS_ERR(crtc_state)) {
10301                 ret = PTR_ERR(crtc_state);
10302                 goto fail;
10303         }
10304
10305         crtc_state->base.active = crtc_state->base.enable = true;
10306
10307         if (!mode)
10308                 mode = &load_detect_mode;
10309
10310         /* We need a framebuffer large enough to accommodate all accesses
10311          * that the plane may generate whilst we perform load detection.
10312          * We can not rely on the fbcon either being present (we get called
10313          * during its initialisation to detect all boot displays, or it may
10314          * not even exist) or that it is large enough to satisfy the
10315          * requested mode.
10316          */
10317         fb = mode_fits_in_fbdev(dev, mode);
10318         if (fb == NULL) {
10319                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10320                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10321                 old->release_fb = fb;
10322         } else
10323                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10324         if (IS_ERR(fb)) {
10325                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10326                 goto fail;
10327         }
10328
10329         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10330         if (ret)
10331                 goto fail;
10332
10333         drm_mode_copy(&crtc_state->base.mode, mode);
10334
10335         if (intel_set_mode(state)) {
10336                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10337                 if (old->release_fb)
10338                         old->release_fb->funcs->destroy(old->release_fb);
10339                 goto fail;
10340         }
10341         crtc->primary->crtc = crtc;
10342
10343         /* let the connector get through one full cycle before testing */
10344         intel_wait_for_vblank(dev, intel_crtc->pipe);
10345         return true;
10346
10347  fail:
10348         intel_crtc->new_enabled = crtc->state->enable;
10349 fail_unlock:
10350         drm_atomic_state_free(state);
10351         state = NULL;
10352
10353         if (ret == -EDEADLK) {
10354                 drm_modeset_backoff(ctx);
10355                 goto retry;
10356         }
10357
10358         return false;
10359 }
10360
10361 void intel_release_load_detect_pipe(struct drm_connector *connector,
10362                                     struct intel_load_detect_pipe *old,
10363                                     struct drm_modeset_acquire_ctx *ctx)
10364 {
10365         struct drm_device *dev = connector->dev;
10366         struct intel_encoder *intel_encoder =
10367                 intel_attached_encoder(connector);
10368         struct drm_encoder *encoder = &intel_encoder->base;
10369         struct drm_crtc *crtc = encoder->crtc;
10370         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10371         struct drm_atomic_state *state;
10372         struct drm_connector_state *connector_state;
10373         struct intel_crtc_state *crtc_state;
10374         int ret;
10375
10376         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10377                       connector->base.id, connector->name,
10378                       encoder->base.id, encoder->name);
10379
10380         if (old->load_detect_temp) {
10381                 state = drm_atomic_state_alloc(dev);
10382                 if (!state)
10383                         goto fail;
10384
10385                 state->acquire_ctx = ctx;
10386
10387                 connector_state = drm_atomic_get_connector_state(state, connector);
10388                 if (IS_ERR(connector_state))
10389                         goto fail;
10390
10391                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10392                 if (IS_ERR(crtc_state))
10393                         goto fail;
10394
10395                 to_intel_connector(connector)->new_encoder = NULL;
10396                 intel_encoder->new_crtc = NULL;
10397                 intel_crtc->new_enabled = false;
10398
10399                 connector_state->best_encoder = NULL;
10400                 connector_state->crtc = NULL;
10401
10402                 crtc_state->base.enable = crtc_state->base.active = false;
10403
10404                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10405                                                       0, 0);
10406                 if (ret)
10407                         goto fail;
10408
10409                 ret = intel_set_mode(state);
10410                 if (ret)
10411                         goto fail;
10412
10413                 if (old->release_fb) {
10414                         drm_framebuffer_unregister_private(old->release_fb);
10415                         drm_framebuffer_unreference(old->release_fb);
10416                 }
10417
10418                 return;
10419         }
10420
10421         /* Switch crtc and encoder back off if necessary */
10422         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10423                 connector->funcs->dpms(connector, old->dpms_mode);
10424
10425         return;
10426 fail:
10427         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10428         drm_atomic_state_free(state);
10429 }
10430
10431 static int i9xx_pll_refclk(struct drm_device *dev,
10432                            const struct intel_crtc_state *pipe_config)
10433 {
10434         struct drm_i915_private *dev_priv = dev->dev_private;
10435         u32 dpll = pipe_config->dpll_hw_state.dpll;
10436
10437         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10438                 return dev_priv->vbt.lvds_ssc_freq;
10439         else if (HAS_PCH_SPLIT(dev))
10440                 return 120000;
10441         else if (!IS_GEN2(dev))
10442                 return 96000;
10443         else
10444                 return 48000;
10445 }
10446
10447 /* Returns the clock of the currently programmed mode of the given pipe. */
10448 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10449                                 struct intel_crtc_state *pipe_config)
10450 {
10451         struct drm_device *dev = crtc->base.dev;
10452         struct drm_i915_private *dev_priv = dev->dev_private;
10453         int pipe = pipe_config->cpu_transcoder;
10454         u32 dpll = pipe_config->dpll_hw_state.dpll;
10455         u32 fp;
10456         intel_clock_t clock;
10457         int refclk = i9xx_pll_refclk(dev, pipe_config);
10458
10459         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10460                 fp = pipe_config->dpll_hw_state.fp0;
10461         else
10462                 fp = pipe_config->dpll_hw_state.fp1;
10463
10464         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10465         if (IS_PINEVIEW(dev)) {
10466                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10467                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10468         } else {
10469                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10470                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10471         }
10472
10473         if (!IS_GEN2(dev)) {
10474                 if (IS_PINEVIEW(dev))
10475                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10476                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10477                 else
10478                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10479                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10480
10481                 switch (dpll & DPLL_MODE_MASK) {
10482                 case DPLLB_MODE_DAC_SERIAL:
10483                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10484                                 5 : 10;
10485                         break;
10486                 case DPLLB_MODE_LVDS:
10487                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10488                                 7 : 14;
10489                         break;
10490                 default:
10491                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10492                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10493                         return;
10494                 }
10495
10496                 if (IS_PINEVIEW(dev))
10497                         pineview_clock(refclk, &clock);
10498                 else
10499                         i9xx_clock(refclk, &clock);
10500         } else {
10501                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10502                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10503
10504                 if (is_lvds) {
10505                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10506                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10507
10508                         if (lvds & LVDS_CLKB_POWER_UP)
10509                                 clock.p2 = 7;
10510                         else
10511                                 clock.p2 = 14;
10512                 } else {
10513                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10514                                 clock.p1 = 2;
10515                         else {
10516                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10517                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10518                         }
10519                         if (dpll & PLL_P2_DIVIDE_BY_4)
10520                                 clock.p2 = 4;
10521                         else
10522                                 clock.p2 = 2;
10523                 }
10524
10525                 i9xx_clock(refclk, &clock);
10526         }
10527
10528         /*
10529          * This value includes pixel_multiplier. We will use
10530          * port_clock to compute adjusted_mode.crtc_clock in the
10531          * encoder's get_config() function.
10532          */
10533         pipe_config->port_clock = clock.dot;
10534 }
10535
10536 int intel_dotclock_calculate(int link_freq,
10537                              const struct intel_link_m_n *m_n)
10538 {
10539         /*
10540          * The calculation for the data clock is:
10541          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10542          * But we want to avoid losing precison if possible, so:
10543          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10544          *
10545          * and the link clock is simpler:
10546          * link_clock = (m * link_clock) / n
10547          */
10548
10549         if (!m_n->link_n)
10550                 return 0;
10551
10552         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10553 }
10554
10555 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10556                                    struct intel_crtc_state *pipe_config)
10557 {
10558         struct drm_device *dev = crtc->base.dev;
10559
10560         /* read out port_clock from the DPLL */
10561         i9xx_crtc_clock_get(crtc, pipe_config);
10562
10563         /*
10564          * This value does not include pixel_multiplier.
10565          * We will check that port_clock and adjusted_mode.crtc_clock
10566          * agree once we know their relationship in the encoder's
10567          * get_config() function.
10568          */
10569         pipe_config->base.adjusted_mode.crtc_clock =
10570                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10571                                          &pipe_config->fdi_m_n);
10572 }
10573
10574 /** Returns the currently programmed mode of the given pipe. */
10575 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10576                                              struct drm_crtc *crtc)
10577 {
10578         struct drm_i915_private *dev_priv = dev->dev_private;
10579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10580         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10581         struct drm_display_mode *mode;
10582         struct intel_crtc_state pipe_config;
10583         int htot = I915_READ(HTOTAL(cpu_transcoder));
10584         int hsync = I915_READ(HSYNC(cpu_transcoder));
10585         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10586         int vsync = I915_READ(VSYNC(cpu_transcoder));
10587         enum pipe pipe = intel_crtc->pipe;
10588
10589         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10590         if (!mode)
10591                 return NULL;
10592
10593         /*
10594          * Construct a pipe_config sufficient for getting the clock info
10595          * back out of crtc_clock_get.
10596          *
10597          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10598          * to use a real value here instead.
10599          */
10600         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10601         pipe_config.pixel_multiplier = 1;
10602         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10603         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10604         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10605         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10606
10607         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10608         mode->hdisplay = (htot & 0xffff) + 1;
10609         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10610         mode->hsync_start = (hsync & 0xffff) + 1;
10611         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10612         mode->vdisplay = (vtot & 0xffff) + 1;
10613         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10614         mode->vsync_start = (vsync & 0xffff) + 1;
10615         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10616
10617         drm_mode_set_name(mode);
10618
10619         return mode;
10620 }
10621
10622 void intel_mark_busy(struct drm_device *dev)
10623 {
10624         struct drm_i915_private *dev_priv = dev->dev_private;
10625
10626         if (dev_priv->mm.busy)
10627                 return;
10628
10629         intel_runtime_pm_get(dev_priv);
10630         i915_update_gfx_val(dev_priv);
10631         if (INTEL_INFO(dev)->gen >= 6)
10632                 gen6_rps_busy(dev_priv);
10633         dev_priv->mm.busy = true;
10634 }
10635
10636 void intel_mark_idle(struct drm_device *dev)
10637 {
10638         struct drm_i915_private *dev_priv = dev->dev_private;
10639
10640         if (!dev_priv->mm.busy)
10641                 return;
10642
10643         dev_priv->mm.busy = false;
10644
10645         if (INTEL_INFO(dev)->gen >= 6)
10646                 gen6_rps_idle(dev->dev_private);
10647
10648         intel_runtime_pm_put(dev_priv);
10649 }
10650
10651 static void intel_crtc_destroy(struct drm_crtc *crtc)
10652 {
10653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10654         struct drm_device *dev = crtc->dev;
10655         struct intel_unpin_work *work;
10656
10657         spin_lock_irq(&dev->event_lock);
10658         work = intel_crtc->unpin_work;
10659         intel_crtc->unpin_work = NULL;
10660         spin_unlock_irq(&dev->event_lock);
10661
10662         if (work) {
10663                 cancel_work_sync(&work->work);
10664                 kfree(work);
10665         }
10666
10667         drm_crtc_cleanup(crtc);
10668
10669         kfree(intel_crtc);
10670 }
10671
10672 static void intel_unpin_work_fn(struct work_struct *__work)
10673 {
10674         struct intel_unpin_work *work =
10675                 container_of(__work, struct intel_unpin_work, work);
10676         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10677         struct drm_device *dev = crtc->base.dev;
10678         struct drm_plane *primary = crtc->base.primary;
10679
10680         mutex_lock(&dev->struct_mutex);
10681         intel_unpin_fb_obj(work->old_fb, primary->state);
10682         drm_gem_object_unreference(&work->pending_flip_obj->base);
10683
10684         intel_fbc_update(dev);
10685
10686         if (work->flip_queued_req)
10687                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10688         mutex_unlock(&dev->struct_mutex);
10689
10690         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10691         drm_framebuffer_unreference(work->old_fb);
10692
10693         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10694         atomic_dec(&crtc->unpin_work_count);
10695
10696         kfree(work);
10697 }
10698
10699 static void do_intel_finish_page_flip(struct drm_device *dev,
10700                                       struct drm_crtc *crtc)
10701 {
10702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10703         struct intel_unpin_work *work;
10704         unsigned long flags;
10705
10706         /* Ignore early vblank irqs */
10707         if (intel_crtc == NULL)
10708                 return;
10709
10710         /*
10711          * This is called both by irq handlers and the reset code (to complete
10712          * lost pageflips) so needs the full irqsave spinlocks.
10713          */
10714         spin_lock_irqsave(&dev->event_lock, flags);
10715         work = intel_crtc->unpin_work;
10716
10717         /* Ensure we don't miss a work->pending update ... */
10718         smp_rmb();
10719
10720         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10721                 spin_unlock_irqrestore(&dev->event_lock, flags);
10722                 return;
10723         }
10724
10725         page_flip_completed(intel_crtc);
10726
10727         spin_unlock_irqrestore(&dev->event_lock, flags);
10728 }
10729
10730 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10731 {
10732         struct drm_i915_private *dev_priv = dev->dev_private;
10733         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10734
10735         do_intel_finish_page_flip(dev, crtc);
10736 }
10737
10738 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10739 {
10740         struct drm_i915_private *dev_priv = dev->dev_private;
10741         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10742
10743         do_intel_finish_page_flip(dev, crtc);
10744 }
10745
10746 /* Is 'a' after or equal to 'b'? */
10747 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10748 {
10749         return !((a - b) & 0x80000000);
10750 }
10751
10752 static bool page_flip_finished(struct intel_crtc *crtc)
10753 {
10754         struct drm_device *dev = crtc->base.dev;
10755         struct drm_i915_private *dev_priv = dev->dev_private;
10756
10757         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10758             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10759                 return true;
10760
10761         /*
10762          * The relevant registers doen't exist on pre-ctg.
10763          * As the flip done interrupt doesn't trigger for mmio
10764          * flips on gmch platforms, a flip count check isn't
10765          * really needed there. But since ctg has the registers,
10766          * include it in the check anyway.
10767          */
10768         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10769                 return true;
10770
10771         /*
10772          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10773          * used the same base address. In that case the mmio flip might
10774          * have completed, but the CS hasn't even executed the flip yet.
10775          *
10776          * A flip count check isn't enough as the CS might have updated
10777          * the base address just after start of vblank, but before we
10778          * managed to process the interrupt. This means we'd complete the
10779          * CS flip too soon.
10780          *
10781          * Combining both checks should get us a good enough result. It may
10782          * still happen that the CS flip has been executed, but has not
10783          * yet actually completed. But in case the base address is the same
10784          * anyway, we don't really care.
10785          */
10786         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10787                 crtc->unpin_work->gtt_offset &&
10788                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10789                                     crtc->unpin_work->flip_count);
10790 }
10791
10792 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10793 {
10794         struct drm_i915_private *dev_priv = dev->dev_private;
10795         struct intel_crtc *intel_crtc =
10796                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10797         unsigned long flags;
10798
10799
10800         /*
10801          * This is called both by irq handlers and the reset code (to complete
10802          * lost pageflips) so needs the full irqsave spinlocks.
10803          *
10804          * NB: An MMIO update of the plane base pointer will also
10805          * generate a page-flip completion irq, i.e. every modeset
10806          * is also accompanied by a spurious intel_prepare_page_flip().
10807          */
10808         spin_lock_irqsave(&dev->event_lock, flags);
10809         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10810                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10811         spin_unlock_irqrestore(&dev->event_lock, flags);
10812 }
10813
10814 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10815 {
10816         /* Ensure that the work item is consistent when activating it ... */
10817         smp_wmb();
10818         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10819         /* and that it is marked active as soon as the irq could fire. */
10820         smp_wmb();
10821 }
10822
10823 static int intel_gen2_queue_flip(struct drm_device *dev,
10824                                  struct drm_crtc *crtc,
10825                                  struct drm_framebuffer *fb,
10826                                  struct drm_i915_gem_object *obj,
10827                                  struct drm_i915_gem_request *req,
10828                                  uint32_t flags)
10829 {
10830         struct intel_engine_cs *ring = req->ring;
10831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10832         u32 flip_mask;
10833         int ret;
10834
10835         ret = intel_ring_begin(req, 6);
10836         if (ret)
10837                 return ret;
10838
10839         /* Can't queue multiple flips, so wait for the previous
10840          * one to finish before executing the next.
10841          */
10842         if (intel_crtc->plane)
10843                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10844         else
10845                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10846         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10847         intel_ring_emit(ring, MI_NOOP);
10848         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10849                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10850         intel_ring_emit(ring, fb->pitches[0]);
10851         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10852         intel_ring_emit(ring, 0); /* aux display base address, unused */
10853
10854         intel_mark_page_flip_active(intel_crtc);
10855         return 0;
10856 }
10857
10858 static int intel_gen3_queue_flip(struct drm_device *dev,
10859                                  struct drm_crtc *crtc,
10860                                  struct drm_framebuffer *fb,
10861                                  struct drm_i915_gem_object *obj,
10862                                  struct drm_i915_gem_request *req,
10863                                  uint32_t flags)
10864 {
10865         struct intel_engine_cs *ring = req->ring;
10866         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10867         u32 flip_mask;
10868         int ret;
10869
10870         ret = intel_ring_begin(req, 6);
10871         if (ret)
10872                 return ret;
10873
10874         if (intel_crtc->plane)
10875                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10876         else
10877                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10878         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10879         intel_ring_emit(ring, MI_NOOP);
10880         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10881                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10882         intel_ring_emit(ring, fb->pitches[0]);
10883         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10884         intel_ring_emit(ring, MI_NOOP);
10885
10886         intel_mark_page_flip_active(intel_crtc);
10887         return 0;
10888 }
10889
10890 static int intel_gen4_queue_flip(struct drm_device *dev,
10891                                  struct drm_crtc *crtc,
10892                                  struct drm_framebuffer *fb,
10893                                  struct drm_i915_gem_object *obj,
10894                                  struct drm_i915_gem_request *req,
10895                                  uint32_t flags)
10896 {
10897         struct intel_engine_cs *ring = req->ring;
10898         struct drm_i915_private *dev_priv = dev->dev_private;
10899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10900         uint32_t pf, pipesrc;
10901         int ret;
10902
10903         ret = intel_ring_begin(req, 4);
10904         if (ret)
10905                 return ret;
10906
10907         /* i965+ uses the linear or tiled offsets from the
10908          * Display Registers (which do not change across a page-flip)
10909          * so we need only reprogram the base address.
10910          */
10911         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10912                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10913         intel_ring_emit(ring, fb->pitches[0]);
10914         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10915                         obj->tiling_mode);
10916
10917         /* XXX Enabling the panel-fitter across page-flip is so far
10918          * untested on non-native modes, so ignore it for now.
10919          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10920          */
10921         pf = 0;
10922         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10923         intel_ring_emit(ring, pf | pipesrc);
10924
10925         intel_mark_page_flip_active(intel_crtc);
10926         return 0;
10927 }
10928
10929 static int intel_gen6_queue_flip(struct drm_device *dev,
10930                                  struct drm_crtc *crtc,
10931                                  struct drm_framebuffer *fb,
10932                                  struct drm_i915_gem_object *obj,
10933                                  struct drm_i915_gem_request *req,
10934                                  uint32_t flags)
10935 {
10936         struct intel_engine_cs *ring = req->ring;
10937         struct drm_i915_private *dev_priv = dev->dev_private;
10938         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10939         uint32_t pf, pipesrc;
10940         int ret;
10941
10942         ret = intel_ring_begin(req, 4);
10943         if (ret)
10944                 return ret;
10945
10946         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10947                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10948         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10949         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10950
10951         /* Contrary to the suggestions in the documentation,
10952          * "Enable Panel Fitter" does not seem to be required when page
10953          * flipping with a non-native mode, and worse causes a normal
10954          * modeset to fail.
10955          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10956          */
10957         pf = 0;
10958         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10959         intel_ring_emit(ring, pf | pipesrc);
10960
10961         intel_mark_page_flip_active(intel_crtc);
10962         return 0;
10963 }
10964
10965 static int intel_gen7_queue_flip(struct drm_device *dev,
10966                                  struct drm_crtc *crtc,
10967                                  struct drm_framebuffer *fb,
10968                                  struct drm_i915_gem_object *obj,
10969                                  struct drm_i915_gem_request *req,
10970                                  uint32_t flags)
10971 {
10972         struct intel_engine_cs *ring = req->ring;
10973         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10974         uint32_t plane_bit = 0;
10975         int len, ret;
10976
10977         switch (intel_crtc->plane) {
10978         case PLANE_A:
10979                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10980                 break;
10981         case PLANE_B:
10982                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10983                 break;
10984         case PLANE_C:
10985                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10986                 break;
10987         default:
10988                 WARN_ONCE(1, "unknown plane in flip command\n");
10989                 return -ENODEV;
10990         }
10991
10992         len = 4;
10993         if (ring->id == RCS) {
10994                 len += 6;
10995                 /*
10996                  * On Gen 8, SRM is now taking an extra dword to accommodate
10997                  * 48bits addresses, and we need a NOOP for the batch size to
10998                  * stay even.
10999                  */
11000                 if (IS_GEN8(dev))
11001                         len += 2;
11002         }
11003
11004         /*
11005          * BSpec MI_DISPLAY_FLIP for IVB:
11006          * "The full packet must be contained within the same cache line."
11007          *
11008          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11009          * cacheline, if we ever start emitting more commands before
11010          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11011          * then do the cacheline alignment, and finally emit the
11012          * MI_DISPLAY_FLIP.
11013          */
11014         ret = intel_ring_cacheline_align(req);
11015         if (ret)
11016                 return ret;
11017
11018         ret = intel_ring_begin(req, len);
11019         if (ret)
11020                 return ret;
11021
11022         /* Unmask the flip-done completion message. Note that the bspec says that
11023          * we should do this for both the BCS and RCS, and that we must not unmask
11024          * more than one flip event at any time (or ensure that one flip message
11025          * can be sent by waiting for flip-done prior to queueing new flips).
11026          * Experimentation says that BCS works despite DERRMR masking all
11027          * flip-done completion events and that unmasking all planes at once
11028          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11029          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11030          */
11031         if (ring->id == RCS) {
11032                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11033                 intel_ring_emit(ring, DERRMR);
11034                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11035                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11036                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11037                 if (IS_GEN8(dev))
11038                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11039                                               MI_SRM_LRM_GLOBAL_GTT);
11040                 else
11041                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11042                                               MI_SRM_LRM_GLOBAL_GTT);
11043                 intel_ring_emit(ring, DERRMR);
11044                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11045                 if (IS_GEN8(dev)) {
11046                         intel_ring_emit(ring, 0);
11047                         intel_ring_emit(ring, MI_NOOP);
11048                 }
11049         }
11050
11051         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11052         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11053         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11054         intel_ring_emit(ring, (MI_NOOP));
11055
11056         intel_mark_page_flip_active(intel_crtc);
11057         return 0;
11058 }
11059
11060 static bool use_mmio_flip(struct intel_engine_cs *ring,
11061                           struct drm_i915_gem_object *obj)
11062 {
11063         /*
11064          * This is not being used for older platforms, because
11065          * non-availability of flip done interrupt forces us to use
11066          * CS flips. Older platforms derive flip done using some clever
11067          * tricks involving the flip_pending status bits and vblank irqs.
11068          * So using MMIO flips there would disrupt this mechanism.
11069          */
11070
11071         if (ring == NULL)
11072                 return true;
11073
11074         if (INTEL_INFO(ring->dev)->gen < 5)
11075                 return false;
11076
11077         if (i915.use_mmio_flip < 0)
11078                 return false;
11079         else if (i915.use_mmio_flip > 0)
11080                 return true;
11081         else if (i915.enable_execlists)
11082                 return true;
11083         else
11084                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11085 }
11086
11087 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11088 {
11089         struct drm_device *dev = intel_crtc->base.dev;
11090         struct drm_i915_private *dev_priv = dev->dev_private;
11091         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11092         const enum pipe pipe = intel_crtc->pipe;
11093         u32 ctl, stride;
11094
11095         ctl = I915_READ(PLANE_CTL(pipe, 0));
11096         ctl &= ~PLANE_CTL_TILED_MASK;
11097         switch (fb->modifier[0]) {
11098         case DRM_FORMAT_MOD_NONE:
11099                 break;
11100         case I915_FORMAT_MOD_X_TILED:
11101                 ctl |= PLANE_CTL_TILED_X;
11102                 break;
11103         case I915_FORMAT_MOD_Y_TILED:
11104                 ctl |= PLANE_CTL_TILED_Y;
11105                 break;
11106         case I915_FORMAT_MOD_Yf_TILED:
11107                 ctl |= PLANE_CTL_TILED_YF;
11108                 break;
11109         default:
11110                 MISSING_CASE(fb->modifier[0]);
11111         }
11112
11113         /*
11114          * The stride is either expressed as a multiple of 64 bytes chunks for
11115          * linear buffers or in number of tiles for tiled buffers.
11116          */
11117         stride = fb->pitches[0] /
11118                  intel_fb_stride_alignment(dev, fb->modifier[0],
11119                                            fb->pixel_format);
11120
11121         /*
11122          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11123          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11124          */
11125         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11126         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11127
11128         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11129         POSTING_READ(PLANE_SURF(pipe, 0));
11130 }
11131
11132 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11133 {
11134         struct drm_device *dev = intel_crtc->base.dev;
11135         struct drm_i915_private *dev_priv = dev->dev_private;
11136         struct intel_framebuffer *intel_fb =
11137                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11138         struct drm_i915_gem_object *obj = intel_fb->obj;
11139         u32 dspcntr;
11140         u32 reg;
11141
11142         reg = DSPCNTR(intel_crtc->plane);
11143         dspcntr = I915_READ(reg);
11144
11145         if (obj->tiling_mode != I915_TILING_NONE)
11146                 dspcntr |= DISPPLANE_TILED;
11147         else
11148                 dspcntr &= ~DISPPLANE_TILED;
11149
11150         I915_WRITE(reg, dspcntr);
11151
11152         I915_WRITE(DSPSURF(intel_crtc->plane),
11153                    intel_crtc->unpin_work->gtt_offset);
11154         POSTING_READ(DSPSURF(intel_crtc->plane));
11155
11156 }
11157
11158 /*
11159  * XXX: This is the temporary way to update the plane registers until we get
11160  * around to using the usual plane update functions for MMIO flips
11161  */
11162 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11163 {
11164         struct drm_device *dev = intel_crtc->base.dev;
11165         bool atomic_update;
11166         u32 start_vbl_count;
11167
11168         intel_mark_page_flip_active(intel_crtc);
11169
11170         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
11171
11172         if (INTEL_INFO(dev)->gen >= 9)
11173                 skl_do_mmio_flip(intel_crtc);
11174         else
11175                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11176                 ilk_do_mmio_flip(intel_crtc);
11177
11178         if (atomic_update)
11179                 intel_pipe_update_end(intel_crtc, start_vbl_count);
11180 }
11181
11182 static void intel_mmio_flip_work_func(struct work_struct *work)
11183 {
11184         struct intel_mmio_flip *mmio_flip =
11185                 container_of(work, struct intel_mmio_flip, work);
11186
11187         if (mmio_flip->req)
11188                 WARN_ON(__i915_wait_request(mmio_flip->req,
11189                                             mmio_flip->crtc->reset_counter,
11190                                             false, NULL,
11191                                             &mmio_flip->i915->rps.mmioflips));
11192
11193         intel_do_mmio_flip(mmio_flip->crtc);
11194
11195         i915_gem_request_unreference__unlocked(mmio_flip->req);
11196         kfree(mmio_flip);
11197 }
11198
11199 static int intel_queue_mmio_flip(struct drm_device *dev,
11200                                  struct drm_crtc *crtc,
11201                                  struct drm_framebuffer *fb,
11202                                  struct drm_i915_gem_object *obj,
11203                                  struct intel_engine_cs *ring,
11204                                  uint32_t flags)
11205 {
11206         struct intel_mmio_flip *mmio_flip;
11207
11208         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11209         if (mmio_flip == NULL)
11210                 return -ENOMEM;
11211
11212         mmio_flip->i915 = to_i915(dev);
11213         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11214         mmio_flip->crtc = to_intel_crtc(crtc);
11215
11216         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11217         schedule_work(&mmio_flip->work);
11218
11219         return 0;
11220 }
11221
11222 static int intel_default_queue_flip(struct drm_device *dev,
11223                                     struct drm_crtc *crtc,
11224                                     struct drm_framebuffer *fb,
11225                                     struct drm_i915_gem_object *obj,
11226                                     struct drm_i915_gem_request *req,
11227                                     uint32_t flags)
11228 {
11229         return -ENODEV;
11230 }
11231
11232 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11233                                          struct drm_crtc *crtc)
11234 {
11235         struct drm_i915_private *dev_priv = dev->dev_private;
11236         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11237         struct intel_unpin_work *work = intel_crtc->unpin_work;
11238         u32 addr;
11239
11240         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11241                 return true;
11242
11243         if (!work->enable_stall_check)
11244                 return false;
11245
11246         if (work->flip_ready_vblank == 0) {
11247                 if (work->flip_queued_req &&
11248                     !i915_gem_request_completed(work->flip_queued_req, true))
11249                         return false;
11250
11251                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11252         }
11253
11254         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11255                 return false;
11256
11257         /* Potential stall - if we see that the flip has happened,
11258          * assume a missed interrupt. */
11259         if (INTEL_INFO(dev)->gen >= 4)
11260                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11261         else
11262                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11263
11264         /* There is a potential issue here with a false positive after a flip
11265          * to the same address. We could address this by checking for a
11266          * non-incrementing frame counter.
11267          */
11268         return addr == work->gtt_offset;
11269 }
11270
11271 void intel_check_page_flip(struct drm_device *dev, int pipe)
11272 {
11273         struct drm_i915_private *dev_priv = dev->dev_private;
11274         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11276         struct intel_unpin_work *work;
11277
11278         WARN_ON(!in_interrupt());
11279
11280         if (crtc == NULL)
11281                 return;
11282
11283         spin_lock(&dev->event_lock);
11284         work = intel_crtc->unpin_work;
11285         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11286                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11287                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11288                 page_flip_completed(intel_crtc);
11289                 work = NULL;
11290         }
11291         if (work != NULL &&
11292             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11293                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11294         spin_unlock(&dev->event_lock);
11295 }
11296
11297 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11298                                 struct drm_framebuffer *fb,
11299                                 struct drm_pending_vblank_event *event,
11300                                 uint32_t page_flip_flags)
11301 {
11302         struct drm_device *dev = crtc->dev;
11303         struct drm_i915_private *dev_priv = dev->dev_private;
11304         struct drm_framebuffer *old_fb = crtc->primary->fb;
11305         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11307         struct drm_plane *primary = crtc->primary;
11308         enum pipe pipe = intel_crtc->pipe;
11309         struct intel_unpin_work *work;
11310         struct intel_engine_cs *ring;
11311         bool mmio_flip;
11312         struct drm_i915_gem_request *request = NULL;
11313         int ret;
11314
11315         /*
11316          * drm_mode_page_flip_ioctl() should already catch this, but double
11317          * check to be safe.  In the future we may enable pageflipping from
11318          * a disabled primary plane.
11319          */
11320         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11321                 return -EBUSY;
11322
11323         /* Can't change pixel format via MI display flips. */
11324         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11325                 return -EINVAL;
11326
11327         /*
11328          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11329          * Note that pitch changes could also affect these register.
11330          */
11331         if (INTEL_INFO(dev)->gen > 3 &&
11332             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11333              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11334                 return -EINVAL;
11335
11336         if (i915_terminally_wedged(&dev_priv->gpu_error))
11337                 goto out_hang;
11338
11339         work = kzalloc(sizeof(*work), GFP_KERNEL);
11340         if (work == NULL)
11341                 return -ENOMEM;
11342
11343         work->event = event;
11344         work->crtc = crtc;
11345         work->old_fb = old_fb;
11346         INIT_WORK(&work->work, intel_unpin_work_fn);
11347
11348         ret = drm_crtc_vblank_get(crtc);
11349         if (ret)
11350                 goto free_work;
11351
11352         /* We borrow the event spin lock for protecting unpin_work */
11353         spin_lock_irq(&dev->event_lock);
11354         if (intel_crtc->unpin_work) {
11355                 /* Before declaring the flip queue wedged, check if
11356                  * the hardware completed the operation behind our backs.
11357                  */
11358                 if (__intel_pageflip_stall_check(dev, crtc)) {
11359                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11360                         page_flip_completed(intel_crtc);
11361                 } else {
11362                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11363                         spin_unlock_irq(&dev->event_lock);
11364
11365                         drm_crtc_vblank_put(crtc);
11366                         kfree(work);
11367                         return -EBUSY;
11368                 }
11369         }
11370         intel_crtc->unpin_work = work;
11371         spin_unlock_irq(&dev->event_lock);
11372
11373         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11374                 flush_workqueue(dev_priv->wq);
11375
11376         /* Reference the objects for the scheduled work. */
11377         drm_framebuffer_reference(work->old_fb);
11378         drm_gem_object_reference(&obj->base);
11379
11380         crtc->primary->fb = fb;
11381         update_state_fb(crtc->primary);
11382
11383         work->pending_flip_obj = obj;
11384
11385         ret = i915_mutex_lock_interruptible(dev);
11386         if (ret)
11387                 goto cleanup;
11388
11389         atomic_inc(&intel_crtc->unpin_work_count);
11390         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11391
11392         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11393                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11394
11395         if (IS_VALLEYVIEW(dev)) {
11396                 ring = &dev_priv->ring[BCS];
11397                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11398                         /* vlv: DISPLAY_FLIP fails to change tiling */
11399                         ring = NULL;
11400         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11401                 ring = &dev_priv->ring[BCS];
11402         } else if (INTEL_INFO(dev)->gen >= 7) {
11403                 ring = i915_gem_request_get_ring(obj->last_write_req);
11404                 if (ring == NULL || ring->id != RCS)
11405                         ring = &dev_priv->ring[BCS];
11406         } else {
11407                 ring = &dev_priv->ring[RCS];
11408         }
11409
11410         mmio_flip = use_mmio_flip(ring, obj);
11411
11412         /* When using CS flips, we want to emit semaphores between rings.
11413          * However, when using mmio flips we will create a task to do the
11414          * synchronisation, so all we want here is to pin the framebuffer
11415          * into the display plane and skip any waits.
11416          */
11417         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11418                                          crtc->primary->state,
11419                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11420         if (ret)
11421                 goto cleanup_pending;
11422
11423         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11424                                                   + intel_crtc->dspaddr_offset;
11425
11426         if (mmio_flip) {
11427                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11428                                             page_flip_flags);
11429                 if (ret)
11430                         goto cleanup_unpin;
11431
11432                 i915_gem_request_assign(&work->flip_queued_req,
11433                                         obj->last_write_req);
11434         } else {
11435                 if (!request) {
11436                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11437                         if (ret)
11438                                 goto cleanup_unpin;
11439                 }
11440
11441                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11442                                                    page_flip_flags);
11443                 if (ret)
11444                         goto cleanup_unpin;
11445
11446                 i915_gem_request_assign(&work->flip_queued_req, request);
11447         }
11448
11449         if (request)
11450                 i915_add_request_no_flush(request);
11451
11452         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11453         work->enable_stall_check = true;
11454
11455         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11456                           to_intel_plane(primary)->frontbuffer_bit);
11457
11458         intel_fbc_disable(dev);
11459         intel_frontbuffer_flip_prepare(dev,
11460                                        to_intel_plane(primary)->frontbuffer_bit);
11461         mutex_unlock(&dev->struct_mutex);
11462
11463         trace_i915_flip_request(intel_crtc->plane, obj);
11464
11465         return 0;
11466
11467 cleanup_unpin:
11468         intel_unpin_fb_obj(fb, crtc->primary->state);
11469 cleanup_pending:
11470         if (request)
11471                 i915_gem_request_cancel(request);
11472         atomic_dec(&intel_crtc->unpin_work_count);
11473         mutex_unlock(&dev->struct_mutex);
11474 cleanup:
11475         crtc->primary->fb = old_fb;
11476         update_state_fb(crtc->primary);
11477
11478         drm_gem_object_unreference_unlocked(&obj->base);
11479         drm_framebuffer_unreference(work->old_fb);
11480
11481         spin_lock_irq(&dev->event_lock);
11482         intel_crtc->unpin_work = NULL;
11483         spin_unlock_irq(&dev->event_lock);
11484
11485         drm_crtc_vblank_put(crtc);
11486 free_work:
11487         kfree(work);
11488
11489         if (ret == -EIO) {
11490                 struct drm_atomic_state *state;
11491                 struct drm_plane_state *plane_state;
11492
11493 out_hang:
11494                 state = drm_atomic_state_alloc(dev);
11495                 if (!state)
11496                         return -ENOMEM;
11497                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11498
11499 retry:
11500                 plane_state = drm_atomic_get_plane_state(state, primary);
11501                 ret = PTR_ERR_OR_ZERO(plane_state);
11502                 if (!ret) {
11503                         drm_atomic_set_fb_for_plane(plane_state, fb);
11504
11505                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11506                         if (!ret)
11507                                 ret = drm_atomic_commit(state);
11508                 }
11509
11510                 if (ret == -EDEADLK) {
11511                         drm_modeset_backoff(state->acquire_ctx);
11512                         drm_atomic_state_clear(state);
11513                         goto retry;
11514                 }
11515
11516                 if (ret)
11517                         drm_atomic_state_free(state);
11518
11519                 if (ret == 0 && event) {
11520                         spin_lock_irq(&dev->event_lock);
11521                         drm_send_vblank_event(dev, pipe, event);
11522                         spin_unlock_irq(&dev->event_lock);
11523                 }
11524         }
11525         return ret;
11526 }
11527
11528
11529 /**
11530  * intel_wm_need_update - Check whether watermarks need updating
11531  * @plane: drm plane
11532  * @state: new plane state
11533  *
11534  * Check current plane state versus the new one to determine whether
11535  * watermarks need to be recalculated.
11536  *
11537  * Returns true or false.
11538  */
11539 static bool intel_wm_need_update(struct drm_plane *plane,
11540                                  struct drm_plane_state *state)
11541 {
11542         /* Update watermarks on tiling changes. */
11543         if (!plane->state->fb || !state->fb ||
11544             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11545             plane->state->rotation != state->rotation)
11546                 return true;
11547
11548         if (plane->state->crtc_w != state->crtc_w)
11549                 return true;
11550
11551         return false;
11552 }
11553
11554 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11555                                     struct drm_plane_state *plane_state)
11556 {
11557         struct drm_crtc *crtc = crtc_state->crtc;
11558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11559         struct drm_plane *plane = plane_state->plane;
11560         struct drm_device *dev = crtc->dev;
11561         struct drm_i915_private *dev_priv = dev->dev_private;
11562         struct intel_plane_state *old_plane_state =
11563                 to_intel_plane_state(plane->state);
11564         int idx = intel_crtc->base.base.id, ret;
11565         int i = drm_plane_index(plane);
11566         bool mode_changed = needs_modeset(crtc_state);
11567         bool was_crtc_enabled = crtc->state->active;
11568         bool is_crtc_enabled = crtc_state->active;
11569
11570         bool turn_off, turn_on, visible, was_visible;
11571         struct drm_framebuffer *fb = plane_state->fb;
11572
11573         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11574             plane->type != DRM_PLANE_TYPE_CURSOR) {
11575                 ret = skl_update_scaler_plane(
11576                         to_intel_crtc_state(crtc_state),
11577                         to_intel_plane_state(plane_state));
11578                 if (ret)
11579                         return ret;
11580         }
11581
11582         /*
11583          * Disabling a plane is always okay; we just need to update
11584          * fb tracking in a special way since cleanup_fb() won't
11585          * get called by the plane helpers.
11586          */
11587         if (old_plane_state->base.fb && !fb)
11588                 intel_crtc->atomic.disabled_planes |= 1 << i;
11589
11590         was_visible = old_plane_state->visible;
11591         visible = to_intel_plane_state(plane_state)->visible;
11592
11593         if (!was_crtc_enabled && WARN_ON(was_visible))
11594                 was_visible = false;
11595
11596         if (!is_crtc_enabled && WARN_ON(visible))
11597                 visible = false;
11598
11599         if (!was_visible && !visible)
11600                 return 0;
11601
11602         turn_off = was_visible && (!visible || mode_changed);
11603         turn_on = visible && (!was_visible || mode_changed);
11604
11605         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11606                          plane->base.id, fb ? fb->base.id : -1);
11607
11608         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11609                          plane->base.id, was_visible, visible,
11610                          turn_off, turn_on, mode_changed);
11611
11612         if (turn_on)
11613                 intel_crtc->atomic.update_wm_pre = true;
11614         else if (turn_off)
11615                 intel_crtc->atomic.update_wm_post = true;
11616         else if (intel_wm_need_update(plane, plane_state))
11617                 intel_crtc->atomic.update_wm_pre = true;
11618
11619         if (visible)
11620                 intel_crtc->atomic.fb_bits |=
11621                         to_intel_plane(plane)->frontbuffer_bit;
11622
11623         switch (plane->type) {
11624         case DRM_PLANE_TYPE_PRIMARY:
11625                 intel_crtc->atomic.wait_for_flips = true;
11626                 intel_crtc->atomic.pre_disable_primary = turn_off;
11627                 intel_crtc->atomic.post_enable_primary = turn_on;
11628
11629                 if (turn_off) {
11630                         /*
11631                          * FIXME: Actually if we will still have any other
11632                          * plane enabled on the pipe we could let IPS enabled
11633                          * still, but for now lets consider that when we make
11634                          * primary invisible by setting DSPCNTR to 0 on
11635                          * update_primary_plane function IPS needs to be
11636                          * disable.
11637                          */
11638                         intel_crtc->atomic.disable_ips = true;
11639
11640                         intel_crtc->atomic.disable_fbc = true;
11641                 }
11642
11643                 /*
11644                  * FBC does not work on some platforms for rotated
11645                  * planes, so disable it when rotation is not 0 and
11646                  * update it when rotation is set back to 0.
11647                  *
11648                  * FIXME: This is redundant with the fbc update done in
11649                  * the primary plane enable function except that that
11650                  * one is done too late. We eventually need to unify
11651                  * this.
11652                  */
11653
11654                 if (visible &&
11655                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11656                     dev_priv->fbc.crtc == intel_crtc &&
11657                     plane_state->rotation != BIT(DRM_ROTATE_0))
11658                         intel_crtc->atomic.disable_fbc = true;
11659
11660                 /*
11661                  * BDW signals flip done immediately if the plane
11662                  * is disabled, even if the plane enable is already
11663                  * armed to occur at the next vblank :(
11664                  */
11665                 if (turn_on && IS_BROADWELL(dev))
11666                         intel_crtc->atomic.wait_vblank = true;
11667
11668                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11669                 break;
11670         case DRM_PLANE_TYPE_CURSOR:
11671                 break;
11672         case DRM_PLANE_TYPE_OVERLAY:
11673                 if (turn_off && !mode_changed) {
11674                         intel_crtc->atomic.wait_vblank = true;
11675                         intel_crtc->atomic.update_sprite_watermarks |=
11676                                 1 << i;
11677                 }
11678         }
11679         return 0;
11680 }
11681
11682 static bool encoders_cloneable(const struct intel_encoder *a,
11683                                const struct intel_encoder *b)
11684 {
11685         /* masks could be asymmetric, so check both ways */
11686         return a == b || (a->cloneable & (1 << b->type) &&
11687                           b->cloneable & (1 << a->type));
11688 }
11689
11690 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11691                                          struct intel_crtc *crtc,
11692                                          struct intel_encoder *encoder)
11693 {
11694         struct intel_encoder *source_encoder;
11695         struct drm_connector *connector;
11696         struct drm_connector_state *connector_state;
11697         int i;
11698
11699         for_each_connector_in_state(state, connector, connector_state, i) {
11700                 if (connector_state->crtc != &crtc->base)
11701                         continue;
11702
11703                 source_encoder =
11704                         to_intel_encoder(connector_state->best_encoder);
11705                 if (!encoders_cloneable(encoder, source_encoder))
11706                         return false;
11707         }
11708
11709         return true;
11710 }
11711
11712 static bool check_encoder_cloning(struct drm_atomic_state *state,
11713                                   struct intel_crtc *crtc)
11714 {
11715         struct intel_encoder *encoder;
11716         struct drm_connector *connector;
11717         struct drm_connector_state *connector_state;
11718         int i;
11719
11720         for_each_connector_in_state(state, connector, connector_state, i) {
11721                 if (connector_state->crtc != &crtc->base)
11722                         continue;
11723
11724                 encoder = to_intel_encoder(connector_state->best_encoder);
11725                 if (!check_single_encoder_cloning(state, crtc, encoder))
11726                         return false;
11727         }
11728
11729         return true;
11730 }
11731
11732 static void intel_crtc_check_initial_planes(struct drm_crtc *crtc,
11733                                             struct drm_crtc_state *crtc_state)
11734 {
11735         struct intel_crtc_state *pipe_config =
11736                 to_intel_crtc_state(crtc_state);
11737         struct drm_plane *p;
11738         unsigned visible_mask = 0;
11739
11740         drm_for_each_plane_mask(p, crtc->dev, crtc_state->plane_mask) {
11741                 struct drm_plane_state *plane_state =
11742                         drm_atomic_get_existing_plane_state(crtc_state->state, p);
11743
11744                 if (WARN_ON(!plane_state))
11745                         continue;
11746
11747                 if (!plane_state->fb)
11748                         crtc_state->plane_mask &=
11749                                 ~(1 << drm_plane_index(p));
11750                 else if (to_intel_plane_state(plane_state)->visible)
11751                         visible_mask |= 1 << drm_plane_index(p);
11752         }
11753
11754         if (!visible_mask)
11755                 return;
11756
11757         pipe_config->quirks &= ~PIPE_CONFIG_QUIRK_INITIAL_PLANES;
11758 }
11759
11760 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11761                                    struct drm_crtc_state *crtc_state)
11762 {
11763         struct drm_device *dev = crtc->dev;
11764         struct drm_i915_private *dev_priv = dev->dev_private;
11765         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11766         struct intel_crtc_state *pipe_config =
11767                 to_intel_crtc_state(crtc_state);
11768         struct drm_atomic_state *state = crtc_state->state;
11769         int ret, idx = crtc->base.id;
11770         bool mode_changed = needs_modeset(crtc_state);
11771
11772         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11773                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11774                 return -EINVAL;
11775         }
11776
11777         I915_STATE_WARN(crtc->state->active != intel_crtc->active,
11778                 "[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
11779                 idx, crtc->state->active, intel_crtc->active);
11780
11781         /* plane mask is fixed up after all initial planes are calculated */
11782         if (pipe_config->quirks & PIPE_CONFIG_QUIRK_INITIAL_PLANES)
11783                 intel_crtc_check_initial_planes(crtc, crtc_state);
11784
11785         if (mode_changed)
11786                 intel_crtc->atomic.update_wm_post = !crtc_state->active;
11787
11788         if (mode_changed && crtc_state->enable &&
11789             dev_priv->display.crtc_compute_clock &&
11790             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11791                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11792                                                            pipe_config);
11793                 if (ret)
11794                         return ret;
11795         }
11796
11797         return intel_atomic_setup_scalers(dev, intel_crtc, pipe_config);
11798 }
11799
11800 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11801         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11802         .load_lut = intel_crtc_load_lut,
11803         .atomic_begin = intel_begin_crtc_commit,
11804         .atomic_flush = intel_finish_crtc_commit,
11805         .atomic_check = intel_crtc_atomic_check,
11806 };
11807
11808 /**
11809  * intel_modeset_update_staged_output_state
11810  *
11811  * Updates the staged output configuration state, e.g. after we've read out the
11812  * current hw state.
11813  */
11814 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11815 {
11816         struct intel_crtc *crtc;
11817         struct intel_encoder *encoder;
11818         struct intel_connector *connector;
11819
11820         for_each_intel_connector(dev, connector) {
11821                 connector->new_encoder =
11822                         to_intel_encoder(connector->base.encoder);
11823         }
11824
11825         for_each_intel_encoder(dev, encoder) {
11826                 encoder->new_crtc =
11827                         to_intel_crtc(encoder->base.crtc);
11828         }
11829
11830         for_each_intel_crtc(dev, crtc) {
11831                 crtc->new_enabled = crtc->base.state->enable;
11832         }
11833 }
11834
11835 /* Transitional helper to copy current connector/encoder state to
11836  * connector->state. This is needed so that code that is partially
11837  * converted to atomic does the right thing.
11838  */
11839 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11840 {
11841         struct intel_connector *connector;
11842
11843         for_each_intel_connector(dev, connector) {
11844                 if (connector->base.encoder) {
11845                         connector->base.state->best_encoder =
11846                                 connector->base.encoder;
11847                         connector->base.state->crtc =
11848                                 connector->base.encoder->crtc;
11849                 } else {
11850                         connector->base.state->best_encoder = NULL;
11851                         connector->base.state->crtc = NULL;
11852                 }
11853         }
11854 }
11855
11856 static void
11857 connected_sink_compute_bpp(struct intel_connector *connector,
11858                            struct intel_crtc_state *pipe_config)
11859 {
11860         int bpp = pipe_config->pipe_bpp;
11861
11862         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11863                 connector->base.base.id,
11864                 connector->base.name);
11865
11866         /* Don't use an invalid EDID bpc value */
11867         if (connector->base.display_info.bpc &&
11868             connector->base.display_info.bpc * 3 < bpp) {
11869                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11870                               bpp, connector->base.display_info.bpc*3);
11871                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11872         }
11873
11874         /* Clamp bpp to 8 on screens without EDID 1.4 */
11875         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11876                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11877                               bpp);
11878                 pipe_config->pipe_bpp = 24;
11879         }
11880 }
11881
11882 static int
11883 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11884                           struct intel_crtc_state *pipe_config)
11885 {
11886         struct drm_device *dev = crtc->base.dev;
11887         struct drm_atomic_state *state;
11888         struct drm_connector *connector;
11889         struct drm_connector_state *connector_state;
11890         int bpp, i;
11891
11892         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11893                 bpp = 10*3;
11894         else if (INTEL_INFO(dev)->gen >= 5)
11895                 bpp = 12*3;
11896         else
11897                 bpp = 8*3;
11898
11899
11900         pipe_config->pipe_bpp = bpp;
11901
11902         state = pipe_config->base.state;
11903
11904         /* Clamp display bpp to EDID value */
11905         for_each_connector_in_state(state, connector, connector_state, i) {
11906                 if (connector_state->crtc != &crtc->base)
11907                         continue;
11908
11909                 connected_sink_compute_bpp(to_intel_connector(connector),
11910                                            pipe_config);
11911         }
11912
11913         return bpp;
11914 }
11915
11916 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11917 {
11918         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11919                         "type: 0x%x flags: 0x%x\n",
11920                 mode->crtc_clock,
11921                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11922                 mode->crtc_hsync_end, mode->crtc_htotal,
11923                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11924                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11925 }
11926
11927 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11928                                    struct intel_crtc_state *pipe_config,
11929                                    const char *context)
11930 {
11931         struct drm_device *dev = crtc->base.dev;
11932         struct drm_plane *plane;
11933         struct intel_plane *intel_plane;
11934         struct intel_plane_state *state;
11935         struct drm_framebuffer *fb;
11936
11937         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11938                       context, pipe_config, pipe_name(crtc->pipe));
11939
11940         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11941         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11942                       pipe_config->pipe_bpp, pipe_config->dither);
11943         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11944                       pipe_config->has_pch_encoder,
11945                       pipe_config->fdi_lanes,
11946                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11947                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11948                       pipe_config->fdi_m_n.tu);
11949         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11950                       pipe_config->has_dp_encoder,
11951                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11952                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11953                       pipe_config->dp_m_n.tu);
11954
11955         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11956                       pipe_config->has_dp_encoder,
11957                       pipe_config->dp_m2_n2.gmch_m,
11958                       pipe_config->dp_m2_n2.gmch_n,
11959                       pipe_config->dp_m2_n2.link_m,
11960                       pipe_config->dp_m2_n2.link_n,
11961                       pipe_config->dp_m2_n2.tu);
11962
11963         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11964                       pipe_config->has_audio,
11965                       pipe_config->has_infoframe);
11966
11967         DRM_DEBUG_KMS("requested mode:\n");
11968         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11969         DRM_DEBUG_KMS("adjusted mode:\n");
11970         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11971         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11972         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11973         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11974                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11975         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11976                       crtc->num_scalers,
11977                       pipe_config->scaler_state.scaler_users,
11978                       pipe_config->scaler_state.scaler_id);
11979         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11980                       pipe_config->gmch_pfit.control,
11981                       pipe_config->gmch_pfit.pgm_ratios,
11982                       pipe_config->gmch_pfit.lvds_border_bits);
11983         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11984                       pipe_config->pch_pfit.pos,
11985                       pipe_config->pch_pfit.size,
11986                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11987         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11988         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11989
11990         if (IS_BROXTON(dev)) {
11991                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11992                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11993                               "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11994                               pipe_config->ddi_pll_sel,
11995                               pipe_config->dpll_hw_state.ebb0,
11996                               pipe_config->dpll_hw_state.pll0,
11997                               pipe_config->dpll_hw_state.pll1,
11998                               pipe_config->dpll_hw_state.pll2,
11999                               pipe_config->dpll_hw_state.pll3,
12000                               pipe_config->dpll_hw_state.pll6,
12001                               pipe_config->dpll_hw_state.pll8,
12002                               pipe_config->dpll_hw_state.pcsdw12);
12003         } else if (IS_SKYLAKE(dev)) {
12004                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12005                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12006                               pipe_config->ddi_pll_sel,
12007                               pipe_config->dpll_hw_state.ctrl1,
12008                               pipe_config->dpll_hw_state.cfgcr1,
12009                               pipe_config->dpll_hw_state.cfgcr2);
12010         } else if (HAS_DDI(dev)) {
12011                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12012                               pipe_config->ddi_pll_sel,
12013                               pipe_config->dpll_hw_state.wrpll);
12014         } else {
12015                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12016                               "fp0: 0x%x, fp1: 0x%x\n",
12017                               pipe_config->dpll_hw_state.dpll,
12018                               pipe_config->dpll_hw_state.dpll_md,
12019                               pipe_config->dpll_hw_state.fp0,
12020                               pipe_config->dpll_hw_state.fp1);
12021         }
12022
12023         DRM_DEBUG_KMS("planes on this crtc\n");
12024         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12025                 intel_plane = to_intel_plane(plane);
12026                 if (intel_plane->pipe != crtc->pipe)
12027                         continue;
12028
12029                 state = to_intel_plane_state(plane->state);
12030                 fb = state->base.fb;
12031                 if (!fb) {
12032                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12033                                 "disabled, scaler_id = %d\n",
12034                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12035                                 plane->base.id, intel_plane->pipe,
12036                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12037                                 drm_plane_index(plane), state->scaler_id);
12038                         continue;
12039                 }
12040
12041                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12042                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12043                         plane->base.id, intel_plane->pipe,
12044                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12045                         drm_plane_index(plane));
12046                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12047                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12048                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12049                         state->scaler_id,
12050                         state->src.x1 >> 16, state->src.y1 >> 16,
12051                         drm_rect_width(&state->src) >> 16,
12052                         drm_rect_height(&state->src) >> 16,
12053                         state->dst.x1, state->dst.y1,
12054                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12055         }
12056 }
12057
12058 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12059 {
12060         struct drm_device *dev = state->dev;
12061         struct intel_encoder *encoder;
12062         struct drm_connector *connector;
12063         struct drm_connector_state *connector_state;
12064         unsigned int used_ports = 0;
12065         int i;
12066
12067         /*
12068          * Walk the connector list instead of the encoder
12069          * list to detect the problem on ddi platforms
12070          * where there's just one encoder per digital port.
12071          */
12072         for_each_connector_in_state(state, connector, connector_state, i) {
12073                 if (!connector_state->best_encoder)
12074                         continue;
12075
12076                 encoder = to_intel_encoder(connector_state->best_encoder);
12077
12078                 WARN_ON(!connector_state->crtc);
12079
12080                 switch (encoder->type) {
12081                         unsigned int port_mask;
12082                 case INTEL_OUTPUT_UNKNOWN:
12083                         if (WARN_ON(!HAS_DDI(dev)))
12084                                 break;
12085                 case INTEL_OUTPUT_DISPLAYPORT:
12086                 case INTEL_OUTPUT_HDMI:
12087                 case INTEL_OUTPUT_EDP:
12088                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12089
12090                         /* the same port mustn't appear more than once */
12091                         if (used_ports & port_mask)
12092                                 return false;
12093
12094                         used_ports |= port_mask;
12095                 default:
12096                         break;
12097                 }
12098         }
12099
12100         return true;
12101 }
12102
12103 static void
12104 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12105 {
12106         struct drm_crtc_state tmp_state;
12107         struct intel_crtc_scaler_state scaler_state;
12108         struct intel_dpll_hw_state dpll_hw_state;
12109         enum intel_dpll_id shared_dpll;
12110         uint32_t ddi_pll_sel;
12111
12112         /* FIXME: before the switch to atomic started, a new pipe_config was
12113          * kzalloc'd. Code that depends on any field being zero should be
12114          * fixed, so that the crtc_state can be safely duplicated. For now,
12115          * only fields that are know to not cause problems are preserved. */
12116
12117         tmp_state = crtc_state->base;
12118         scaler_state = crtc_state->scaler_state;
12119         shared_dpll = crtc_state->shared_dpll;
12120         dpll_hw_state = crtc_state->dpll_hw_state;
12121         ddi_pll_sel = crtc_state->ddi_pll_sel;
12122
12123         memset(crtc_state, 0, sizeof *crtc_state);
12124
12125         crtc_state->base = tmp_state;
12126         crtc_state->scaler_state = scaler_state;
12127         crtc_state->shared_dpll = shared_dpll;
12128         crtc_state->dpll_hw_state = dpll_hw_state;
12129         crtc_state->ddi_pll_sel = ddi_pll_sel;
12130 }
12131
12132 static int
12133 intel_modeset_pipe_config(struct drm_crtc *crtc,
12134                           struct intel_crtc_state *pipe_config)
12135 {
12136         struct drm_atomic_state *state = pipe_config->base.state;
12137         struct intel_encoder *encoder;
12138         struct drm_connector *connector;
12139         struct drm_connector_state *connector_state;
12140         int base_bpp, ret = -EINVAL;
12141         int i;
12142         bool retry = true;
12143
12144         clear_intel_crtc_state(pipe_config);
12145
12146         pipe_config->cpu_transcoder =
12147                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12148
12149         /*
12150          * Sanitize sync polarity flags based on requested ones. If neither
12151          * positive or negative polarity is requested, treat this as meaning
12152          * negative polarity.
12153          */
12154         if (!(pipe_config->base.adjusted_mode.flags &
12155               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12156                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12157
12158         if (!(pipe_config->base.adjusted_mode.flags &
12159               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12160                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12161
12162         /* Compute a starting value for pipe_config->pipe_bpp taking the source
12163          * plane pixel format and any sink constraints into account. Returns the
12164          * source plane bpp so that dithering can be selected on mismatches
12165          * after encoders and crtc also have had their say. */
12166         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12167                                              pipe_config);
12168         if (base_bpp < 0)
12169                 goto fail;
12170
12171         /*
12172          * Determine the real pipe dimensions. Note that stereo modes can
12173          * increase the actual pipe size due to the frame doubling and
12174          * insertion of additional space for blanks between the frame. This
12175          * is stored in the crtc timings. We use the requested mode to do this
12176          * computation to clearly distinguish it from the adjusted mode, which
12177          * can be changed by the connectors in the below retry loop.
12178          */
12179         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12180                                &pipe_config->pipe_src_w,
12181                                &pipe_config->pipe_src_h);
12182
12183 encoder_retry:
12184         /* Ensure the port clock defaults are reset when retrying. */
12185         pipe_config->port_clock = 0;
12186         pipe_config->pixel_multiplier = 1;
12187
12188         /* Fill in default crtc timings, allow encoders to overwrite them. */
12189         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12190                               CRTC_STEREO_DOUBLE);
12191
12192         /* Pass our mode to the connectors and the CRTC to give them a chance to
12193          * adjust it according to limitations or connector properties, and also
12194          * a chance to reject the mode entirely.
12195          */
12196         for_each_connector_in_state(state, connector, connector_state, i) {
12197                 if (connector_state->crtc != crtc)
12198                         continue;
12199
12200                 encoder = to_intel_encoder(connector_state->best_encoder);
12201
12202                 if (!(encoder->compute_config(encoder, pipe_config))) {
12203                         DRM_DEBUG_KMS("Encoder config failure\n");
12204                         goto fail;
12205                 }
12206         }
12207
12208         /* Set default port clock if not overwritten by the encoder. Needs to be
12209          * done afterwards in case the encoder adjusts the mode. */
12210         if (!pipe_config->port_clock)
12211                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12212                         * pipe_config->pixel_multiplier;
12213
12214         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12215         if (ret < 0) {
12216                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12217                 goto fail;
12218         }
12219
12220         if (ret == RETRY) {
12221                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12222                         ret = -EINVAL;
12223                         goto fail;
12224                 }
12225
12226                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12227                 retry = false;
12228                 goto encoder_retry;
12229         }
12230
12231         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12232         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12233                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12234
12235         /* Check if we need to force a modeset */
12236         if (pipe_config->has_audio !=
12237             to_intel_crtc_state(crtc->state)->has_audio) {
12238                 pipe_config->base.mode_changed = true;
12239                 ret = drm_atomic_add_affected_planes(state, crtc);
12240         }
12241
12242         /*
12243          * Note we have an issue here with infoframes: current code
12244          * only updates them on the full mode set path per hw
12245          * requirements.  So here we should be checking for any
12246          * required changes and forcing a mode set.
12247          */
12248 fail:
12249         return ret;
12250 }
12251
12252 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12253 {
12254         struct drm_encoder *encoder;
12255         struct drm_device *dev = crtc->dev;
12256
12257         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12258                 if (encoder->crtc == crtc)
12259                         return true;
12260
12261         return false;
12262 }
12263
12264 static void
12265 intel_modeset_update_state(struct drm_atomic_state *state)
12266 {
12267         struct drm_device *dev = state->dev;
12268         struct intel_encoder *intel_encoder;
12269         struct drm_crtc *crtc;
12270         struct drm_crtc_state *crtc_state;
12271         struct drm_connector *connector;
12272
12273         intel_shared_dpll_commit(state);
12274
12275         for_each_intel_encoder(dev, intel_encoder) {
12276                 if (!intel_encoder->base.crtc)
12277                         continue;
12278
12279                 crtc = intel_encoder->base.crtc;
12280                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12281                 if (!crtc_state || !needs_modeset(crtc->state))
12282                         continue;
12283
12284                 intel_encoder->connectors_active = false;
12285         }
12286
12287         drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12288         intel_modeset_update_staged_output_state(state->dev);
12289
12290         /* Double check state. */
12291         for_each_crtc(dev, crtc) {
12292                 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12293
12294                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12295
12296                 /* Update hwmode for vblank functions */
12297                 if (crtc->state->active)
12298                         crtc->hwmode = crtc->state->adjusted_mode;
12299                 else
12300                         crtc->hwmode.crtc_clock = 0;
12301         }
12302
12303         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12304                 if (!connector->encoder || !connector->encoder->crtc)
12305                         continue;
12306
12307                 crtc = connector->encoder->crtc;
12308                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12309                 if (!crtc_state || !needs_modeset(crtc->state))
12310                         continue;
12311
12312                 if (crtc->state->active) {
12313                         struct drm_property *dpms_property =
12314                                 dev->mode_config.dpms_property;
12315
12316                         connector->dpms = DRM_MODE_DPMS_ON;
12317                         drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON);
12318
12319                         intel_encoder = to_intel_encoder(connector->encoder);
12320                         intel_encoder->connectors_active = true;
12321                 } else
12322                         connector->dpms = DRM_MODE_DPMS_OFF;
12323         }
12324 }
12325
12326 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12327 {
12328         int diff;
12329
12330         if (clock1 == clock2)
12331                 return true;
12332
12333         if (!clock1 || !clock2)
12334                 return false;
12335
12336         diff = abs(clock1 - clock2);
12337
12338         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12339                 return true;
12340
12341         return false;
12342 }
12343
12344 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12345         list_for_each_entry((intel_crtc), \
12346                             &(dev)->mode_config.crtc_list, \
12347                             base.head) \
12348                 if (mask & (1 <<(intel_crtc)->pipe))
12349
12350 static bool
12351 intel_pipe_config_compare(struct drm_device *dev,
12352                           struct intel_crtc_state *current_config,
12353                           struct intel_crtc_state *pipe_config)
12354 {
12355 #define PIPE_CONF_CHECK_X(name) \
12356         if (current_config->name != pipe_config->name) { \
12357                 DRM_ERROR("mismatch in " #name " " \
12358                           "(expected 0x%08x, found 0x%08x)\n", \
12359                           current_config->name, \
12360                           pipe_config->name); \
12361                 return false; \
12362         }
12363
12364 #define PIPE_CONF_CHECK_I(name) \
12365         if (current_config->name != pipe_config->name) { \
12366                 DRM_ERROR("mismatch in " #name " " \
12367                           "(expected %i, found %i)\n", \
12368                           current_config->name, \
12369                           pipe_config->name); \
12370                 return false; \
12371         }
12372
12373 /* This is required for BDW+ where there is only one set of registers for
12374  * switching between high and low RR.
12375  * This macro can be used whenever a comparison has to be made between one
12376  * hw state and multiple sw state variables.
12377  */
12378 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12379         if ((current_config->name != pipe_config->name) && \
12380                 (current_config->alt_name != pipe_config->name)) { \
12381                         DRM_ERROR("mismatch in " #name " " \
12382                                   "(expected %i or %i, found %i)\n", \
12383                                   current_config->name, \
12384                                   current_config->alt_name, \
12385                                   pipe_config->name); \
12386                         return false; \
12387         }
12388
12389 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12390         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12391                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
12392                           "(expected %i, found %i)\n", \
12393                           current_config->name & (mask), \
12394                           pipe_config->name & (mask)); \
12395                 return false; \
12396         }
12397
12398 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12399         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12400                 DRM_ERROR("mismatch in " #name " " \
12401                           "(expected %i, found %i)\n", \
12402                           current_config->name, \
12403                           pipe_config->name); \
12404                 return false; \
12405         }
12406
12407 #define PIPE_CONF_QUIRK(quirk)  \
12408         ((current_config->quirks | pipe_config->quirks) & (quirk))
12409
12410         PIPE_CONF_CHECK_I(cpu_transcoder);
12411
12412         PIPE_CONF_CHECK_I(has_pch_encoder);
12413         PIPE_CONF_CHECK_I(fdi_lanes);
12414         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12415         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12416         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12417         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12418         PIPE_CONF_CHECK_I(fdi_m_n.tu);
12419
12420         PIPE_CONF_CHECK_I(has_dp_encoder);
12421
12422         if (INTEL_INFO(dev)->gen < 8) {
12423                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12424                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12425                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12426                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12427                 PIPE_CONF_CHECK_I(dp_m_n.tu);
12428
12429                 if (current_config->has_drrs) {
12430                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12431                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12432                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12433                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12434                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12435                 }
12436         } else {
12437                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12438                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12439                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12440                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12441                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12442         }
12443
12444         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12445         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12446         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12447         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12448         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12449         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12450
12451         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12452         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12453         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12454         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12455         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12456         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12457
12458         PIPE_CONF_CHECK_I(pixel_multiplier);
12459         PIPE_CONF_CHECK_I(has_hdmi_sink);
12460         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12461             IS_VALLEYVIEW(dev))
12462                 PIPE_CONF_CHECK_I(limited_color_range);
12463         PIPE_CONF_CHECK_I(has_infoframe);
12464
12465         PIPE_CONF_CHECK_I(has_audio);
12466
12467         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12468                               DRM_MODE_FLAG_INTERLACE);
12469
12470         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12471                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12472                                       DRM_MODE_FLAG_PHSYNC);
12473                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12474                                       DRM_MODE_FLAG_NHSYNC);
12475                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12476                                       DRM_MODE_FLAG_PVSYNC);
12477                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12478                                       DRM_MODE_FLAG_NVSYNC);
12479         }
12480
12481         PIPE_CONF_CHECK_I(pipe_src_w);
12482         PIPE_CONF_CHECK_I(pipe_src_h);
12483
12484         /*
12485          * FIXME: BIOS likes to set up a cloned config with lvds+external
12486          * screen. Since we don't yet re-compute the pipe config when moving
12487          * just the lvds port away to another pipe the sw tracking won't match.
12488          *
12489          * Proper atomic modesets with recomputed global state will fix this.
12490          * Until then just don't check gmch state for inherited modes.
12491          */
12492         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12493                 PIPE_CONF_CHECK_I(gmch_pfit.control);
12494                 /* pfit ratios are autocomputed by the hw on gen4+ */
12495                 if (INTEL_INFO(dev)->gen < 4)
12496                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12497                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12498         }
12499
12500         PIPE_CONF_CHECK_I(pch_pfit.enabled);
12501         if (current_config->pch_pfit.enabled) {
12502                 PIPE_CONF_CHECK_I(pch_pfit.pos);
12503                 PIPE_CONF_CHECK_I(pch_pfit.size);
12504         }
12505
12506         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12507
12508         /* BDW+ don't expose a synchronous way to read the state */
12509         if (IS_HASWELL(dev))
12510                 PIPE_CONF_CHECK_I(ips_enabled);
12511
12512         PIPE_CONF_CHECK_I(double_wide);
12513
12514         PIPE_CONF_CHECK_X(ddi_pll_sel);
12515
12516         PIPE_CONF_CHECK_I(shared_dpll);
12517         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12518         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12519         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12520         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12521         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12522         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12523         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12524         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12525
12526         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12527                 PIPE_CONF_CHECK_I(pipe_bpp);
12528
12529         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12530         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12531
12532 #undef PIPE_CONF_CHECK_X
12533 #undef PIPE_CONF_CHECK_I
12534 #undef PIPE_CONF_CHECK_I_ALT
12535 #undef PIPE_CONF_CHECK_FLAGS
12536 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12537 #undef PIPE_CONF_QUIRK
12538
12539         return true;
12540 }
12541
12542 static void check_wm_state(struct drm_device *dev)
12543 {
12544         struct drm_i915_private *dev_priv = dev->dev_private;
12545         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12546         struct intel_crtc *intel_crtc;
12547         int plane;
12548
12549         if (INTEL_INFO(dev)->gen < 9)
12550                 return;
12551
12552         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12553         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12554
12555         for_each_intel_crtc(dev, intel_crtc) {
12556                 struct skl_ddb_entry *hw_entry, *sw_entry;
12557                 const enum pipe pipe = intel_crtc->pipe;
12558
12559                 if (!intel_crtc->active)
12560                         continue;
12561
12562                 /* planes */
12563                 for_each_plane(dev_priv, pipe, plane) {
12564                         hw_entry = &hw_ddb.plane[pipe][plane];
12565                         sw_entry = &sw_ddb->plane[pipe][plane];
12566
12567                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12568                                 continue;
12569
12570                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12571                                   "(expected (%u,%u), found (%u,%u))\n",
12572                                   pipe_name(pipe), plane + 1,
12573                                   sw_entry->start, sw_entry->end,
12574                                   hw_entry->start, hw_entry->end);
12575                 }
12576
12577                 /* cursor */
12578                 hw_entry = &hw_ddb.cursor[pipe];
12579                 sw_entry = &sw_ddb->cursor[pipe];
12580
12581                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12582                         continue;
12583
12584                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12585                           "(expected (%u,%u), found (%u,%u))\n",
12586                           pipe_name(pipe),
12587                           sw_entry->start, sw_entry->end,
12588                           hw_entry->start, hw_entry->end);
12589         }
12590 }
12591
12592 static void
12593 check_connector_state(struct drm_device *dev)
12594 {
12595         struct intel_connector *connector;
12596
12597         for_each_intel_connector(dev, connector) {
12598                 /* This also checks the encoder/connector hw state with the
12599                  * ->get_hw_state callbacks. */
12600                 intel_connector_check_state(connector);
12601
12602                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
12603                      "connector's staged encoder doesn't match current encoder\n");
12604         }
12605 }
12606
12607 static void
12608 check_encoder_state(struct drm_device *dev)
12609 {
12610         struct intel_encoder *encoder;
12611         struct intel_connector *connector;
12612
12613         for_each_intel_encoder(dev, encoder) {
12614                 bool enabled = false;
12615                 bool active = false;
12616                 enum pipe pipe, tracked_pipe;
12617
12618                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12619                               encoder->base.base.id,
12620                               encoder->base.name);
12621
12622                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
12623                      "encoder's stage crtc doesn't match current crtc\n");
12624                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12625                      "encoder's active_connectors set, but no crtc\n");
12626
12627                 for_each_intel_connector(dev, connector) {
12628                         if (connector->base.encoder != &encoder->base)
12629                                 continue;
12630                         enabled = true;
12631                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12632                                 active = true;
12633                 }
12634                 /*
12635                  * for MST connectors if we unplug the connector is gone
12636                  * away but the encoder is still connected to a crtc
12637                  * until a modeset happens in response to the hotplug.
12638                  */
12639                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12640                         continue;
12641
12642                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12643                      "encoder's enabled state mismatch "
12644                      "(expected %i, found %i)\n",
12645                      !!encoder->base.crtc, enabled);
12646                 I915_STATE_WARN(active && !encoder->base.crtc,
12647                      "active encoder with no crtc\n");
12648
12649                 I915_STATE_WARN(encoder->connectors_active != active,
12650                      "encoder's computed active state doesn't match tracked active state "
12651                      "(expected %i, found %i)\n", active, encoder->connectors_active);
12652
12653                 active = encoder->get_hw_state(encoder, &pipe);
12654                 I915_STATE_WARN(active != encoder->connectors_active,
12655                      "encoder's hw state doesn't match sw tracking "
12656                      "(expected %i, found %i)\n",
12657                      encoder->connectors_active, active);
12658
12659                 if (!encoder->base.crtc)
12660                         continue;
12661
12662                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12663                 I915_STATE_WARN(active && pipe != tracked_pipe,
12664                      "active encoder's pipe doesn't match"
12665                      "(expected %i, found %i)\n",
12666                      tracked_pipe, pipe);
12667
12668         }
12669 }
12670
12671 static void
12672 check_crtc_state(struct drm_device *dev)
12673 {
12674         struct drm_i915_private *dev_priv = dev->dev_private;
12675         struct intel_crtc *crtc;
12676         struct intel_encoder *encoder;
12677         struct intel_crtc_state pipe_config;
12678
12679         for_each_intel_crtc(dev, crtc) {
12680                 bool enabled = false;
12681                 bool active = false;
12682
12683                 memset(&pipe_config, 0, sizeof(pipe_config));
12684
12685                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12686                               crtc->base.base.id);
12687
12688                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12689                      "active crtc, but not enabled in sw tracking\n");
12690
12691                 for_each_intel_encoder(dev, encoder) {
12692                         if (encoder->base.crtc != &crtc->base)
12693                                 continue;
12694                         enabled = true;
12695                         if (encoder->connectors_active)
12696                                 active = true;
12697                 }
12698
12699                 I915_STATE_WARN(active != crtc->active,
12700                      "crtc's computed active state doesn't match tracked active state "
12701                      "(expected %i, found %i)\n", active, crtc->active);
12702                 I915_STATE_WARN(enabled != crtc->base.state->enable,
12703                      "crtc's computed enabled state doesn't match tracked enabled state "
12704                      "(expected %i, found %i)\n", enabled,
12705                                 crtc->base.state->enable);
12706
12707                 active = dev_priv->display.get_pipe_config(crtc,
12708                                                            &pipe_config);
12709
12710                 /* hw state is inconsistent with the pipe quirk */
12711                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12712                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12713                         active = crtc->active;
12714
12715                 for_each_intel_encoder(dev, encoder) {
12716                         enum pipe pipe;
12717                         if (encoder->base.crtc != &crtc->base)
12718                                 continue;
12719                         if (encoder->get_hw_state(encoder, &pipe))
12720                                 encoder->get_config(encoder, &pipe_config);
12721                 }
12722
12723                 I915_STATE_WARN(crtc->active != active,
12724                      "crtc active state doesn't match with hw state "
12725                      "(expected %i, found %i)\n", crtc->active, active);
12726
12727                 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12728                      "transitional active state does not match atomic hw state "
12729                      "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12730
12731                 if (active &&
12732                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12733                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12734                         intel_dump_pipe_config(crtc, &pipe_config,
12735                                                "[hw state]");
12736                         intel_dump_pipe_config(crtc, crtc->config,
12737                                                "[sw state]");
12738                 }
12739         }
12740 }
12741
12742 static void
12743 check_shared_dpll_state(struct drm_device *dev)
12744 {
12745         struct drm_i915_private *dev_priv = dev->dev_private;
12746         struct intel_crtc *crtc;
12747         struct intel_dpll_hw_state dpll_hw_state;
12748         int i;
12749
12750         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12751                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12752                 int enabled_crtcs = 0, active_crtcs = 0;
12753                 bool active;
12754
12755                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12756
12757                 DRM_DEBUG_KMS("%s\n", pll->name);
12758
12759                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12760
12761                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12762                      "more active pll users than references: %i vs %i\n",
12763                      pll->active, hweight32(pll->config.crtc_mask));
12764                 I915_STATE_WARN(pll->active && !pll->on,
12765                      "pll in active use but not on in sw tracking\n");
12766                 I915_STATE_WARN(pll->on && !pll->active,
12767                      "pll in on but not on in use in sw tracking\n");
12768                 I915_STATE_WARN(pll->on != active,
12769                      "pll on state mismatch (expected %i, found %i)\n",
12770                      pll->on, active);
12771
12772                 for_each_intel_crtc(dev, crtc) {
12773                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12774                                 enabled_crtcs++;
12775                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12776                                 active_crtcs++;
12777                 }
12778                 I915_STATE_WARN(pll->active != active_crtcs,
12779                      "pll active crtcs mismatch (expected %i, found %i)\n",
12780                      pll->active, active_crtcs);
12781                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12782                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12783                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12784
12785                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12786                                        sizeof(dpll_hw_state)),
12787                      "pll hw state mismatch\n");
12788         }
12789 }
12790
12791 void
12792 intel_modeset_check_state(struct drm_device *dev)
12793 {
12794         check_wm_state(dev);
12795         check_connector_state(dev);
12796         check_encoder_state(dev);
12797         check_crtc_state(dev);
12798         check_shared_dpll_state(dev);
12799 }
12800
12801 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12802                                      int dotclock)
12803 {
12804         /*
12805          * FDI already provided one idea for the dotclock.
12806          * Yell if the encoder disagrees.
12807          */
12808         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12809              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12810              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12811 }
12812
12813 static void update_scanline_offset(struct intel_crtc *crtc)
12814 {
12815         struct drm_device *dev = crtc->base.dev;
12816
12817         /*
12818          * The scanline counter increments at the leading edge of hsync.
12819          *
12820          * On most platforms it starts counting from vtotal-1 on the
12821          * first active line. That means the scanline counter value is
12822          * always one less than what we would expect. Ie. just after
12823          * start of vblank, which also occurs at start of hsync (on the
12824          * last active line), the scanline counter will read vblank_start-1.
12825          *
12826          * On gen2 the scanline counter starts counting from 1 instead
12827          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12828          * to keep the value positive), instead of adding one.
12829          *
12830          * On HSW+ the behaviour of the scanline counter depends on the output
12831          * type. For DP ports it behaves like most other platforms, but on HDMI
12832          * there's an extra 1 line difference. So we need to add two instead of
12833          * one to the value.
12834          */
12835         if (IS_GEN2(dev)) {
12836                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12837                 int vtotal;
12838
12839                 vtotal = mode->crtc_vtotal;
12840                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12841                         vtotal /= 2;
12842
12843                 crtc->scanline_offset = vtotal - 1;
12844         } else if (HAS_DDI(dev) &&
12845                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12846                 crtc->scanline_offset = 2;
12847         } else
12848                 crtc->scanline_offset = 1;
12849 }
12850
12851 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12852 {
12853         struct drm_device *dev = state->dev;
12854         struct drm_i915_private *dev_priv = to_i915(dev);
12855         struct intel_shared_dpll_config *shared_dpll = NULL;
12856         struct intel_crtc *intel_crtc;
12857         struct intel_crtc_state *intel_crtc_state;
12858         struct drm_crtc *crtc;
12859         struct drm_crtc_state *crtc_state;
12860         int i;
12861
12862         if (!dev_priv->display.crtc_compute_clock)
12863                 return;
12864
12865         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12866                 int dpll;
12867
12868                 intel_crtc = to_intel_crtc(crtc);
12869                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12870                 dpll = intel_crtc_state->shared_dpll;
12871
12872                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12873                         continue;
12874
12875                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12876
12877                 if (!shared_dpll)
12878                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12879
12880                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12881         }
12882 }
12883
12884 /*
12885  * This implements the workaround described in the "notes" section of the mode
12886  * set sequence documentation. When going from no pipes or single pipe to
12887  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12888  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12889  */
12890 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12891 {
12892         struct drm_crtc_state *crtc_state;
12893         struct intel_crtc *intel_crtc;
12894         struct drm_crtc *crtc;
12895         struct intel_crtc_state *first_crtc_state = NULL;
12896         struct intel_crtc_state *other_crtc_state = NULL;
12897         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12898         int i;
12899
12900         /* look at all crtc's that are going to be enabled in during modeset */
12901         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12902                 intel_crtc = to_intel_crtc(crtc);
12903
12904                 if (!crtc_state->active || !needs_modeset(crtc_state))
12905                         continue;
12906
12907                 if (first_crtc_state) {
12908                         other_crtc_state = to_intel_crtc_state(crtc_state);
12909                         break;
12910                 } else {
12911                         first_crtc_state = to_intel_crtc_state(crtc_state);
12912                         first_pipe = intel_crtc->pipe;
12913                 }
12914         }
12915
12916         /* No workaround needed? */
12917         if (!first_crtc_state)
12918                 return 0;
12919
12920         /* w/a possibly needed, check how many crtc's are already enabled. */
12921         for_each_intel_crtc(state->dev, intel_crtc) {
12922                 struct intel_crtc_state *pipe_config;
12923
12924                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12925                 if (IS_ERR(pipe_config))
12926                         return PTR_ERR(pipe_config);
12927
12928                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12929
12930                 if (!pipe_config->base.active ||
12931                     needs_modeset(&pipe_config->base))
12932                         continue;
12933
12934                 /* 2 or more enabled crtcs means no need for w/a */
12935                 if (enabled_pipe != INVALID_PIPE)
12936                         return 0;
12937
12938                 enabled_pipe = intel_crtc->pipe;
12939         }
12940
12941         if (enabled_pipe != INVALID_PIPE)
12942                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12943         else if (other_crtc_state)
12944                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12945
12946         return 0;
12947 }
12948
12949 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12950 {
12951         struct drm_crtc *crtc;
12952         struct drm_crtc_state *crtc_state;
12953         int ret = 0;
12954
12955         /* add all active pipes to the state */
12956         for_each_crtc(state->dev, crtc) {
12957                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12958                 if (IS_ERR(crtc_state))
12959                         return PTR_ERR(crtc_state);
12960
12961                 if (!crtc_state->active || needs_modeset(crtc_state))
12962                         continue;
12963
12964                 crtc_state->mode_changed = true;
12965
12966                 ret = drm_atomic_add_affected_connectors(state, crtc);
12967                 if (ret)
12968                         break;
12969
12970                 ret = drm_atomic_add_affected_planes(state, crtc);
12971                 if (ret)
12972                         break;
12973         }
12974
12975         return ret;
12976 }
12977
12978
12979 /* Code that should eventually be part of atomic_check() */
12980 static int intel_modeset_checks(struct drm_atomic_state *state)
12981 {
12982         struct drm_device *dev = state->dev;
12983         struct drm_i915_private *dev_priv = dev->dev_private;
12984         int ret;
12985
12986         if (!check_digital_port_conflicts(state)) {
12987                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12988                 return -EINVAL;
12989         }
12990
12991         /*
12992          * See if the config requires any additional preparation, e.g.
12993          * to adjust global state with pipes off.  We need to do this
12994          * here so we can get the modeset_pipe updated config for the new
12995          * mode set on this crtc.  For other crtcs we need to use the
12996          * adjusted_mode bits in the crtc directly.
12997          */
12998         if (dev_priv->display.modeset_calc_cdclk) {
12999                 unsigned int cdclk;
13000
13001                 ret = dev_priv->display.modeset_calc_cdclk(state);
13002
13003                 cdclk = to_intel_atomic_state(state)->cdclk;
13004                 if (!ret && cdclk != dev_priv->cdclk_freq)
13005                         ret = intel_modeset_all_pipes(state);
13006
13007                 if (ret < 0)
13008                         return ret;
13009         } else
13010                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13011
13012         intel_modeset_clear_plls(state);
13013
13014         if (IS_HASWELL(dev))
13015                 return haswell_mode_set_planes_workaround(state);
13016
13017         return 0;
13018 }
13019
13020 static int
13021 intel_modeset_compute_config(struct drm_atomic_state *state)
13022 {
13023         struct drm_crtc *crtc;
13024         struct drm_crtc_state *crtc_state;
13025         int ret, i;
13026         bool any_ms = false;
13027
13028         ret = drm_atomic_helper_check_modeset(state->dev, state);
13029         if (ret)
13030                 return ret;
13031
13032         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13033                 if (!crtc_state->enable) {
13034                         if (needs_modeset(crtc_state))
13035                                 any_ms = true;
13036                         continue;
13037                 }
13038
13039                 if (to_intel_crtc_state(crtc_state)->quirks &
13040                     PIPE_CONFIG_QUIRK_INITIAL_PLANES) {
13041                         ret = drm_atomic_add_affected_planes(state, crtc);
13042                         if (ret)
13043                                 return ret;
13044
13045                         /*
13046                          * We ought to handle i915.fastboot here.
13047                          * If no modeset is required and the primary plane has
13048                          * a fb, update the members of crtc_state as needed,
13049                          * and run the necessary updates during vblank evasion.
13050                          */
13051                 }
13052
13053                 if (!needs_modeset(crtc_state)) {
13054                         ret = drm_atomic_add_affected_connectors(state, crtc);
13055                         if (ret)
13056                                 return ret;
13057                 }
13058
13059                 ret = intel_modeset_pipe_config(crtc,
13060                                         to_intel_crtc_state(crtc_state));
13061                 if (ret)
13062                         return ret;
13063
13064                 if (needs_modeset(crtc_state))
13065                         any_ms = true;
13066
13067                 intel_dump_pipe_config(to_intel_crtc(crtc),
13068                                        to_intel_crtc_state(crtc_state),
13069                                        "[modeset]");
13070         }
13071
13072         if (any_ms) {
13073                 ret = intel_modeset_checks(state);
13074
13075                 if (ret)
13076                         return ret;
13077         } else
13078                 to_intel_atomic_state(state)->cdclk =
13079                         to_i915(state->dev)->cdclk_freq;
13080
13081         return drm_atomic_helper_check_planes(state->dev, state);
13082 }
13083
13084 static int __intel_set_mode(struct drm_atomic_state *state)
13085 {
13086         struct drm_device *dev = state->dev;
13087         struct drm_i915_private *dev_priv = dev->dev_private;
13088         struct drm_crtc *crtc;
13089         struct drm_crtc_state *crtc_state;
13090         int ret = 0;
13091         int i;
13092         bool any_ms = false;
13093
13094         ret = drm_atomic_helper_prepare_planes(dev, state);
13095         if (ret)
13096                 return ret;
13097
13098         drm_atomic_helper_swap_state(dev, state);
13099
13100         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13101                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13102
13103                 if (!needs_modeset(crtc->state))
13104                         continue;
13105
13106                 any_ms = true;
13107                 intel_pre_plane_update(intel_crtc);
13108
13109                 if (crtc_state->active) {
13110                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13111                         dev_priv->display.crtc_disable(crtc);
13112                         intel_crtc->active = false;
13113                         intel_disable_shared_dpll(intel_crtc);
13114                 }
13115         }
13116
13117         /* Only after disabling all output pipelines that will be changed can we
13118          * update the the output configuration. */
13119         intel_modeset_update_state(state);
13120
13121         /* The state has been swaped above, so state actually contains the
13122          * old state now. */
13123         if (any_ms)
13124                 modeset_update_crtc_power_domains(state);
13125
13126         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13127         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13128                 if (needs_modeset(crtc->state) && crtc->state->active) {
13129                         update_scanline_offset(to_intel_crtc(crtc));
13130                         dev_priv->display.crtc_enable(crtc);
13131                 }
13132
13133                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13134         }
13135
13136         /* FIXME: add subpixel order */
13137
13138         drm_atomic_helper_cleanup_planes(dev, state);
13139
13140         drm_atomic_state_free(state);
13141
13142         return 0;
13143 }
13144
13145 static int intel_set_mode_checked(struct drm_atomic_state *state)
13146 {
13147         struct drm_device *dev = state->dev;
13148         int ret;
13149
13150         ret = __intel_set_mode(state);
13151         if (ret == 0)
13152                 intel_modeset_check_state(dev);
13153
13154         return ret;
13155 }
13156
13157 static int intel_set_mode(struct drm_atomic_state *state)
13158 {
13159         int ret;
13160
13161         ret = intel_modeset_compute_config(state);
13162         if (ret)
13163                 return ret;
13164
13165         return intel_set_mode_checked(state);
13166 }
13167
13168 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13169 {
13170         struct drm_device *dev = crtc->dev;
13171         struct drm_atomic_state *state;
13172         struct intel_encoder *encoder;
13173         struct intel_connector *connector;
13174         struct drm_connector_state *connector_state;
13175         struct intel_crtc_state *crtc_state;
13176         int ret;
13177
13178         state = drm_atomic_state_alloc(dev);
13179         if (!state) {
13180                 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
13181                               crtc->base.id);
13182                 return;
13183         }
13184
13185         state->acquire_ctx = dev->mode_config.acquire_ctx;
13186
13187         /* The force restore path in the HW readout code relies on the staged
13188          * config still keeping the user requested config while the actual
13189          * state has been overwritten by the configuration read from HW. We
13190          * need to copy the staged config to the atomic state, otherwise the
13191          * mode set will just reapply the state the HW is already in. */
13192         for_each_intel_encoder(dev, encoder) {
13193                 if (&encoder->new_crtc->base != crtc)
13194                         continue;
13195
13196                 for_each_intel_connector(dev, connector) {
13197                         if (connector->new_encoder != encoder)
13198                                 continue;
13199
13200                         connector_state = drm_atomic_get_connector_state(state, &connector->base);
13201                         if (IS_ERR(connector_state)) {
13202                                 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
13203                                               connector->base.base.id,
13204                                               connector->base.name,
13205                                               PTR_ERR(connector_state));
13206                                 continue;
13207                         }
13208
13209                         connector_state->crtc = crtc;
13210                         connector_state->best_encoder = &encoder->base;
13211                 }
13212         }
13213
13214         crtc_state = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
13215         if (IS_ERR(crtc_state)) {
13216                 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
13217                               crtc->base.id, PTR_ERR(crtc_state));
13218                 drm_atomic_state_free(state);
13219                 return;
13220         }
13221
13222         crtc_state->base.active = crtc_state->base.enable =
13223                 to_intel_crtc(crtc)->new_enabled;
13224
13225         drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
13226
13227         intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
13228                                         crtc->primary->fb, crtc->x, crtc->y);
13229
13230         ret = intel_set_mode(state);
13231         if (ret)
13232                 drm_atomic_state_free(state);
13233 }
13234
13235 #undef for_each_intel_crtc_masked
13236
13237 static bool intel_connector_in_mode_set(struct intel_connector *connector,
13238                                         struct drm_mode_set *set)
13239 {
13240         int ro;
13241
13242         for (ro = 0; ro < set->num_connectors; ro++)
13243                 if (set->connectors[ro] == &connector->base)
13244                         return true;
13245
13246         return false;
13247 }
13248
13249 static int
13250 intel_modeset_stage_output_state(struct drm_device *dev,
13251                                  struct drm_mode_set *set,
13252                                  struct drm_atomic_state *state)
13253 {
13254         struct intel_connector *connector;
13255         struct drm_connector *drm_connector;
13256         struct drm_connector_state *connector_state;
13257         struct drm_crtc *crtc;
13258         struct drm_crtc_state *crtc_state;
13259         int i, ret;
13260
13261         /* The upper layers ensure that we either disable a crtc or have a list
13262          * of connectors. For paranoia, double-check this. */
13263         WARN_ON(!set->fb && (set->num_connectors != 0));
13264         WARN_ON(set->fb && (set->num_connectors == 0));
13265
13266         for_each_intel_connector(dev, connector) {
13267                 bool in_mode_set = intel_connector_in_mode_set(connector, set);
13268
13269                 if (!in_mode_set && connector->base.state->crtc != set->crtc)
13270                         continue;
13271
13272                 connector_state =
13273                         drm_atomic_get_connector_state(state, &connector->base);
13274                 if (IS_ERR(connector_state))
13275                         return PTR_ERR(connector_state);
13276
13277                 if (in_mode_set) {
13278                         int pipe = to_intel_crtc(set->crtc)->pipe;
13279                         connector_state->best_encoder =
13280                                 &intel_find_encoder(connector, pipe)->base;
13281                 }
13282
13283                 if (connector->base.state->crtc != set->crtc)
13284                         continue;
13285
13286                 /* If we disable the crtc, disable all its connectors. Also, if
13287                  * the connector is on the changing crtc but not on the new
13288                  * connector list, disable it. */
13289                 if (!set->fb || !in_mode_set) {
13290                         connector_state->best_encoder = NULL;
13291
13292                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
13293                                 connector->base.base.id,
13294                                 connector->base.name);
13295                 }
13296         }
13297         /* connector->new_encoder is now updated for all connectors. */
13298
13299         for_each_connector_in_state(state, drm_connector, connector_state, i) {
13300                 connector = to_intel_connector(drm_connector);
13301
13302                 if (!connector_state->best_encoder) {
13303                         ret = drm_atomic_set_crtc_for_connector(connector_state,
13304                                                                 NULL);
13305                         if (ret)
13306                                 return ret;
13307
13308                         continue;
13309                 }
13310
13311                 if (intel_connector_in_mode_set(connector, set)) {
13312                         struct drm_crtc *crtc = connector->base.state->crtc;
13313
13314                         /* If this connector was in a previous crtc, add it
13315                          * to the state. We might need to disable it. */
13316                         if (crtc) {
13317                                 crtc_state =
13318                                         drm_atomic_get_crtc_state(state, crtc);
13319                                 if (IS_ERR(crtc_state))
13320                                         return PTR_ERR(crtc_state);
13321                         }
13322
13323                         ret = drm_atomic_set_crtc_for_connector(connector_state,
13324                                                                 set->crtc);
13325                         if (ret)
13326                                 return ret;
13327                 }
13328
13329                 /* Make sure the new CRTC will work with the encoder */
13330                 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
13331                                          connector_state->crtc)) {
13332                         return -EINVAL;
13333                 }
13334
13335                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
13336                         connector->base.base.id,
13337                         connector->base.name,
13338                         connector_state->crtc->base.id);
13339
13340                 if (connector_state->best_encoder != &connector->encoder->base)
13341                         connector->encoder =
13342                                 to_intel_encoder(connector_state->best_encoder);
13343         }
13344
13345         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13346                 bool has_connectors;
13347
13348                 ret = drm_atomic_add_affected_connectors(state, crtc);
13349                 if (ret)
13350                         return ret;
13351
13352                 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
13353                 if (has_connectors != crtc_state->enable)
13354                         crtc_state->enable =
13355                         crtc_state->active = has_connectors;
13356         }
13357
13358         ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
13359                                               set->fb, set->x, set->y);
13360         if (ret)
13361                 return ret;
13362
13363         crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
13364         if (IS_ERR(crtc_state))
13365                 return PTR_ERR(crtc_state);
13366
13367         ret = drm_atomic_set_mode_for_crtc(crtc_state, set->mode);
13368         if (ret)
13369                 return ret;
13370
13371         if (set->num_connectors)
13372                 crtc_state->active = true;
13373
13374         return 0;
13375 }
13376
13377 static int intel_crtc_set_config(struct drm_mode_set *set)
13378 {
13379         struct drm_device *dev;
13380         struct drm_atomic_state *state = NULL;
13381         int ret;
13382
13383         BUG_ON(!set);
13384         BUG_ON(!set->crtc);
13385         BUG_ON(!set->crtc->helper_private);
13386
13387         /* Enforce sane interface api - has been abused by the fb helper. */
13388         BUG_ON(!set->mode && set->fb);
13389         BUG_ON(set->fb && set->num_connectors == 0);
13390
13391         if (set->fb) {
13392                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
13393                                 set->crtc->base.id, set->fb->base.id,
13394                                 (int)set->num_connectors, set->x, set->y);
13395         } else {
13396                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
13397         }
13398
13399         dev = set->crtc->dev;
13400
13401         state = drm_atomic_state_alloc(dev);
13402         if (!state)
13403                 return -ENOMEM;
13404
13405         state->acquire_ctx = dev->mode_config.acquire_ctx;
13406
13407         ret = intel_modeset_stage_output_state(dev, set, state);
13408         if (ret)
13409                 goto out;
13410
13411         ret = intel_modeset_compute_config(state);
13412         if (ret)
13413                 goto out;
13414
13415         intel_update_pipe_size(to_intel_crtc(set->crtc));
13416
13417         ret = intel_set_mode_checked(state);
13418         if (ret) {
13419                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
13420                               set->crtc->base.id, ret);
13421         }
13422
13423 out:
13424         if (ret)
13425                 drm_atomic_state_free(state);
13426         return ret;
13427 }
13428
13429 static const struct drm_crtc_funcs intel_crtc_funcs = {
13430         .gamma_set = intel_crtc_gamma_set,
13431         .set_config = intel_crtc_set_config,
13432         .destroy = intel_crtc_destroy,
13433         .page_flip = intel_crtc_page_flip,
13434         .atomic_duplicate_state = intel_crtc_duplicate_state,
13435         .atomic_destroy_state = intel_crtc_destroy_state,
13436 };
13437
13438 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13439                                       struct intel_shared_dpll *pll,
13440                                       struct intel_dpll_hw_state *hw_state)
13441 {
13442         uint32_t val;
13443
13444         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13445                 return false;
13446
13447         val = I915_READ(PCH_DPLL(pll->id));
13448         hw_state->dpll = val;
13449         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13450         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13451
13452         return val & DPLL_VCO_ENABLE;
13453 }
13454
13455 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13456                                   struct intel_shared_dpll *pll)
13457 {
13458         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13459         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13460 }
13461
13462 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13463                                 struct intel_shared_dpll *pll)
13464 {
13465         /* PCH refclock must be enabled first */
13466         ibx_assert_pch_refclk_enabled(dev_priv);
13467
13468         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13469
13470         /* Wait for the clocks to stabilize. */
13471         POSTING_READ(PCH_DPLL(pll->id));
13472         udelay(150);
13473
13474         /* The pixel multiplier can only be updated once the
13475          * DPLL is enabled and the clocks are stable.
13476          *
13477          * So write it again.
13478          */
13479         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13480         POSTING_READ(PCH_DPLL(pll->id));
13481         udelay(200);
13482 }
13483
13484 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13485                                  struct intel_shared_dpll *pll)
13486 {
13487         struct drm_device *dev = dev_priv->dev;
13488         struct intel_crtc *crtc;
13489
13490         /* Make sure no transcoder isn't still depending on us. */
13491         for_each_intel_crtc(dev, crtc) {
13492                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13493                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13494         }
13495
13496         I915_WRITE(PCH_DPLL(pll->id), 0);
13497         POSTING_READ(PCH_DPLL(pll->id));
13498         udelay(200);
13499 }
13500
13501 static char *ibx_pch_dpll_names[] = {
13502         "PCH DPLL A",
13503         "PCH DPLL B",
13504 };
13505
13506 static void ibx_pch_dpll_init(struct drm_device *dev)
13507 {
13508         struct drm_i915_private *dev_priv = dev->dev_private;
13509         int i;
13510
13511         dev_priv->num_shared_dpll = 2;
13512
13513         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13514                 dev_priv->shared_dplls[i].id = i;
13515                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13516                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13517                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13518                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13519                 dev_priv->shared_dplls[i].get_hw_state =
13520                         ibx_pch_dpll_get_hw_state;
13521         }
13522 }
13523
13524 static void intel_shared_dpll_init(struct drm_device *dev)
13525 {
13526         struct drm_i915_private *dev_priv = dev->dev_private;
13527
13528         intel_update_cdclk(dev);
13529
13530         if (HAS_DDI(dev))
13531                 intel_ddi_pll_init(dev);
13532         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13533                 ibx_pch_dpll_init(dev);
13534         else
13535                 dev_priv->num_shared_dpll = 0;
13536
13537         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13538 }
13539
13540 /**
13541  * intel_prepare_plane_fb - Prepare fb for usage on plane
13542  * @plane: drm plane to prepare for
13543  * @fb: framebuffer to prepare for presentation
13544  *
13545  * Prepares a framebuffer for usage on a display plane.  Generally this
13546  * involves pinning the underlying object and updating the frontbuffer tracking
13547  * bits.  Some older platforms need special physical address handling for
13548  * cursor planes.
13549  *
13550  * Returns 0 on success, negative error code on failure.
13551  */
13552 int
13553 intel_prepare_plane_fb(struct drm_plane *plane,
13554                        struct drm_framebuffer *fb,
13555                        const struct drm_plane_state *new_state)
13556 {
13557         struct drm_device *dev = plane->dev;
13558         struct intel_plane *intel_plane = to_intel_plane(plane);
13559         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13560         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13561         int ret = 0;
13562
13563         if (!obj)
13564                 return 0;
13565
13566         mutex_lock(&dev->struct_mutex);
13567
13568         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13569             INTEL_INFO(dev)->cursor_needs_physical) {
13570                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13571                 ret = i915_gem_object_attach_phys(obj, align);
13572                 if (ret)
13573                         DRM_DEBUG_KMS("failed to attach phys object\n");
13574         } else {
13575                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13576         }
13577
13578         if (ret == 0)
13579                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13580
13581         mutex_unlock(&dev->struct_mutex);
13582
13583         return ret;
13584 }
13585
13586 /**
13587  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13588  * @plane: drm plane to clean up for
13589  * @fb: old framebuffer that was on plane
13590  *
13591  * Cleans up a framebuffer that has just been removed from a plane.
13592  */
13593 void
13594 intel_cleanup_plane_fb(struct drm_plane *plane,
13595                        struct drm_framebuffer *fb,
13596                        const struct drm_plane_state *old_state)
13597 {
13598         struct drm_device *dev = plane->dev;
13599         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13600
13601         if (WARN_ON(!obj))
13602                 return;
13603
13604         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13605             !INTEL_INFO(dev)->cursor_needs_physical) {
13606                 mutex_lock(&dev->struct_mutex);
13607                 intel_unpin_fb_obj(fb, old_state);
13608                 mutex_unlock(&dev->struct_mutex);
13609         }
13610 }
13611
13612 int
13613 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13614 {
13615         int max_scale;
13616         struct drm_device *dev;
13617         struct drm_i915_private *dev_priv;
13618         int crtc_clock, cdclk;
13619
13620         if (!intel_crtc || !crtc_state)
13621                 return DRM_PLANE_HELPER_NO_SCALING;
13622
13623         dev = intel_crtc->base.dev;
13624         dev_priv = dev->dev_private;
13625         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13626         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13627
13628         if (!crtc_clock || !cdclk)
13629                 return DRM_PLANE_HELPER_NO_SCALING;
13630
13631         /*
13632          * skl max scale is lower of:
13633          *    close to 3 but not 3, -1 is for that purpose
13634          *            or
13635          *    cdclk/crtc_clock
13636          */
13637         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13638
13639         return max_scale;
13640 }
13641
13642 static int
13643 intel_check_primary_plane(struct drm_plane *plane,
13644                           struct intel_crtc_state *crtc_state,
13645                           struct intel_plane_state *state)
13646 {
13647         struct drm_crtc *crtc = state->base.crtc;
13648         struct drm_framebuffer *fb = state->base.fb;
13649         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13650         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13651         bool can_position = false;
13652
13653         /* use scaler when colorkey is not required */
13654         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13655             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13656                 min_scale = 1;
13657                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13658                 can_position = true;
13659         }
13660
13661         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13662                                              &state->dst, &state->clip,
13663                                              min_scale, max_scale,
13664                                              can_position, true,
13665                                              &state->visible);
13666 }
13667
13668 static void
13669 intel_commit_primary_plane(struct drm_plane *plane,
13670                            struct intel_plane_state *state)
13671 {
13672         struct drm_crtc *crtc = state->base.crtc;
13673         struct drm_framebuffer *fb = state->base.fb;
13674         struct drm_device *dev = plane->dev;
13675         struct drm_i915_private *dev_priv = dev->dev_private;
13676         struct intel_crtc *intel_crtc;
13677         struct drm_rect *src = &state->src;
13678
13679         crtc = crtc ? crtc : plane->crtc;
13680         intel_crtc = to_intel_crtc(crtc);
13681
13682         plane->fb = fb;
13683         crtc->x = src->x1 >> 16;
13684         crtc->y = src->y1 >> 16;
13685
13686         if (!crtc->state->active)
13687                 return;
13688
13689         if (state->visible)
13690                 /* FIXME: kill this fastboot hack */
13691                 intel_update_pipe_size(intel_crtc);
13692
13693         dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13694 }
13695
13696 static void
13697 intel_disable_primary_plane(struct drm_plane *plane,
13698                             struct drm_crtc *crtc)
13699 {
13700         struct drm_device *dev = plane->dev;
13701         struct drm_i915_private *dev_priv = dev->dev_private;
13702
13703         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13704 }
13705
13706 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13707 {
13708         struct drm_device *dev = crtc->dev;
13709         struct drm_i915_private *dev_priv = dev->dev_private;
13710         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13711
13712         if (!needs_modeset(crtc->state))
13713                 intel_pre_plane_update(intel_crtc);
13714
13715         if (intel_crtc->atomic.update_wm_pre)
13716                 intel_update_watermarks(crtc);
13717
13718         intel_runtime_pm_get(dev_priv);
13719
13720         /* Perform vblank evasion around commit operation */
13721         if (crtc->state->active)
13722                 intel_crtc->atomic.evade =
13723                         intel_pipe_update_start(intel_crtc,
13724                                                 &intel_crtc->atomic.start_vbl_count);
13725
13726         if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13727                 skl_detach_scalers(intel_crtc);
13728 }
13729
13730 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13731 {
13732         struct drm_device *dev = crtc->dev;
13733         struct drm_i915_private *dev_priv = dev->dev_private;
13734         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13735
13736         if (intel_crtc->atomic.evade)
13737                 intel_pipe_update_end(intel_crtc,
13738                                       intel_crtc->atomic.start_vbl_count);
13739
13740         intel_runtime_pm_put(dev_priv);
13741
13742         intel_post_plane_update(intel_crtc);
13743 }
13744
13745 /**
13746  * intel_plane_destroy - destroy a plane
13747  * @plane: plane to destroy
13748  *
13749  * Common destruction function for all types of planes (primary, cursor,
13750  * sprite).
13751  */
13752 void intel_plane_destroy(struct drm_plane *plane)
13753 {
13754         struct intel_plane *intel_plane = to_intel_plane(plane);
13755         drm_plane_cleanup(plane);
13756         kfree(intel_plane);
13757 }
13758
13759 const struct drm_plane_funcs intel_plane_funcs = {
13760         .update_plane = drm_atomic_helper_update_plane,
13761         .disable_plane = drm_atomic_helper_disable_plane,
13762         .destroy = intel_plane_destroy,
13763         .set_property = drm_atomic_helper_plane_set_property,
13764         .atomic_get_property = intel_plane_atomic_get_property,
13765         .atomic_set_property = intel_plane_atomic_set_property,
13766         .atomic_duplicate_state = intel_plane_duplicate_state,
13767         .atomic_destroy_state = intel_plane_destroy_state,
13768
13769 };
13770
13771 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13772                                                     int pipe)
13773 {
13774         struct intel_plane *primary;
13775         struct intel_plane_state *state;
13776         const uint32_t *intel_primary_formats;
13777         int num_formats;
13778
13779         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13780         if (primary == NULL)
13781                 return NULL;
13782
13783         state = intel_create_plane_state(&primary->base);
13784         if (!state) {
13785                 kfree(primary);
13786                 return NULL;
13787         }
13788         primary->base.state = &state->base;
13789
13790         primary->can_scale = false;
13791         primary->max_downscale = 1;
13792         if (INTEL_INFO(dev)->gen >= 9) {
13793                 primary->can_scale = true;
13794                 state->scaler_id = -1;
13795         }
13796         primary->pipe = pipe;
13797         primary->plane = pipe;
13798         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13799         primary->check_plane = intel_check_primary_plane;
13800         primary->commit_plane = intel_commit_primary_plane;
13801         primary->disable_plane = intel_disable_primary_plane;
13802         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13803                 primary->plane = !pipe;
13804
13805         if (INTEL_INFO(dev)->gen >= 9) {
13806                 intel_primary_formats = skl_primary_formats;
13807                 num_formats = ARRAY_SIZE(skl_primary_formats);
13808         } else if (INTEL_INFO(dev)->gen >= 4) {
13809                 intel_primary_formats = i965_primary_formats;
13810                 num_formats = ARRAY_SIZE(i965_primary_formats);
13811         } else {
13812                 intel_primary_formats = i8xx_primary_formats;
13813                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13814         }
13815
13816         drm_universal_plane_init(dev, &primary->base, 0,
13817                                  &intel_plane_funcs,
13818                                  intel_primary_formats, num_formats,
13819                                  DRM_PLANE_TYPE_PRIMARY);
13820
13821         if (INTEL_INFO(dev)->gen >= 4)
13822                 intel_create_rotation_property(dev, primary);
13823
13824         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13825
13826         return &primary->base;
13827 }
13828
13829 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13830 {
13831         if (!dev->mode_config.rotation_property) {
13832                 unsigned long flags = BIT(DRM_ROTATE_0) |
13833                         BIT(DRM_ROTATE_180);
13834
13835                 if (INTEL_INFO(dev)->gen >= 9)
13836                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13837
13838                 dev->mode_config.rotation_property =
13839                         drm_mode_create_rotation_property(dev, flags);
13840         }
13841         if (dev->mode_config.rotation_property)
13842                 drm_object_attach_property(&plane->base.base,
13843                                 dev->mode_config.rotation_property,
13844                                 plane->base.state->rotation);
13845 }
13846
13847 static int
13848 intel_check_cursor_plane(struct drm_plane *plane,
13849                          struct intel_crtc_state *crtc_state,
13850                          struct intel_plane_state *state)
13851 {
13852         struct drm_crtc *crtc = crtc_state->base.crtc;
13853         struct drm_framebuffer *fb = state->base.fb;
13854         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13855         unsigned stride;
13856         int ret;
13857
13858         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13859                                             &state->dst, &state->clip,
13860                                             DRM_PLANE_HELPER_NO_SCALING,
13861                                             DRM_PLANE_HELPER_NO_SCALING,
13862                                             true, true, &state->visible);
13863         if (ret)
13864                 return ret;
13865
13866         /* if we want to turn off the cursor ignore width and height */
13867         if (!obj)
13868                 return 0;
13869
13870         /* Check for which cursor types we support */
13871         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13872                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13873                           state->base.crtc_w, state->base.crtc_h);
13874                 return -EINVAL;
13875         }
13876
13877         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13878         if (obj->base.size < stride * state->base.crtc_h) {
13879                 DRM_DEBUG_KMS("buffer is too small\n");
13880                 return -ENOMEM;
13881         }
13882
13883         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13884                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13885                 return -EINVAL;
13886         }
13887
13888         return 0;
13889 }
13890
13891 static void
13892 intel_disable_cursor_plane(struct drm_plane *plane,
13893                            struct drm_crtc *crtc)
13894 {
13895         intel_crtc_update_cursor(crtc, false);
13896 }
13897
13898 static void
13899 intel_commit_cursor_plane(struct drm_plane *plane,
13900                           struct intel_plane_state *state)
13901 {
13902         struct drm_crtc *crtc = state->base.crtc;
13903         struct drm_device *dev = plane->dev;
13904         struct intel_crtc *intel_crtc;
13905         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13906         uint32_t addr;
13907
13908         crtc = crtc ? crtc : plane->crtc;
13909         intel_crtc = to_intel_crtc(crtc);
13910
13911         plane->fb = state->base.fb;
13912         crtc->cursor_x = state->base.crtc_x;
13913         crtc->cursor_y = state->base.crtc_y;
13914
13915         if (intel_crtc->cursor_bo == obj)
13916                 goto update;
13917
13918         if (!obj)
13919                 addr = 0;
13920         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13921                 addr = i915_gem_obj_ggtt_offset(obj);
13922         else
13923                 addr = obj->phys_handle->busaddr;
13924
13925         intel_crtc->cursor_addr = addr;
13926         intel_crtc->cursor_bo = obj;
13927
13928 update:
13929         if (crtc->state->active)
13930                 intel_crtc_update_cursor(crtc, state->visible);
13931 }
13932
13933 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13934                                                    int pipe)
13935 {
13936         struct intel_plane *cursor;
13937         struct intel_plane_state *state;
13938
13939         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13940         if (cursor == NULL)
13941                 return NULL;
13942
13943         state = intel_create_plane_state(&cursor->base);
13944         if (!state) {
13945                 kfree(cursor);
13946                 return NULL;
13947         }
13948         cursor->base.state = &state->base;
13949
13950         cursor->can_scale = false;
13951         cursor->max_downscale = 1;
13952         cursor->pipe = pipe;
13953         cursor->plane = pipe;
13954         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13955         cursor->check_plane = intel_check_cursor_plane;
13956         cursor->commit_plane = intel_commit_cursor_plane;
13957         cursor->disable_plane = intel_disable_cursor_plane;
13958
13959         drm_universal_plane_init(dev, &cursor->base, 0,
13960                                  &intel_plane_funcs,
13961                                  intel_cursor_formats,
13962                                  ARRAY_SIZE(intel_cursor_formats),
13963                                  DRM_PLANE_TYPE_CURSOR);
13964
13965         if (INTEL_INFO(dev)->gen >= 4) {
13966                 if (!dev->mode_config.rotation_property)
13967                         dev->mode_config.rotation_property =
13968                                 drm_mode_create_rotation_property(dev,
13969                                                         BIT(DRM_ROTATE_0) |
13970                                                         BIT(DRM_ROTATE_180));
13971                 if (dev->mode_config.rotation_property)
13972                         drm_object_attach_property(&cursor->base.base,
13973                                 dev->mode_config.rotation_property,
13974                                 state->base.rotation);
13975         }
13976
13977         if (INTEL_INFO(dev)->gen >=9)
13978                 state->scaler_id = -1;
13979
13980         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13981
13982         return &cursor->base;
13983 }
13984
13985 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13986         struct intel_crtc_state *crtc_state)
13987 {
13988         int i;
13989         struct intel_scaler *intel_scaler;
13990         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13991
13992         for (i = 0; i < intel_crtc->num_scalers; i++) {
13993                 intel_scaler = &scaler_state->scalers[i];
13994                 intel_scaler->in_use = 0;
13995                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13996         }
13997
13998         scaler_state->scaler_id = -1;
13999 }
14000
14001 static void intel_crtc_init(struct drm_device *dev, int pipe)
14002 {
14003         struct drm_i915_private *dev_priv = dev->dev_private;
14004         struct intel_crtc *intel_crtc;
14005         struct intel_crtc_state *crtc_state = NULL;
14006         struct drm_plane *primary = NULL;
14007         struct drm_plane *cursor = NULL;
14008         int i, ret;
14009
14010         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14011         if (intel_crtc == NULL)
14012                 return;
14013
14014         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14015         if (!crtc_state)
14016                 goto fail;
14017         intel_crtc->config = crtc_state;
14018         intel_crtc->base.state = &crtc_state->base;
14019         crtc_state->base.crtc = &intel_crtc->base;
14020
14021         /* initialize shared scalers */
14022         if (INTEL_INFO(dev)->gen >= 9) {
14023                 if (pipe == PIPE_C)
14024                         intel_crtc->num_scalers = 1;
14025                 else
14026                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14027
14028                 skl_init_scalers(dev, intel_crtc, crtc_state);
14029         }
14030
14031         primary = intel_primary_plane_create(dev, pipe);
14032         if (!primary)
14033                 goto fail;
14034
14035         cursor = intel_cursor_plane_create(dev, pipe);
14036         if (!cursor)
14037                 goto fail;
14038
14039         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14040                                         cursor, &intel_crtc_funcs);
14041         if (ret)
14042                 goto fail;
14043
14044         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14045         for (i = 0; i < 256; i++) {
14046                 intel_crtc->lut_r[i] = i;
14047                 intel_crtc->lut_g[i] = i;
14048                 intel_crtc->lut_b[i] = i;
14049         }
14050
14051         /*
14052          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14053          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14054          */
14055         intel_crtc->pipe = pipe;
14056         intel_crtc->plane = pipe;
14057         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14058                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14059                 intel_crtc->plane = !pipe;
14060         }
14061
14062         intel_crtc->cursor_base = ~0;
14063         intel_crtc->cursor_cntl = ~0;
14064         intel_crtc->cursor_size = ~0;
14065
14066         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14067                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14068         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14069         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14070
14071         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14072
14073         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14074         return;
14075
14076 fail:
14077         if (primary)
14078                 drm_plane_cleanup(primary);
14079         if (cursor)
14080                 drm_plane_cleanup(cursor);
14081         kfree(crtc_state);
14082         kfree(intel_crtc);
14083 }
14084
14085 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14086 {
14087         struct drm_encoder *encoder = connector->base.encoder;
14088         struct drm_device *dev = connector->base.dev;
14089
14090         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14091
14092         if (!encoder || WARN_ON(!encoder->crtc))
14093                 return INVALID_PIPE;
14094
14095         return to_intel_crtc(encoder->crtc)->pipe;
14096 }
14097
14098 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14099                                 struct drm_file *file)
14100 {
14101         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14102         struct drm_crtc *drmmode_crtc;
14103         struct intel_crtc *crtc;
14104
14105         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14106
14107         if (!drmmode_crtc) {
14108                 DRM_ERROR("no such CRTC id\n");
14109                 return -ENOENT;
14110         }
14111
14112         crtc = to_intel_crtc(drmmode_crtc);
14113         pipe_from_crtc_id->pipe = crtc->pipe;
14114
14115         return 0;
14116 }
14117
14118 static int intel_encoder_clones(struct intel_encoder *encoder)
14119 {
14120         struct drm_device *dev = encoder->base.dev;
14121         struct intel_encoder *source_encoder;
14122         int index_mask = 0;
14123         int entry = 0;
14124
14125         for_each_intel_encoder(dev, source_encoder) {
14126                 if (encoders_cloneable(encoder, source_encoder))
14127                         index_mask |= (1 << entry);
14128
14129                 entry++;
14130         }
14131
14132         return index_mask;
14133 }
14134
14135 static bool has_edp_a(struct drm_device *dev)
14136 {
14137         struct drm_i915_private *dev_priv = dev->dev_private;
14138
14139         if (!IS_MOBILE(dev))
14140                 return false;
14141
14142         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14143                 return false;
14144
14145         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14146                 return false;
14147
14148         return true;
14149 }
14150
14151 static bool intel_crt_present(struct drm_device *dev)
14152 {
14153         struct drm_i915_private *dev_priv = dev->dev_private;
14154
14155         if (INTEL_INFO(dev)->gen >= 9)
14156                 return false;
14157
14158         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14159                 return false;
14160
14161         if (IS_CHERRYVIEW(dev))
14162                 return false;
14163
14164         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14165                 return false;
14166
14167         return true;
14168 }
14169
14170 static void intel_setup_outputs(struct drm_device *dev)
14171 {
14172         struct drm_i915_private *dev_priv = dev->dev_private;
14173         struct intel_encoder *encoder;
14174         bool dpd_is_edp = false;
14175
14176         intel_lvds_init(dev);
14177
14178         if (intel_crt_present(dev))
14179                 intel_crt_init(dev);
14180
14181         if (IS_BROXTON(dev)) {
14182                 /*
14183                  * FIXME: Broxton doesn't support port detection via the
14184                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14185                  * detect the ports.
14186                  */
14187                 intel_ddi_init(dev, PORT_A);
14188                 intel_ddi_init(dev, PORT_B);
14189                 intel_ddi_init(dev, PORT_C);
14190         } else if (HAS_DDI(dev)) {
14191                 int found;
14192
14193                 /*
14194                  * Haswell uses DDI functions to detect digital outputs.
14195                  * On SKL pre-D0 the strap isn't connected, so we assume
14196                  * it's there.
14197                  */
14198                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14199                 /* WaIgnoreDDIAStrap: skl */
14200                 if (found ||
14201                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14202                         intel_ddi_init(dev, PORT_A);
14203
14204                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14205                  * register */
14206                 found = I915_READ(SFUSE_STRAP);
14207
14208                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14209                         intel_ddi_init(dev, PORT_B);
14210                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14211                         intel_ddi_init(dev, PORT_C);
14212                 if (found & SFUSE_STRAP_DDID_DETECTED)
14213                         intel_ddi_init(dev, PORT_D);
14214         } else if (HAS_PCH_SPLIT(dev)) {
14215                 int found;
14216                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14217
14218                 if (has_edp_a(dev))
14219                         intel_dp_init(dev, DP_A, PORT_A);
14220
14221                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14222                         /* PCH SDVOB multiplex with HDMIB */
14223                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14224                         if (!found)
14225                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14226                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14227                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14228                 }
14229
14230                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14231                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14232
14233                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14234                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14235
14236                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14237                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14238
14239                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14240                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14241         } else if (IS_VALLEYVIEW(dev)) {
14242                 /*
14243                  * The DP_DETECTED bit is the latched state of the DDC
14244                  * SDA pin at boot. However since eDP doesn't require DDC
14245                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14246                  * eDP ports may have been muxed to an alternate function.
14247                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14248                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14249                  * detect eDP ports.
14250                  */
14251                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14252                     !intel_dp_is_edp(dev, PORT_B))
14253                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14254                                         PORT_B);
14255                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14256                     intel_dp_is_edp(dev, PORT_B))
14257                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14258
14259                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14260                     !intel_dp_is_edp(dev, PORT_C))
14261                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14262                                         PORT_C);
14263                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14264                     intel_dp_is_edp(dev, PORT_C))
14265                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14266
14267                 if (IS_CHERRYVIEW(dev)) {
14268                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14269                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14270                                                 PORT_D);
14271                         /* eDP not supported on port D, so don't check VBT */
14272                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14273                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14274                 }
14275
14276                 intel_dsi_init(dev);
14277         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14278                 bool found = false;
14279
14280                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14281                         DRM_DEBUG_KMS("probing SDVOB\n");
14282                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14283                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14284                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14285                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14286                         }
14287
14288                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
14289                                 intel_dp_init(dev, DP_B, PORT_B);
14290                 }
14291
14292                 /* Before G4X SDVOC doesn't have its own detect register */
14293
14294                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14295                         DRM_DEBUG_KMS("probing SDVOC\n");
14296                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14297                 }
14298
14299                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14300
14301                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14302                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14303                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14304                         }
14305                         if (SUPPORTS_INTEGRATED_DP(dev))
14306                                 intel_dp_init(dev, DP_C, PORT_C);
14307                 }
14308
14309                 if (SUPPORTS_INTEGRATED_DP(dev) &&
14310                     (I915_READ(DP_D) & DP_DETECTED))
14311                         intel_dp_init(dev, DP_D, PORT_D);
14312         } else if (IS_GEN2(dev))
14313                 intel_dvo_init(dev);
14314
14315         if (SUPPORTS_TV(dev))
14316                 intel_tv_init(dev);
14317
14318         intel_psr_init(dev);
14319
14320         for_each_intel_encoder(dev, encoder) {
14321                 encoder->base.possible_crtcs = encoder->crtc_mask;
14322                 encoder->base.possible_clones =
14323                         intel_encoder_clones(encoder);
14324         }
14325
14326         intel_init_pch_refclk(dev);
14327
14328         drm_helper_move_panel_connectors_to_head(dev);
14329 }
14330
14331 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14332 {
14333         struct drm_device *dev = fb->dev;
14334         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14335
14336         drm_framebuffer_cleanup(fb);
14337         mutex_lock(&dev->struct_mutex);
14338         WARN_ON(!intel_fb->obj->framebuffer_references--);
14339         drm_gem_object_unreference(&intel_fb->obj->base);
14340         mutex_unlock(&dev->struct_mutex);
14341         kfree(intel_fb);
14342 }
14343
14344 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14345                                                 struct drm_file *file,
14346                                                 unsigned int *handle)
14347 {
14348         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14349         struct drm_i915_gem_object *obj = intel_fb->obj;
14350
14351         return drm_gem_handle_create(file, &obj->base, handle);
14352 }
14353
14354 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14355         .destroy = intel_user_framebuffer_destroy,
14356         .create_handle = intel_user_framebuffer_create_handle,
14357 };
14358
14359 static
14360 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14361                          uint32_t pixel_format)
14362 {
14363         u32 gen = INTEL_INFO(dev)->gen;
14364
14365         if (gen >= 9) {
14366                 /* "The stride in bytes must not exceed the of the size of 8K
14367                  *  pixels and 32K bytes."
14368                  */
14369                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14370         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14371                 return 32*1024;
14372         } else if (gen >= 4) {
14373                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14374                         return 16*1024;
14375                 else
14376                         return 32*1024;
14377         } else if (gen >= 3) {
14378                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14379                         return 8*1024;
14380                 else
14381                         return 16*1024;
14382         } else {
14383                 /* XXX DSPC is limited to 4k tiled */
14384                 return 8*1024;
14385         }
14386 }
14387
14388 static int intel_framebuffer_init(struct drm_device *dev,
14389                                   struct intel_framebuffer *intel_fb,
14390                                   struct drm_mode_fb_cmd2 *mode_cmd,
14391                                   struct drm_i915_gem_object *obj)
14392 {
14393         unsigned int aligned_height;
14394         int ret;
14395         u32 pitch_limit, stride_alignment;
14396
14397         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14398
14399         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14400                 /* Enforce that fb modifier and tiling mode match, but only for
14401                  * X-tiled. This is needed for FBC. */
14402                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14403                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14404                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14405                         return -EINVAL;
14406                 }
14407         } else {
14408                 if (obj->tiling_mode == I915_TILING_X)
14409                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14410                 else if (obj->tiling_mode == I915_TILING_Y) {
14411                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14412                         return -EINVAL;
14413                 }
14414         }
14415
14416         /* Passed in modifier sanity checking. */
14417         switch (mode_cmd->modifier[0]) {
14418         case I915_FORMAT_MOD_Y_TILED:
14419         case I915_FORMAT_MOD_Yf_TILED:
14420                 if (INTEL_INFO(dev)->gen < 9) {
14421                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14422                                   mode_cmd->modifier[0]);
14423                         return -EINVAL;
14424                 }
14425         case DRM_FORMAT_MOD_NONE:
14426         case I915_FORMAT_MOD_X_TILED:
14427                 break;
14428         default:
14429                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14430                           mode_cmd->modifier[0]);
14431                 return -EINVAL;
14432         }
14433
14434         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14435                                                      mode_cmd->pixel_format);
14436         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14437                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14438                           mode_cmd->pitches[0], stride_alignment);
14439                 return -EINVAL;
14440         }
14441
14442         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14443                                            mode_cmd->pixel_format);
14444         if (mode_cmd->pitches[0] > pitch_limit) {
14445                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14446                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14447                           "tiled" : "linear",
14448                           mode_cmd->pitches[0], pitch_limit);
14449                 return -EINVAL;
14450         }
14451
14452         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14453             mode_cmd->pitches[0] != obj->stride) {
14454                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14455                           mode_cmd->pitches[0], obj->stride);
14456                 return -EINVAL;
14457         }
14458
14459         /* Reject formats not supported by any plane early. */
14460         switch (mode_cmd->pixel_format) {
14461         case DRM_FORMAT_C8:
14462         case DRM_FORMAT_RGB565:
14463         case DRM_FORMAT_XRGB8888:
14464         case DRM_FORMAT_ARGB8888:
14465                 break;
14466         case DRM_FORMAT_XRGB1555:
14467                 if (INTEL_INFO(dev)->gen > 3) {
14468                         DRM_DEBUG("unsupported pixel format: %s\n",
14469                                   drm_get_format_name(mode_cmd->pixel_format));
14470                         return -EINVAL;
14471                 }
14472                 break;
14473         case DRM_FORMAT_ABGR8888:
14474                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14475                         DRM_DEBUG("unsupported pixel format: %s\n",
14476                                   drm_get_format_name(mode_cmd->pixel_format));
14477                         return -EINVAL;
14478                 }
14479                 break;
14480         case DRM_FORMAT_XBGR8888:
14481         case DRM_FORMAT_XRGB2101010:
14482         case DRM_FORMAT_XBGR2101010:
14483                 if (INTEL_INFO(dev)->gen < 4) {
14484                         DRM_DEBUG("unsupported pixel format: %s\n",
14485                                   drm_get_format_name(mode_cmd->pixel_format));
14486                         return -EINVAL;
14487                 }
14488                 break;
14489         case DRM_FORMAT_ABGR2101010:
14490                 if (!IS_VALLEYVIEW(dev)) {
14491                         DRM_DEBUG("unsupported pixel format: %s\n",
14492                                   drm_get_format_name(mode_cmd->pixel_format));
14493                         return -EINVAL;
14494                 }
14495                 break;
14496         case DRM_FORMAT_YUYV:
14497         case DRM_FORMAT_UYVY:
14498         case DRM_FORMAT_YVYU:
14499         case DRM_FORMAT_VYUY:
14500                 if (INTEL_INFO(dev)->gen < 5) {
14501                         DRM_DEBUG("unsupported pixel format: %s\n",
14502                                   drm_get_format_name(mode_cmd->pixel_format));
14503                         return -EINVAL;
14504                 }
14505                 break;
14506         default:
14507                 DRM_DEBUG("unsupported pixel format: %s\n",
14508                           drm_get_format_name(mode_cmd->pixel_format));
14509                 return -EINVAL;
14510         }
14511
14512         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14513         if (mode_cmd->offsets[0] != 0)
14514                 return -EINVAL;
14515
14516         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14517                                                mode_cmd->pixel_format,
14518                                                mode_cmd->modifier[0]);
14519         /* FIXME drm helper for size checks (especially planar formats)? */
14520         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14521                 return -EINVAL;
14522
14523         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14524         intel_fb->obj = obj;
14525         intel_fb->obj->framebuffer_references++;
14526
14527         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14528         if (ret) {
14529                 DRM_ERROR("framebuffer init failed %d\n", ret);
14530                 return ret;
14531         }
14532
14533         return 0;
14534 }
14535
14536 static struct drm_framebuffer *
14537 intel_user_framebuffer_create(struct drm_device *dev,
14538                               struct drm_file *filp,
14539                               struct drm_mode_fb_cmd2 *mode_cmd)
14540 {
14541         struct drm_i915_gem_object *obj;
14542
14543         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14544                                                 mode_cmd->handles[0]));
14545         if (&obj->base == NULL)
14546                 return ERR_PTR(-ENOENT);
14547
14548         return intel_framebuffer_create(dev, mode_cmd, obj);
14549 }
14550
14551 #ifndef CONFIG_DRM_I915_FBDEV
14552 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14553 {
14554 }
14555 #endif
14556
14557 static const struct drm_mode_config_funcs intel_mode_funcs = {
14558         .fb_create = intel_user_framebuffer_create,
14559         .output_poll_changed = intel_fbdev_output_poll_changed,
14560         .atomic_check = intel_atomic_check,
14561         .atomic_commit = intel_atomic_commit,
14562         .atomic_state_alloc = intel_atomic_state_alloc,
14563         .atomic_state_clear = intel_atomic_state_clear,
14564 };
14565
14566 /* Set up chip specific display functions */
14567 static void intel_init_display(struct drm_device *dev)
14568 {
14569         struct drm_i915_private *dev_priv = dev->dev_private;
14570
14571         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14572                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14573         else if (IS_CHERRYVIEW(dev))
14574                 dev_priv->display.find_dpll = chv_find_best_dpll;
14575         else if (IS_VALLEYVIEW(dev))
14576                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14577         else if (IS_PINEVIEW(dev))
14578                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14579         else
14580                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14581
14582         if (INTEL_INFO(dev)->gen >= 9) {
14583                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14584                 dev_priv->display.get_initial_plane_config =
14585                         skylake_get_initial_plane_config;
14586                 dev_priv->display.crtc_compute_clock =
14587                         haswell_crtc_compute_clock;
14588                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14589                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14590                 dev_priv->display.update_primary_plane =
14591                         skylake_update_primary_plane;
14592         } else if (HAS_DDI(dev)) {
14593                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14594                 dev_priv->display.get_initial_plane_config =
14595                         ironlake_get_initial_plane_config;
14596                 dev_priv->display.crtc_compute_clock =
14597                         haswell_crtc_compute_clock;
14598                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14599                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14600                 dev_priv->display.update_primary_plane =
14601                         ironlake_update_primary_plane;
14602         } else if (HAS_PCH_SPLIT(dev)) {
14603                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14604                 dev_priv->display.get_initial_plane_config =
14605                         ironlake_get_initial_plane_config;
14606                 dev_priv->display.crtc_compute_clock =
14607                         ironlake_crtc_compute_clock;
14608                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14609                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14610                 dev_priv->display.update_primary_plane =
14611                         ironlake_update_primary_plane;
14612         } else if (IS_VALLEYVIEW(dev)) {
14613                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14614                 dev_priv->display.get_initial_plane_config =
14615                         i9xx_get_initial_plane_config;
14616                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14617                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14618                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14619                 dev_priv->display.update_primary_plane =
14620                         i9xx_update_primary_plane;
14621         } else {
14622                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14623                 dev_priv->display.get_initial_plane_config =
14624                         i9xx_get_initial_plane_config;
14625                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14626                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14627                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14628                 dev_priv->display.update_primary_plane =
14629                         i9xx_update_primary_plane;
14630         }
14631
14632         /* Returns the core display clock speed */
14633         if (IS_SKYLAKE(dev))
14634                 dev_priv->display.get_display_clock_speed =
14635                         skylake_get_display_clock_speed;
14636         else if (IS_BROXTON(dev))
14637                 dev_priv->display.get_display_clock_speed =
14638                         broxton_get_display_clock_speed;
14639         else if (IS_BROADWELL(dev))
14640                 dev_priv->display.get_display_clock_speed =
14641                         broadwell_get_display_clock_speed;
14642         else if (IS_HASWELL(dev))
14643                 dev_priv->display.get_display_clock_speed =
14644                         haswell_get_display_clock_speed;
14645         else if (IS_VALLEYVIEW(dev))
14646                 dev_priv->display.get_display_clock_speed =
14647                         valleyview_get_display_clock_speed;
14648         else if (IS_GEN5(dev))
14649                 dev_priv->display.get_display_clock_speed =
14650                         ilk_get_display_clock_speed;
14651         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14652                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14653                 dev_priv->display.get_display_clock_speed =
14654                         i945_get_display_clock_speed;
14655         else if (IS_GM45(dev))
14656                 dev_priv->display.get_display_clock_speed =
14657                         gm45_get_display_clock_speed;
14658         else if (IS_CRESTLINE(dev))
14659                 dev_priv->display.get_display_clock_speed =
14660                         i965gm_get_display_clock_speed;
14661         else if (IS_PINEVIEW(dev))
14662                 dev_priv->display.get_display_clock_speed =
14663                         pnv_get_display_clock_speed;
14664         else if (IS_G33(dev) || IS_G4X(dev))
14665                 dev_priv->display.get_display_clock_speed =
14666                         g33_get_display_clock_speed;
14667         else if (IS_I915G(dev))
14668                 dev_priv->display.get_display_clock_speed =
14669                         i915_get_display_clock_speed;
14670         else if (IS_I945GM(dev) || IS_845G(dev))
14671                 dev_priv->display.get_display_clock_speed =
14672                         i9xx_misc_get_display_clock_speed;
14673         else if (IS_PINEVIEW(dev))
14674                 dev_priv->display.get_display_clock_speed =
14675                         pnv_get_display_clock_speed;
14676         else if (IS_I915GM(dev))
14677                 dev_priv->display.get_display_clock_speed =
14678                         i915gm_get_display_clock_speed;
14679         else if (IS_I865G(dev))
14680                 dev_priv->display.get_display_clock_speed =
14681                         i865_get_display_clock_speed;
14682         else if (IS_I85X(dev))
14683                 dev_priv->display.get_display_clock_speed =
14684                         i85x_get_display_clock_speed;
14685         else { /* 830 */
14686                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14687                 dev_priv->display.get_display_clock_speed =
14688                         i830_get_display_clock_speed;
14689         }
14690
14691         if (IS_GEN5(dev)) {
14692                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14693         } else if (IS_GEN6(dev)) {
14694                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14695         } else if (IS_IVYBRIDGE(dev)) {
14696                 /* FIXME: detect B0+ stepping and use auto training */
14697                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14698         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14699                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14700                 if (IS_BROADWELL(dev)) {
14701                         dev_priv->display.modeset_commit_cdclk =
14702                                 broadwell_modeset_commit_cdclk;
14703                         dev_priv->display.modeset_calc_cdclk =
14704                                 broadwell_modeset_calc_cdclk;
14705                 }
14706         } else if (IS_VALLEYVIEW(dev)) {
14707                 dev_priv->display.modeset_commit_cdclk =
14708                         valleyview_modeset_commit_cdclk;
14709                 dev_priv->display.modeset_calc_cdclk =
14710                         valleyview_modeset_calc_cdclk;
14711         } else if (IS_BROXTON(dev)) {
14712                 dev_priv->display.modeset_commit_cdclk =
14713                         broxton_modeset_commit_cdclk;
14714                 dev_priv->display.modeset_calc_cdclk =
14715                         broxton_modeset_calc_cdclk;
14716         }
14717
14718         switch (INTEL_INFO(dev)->gen) {
14719         case 2:
14720                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14721                 break;
14722
14723         case 3:
14724                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14725                 break;
14726
14727         case 4:
14728         case 5:
14729                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14730                 break;
14731
14732         case 6:
14733                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14734                 break;
14735         case 7:
14736         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14737                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14738                 break;
14739         case 9:
14740                 /* Drop through - unsupported since execlist only. */
14741         default:
14742                 /* Default just returns -ENODEV to indicate unsupported */
14743                 dev_priv->display.queue_flip = intel_default_queue_flip;
14744         }
14745
14746         intel_panel_init_backlight_funcs(dev);
14747
14748         mutex_init(&dev_priv->pps_mutex);
14749 }
14750
14751 /*
14752  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14753  * resume, or other times.  This quirk makes sure that's the case for
14754  * affected systems.
14755  */
14756 static void quirk_pipea_force(struct drm_device *dev)
14757 {
14758         struct drm_i915_private *dev_priv = dev->dev_private;
14759
14760         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14761         DRM_INFO("applying pipe a force quirk\n");
14762 }
14763
14764 static void quirk_pipeb_force(struct drm_device *dev)
14765 {
14766         struct drm_i915_private *dev_priv = dev->dev_private;
14767
14768         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14769         DRM_INFO("applying pipe b force quirk\n");
14770 }
14771
14772 /*
14773  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14774  */
14775 static void quirk_ssc_force_disable(struct drm_device *dev)
14776 {
14777         struct drm_i915_private *dev_priv = dev->dev_private;
14778         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14779         DRM_INFO("applying lvds SSC disable quirk\n");
14780 }
14781
14782 /*
14783  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14784  * brightness value
14785  */
14786 static void quirk_invert_brightness(struct drm_device *dev)
14787 {
14788         struct drm_i915_private *dev_priv = dev->dev_private;
14789         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14790         DRM_INFO("applying inverted panel brightness quirk\n");
14791 }
14792
14793 /* Some VBT's incorrectly indicate no backlight is present */
14794 static void quirk_backlight_present(struct drm_device *dev)
14795 {
14796         struct drm_i915_private *dev_priv = dev->dev_private;
14797         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14798         DRM_INFO("applying backlight present quirk\n");
14799 }
14800
14801 struct intel_quirk {
14802         int device;
14803         int subsystem_vendor;
14804         int subsystem_device;
14805         void (*hook)(struct drm_device *dev);
14806 };
14807
14808 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14809 struct intel_dmi_quirk {
14810         void (*hook)(struct drm_device *dev);
14811         const struct dmi_system_id (*dmi_id_list)[];
14812 };
14813
14814 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14815 {
14816         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14817         return 1;
14818 }
14819
14820 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14821         {
14822                 .dmi_id_list = &(const struct dmi_system_id[]) {
14823                         {
14824                                 .callback = intel_dmi_reverse_brightness,
14825                                 .ident = "NCR Corporation",
14826                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14827                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14828                                 },
14829                         },
14830                         { }  /* terminating entry */
14831                 },
14832                 .hook = quirk_invert_brightness,
14833         },
14834 };
14835
14836 static struct intel_quirk intel_quirks[] = {
14837         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14838         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14839
14840         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14841         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14842
14843         /* 830 needs to leave pipe A & dpll A up */
14844         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14845
14846         /* 830 needs to leave pipe B & dpll B up */
14847         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14848
14849         /* Lenovo U160 cannot use SSC on LVDS */
14850         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14851
14852         /* Sony Vaio Y cannot use SSC on LVDS */
14853         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14854
14855         /* Acer Aspire 5734Z must invert backlight brightness */
14856         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14857
14858         /* Acer/eMachines G725 */
14859         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14860
14861         /* Acer/eMachines e725 */
14862         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14863
14864         /* Acer/Packard Bell NCL20 */
14865         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14866
14867         /* Acer Aspire 4736Z */
14868         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14869
14870         /* Acer Aspire 5336 */
14871         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14872
14873         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14874         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14875
14876         /* Acer C720 Chromebook (Core i3 4005U) */
14877         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14878
14879         /* Apple Macbook 2,1 (Core 2 T7400) */
14880         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14881
14882         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14883         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14884
14885         /* HP Chromebook 14 (Celeron 2955U) */
14886         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14887
14888         /* Dell Chromebook 11 */
14889         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14890 };
14891
14892 static void intel_init_quirks(struct drm_device *dev)
14893 {
14894         struct pci_dev *d = dev->pdev;
14895         int i;
14896
14897         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14898                 struct intel_quirk *q = &intel_quirks[i];
14899
14900                 if (d->device == q->device &&
14901                     (d->subsystem_vendor == q->subsystem_vendor ||
14902                      q->subsystem_vendor == PCI_ANY_ID) &&
14903                     (d->subsystem_device == q->subsystem_device ||
14904                      q->subsystem_device == PCI_ANY_ID))
14905                         q->hook(dev);
14906         }
14907         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14908                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14909                         intel_dmi_quirks[i].hook(dev);
14910         }
14911 }
14912
14913 /* Disable the VGA plane that we never use */
14914 static void i915_disable_vga(struct drm_device *dev)
14915 {
14916         struct drm_i915_private *dev_priv = dev->dev_private;
14917         u8 sr1;
14918         u32 vga_reg = i915_vgacntrl_reg(dev);
14919
14920         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14921         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14922         outb(SR01, VGA_SR_INDEX);
14923         sr1 = inb(VGA_SR_DATA);
14924         outb(sr1 | 1<<5, VGA_SR_DATA);
14925         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14926         udelay(300);
14927
14928         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14929         POSTING_READ(vga_reg);
14930 }
14931
14932 void intel_modeset_init_hw(struct drm_device *dev)
14933 {
14934         intel_update_cdclk(dev);
14935         intel_prepare_ddi(dev);
14936         intel_init_clock_gating(dev);
14937         intel_enable_gt_powersave(dev);
14938 }
14939
14940 void intel_modeset_init(struct drm_device *dev)
14941 {
14942         struct drm_i915_private *dev_priv = dev->dev_private;
14943         int sprite, ret;
14944         enum pipe pipe;
14945         struct intel_crtc *crtc;
14946
14947         drm_mode_config_init(dev);
14948
14949         dev->mode_config.min_width = 0;
14950         dev->mode_config.min_height = 0;
14951
14952         dev->mode_config.preferred_depth = 24;
14953         dev->mode_config.prefer_shadow = 1;
14954
14955         dev->mode_config.allow_fb_modifiers = true;
14956
14957         dev->mode_config.funcs = &intel_mode_funcs;
14958
14959         intel_init_quirks(dev);
14960
14961         intel_init_pm(dev);
14962
14963         if (INTEL_INFO(dev)->num_pipes == 0)
14964                 return;
14965
14966         intel_init_display(dev);
14967         intel_init_audio(dev);
14968
14969         if (IS_GEN2(dev)) {
14970                 dev->mode_config.max_width = 2048;
14971                 dev->mode_config.max_height = 2048;
14972         } else if (IS_GEN3(dev)) {
14973                 dev->mode_config.max_width = 4096;
14974                 dev->mode_config.max_height = 4096;
14975         } else {
14976                 dev->mode_config.max_width = 8192;
14977                 dev->mode_config.max_height = 8192;
14978         }
14979
14980         if (IS_845G(dev) || IS_I865G(dev)) {
14981                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14982                 dev->mode_config.cursor_height = 1023;
14983         } else if (IS_GEN2(dev)) {
14984                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14985                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14986         } else {
14987                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14988                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14989         }
14990
14991         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14992
14993         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14994                       INTEL_INFO(dev)->num_pipes,
14995                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14996
14997         for_each_pipe(dev_priv, pipe) {
14998                 intel_crtc_init(dev, pipe);
14999                 for_each_sprite(dev_priv, pipe, sprite) {
15000                         ret = intel_plane_init(dev, pipe, sprite);
15001                         if (ret)
15002                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15003                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15004                 }
15005         }
15006
15007         intel_init_dpio(dev);
15008
15009         intel_shared_dpll_init(dev);
15010
15011         /* Just disable it once at startup */
15012         i915_disable_vga(dev);
15013         intel_setup_outputs(dev);
15014
15015         /* Just in case the BIOS is doing something questionable. */
15016         intel_fbc_disable(dev);
15017
15018         drm_modeset_lock_all(dev);
15019         intel_modeset_setup_hw_state(dev, false);
15020         drm_modeset_unlock_all(dev);
15021
15022         for_each_intel_crtc(dev, crtc) {
15023                 if (!crtc->active)
15024                         continue;
15025
15026                 /*
15027                  * Note that reserving the BIOS fb up front prevents us
15028                  * from stuffing other stolen allocations like the ring
15029                  * on top.  This prevents some ugliness at boot time, and
15030                  * can even allow for smooth boot transitions if the BIOS
15031                  * fb is large enough for the active pipe configuration.
15032                  */
15033                 if (dev_priv->display.get_initial_plane_config) {
15034                         dev_priv->display.get_initial_plane_config(crtc,
15035                                                            &crtc->plane_config);
15036                         /*
15037                          * If the fb is shared between multiple heads, we'll
15038                          * just get the first one.
15039                          */
15040                         intel_find_initial_plane_obj(crtc, &crtc->plane_config);
15041                 }
15042         }
15043 }
15044
15045 static void intel_enable_pipe_a(struct drm_device *dev)
15046 {
15047         struct intel_connector *connector;
15048         struct drm_connector *crt = NULL;
15049         struct intel_load_detect_pipe load_detect_temp;
15050         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15051
15052         /* We can't just switch on the pipe A, we need to set things up with a
15053          * proper mode and output configuration. As a gross hack, enable pipe A
15054          * by enabling the load detect pipe once. */
15055         for_each_intel_connector(dev, connector) {
15056                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15057                         crt = &connector->base;
15058                         break;
15059                 }
15060         }
15061
15062         if (!crt)
15063                 return;
15064
15065         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15066                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15067 }
15068
15069 static bool
15070 intel_check_plane_mapping(struct intel_crtc *crtc)
15071 {
15072         struct drm_device *dev = crtc->base.dev;
15073         struct drm_i915_private *dev_priv = dev->dev_private;
15074         u32 reg, val;
15075
15076         if (INTEL_INFO(dev)->num_pipes == 1)
15077                 return true;
15078
15079         reg = DSPCNTR(!crtc->plane);
15080         val = I915_READ(reg);
15081
15082         if ((val & DISPLAY_PLANE_ENABLE) &&
15083             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15084                 return false;
15085
15086         return true;
15087 }
15088
15089 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15090 {
15091         struct drm_device *dev = crtc->base.dev;
15092         struct drm_i915_private *dev_priv = dev->dev_private;
15093         struct intel_encoder *encoder;
15094         u32 reg;
15095         bool enable;
15096
15097         /* Clear any frame start delays used for debugging left by the BIOS */
15098         reg = PIPECONF(crtc->config->cpu_transcoder);
15099         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15100
15101         /* restore vblank interrupts to correct state */
15102         drm_crtc_vblank_reset(&crtc->base);
15103         if (crtc->active) {
15104                 update_scanline_offset(crtc);
15105                 drm_crtc_vblank_on(&crtc->base);
15106         }
15107
15108         /* We need to sanitize the plane -> pipe mapping first because this will
15109          * disable the crtc (and hence change the state) if it is wrong. Note
15110          * that gen4+ has a fixed plane -> pipe mapping.  */
15111         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15112                 bool plane;
15113
15114                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15115                               crtc->base.base.id);
15116
15117                 /* Pipe has the wrong plane attached and the plane is active.
15118                  * Temporarily change the plane mapping and disable everything
15119                  * ...  */
15120                 plane = crtc->plane;
15121                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15122                 crtc->plane = !plane;
15123                 intel_crtc_disable_noatomic(&crtc->base);
15124                 crtc->plane = plane;
15125         }
15126
15127         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15128             crtc->pipe == PIPE_A && !crtc->active) {
15129                 /* BIOS forgot to enable pipe A, this mostly happens after
15130                  * resume. Force-enable the pipe to fix this, the update_dpms
15131                  * call below we restore the pipe to the right state, but leave
15132                  * the required bits on. */
15133                 intel_enable_pipe_a(dev);
15134         }
15135
15136         /* Adjust the state of the output pipe according to whether we
15137          * have active connectors/encoders. */
15138         enable = false;
15139         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15140                 enable |= encoder->connectors_active;
15141
15142         if (!enable)
15143                 intel_crtc_disable_noatomic(&crtc->base);
15144
15145         if (crtc->active != crtc->base.state->active) {
15146
15147                 /* This can happen either due to bugs in the get_hw_state
15148                  * functions or because of calls to intel_crtc_disable_noatomic,
15149                  * or because the pipe is force-enabled due to the
15150                  * pipe A quirk. */
15151                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15152                               crtc->base.base.id,
15153                               crtc->base.state->enable ? "enabled" : "disabled",
15154                               crtc->active ? "enabled" : "disabled");
15155
15156                 crtc->base.state->enable = crtc->active;
15157                 crtc->base.state->active = crtc->active;
15158                 crtc->base.enabled = crtc->active;
15159
15160                 /* Because we only establish the connector -> encoder ->
15161                  * crtc links if something is active, this means the
15162                  * crtc is now deactivated. Break the links. connector
15163                  * -> encoder links are only establish when things are
15164                  *  actually up, hence no need to break them. */
15165                 WARN_ON(crtc->active);
15166
15167                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15168                         WARN_ON(encoder->connectors_active);
15169                         encoder->base.crtc = NULL;
15170                 }
15171         }
15172
15173         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15174                 /*
15175                  * We start out with underrun reporting disabled to avoid races.
15176                  * For correct bookkeeping mark this on active crtcs.
15177                  *
15178                  * Also on gmch platforms we dont have any hardware bits to
15179                  * disable the underrun reporting. Which means we need to start
15180                  * out with underrun reporting disabled also on inactive pipes,
15181                  * since otherwise we'll complain about the garbage we read when
15182                  * e.g. coming up after runtime pm.
15183                  *
15184                  * No protection against concurrent access is required - at
15185                  * worst a fifo underrun happens which also sets this to false.
15186                  */
15187                 crtc->cpu_fifo_underrun_disabled = true;
15188                 crtc->pch_fifo_underrun_disabled = true;
15189         }
15190 }
15191
15192 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15193 {
15194         struct intel_connector *connector;
15195         struct drm_device *dev = encoder->base.dev;
15196
15197         /* We need to check both for a crtc link (meaning that the
15198          * encoder is active and trying to read from a pipe) and the
15199          * pipe itself being active. */
15200         bool has_active_crtc = encoder->base.crtc &&
15201                 to_intel_crtc(encoder->base.crtc)->active;
15202
15203         if (encoder->connectors_active && !has_active_crtc) {
15204                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15205                               encoder->base.base.id,
15206                               encoder->base.name);
15207
15208                 /* Connector is active, but has no active pipe. This is
15209                  * fallout from our resume register restoring. Disable
15210                  * the encoder manually again. */
15211                 if (encoder->base.crtc) {
15212                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15213                                       encoder->base.base.id,
15214                                       encoder->base.name);
15215                         encoder->disable(encoder);
15216                         if (encoder->post_disable)
15217                                 encoder->post_disable(encoder);
15218                 }
15219                 encoder->base.crtc = NULL;
15220                 encoder->connectors_active = false;
15221
15222                 /* Inconsistent output/port/pipe state happens presumably due to
15223                  * a bug in one of the get_hw_state functions. Or someplace else
15224                  * in our code, like the register restore mess on resume. Clamp
15225                  * things to off as a safer default. */
15226                 for_each_intel_connector(dev, connector) {
15227                         if (connector->encoder != encoder)
15228                                 continue;
15229                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15230                         connector->base.encoder = NULL;
15231                 }
15232         }
15233         /* Enabled encoders without active connectors will be fixed in
15234          * the crtc fixup. */
15235 }
15236
15237 void i915_redisable_vga_power_on(struct drm_device *dev)
15238 {
15239         struct drm_i915_private *dev_priv = dev->dev_private;
15240         u32 vga_reg = i915_vgacntrl_reg(dev);
15241
15242         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15243                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15244                 i915_disable_vga(dev);
15245         }
15246 }
15247
15248 void i915_redisable_vga(struct drm_device *dev)
15249 {
15250         struct drm_i915_private *dev_priv = dev->dev_private;
15251
15252         /* This function can be called both from intel_modeset_setup_hw_state or
15253          * at a very early point in our resume sequence, where the power well
15254          * structures are not yet restored. Since this function is at a very
15255          * paranoid "someone might have enabled VGA while we were not looking"
15256          * level, just check if the power well is enabled instead of trying to
15257          * follow the "don't touch the power well if we don't need it" policy
15258          * the rest of the driver uses. */
15259         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15260                 return;
15261
15262         i915_redisable_vga_power_on(dev);
15263 }
15264
15265 static bool primary_get_hw_state(struct intel_crtc *crtc)
15266 {
15267         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15268
15269         return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15270 }
15271
15272 static void readout_plane_state(struct intel_crtc *crtc,
15273                                 struct intel_crtc_state *crtc_state)
15274 {
15275         struct intel_plane *p;
15276         struct drm_plane_state *drm_plane_state;
15277         bool active = crtc_state->base.active;
15278
15279         if (active) {
15280                 crtc_state->quirks |= PIPE_CONFIG_QUIRK_INITIAL_PLANES;
15281
15282                 /* apply to previous sw state too */
15283                 to_intel_crtc_state(crtc->base.state)->quirks |=
15284                         PIPE_CONFIG_QUIRK_INITIAL_PLANES;
15285         }
15286
15287         for_each_intel_plane(crtc->base.dev, p) {
15288                 bool visible = active;
15289
15290                 if (crtc->pipe != p->pipe)
15291                         continue;
15292
15293                 drm_plane_state = p->base.state;
15294                 if (active && p->base.type == DRM_PLANE_TYPE_PRIMARY) {
15295                         visible = primary_get_hw_state(crtc);
15296                         to_intel_plane_state(drm_plane_state)->visible = visible;
15297                 } else {
15298                         /*
15299                          * unknown state, assume it's off to force a transition
15300                          * to on when calculating state changes.
15301                          */
15302                         to_intel_plane_state(drm_plane_state)->visible = false;
15303                 }
15304
15305                 if (visible) {
15306                         crtc_state->base.plane_mask |=
15307                                 1 << drm_plane_index(&p->base);
15308                 } else if (crtc_state->base.state) {
15309                         /* Make this unconditional for atomic hw readout. */
15310                         crtc_state->base.plane_mask &=
15311                                 ~(1 << drm_plane_index(&p->base));
15312                 }
15313         }
15314 }
15315
15316 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15317 {
15318         struct drm_i915_private *dev_priv = dev->dev_private;
15319         enum pipe pipe;
15320         struct intel_crtc *crtc;
15321         struct intel_encoder *encoder;
15322         struct intel_connector *connector;
15323         int i;
15324
15325         for_each_intel_crtc(dev, crtc) {
15326                 memset(crtc->config, 0, sizeof(*crtc->config));
15327                 crtc->config->base.crtc = &crtc->base;
15328
15329                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15330
15331                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15332                                                                  crtc->config);
15333
15334                 crtc->base.state->enable = crtc->active;
15335                 crtc->base.state->active = crtc->active;
15336                 crtc->base.enabled = crtc->active;
15337                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15338
15339                 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
15340
15341                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15342                               crtc->base.base.id,
15343                               crtc->active ? "enabled" : "disabled");
15344         }
15345
15346         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15347                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15348
15349                 pll->on = pll->get_hw_state(dev_priv, pll,
15350                                             &pll->config.hw_state);
15351                 pll->active = 0;
15352                 pll->config.crtc_mask = 0;
15353                 for_each_intel_crtc(dev, crtc) {
15354                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15355                                 pll->active++;
15356                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15357                         }
15358                 }
15359
15360                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15361                               pll->name, pll->config.crtc_mask, pll->on);
15362
15363                 if (pll->config.crtc_mask)
15364                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15365         }
15366
15367         for_each_intel_encoder(dev, encoder) {
15368                 pipe = 0;
15369
15370                 if (encoder->get_hw_state(encoder, &pipe)) {
15371                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15372                         encoder->base.crtc = &crtc->base;
15373                         encoder->get_config(encoder, crtc->config);
15374                 } else {
15375                         encoder->base.crtc = NULL;
15376                 }
15377
15378                 encoder->connectors_active = false;
15379                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15380                               encoder->base.base.id,
15381                               encoder->base.name,
15382                               encoder->base.crtc ? "enabled" : "disabled",
15383                               pipe_name(pipe));
15384         }
15385
15386         for_each_intel_connector(dev, connector) {
15387                 if (connector->get_hw_state(connector)) {
15388                         connector->base.dpms = DRM_MODE_DPMS_ON;
15389                         connector->encoder->connectors_active = true;
15390                         connector->base.encoder = &connector->encoder->base;
15391                 } else {
15392                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15393                         connector->base.encoder = NULL;
15394                 }
15395                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15396                               connector->base.base.id,
15397                               connector->base.name,
15398                               connector->base.encoder ? "enabled" : "disabled");
15399         }
15400 }
15401
15402 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15403  * and i915 state tracking structures. */
15404 void intel_modeset_setup_hw_state(struct drm_device *dev,
15405                                   bool force_restore)
15406 {
15407         struct drm_i915_private *dev_priv = dev->dev_private;
15408         enum pipe pipe;
15409         struct intel_crtc *crtc;
15410         struct intel_encoder *encoder;
15411         int i;
15412
15413         intel_modeset_readout_hw_state(dev);
15414
15415         /*
15416          * Now that we have the config, copy it to each CRTC struct
15417          * Note that this could go away if we move to using crtc_config
15418          * checking everywhere.
15419          */
15420         for_each_intel_crtc(dev, crtc) {
15421                 if (crtc->active && i915.fastboot) {
15422                         intel_mode_from_pipe_config(&crtc->base.mode,
15423                                                     crtc->config);
15424                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15425                                       crtc->base.base.id);
15426                         drm_mode_debug_printmodeline(&crtc->base.mode);
15427                 }
15428         }
15429
15430         /* HW state is read out, now we need to sanitize this mess. */
15431         for_each_intel_encoder(dev, encoder) {
15432                 intel_sanitize_encoder(encoder);
15433         }
15434
15435         for_each_pipe(dev_priv, pipe) {
15436                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15437                 intel_sanitize_crtc(crtc);
15438                 intel_dump_pipe_config(crtc, crtc->config,
15439                                        "[setup_hw_state]");
15440         }
15441
15442         intel_modeset_update_connector_atomic_state(dev);
15443
15444         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15445                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15446
15447                 if (!pll->on || pll->active)
15448                         continue;
15449
15450                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15451
15452                 pll->disable(dev_priv, pll);
15453                 pll->on = false;
15454         }
15455
15456         if (IS_CHERRYVIEW(dev))
15457                 vlv_wm_get_hw_state(dev);
15458         else if (IS_GEN9(dev))
15459                 skl_wm_get_hw_state(dev);
15460         else if (HAS_PCH_SPLIT(dev))
15461                 ilk_wm_get_hw_state(dev);
15462
15463         if (force_restore) {
15464                 i915_redisable_vga(dev);
15465
15466                 /*
15467                  * We need to use raw interfaces for restoring state to avoid
15468                  * checking (bogus) intermediate states.
15469                  */
15470                 for_each_pipe(dev_priv, pipe) {
15471                         struct drm_crtc *crtc =
15472                                 dev_priv->pipe_to_crtc_mapping[pipe];
15473
15474                         intel_crtc_restore_mode(crtc);
15475                 }
15476         } else {
15477                 intel_modeset_update_staged_output_state(dev);
15478         }
15479
15480         intel_modeset_check_state(dev);
15481 }
15482
15483 void intel_modeset_gem_init(struct drm_device *dev)
15484 {
15485         struct drm_i915_private *dev_priv = dev->dev_private;
15486         struct drm_crtc *c;
15487         struct drm_i915_gem_object *obj;
15488         int ret;
15489
15490         mutex_lock(&dev->struct_mutex);
15491         intel_init_gt_powersave(dev);
15492         mutex_unlock(&dev->struct_mutex);
15493
15494         /*
15495          * There may be no VBT; and if the BIOS enabled SSC we can
15496          * just keep using it to avoid unnecessary flicker.  Whereas if the
15497          * BIOS isn't using it, don't assume it will work even if the VBT
15498          * indicates as much.
15499          */
15500         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15501                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15502                                                 DREF_SSC1_ENABLE);
15503
15504         intel_modeset_init_hw(dev);
15505
15506         intel_setup_overlay(dev);
15507
15508         /*
15509          * Make sure any fbs we allocated at startup are properly
15510          * pinned & fenced.  When we do the allocation it's too early
15511          * for this.
15512          */
15513         for_each_crtc(dev, c) {
15514                 obj = intel_fb_obj(c->primary->fb);
15515                 if (obj == NULL)
15516                         continue;
15517
15518                 mutex_lock(&dev->struct_mutex);
15519                 ret = intel_pin_and_fence_fb_obj(c->primary,
15520                                                  c->primary->fb,
15521                                                  c->primary->state,
15522                                                  NULL, NULL);
15523                 mutex_unlock(&dev->struct_mutex);
15524                 if (ret) {
15525                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15526                                   to_intel_crtc(c)->pipe);
15527                         drm_framebuffer_unreference(c->primary->fb);
15528                         c->primary->fb = NULL;
15529                         c->primary->crtc = c->primary->state->crtc = NULL;
15530                         update_state_fb(c->primary);
15531                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15532                 }
15533         }
15534
15535         intel_backlight_register(dev);
15536 }
15537
15538 void intel_connector_unregister(struct intel_connector *intel_connector)
15539 {
15540         struct drm_connector *connector = &intel_connector->base;
15541
15542         intel_panel_destroy_backlight(connector);
15543         drm_connector_unregister(connector);
15544 }
15545
15546 void intel_modeset_cleanup(struct drm_device *dev)
15547 {
15548         struct drm_i915_private *dev_priv = dev->dev_private;
15549         struct drm_connector *connector;
15550
15551         intel_disable_gt_powersave(dev);
15552
15553         intel_backlight_unregister(dev);
15554
15555         /*
15556          * Interrupts and polling as the first thing to avoid creating havoc.
15557          * Too much stuff here (turning of connectors, ...) would
15558          * experience fancy races otherwise.
15559          */
15560         intel_irq_uninstall(dev_priv);
15561
15562         /*
15563          * Due to the hpd irq storm handling the hotplug work can re-arm the
15564          * poll handlers. Hence disable polling after hpd handling is shut down.
15565          */
15566         drm_kms_helper_poll_fini(dev);
15567
15568         mutex_lock(&dev->struct_mutex);
15569
15570         intel_unregister_dsm_handler();
15571
15572         intel_fbc_disable(dev);
15573
15574         mutex_unlock(&dev->struct_mutex);
15575
15576         /* flush any delayed tasks or pending work */
15577         flush_scheduled_work();
15578
15579         /* destroy the backlight and sysfs files before encoders/connectors */
15580         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15581                 struct intel_connector *intel_connector;
15582
15583                 intel_connector = to_intel_connector(connector);
15584                 intel_connector->unregister(intel_connector);
15585         }
15586
15587         drm_mode_config_cleanup(dev);
15588
15589         intel_cleanup_overlay(dev);
15590
15591         mutex_lock(&dev->struct_mutex);
15592         intel_cleanup_gt_powersave(dev);
15593         mutex_unlock(&dev->struct_mutex);
15594 }
15595
15596 /*
15597  * Return which encoder is currently attached for connector.
15598  */
15599 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15600 {
15601         return &intel_attached_encoder(connector)->base;
15602 }
15603
15604 void intel_connector_attach_encoder(struct intel_connector *connector,
15605                                     struct intel_encoder *encoder)
15606 {
15607         connector->encoder = encoder;
15608         drm_mode_connector_attach_encoder(&connector->base,
15609                                           &encoder->base);
15610 }
15611
15612 /*
15613  * set vga decode state - true == enable VGA decode
15614  */
15615 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15616 {
15617         struct drm_i915_private *dev_priv = dev->dev_private;
15618         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15619         u16 gmch_ctrl;
15620
15621         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15622                 DRM_ERROR("failed to read control word\n");
15623                 return -EIO;
15624         }
15625
15626         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15627                 return 0;
15628
15629         if (state)
15630                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15631         else
15632                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15633
15634         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15635                 DRM_ERROR("failed to write control word\n");
15636                 return -EIO;
15637         }
15638
15639         return 0;
15640 }
15641
15642 struct intel_display_error_state {
15643
15644         u32 power_well_driver;
15645
15646         int num_transcoders;
15647
15648         struct intel_cursor_error_state {
15649                 u32 control;
15650                 u32 position;
15651                 u32 base;
15652                 u32 size;
15653         } cursor[I915_MAX_PIPES];
15654
15655         struct intel_pipe_error_state {
15656                 bool power_domain_on;
15657                 u32 source;
15658                 u32 stat;
15659         } pipe[I915_MAX_PIPES];
15660
15661         struct intel_plane_error_state {
15662                 u32 control;
15663                 u32 stride;
15664                 u32 size;
15665                 u32 pos;
15666                 u32 addr;
15667                 u32 surface;
15668                 u32 tile_offset;
15669         } plane[I915_MAX_PIPES];
15670
15671         struct intel_transcoder_error_state {
15672                 bool power_domain_on;
15673                 enum transcoder cpu_transcoder;
15674
15675                 u32 conf;
15676
15677                 u32 htotal;
15678                 u32 hblank;
15679                 u32 hsync;
15680                 u32 vtotal;
15681                 u32 vblank;
15682                 u32 vsync;
15683         } transcoder[4];
15684 };
15685
15686 struct intel_display_error_state *
15687 intel_display_capture_error_state(struct drm_device *dev)
15688 {
15689         struct drm_i915_private *dev_priv = dev->dev_private;
15690         struct intel_display_error_state *error;
15691         int transcoders[] = {
15692                 TRANSCODER_A,
15693                 TRANSCODER_B,
15694                 TRANSCODER_C,
15695                 TRANSCODER_EDP,
15696         };
15697         int i;
15698
15699         if (INTEL_INFO(dev)->num_pipes == 0)
15700                 return NULL;
15701
15702         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15703         if (error == NULL)
15704                 return NULL;
15705
15706         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15707                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15708
15709         for_each_pipe(dev_priv, i) {
15710                 error->pipe[i].power_domain_on =
15711                         __intel_display_power_is_enabled(dev_priv,
15712                                                          POWER_DOMAIN_PIPE(i));
15713                 if (!error->pipe[i].power_domain_on)
15714                         continue;
15715
15716                 error->cursor[i].control = I915_READ(CURCNTR(i));
15717                 error->cursor[i].position = I915_READ(CURPOS(i));
15718                 error->cursor[i].base = I915_READ(CURBASE(i));
15719
15720                 error->plane[i].control = I915_READ(DSPCNTR(i));
15721                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15722                 if (INTEL_INFO(dev)->gen <= 3) {
15723                         error->plane[i].size = I915_READ(DSPSIZE(i));
15724                         error->plane[i].pos = I915_READ(DSPPOS(i));
15725                 }
15726                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15727                         error->plane[i].addr = I915_READ(DSPADDR(i));
15728                 if (INTEL_INFO(dev)->gen >= 4) {
15729                         error->plane[i].surface = I915_READ(DSPSURF(i));
15730                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15731                 }
15732
15733                 error->pipe[i].source = I915_READ(PIPESRC(i));
15734
15735                 if (HAS_GMCH_DISPLAY(dev))
15736                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15737         }
15738
15739         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15740         if (HAS_DDI(dev_priv->dev))
15741                 error->num_transcoders++; /* Account for eDP. */
15742
15743         for (i = 0; i < error->num_transcoders; i++) {
15744                 enum transcoder cpu_transcoder = transcoders[i];
15745
15746                 error->transcoder[i].power_domain_on =
15747                         __intel_display_power_is_enabled(dev_priv,
15748                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15749                 if (!error->transcoder[i].power_domain_on)
15750                         continue;
15751
15752                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15753
15754                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15755                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15756                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15757                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15758                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15759                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15760                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15761         }
15762
15763         return error;
15764 }
15765
15766 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15767
15768 void
15769 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15770                                 struct drm_device *dev,
15771                                 struct intel_display_error_state *error)
15772 {
15773         struct drm_i915_private *dev_priv = dev->dev_private;
15774         int i;
15775
15776         if (!error)
15777                 return;
15778
15779         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15780         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15781                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15782                            error->power_well_driver);
15783         for_each_pipe(dev_priv, i) {
15784                 err_printf(m, "Pipe [%d]:\n", i);
15785                 err_printf(m, "  Power: %s\n",
15786                            error->pipe[i].power_domain_on ? "on" : "off");
15787                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15788                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15789
15790                 err_printf(m, "Plane [%d]:\n", i);
15791                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15792                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15793                 if (INTEL_INFO(dev)->gen <= 3) {
15794                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15795                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15796                 }
15797                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15798                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15799                 if (INTEL_INFO(dev)->gen >= 4) {
15800                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15801                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15802                 }
15803
15804                 err_printf(m, "Cursor [%d]:\n", i);
15805                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15806                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15807                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15808         }
15809
15810         for (i = 0; i < error->num_transcoders; i++) {
15811                 err_printf(m, "CPU transcoder: %c\n",
15812                            transcoder_name(error->transcoder[i].cpu_transcoder));
15813                 err_printf(m, "  Power: %s\n",
15814                            error->transcoder[i].power_domain_on ? "on" : "off");
15815                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15816                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15817                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15818                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15819                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15820                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15821                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15822         }
15823 }
15824
15825 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15826 {
15827         struct intel_crtc *crtc;
15828
15829         for_each_intel_crtc(dev, crtc) {
15830                 struct intel_unpin_work *work;
15831
15832                 spin_lock_irq(&dev->event_lock);
15833
15834                 work = crtc->unpin_work;
15835
15836                 if (work && work->event &&
15837                     work->event->base.file_priv == file) {
15838                         kfree(work->event);
15839                         work->event = NULL;
15840                 }
15841
15842                 spin_unlock_irq(&dev->event_lock);
15843         }
15844 }