drm/i915: use calculated state for vblank evasion
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79         DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85                                 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87                                    struct intel_crtc_state *pipe_config);
88
89 static int intel_set_mode(struct drm_atomic_state *state);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97                                          struct intel_link_m_n *m_n,
98                                          struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc,
103                             const struct intel_crtc_state *pipe_config);
104 static void chv_prepare_pll(struct intel_crtc *crtc,
105                             const struct intel_crtc_state *pipe_config);
106 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
107 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
108 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
109         struct intel_crtc_state *crtc_state);
110 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
111                            int num_connectors);
112 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
113 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
114
115 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
116 {
117         if (!connector->mst_port)
118                 return connector->encoder;
119         else
120                 return &connector->mst_port->mst_encoders[pipe]->base;
121 }
122
123 typedef struct {
124         int     min, max;
125 } intel_range_t;
126
127 typedef struct {
128         int     dot_limit;
129         int     p2_slow, p2_fast;
130 } intel_p2_t;
131
132 typedef struct intel_limit intel_limit_t;
133 struct intel_limit {
134         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
135         intel_p2_t          p2;
136 };
137
138 int
139 intel_pch_rawclk(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142
143         WARN_ON(!HAS_PCH_SPLIT(dev));
144
145         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
146 }
147
148 static inline u32 /* units of 100MHz */
149 intel_fdi_link_freq(struct drm_device *dev)
150 {
151         if (IS_GEN5(dev)) {
152                 struct drm_i915_private *dev_priv = dev->dev_private;
153                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
154         } else
155                 return 27;
156 }
157
158 static const intel_limit_t intel_limits_i8xx_dac = {
159         .dot = { .min = 25000, .max = 350000 },
160         .vco = { .min = 908000, .max = 1512000 },
161         .n = { .min = 2, .max = 16 },
162         .m = { .min = 96, .max = 140 },
163         .m1 = { .min = 18, .max = 26 },
164         .m2 = { .min = 6, .max = 16 },
165         .p = { .min = 4, .max = 128 },
166         .p1 = { .min = 2, .max = 33 },
167         .p2 = { .dot_limit = 165000,
168                 .p2_slow = 4, .p2_fast = 2 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_dvo = {
172         .dot = { .min = 25000, .max = 350000 },
173         .vco = { .min = 908000, .max = 1512000 },
174         .n = { .min = 2, .max = 16 },
175         .m = { .min = 96, .max = 140 },
176         .m1 = { .min = 18, .max = 26 },
177         .m2 = { .min = 6, .max = 16 },
178         .p = { .min = 4, .max = 128 },
179         .p1 = { .min = 2, .max = 33 },
180         .p2 = { .dot_limit = 165000,
181                 .p2_slow = 4, .p2_fast = 4 },
182 };
183
184 static const intel_limit_t intel_limits_i8xx_lvds = {
185         .dot = { .min = 25000, .max = 350000 },
186         .vco = { .min = 908000, .max = 1512000 },
187         .n = { .min = 2, .max = 16 },
188         .m = { .min = 96, .max = 140 },
189         .m1 = { .min = 18, .max = 26 },
190         .m2 = { .min = 6, .max = 16 },
191         .p = { .min = 4, .max = 128 },
192         .p1 = { .min = 1, .max = 6 },
193         .p2 = { .dot_limit = 165000,
194                 .p2_slow = 14, .p2_fast = 7 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_sdvo = {
198         .dot = { .min = 20000, .max = 400000 },
199         .vco = { .min = 1400000, .max = 2800000 },
200         .n = { .min = 1, .max = 6 },
201         .m = { .min = 70, .max = 120 },
202         .m1 = { .min = 8, .max = 18 },
203         .m2 = { .min = 3, .max = 7 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8 },
206         .p2 = { .dot_limit = 200000,
207                 .p2_slow = 10, .p2_fast = 5 },
208 };
209
210 static const intel_limit_t intel_limits_i9xx_lvds = {
211         .dot = { .min = 20000, .max = 400000 },
212         .vco = { .min = 1400000, .max = 2800000 },
213         .n = { .min = 1, .max = 6 },
214         .m = { .min = 70, .max = 120 },
215         .m1 = { .min = 8, .max = 18 },
216         .m2 = { .min = 3, .max = 7 },
217         .p = { .min = 7, .max = 98 },
218         .p1 = { .min = 1, .max = 8 },
219         .p2 = { .dot_limit = 112000,
220                 .p2_slow = 14, .p2_fast = 7 },
221 };
222
223
224 static const intel_limit_t intel_limits_g4x_sdvo = {
225         .dot = { .min = 25000, .max = 270000 },
226         .vco = { .min = 1750000, .max = 3500000},
227         .n = { .min = 1, .max = 4 },
228         .m = { .min = 104, .max = 138 },
229         .m1 = { .min = 17, .max = 23 },
230         .m2 = { .min = 5, .max = 11 },
231         .p = { .min = 10, .max = 30 },
232         .p1 = { .min = 1, .max = 3},
233         .p2 = { .dot_limit = 270000,
234                 .p2_slow = 10,
235                 .p2_fast = 10
236         },
237 };
238
239 static const intel_limit_t intel_limits_g4x_hdmi = {
240         .dot = { .min = 22000, .max = 400000 },
241         .vco = { .min = 1750000, .max = 3500000},
242         .n = { .min = 1, .max = 4 },
243         .m = { .min = 104, .max = 138 },
244         .m1 = { .min = 16, .max = 23 },
245         .m2 = { .min = 5, .max = 11 },
246         .p = { .min = 5, .max = 80 },
247         .p1 = { .min = 1, .max = 8},
248         .p2 = { .dot_limit = 165000,
249                 .p2_slow = 10, .p2_fast = 5 },
250 };
251
252 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
253         .dot = { .min = 20000, .max = 115000 },
254         .vco = { .min = 1750000, .max = 3500000 },
255         .n = { .min = 1, .max = 3 },
256         .m = { .min = 104, .max = 138 },
257         .m1 = { .min = 17, .max = 23 },
258         .m2 = { .min = 5, .max = 11 },
259         .p = { .min = 28, .max = 112 },
260         .p1 = { .min = 2, .max = 8 },
261         .p2 = { .dot_limit = 0,
262                 .p2_slow = 14, .p2_fast = 14
263         },
264 };
265
266 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
267         .dot = { .min = 80000, .max = 224000 },
268         .vco = { .min = 1750000, .max = 3500000 },
269         .n = { .min = 1, .max = 3 },
270         .m = { .min = 104, .max = 138 },
271         .m1 = { .min = 17, .max = 23 },
272         .m2 = { .min = 5, .max = 11 },
273         .p = { .min = 14, .max = 42 },
274         .p1 = { .min = 2, .max = 6 },
275         .p2 = { .dot_limit = 0,
276                 .p2_slow = 7, .p2_fast = 7
277         },
278 };
279
280 static const intel_limit_t intel_limits_pineview_sdvo = {
281         .dot = { .min = 20000, .max = 400000},
282         .vco = { .min = 1700000, .max = 3500000 },
283         /* Pineview's Ncounter is a ring counter */
284         .n = { .min = 3, .max = 6 },
285         .m = { .min = 2, .max = 256 },
286         /* Pineview only has one combined m divider, which we treat as m2. */
287         .m1 = { .min = 0, .max = 0 },
288         .m2 = { .min = 0, .max = 254 },
289         .p = { .min = 5, .max = 80 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 200000,
292                 .p2_slow = 10, .p2_fast = 5 },
293 };
294
295 static const intel_limit_t intel_limits_pineview_lvds = {
296         .dot = { .min = 20000, .max = 400000 },
297         .vco = { .min = 1700000, .max = 3500000 },
298         .n = { .min = 3, .max = 6 },
299         .m = { .min = 2, .max = 256 },
300         .m1 = { .min = 0, .max = 0 },
301         .m2 = { .min = 0, .max = 254 },
302         .p = { .min = 7, .max = 112 },
303         .p1 = { .min = 1, .max = 8 },
304         .p2 = { .dot_limit = 112000,
305                 .p2_slow = 14, .p2_fast = 14 },
306 };
307
308 /* Ironlake / Sandybridge
309  *
310  * We calculate clock using (register_value + 2) for N/M1/M2, so here
311  * the range value for them is (actual_value - 2).
312  */
313 static const intel_limit_t intel_limits_ironlake_dac = {
314         .dot = { .min = 25000, .max = 350000 },
315         .vco = { .min = 1760000, .max = 3510000 },
316         .n = { .min = 1, .max = 5 },
317         .m = { .min = 79, .max = 127 },
318         .m1 = { .min = 12, .max = 22 },
319         .m2 = { .min = 5, .max = 9 },
320         .p = { .min = 5, .max = 80 },
321         .p1 = { .min = 1, .max = 8 },
322         .p2 = { .dot_limit = 225000,
323                 .p2_slow = 10, .p2_fast = 5 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_single_lvds = {
327         .dot = { .min = 25000, .max = 350000 },
328         .vco = { .min = 1760000, .max = 3510000 },
329         .n = { .min = 1, .max = 3 },
330         .m = { .min = 79, .max = 118 },
331         .m1 = { .min = 12, .max = 22 },
332         .m2 = { .min = 5, .max = 9 },
333         .p = { .min = 28, .max = 112 },
334         .p1 = { .min = 2, .max = 8 },
335         .p2 = { .dot_limit = 225000,
336                 .p2_slow = 14, .p2_fast = 14 },
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
340         .dot = { .min = 25000, .max = 350000 },
341         .vco = { .min = 1760000, .max = 3510000 },
342         .n = { .min = 1, .max = 3 },
343         .m = { .min = 79, .max = 127 },
344         .m1 = { .min = 12, .max = 22 },
345         .m2 = { .min = 5, .max = 9 },
346         .p = { .min = 14, .max = 56 },
347         .p1 = { .min = 2, .max = 8 },
348         .p2 = { .dot_limit = 225000,
349                 .p2_slow = 7, .p2_fast = 7 },
350 };
351
352 /* LVDS 100mhz refclk limits. */
353 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000 },
356         .n = { .min = 1, .max = 2 },
357         .m = { .min = 79, .max = 126 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 28, .max = 112 },
361         .p1 = { .min = 2, .max = 8 },
362         .p2 = { .dot_limit = 225000,
363                 .p2_slow = 14, .p2_fast = 14 },
364 };
365
366 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
367         .dot = { .min = 25000, .max = 350000 },
368         .vco = { .min = 1760000, .max = 3510000 },
369         .n = { .min = 1, .max = 3 },
370         .m = { .min = 79, .max = 126 },
371         .m1 = { .min = 12, .max = 22 },
372         .m2 = { .min = 5, .max = 9 },
373         .p = { .min = 14, .max = 42 },
374         .p1 = { .min = 2, .max = 6 },
375         .p2 = { .dot_limit = 225000,
376                 .p2_slow = 7, .p2_fast = 7 },
377 };
378
379 static const intel_limit_t intel_limits_vlv = {
380          /*
381           * These are the data rate limits (measured in fast clocks)
382           * since those are the strictest limits we have. The fast
383           * clock and actual rate limits are more relaxed, so checking
384           * them would make no difference.
385           */
386         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
387         .vco = { .min = 4000000, .max = 6000000 },
388         .n = { .min = 1, .max = 7 },
389         .m1 = { .min = 2, .max = 3 },
390         .m2 = { .min = 11, .max = 156 },
391         .p1 = { .min = 2, .max = 3 },
392         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
393 };
394
395 static const intel_limit_t intel_limits_chv = {
396         /*
397          * These are the data rate limits (measured in fast clocks)
398          * since those are the strictest limits we have.  The fast
399          * clock and actual rate limits are more relaxed, so checking
400          * them would make no difference.
401          */
402         .dot = { .min = 25000 * 5, .max = 540000 * 5},
403         .vco = { .min = 4800000, .max = 6480000 },
404         .n = { .min = 1, .max = 1 },
405         .m1 = { .min = 2, .max = 2 },
406         .m2 = { .min = 24 << 22, .max = 175 << 22 },
407         .p1 = { .min = 2, .max = 4 },
408         .p2 = { .p2_slow = 1, .p2_fast = 14 },
409 };
410
411 static const intel_limit_t intel_limits_bxt = {
412         /* FIXME: find real dot limits */
413         .dot = { .min = 0, .max = INT_MAX },
414         .vco = { .min = 4800000, .max = 6480000 },
415         .n = { .min = 1, .max = 1 },
416         .m1 = { .min = 2, .max = 2 },
417         /* FIXME: find real m2 limits */
418         .m2 = { .min = 2 << 22, .max = 255 << 22 },
419         .p1 = { .min = 2, .max = 4 },
420         .p2 = { .p2_slow = 1, .p2_fast = 20 },
421 };
422
423 static void vlv_clock(int refclk, intel_clock_t *clock)
424 {
425         clock->m = clock->m1 * clock->m2;
426         clock->p = clock->p1 * clock->p2;
427         if (WARN_ON(clock->n == 0 || clock->p == 0))
428                 return;
429         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
430         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
431 }
432
433 static bool
434 needs_modeset(struct drm_crtc_state *state)
435 {
436         return state->mode_changed || state->active_changed;
437 }
438
439 /**
440  * Returns whether any output on the specified pipe is of the specified type
441  */
442 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
443 {
444         struct drm_device *dev = crtc->base.dev;
445         struct intel_encoder *encoder;
446
447         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
448                 if (encoder->type == type)
449                         return true;
450
451         return false;
452 }
453
454 /**
455  * Returns whether any output on the specified pipe will have the specified
456  * type after a staged modeset is complete, i.e., the same as
457  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
458  * encoder->crtc.
459  */
460 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
461                                       int type)
462 {
463         struct drm_atomic_state *state = crtc_state->base.state;
464         struct drm_connector *connector;
465         struct drm_connector_state *connector_state;
466         struct intel_encoder *encoder;
467         int i, num_connectors = 0;
468
469         for_each_connector_in_state(state, connector, connector_state, i) {
470                 if (connector_state->crtc != crtc_state->base.crtc)
471                         continue;
472
473                 num_connectors++;
474
475                 encoder = to_intel_encoder(connector_state->best_encoder);
476                 if (encoder->type == type)
477                         return true;
478         }
479
480         WARN_ON(num_connectors == 0);
481
482         return false;
483 }
484
485 static const intel_limit_t *
486 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
487 {
488         struct drm_device *dev = crtc_state->base.crtc->dev;
489         const intel_limit_t *limit;
490
491         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
492                 if (intel_is_dual_link_lvds(dev)) {
493                         if (refclk == 100000)
494                                 limit = &intel_limits_ironlake_dual_lvds_100m;
495                         else
496                                 limit = &intel_limits_ironlake_dual_lvds;
497                 } else {
498                         if (refclk == 100000)
499                                 limit = &intel_limits_ironlake_single_lvds_100m;
500                         else
501                                 limit = &intel_limits_ironlake_single_lvds;
502                 }
503         } else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *
510 intel_g4x_limit(struct intel_crtc_state *crtc_state)
511 {
512         struct drm_device *dev = crtc_state->base.crtc->dev;
513         const intel_limit_t *limit;
514
515         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
516                 if (intel_is_dual_link_lvds(dev))
517                         limit = &intel_limits_g4x_dual_channel_lvds;
518                 else
519                         limit = &intel_limits_g4x_single_channel_lvds;
520         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
521                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
522                 limit = &intel_limits_g4x_hdmi;
523         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
524                 limit = &intel_limits_g4x_sdvo;
525         } else /* The option is for other outputs */
526                 limit = &intel_limits_i9xx_sdvo;
527
528         return limit;
529 }
530
531 static const intel_limit_t *
532 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
533 {
534         struct drm_device *dev = crtc_state->base.crtc->dev;
535         const intel_limit_t *limit;
536
537         if (IS_BROXTON(dev))
538                 limit = &intel_limits_bxt;
539         else if (HAS_PCH_SPLIT(dev))
540                 limit = intel_ironlake_limit(crtc_state, refclk);
541         else if (IS_G4X(dev)) {
542                 limit = intel_g4x_limit(crtc_state);
543         } else if (IS_PINEVIEW(dev)) {
544                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
545                         limit = &intel_limits_pineview_lvds;
546                 else
547                         limit = &intel_limits_pineview_sdvo;
548         } else if (IS_CHERRYVIEW(dev)) {
549                 limit = &intel_limits_chv;
550         } else if (IS_VALLEYVIEW(dev)) {
551                 limit = &intel_limits_vlv;
552         } else if (!IS_GEN2(dev)) {
553                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
554                         limit = &intel_limits_i9xx_lvds;
555                 else
556                         limit = &intel_limits_i9xx_sdvo;
557         } else {
558                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
559                         limit = &intel_limits_i8xx_lvds;
560                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
561                         limit = &intel_limits_i8xx_dvo;
562                 else
563                         limit = &intel_limits_i8xx_dac;
564         }
565         return limit;
566 }
567
568 /* m1 is reserved as 0 in Pineview, n is a ring counter */
569 static void pineview_clock(int refclk, intel_clock_t *clock)
570 {
571         clock->m = clock->m2 + 2;
572         clock->p = clock->p1 * clock->p2;
573         if (WARN_ON(clock->n == 0 || clock->p == 0))
574                 return;
575         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
576         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
577 }
578
579 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
580 {
581         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
582 }
583
584 static void i9xx_clock(int refclk, intel_clock_t *clock)
585 {
586         clock->m = i9xx_dpll_compute_m(clock);
587         clock->p = clock->p1 * clock->p2;
588         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
589                 return;
590         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
591         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592 }
593
594 static void chv_clock(int refclk, intel_clock_t *clock)
595 {
596         clock->m = clock->m1 * clock->m2;
597         clock->p = clock->p1 * clock->p2;
598         if (WARN_ON(clock->n == 0 || clock->p == 0))
599                 return;
600         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
601                         clock->n << 22);
602         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
603 }
604
605 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
606 /**
607  * Returns whether the given set of divisors are valid for a given refclk with
608  * the given connectors.
609  */
610
611 static bool intel_PLL_is_valid(struct drm_device *dev,
612                                const intel_limit_t *limit,
613                                const intel_clock_t *clock)
614 {
615         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
616                 INTELPllInvalid("n out of range\n");
617         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
618                 INTELPllInvalid("p1 out of range\n");
619         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
620                 INTELPllInvalid("m2 out of range\n");
621         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
622                 INTELPllInvalid("m1 out of range\n");
623
624         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
625                 if (clock->m1 <= clock->m2)
626                         INTELPllInvalid("m1 <= m2\n");
627
628         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
629                 if (clock->p < limit->p.min || limit->p.max < clock->p)
630                         INTELPllInvalid("p out of range\n");
631                 if (clock->m < limit->m.min || limit->m.max < clock->m)
632                         INTELPllInvalid("m out of range\n");
633         }
634
635         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
636                 INTELPllInvalid("vco out of range\n");
637         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
638          * connector, etc., rather than just a single range.
639          */
640         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
641                 INTELPllInvalid("dot out of range\n");
642
643         return true;
644 }
645
646 static bool
647 i9xx_find_best_dpll(const intel_limit_t *limit,
648                     struct intel_crtc_state *crtc_state,
649                     int target, int refclk, intel_clock_t *match_clock,
650                     intel_clock_t *best_clock)
651 {
652         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
653         struct drm_device *dev = crtc->base.dev;
654         intel_clock_t clock;
655         int err = target;
656
657         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
658                 /*
659                  * For LVDS just rely on its current settings for dual-channel.
660                  * We haven't figured out how to reliably set up different
661                  * single/dual channel state, if we even can.
662                  */
663                 if (intel_is_dual_link_lvds(dev))
664                         clock.p2 = limit->p2.p2_fast;
665                 else
666                         clock.p2 = limit->p2.p2_slow;
667         } else {
668                 if (target < limit->p2.dot_limit)
669                         clock.p2 = limit->p2.p2_slow;
670                 else
671                         clock.p2 = limit->p2.p2_fast;
672         }
673
674         memset(best_clock, 0, sizeof(*best_clock));
675
676         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
677              clock.m1++) {
678                 for (clock.m2 = limit->m2.min;
679                      clock.m2 <= limit->m2.max; clock.m2++) {
680                         if (clock.m2 >= clock.m1)
681                                 break;
682                         for (clock.n = limit->n.min;
683                              clock.n <= limit->n.max; clock.n++) {
684                                 for (clock.p1 = limit->p1.min;
685                                         clock.p1 <= limit->p1.max; clock.p1++) {
686                                         int this_err;
687
688                                         i9xx_clock(refclk, &clock);
689                                         if (!intel_PLL_is_valid(dev, limit,
690                                                                 &clock))
691                                                 continue;
692                                         if (match_clock &&
693                                             clock.p != match_clock->p)
694                                                 continue;
695
696                                         this_err = abs(clock.dot - target);
697                                         if (this_err < err) {
698                                                 *best_clock = clock;
699                                                 err = this_err;
700                                         }
701                                 }
702                         }
703                 }
704         }
705
706         return (err != target);
707 }
708
709 static bool
710 pnv_find_best_dpll(const intel_limit_t *limit,
711                    struct intel_crtc_state *crtc_state,
712                    int target, int refclk, intel_clock_t *match_clock,
713                    intel_clock_t *best_clock)
714 {
715         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
716         struct drm_device *dev = crtc->base.dev;
717         intel_clock_t clock;
718         int err = target;
719
720         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
721                 /*
722                  * For LVDS just rely on its current settings for dual-channel.
723                  * We haven't figured out how to reliably set up different
724                  * single/dual channel state, if we even can.
725                  */
726                 if (intel_is_dual_link_lvds(dev))
727                         clock.p2 = limit->p2.p2_fast;
728                 else
729                         clock.p2 = limit->p2.p2_slow;
730         } else {
731                 if (target < limit->p2.dot_limit)
732                         clock.p2 = limit->p2.p2_slow;
733                 else
734                         clock.p2 = limit->p2.p2_fast;
735         }
736
737         memset(best_clock, 0, sizeof(*best_clock));
738
739         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
740              clock.m1++) {
741                 for (clock.m2 = limit->m2.min;
742                      clock.m2 <= limit->m2.max; clock.m2++) {
743                         for (clock.n = limit->n.min;
744                              clock.n <= limit->n.max; clock.n++) {
745                                 for (clock.p1 = limit->p1.min;
746                                         clock.p1 <= limit->p1.max; clock.p1++) {
747                                         int this_err;
748
749                                         pineview_clock(refclk, &clock);
750                                         if (!intel_PLL_is_valid(dev, limit,
751                                                                 &clock))
752                                                 continue;
753                                         if (match_clock &&
754                                             clock.p != match_clock->p)
755                                                 continue;
756
757                                         this_err = abs(clock.dot - target);
758                                         if (this_err < err) {
759                                                 *best_clock = clock;
760                                                 err = this_err;
761                                         }
762                                 }
763                         }
764                 }
765         }
766
767         return (err != target);
768 }
769
770 static bool
771 g4x_find_best_dpll(const intel_limit_t *limit,
772                    struct intel_crtc_state *crtc_state,
773                    int target, int refclk, intel_clock_t *match_clock,
774                    intel_clock_t *best_clock)
775 {
776         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
777         struct drm_device *dev = crtc->base.dev;
778         intel_clock_t clock;
779         int max_n;
780         bool found;
781         /* approximately equals target * 0.00585 */
782         int err_most = (target >> 8) + (target >> 9);
783         found = false;
784
785         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
786                 if (intel_is_dual_link_lvds(dev))
787                         clock.p2 = limit->p2.p2_fast;
788                 else
789                         clock.p2 = limit->p2.p2_slow;
790         } else {
791                 if (target < limit->p2.dot_limit)
792                         clock.p2 = limit->p2.p2_slow;
793                 else
794                         clock.p2 = limit->p2.p2_fast;
795         }
796
797         memset(best_clock, 0, sizeof(*best_clock));
798         max_n = limit->n.max;
799         /* based on hardware requirement, prefer smaller n to precision */
800         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
801                 /* based on hardware requirement, prefere larger m1,m2 */
802                 for (clock.m1 = limit->m1.max;
803                      clock.m1 >= limit->m1.min; clock.m1--) {
804                         for (clock.m2 = limit->m2.max;
805                              clock.m2 >= limit->m2.min; clock.m2--) {
806                                 for (clock.p1 = limit->p1.max;
807                                      clock.p1 >= limit->p1.min; clock.p1--) {
808                                         int this_err;
809
810                                         i9xx_clock(refclk, &clock);
811                                         if (!intel_PLL_is_valid(dev, limit,
812                                                                 &clock))
813                                                 continue;
814
815                                         this_err = abs(clock.dot - target);
816                                         if (this_err < err_most) {
817                                                 *best_clock = clock;
818                                                 err_most = this_err;
819                                                 max_n = clock.n;
820                                                 found = true;
821                                         }
822                                 }
823                         }
824                 }
825         }
826         return found;
827 }
828
829 /*
830  * Check if the calculated PLL configuration is more optimal compared to the
831  * best configuration and error found so far. Return the calculated error.
832  */
833 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
834                                const intel_clock_t *calculated_clock,
835                                const intel_clock_t *best_clock,
836                                unsigned int best_error_ppm,
837                                unsigned int *error_ppm)
838 {
839         /*
840          * For CHV ignore the error and consider only the P value.
841          * Prefer a bigger P value based on HW requirements.
842          */
843         if (IS_CHERRYVIEW(dev)) {
844                 *error_ppm = 0;
845
846                 return calculated_clock->p > best_clock->p;
847         }
848
849         if (WARN_ON_ONCE(!target_freq))
850                 return false;
851
852         *error_ppm = div_u64(1000000ULL *
853                                 abs(target_freq - calculated_clock->dot),
854                              target_freq);
855         /*
856          * Prefer a better P value over a better (smaller) error if the error
857          * is small. Ensure this preference for future configurations too by
858          * setting the error to 0.
859          */
860         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
861                 *error_ppm = 0;
862
863                 return true;
864         }
865
866         return *error_ppm + 10 < best_error_ppm;
867 }
868
869 static bool
870 vlv_find_best_dpll(const intel_limit_t *limit,
871                    struct intel_crtc_state *crtc_state,
872                    int target, int refclk, intel_clock_t *match_clock,
873                    intel_clock_t *best_clock)
874 {
875         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
876         struct drm_device *dev = crtc->base.dev;
877         intel_clock_t clock;
878         unsigned int bestppm = 1000000;
879         /* min update 19.2 MHz */
880         int max_n = min(limit->n.max, refclk / 19200);
881         bool found = false;
882
883         target *= 5; /* fast clock */
884
885         memset(best_clock, 0, sizeof(*best_clock));
886
887         /* based on hardware requirement, prefer smaller n to precision */
888         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
889                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
890                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
891                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
892                                 clock.p = clock.p1 * clock.p2;
893                                 /* based on hardware requirement, prefer bigger m1,m2 values */
894                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
895                                         unsigned int ppm;
896
897                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
898                                                                      refclk * clock.m1);
899
900                                         vlv_clock(refclk, &clock);
901
902                                         if (!intel_PLL_is_valid(dev, limit,
903                                                                 &clock))
904                                                 continue;
905
906                                         if (!vlv_PLL_is_optimal(dev, target,
907                                                                 &clock,
908                                                                 best_clock,
909                                                                 bestppm, &ppm))
910                                                 continue;
911
912                                         *best_clock = clock;
913                                         bestppm = ppm;
914                                         found = true;
915                                 }
916                         }
917                 }
918         }
919
920         return found;
921 }
922
923 static bool
924 chv_find_best_dpll(const intel_limit_t *limit,
925                    struct intel_crtc_state *crtc_state,
926                    int target, int refclk, intel_clock_t *match_clock,
927                    intel_clock_t *best_clock)
928 {
929         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
930         struct drm_device *dev = crtc->base.dev;
931         unsigned int best_error_ppm;
932         intel_clock_t clock;
933         uint64_t m2;
934         int found = false;
935
936         memset(best_clock, 0, sizeof(*best_clock));
937         best_error_ppm = 1000000;
938
939         /*
940          * Based on hardware doc, the n always set to 1, and m1 always
941          * set to 2.  If requires to support 200Mhz refclk, we need to
942          * revisit this because n may not 1 anymore.
943          */
944         clock.n = 1, clock.m1 = 2;
945         target *= 5;    /* fast clock */
946
947         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
948                 for (clock.p2 = limit->p2.p2_fast;
949                                 clock.p2 >= limit->p2.p2_slow;
950                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
951                         unsigned int error_ppm;
952
953                         clock.p = clock.p1 * clock.p2;
954
955                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
956                                         clock.n) << 22, refclk * clock.m1);
957
958                         if (m2 > INT_MAX/clock.m1)
959                                 continue;
960
961                         clock.m2 = m2;
962
963                         chv_clock(refclk, &clock);
964
965                         if (!intel_PLL_is_valid(dev, limit, &clock))
966                                 continue;
967
968                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
969                                                 best_error_ppm, &error_ppm))
970                                 continue;
971
972                         *best_clock = clock;
973                         best_error_ppm = error_ppm;
974                         found = true;
975                 }
976         }
977
978         return found;
979 }
980
981 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
982                         intel_clock_t *best_clock)
983 {
984         int refclk = i9xx_get_refclk(crtc_state, 0);
985
986         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
987                                   target_clock, refclk, NULL, best_clock);
988 }
989
990 bool intel_crtc_active(struct drm_crtc *crtc)
991 {
992         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
993
994         /* Be paranoid as we can arrive here with only partial
995          * state retrieved from the hardware during setup.
996          *
997          * We can ditch the adjusted_mode.crtc_clock check as soon
998          * as Haswell has gained clock readout/fastboot support.
999          *
1000          * We can ditch the crtc->primary->fb check as soon as we can
1001          * properly reconstruct framebuffers.
1002          *
1003          * FIXME: The intel_crtc->active here should be switched to
1004          * crtc->state->active once we have proper CRTC states wired up
1005          * for atomic.
1006          */
1007         return intel_crtc->active && crtc->primary->state->fb &&
1008                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1009 }
1010
1011 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1012                                              enum pipe pipe)
1013 {
1014         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1015         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1016
1017         return intel_crtc->config->cpu_transcoder;
1018 }
1019
1020 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1021 {
1022         struct drm_i915_private *dev_priv = dev->dev_private;
1023         u32 reg = PIPEDSL(pipe);
1024         u32 line1, line2;
1025         u32 line_mask;
1026
1027         if (IS_GEN2(dev))
1028                 line_mask = DSL_LINEMASK_GEN2;
1029         else
1030                 line_mask = DSL_LINEMASK_GEN3;
1031
1032         line1 = I915_READ(reg) & line_mask;
1033         mdelay(5);
1034         line2 = I915_READ(reg) & line_mask;
1035
1036         return line1 == line2;
1037 }
1038
1039 /*
1040  * intel_wait_for_pipe_off - wait for pipe to turn off
1041  * @crtc: crtc whose pipe to wait for
1042  *
1043  * After disabling a pipe, we can't wait for vblank in the usual way,
1044  * spinning on the vblank interrupt status bit, since we won't actually
1045  * see an interrupt when the pipe is disabled.
1046  *
1047  * On Gen4 and above:
1048  *   wait for the pipe register state bit to turn off
1049  *
1050  * Otherwise:
1051  *   wait for the display line value to settle (it usually
1052  *   ends up stopping at the start of the next frame).
1053  *
1054  */
1055 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1056 {
1057         struct drm_device *dev = crtc->base.dev;
1058         struct drm_i915_private *dev_priv = dev->dev_private;
1059         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1060         enum pipe pipe = crtc->pipe;
1061
1062         if (INTEL_INFO(dev)->gen >= 4) {
1063                 int reg = PIPECONF(cpu_transcoder);
1064
1065                 /* Wait for the Pipe State to go off */
1066                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1067                              100))
1068                         WARN(1, "pipe_off wait timed out\n");
1069         } else {
1070                 /* Wait for the display line to settle */
1071                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1072                         WARN(1, "pipe_off wait timed out\n");
1073         }
1074 }
1075
1076 /*
1077  * ibx_digital_port_connected - is the specified port connected?
1078  * @dev_priv: i915 private structure
1079  * @port: the port to test
1080  *
1081  * Returns true if @port is connected, false otherwise.
1082  */
1083 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1084                                 struct intel_digital_port *port)
1085 {
1086         u32 bit;
1087
1088         if (HAS_PCH_IBX(dev_priv->dev)) {
1089                 switch (port->port) {
1090                 case PORT_B:
1091                         bit = SDE_PORTB_HOTPLUG;
1092                         break;
1093                 case PORT_C:
1094                         bit = SDE_PORTC_HOTPLUG;
1095                         break;
1096                 case PORT_D:
1097                         bit = SDE_PORTD_HOTPLUG;
1098                         break;
1099                 default:
1100                         return true;
1101                 }
1102         } else {
1103                 switch (port->port) {
1104                 case PORT_B:
1105                         bit = SDE_PORTB_HOTPLUG_CPT;
1106                         break;
1107                 case PORT_C:
1108                         bit = SDE_PORTC_HOTPLUG_CPT;
1109                         break;
1110                 case PORT_D:
1111                         bit = SDE_PORTD_HOTPLUG_CPT;
1112                         break;
1113                 default:
1114                         return true;
1115                 }
1116         }
1117
1118         return I915_READ(SDEISR) & bit;
1119 }
1120
1121 static const char *state_string(bool enabled)
1122 {
1123         return enabled ? "on" : "off";
1124 }
1125
1126 /* Only for pre-ILK configs */
1127 void assert_pll(struct drm_i915_private *dev_priv,
1128                 enum pipe pipe, bool state)
1129 {
1130         int reg;
1131         u32 val;
1132         bool cur_state;
1133
1134         reg = DPLL(pipe);
1135         val = I915_READ(reg);
1136         cur_state = !!(val & DPLL_VCO_ENABLE);
1137         I915_STATE_WARN(cur_state != state,
1138              "PLL state assertion failure (expected %s, current %s)\n",
1139              state_string(state), state_string(cur_state));
1140 }
1141
1142 /* XXX: the dsi pll is shared between MIPI DSI ports */
1143 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1144 {
1145         u32 val;
1146         bool cur_state;
1147
1148         mutex_lock(&dev_priv->sb_lock);
1149         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1150         mutex_unlock(&dev_priv->sb_lock);
1151
1152         cur_state = val & DSI_PLL_VCO_EN;
1153         I915_STATE_WARN(cur_state != state,
1154              "DSI PLL state assertion failure (expected %s, current %s)\n",
1155              state_string(state), state_string(cur_state));
1156 }
1157 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1158 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1159
1160 struct intel_shared_dpll *
1161 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1162 {
1163         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1164
1165         if (crtc->config->shared_dpll < 0)
1166                 return NULL;
1167
1168         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1169 }
1170
1171 /* For ILK+ */
1172 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1173                         struct intel_shared_dpll *pll,
1174                         bool state)
1175 {
1176         bool cur_state;
1177         struct intel_dpll_hw_state hw_state;
1178
1179         if (WARN (!pll,
1180                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1181                 return;
1182
1183         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1184         I915_STATE_WARN(cur_state != state,
1185              "%s assertion failure (expected %s, current %s)\n",
1186              pll->name, state_string(state), state_string(cur_state));
1187 }
1188
1189 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1190                           enum pipe pipe, bool state)
1191 {
1192         int reg;
1193         u32 val;
1194         bool cur_state;
1195         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1196                                                                       pipe);
1197
1198         if (HAS_DDI(dev_priv->dev)) {
1199                 /* DDI does not have a specific FDI_TX register */
1200                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1201                 val = I915_READ(reg);
1202                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1203         } else {
1204                 reg = FDI_TX_CTL(pipe);
1205                 val = I915_READ(reg);
1206                 cur_state = !!(val & FDI_TX_ENABLE);
1207         }
1208         I915_STATE_WARN(cur_state != state,
1209              "FDI TX state assertion failure (expected %s, current %s)\n",
1210              state_string(state), state_string(cur_state));
1211 }
1212 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1213 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1214
1215 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1216                           enum pipe pipe, bool state)
1217 {
1218         int reg;
1219         u32 val;
1220         bool cur_state;
1221
1222         reg = FDI_RX_CTL(pipe);
1223         val = I915_READ(reg);
1224         cur_state = !!(val & FDI_RX_ENABLE);
1225         I915_STATE_WARN(cur_state != state,
1226              "FDI RX state assertion failure (expected %s, current %s)\n",
1227              state_string(state), state_string(cur_state));
1228 }
1229 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1230 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1231
1232 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1233                                       enum pipe pipe)
1234 {
1235         int reg;
1236         u32 val;
1237
1238         /* ILK FDI PLL is always enabled */
1239         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1240                 return;
1241
1242         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1243         if (HAS_DDI(dev_priv->dev))
1244                 return;
1245
1246         reg = FDI_TX_CTL(pipe);
1247         val = I915_READ(reg);
1248         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1249 }
1250
1251 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1252                        enum pipe pipe, bool state)
1253 {
1254         int reg;
1255         u32 val;
1256         bool cur_state;
1257
1258         reg = FDI_RX_CTL(pipe);
1259         val = I915_READ(reg);
1260         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1261         I915_STATE_WARN(cur_state != state,
1262              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1263              state_string(state), state_string(cur_state));
1264 }
1265
1266 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1267                            enum pipe pipe)
1268 {
1269         struct drm_device *dev = dev_priv->dev;
1270         int pp_reg;
1271         u32 val;
1272         enum pipe panel_pipe = PIPE_A;
1273         bool locked = true;
1274
1275         if (WARN_ON(HAS_DDI(dev)))
1276                 return;
1277
1278         if (HAS_PCH_SPLIT(dev)) {
1279                 u32 port_sel;
1280
1281                 pp_reg = PCH_PP_CONTROL;
1282                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1283
1284                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1285                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1286                         panel_pipe = PIPE_B;
1287                 /* XXX: else fix for eDP */
1288         } else if (IS_VALLEYVIEW(dev)) {
1289                 /* presumably write lock depends on pipe, not port select */
1290                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1291                 panel_pipe = pipe;
1292         } else {
1293                 pp_reg = PP_CONTROL;
1294                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1295                         panel_pipe = PIPE_B;
1296         }
1297
1298         val = I915_READ(pp_reg);
1299         if (!(val & PANEL_POWER_ON) ||
1300             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1301                 locked = false;
1302
1303         I915_STATE_WARN(panel_pipe == pipe && locked,
1304              "panel assertion failure, pipe %c regs locked\n",
1305              pipe_name(pipe));
1306 }
1307
1308 static void assert_cursor(struct drm_i915_private *dev_priv,
1309                           enum pipe pipe, bool state)
1310 {
1311         struct drm_device *dev = dev_priv->dev;
1312         bool cur_state;
1313
1314         if (IS_845G(dev) || IS_I865G(dev))
1315                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1316         else
1317                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1318
1319         I915_STATE_WARN(cur_state != state,
1320              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1321              pipe_name(pipe), state_string(state), state_string(cur_state));
1322 }
1323 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1324 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1325
1326 void assert_pipe(struct drm_i915_private *dev_priv,
1327                  enum pipe pipe, bool state)
1328 {
1329         int reg;
1330         u32 val;
1331         bool cur_state;
1332         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1333                                                                       pipe);
1334
1335         /* if we need the pipe quirk it must be always on */
1336         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1337             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1338                 state = true;
1339
1340         if (!intel_display_power_is_enabled(dev_priv,
1341                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1342                 cur_state = false;
1343         } else {
1344                 reg = PIPECONF(cpu_transcoder);
1345                 val = I915_READ(reg);
1346                 cur_state = !!(val & PIPECONF_ENABLE);
1347         }
1348
1349         I915_STATE_WARN(cur_state != state,
1350              "pipe %c assertion failure (expected %s, current %s)\n",
1351              pipe_name(pipe), state_string(state), state_string(cur_state));
1352 }
1353
1354 static void assert_plane(struct drm_i915_private *dev_priv,
1355                          enum plane plane, bool state)
1356 {
1357         int reg;
1358         u32 val;
1359         bool cur_state;
1360
1361         reg = DSPCNTR(plane);
1362         val = I915_READ(reg);
1363         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1364         I915_STATE_WARN(cur_state != state,
1365              "plane %c assertion failure (expected %s, current %s)\n",
1366              plane_name(plane), state_string(state), state_string(cur_state));
1367 }
1368
1369 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1370 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1371
1372 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1373                                    enum pipe pipe)
1374 {
1375         struct drm_device *dev = dev_priv->dev;
1376         int reg, i;
1377         u32 val;
1378         int cur_pipe;
1379
1380         /* Primary planes are fixed to pipes on gen4+ */
1381         if (INTEL_INFO(dev)->gen >= 4) {
1382                 reg = DSPCNTR(pipe);
1383                 val = I915_READ(reg);
1384                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1385                      "plane %c assertion failure, should be disabled but not\n",
1386                      plane_name(pipe));
1387                 return;
1388         }
1389
1390         /* Need to check both planes against the pipe */
1391         for_each_pipe(dev_priv, i) {
1392                 reg = DSPCNTR(i);
1393                 val = I915_READ(reg);
1394                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1395                         DISPPLANE_SEL_PIPE_SHIFT;
1396                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1397                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1398                      plane_name(i), pipe_name(pipe));
1399         }
1400 }
1401
1402 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1403                                     enum pipe pipe)
1404 {
1405         struct drm_device *dev = dev_priv->dev;
1406         int reg, sprite;
1407         u32 val;
1408
1409         if (INTEL_INFO(dev)->gen >= 9) {
1410                 for_each_sprite(dev_priv, pipe, sprite) {
1411                         val = I915_READ(PLANE_CTL(pipe, sprite));
1412                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1413                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1414                              sprite, pipe_name(pipe));
1415                 }
1416         } else if (IS_VALLEYVIEW(dev)) {
1417                 for_each_sprite(dev_priv, pipe, sprite) {
1418                         reg = SPCNTR(pipe, sprite);
1419                         val = I915_READ(reg);
1420                         I915_STATE_WARN(val & SP_ENABLE,
1421                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1422                              sprite_name(pipe, sprite), pipe_name(pipe));
1423                 }
1424         } else if (INTEL_INFO(dev)->gen >= 7) {
1425                 reg = SPRCTL(pipe);
1426                 val = I915_READ(reg);
1427                 I915_STATE_WARN(val & SPRITE_ENABLE,
1428                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429                      plane_name(pipe), pipe_name(pipe));
1430         } else if (INTEL_INFO(dev)->gen >= 5) {
1431                 reg = DVSCNTR(pipe);
1432                 val = I915_READ(reg);
1433                 I915_STATE_WARN(val & DVS_ENABLE,
1434                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435                      plane_name(pipe), pipe_name(pipe));
1436         }
1437 }
1438
1439 static void assert_vblank_disabled(struct drm_crtc *crtc)
1440 {
1441         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1442                 drm_crtc_vblank_put(crtc);
1443 }
1444
1445 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1446 {
1447         u32 val;
1448         bool enabled;
1449
1450         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1451
1452         val = I915_READ(PCH_DREF_CONTROL);
1453         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1454                             DREF_SUPERSPREAD_SOURCE_MASK));
1455         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1456 }
1457
1458 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1459                                            enum pipe pipe)
1460 {
1461         int reg;
1462         u32 val;
1463         bool enabled;
1464
1465         reg = PCH_TRANSCONF(pipe);
1466         val = I915_READ(reg);
1467         enabled = !!(val & TRANS_ENABLE);
1468         I915_STATE_WARN(enabled,
1469              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1470              pipe_name(pipe));
1471 }
1472
1473 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1474                             enum pipe pipe, u32 port_sel, u32 val)
1475 {
1476         if ((val & DP_PORT_EN) == 0)
1477                 return false;
1478
1479         if (HAS_PCH_CPT(dev_priv->dev)) {
1480                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1481                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1482                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1483                         return false;
1484         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1485                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1486                         return false;
1487         } else {
1488                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1489                         return false;
1490         }
1491         return true;
1492 }
1493
1494 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1495                               enum pipe pipe, u32 val)
1496 {
1497         if ((val & SDVO_ENABLE) == 0)
1498                 return false;
1499
1500         if (HAS_PCH_CPT(dev_priv->dev)) {
1501                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1502                         return false;
1503         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1504                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1505                         return false;
1506         } else {
1507                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1508                         return false;
1509         }
1510         return true;
1511 }
1512
1513 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1514                               enum pipe pipe, u32 val)
1515 {
1516         if ((val & LVDS_PORT_EN) == 0)
1517                 return false;
1518
1519         if (HAS_PCH_CPT(dev_priv->dev)) {
1520                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1521                         return false;
1522         } else {
1523                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1524                         return false;
1525         }
1526         return true;
1527 }
1528
1529 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1530                               enum pipe pipe, u32 val)
1531 {
1532         if ((val & ADPA_DAC_ENABLE) == 0)
1533                 return false;
1534         if (HAS_PCH_CPT(dev_priv->dev)) {
1535                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1536                         return false;
1537         } else {
1538                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1539                         return false;
1540         }
1541         return true;
1542 }
1543
1544 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1545                                    enum pipe pipe, int reg, u32 port_sel)
1546 {
1547         u32 val = I915_READ(reg);
1548         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1549              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1550              reg, pipe_name(pipe));
1551
1552         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1553              && (val & DP_PIPEB_SELECT),
1554              "IBX PCH dp port still using transcoder B\n");
1555 }
1556
1557 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1558                                      enum pipe pipe, int reg)
1559 {
1560         u32 val = I915_READ(reg);
1561         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1562              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1563              reg, pipe_name(pipe));
1564
1565         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1566              && (val & SDVO_PIPE_B_SELECT),
1567              "IBX PCH hdmi port still using transcoder B\n");
1568 }
1569
1570 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1571                                       enum pipe pipe)
1572 {
1573         int reg;
1574         u32 val;
1575
1576         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1577         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1578         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1579
1580         reg = PCH_ADPA;
1581         val = I915_READ(reg);
1582         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1583              "PCH VGA enabled on transcoder %c, should be disabled\n",
1584              pipe_name(pipe));
1585
1586         reg = PCH_LVDS;
1587         val = I915_READ(reg);
1588         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590              pipe_name(pipe));
1591
1592         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void intel_init_dpio(struct drm_device *dev)
1598 {
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600
1601         if (!IS_VALLEYVIEW(dev))
1602                 return;
1603
1604         /*
1605          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1606          * CHV x1 PHY (DP/HDMI D)
1607          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1608          */
1609         if (IS_CHERRYVIEW(dev)) {
1610                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1611                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1612         } else {
1613                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1614         }
1615 }
1616
1617 static void vlv_enable_pll(struct intel_crtc *crtc,
1618                            const struct intel_crtc_state *pipe_config)
1619 {
1620         struct drm_device *dev = crtc->base.dev;
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622         int reg = DPLL(crtc->pipe);
1623         u32 dpll = pipe_config->dpll_hw_state.dpll;
1624
1625         assert_pipe_disabled(dev_priv, crtc->pipe);
1626
1627         /* No really, not for ILK+ */
1628         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1629
1630         /* PLL is protected by panel, make sure we can write it */
1631         if (IS_MOBILE(dev_priv->dev))
1632                 assert_panel_unlocked(dev_priv, crtc->pipe);
1633
1634         I915_WRITE(reg, dpll);
1635         POSTING_READ(reg);
1636         udelay(150);
1637
1638         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1639                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1640
1641         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1642         POSTING_READ(DPLL_MD(crtc->pipe));
1643
1644         /* We do this three times for luck */
1645         I915_WRITE(reg, dpll);
1646         POSTING_READ(reg);
1647         udelay(150); /* wait for warmup */
1648         I915_WRITE(reg, dpll);
1649         POSTING_READ(reg);
1650         udelay(150); /* wait for warmup */
1651         I915_WRITE(reg, dpll);
1652         POSTING_READ(reg);
1653         udelay(150); /* wait for warmup */
1654 }
1655
1656 static void chv_enable_pll(struct intel_crtc *crtc,
1657                            const struct intel_crtc_state *pipe_config)
1658 {
1659         struct drm_device *dev = crtc->base.dev;
1660         struct drm_i915_private *dev_priv = dev->dev_private;
1661         int pipe = crtc->pipe;
1662         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1663         u32 tmp;
1664
1665         assert_pipe_disabled(dev_priv, crtc->pipe);
1666
1667         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1668
1669         mutex_lock(&dev_priv->sb_lock);
1670
1671         /* Enable back the 10bit clock to display controller */
1672         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1673         tmp |= DPIO_DCLKP_EN;
1674         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1675
1676         mutex_unlock(&dev_priv->sb_lock);
1677
1678         /*
1679          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1680          */
1681         udelay(1);
1682
1683         /* Enable PLL */
1684         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1685
1686         /* Check PLL is locked */
1687         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1688                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1689
1690         /* not sure when this should be written */
1691         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1692         POSTING_READ(DPLL_MD(pipe));
1693 }
1694
1695 static int intel_num_dvo_pipes(struct drm_device *dev)
1696 {
1697         struct intel_crtc *crtc;
1698         int count = 0;
1699
1700         for_each_intel_crtc(dev, crtc)
1701                 count += crtc->base.state->active &&
1702                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1703
1704         return count;
1705 }
1706
1707 static void i9xx_enable_pll(struct intel_crtc *crtc)
1708 {
1709         struct drm_device *dev = crtc->base.dev;
1710         struct drm_i915_private *dev_priv = dev->dev_private;
1711         int reg = DPLL(crtc->pipe);
1712         u32 dpll = crtc->config->dpll_hw_state.dpll;
1713
1714         assert_pipe_disabled(dev_priv, crtc->pipe);
1715
1716         /* No really, not for ILK+ */
1717         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1718
1719         /* PLL is protected by panel, make sure we can write it */
1720         if (IS_MOBILE(dev) && !IS_I830(dev))
1721                 assert_panel_unlocked(dev_priv, crtc->pipe);
1722
1723         /* Enable DVO 2x clock on both PLLs if necessary */
1724         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1725                 /*
1726                  * It appears to be important that we don't enable this
1727                  * for the current pipe before otherwise configuring the
1728                  * PLL. No idea how this should be handled if multiple
1729                  * DVO outputs are enabled simultaneosly.
1730                  */
1731                 dpll |= DPLL_DVO_2X_MODE;
1732                 I915_WRITE(DPLL(!crtc->pipe),
1733                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1734         }
1735
1736         /* Wait for the clocks to stabilize. */
1737         POSTING_READ(reg);
1738         udelay(150);
1739
1740         if (INTEL_INFO(dev)->gen >= 4) {
1741                 I915_WRITE(DPLL_MD(crtc->pipe),
1742                            crtc->config->dpll_hw_state.dpll_md);
1743         } else {
1744                 /* The pixel multiplier can only be updated once the
1745                  * DPLL is enabled and the clocks are stable.
1746                  *
1747                  * So write it again.
1748                  */
1749                 I915_WRITE(reg, dpll);
1750         }
1751
1752         /* We do this three times for luck */
1753         I915_WRITE(reg, dpll);
1754         POSTING_READ(reg);
1755         udelay(150); /* wait for warmup */
1756         I915_WRITE(reg, dpll);
1757         POSTING_READ(reg);
1758         udelay(150); /* wait for warmup */
1759         I915_WRITE(reg, dpll);
1760         POSTING_READ(reg);
1761         udelay(150); /* wait for warmup */
1762 }
1763
1764 /**
1765  * i9xx_disable_pll - disable a PLL
1766  * @dev_priv: i915 private structure
1767  * @pipe: pipe PLL to disable
1768  *
1769  * Disable the PLL for @pipe, making sure the pipe is off first.
1770  *
1771  * Note!  This is for pre-ILK only.
1772  */
1773 static void i9xx_disable_pll(struct intel_crtc *crtc)
1774 {
1775         struct drm_device *dev = crtc->base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         enum pipe pipe = crtc->pipe;
1778
1779         /* Disable DVO 2x clock on both PLLs if necessary */
1780         if (IS_I830(dev) &&
1781             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1782             !intel_num_dvo_pipes(dev)) {
1783                 I915_WRITE(DPLL(PIPE_B),
1784                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1785                 I915_WRITE(DPLL(PIPE_A),
1786                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1787         }
1788
1789         /* Don't disable pipe or pipe PLLs if needed */
1790         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1791             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1792                 return;
1793
1794         /* Make sure the pipe isn't still relying on us */
1795         assert_pipe_disabled(dev_priv, pipe);
1796
1797         I915_WRITE(DPLL(pipe), 0);
1798         POSTING_READ(DPLL(pipe));
1799 }
1800
1801 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1802 {
1803         u32 val = 0;
1804
1805         /* Make sure the pipe isn't still relying on us */
1806         assert_pipe_disabled(dev_priv, pipe);
1807
1808         /*
1809          * Leave integrated clock source and reference clock enabled for pipe B.
1810          * The latter is needed for VGA hotplug / manual detection.
1811          */
1812         if (pipe == PIPE_B)
1813                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1814         I915_WRITE(DPLL(pipe), val);
1815         POSTING_READ(DPLL(pipe));
1816
1817 }
1818
1819 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1820 {
1821         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1822         u32 val;
1823
1824         /* Make sure the pipe isn't still relying on us */
1825         assert_pipe_disabled(dev_priv, pipe);
1826
1827         /* Set PLL en = 0 */
1828         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1829         if (pipe != PIPE_A)
1830                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1831         I915_WRITE(DPLL(pipe), val);
1832         POSTING_READ(DPLL(pipe));
1833
1834         mutex_lock(&dev_priv->sb_lock);
1835
1836         /* Disable 10bit clock to display controller */
1837         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1838         val &= ~DPIO_DCLKP_EN;
1839         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1840
1841         /* disable left/right clock distribution */
1842         if (pipe != PIPE_B) {
1843                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1844                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1845                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1846         } else {
1847                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1848                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1849                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1850         }
1851
1852         mutex_unlock(&dev_priv->sb_lock);
1853 }
1854
1855 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1856                          struct intel_digital_port *dport,
1857                          unsigned int expected_mask)
1858 {
1859         u32 port_mask;
1860         int dpll_reg;
1861
1862         switch (dport->port) {
1863         case PORT_B:
1864                 port_mask = DPLL_PORTB_READY_MASK;
1865                 dpll_reg = DPLL(0);
1866                 break;
1867         case PORT_C:
1868                 port_mask = DPLL_PORTC_READY_MASK;
1869                 dpll_reg = DPLL(0);
1870                 expected_mask <<= 4;
1871                 break;
1872         case PORT_D:
1873                 port_mask = DPLL_PORTD_READY_MASK;
1874                 dpll_reg = DPIO_PHY_STATUS;
1875                 break;
1876         default:
1877                 BUG();
1878         }
1879
1880         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1881                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1882                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1883 }
1884
1885 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1886 {
1887         struct drm_device *dev = crtc->base.dev;
1888         struct drm_i915_private *dev_priv = dev->dev_private;
1889         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1890
1891         if (WARN_ON(pll == NULL))
1892                 return;
1893
1894         WARN_ON(!pll->config.crtc_mask);
1895         if (pll->active == 0) {
1896                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1897                 WARN_ON(pll->on);
1898                 assert_shared_dpll_disabled(dev_priv, pll);
1899
1900                 pll->mode_set(dev_priv, pll);
1901         }
1902 }
1903
1904 /**
1905  * intel_enable_shared_dpll - enable PCH PLL
1906  * @dev_priv: i915 private structure
1907  * @pipe: pipe PLL to enable
1908  *
1909  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1910  * drives the transcoder clock.
1911  */
1912 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1913 {
1914         struct drm_device *dev = crtc->base.dev;
1915         struct drm_i915_private *dev_priv = dev->dev_private;
1916         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1917
1918         if (WARN_ON(pll == NULL))
1919                 return;
1920
1921         if (WARN_ON(pll->config.crtc_mask == 0))
1922                 return;
1923
1924         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1925                       pll->name, pll->active, pll->on,
1926                       crtc->base.base.id);
1927
1928         if (pll->active++) {
1929                 WARN_ON(!pll->on);
1930                 assert_shared_dpll_enabled(dev_priv, pll);
1931                 return;
1932         }
1933         WARN_ON(pll->on);
1934
1935         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1936
1937         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1938         pll->enable(dev_priv, pll);
1939         pll->on = true;
1940 }
1941
1942 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1943 {
1944         struct drm_device *dev = crtc->base.dev;
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1947
1948         /* PCH only available on ILK+ */
1949         BUG_ON(INTEL_INFO(dev)->gen < 5);
1950         if (WARN_ON(pll == NULL))
1951                return;
1952
1953         if (WARN_ON(pll->config.crtc_mask == 0))
1954                 return;
1955
1956         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1957                       pll->name, pll->active, pll->on,
1958                       crtc->base.base.id);
1959
1960         if (WARN_ON(pll->active == 0)) {
1961                 assert_shared_dpll_disabled(dev_priv, pll);
1962                 return;
1963         }
1964
1965         assert_shared_dpll_enabled(dev_priv, pll);
1966         WARN_ON(!pll->on);
1967         if (--pll->active)
1968                 return;
1969
1970         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1971         pll->disable(dev_priv, pll);
1972         pll->on = false;
1973
1974         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1975 }
1976
1977 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1978                                            enum pipe pipe)
1979 {
1980         struct drm_device *dev = dev_priv->dev;
1981         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983         uint32_t reg, val, pipeconf_val;
1984
1985         /* PCH only available on ILK+ */
1986         BUG_ON(!HAS_PCH_SPLIT(dev));
1987
1988         /* Make sure PCH DPLL is enabled */
1989         assert_shared_dpll_enabled(dev_priv,
1990                                    intel_crtc_to_shared_dpll(intel_crtc));
1991
1992         /* FDI must be feeding us bits for PCH ports */
1993         assert_fdi_tx_enabled(dev_priv, pipe);
1994         assert_fdi_rx_enabled(dev_priv, pipe);
1995
1996         if (HAS_PCH_CPT(dev)) {
1997                 /* Workaround: Set the timing override bit before enabling the
1998                  * pch transcoder. */
1999                 reg = TRANS_CHICKEN2(pipe);
2000                 val = I915_READ(reg);
2001                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2002                 I915_WRITE(reg, val);
2003         }
2004
2005         reg = PCH_TRANSCONF(pipe);
2006         val = I915_READ(reg);
2007         pipeconf_val = I915_READ(PIPECONF(pipe));
2008
2009         if (HAS_PCH_IBX(dev_priv->dev)) {
2010                 /*
2011                  * make the BPC in transcoder be consistent with
2012                  * that in pipeconf reg.
2013                  */
2014                 val &= ~PIPECONF_BPC_MASK;
2015                 val |= pipeconf_val & PIPECONF_BPC_MASK;
2016         }
2017
2018         val &= ~TRANS_INTERLACE_MASK;
2019         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2020                 if (HAS_PCH_IBX(dev_priv->dev) &&
2021                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2022                         val |= TRANS_LEGACY_INTERLACED_ILK;
2023                 else
2024                         val |= TRANS_INTERLACED;
2025         else
2026                 val |= TRANS_PROGRESSIVE;
2027
2028         I915_WRITE(reg, val | TRANS_ENABLE);
2029         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2030                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2031 }
2032
2033 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2034                                       enum transcoder cpu_transcoder)
2035 {
2036         u32 val, pipeconf_val;
2037
2038         /* PCH only available on ILK+ */
2039         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2040
2041         /* FDI must be feeding us bits for PCH ports */
2042         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2043         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2044
2045         /* Workaround: set timing override bit. */
2046         val = I915_READ(_TRANSA_CHICKEN2);
2047         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2048         I915_WRITE(_TRANSA_CHICKEN2, val);
2049
2050         val = TRANS_ENABLE;
2051         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2052
2053         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2054             PIPECONF_INTERLACED_ILK)
2055                 val |= TRANS_INTERLACED;
2056         else
2057                 val |= TRANS_PROGRESSIVE;
2058
2059         I915_WRITE(LPT_TRANSCONF, val);
2060         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2061                 DRM_ERROR("Failed to enable PCH transcoder\n");
2062 }
2063
2064 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2065                                             enum pipe pipe)
2066 {
2067         struct drm_device *dev = dev_priv->dev;
2068         uint32_t reg, val;
2069
2070         /* FDI relies on the transcoder */
2071         assert_fdi_tx_disabled(dev_priv, pipe);
2072         assert_fdi_rx_disabled(dev_priv, pipe);
2073
2074         /* Ports must be off as well */
2075         assert_pch_ports_disabled(dev_priv, pipe);
2076
2077         reg = PCH_TRANSCONF(pipe);
2078         val = I915_READ(reg);
2079         val &= ~TRANS_ENABLE;
2080         I915_WRITE(reg, val);
2081         /* wait for PCH transcoder off, transcoder state */
2082         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2083                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2084
2085         if (!HAS_PCH_IBX(dev)) {
2086                 /* Workaround: Clear the timing override chicken bit again. */
2087                 reg = TRANS_CHICKEN2(pipe);
2088                 val = I915_READ(reg);
2089                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2090                 I915_WRITE(reg, val);
2091         }
2092 }
2093
2094 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2095 {
2096         u32 val;
2097
2098         val = I915_READ(LPT_TRANSCONF);
2099         val &= ~TRANS_ENABLE;
2100         I915_WRITE(LPT_TRANSCONF, val);
2101         /* wait for PCH transcoder off, transcoder state */
2102         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2103                 DRM_ERROR("Failed to disable PCH transcoder\n");
2104
2105         /* Workaround: clear timing override bit. */
2106         val = I915_READ(_TRANSA_CHICKEN2);
2107         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2108         I915_WRITE(_TRANSA_CHICKEN2, val);
2109 }
2110
2111 /**
2112  * intel_enable_pipe - enable a pipe, asserting requirements
2113  * @crtc: crtc responsible for the pipe
2114  *
2115  * Enable @crtc's pipe, making sure that various hardware specific requirements
2116  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2117  */
2118 static void intel_enable_pipe(struct intel_crtc *crtc)
2119 {
2120         struct drm_device *dev = crtc->base.dev;
2121         struct drm_i915_private *dev_priv = dev->dev_private;
2122         enum pipe pipe = crtc->pipe;
2123         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2124                                                                       pipe);
2125         enum pipe pch_transcoder;
2126         int reg;
2127         u32 val;
2128
2129         assert_planes_disabled(dev_priv, pipe);
2130         assert_cursor_disabled(dev_priv, pipe);
2131         assert_sprites_disabled(dev_priv, pipe);
2132
2133         if (HAS_PCH_LPT(dev_priv->dev))
2134                 pch_transcoder = TRANSCODER_A;
2135         else
2136                 pch_transcoder = pipe;
2137
2138         /*
2139          * A pipe without a PLL won't actually be able to drive bits from
2140          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2141          * need the check.
2142          */
2143         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2144                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2145                         assert_dsi_pll_enabled(dev_priv);
2146                 else
2147                         assert_pll_enabled(dev_priv, pipe);
2148         else {
2149                 if (crtc->config->has_pch_encoder) {
2150                         /* if driving the PCH, we need FDI enabled */
2151                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2152                         assert_fdi_tx_pll_enabled(dev_priv,
2153                                                   (enum pipe) cpu_transcoder);
2154                 }
2155                 /* FIXME: assert CPU port conditions for SNB+ */
2156         }
2157
2158         reg = PIPECONF(cpu_transcoder);
2159         val = I915_READ(reg);
2160         if (val & PIPECONF_ENABLE) {
2161                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2162                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2163                 return;
2164         }
2165
2166         I915_WRITE(reg, val | PIPECONF_ENABLE);
2167         POSTING_READ(reg);
2168 }
2169
2170 /**
2171  * intel_disable_pipe - disable a pipe, asserting requirements
2172  * @crtc: crtc whose pipes is to be disabled
2173  *
2174  * Disable the pipe of @crtc, making sure that various hardware
2175  * specific requirements are met, if applicable, e.g. plane
2176  * disabled, panel fitter off, etc.
2177  *
2178  * Will wait until the pipe has shut down before returning.
2179  */
2180 static void intel_disable_pipe(struct intel_crtc *crtc)
2181 {
2182         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2183         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2184         enum pipe pipe = crtc->pipe;
2185         int reg;
2186         u32 val;
2187
2188         /*
2189          * Make sure planes won't keep trying to pump pixels to us,
2190          * or we might hang the display.
2191          */
2192         assert_planes_disabled(dev_priv, pipe);
2193         assert_cursor_disabled(dev_priv, pipe);
2194         assert_sprites_disabled(dev_priv, pipe);
2195
2196         reg = PIPECONF(cpu_transcoder);
2197         val = I915_READ(reg);
2198         if ((val & PIPECONF_ENABLE) == 0)
2199                 return;
2200
2201         /*
2202          * Double wide has implications for planes
2203          * so best keep it disabled when not needed.
2204          */
2205         if (crtc->config->double_wide)
2206                 val &= ~PIPECONF_DOUBLE_WIDE;
2207
2208         /* Don't disable pipe or pipe PLLs if needed */
2209         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2210             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2211                 val &= ~PIPECONF_ENABLE;
2212
2213         I915_WRITE(reg, val);
2214         if ((val & PIPECONF_ENABLE) == 0)
2215                 intel_wait_for_pipe_off(crtc);
2216 }
2217
2218 /**
2219  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2220  * @plane:  plane to be enabled
2221  * @crtc: crtc for the plane
2222  *
2223  * Enable @plane on @crtc, making sure that the pipe is running first.
2224  */
2225 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2226                                           struct drm_crtc *crtc)
2227 {
2228         struct drm_device *dev = plane->dev;
2229         struct drm_i915_private *dev_priv = dev->dev_private;
2230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2231
2232         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2233         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2234         to_intel_plane_state(plane->state)->visible = true;
2235
2236         dev_priv->display.update_primary_plane(crtc, plane->fb,
2237                                                crtc->x, crtc->y);
2238 }
2239
2240 static bool need_vtd_wa(struct drm_device *dev)
2241 {
2242 #ifdef CONFIG_INTEL_IOMMU
2243         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2244                 return true;
2245 #endif
2246         return false;
2247 }
2248
2249 unsigned int
2250 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2251                   uint64_t fb_format_modifier)
2252 {
2253         unsigned int tile_height;
2254         uint32_t pixel_bytes;
2255
2256         switch (fb_format_modifier) {
2257         case DRM_FORMAT_MOD_NONE:
2258                 tile_height = 1;
2259                 break;
2260         case I915_FORMAT_MOD_X_TILED:
2261                 tile_height = IS_GEN2(dev) ? 16 : 8;
2262                 break;
2263         case I915_FORMAT_MOD_Y_TILED:
2264                 tile_height = 32;
2265                 break;
2266         case I915_FORMAT_MOD_Yf_TILED:
2267                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2268                 switch (pixel_bytes) {
2269                 default:
2270                 case 1:
2271                         tile_height = 64;
2272                         break;
2273                 case 2:
2274                 case 4:
2275                         tile_height = 32;
2276                         break;
2277                 case 8:
2278                         tile_height = 16;
2279                         break;
2280                 case 16:
2281                         WARN_ONCE(1,
2282                                   "128-bit pixels are not supported for display!");
2283                         tile_height = 16;
2284                         break;
2285                 }
2286                 break;
2287         default:
2288                 MISSING_CASE(fb_format_modifier);
2289                 tile_height = 1;
2290                 break;
2291         }
2292
2293         return tile_height;
2294 }
2295
2296 unsigned int
2297 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2298                       uint32_t pixel_format, uint64_t fb_format_modifier)
2299 {
2300         return ALIGN(height, intel_tile_height(dev, pixel_format,
2301                                                fb_format_modifier));
2302 }
2303
2304 static int
2305 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2306                         const struct drm_plane_state *plane_state)
2307 {
2308         struct intel_rotation_info *info = &view->rotation_info;
2309
2310         *view = i915_ggtt_view_normal;
2311
2312         if (!plane_state)
2313                 return 0;
2314
2315         if (!intel_rotation_90_or_270(plane_state->rotation))
2316                 return 0;
2317
2318         *view = i915_ggtt_view_rotated;
2319
2320         info->height = fb->height;
2321         info->pixel_format = fb->pixel_format;
2322         info->pitch = fb->pitches[0];
2323         info->fb_modifier = fb->modifier[0];
2324
2325         return 0;
2326 }
2327
2328 int
2329 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2330                            struct drm_framebuffer *fb,
2331                            const struct drm_plane_state *plane_state,
2332                            struct intel_engine_cs *pipelined)
2333 {
2334         struct drm_device *dev = fb->dev;
2335         struct drm_i915_private *dev_priv = dev->dev_private;
2336         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2337         struct i915_ggtt_view view;
2338         u32 alignment;
2339         int ret;
2340
2341         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2342
2343         switch (fb->modifier[0]) {
2344         case DRM_FORMAT_MOD_NONE:
2345                 if (INTEL_INFO(dev)->gen >= 9)
2346                         alignment = 256 * 1024;
2347                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2348                         alignment = 128 * 1024;
2349                 else if (INTEL_INFO(dev)->gen >= 4)
2350                         alignment = 4 * 1024;
2351                 else
2352                         alignment = 64 * 1024;
2353                 break;
2354         case I915_FORMAT_MOD_X_TILED:
2355                 if (INTEL_INFO(dev)->gen >= 9)
2356                         alignment = 256 * 1024;
2357                 else {
2358                         /* pin() will align the object as required by fence */
2359                         alignment = 0;
2360                 }
2361                 break;
2362         case I915_FORMAT_MOD_Y_TILED:
2363         case I915_FORMAT_MOD_Yf_TILED:
2364                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2365                           "Y tiling bo slipped through, driver bug!\n"))
2366                         return -EINVAL;
2367                 alignment = 1 * 1024 * 1024;
2368                 break;
2369         default:
2370                 MISSING_CASE(fb->modifier[0]);
2371                 return -EINVAL;
2372         }
2373
2374         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2375         if (ret)
2376                 return ret;
2377
2378         /* Note that the w/a also requires 64 PTE of padding following the
2379          * bo. We currently fill all unused PTE with the shadow page and so
2380          * we should always have valid PTE following the scanout preventing
2381          * the VT-d warning.
2382          */
2383         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2384                 alignment = 256 * 1024;
2385
2386         /*
2387          * Global gtt pte registers are special registers which actually forward
2388          * writes to a chunk of system memory. Which means that there is no risk
2389          * that the register values disappear as soon as we call
2390          * intel_runtime_pm_put(), so it is correct to wrap only the
2391          * pin/unpin/fence and not more.
2392          */
2393         intel_runtime_pm_get(dev_priv);
2394
2395         dev_priv->mm.interruptible = false;
2396         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2397                                                    &view);
2398         if (ret)
2399                 goto err_interruptible;
2400
2401         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2402          * fence, whereas 965+ only requires a fence if using
2403          * framebuffer compression.  For simplicity, we always install
2404          * a fence as the cost is not that onerous.
2405          */
2406         ret = i915_gem_object_get_fence(obj);
2407         if (ret)
2408                 goto err_unpin;
2409
2410         i915_gem_object_pin_fence(obj);
2411
2412         dev_priv->mm.interruptible = true;
2413         intel_runtime_pm_put(dev_priv);
2414         return 0;
2415
2416 err_unpin:
2417         i915_gem_object_unpin_from_display_plane(obj, &view);
2418 err_interruptible:
2419         dev_priv->mm.interruptible = true;
2420         intel_runtime_pm_put(dev_priv);
2421         return ret;
2422 }
2423
2424 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2425                                const struct drm_plane_state *plane_state)
2426 {
2427         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2428         struct i915_ggtt_view view;
2429         int ret;
2430
2431         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2432
2433         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2434         WARN_ONCE(ret, "Couldn't get view from plane state!");
2435
2436         i915_gem_object_unpin_fence(obj);
2437         i915_gem_object_unpin_from_display_plane(obj, &view);
2438 }
2439
2440 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2441  * is assumed to be a power-of-two. */
2442 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2443                                              unsigned int tiling_mode,
2444                                              unsigned int cpp,
2445                                              unsigned int pitch)
2446 {
2447         if (tiling_mode != I915_TILING_NONE) {
2448                 unsigned int tile_rows, tiles;
2449
2450                 tile_rows = *y / 8;
2451                 *y %= 8;
2452
2453                 tiles = *x / (512/cpp);
2454                 *x %= 512/cpp;
2455
2456                 return tile_rows * pitch * 8 + tiles * 4096;
2457         } else {
2458                 unsigned int offset;
2459
2460                 offset = *y * pitch + *x * cpp;
2461                 *y = 0;
2462                 *x = (offset & 4095) / cpp;
2463                 return offset & -4096;
2464         }
2465 }
2466
2467 static int i9xx_format_to_fourcc(int format)
2468 {
2469         switch (format) {
2470         case DISPPLANE_8BPP:
2471                 return DRM_FORMAT_C8;
2472         case DISPPLANE_BGRX555:
2473                 return DRM_FORMAT_XRGB1555;
2474         case DISPPLANE_BGRX565:
2475                 return DRM_FORMAT_RGB565;
2476         default:
2477         case DISPPLANE_BGRX888:
2478                 return DRM_FORMAT_XRGB8888;
2479         case DISPPLANE_RGBX888:
2480                 return DRM_FORMAT_XBGR8888;
2481         case DISPPLANE_BGRX101010:
2482                 return DRM_FORMAT_XRGB2101010;
2483         case DISPPLANE_RGBX101010:
2484                 return DRM_FORMAT_XBGR2101010;
2485         }
2486 }
2487
2488 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2489 {
2490         switch (format) {
2491         case PLANE_CTL_FORMAT_RGB_565:
2492                 return DRM_FORMAT_RGB565;
2493         default:
2494         case PLANE_CTL_FORMAT_XRGB_8888:
2495                 if (rgb_order) {
2496                         if (alpha)
2497                                 return DRM_FORMAT_ABGR8888;
2498                         else
2499                                 return DRM_FORMAT_XBGR8888;
2500                 } else {
2501                         if (alpha)
2502                                 return DRM_FORMAT_ARGB8888;
2503                         else
2504                                 return DRM_FORMAT_XRGB8888;
2505                 }
2506         case PLANE_CTL_FORMAT_XRGB_2101010:
2507                 if (rgb_order)
2508                         return DRM_FORMAT_XBGR2101010;
2509                 else
2510                         return DRM_FORMAT_XRGB2101010;
2511         }
2512 }
2513
2514 static bool
2515 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2516                               struct intel_initial_plane_config *plane_config)
2517 {
2518         struct drm_device *dev = crtc->base.dev;
2519         struct drm_i915_gem_object *obj = NULL;
2520         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2521         struct drm_framebuffer *fb = &plane_config->fb->base;
2522         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2523         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2524                                     PAGE_SIZE);
2525
2526         size_aligned -= base_aligned;
2527
2528         if (plane_config->size == 0)
2529                 return false;
2530
2531         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2532                                                              base_aligned,
2533                                                              base_aligned,
2534                                                              size_aligned);
2535         if (!obj)
2536                 return false;
2537
2538         obj->tiling_mode = plane_config->tiling;
2539         if (obj->tiling_mode == I915_TILING_X)
2540                 obj->stride = fb->pitches[0];
2541
2542         mode_cmd.pixel_format = fb->pixel_format;
2543         mode_cmd.width = fb->width;
2544         mode_cmd.height = fb->height;
2545         mode_cmd.pitches[0] = fb->pitches[0];
2546         mode_cmd.modifier[0] = fb->modifier[0];
2547         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2548
2549         mutex_lock(&dev->struct_mutex);
2550         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2551                                    &mode_cmd, obj)) {
2552                 DRM_DEBUG_KMS("intel fb init failed\n");
2553                 goto out_unref_obj;
2554         }
2555         mutex_unlock(&dev->struct_mutex);
2556
2557         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2558         return true;
2559
2560 out_unref_obj:
2561         drm_gem_object_unreference(&obj->base);
2562         mutex_unlock(&dev->struct_mutex);
2563         return false;
2564 }
2565
2566 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2567 static void
2568 update_state_fb(struct drm_plane *plane)
2569 {
2570         if (plane->fb == plane->state->fb)
2571                 return;
2572
2573         if (plane->state->fb)
2574                 drm_framebuffer_unreference(plane->state->fb);
2575         plane->state->fb = plane->fb;
2576         if (plane->state->fb)
2577                 drm_framebuffer_reference(plane->state->fb);
2578 }
2579
2580 static void
2581 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2582                              struct intel_initial_plane_config *plane_config)
2583 {
2584         struct drm_device *dev = intel_crtc->base.dev;
2585         struct drm_i915_private *dev_priv = dev->dev_private;
2586         struct drm_crtc *c;
2587         struct intel_crtc *i;
2588         struct drm_i915_gem_object *obj;
2589         struct drm_plane *primary = intel_crtc->base.primary;
2590         struct drm_framebuffer *fb;
2591
2592         if (!plane_config->fb)
2593                 return;
2594
2595         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2596                 fb = &plane_config->fb->base;
2597                 goto valid_fb;
2598         }
2599
2600         kfree(plane_config->fb);
2601
2602         /*
2603          * Failed to alloc the obj, check to see if we should share
2604          * an fb with another CRTC instead
2605          */
2606         for_each_crtc(dev, c) {
2607                 i = to_intel_crtc(c);
2608
2609                 if (c == &intel_crtc->base)
2610                         continue;
2611
2612                 if (!i->active)
2613                         continue;
2614
2615                 fb = c->primary->fb;
2616                 if (!fb)
2617                         continue;
2618
2619                 obj = intel_fb_obj(fb);
2620                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2621                         drm_framebuffer_reference(fb);
2622                         goto valid_fb;
2623                 }
2624         }
2625
2626         return;
2627
2628 valid_fb:
2629         obj = intel_fb_obj(fb);
2630         if (obj->tiling_mode != I915_TILING_NONE)
2631                 dev_priv->preserve_bios_swizzle = true;
2632
2633         primary->fb = fb;
2634         primary->crtc = primary->state->crtc = &intel_crtc->base;
2635         update_state_fb(primary);
2636         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2637         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2638 }
2639
2640 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2641                                       struct drm_framebuffer *fb,
2642                                       int x, int y)
2643 {
2644         struct drm_device *dev = crtc->dev;
2645         struct drm_i915_private *dev_priv = dev->dev_private;
2646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2647         struct drm_plane *primary = crtc->primary;
2648         bool visible = to_intel_plane_state(primary->state)->visible;
2649         struct drm_i915_gem_object *obj;
2650         int plane = intel_crtc->plane;
2651         unsigned long linear_offset;
2652         u32 dspcntr;
2653         u32 reg = DSPCNTR(plane);
2654         int pixel_size;
2655
2656         if (!visible || !fb) {
2657                 I915_WRITE(reg, 0);
2658                 if (INTEL_INFO(dev)->gen >= 4)
2659                         I915_WRITE(DSPSURF(plane), 0);
2660                 else
2661                         I915_WRITE(DSPADDR(plane), 0);
2662                 POSTING_READ(reg);
2663                 return;
2664         }
2665
2666         obj = intel_fb_obj(fb);
2667         if (WARN_ON(obj == NULL))
2668                 return;
2669
2670         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2671
2672         dspcntr = DISPPLANE_GAMMA_ENABLE;
2673
2674         dspcntr |= DISPLAY_PLANE_ENABLE;
2675
2676         if (INTEL_INFO(dev)->gen < 4) {
2677                 if (intel_crtc->pipe == PIPE_B)
2678                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2679
2680                 /* pipesrc and dspsize control the size that is scaled from,
2681                  * which should always be the user's requested size.
2682                  */
2683                 I915_WRITE(DSPSIZE(plane),
2684                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2685                            (intel_crtc->config->pipe_src_w - 1));
2686                 I915_WRITE(DSPPOS(plane), 0);
2687         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2688                 I915_WRITE(PRIMSIZE(plane),
2689                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2690                            (intel_crtc->config->pipe_src_w - 1));
2691                 I915_WRITE(PRIMPOS(plane), 0);
2692                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2693         }
2694
2695         switch (fb->pixel_format) {
2696         case DRM_FORMAT_C8:
2697                 dspcntr |= DISPPLANE_8BPP;
2698                 break;
2699         case DRM_FORMAT_XRGB1555:
2700                 dspcntr |= DISPPLANE_BGRX555;
2701                 break;
2702         case DRM_FORMAT_RGB565:
2703                 dspcntr |= DISPPLANE_BGRX565;
2704                 break;
2705         case DRM_FORMAT_XRGB8888:
2706                 dspcntr |= DISPPLANE_BGRX888;
2707                 break;
2708         case DRM_FORMAT_XBGR8888:
2709                 dspcntr |= DISPPLANE_RGBX888;
2710                 break;
2711         case DRM_FORMAT_XRGB2101010:
2712                 dspcntr |= DISPPLANE_BGRX101010;
2713                 break;
2714         case DRM_FORMAT_XBGR2101010:
2715                 dspcntr |= DISPPLANE_RGBX101010;
2716                 break;
2717         default:
2718                 BUG();
2719         }
2720
2721         if (INTEL_INFO(dev)->gen >= 4 &&
2722             obj->tiling_mode != I915_TILING_NONE)
2723                 dspcntr |= DISPPLANE_TILED;
2724
2725         if (IS_G4X(dev))
2726                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2727
2728         linear_offset = y * fb->pitches[0] + x * pixel_size;
2729
2730         if (INTEL_INFO(dev)->gen >= 4) {
2731                 intel_crtc->dspaddr_offset =
2732                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2733                                                        pixel_size,
2734                                                        fb->pitches[0]);
2735                 linear_offset -= intel_crtc->dspaddr_offset;
2736         } else {
2737                 intel_crtc->dspaddr_offset = linear_offset;
2738         }
2739
2740         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2741                 dspcntr |= DISPPLANE_ROTATE_180;
2742
2743                 x += (intel_crtc->config->pipe_src_w - 1);
2744                 y += (intel_crtc->config->pipe_src_h - 1);
2745
2746                 /* Finding the last pixel of the last line of the display
2747                 data and adding to linear_offset*/
2748                 linear_offset +=
2749                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2750                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2751         }
2752
2753         I915_WRITE(reg, dspcntr);
2754
2755         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2756         if (INTEL_INFO(dev)->gen >= 4) {
2757                 I915_WRITE(DSPSURF(plane),
2758                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2759                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2760                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2761         } else
2762                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2763         POSTING_READ(reg);
2764 }
2765
2766 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2767                                           struct drm_framebuffer *fb,
2768                                           int x, int y)
2769 {
2770         struct drm_device *dev = crtc->dev;
2771         struct drm_i915_private *dev_priv = dev->dev_private;
2772         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2773         struct drm_plane *primary = crtc->primary;
2774         bool visible = to_intel_plane_state(primary->state)->visible;
2775         struct drm_i915_gem_object *obj;
2776         int plane = intel_crtc->plane;
2777         unsigned long linear_offset;
2778         u32 dspcntr;
2779         u32 reg = DSPCNTR(plane);
2780         int pixel_size;
2781
2782         if (!visible || !fb) {
2783                 I915_WRITE(reg, 0);
2784                 I915_WRITE(DSPSURF(plane), 0);
2785                 POSTING_READ(reg);
2786                 return;
2787         }
2788
2789         obj = intel_fb_obj(fb);
2790         if (WARN_ON(obj == NULL))
2791                 return;
2792
2793         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2794
2795         dspcntr = DISPPLANE_GAMMA_ENABLE;
2796
2797         dspcntr |= DISPLAY_PLANE_ENABLE;
2798
2799         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2800                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2801
2802         switch (fb->pixel_format) {
2803         case DRM_FORMAT_C8:
2804                 dspcntr |= DISPPLANE_8BPP;
2805                 break;
2806         case DRM_FORMAT_RGB565:
2807                 dspcntr |= DISPPLANE_BGRX565;
2808                 break;
2809         case DRM_FORMAT_XRGB8888:
2810                 dspcntr |= DISPPLANE_BGRX888;
2811                 break;
2812         case DRM_FORMAT_XBGR8888:
2813                 dspcntr |= DISPPLANE_RGBX888;
2814                 break;
2815         case DRM_FORMAT_XRGB2101010:
2816                 dspcntr |= DISPPLANE_BGRX101010;
2817                 break;
2818         case DRM_FORMAT_XBGR2101010:
2819                 dspcntr |= DISPPLANE_RGBX101010;
2820                 break;
2821         default:
2822                 BUG();
2823         }
2824
2825         if (obj->tiling_mode != I915_TILING_NONE)
2826                 dspcntr |= DISPPLANE_TILED;
2827
2828         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2829                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2830
2831         linear_offset = y * fb->pitches[0] + x * pixel_size;
2832         intel_crtc->dspaddr_offset =
2833                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2834                                                pixel_size,
2835                                                fb->pitches[0]);
2836         linear_offset -= intel_crtc->dspaddr_offset;
2837         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2838                 dspcntr |= DISPPLANE_ROTATE_180;
2839
2840                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2841                         x += (intel_crtc->config->pipe_src_w - 1);
2842                         y += (intel_crtc->config->pipe_src_h - 1);
2843
2844                         /* Finding the last pixel of the last line of the display
2845                         data and adding to linear_offset*/
2846                         linear_offset +=
2847                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2848                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2849                 }
2850         }
2851
2852         I915_WRITE(reg, dspcntr);
2853
2854         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2855         I915_WRITE(DSPSURF(plane),
2856                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2857         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2858                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2859         } else {
2860                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2861                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2862         }
2863         POSTING_READ(reg);
2864 }
2865
2866 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2867                               uint32_t pixel_format)
2868 {
2869         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2870
2871         /*
2872          * The stride is either expressed as a multiple of 64 bytes
2873          * chunks for linear buffers or in number of tiles for tiled
2874          * buffers.
2875          */
2876         switch (fb_modifier) {
2877         case DRM_FORMAT_MOD_NONE:
2878                 return 64;
2879         case I915_FORMAT_MOD_X_TILED:
2880                 if (INTEL_INFO(dev)->gen == 2)
2881                         return 128;
2882                 return 512;
2883         case I915_FORMAT_MOD_Y_TILED:
2884                 /* No need to check for old gens and Y tiling since this is
2885                  * about the display engine and those will be blocked before
2886                  * we get here.
2887                  */
2888                 return 128;
2889         case I915_FORMAT_MOD_Yf_TILED:
2890                 if (bits_per_pixel == 8)
2891                         return 64;
2892                 else
2893                         return 128;
2894         default:
2895                 MISSING_CASE(fb_modifier);
2896                 return 64;
2897         }
2898 }
2899
2900 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2901                                      struct drm_i915_gem_object *obj)
2902 {
2903         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2904
2905         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2906                 view = &i915_ggtt_view_rotated;
2907
2908         return i915_gem_obj_ggtt_offset_view(obj, view);
2909 }
2910
2911 /*
2912  * This function detaches (aka. unbinds) unused scalers in hardware
2913  */
2914 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2915 {
2916         struct drm_device *dev;
2917         struct drm_i915_private *dev_priv;
2918         struct intel_crtc_scaler_state *scaler_state;
2919         int i;
2920
2921         if (!intel_crtc || !intel_crtc->config)
2922                 return;
2923
2924         dev = intel_crtc->base.dev;
2925         dev_priv = dev->dev_private;
2926         scaler_state = &intel_crtc->config->scaler_state;
2927
2928         /* loop through and disable scalers that aren't in use */
2929         for (i = 0; i < intel_crtc->num_scalers; i++) {
2930                 if (!scaler_state->scalers[i].in_use) {
2931                         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2932                         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2933                         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2934                         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2935                                 intel_crtc->base.base.id, intel_crtc->pipe, i);
2936                 }
2937         }
2938 }
2939
2940 u32 skl_plane_ctl_format(uint32_t pixel_format)
2941 {
2942         switch (pixel_format) {
2943         case DRM_FORMAT_C8:
2944                 return PLANE_CTL_FORMAT_INDEXED;
2945         case DRM_FORMAT_RGB565:
2946                 return PLANE_CTL_FORMAT_RGB_565;
2947         case DRM_FORMAT_XBGR8888:
2948                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2949         case DRM_FORMAT_XRGB8888:
2950                 return PLANE_CTL_FORMAT_XRGB_8888;
2951         /*
2952          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2953          * to be already pre-multiplied. We need to add a knob (or a different
2954          * DRM_FORMAT) for user-space to configure that.
2955          */
2956         case DRM_FORMAT_ABGR8888:
2957                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2958                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2959         case DRM_FORMAT_ARGB8888:
2960                 return PLANE_CTL_FORMAT_XRGB_8888 |
2961                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2962         case DRM_FORMAT_XRGB2101010:
2963                 return PLANE_CTL_FORMAT_XRGB_2101010;
2964         case DRM_FORMAT_XBGR2101010:
2965                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2966         case DRM_FORMAT_YUYV:
2967                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2968         case DRM_FORMAT_YVYU:
2969                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2970         case DRM_FORMAT_UYVY:
2971                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2972         case DRM_FORMAT_VYUY:
2973                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2974         default:
2975                 MISSING_CASE(pixel_format);
2976         }
2977
2978         return 0;
2979 }
2980
2981 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2982 {
2983         switch (fb_modifier) {
2984         case DRM_FORMAT_MOD_NONE:
2985                 break;
2986         case I915_FORMAT_MOD_X_TILED:
2987                 return PLANE_CTL_TILED_X;
2988         case I915_FORMAT_MOD_Y_TILED:
2989                 return PLANE_CTL_TILED_Y;
2990         case I915_FORMAT_MOD_Yf_TILED:
2991                 return PLANE_CTL_TILED_YF;
2992         default:
2993                 MISSING_CASE(fb_modifier);
2994         }
2995
2996         return 0;
2997 }
2998
2999 u32 skl_plane_ctl_rotation(unsigned int rotation)
3000 {
3001         switch (rotation) {
3002         case BIT(DRM_ROTATE_0):
3003                 break;
3004         /*
3005          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3006          * while i915 HW rotation is clockwise, thats why this swapping.
3007          */
3008         case BIT(DRM_ROTATE_90):
3009                 return PLANE_CTL_ROTATE_270;
3010         case BIT(DRM_ROTATE_180):
3011                 return PLANE_CTL_ROTATE_180;
3012         case BIT(DRM_ROTATE_270):
3013                 return PLANE_CTL_ROTATE_90;
3014         default:
3015                 MISSING_CASE(rotation);
3016         }
3017
3018         return 0;
3019 }
3020
3021 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3022                                          struct drm_framebuffer *fb,
3023                                          int x, int y)
3024 {
3025         struct drm_device *dev = crtc->dev;
3026         struct drm_i915_private *dev_priv = dev->dev_private;
3027         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3028         struct drm_plane *plane = crtc->primary;
3029         bool visible = to_intel_plane_state(plane->state)->visible;
3030         struct drm_i915_gem_object *obj;
3031         int pipe = intel_crtc->pipe;
3032         u32 plane_ctl, stride_div, stride;
3033         u32 tile_height, plane_offset, plane_size;
3034         unsigned int rotation;
3035         int x_offset, y_offset;
3036         unsigned long surf_addr;
3037         struct intel_crtc_state *crtc_state = intel_crtc->config;
3038         struct intel_plane_state *plane_state;
3039         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3040         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3041         int scaler_id = -1;
3042
3043         plane_state = to_intel_plane_state(plane->state);
3044
3045         if (!visible || !fb) {
3046                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3047                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3048                 POSTING_READ(PLANE_CTL(pipe, 0));
3049                 return;
3050         }
3051
3052         plane_ctl = PLANE_CTL_ENABLE |
3053                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3054                     PLANE_CTL_PIPE_CSC_ENABLE;
3055
3056         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3057         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3058         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3059
3060         rotation = plane->state->rotation;
3061         plane_ctl |= skl_plane_ctl_rotation(rotation);
3062
3063         obj = intel_fb_obj(fb);
3064         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3065                                                fb->pixel_format);
3066         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3067
3068         /*
3069          * FIXME: intel_plane_state->src, dst aren't set when transitional
3070          * update_plane helpers are called from legacy paths.
3071          * Once full atomic crtc is available, below check can be avoided.
3072          */
3073         if (drm_rect_width(&plane_state->src)) {
3074                 scaler_id = plane_state->scaler_id;
3075                 src_x = plane_state->src.x1 >> 16;
3076                 src_y = plane_state->src.y1 >> 16;
3077                 src_w = drm_rect_width(&plane_state->src) >> 16;
3078                 src_h = drm_rect_height(&plane_state->src) >> 16;
3079                 dst_x = plane_state->dst.x1;
3080                 dst_y = plane_state->dst.y1;
3081                 dst_w = drm_rect_width(&plane_state->dst);
3082                 dst_h = drm_rect_height(&plane_state->dst);
3083
3084                 WARN_ON(x != src_x || y != src_y);
3085         } else {
3086                 src_w = intel_crtc->config->pipe_src_w;
3087                 src_h = intel_crtc->config->pipe_src_h;
3088         }
3089
3090         if (intel_rotation_90_or_270(rotation)) {
3091                 /* stride = Surface height in tiles */
3092                 tile_height = intel_tile_height(dev, fb->pixel_format,
3093                                                 fb->modifier[0]);
3094                 stride = DIV_ROUND_UP(fb->height, tile_height);
3095                 x_offset = stride * tile_height - y - src_h;
3096                 y_offset = x;
3097                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3098         } else {
3099                 stride = fb->pitches[0] / stride_div;
3100                 x_offset = x;
3101                 y_offset = y;
3102                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3103         }
3104         plane_offset = y_offset << 16 | x_offset;
3105
3106         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3107         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3108         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3109         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3110
3111         if (scaler_id >= 0) {
3112                 uint32_t ps_ctrl = 0;
3113
3114                 WARN_ON(!dst_w || !dst_h);
3115                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3116                         crtc_state->scaler_state.scalers[scaler_id].mode;
3117                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3118                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3119                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3120                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3121                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3122         } else {
3123                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3124         }
3125
3126         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3127
3128         POSTING_READ(PLANE_SURF(pipe, 0));
3129 }
3130
3131 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3132 static int
3133 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3134                            int x, int y, enum mode_set_atomic state)
3135 {
3136         struct drm_device *dev = crtc->dev;
3137         struct drm_i915_private *dev_priv = dev->dev_private;
3138
3139         if (dev_priv->display.disable_fbc)
3140                 dev_priv->display.disable_fbc(dev);
3141
3142         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3143
3144         return 0;
3145 }
3146
3147 static void intel_complete_page_flips(struct drm_device *dev)
3148 {
3149         struct drm_crtc *crtc;
3150
3151         for_each_crtc(dev, crtc) {
3152                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3153                 enum plane plane = intel_crtc->plane;
3154
3155                 intel_prepare_page_flip(dev, plane);
3156                 intel_finish_page_flip_plane(dev, plane);
3157         }
3158 }
3159
3160 static void intel_update_primary_planes(struct drm_device *dev)
3161 {
3162         struct drm_i915_private *dev_priv = dev->dev_private;
3163         struct drm_crtc *crtc;
3164
3165         for_each_crtc(dev, crtc) {
3166                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3167
3168                 drm_modeset_lock(&crtc->mutex, NULL);
3169                 /*
3170                  * FIXME: Once we have proper support for primary planes (and
3171                  * disabling them without disabling the entire crtc) allow again
3172                  * a NULL crtc->primary->fb.
3173                  */
3174                 if (intel_crtc->active && crtc->primary->fb)
3175                         dev_priv->display.update_primary_plane(crtc,
3176                                                                crtc->primary->fb,
3177                                                                crtc->x,
3178                                                                crtc->y);
3179                 drm_modeset_unlock(&crtc->mutex);
3180         }
3181 }
3182
3183 void intel_prepare_reset(struct drm_device *dev)
3184 {
3185         /* no reset support for gen2 */
3186         if (IS_GEN2(dev))
3187                 return;
3188
3189         /* reset doesn't touch the display */
3190         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3191                 return;
3192
3193         drm_modeset_lock_all(dev);
3194         /*
3195          * Disabling the crtcs gracefully seems nicer. Also the
3196          * g33 docs say we should at least disable all the planes.
3197          */
3198         intel_display_suspend(dev);
3199 }
3200
3201 void intel_finish_reset(struct drm_device *dev)
3202 {
3203         struct drm_i915_private *dev_priv = to_i915(dev);
3204
3205         /*
3206          * Flips in the rings will be nuked by the reset,
3207          * so complete all pending flips so that user space
3208          * will get its events and not get stuck.
3209          */
3210         intel_complete_page_flips(dev);
3211
3212         /* no reset support for gen2 */
3213         if (IS_GEN2(dev))
3214                 return;
3215
3216         /* reset doesn't touch the display */
3217         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3218                 /*
3219                  * Flips in the rings have been nuked by the reset,
3220                  * so update the base address of all primary
3221                  * planes to the the last fb to make sure we're
3222                  * showing the correct fb after a reset.
3223                  */
3224                 intel_update_primary_planes(dev);
3225                 return;
3226         }
3227
3228         /*
3229          * The display has been reset as well,
3230          * so need a full re-initialization.
3231          */
3232         intel_runtime_pm_disable_interrupts(dev_priv);
3233         intel_runtime_pm_enable_interrupts(dev_priv);
3234
3235         intel_modeset_init_hw(dev);
3236
3237         spin_lock_irq(&dev_priv->irq_lock);
3238         if (dev_priv->display.hpd_irq_setup)
3239                 dev_priv->display.hpd_irq_setup(dev);
3240         spin_unlock_irq(&dev_priv->irq_lock);
3241
3242         intel_modeset_setup_hw_state(dev, true);
3243
3244         intel_hpd_init(dev_priv);
3245
3246         drm_modeset_unlock_all(dev);
3247 }
3248
3249 static void
3250 intel_finish_fb(struct drm_framebuffer *old_fb)
3251 {
3252         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3253         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3254         bool was_interruptible = dev_priv->mm.interruptible;
3255         int ret;
3256
3257         /* Big Hammer, we also need to ensure that any pending
3258          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3259          * current scanout is retired before unpinning the old
3260          * framebuffer. Note that we rely on userspace rendering
3261          * into the buffer attached to the pipe they are waiting
3262          * on. If not, userspace generates a GPU hang with IPEHR
3263          * point to the MI_WAIT_FOR_EVENT.
3264          *
3265          * This should only fail upon a hung GPU, in which case we
3266          * can safely continue.
3267          */
3268         dev_priv->mm.interruptible = false;
3269         ret = i915_gem_object_wait_rendering(obj, true);
3270         dev_priv->mm.interruptible = was_interruptible;
3271
3272         WARN_ON(ret);
3273 }
3274
3275 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3276 {
3277         struct drm_device *dev = crtc->dev;
3278         struct drm_i915_private *dev_priv = dev->dev_private;
3279         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3280         bool pending;
3281
3282         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3283             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3284                 return false;
3285
3286         spin_lock_irq(&dev->event_lock);
3287         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3288         spin_unlock_irq(&dev->event_lock);
3289
3290         return pending;
3291 }
3292
3293 static void intel_update_pipe_size(struct intel_crtc *crtc)
3294 {
3295         struct drm_device *dev = crtc->base.dev;
3296         struct drm_i915_private *dev_priv = dev->dev_private;
3297         const struct drm_display_mode *adjusted_mode;
3298
3299         if (!i915.fastboot)
3300                 return;
3301
3302         /*
3303          * Update pipe size and adjust fitter if needed: the reason for this is
3304          * that in compute_mode_changes we check the native mode (not the pfit
3305          * mode) to see if we can flip rather than do a full mode set. In the
3306          * fastboot case, we'll flip, but if we don't update the pipesrc and
3307          * pfit state, we'll end up with a big fb scanned out into the wrong
3308          * sized surface.
3309          *
3310          * To fix this properly, we need to hoist the checks up into
3311          * compute_mode_changes (or above), check the actual pfit state and
3312          * whether the platform allows pfit disable with pipe active, and only
3313          * then update the pipesrc and pfit state, even on the flip path.
3314          */
3315
3316         adjusted_mode = &crtc->config->base.adjusted_mode;
3317
3318         I915_WRITE(PIPESRC(crtc->pipe),
3319                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3320                    (adjusted_mode->crtc_vdisplay - 1));
3321         if (!crtc->config->pch_pfit.enabled &&
3322             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3323              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3324                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3325                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3326                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3327         }
3328         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3329         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3330 }
3331
3332 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3333 {
3334         struct drm_device *dev = crtc->dev;
3335         struct drm_i915_private *dev_priv = dev->dev_private;
3336         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3337         int pipe = intel_crtc->pipe;
3338         u32 reg, temp;
3339
3340         /* enable normal train */
3341         reg = FDI_TX_CTL(pipe);
3342         temp = I915_READ(reg);
3343         if (IS_IVYBRIDGE(dev)) {
3344                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3345                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3346         } else {
3347                 temp &= ~FDI_LINK_TRAIN_NONE;
3348                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3349         }
3350         I915_WRITE(reg, temp);
3351
3352         reg = FDI_RX_CTL(pipe);
3353         temp = I915_READ(reg);
3354         if (HAS_PCH_CPT(dev)) {
3355                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3356                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3357         } else {
3358                 temp &= ~FDI_LINK_TRAIN_NONE;
3359                 temp |= FDI_LINK_TRAIN_NONE;
3360         }
3361         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3362
3363         /* wait one idle pattern time */
3364         POSTING_READ(reg);
3365         udelay(1000);
3366
3367         /* IVB wants error correction enabled */
3368         if (IS_IVYBRIDGE(dev))
3369                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3370                            FDI_FE_ERRC_ENABLE);
3371 }
3372
3373 /* The FDI link training functions for ILK/Ibexpeak. */
3374 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3375 {
3376         struct drm_device *dev = crtc->dev;
3377         struct drm_i915_private *dev_priv = dev->dev_private;
3378         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3379         int pipe = intel_crtc->pipe;
3380         u32 reg, temp, tries;
3381
3382         /* FDI needs bits from pipe first */
3383         assert_pipe_enabled(dev_priv, pipe);
3384
3385         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3386            for train result */
3387         reg = FDI_RX_IMR(pipe);
3388         temp = I915_READ(reg);
3389         temp &= ~FDI_RX_SYMBOL_LOCK;
3390         temp &= ~FDI_RX_BIT_LOCK;
3391         I915_WRITE(reg, temp);
3392         I915_READ(reg);
3393         udelay(150);
3394
3395         /* enable CPU FDI TX and PCH FDI RX */
3396         reg = FDI_TX_CTL(pipe);
3397         temp = I915_READ(reg);
3398         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3399         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3400         temp &= ~FDI_LINK_TRAIN_NONE;
3401         temp |= FDI_LINK_TRAIN_PATTERN_1;
3402         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3403
3404         reg = FDI_RX_CTL(pipe);
3405         temp = I915_READ(reg);
3406         temp &= ~FDI_LINK_TRAIN_NONE;
3407         temp |= FDI_LINK_TRAIN_PATTERN_1;
3408         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3409
3410         POSTING_READ(reg);
3411         udelay(150);
3412
3413         /* Ironlake workaround, enable clock pointer after FDI enable*/
3414         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3415         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3416                    FDI_RX_PHASE_SYNC_POINTER_EN);
3417
3418         reg = FDI_RX_IIR(pipe);
3419         for (tries = 0; tries < 5; tries++) {
3420                 temp = I915_READ(reg);
3421                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3422
3423                 if ((temp & FDI_RX_BIT_LOCK)) {
3424                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3425                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3426                         break;
3427                 }
3428         }
3429         if (tries == 5)
3430                 DRM_ERROR("FDI train 1 fail!\n");
3431
3432         /* Train 2 */
3433         reg = FDI_TX_CTL(pipe);
3434         temp = I915_READ(reg);
3435         temp &= ~FDI_LINK_TRAIN_NONE;
3436         temp |= FDI_LINK_TRAIN_PATTERN_2;
3437         I915_WRITE(reg, temp);
3438
3439         reg = FDI_RX_CTL(pipe);
3440         temp = I915_READ(reg);
3441         temp &= ~FDI_LINK_TRAIN_NONE;
3442         temp |= FDI_LINK_TRAIN_PATTERN_2;
3443         I915_WRITE(reg, temp);
3444
3445         POSTING_READ(reg);
3446         udelay(150);
3447
3448         reg = FDI_RX_IIR(pipe);
3449         for (tries = 0; tries < 5; tries++) {
3450                 temp = I915_READ(reg);
3451                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3452
3453                 if (temp & FDI_RX_SYMBOL_LOCK) {
3454                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3455                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3456                         break;
3457                 }
3458         }
3459         if (tries == 5)
3460                 DRM_ERROR("FDI train 2 fail!\n");
3461
3462         DRM_DEBUG_KMS("FDI train done\n");
3463
3464 }
3465
3466 static const int snb_b_fdi_train_param[] = {
3467         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3468         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3469         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3470         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3471 };
3472
3473 /* The FDI link training functions for SNB/Cougarpoint. */
3474 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3475 {
3476         struct drm_device *dev = crtc->dev;
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3479         int pipe = intel_crtc->pipe;
3480         u32 reg, temp, i, retry;
3481
3482         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3483            for train result */
3484         reg = FDI_RX_IMR(pipe);
3485         temp = I915_READ(reg);
3486         temp &= ~FDI_RX_SYMBOL_LOCK;
3487         temp &= ~FDI_RX_BIT_LOCK;
3488         I915_WRITE(reg, temp);
3489
3490         POSTING_READ(reg);
3491         udelay(150);
3492
3493         /* enable CPU FDI TX and PCH FDI RX */
3494         reg = FDI_TX_CTL(pipe);
3495         temp = I915_READ(reg);
3496         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3497         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3498         temp &= ~FDI_LINK_TRAIN_NONE;
3499         temp |= FDI_LINK_TRAIN_PATTERN_1;
3500         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3501         /* SNB-B */
3502         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3503         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3504
3505         I915_WRITE(FDI_RX_MISC(pipe),
3506                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3507
3508         reg = FDI_RX_CTL(pipe);
3509         temp = I915_READ(reg);
3510         if (HAS_PCH_CPT(dev)) {
3511                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3512                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3513         } else {
3514                 temp &= ~FDI_LINK_TRAIN_NONE;
3515                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3516         }
3517         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3518
3519         POSTING_READ(reg);
3520         udelay(150);
3521
3522         for (i = 0; i < 4; i++) {
3523                 reg = FDI_TX_CTL(pipe);
3524                 temp = I915_READ(reg);
3525                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3526                 temp |= snb_b_fdi_train_param[i];
3527                 I915_WRITE(reg, temp);
3528
3529                 POSTING_READ(reg);
3530                 udelay(500);
3531
3532                 for (retry = 0; retry < 5; retry++) {
3533                         reg = FDI_RX_IIR(pipe);
3534                         temp = I915_READ(reg);
3535                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3536                         if (temp & FDI_RX_BIT_LOCK) {
3537                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3538                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3539                                 break;
3540                         }
3541                         udelay(50);
3542                 }
3543                 if (retry < 5)
3544                         break;
3545         }
3546         if (i == 4)
3547                 DRM_ERROR("FDI train 1 fail!\n");
3548
3549         /* Train 2 */
3550         reg = FDI_TX_CTL(pipe);
3551         temp = I915_READ(reg);
3552         temp &= ~FDI_LINK_TRAIN_NONE;
3553         temp |= FDI_LINK_TRAIN_PATTERN_2;
3554         if (IS_GEN6(dev)) {
3555                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3556                 /* SNB-B */
3557                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3558         }
3559         I915_WRITE(reg, temp);
3560
3561         reg = FDI_RX_CTL(pipe);
3562         temp = I915_READ(reg);
3563         if (HAS_PCH_CPT(dev)) {
3564                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3565                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3566         } else {
3567                 temp &= ~FDI_LINK_TRAIN_NONE;
3568                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3569         }
3570         I915_WRITE(reg, temp);
3571
3572         POSTING_READ(reg);
3573         udelay(150);
3574
3575         for (i = 0; i < 4; i++) {
3576                 reg = FDI_TX_CTL(pipe);
3577                 temp = I915_READ(reg);
3578                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3579                 temp |= snb_b_fdi_train_param[i];
3580                 I915_WRITE(reg, temp);
3581
3582                 POSTING_READ(reg);
3583                 udelay(500);
3584
3585                 for (retry = 0; retry < 5; retry++) {
3586                         reg = FDI_RX_IIR(pipe);
3587                         temp = I915_READ(reg);
3588                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3589                         if (temp & FDI_RX_SYMBOL_LOCK) {
3590                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3591                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3592                                 break;
3593                         }
3594                         udelay(50);
3595                 }
3596                 if (retry < 5)
3597                         break;
3598         }
3599         if (i == 4)
3600                 DRM_ERROR("FDI train 2 fail!\n");
3601
3602         DRM_DEBUG_KMS("FDI train done.\n");
3603 }
3604
3605 /* Manual link training for Ivy Bridge A0 parts */
3606 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3607 {
3608         struct drm_device *dev = crtc->dev;
3609         struct drm_i915_private *dev_priv = dev->dev_private;
3610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3611         int pipe = intel_crtc->pipe;
3612         u32 reg, temp, i, j;
3613
3614         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3615            for train result */
3616         reg = FDI_RX_IMR(pipe);
3617         temp = I915_READ(reg);
3618         temp &= ~FDI_RX_SYMBOL_LOCK;
3619         temp &= ~FDI_RX_BIT_LOCK;
3620         I915_WRITE(reg, temp);
3621
3622         POSTING_READ(reg);
3623         udelay(150);
3624
3625         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3626                       I915_READ(FDI_RX_IIR(pipe)));
3627
3628         /* Try each vswing and preemphasis setting twice before moving on */
3629         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3630                 /* disable first in case we need to retry */
3631                 reg = FDI_TX_CTL(pipe);
3632                 temp = I915_READ(reg);
3633                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3634                 temp &= ~FDI_TX_ENABLE;
3635                 I915_WRITE(reg, temp);
3636
3637                 reg = FDI_RX_CTL(pipe);
3638                 temp = I915_READ(reg);
3639                 temp &= ~FDI_LINK_TRAIN_AUTO;
3640                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3641                 temp &= ~FDI_RX_ENABLE;
3642                 I915_WRITE(reg, temp);
3643
3644                 /* enable CPU FDI TX and PCH FDI RX */
3645                 reg = FDI_TX_CTL(pipe);
3646                 temp = I915_READ(reg);
3647                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3648                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3649                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3650                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3651                 temp |= snb_b_fdi_train_param[j/2];
3652                 temp |= FDI_COMPOSITE_SYNC;
3653                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3654
3655                 I915_WRITE(FDI_RX_MISC(pipe),
3656                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3657
3658                 reg = FDI_RX_CTL(pipe);
3659                 temp = I915_READ(reg);
3660                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3661                 temp |= FDI_COMPOSITE_SYNC;
3662                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3663
3664                 POSTING_READ(reg);
3665                 udelay(1); /* should be 0.5us */
3666
3667                 for (i = 0; i < 4; i++) {
3668                         reg = FDI_RX_IIR(pipe);
3669                         temp = I915_READ(reg);
3670                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3671
3672                         if (temp & FDI_RX_BIT_LOCK ||
3673                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3674                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3675                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3676                                               i);
3677                                 break;
3678                         }
3679                         udelay(1); /* should be 0.5us */
3680                 }
3681                 if (i == 4) {
3682                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3683                         continue;
3684                 }
3685
3686                 /* Train 2 */
3687                 reg = FDI_TX_CTL(pipe);
3688                 temp = I915_READ(reg);
3689                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3690                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3691                 I915_WRITE(reg, temp);
3692
3693                 reg = FDI_RX_CTL(pipe);
3694                 temp = I915_READ(reg);
3695                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3696                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3697                 I915_WRITE(reg, temp);
3698
3699                 POSTING_READ(reg);
3700                 udelay(2); /* should be 1.5us */
3701
3702                 for (i = 0; i < 4; i++) {
3703                         reg = FDI_RX_IIR(pipe);
3704                         temp = I915_READ(reg);
3705                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3706
3707                         if (temp & FDI_RX_SYMBOL_LOCK ||
3708                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3709                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3710                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3711                                               i);
3712                                 goto train_done;
3713                         }
3714                         udelay(2); /* should be 1.5us */
3715                 }
3716                 if (i == 4)
3717                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3718         }
3719
3720 train_done:
3721         DRM_DEBUG_KMS("FDI train done.\n");
3722 }
3723
3724 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3725 {
3726         struct drm_device *dev = intel_crtc->base.dev;
3727         struct drm_i915_private *dev_priv = dev->dev_private;
3728         int pipe = intel_crtc->pipe;
3729         u32 reg, temp;
3730
3731
3732         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3733         reg = FDI_RX_CTL(pipe);
3734         temp = I915_READ(reg);
3735         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3736         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3737         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3738         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3739
3740         POSTING_READ(reg);
3741         udelay(200);
3742
3743         /* Switch from Rawclk to PCDclk */
3744         temp = I915_READ(reg);
3745         I915_WRITE(reg, temp | FDI_PCDCLK);
3746
3747         POSTING_READ(reg);
3748         udelay(200);
3749
3750         /* Enable CPU FDI TX PLL, always on for Ironlake */
3751         reg = FDI_TX_CTL(pipe);
3752         temp = I915_READ(reg);
3753         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3754                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3755
3756                 POSTING_READ(reg);
3757                 udelay(100);
3758         }
3759 }
3760
3761 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3762 {
3763         struct drm_device *dev = intel_crtc->base.dev;
3764         struct drm_i915_private *dev_priv = dev->dev_private;
3765         int pipe = intel_crtc->pipe;
3766         u32 reg, temp;
3767
3768         /* Switch from PCDclk to Rawclk */
3769         reg = FDI_RX_CTL(pipe);
3770         temp = I915_READ(reg);
3771         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3772
3773         /* Disable CPU FDI TX PLL */
3774         reg = FDI_TX_CTL(pipe);
3775         temp = I915_READ(reg);
3776         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3777
3778         POSTING_READ(reg);
3779         udelay(100);
3780
3781         reg = FDI_RX_CTL(pipe);
3782         temp = I915_READ(reg);
3783         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3784
3785         /* Wait for the clocks to turn off. */
3786         POSTING_READ(reg);
3787         udelay(100);
3788 }
3789
3790 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3791 {
3792         struct drm_device *dev = crtc->dev;
3793         struct drm_i915_private *dev_priv = dev->dev_private;
3794         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3795         int pipe = intel_crtc->pipe;
3796         u32 reg, temp;
3797
3798         /* disable CPU FDI tx and PCH FDI rx */
3799         reg = FDI_TX_CTL(pipe);
3800         temp = I915_READ(reg);
3801         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3802         POSTING_READ(reg);
3803
3804         reg = FDI_RX_CTL(pipe);
3805         temp = I915_READ(reg);
3806         temp &= ~(0x7 << 16);
3807         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3808         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3809
3810         POSTING_READ(reg);
3811         udelay(100);
3812
3813         /* Ironlake workaround, disable clock pointer after downing FDI */
3814         if (HAS_PCH_IBX(dev))
3815                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3816
3817         /* still set train pattern 1 */
3818         reg = FDI_TX_CTL(pipe);
3819         temp = I915_READ(reg);
3820         temp &= ~FDI_LINK_TRAIN_NONE;
3821         temp |= FDI_LINK_TRAIN_PATTERN_1;
3822         I915_WRITE(reg, temp);
3823
3824         reg = FDI_RX_CTL(pipe);
3825         temp = I915_READ(reg);
3826         if (HAS_PCH_CPT(dev)) {
3827                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3828                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3829         } else {
3830                 temp &= ~FDI_LINK_TRAIN_NONE;
3831                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3832         }
3833         /* BPC in FDI rx is consistent with that in PIPECONF */
3834         temp &= ~(0x07 << 16);
3835         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3836         I915_WRITE(reg, temp);
3837
3838         POSTING_READ(reg);
3839         udelay(100);
3840 }
3841
3842 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3843 {
3844         struct intel_crtc *crtc;
3845
3846         /* Note that we don't need to be called with mode_config.lock here
3847          * as our list of CRTC objects is static for the lifetime of the
3848          * device and so cannot disappear as we iterate. Similarly, we can
3849          * happily treat the predicates as racy, atomic checks as userspace
3850          * cannot claim and pin a new fb without at least acquring the
3851          * struct_mutex and so serialising with us.
3852          */
3853         for_each_intel_crtc(dev, crtc) {
3854                 if (atomic_read(&crtc->unpin_work_count) == 0)
3855                         continue;
3856
3857                 if (crtc->unpin_work)
3858                         intel_wait_for_vblank(dev, crtc->pipe);
3859
3860                 return true;
3861         }
3862
3863         return false;
3864 }
3865
3866 static void page_flip_completed(struct intel_crtc *intel_crtc)
3867 {
3868         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3869         struct intel_unpin_work *work = intel_crtc->unpin_work;
3870
3871         /* ensure that the unpin work is consistent wrt ->pending. */
3872         smp_rmb();
3873         intel_crtc->unpin_work = NULL;
3874
3875         if (work->event)
3876                 drm_send_vblank_event(intel_crtc->base.dev,
3877                                       intel_crtc->pipe,
3878                                       work->event);
3879
3880         drm_crtc_vblank_put(&intel_crtc->base);
3881
3882         wake_up_all(&dev_priv->pending_flip_queue);
3883         queue_work(dev_priv->wq, &work->work);
3884
3885         trace_i915_flip_complete(intel_crtc->plane,
3886                                  work->pending_flip_obj);
3887 }
3888
3889 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3890 {
3891         struct drm_device *dev = crtc->dev;
3892         struct drm_i915_private *dev_priv = dev->dev_private;
3893
3894         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3895         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3896                                        !intel_crtc_has_pending_flip(crtc),
3897                                        60*HZ) == 0)) {
3898                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3899
3900                 spin_lock_irq(&dev->event_lock);
3901                 if (intel_crtc->unpin_work) {
3902                         WARN_ONCE(1, "Removing stuck page flip\n");
3903                         page_flip_completed(intel_crtc);
3904                 }
3905                 spin_unlock_irq(&dev->event_lock);
3906         }
3907
3908         if (crtc->primary->fb) {
3909                 mutex_lock(&dev->struct_mutex);
3910                 intel_finish_fb(crtc->primary->fb);
3911                 mutex_unlock(&dev->struct_mutex);
3912         }
3913 }
3914
3915 /* Program iCLKIP clock to the desired frequency */
3916 static void lpt_program_iclkip(struct drm_crtc *crtc)
3917 {
3918         struct drm_device *dev = crtc->dev;
3919         struct drm_i915_private *dev_priv = dev->dev_private;
3920         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3921         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3922         u32 temp;
3923
3924         mutex_lock(&dev_priv->sb_lock);
3925
3926         /* It is necessary to ungate the pixclk gate prior to programming
3927          * the divisors, and gate it back when it is done.
3928          */
3929         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3930
3931         /* Disable SSCCTL */
3932         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3933                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3934                                 SBI_SSCCTL_DISABLE,
3935                         SBI_ICLK);
3936
3937         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3938         if (clock == 20000) {
3939                 auxdiv = 1;
3940                 divsel = 0x41;
3941                 phaseinc = 0x20;
3942         } else {
3943                 /* The iCLK virtual clock root frequency is in MHz,
3944                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3945                  * divisors, it is necessary to divide one by another, so we
3946                  * convert the virtual clock precision to KHz here for higher
3947                  * precision.
3948                  */
3949                 u32 iclk_virtual_root_freq = 172800 * 1000;
3950                 u32 iclk_pi_range = 64;
3951                 u32 desired_divisor, msb_divisor_value, pi_value;
3952
3953                 desired_divisor = (iclk_virtual_root_freq / clock);
3954                 msb_divisor_value = desired_divisor / iclk_pi_range;
3955                 pi_value = desired_divisor % iclk_pi_range;
3956
3957                 auxdiv = 0;
3958                 divsel = msb_divisor_value - 2;
3959                 phaseinc = pi_value;
3960         }
3961
3962         /* This should not happen with any sane values */
3963         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3964                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3965         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3966                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3967
3968         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3969                         clock,
3970                         auxdiv,
3971                         divsel,
3972                         phasedir,
3973                         phaseinc);
3974
3975         /* Program SSCDIVINTPHASE6 */
3976         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3977         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3978         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3979         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3980         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3981         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3982         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3983         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3984
3985         /* Program SSCAUXDIV */
3986         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3987         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3988         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3989         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3990
3991         /* Enable modulator and associated divider */
3992         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3993         temp &= ~SBI_SSCCTL_DISABLE;
3994         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3995
3996         /* Wait for initialization time */
3997         udelay(24);
3998
3999         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4000
4001         mutex_unlock(&dev_priv->sb_lock);
4002 }
4003
4004 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4005                                                 enum pipe pch_transcoder)
4006 {
4007         struct drm_device *dev = crtc->base.dev;
4008         struct drm_i915_private *dev_priv = dev->dev_private;
4009         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4010
4011         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4012                    I915_READ(HTOTAL(cpu_transcoder)));
4013         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4014                    I915_READ(HBLANK(cpu_transcoder)));
4015         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4016                    I915_READ(HSYNC(cpu_transcoder)));
4017
4018         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4019                    I915_READ(VTOTAL(cpu_transcoder)));
4020         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4021                    I915_READ(VBLANK(cpu_transcoder)));
4022         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4023                    I915_READ(VSYNC(cpu_transcoder)));
4024         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4025                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4026 }
4027
4028 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4029 {
4030         struct drm_i915_private *dev_priv = dev->dev_private;
4031         uint32_t temp;
4032
4033         temp = I915_READ(SOUTH_CHICKEN1);
4034         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4035                 return;
4036
4037         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4038         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4039
4040         temp &= ~FDI_BC_BIFURCATION_SELECT;
4041         if (enable)
4042                 temp |= FDI_BC_BIFURCATION_SELECT;
4043
4044         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4045         I915_WRITE(SOUTH_CHICKEN1, temp);
4046         POSTING_READ(SOUTH_CHICKEN1);
4047 }
4048
4049 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4050 {
4051         struct drm_device *dev = intel_crtc->base.dev;
4052
4053         switch (intel_crtc->pipe) {
4054         case PIPE_A:
4055                 break;
4056         case PIPE_B:
4057                 if (intel_crtc->config->fdi_lanes > 2)
4058                         cpt_set_fdi_bc_bifurcation(dev, false);
4059                 else
4060                         cpt_set_fdi_bc_bifurcation(dev, true);
4061
4062                 break;
4063         case PIPE_C:
4064                 cpt_set_fdi_bc_bifurcation(dev, true);
4065
4066                 break;
4067         default:
4068                 BUG();
4069         }
4070 }
4071
4072 /*
4073  * Enable PCH resources required for PCH ports:
4074  *   - PCH PLLs
4075  *   - FDI training & RX/TX
4076  *   - update transcoder timings
4077  *   - DP transcoding bits
4078  *   - transcoder
4079  */
4080 static void ironlake_pch_enable(struct drm_crtc *crtc)
4081 {
4082         struct drm_device *dev = crtc->dev;
4083         struct drm_i915_private *dev_priv = dev->dev_private;
4084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4085         int pipe = intel_crtc->pipe;
4086         u32 reg, temp;
4087
4088         assert_pch_transcoder_disabled(dev_priv, pipe);
4089
4090         if (IS_IVYBRIDGE(dev))
4091                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4092
4093         /* Write the TU size bits before fdi link training, so that error
4094          * detection works. */
4095         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4096                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4097
4098         /* For PCH output, training FDI link */
4099         dev_priv->display.fdi_link_train(crtc);
4100
4101         /* We need to program the right clock selection before writing the pixel
4102          * mutliplier into the DPLL. */
4103         if (HAS_PCH_CPT(dev)) {
4104                 u32 sel;
4105
4106                 temp = I915_READ(PCH_DPLL_SEL);
4107                 temp |= TRANS_DPLL_ENABLE(pipe);
4108                 sel = TRANS_DPLLB_SEL(pipe);
4109                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4110                         temp |= sel;
4111                 else
4112                         temp &= ~sel;
4113                 I915_WRITE(PCH_DPLL_SEL, temp);
4114         }
4115
4116         /* XXX: pch pll's can be enabled any time before we enable the PCH
4117          * transcoder, and we actually should do this to not upset any PCH
4118          * transcoder that already use the clock when we share it.
4119          *
4120          * Note that enable_shared_dpll tries to do the right thing, but
4121          * get_shared_dpll unconditionally resets the pll - we need that to have
4122          * the right LVDS enable sequence. */
4123         intel_enable_shared_dpll(intel_crtc);
4124
4125         /* set transcoder timing, panel must allow it */
4126         assert_panel_unlocked(dev_priv, pipe);
4127         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4128
4129         intel_fdi_normal_train(crtc);
4130
4131         /* For PCH DP, enable TRANS_DP_CTL */
4132         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4133                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4134                 reg = TRANS_DP_CTL(pipe);
4135                 temp = I915_READ(reg);
4136                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4137                           TRANS_DP_SYNC_MASK |
4138                           TRANS_DP_BPC_MASK);
4139                 temp |= TRANS_DP_OUTPUT_ENABLE;
4140                 temp |= bpc << 9; /* same format but at 11:9 */
4141
4142                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4143                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4144                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4145                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4146
4147                 switch (intel_trans_dp_port_sel(crtc)) {
4148                 case PCH_DP_B:
4149                         temp |= TRANS_DP_PORT_SEL_B;
4150                         break;
4151                 case PCH_DP_C:
4152                         temp |= TRANS_DP_PORT_SEL_C;
4153                         break;
4154                 case PCH_DP_D:
4155                         temp |= TRANS_DP_PORT_SEL_D;
4156                         break;
4157                 default:
4158                         BUG();
4159                 }
4160
4161                 I915_WRITE(reg, temp);
4162         }
4163
4164         ironlake_enable_pch_transcoder(dev_priv, pipe);
4165 }
4166
4167 static void lpt_pch_enable(struct drm_crtc *crtc)
4168 {
4169         struct drm_device *dev = crtc->dev;
4170         struct drm_i915_private *dev_priv = dev->dev_private;
4171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4172         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4173
4174         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4175
4176         lpt_program_iclkip(crtc);
4177
4178         /* Set transcoder timing. */
4179         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4180
4181         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4182 }
4183
4184 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4185                                                 struct intel_crtc_state *crtc_state)
4186 {
4187         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4188         struct intel_shared_dpll *pll;
4189         struct intel_shared_dpll_config *shared_dpll;
4190         enum intel_dpll_id i;
4191
4192         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4193
4194         if (HAS_PCH_IBX(dev_priv->dev)) {
4195                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4196                 i = (enum intel_dpll_id) crtc->pipe;
4197                 pll = &dev_priv->shared_dplls[i];
4198
4199                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4200                               crtc->base.base.id, pll->name);
4201
4202                 WARN_ON(shared_dpll[i].crtc_mask);
4203
4204                 goto found;
4205         }
4206
4207         if (IS_BROXTON(dev_priv->dev)) {
4208                 /* PLL is attached to port in bxt */
4209                 struct intel_encoder *encoder;
4210                 struct intel_digital_port *intel_dig_port;
4211
4212                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4213                 if (WARN_ON(!encoder))
4214                         return NULL;
4215
4216                 intel_dig_port = enc_to_dig_port(&encoder->base);
4217                 /* 1:1 mapping between ports and PLLs */
4218                 i = (enum intel_dpll_id)intel_dig_port->port;
4219                 pll = &dev_priv->shared_dplls[i];
4220                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4221                         crtc->base.base.id, pll->name);
4222                 WARN_ON(shared_dpll[i].crtc_mask);
4223
4224                 goto found;
4225         }
4226
4227         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4228                 pll = &dev_priv->shared_dplls[i];
4229
4230                 /* Only want to check enabled timings first */
4231                 if (shared_dpll[i].crtc_mask == 0)
4232                         continue;
4233
4234                 if (memcmp(&crtc_state->dpll_hw_state,
4235                            &shared_dpll[i].hw_state,
4236                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4237                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4238                                       crtc->base.base.id, pll->name,
4239                                       shared_dpll[i].crtc_mask,
4240                                       pll->active);
4241                         goto found;
4242                 }
4243         }
4244
4245         /* Ok no matching timings, maybe there's a free one? */
4246         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4247                 pll = &dev_priv->shared_dplls[i];
4248                 if (shared_dpll[i].crtc_mask == 0) {
4249                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4250                                       crtc->base.base.id, pll->name);
4251                         goto found;
4252                 }
4253         }
4254
4255         return NULL;
4256
4257 found:
4258         if (shared_dpll[i].crtc_mask == 0)
4259                 shared_dpll[i].hw_state =
4260                         crtc_state->dpll_hw_state;
4261
4262         crtc_state->shared_dpll = i;
4263         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4264                          pipe_name(crtc->pipe));
4265
4266         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4267
4268         return pll;
4269 }
4270
4271 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4272 {
4273         struct drm_i915_private *dev_priv = to_i915(state->dev);
4274         struct intel_shared_dpll_config *shared_dpll;
4275         struct intel_shared_dpll *pll;
4276         enum intel_dpll_id i;
4277
4278         if (!to_intel_atomic_state(state)->dpll_set)
4279                 return;
4280
4281         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4282         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4283                 pll = &dev_priv->shared_dplls[i];
4284                 pll->config = shared_dpll[i];
4285         }
4286 }
4287
4288 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4289 {
4290         struct drm_i915_private *dev_priv = dev->dev_private;
4291         int dslreg = PIPEDSL(pipe);
4292         u32 temp;
4293
4294         temp = I915_READ(dslreg);
4295         udelay(500);
4296         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4297                 if (wait_for(I915_READ(dslreg) != temp, 5))
4298                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4299         }
4300 }
4301
4302 /**
4303  * skl_update_scaler_users - Stages update to crtc's scaler state
4304  * @intel_crtc: crtc
4305  * @crtc_state: crtc_state
4306  * @plane: plane (NULL indicates crtc is requesting update)
4307  * @plane_state: plane's state
4308  * @force_detach: request unconditional detachment of scaler
4309  *
4310  * This function updates scaler state for requested plane or crtc.
4311  * To request scaler usage update for a plane, caller shall pass plane pointer.
4312  * To request scaler usage update for crtc, caller shall pass plane pointer
4313  * as NULL.
4314  *
4315  * Return
4316  *     0 - scaler_usage updated successfully
4317  *    error - requested scaling cannot be supported or other error condition
4318  */
4319 int
4320 skl_update_scaler_users(
4321         struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4322         struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4323         int force_detach)
4324 {
4325         int need_scaling;
4326         int idx;
4327         int src_w, src_h, dst_w, dst_h;
4328         int *scaler_id;
4329         struct drm_framebuffer *fb;
4330         struct intel_crtc_scaler_state *scaler_state;
4331         unsigned int rotation;
4332
4333         if (!intel_crtc || !crtc_state)
4334                 return 0;
4335
4336         scaler_state = &crtc_state->scaler_state;
4337
4338         idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4339         fb = intel_plane ? plane_state->base.fb : NULL;
4340
4341         if (intel_plane) {
4342                 src_w = drm_rect_width(&plane_state->src) >> 16;
4343                 src_h = drm_rect_height(&plane_state->src) >> 16;
4344                 dst_w = drm_rect_width(&plane_state->dst);
4345                 dst_h = drm_rect_height(&plane_state->dst);
4346                 scaler_id = &plane_state->scaler_id;
4347                 rotation = plane_state->base.rotation;
4348         } else {
4349                 struct drm_display_mode *adjusted_mode =
4350                         &crtc_state->base.adjusted_mode;
4351                 src_w = crtc_state->pipe_src_w;
4352                 src_h = crtc_state->pipe_src_h;
4353                 dst_w = adjusted_mode->hdisplay;
4354                 dst_h = adjusted_mode->vdisplay;
4355                 scaler_id = &scaler_state->scaler_id;
4356                 rotation = DRM_ROTATE_0;
4357         }
4358
4359         need_scaling = intel_rotation_90_or_270(rotation) ?
4360                 (src_h != dst_w || src_w != dst_h):
4361                 (src_w != dst_w || src_h != dst_h);
4362
4363         /*
4364          * if plane is being disabled or scaler is no more required or force detach
4365          *  - free scaler binded to this plane/crtc
4366          *  - in order to do this, update crtc->scaler_usage
4367          *
4368          * Here scaler state in crtc_state is set free so that
4369          * scaler can be assigned to other user. Actual register
4370          * update to free the scaler is done in plane/panel-fit programming.
4371          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4372          */
4373         if (force_detach || !need_scaling || (intel_plane &&
4374                 (!fb || !plane_state->visible))) {
4375                 if (*scaler_id >= 0) {
4376                         scaler_state->scaler_users &= ~(1 << idx);
4377                         scaler_state->scalers[*scaler_id].in_use = 0;
4378
4379                         DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4380                                 "crtc_state = %p scaler_users = 0x%x\n",
4381                                 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4382                                 intel_plane ? intel_plane->base.base.id :
4383                                 intel_crtc->base.base.id, crtc_state,
4384                                 scaler_state->scaler_users);
4385                         *scaler_id = -1;
4386                 }
4387                 return 0;
4388         }
4389
4390         /* range checks */
4391         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4392                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4393
4394                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4395                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4396                 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4397                         "size is out of scaler range\n",
4398                         intel_plane ? "PLANE" : "CRTC",
4399                         intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4400                         intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4401                 return -EINVAL;
4402         }
4403
4404         /* check colorkey */
4405         if (WARN_ON(intel_plane &&
4406                 intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4407                 DRM_DEBUG_KMS("PLANE:%d scaling %ux%u->%ux%u not allowed with colorkey",
4408                         intel_plane->base.base.id, src_w, src_h, dst_w, dst_h);
4409                 return -EINVAL;
4410         }
4411
4412         /* Check src format */
4413         if (intel_plane) {
4414                 switch (fb->pixel_format) {
4415                 case DRM_FORMAT_RGB565:
4416                 case DRM_FORMAT_XBGR8888:
4417                 case DRM_FORMAT_XRGB8888:
4418                 case DRM_FORMAT_ABGR8888:
4419                 case DRM_FORMAT_ARGB8888:
4420                 case DRM_FORMAT_XRGB2101010:
4421                 case DRM_FORMAT_XBGR2101010:
4422                 case DRM_FORMAT_YUYV:
4423                 case DRM_FORMAT_YVYU:
4424                 case DRM_FORMAT_UYVY:
4425                 case DRM_FORMAT_VYUY:
4426                         break;
4427                 default:
4428                         DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4429                                 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4430                         return -EINVAL;
4431                 }
4432         }
4433
4434         /* mark this plane as a scaler user in crtc_state */
4435         scaler_state->scaler_users |= (1 << idx);
4436         DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4437                 "crtc_state = %p scaler_users = 0x%x\n",
4438                 intel_plane ? "PLANE" : "CRTC",
4439                 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4440                 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4441         return 0;
4442 }
4443
4444 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4445 {
4446         struct drm_device *dev = crtc->base.dev;
4447         struct drm_i915_private *dev_priv = dev->dev_private;
4448         int pipe = crtc->pipe;
4449         struct intel_crtc_scaler_state *scaler_state =
4450                 &crtc->config->scaler_state;
4451
4452         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4453
4454         /* To update pfit, first update scaler state */
4455         skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4456         intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4457         skl_detach_scalers(crtc);
4458         if (!enable)
4459                 return;
4460
4461         if (crtc->config->pch_pfit.enabled) {
4462                 int id;
4463
4464                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4465                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4466                         return;
4467                 }
4468
4469                 id = scaler_state->scaler_id;
4470                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4471                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4472                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4473                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4474
4475                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4476         }
4477 }
4478
4479 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4480 {
4481         struct drm_device *dev = crtc->base.dev;
4482         struct drm_i915_private *dev_priv = dev->dev_private;
4483         int pipe = crtc->pipe;
4484
4485         if (crtc->config->pch_pfit.enabled) {
4486                 /* Force use of hard-coded filter coefficients
4487                  * as some pre-programmed values are broken,
4488                  * e.g. x201.
4489                  */
4490                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4491                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4492                                                  PF_PIPE_SEL_IVB(pipe));
4493                 else
4494                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4495                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4496                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4497         }
4498 }
4499
4500 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4501 {
4502         struct drm_device *dev = crtc->dev;
4503         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4504         struct drm_plane *plane;
4505         struct intel_plane *intel_plane;
4506
4507         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4508                 intel_plane = to_intel_plane(plane);
4509                 if (intel_plane->pipe == pipe)
4510                         intel_plane_restore(&intel_plane->base);
4511         }
4512 }
4513
4514 void hsw_enable_ips(struct intel_crtc *crtc)
4515 {
4516         struct drm_device *dev = crtc->base.dev;
4517         struct drm_i915_private *dev_priv = dev->dev_private;
4518
4519         if (!crtc->config->ips_enabled)
4520                 return;
4521
4522         /* We can only enable IPS after we enable a plane and wait for a vblank */
4523         intel_wait_for_vblank(dev, crtc->pipe);
4524
4525         assert_plane_enabled(dev_priv, crtc->plane);
4526         if (IS_BROADWELL(dev)) {
4527                 mutex_lock(&dev_priv->rps.hw_lock);
4528                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4529                 mutex_unlock(&dev_priv->rps.hw_lock);
4530                 /* Quoting Art Runyan: "its not safe to expect any particular
4531                  * value in IPS_CTL bit 31 after enabling IPS through the
4532                  * mailbox." Moreover, the mailbox may return a bogus state,
4533                  * so we need to just enable it and continue on.
4534                  */
4535         } else {
4536                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4537                 /* The bit only becomes 1 in the next vblank, so this wait here
4538                  * is essentially intel_wait_for_vblank. If we don't have this
4539                  * and don't wait for vblanks until the end of crtc_enable, then
4540                  * the HW state readout code will complain that the expected
4541                  * IPS_CTL value is not the one we read. */
4542                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4543                         DRM_ERROR("Timed out waiting for IPS enable\n");
4544         }
4545 }
4546
4547 void hsw_disable_ips(struct intel_crtc *crtc)
4548 {
4549         struct drm_device *dev = crtc->base.dev;
4550         struct drm_i915_private *dev_priv = dev->dev_private;
4551
4552         if (!crtc->config->ips_enabled)
4553                 return;
4554
4555         assert_plane_enabled(dev_priv, crtc->plane);
4556         if (IS_BROADWELL(dev)) {
4557                 mutex_lock(&dev_priv->rps.hw_lock);
4558                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4559                 mutex_unlock(&dev_priv->rps.hw_lock);
4560                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4561                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4562                         DRM_ERROR("Timed out waiting for IPS disable\n");
4563         } else {
4564                 I915_WRITE(IPS_CTL, 0);
4565                 POSTING_READ(IPS_CTL);
4566         }
4567
4568         /* We need to wait for a vblank before we can disable the plane. */
4569         intel_wait_for_vblank(dev, crtc->pipe);
4570 }
4571
4572 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4573 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4574 {
4575         struct drm_device *dev = crtc->dev;
4576         struct drm_i915_private *dev_priv = dev->dev_private;
4577         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4578         enum pipe pipe = intel_crtc->pipe;
4579         int palreg = PALETTE(pipe);
4580         int i;
4581         bool reenable_ips = false;
4582
4583         /* The clocks have to be on to load the palette. */
4584         if (!crtc->state->active)
4585                 return;
4586
4587         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4588                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4589                         assert_dsi_pll_enabled(dev_priv);
4590                 else
4591                         assert_pll_enabled(dev_priv, pipe);
4592         }
4593
4594         /* use legacy palette for Ironlake */
4595         if (!HAS_GMCH_DISPLAY(dev))
4596                 palreg = LGC_PALETTE(pipe);
4597
4598         /* Workaround : Do not read or write the pipe palette/gamma data while
4599          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4600          */
4601         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4602             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4603              GAMMA_MODE_MODE_SPLIT)) {
4604                 hsw_disable_ips(intel_crtc);
4605                 reenable_ips = true;
4606         }
4607
4608         for (i = 0; i < 256; i++) {
4609                 I915_WRITE(palreg + 4 * i,
4610                            (intel_crtc->lut_r[i] << 16) |
4611                            (intel_crtc->lut_g[i] << 8) |
4612                            intel_crtc->lut_b[i]);
4613         }
4614
4615         if (reenable_ips)
4616                 hsw_enable_ips(intel_crtc);
4617 }
4618
4619 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4620 {
4621         if (intel_crtc->overlay) {
4622                 struct drm_device *dev = intel_crtc->base.dev;
4623                 struct drm_i915_private *dev_priv = dev->dev_private;
4624
4625                 mutex_lock(&dev->struct_mutex);
4626                 dev_priv->mm.interruptible = false;
4627                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4628                 dev_priv->mm.interruptible = true;
4629                 mutex_unlock(&dev->struct_mutex);
4630         }
4631
4632         /* Let userspace switch the overlay on again. In most cases userspace
4633          * has to recompute where to put it anyway.
4634          */
4635 }
4636
4637 /**
4638  * intel_post_enable_primary - Perform operations after enabling primary plane
4639  * @crtc: the CRTC whose primary plane was just enabled
4640  *
4641  * Performs potentially sleeping operations that must be done after the primary
4642  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4643  * called due to an explicit primary plane update, or due to an implicit
4644  * re-enable that is caused when a sprite plane is updated to no longer
4645  * completely hide the primary plane.
4646  */
4647 static void
4648 intel_post_enable_primary(struct drm_crtc *crtc)
4649 {
4650         struct drm_device *dev = crtc->dev;
4651         struct drm_i915_private *dev_priv = dev->dev_private;
4652         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4653         int pipe = intel_crtc->pipe;
4654
4655         /*
4656          * BDW signals flip done immediately if the plane
4657          * is disabled, even if the plane enable is already
4658          * armed to occur at the next vblank :(
4659          */
4660         if (IS_BROADWELL(dev))
4661                 intel_wait_for_vblank(dev, pipe);
4662
4663         /*
4664          * FIXME IPS should be fine as long as one plane is
4665          * enabled, but in practice it seems to have problems
4666          * when going from primary only to sprite only and vice
4667          * versa.
4668          */
4669         hsw_enable_ips(intel_crtc);
4670
4671         mutex_lock(&dev->struct_mutex);
4672         intel_fbc_update(dev);
4673         mutex_unlock(&dev->struct_mutex);
4674
4675         /*
4676          * Gen2 reports pipe underruns whenever all planes are disabled.
4677          * So don't enable underrun reporting before at least some planes
4678          * are enabled.
4679          * FIXME: Need to fix the logic to work when we turn off all planes
4680          * but leave the pipe running.
4681          */
4682         if (IS_GEN2(dev))
4683                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4684
4685         /* Underruns don't raise interrupts, so check manually. */
4686         if (HAS_GMCH_DISPLAY(dev))
4687                 i9xx_check_fifo_underruns(dev_priv);
4688 }
4689
4690 /**
4691  * intel_pre_disable_primary - Perform operations before disabling primary plane
4692  * @crtc: the CRTC whose primary plane is to be disabled
4693  *
4694  * Performs potentially sleeping operations that must be done before the
4695  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4696  * be called due to an explicit primary plane update, or due to an implicit
4697  * disable that is caused when a sprite plane completely hides the primary
4698  * plane.
4699  */
4700 static void
4701 intel_pre_disable_primary(struct drm_crtc *crtc)
4702 {
4703         struct drm_device *dev = crtc->dev;
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4706         int pipe = intel_crtc->pipe;
4707
4708         /*
4709          * Gen2 reports pipe underruns whenever all planes are disabled.
4710          * So diasble underrun reporting before all the planes get disabled.
4711          * FIXME: Need to fix the logic to work when we turn off all planes
4712          * but leave the pipe running.
4713          */
4714         if (IS_GEN2(dev))
4715                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4716
4717         /*
4718          * Vblank time updates from the shadow to live plane control register
4719          * are blocked if the memory self-refresh mode is active at that
4720          * moment. So to make sure the plane gets truly disabled, disable
4721          * first the self-refresh mode. The self-refresh enable bit in turn
4722          * will be checked/applied by the HW only at the next frame start
4723          * event which is after the vblank start event, so we need to have a
4724          * wait-for-vblank between disabling the plane and the pipe.
4725          */
4726         if (HAS_GMCH_DISPLAY(dev))
4727                 intel_set_memory_cxsr(dev_priv, false);
4728
4729         mutex_lock(&dev->struct_mutex);
4730         if (dev_priv->fbc.crtc == intel_crtc)
4731                 intel_fbc_disable(dev);
4732         mutex_unlock(&dev->struct_mutex);
4733
4734         /*
4735          * FIXME IPS should be fine as long as one plane is
4736          * enabled, but in practice it seems to have problems
4737          * when going from primary only to sprite only and vice
4738          * versa.
4739          */
4740         hsw_disable_ips(intel_crtc);
4741 }
4742
4743 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4744 {
4745         struct drm_device *dev = crtc->dev;
4746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4747         int pipe = intel_crtc->pipe;
4748
4749         intel_enable_primary_hw_plane(crtc->primary, crtc);
4750         intel_enable_sprite_planes(crtc);
4751         intel_crtc_update_cursor(crtc, true);
4752
4753         intel_post_enable_primary(crtc);
4754
4755         /*
4756          * FIXME: Once we grow proper nuclear flip support out of this we need
4757          * to compute the mask of flip planes precisely. For the time being
4758          * consider this a flip to a NULL plane.
4759          */
4760         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4761 }
4762
4763 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4764 {
4765         struct drm_device *dev = crtc->dev;
4766         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4767         struct intel_plane *intel_plane;
4768         int pipe = intel_crtc->pipe;
4769
4770         intel_crtc_wait_for_pending_flips(crtc);
4771
4772         intel_pre_disable_primary(crtc);
4773
4774         intel_crtc_dpms_overlay_disable(intel_crtc);
4775         for_each_intel_plane(dev, intel_plane) {
4776                 if (intel_plane->pipe == pipe) {
4777                         struct drm_crtc *from = intel_plane->base.crtc;
4778
4779                         intel_plane->disable_plane(&intel_plane->base,
4780                                                    from ?: crtc, true);
4781                 }
4782         }
4783
4784         /*
4785          * FIXME: Once we grow proper nuclear flip support out of this we need
4786          * to compute the mask of flip planes precisely. For the time being
4787          * consider this a flip to a NULL plane.
4788          */
4789         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4790 }
4791
4792 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4793 {
4794         struct drm_device *dev = crtc->dev;
4795         struct drm_i915_private *dev_priv = dev->dev_private;
4796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4797         struct intel_encoder *encoder;
4798         int pipe = intel_crtc->pipe;
4799
4800         if (WARN_ON(intel_crtc->active))
4801                 return;
4802
4803         if (intel_crtc->config->has_pch_encoder)
4804                 intel_prepare_shared_dpll(intel_crtc);
4805
4806         if (intel_crtc->config->has_dp_encoder)
4807                 intel_dp_set_m_n(intel_crtc, M1_N1);
4808
4809         intel_set_pipe_timings(intel_crtc);
4810
4811         if (intel_crtc->config->has_pch_encoder) {
4812                 intel_cpu_transcoder_set_m_n(intel_crtc,
4813                                      &intel_crtc->config->fdi_m_n, NULL);
4814         }
4815
4816         ironlake_set_pipeconf(crtc);
4817
4818         intel_crtc->active = true;
4819
4820         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4821         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4822
4823         for_each_encoder_on_crtc(dev, crtc, encoder)
4824                 if (encoder->pre_enable)
4825                         encoder->pre_enable(encoder);
4826
4827         if (intel_crtc->config->has_pch_encoder) {
4828                 /* Note: FDI PLL enabling _must_ be done before we enable the
4829                  * cpu pipes, hence this is separate from all the other fdi/pch
4830                  * enabling. */
4831                 ironlake_fdi_pll_enable(intel_crtc);
4832         } else {
4833                 assert_fdi_tx_disabled(dev_priv, pipe);
4834                 assert_fdi_rx_disabled(dev_priv, pipe);
4835         }
4836
4837         ironlake_pfit_enable(intel_crtc);
4838
4839         /*
4840          * On ILK+ LUT must be loaded before the pipe is running but with
4841          * clocks enabled
4842          */
4843         intel_crtc_load_lut(crtc);
4844
4845         intel_update_watermarks(crtc);
4846         intel_enable_pipe(intel_crtc);
4847
4848         if (intel_crtc->config->has_pch_encoder)
4849                 ironlake_pch_enable(crtc);
4850
4851         assert_vblank_disabled(crtc);
4852         drm_crtc_vblank_on(crtc);
4853
4854         for_each_encoder_on_crtc(dev, crtc, encoder)
4855                 encoder->enable(encoder);
4856
4857         if (HAS_PCH_CPT(dev))
4858                 cpt_verify_modeset(dev, intel_crtc->pipe);
4859 }
4860
4861 /* IPS only exists on ULT machines and is tied to pipe A. */
4862 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4863 {
4864         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4865 }
4866
4867 static void haswell_crtc_enable(struct drm_crtc *crtc)
4868 {
4869         struct drm_device *dev = crtc->dev;
4870         struct drm_i915_private *dev_priv = dev->dev_private;
4871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4872         struct intel_encoder *encoder;
4873         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4874         struct intel_crtc_state *pipe_config =
4875                 to_intel_crtc_state(crtc->state);
4876
4877         if (WARN_ON(intel_crtc->active))
4878                 return;
4879
4880         if (intel_crtc_to_shared_dpll(intel_crtc))
4881                 intel_enable_shared_dpll(intel_crtc);
4882
4883         if (intel_crtc->config->has_dp_encoder)
4884                 intel_dp_set_m_n(intel_crtc, M1_N1);
4885
4886         intel_set_pipe_timings(intel_crtc);
4887
4888         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4889                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4890                            intel_crtc->config->pixel_multiplier - 1);
4891         }
4892
4893         if (intel_crtc->config->has_pch_encoder) {
4894                 intel_cpu_transcoder_set_m_n(intel_crtc,
4895                                      &intel_crtc->config->fdi_m_n, NULL);
4896         }
4897
4898         haswell_set_pipeconf(crtc);
4899
4900         intel_set_pipe_csc(crtc);
4901
4902         intel_crtc->active = true;
4903
4904         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4905         for_each_encoder_on_crtc(dev, crtc, encoder)
4906                 if (encoder->pre_enable)
4907                         encoder->pre_enable(encoder);
4908
4909         if (intel_crtc->config->has_pch_encoder) {
4910                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4911                                                       true);
4912                 dev_priv->display.fdi_link_train(crtc);
4913         }
4914
4915         intel_ddi_enable_pipe_clock(intel_crtc);
4916
4917         if (INTEL_INFO(dev)->gen == 9)
4918                 skylake_pfit_update(intel_crtc, 1);
4919         else if (INTEL_INFO(dev)->gen < 9)
4920                 ironlake_pfit_enable(intel_crtc);
4921         else
4922                 MISSING_CASE(INTEL_INFO(dev)->gen);
4923
4924         /*
4925          * On ILK+ LUT must be loaded before the pipe is running but with
4926          * clocks enabled
4927          */
4928         intel_crtc_load_lut(crtc);
4929
4930         intel_ddi_set_pipe_settings(crtc);
4931         intel_ddi_enable_transcoder_func(crtc);
4932
4933         intel_update_watermarks(crtc);
4934         intel_enable_pipe(intel_crtc);
4935
4936         if (intel_crtc->config->has_pch_encoder)
4937                 lpt_pch_enable(crtc);
4938
4939         if (intel_crtc->config->dp_encoder_is_mst)
4940                 intel_ddi_set_vc_payload_alloc(crtc, true);
4941
4942         assert_vblank_disabled(crtc);
4943         drm_crtc_vblank_on(crtc);
4944
4945         for_each_encoder_on_crtc(dev, crtc, encoder) {
4946                 encoder->enable(encoder);
4947                 intel_opregion_notify_encoder(encoder, true);
4948         }
4949
4950         /* If we change the relative order between pipe/planes enabling, we need
4951          * to change the workaround. */
4952         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4953         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4954                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4955                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4956         }
4957 }
4958
4959 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4960 {
4961         struct drm_device *dev = crtc->base.dev;
4962         struct drm_i915_private *dev_priv = dev->dev_private;
4963         int pipe = crtc->pipe;
4964
4965         /* To avoid upsetting the power well on haswell only disable the pfit if
4966          * it's in use. The hw state code will make sure we get this right. */
4967         if (crtc->config->pch_pfit.enabled) {
4968                 I915_WRITE(PF_CTL(pipe), 0);
4969                 I915_WRITE(PF_WIN_POS(pipe), 0);
4970                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4971         }
4972 }
4973
4974 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4975 {
4976         struct drm_device *dev = crtc->dev;
4977         struct drm_i915_private *dev_priv = dev->dev_private;
4978         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4979         struct intel_encoder *encoder;
4980         int pipe = intel_crtc->pipe;
4981         u32 reg, temp;
4982
4983         if (WARN_ON(!intel_crtc->active))
4984                 return;
4985
4986         for_each_encoder_on_crtc(dev, crtc, encoder)
4987                 encoder->disable(encoder);
4988
4989         drm_crtc_vblank_off(crtc);
4990         assert_vblank_disabled(crtc);
4991
4992         if (intel_crtc->config->has_pch_encoder)
4993                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4994
4995         intel_disable_pipe(intel_crtc);
4996
4997         ironlake_pfit_disable(intel_crtc);
4998
4999         if (intel_crtc->config->has_pch_encoder)
5000                 ironlake_fdi_disable(crtc);
5001
5002         for_each_encoder_on_crtc(dev, crtc, encoder)
5003                 if (encoder->post_disable)
5004                         encoder->post_disable(encoder);
5005
5006         if (intel_crtc->config->has_pch_encoder) {
5007                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5008
5009                 if (HAS_PCH_CPT(dev)) {
5010                         /* disable TRANS_DP_CTL */
5011                         reg = TRANS_DP_CTL(pipe);
5012                         temp = I915_READ(reg);
5013                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5014                                   TRANS_DP_PORT_SEL_MASK);
5015                         temp |= TRANS_DP_PORT_SEL_NONE;
5016                         I915_WRITE(reg, temp);
5017
5018                         /* disable DPLL_SEL */
5019                         temp = I915_READ(PCH_DPLL_SEL);
5020                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5021                         I915_WRITE(PCH_DPLL_SEL, temp);
5022                 }
5023
5024                 /* disable PCH DPLL */
5025                 intel_disable_shared_dpll(intel_crtc);
5026
5027                 ironlake_fdi_pll_disable(intel_crtc);
5028         }
5029
5030         intel_crtc->active = false;
5031         intel_update_watermarks(crtc);
5032
5033         mutex_lock(&dev->struct_mutex);
5034         intel_fbc_update(dev);
5035         mutex_unlock(&dev->struct_mutex);
5036 }
5037
5038 static void haswell_crtc_disable(struct drm_crtc *crtc)
5039 {
5040         struct drm_device *dev = crtc->dev;
5041         struct drm_i915_private *dev_priv = dev->dev_private;
5042         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5043         struct intel_encoder *encoder;
5044         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5045
5046         if (WARN_ON(!intel_crtc->active))
5047                 return;
5048
5049         for_each_encoder_on_crtc(dev, crtc, encoder) {
5050                 intel_opregion_notify_encoder(encoder, false);
5051                 encoder->disable(encoder);
5052         }
5053
5054         drm_crtc_vblank_off(crtc);
5055         assert_vblank_disabled(crtc);
5056
5057         if (intel_crtc->config->has_pch_encoder)
5058                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5059                                                       false);
5060         intel_disable_pipe(intel_crtc);
5061
5062         if (intel_crtc->config->dp_encoder_is_mst)
5063                 intel_ddi_set_vc_payload_alloc(crtc, false);
5064
5065         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5066
5067         if (INTEL_INFO(dev)->gen == 9)
5068                 skylake_pfit_update(intel_crtc, 0);
5069         else if (INTEL_INFO(dev)->gen < 9)
5070                 ironlake_pfit_disable(intel_crtc);
5071         else
5072                 MISSING_CASE(INTEL_INFO(dev)->gen);
5073
5074         intel_ddi_disable_pipe_clock(intel_crtc);
5075
5076         if (intel_crtc->config->has_pch_encoder) {
5077                 lpt_disable_pch_transcoder(dev_priv);
5078                 intel_ddi_fdi_disable(crtc);
5079         }
5080
5081         for_each_encoder_on_crtc(dev, crtc, encoder)
5082                 if (encoder->post_disable)
5083                         encoder->post_disable(encoder);
5084
5085         intel_crtc->active = false;
5086         intel_update_watermarks(crtc);
5087
5088         mutex_lock(&dev->struct_mutex);
5089         intel_fbc_update(dev);
5090         mutex_unlock(&dev->struct_mutex);
5091
5092         if (intel_crtc_to_shared_dpll(intel_crtc))
5093                 intel_disable_shared_dpll(intel_crtc);
5094 }
5095
5096 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5097 {
5098         struct drm_device *dev = crtc->base.dev;
5099         struct drm_i915_private *dev_priv = dev->dev_private;
5100         struct intel_crtc_state *pipe_config = crtc->config;
5101
5102         if (!pipe_config->gmch_pfit.control)
5103                 return;
5104
5105         /*
5106          * The panel fitter should only be adjusted whilst the pipe is disabled,
5107          * according to register description and PRM.
5108          */
5109         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5110         assert_pipe_disabled(dev_priv, crtc->pipe);
5111
5112         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5113         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5114
5115         /* Border color in case we don't scale up to the full screen. Black by
5116          * default, change to something else for debugging. */
5117         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5118 }
5119
5120 static enum intel_display_power_domain port_to_power_domain(enum port port)
5121 {
5122         switch (port) {
5123         case PORT_A:
5124                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5125         case PORT_B:
5126                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5127         case PORT_C:
5128                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5129         case PORT_D:
5130                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5131         default:
5132                 WARN_ON_ONCE(1);
5133                 return POWER_DOMAIN_PORT_OTHER;
5134         }
5135 }
5136
5137 #define for_each_power_domain(domain, mask)                             \
5138         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5139                 if ((1 << (domain)) & (mask))
5140
5141 enum intel_display_power_domain
5142 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5143 {
5144         struct drm_device *dev = intel_encoder->base.dev;
5145         struct intel_digital_port *intel_dig_port;
5146
5147         switch (intel_encoder->type) {
5148         case INTEL_OUTPUT_UNKNOWN:
5149                 /* Only DDI platforms should ever use this output type */
5150                 WARN_ON_ONCE(!HAS_DDI(dev));
5151         case INTEL_OUTPUT_DISPLAYPORT:
5152         case INTEL_OUTPUT_HDMI:
5153         case INTEL_OUTPUT_EDP:
5154                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5155                 return port_to_power_domain(intel_dig_port->port);
5156         case INTEL_OUTPUT_DP_MST:
5157                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5158                 return port_to_power_domain(intel_dig_port->port);
5159         case INTEL_OUTPUT_ANALOG:
5160                 return POWER_DOMAIN_PORT_CRT;
5161         case INTEL_OUTPUT_DSI:
5162                 return POWER_DOMAIN_PORT_DSI;
5163         default:
5164                 return POWER_DOMAIN_PORT_OTHER;
5165         }
5166 }
5167
5168 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5169 {
5170         struct drm_device *dev = crtc->dev;
5171         struct intel_encoder *intel_encoder;
5172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5173         enum pipe pipe = intel_crtc->pipe;
5174         unsigned long mask;
5175         enum transcoder transcoder;
5176
5177         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5178
5179         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5180         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5181         if (intel_crtc->config->pch_pfit.enabled ||
5182             intel_crtc->config->pch_pfit.force_thru)
5183                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5184
5185         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5186                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5187
5188         return mask;
5189 }
5190
5191 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5192 {
5193         struct drm_device *dev = state->dev;
5194         struct drm_i915_private *dev_priv = dev->dev_private;
5195         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5196         struct intel_crtc *crtc;
5197
5198         /*
5199          * First get all needed power domains, then put all unneeded, to avoid
5200          * any unnecessary toggling of the power wells.
5201          */
5202         for_each_intel_crtc(dev, crtc) {
5203                 enum intel_display_power_domain domain;
5204
5205                 if (!crtc->base.state->enable)
5206                         continue;
5207
5208                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5209
5210                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5211                         intel_display_power_get(dev_priv, domain);
5212         }
5213
5214         if (dev_priv->display.modeset_global_resources)
5215                 dev_priv->display.modeset_global_resources(state);
5216
5217         for_each_intel_crtc(dev, crtc) {
5218                 enum intel_display_power_domain domain;
5219
5220                 for_each_power_domain(domain, crtc->enabled_power_domains)
5221                         intel_display_power_put(dev_priv, domain);
5222
5223                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5224         }
5225
5226         intel_display_set_init_power(dev_priv, false);
5227 }
5228
5229 static void intel_update_max_cdclk(struct drm_device *dev)
5230 {
5231         struct drm_i915_private *dev_priv = dev->dev_private;
5232
5233         if (IS_SKYLAKE(dev)) {
5234                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5235
5236                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5237                         dev_priv->max_cdclk_freq = 675000;
5238                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5239                         dev_priv->max_cdclk_freq = 540000;
5240                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5241                         dev_priv->max_cdclk_freq = 450000;
5242                 else
5243                         dev_priv->max_cdclk_freq = 337500;
5244         } else if (IS_BROADWELL(dev))  {
5245                 /*
5246                  * FIXME with extra cooling we can allow
5247                  * 540 MHz for ULX and 675 Mhz for ULT.
5248                  * How can we know if extra cooling is
5249                  * available? PCI ID, VTB, something else?
5250                  */
5251                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5252                         dev_priv->max_cdclk_freq = 450000;
5253                 else if (IS_BDW_ULX(dev))
5254                         dev_priv->max_cdclk_freq = 450000;
5255                 else if (IS_BDW_ULT(dev))
5256                         dev_priv->max_cdclk_freq = 540000;
5257                 else
5258                         dev_priv->max_cdclk_freq = 675000;
5259         } else if (IS_VALLEYVIEW(dev)) {
5260                 dev_priv->max_cdclk_freq = 400000;
5261         } else {
5262                 /* otherwise assume cdclk is fixed */
5263                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5264         }
5265
5266         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5267                          dev_priv->max_cdclk_freq);
5268 }
5269
5270 static void intel_update_cdclk(struct drm_device *dev)
5271 {
5272         struct drm_i915_private *dev_priv = dev->dev_private;
5273
5274         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5275         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5276                          dev_priv->cdclk_freq);
5277
5278         /*
5279          * Program the gmbus_freq based on the cdclk frequency.
5280          * BSpec erroneously claims we should aim for 4MHz, but
5281          * in fact 1MHz is the correct frequency.
5282          */
5283         if (IS_VALLEYVIEW(dev)) {
5284                 /*
5285                  * Program the gmbus_freq based on the cdclk frequency.
5286                  * BSpec erroneously claims we should aim for 4MHz, but
5287                  * in fact 1MHz is the correct frequency.
5288                  */
5289                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5290         }
5291
5292         if (dev_priv->max_cdclk_freq == 0)
5293                 intel_update_max_cdclk(dev);
5294 }
5295
5296 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5297 {
5298         struct drm_i915_private *dev_priv = dev->dev_private;
5299         uint32_t divider;
5300         uint32_t ratio;
5301         uint32_t current_freq;
5302         int ret;
5303
5304         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5305         switch (frequency) {
5306         case 144000:
5307                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5308                 ratio = BXT_DE_PLL_RATIO(60);
5309                 break;
5310         case 288000:
5311                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5312                 ratio = BXT_DE_PLL_RATIO(60);
5313                 break;
5314         case 384000:
5315                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5316                 ratio = BXT_DE_PLL_RATIO(60);
5317                 break;
5318         case 576000:
5319                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5320                 ratio = BXT_DE_PLL_RATIO(60);
5321                 break;
5322         case 624000:
5323                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5324                 ratio = BXT_DE_PLL_RATIO(65);
5325                 break;
5326         case 19200:
5327                 /*
5328                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5329                  * to suppress GCC warning.
5330                  */
5331                 ratio = 0;
5332                 divider = 0;
5333                 break;
5334         default:
5335                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5336
5337                 return;
5338         }
5339
5340         mutex_lock(&dev_priv->rps.hw_lock);
5341         /* Inform power controller of upcoming frequency change */
5342         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5343                                       0x80000000);
5344         mutex_unlock(&dev_priv->rps.hw_lock);
5345
5346         if (ret) {
5347                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5348                           ret, frequency);
5349                 return;
5350         }
5351
5352         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5353         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5354         current_freq = current_freq * 500 + 1000;
5355
5356         /*
5357          * DE PLL has to be disabled when
5358          * - setting to 19.2MHz (bypass, PLL isn't used)
5359          * - before setting to 624MHz (PLL needs toggling)
5360          * - before setting to any frequency from 624MHz (PLL needs toggling)
5361          */
5362         if (frequency == 19200 || frequency == 624000 ||
5363             current_freq == 624000) {
5364                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5365                 /* Timeout 200us */
5366                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5367                              1))
5368                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5369         }
5370
5371         if (frequency != 19200) {
5372                 uint32_t val;
5373
5374                 val = I915_READ(BXT_DE_PLL_CTL);
5375                 val &= ~BXT_DE_PLL_RATIO_MASK;
5376                 val |= ratio;
5377                 I915_WRITE(BXT_DE_PLL_CTL, val);
5378
5379                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5380                 /* Timeout 200us */
5381                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5382                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5383
5384                 val = I915_READ(CDCLK_CTL);
5385                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5386                 val |= divider;
5387                 /*
5388                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5389                  * enable otherwise.
5390                  */
5391                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5392                 if (frequency >= 500000)
5393                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5394
5395                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5396                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5397                 val |= (frequency - 1000) / 500;
5398                 I915_WRITE(CDCLK_CTL, val);
5399         }
5400
5401         mutex_lock(&dev_priv->rps.hw_lock);
5402         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5403                                       DIV_ROUND_UP(frequency, 25000));
5404         mutex_unlock(&dev_priv->rps.hw_lock);
5405
5406         if (ret) {
5407                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5408                           ret, frequency);
5409                 return;
5410         }
5411
5412         intel_update_cdclk(dev);
5413 }
5414
5415 void broxton_init_cdclk(struct drm_device *dev)
5416 {
5417         struct drm_i915_private *dev_priv = dev->dev_private;
5418         uint32_t val;
5419
5420         /*
5421          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5422          * or else the reset will hang because there is no PCH to respond.
5423          * Move the handshake programming to initialization sequence.
5424          * Previously was left up to BIOS.
5425          */
5426         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5427         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5428         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5429
5430         /* Enable PG1 for cdclk */
5431         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5432
5433         /* check if cd clock is enabled */
5434         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5435                 DRM_DEBUG_KMS("Display already initialized\n");
5436                 return;
5437         }
5438
5439         /*
5440          * FIXME:
5441          * - The initial CDCLK needs to be read from VBT.
5442          *   Need to make this change after VBT has changes for BXT.
5443          * - check if setting the max (or any) cdclk freq is really necessary
5444          *   here, it belongs to modeset time
5445          */
5446         broxton_set_cdclk(dev, 624000);
5447
5448         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5449         POSTING_READ(DBUF_CTL);
5450
5451         udelay(10);
5452
5453         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5454                 DRM_ERROR("DBuf power enable timeout!\n");
5455 }
5456
5457 void broxton_uninit_cdclk(struct drm_device *dev)
5458 {
5459         struct drm_i915_private *dev_priv = dev->dev_private;
5460
5461         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5462         POSTING_READ(DBUF_CTL);
5463
5464         udelay(10);
5465
5466         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5467                 DRM_ERROR("DBuf power disable timeout!\n");
5468
5469         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5470         broxton_set_cdclk(dev, 19200);
5471
5472         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5473 }
5474
5475 static const struct skl_cdclk_entry {
5476         unsigned int freq;
5477         unsigned int vco;
5478 } skl_cdclk_frequencies[] = {
5479         { .freq = 308570, .vco = 8640 },
5480         { .freq = 337500, .vco = 8100 },
5481         { .freq = 432000, .vco = 8640 },
5482         { .freq = 450000, .vco = 8100 },
5483         { .freq = 540000, .vco = 8100 },
5484         { .freq = 617140, .vco = 8640 },
5485         { .freq = 675000, .vco = 8100 },
5486 };
5487
5488 static unsigned int skl_cdclk_decimal(unsigned int freq)
5489 {
5490         return (freq - 1000) / 500;
5491 }
5492
5493 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5494 {
5495         unsigned int i;
5496
5497         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5498                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5499
5500                 if (e->freq == freq)
5501                         return e->vco;
5502         }
5503
5504         return 8100;
5505 }
5506
5507 static void
5508 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5509 {
5510         unsigned int min_freq;
5511         u32 val;
5512
5513         /* select the minimum CDCLK before enabling DPLL 0 */
5514         val = I915_READ(CDCLK_CTL);
5515         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5516         val |= CDCLK_FREQ_337_308;
5517
5518         if (required_vco == 8640)
5519                 min_freq = 308570;
5520         else
5521                 min_freq = 337500;
5522
5523         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5524
5525         I915_WRITE(CDCLK_CTL, val);
5526         POSTING_READ(CDCLK_CTL);
5527
5528         /*
5529          * We always enable DPLL0 with the lowest link rate possible, but still
5530          * taking into account the VCO required to operate the eDP panel at the
5531          * desired frequency. The usual DP link rates operate with a VCO of
5532          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5533          * The modeset code is responsible for the selection of the exact link
5534          * rate later on, with the constraint of choosing a frequency that
5535          * works with required_vco.
5536          */
5537         val = I915_READ(DPLL_CTRL1);
5538
5539         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5540                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5541         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5542         if (required_vco == 8640)
5543                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5544                                             SKL_DPLL0);
5545         else
5546                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5547                                             SKL_DPLL0);
5548
5549         I915_WRITE(DPLL_CTRL1, val);
5550         POSTING_READ(DPLL_CTRL1);
5551
5552         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5553
5554         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5555                 DRM_ERROR("DPLL0 not locked\n");
5556 }
5557
5558 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5559 {
5560         int ret;
5561         u32 val;
5562
5563         /* inform PCU we want to change CDCLK */
5564         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5565         mutex_lock(&dev_priv->rps.hw_lock);
5566         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5567         mutex_unlock(&dev_priv->rps.hw_lock);
5568
5569         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5570 }
5571
5572 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5573 {
5574         unsigned int i;
5575
5576         for (i = 0; i < 15; i++) {
5577                 if (skl_cdclk_pcu_ready(dev_priv))
5578                         return true;
5579                 udelay(10);
5580         }
5581
5582         return false;
5583 }
5584
5585 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5586 {
5587         struct drm_device *dev = dev_priv->dev;
5588         u32 freq_select, pcu_ack;
5589
5590         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5591
5592         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5593                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5594                 return;
5595         }
5596
5597         /* set CDCLK_CTL */
5598         switch(freq) {
5599         case 450000:
5600         case 432000:
5601                 freq_select = CDCLK_FREQ_450_432;
5602                 pcu_ack = 1;
5603                 break;
5604         case 540000:
5605                 freq_select = CDCLK_FREQ_540;
5606                 pcu_ack = 2;
5607                 break;
5608         case 308570:
5609         case 337500:
5610         default:
5611                 freq_select = CDCLK_FREQ_337_308;
5612                 pcu_ack = 0;
5613                 break;
5614         case 617140:
5615         case 675000:
5616                 freq_select = CDCLK_FREQ_675_617;
5617                 pcu_ack = 3;
5618                 break;
5619         }
5620
5621         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5622         POSTING_READ(CDCLK_CTL);
5623
5624         /* inform PCU of the change */
5625         mutex_lock(&dev_priv->rps.hw_lock);
5626         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5627         mutex_unlock(&dev_priv->rps.hw_lock);
5628
5629         intel_update_cdclk(dev);
5630 }
5631
5632 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5633 {
5634         /* disable DBUF power */
5635         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5636         POSTING_READ(DBUF_CTL);
5637
5638         udelay(10);
5639
5640         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5641                 DRM_ERROR("DBuf power disable timeout\n");
5642
5643         /* disable DPLL0 */
5644         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5645         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5646                 DRM_ERROR("Couldn't disable DPLL0\n");
5647
5648         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5649 }
5650
5651 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5652 {
5653         u32 val;
5654         unsigned int required_vco;
5655
5656         /* enable PCH reset handshake */
5657         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5658         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5659
5660         /* enable PG1 and Misc I/O */
5661         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5662
5663         /* DPLL0 already enabed !? */
5664         if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5665                 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5666                 return;
5667         }
5668
5669         /* enable DPLL0 */
5670         required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5671         skl_dpll0_enable(dev_priv, required_vco);
5672
5673         /* set CDCLK to the frequency the BIOS chose */
5674         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5675
5676         /* enable DBUF power */
5677         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5678         POSTING_READ(DBUF_CTL);
5679
5680         udelay(10);
5681
5682         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5683                 DRM_ERROR("DBuf power enable timeout\n");
5684 }
5685
5686 /* returns HPLL frequency in kHz */
5687 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5688 {
5689         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5690
5691         /* Obtain SKU information */
5692         mutex_lock(&dev_priv->sb_lock);
5693         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5694                 CCK_FUSE_HPLL_FREQ_MASK;
5695         mutex_unlock(&dev_priv->sb_lock);
5696
5697         return vco_freq[hpll_freq] * 1000;
5698 }
5699
5700 /* Adjust CDclk dividers to allow high res or save power if possible */
5701 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5702 {
5703         struct drm_i915_private *dev_priv = dev->dev_private;
5704         u32 val, cmd;
5705
5706         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5707                                         != dev_priv->cdclk_freq);
5708
5709         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5710                 cmd = 2;
5711         else if (cdclk == 266667)
5712                 cmd = 1;
5713         else
5714                 cmd = 0;
5715
5716         mutex_lock(&dev_priv->rps.hw_lock);
5717         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5718         val &= ~DSPFREQGUAR_MASK;
5719         val |= (cmd << DSPFREQGUAR_SHIFT);
5720         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5721         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5722                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5723                      50)) {
5724                 DRM_ERROR("timed out waiting for CDclk change\n");
5725         }
5726         mutex_unlock(&dev_priv->rps.hw_lock);
5727
5728         mutex_lock(&dev_priv->sb_lock);
5729
5730         if (cdclk == 400000) {
5731                 u32 divider;
5732
5733                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5734
5735                 /* adjust cdclk divider */
5736                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5737                 val &= ~DISPLAY_FREQUENCY_VALUES;
5738                 val |= divider;
5739                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5740
5741                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5742                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5743                              50))
5744                         DRM_ERROR("timed out waiting for CDclk change\n");
5745         }
5746
5747         /* adjust self-refresh exit latency value */
5748         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5749         val &= ~0x7f;
5750
5751         /*
5752          * For high bandwidth configs, we set a higher latency in the bunit
5753          * so that the core display fetch happens in time to avoid underruns.
5754          */
5755         if (cdclk == 400000)
5756                 val |= 4500 / 250; /* 4.5 usec */
5757         else
5758                 val |= 3000 / 250; /* 3.0 usec */
5759         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5760
5761         mutex_unlock(&dev_priv->sb_lock);
5762
5763         intel_update_cdclk(dev);
5764 }
5765
5766 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5767 {
5768         struct drm_i915_private *dev_priv = dev->dev_private;
5769         u32 val, cmd;
5770
5771         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5772                                                 != dev_priv->cdclk_freq);
5773
5774         switch (cdclk) {
5775         case 333333:
5776         case 320000:
5777         case 266667:
5778         case 200000:
5779                 break;
5780         default:
5781                 MISSING_CASE(cdclk);
5782                 return;
5783         }
5784
5785         /*
5786          * Specs are full of misinformation, but testing on actual
5787          * hardware has shown that we just need to write the desired
5788          * CCK divider into the Punit register.
5789          */
5790         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5791
5792         mutex_lock(&dev_priv->rps.hw_lock);
5793         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5794         val &= ~DSPFREQGUAR_MASK_CHV;
5795         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5796         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5797         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5798                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5799                      50)) {
5800                 DRM_ERROR("timed out waiting for CDclk change\n");
5801         }
5802         mutex_unlock(&dev_priv->rps.hw_lock);
5803
5804         intel_update_cdclk(dev);
5805 }
5806
5807 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5808                                  int max_pixclk)
5809 {
5810         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5811         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5812
5813         /*
5814          * Really only a few cases to deal with, as only 4 CDclks are supported:
5815          *   200MHz
5816          *   267MHz
5817          *   320/333MHz (depends on HPLL freq)
5818          *   400MHz (VLV only)
5819          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5820          * of the lower bin and adjust if needed.
5821          *
5822          * We seem to get an unstable or solid color picture at 200MHz.
5823          * Not sure what's wrong. For now use 200MHz only when all pipes
5824          * are off.
5825          */
5826         if (!IS_CHERRYVIEW(dev_priv) &&
5827             max_pixclk > freq_320*limit/100)
5828                 return 400000;
5829         else if (max_pixclk > 266667*limit/100)
5830                 return freq_320;
5831         else if (max_pixclk > 0)
5832                 return 266667;
5833         else
5834                 return 200000;
5835 }
5836
5837 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5838                               int max_pixclk)
5839 {
5840         /*
5841          * FIXME:
5842          * - remove the guardband, it's not needed on BXT
5843          * - set 19.2MHz bypass frequency if there are no active pipes
5844          */
5845         if (max_pixclk > 576000*9/10)
5846                 return 624000;
5847         else if (max_pixclk > 384000*9/10)
5848                 return 576000;
5849         else if (max_pixclk > 288000*9/10)
5850                 return 384000;
5851         else if (max_pixclk > 144000*9/10)
5852                 return 288000;
5853         else
5854                 return 144000;
5855 }
5856
5857 /* Compute the max pixel clock for new configuration. Uses atomic state if
5858  * that's non-NULL, look at current state otherwise. */
5859 static int intel_mode_max_pixclk(struct drm_device *dev,
5860                                  struct drm_atomic_state *state)
5861 {
5862         struct intel_crtc *intel_crtc;
5863         struct intel_crtc_state *crtc_state;
5864         int max_pixclk = 0;
5865
5866         for_each_intel_crtc(dev, intel_crtc) {
5867                 if (state)
5868                         crtc_state =
5869                                 intel_atomic_get_crtc_state(state, intel_crtc);
5870                 else
5871                         crtc_state = intel_crtc->config;
5872                 if (IS_ERR(crtc_state))
5873                         return PTR_ERR(crtc_state);
5874
5875                 if (!crtc_state->base.enable)
5876                         continue;
5877
5878                 max_pixclk = max(max_pixclk,
5879                                  crtc_state->base.adjusted_mode.crtc_clock);
5880         }
5881
5882         return max_pixclk;
5883 }
5884
5885 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
5886 {
5887         struct drm_i915_private *dev_priv = to_i915(state->dev);
5888         struct drm_crtc *crtc;
5889         struct drm_crtc_state *crtc_state;
5890         int max_pixclk = intel_mode_max_pixclk(state->dev, state);
5891         int cdclk, ret = 0;
5892
5893         if (max_pixclk < 0)
5894                 return max_pixclk;
5895
5896         if (IS_VALLEYVIEW(dev_priv))
5897                 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5898         else
5899                 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5900
5901         if (cdclk == dev_priv->cdclk_freq)
5902                 return 0;
5903
5904         /* add all active pipes to the state */
5905         for_each_crtc(state->dev, crtc) {
5906                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5907                 if (IS_ERR(crtc_state))
5908                         return PTR_ERR(crtc_state);
5909
5910                 if (!crtc_state->active || needs_modeset(crtc_state))
5911                         continue;
5912
5913                 crtc_state->mode_changed = true;
5914
5915                 ret = drm_atomic_add_affected_connectors(state, crtc);
5916                 if (ret)
5917                         break;
5918
5919                 ret = drm_atomic_add_affected_planes(state, crtc);
5920                 if (ret)
5921                         break;
5922         }
5923
5924         return ret;
5925 }
5926
5927 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5928 {
5929         unsigned int credits, default_credits;
5930
5931         if (IS_CHERRYVIEW(dev_priv))
5932                 default_credits = PFI_CREDIT(12);
5933         else
5934                 default_credits = PFI_CREDIT(8);
5935
5936         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5937                 /* CHV suggested value is 31 or 63 */
5938                 if (IS_CHERRYVIEW(dev_priv))
5939                         credits = PFI_CREDIT_31;
5940                 else
5941                         credits = PFI_CREDIT(15);
5942         } else {
5943                 credits = default_credits;
5944         }
5945
5946         /*
5947          * WA - write default credits before re-programming
5948          * FIXME: should we also set the resend bit here?
5949          */
5950         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5951                    default_credits);
5952
5953         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5954                    credits | PFI_CREDIT_RESEND);
5955
5956         /*
5957          * FIXME is this guaranteed to clear
5958          * immediately or should we poll for it?
5959          */
5960         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5961 }
5962
5963 static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
5964 {
5965         struct drm_device *dev = old_state->dev;
5966         struct drm_i915_private *dev_priv = dev->dev_private;
5967         int max_pixclk = intel_mode_max_pixclk(dev, NULL);
5968         int req_cdclk;
5969
5970         /* The path in intel_mode_max_pixclk() with a NULL atomic state should
5971          * never fail. */
5972         if (WARN_ON(max_pixclk < 0))
5973                 return;
5974
5975         req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5976
5977         if (req_cdclk != dev_priv->cdclk_freq) {
5978                 /*
5979                  * FIXME: We can end up here with all power domains off, yet
5980                  * with a CDCLK frequency other than the minimum. To account
5981                  * for this take the PIPE-A power domain, which covers the HW
5982                  * blocks needed for the following programming. This can be
5983                  * removed once it's guaranteed that we get here either with
5984                  * the minimum CDCLK set, or the required power domains
5985                  * enabled.
5986                  */
5987                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5988
5989                 if (IS_CHERRYVIEW(dev))
5990                         cherryview_set_cdclk(dev, req_cdclk);
5991                 else
5992                         valleyview_set_cdclk(dev, req_cdclk);
5993
5994                 vlv_program_pfi_credits(dev_priv);
5995
5996                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5997         }
5998 }
5999
6000 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6001 {
6002         struct drm_device *dev = crtc->dev;
6003         struct drm_i915_private *dev_priv = to_i915(dev);
6004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6005         struct intel_encoder *encoder;
6006         int pipe = intel_crtc->pipe;
6007         bool is_dsi;
6008
6009         if (WARN_ON(intel_crtc->active))
6010                 return;
6011
6012         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6013
6014         if (!is_dsi) {
6015                 if (IS_CHERRYVIEW(dev))
6016                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6017                 else
6018                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6019         }
6020
6021         if (intel_crtc->config->has_dp_encoder)
6022                 intel_dp_set_m_n(intel_crtc, M1_N1);
6023
6024         intel_set_pipe_timings(intel_crtc);
6025
6026         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6027                 struct drm_i915_private *dev_priv = dev->dev_private;
6028
6029                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6030                 I915_WRITE(CHV_CANVAS(pipe), 0);
6031         }
6032
6033         i9xx_set_pipeconf(intel_crtc);
6034
6035         intel_crtc->active = true;
6036
6037         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6038
6039         for_each_encoder_on_crtc(dev, crtc, encoder)
6040                 if (encoder->pre_pll_enable)
6041                         encoder->pre_pll_enable(encoder);
6042
6043         if (!is_dsi) {
6044                 if (IS_CHERRYVIEW(dev))
6045                         chv_enable_pll(intel_crtc, intel_crtc->config);
6046                 else
6047                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6048         }
6049
6050         for_each_encoder_on_crtc(dev, crtc, encoder)
6051                 if (encoder->pre_enable)
6052                         encoder->pre_enable(encoder);
6053
6054         i9xx_pfit_enable(intel_crtc);
6055
6056         intel_crtc_load_lut(crtc);
6057
6058         intel_update_watermarks(crtc);
6059         intel_enable_pipe(intel_crtc);
6060
6061         assert_vblank_disabled(crtc);
6062         drm_crtc_vblank_on(crtc);
6063
6064         for_each_encoder_on_crtc(dev, crtc, encoder)
6065                 encoder->enable(encoder);
6066 }
6067
6068 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6069 {
6070         struct drm_device *dev = crtc->base.dev;
6071         struct drm_i915_private *dev_priv = dev->dev_private;
6072
6073         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6074         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6075 }
6076
6077 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6078 {
6079         struct drm_device *dev = crtc->dev;
6080         struct drm_i915_private *dev_priv = to_i915(dev);
6081         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6082         struct intel_encoder *encoder;
6083         int pipe = intel_crtc->pipe;
6084
6085         if (WARN_ON(intel_crtc->active))
6086                 return;
6087
6088         i9xx_set_pll_dividers(intel_crtc);
6089
6090         if (intel_crtc->config->has_dp_encoder)
6091                 intel_dp_set_m_n(intel_crtc, M1_N1);
6092
6093         intel_set_pipe_timings(intel_crtc);
6094
6095         i9xx_set_pipeconf(intel_crtc);
6096
6097         intel_crtc->active = true;
6098
6099         if (!IS_GEN2(dev))
6100                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6101
6102         for_each_encoder_on_crtc(dev, crtc, encoder)
6103                 if (encoder->pre_enable)
6104                         encoder->pre_enable(encoder);
6105
6106         i9xx_enable_pll(intel_crtc);
6107
6108         i9xx_pfit_enable(intel_crtc);
6109
6110         intel_crtc_load_lut(crtc);
6111
6112         intel_update_watermarks(crtc);
6113         intel_enable_pipe(intel_crtc);
6114
6115         assert_vblank_disabled(crtc);
6116         drm_crtc_vblank_on(crtc);
6117
6118         for_each_encoder_on_crtc(dev, crtc, encoder)
6119                 encoder->enable(encoder);
6120 }
6121
6122 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6123 {
6124         struct drm_device *dev = crtc->base.dev;
6125         struct drm_i915_private *dev_priv = dev->dev_private;
6126
6127         if (!crtc->config->gmch_pfit.control)
6128                 return;
6129
6130         assert_pipe_disabled(dev_priv, crtc->pipe);
6131
6132         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6133                          I915_READ(PFIT_CONTROL));
6134         I915_WRITE(PFIT_CONTROL, 0);
6135 }
6136
6137 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6138 {
6139         struct drm_device *dev = crtc->dev;
6140         struct drm_i915_private *dev_priv = dev->dev_private;
6141         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6142         struct intel_encoder *encoder;
6143         int pipe = intel_crtc->pipe;
6144
6145         if (WARN_ON(!intel_crtc->active))
6146                 return;
6147
6148         /*
6149          * On gen2 planes are double buffered but the pipe isn't, so we must
6150          * wait for planes to fully turn off before disabling the pipe.
6151          * We also need to wait on all gmch platforms because of the
6152          * self-refresh mode constraint explained above.
6153          */
6154         intel_wait_for_vblank(dev, pipe);
6155
6156         for_each_encoder_on_crtc(dev, crtc, encoder)
6157                 encoder->disable(encoder);
6158
6159         drm_crtc_vblank_off(crtc);
6160         assert_vblank_disabled(crtc);
6161
6162         intel_disable_pipe(intel_crtc);
6163
6164         i9xx_pfit_disable(intel_crtc);
6165
6166         for_each_encoder_on_crtc(dev, crtc, encoder)
6167                 if (encoder->post_disable)
6168                         encoder->post_disable(encoder);
6169
6170         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6171                 if (IS_CHERRYVIEW(dev))
6172                         chv_disable_pll(dev_priv, pipe);
6173                 else if (IS_VALLEYVIEW(dev))
6174                         vlv_disable_pll(dev_priv, pipe);
6175                 else
6176                         i9xx_disable_pll(intel_crtc);
6177         }
6178
6179         if (!IS_GEN2(dev))
6180                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6181
6182         intel_crtc->active = false;
6183         intel_update_watermarks(crtc);
6184
6185         mutex_lock(&dev->struct_mutex);
6186         intel_fbc_update(dev);
6187         mutex_unlock(&dev->struct_mutex);
6188 }
6189
6190 /*
6191  * turn all crtc's off, but do not adjust state
6192  * This has to be paired with a call to intel_modeset_setup_hw_state.
6193  */
6194 int intel_display_suspend(struct drm_device *dev)
6195 {
6196         struct drm_mode_config *config = &dev->mode_config;
6197         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6198         struct drm_atomic_state *state;
6199         struct drm_crtc *crtc;
6200         unsigned crtc_mask = 0;
6201         int ret = 0;
6202
6203         if (WARN_ON(!ctx))
6204                 return 0;
6205
6206         lockdep_assert_held(&ctx->ww_ctx);
6207         state = drm_atomic_state_alloc(dev);
6208         if (WARN_ON(!state))
6209                 return -ENOMEM;
6210
6211         state->acquire_ctx = ctx;
6212         state->allow_modeset = true;
6213
6214         for_each_crtc(dev, crtc) {
6215                 struct drm_crtc_state *crtc_state =
6216                         drm_atomic_get_crtc_state(state, crtc);
6217
6218                 ret = PTR_ERR_OR_ZERO(crtc_state);
6219                 if (ret)
6220                         goto free;
6221
6222                 if (!crtc_state->active)
6223                         continue;
6224
6225                 crtc_state->active = false;
6226                 crtc_mask |= 1 << drm_crtc_index(crtc);
6227         }
6228
6229         if (crtc_mask) {
6230                 ret = intel_set_mode(state);
6231
6232                 if (!ret) {
6233                         for_each_crtc(dev, crtc)
6234                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6235                                         crtc->state->active = true;
6236
6237                         return ret;
6238                 }
6239         }
6240
6241 free:
6242         if (ret)
6243                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6244         drm_atomic_state_free(state);
6245         return ret;
6246 }
6247
6248 /* Master function to enable/disable CRTC and corresponding power wells */
6249 int intel_crtc_control(struct drm_crtc *crtc, bool enable)
6250 {
6251         struct drm_device *dev = crtc->dev;
6252         struct drm_mode_config *config = &dev->mode_config;
6253         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6255         struct intel_crtc_state *pipe_config;
6256         struct drm_atomic_state *state;
6257         int ret;
6258
6259         if (enable == intel_crtc->active)
6260                 return 0;
6261
6262         if (enable && !crtc->state->enable)
6263                 return 0;
6264
6265         /* this function should be called with drm_modeset_lock_all for now */
6266         if (WARN_ON(!ctx))
6267                 return -EIO;
6268         lockdep_assert_held(&ctx->ww_ctx);
6269
6270         state = drm_atomic_state_alloc(dev);
6271         if (WARN_ON(!state))
6272                 return -ENOMEM;
6273
6274         state->acquire_ctx = ctx;
6275         state->allow_modeset = true;
6276
6277         pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6278         if (IS_ERR(pipe_config)) {
6279                 ret = PTR_ERR(pipe_config);
6280                 goto err;
6281         }
6282         pipe_config->base.active = enable;
6283
6284         ret = intel_set_mode(state);
6285         if (!ret)
6286                 return ret;
6287
6288 err:
6289         DRM_ERROR("Updating crtc active failed with %i\n", ret);
6290         drm_atomic_state_free(state);
6291         return ret;
6292 }
6293
6294 /**
6295  * Sets the power management mode of the pipe and plane.
6296  */
6297 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6298 {
6299         struct drm_device *dev = crtc->dev;
6300         struct intel_encoder *intel_encoder;
6301         bool enable = false;
6302
6303         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6304                 enable |= intel_encoder->connectors_active;
6305
6306         intel_crtc_control(crtc, enable);
6307 }
6308
6309 void intel_encoder_destroy(struct drm_encoder *encoder)
6310 {
6311         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6312
6313         drm_encoder_cleanup(encoder);
6314         kfree(intel_encoder);
6315 }
6316
6317 /* Simple dpms helper for encoders with just one connector, no cloning and only
6318  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6319  * state of the entire output pipe. */
6320 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6321 {
6322         if (mode == DRM_MODE_DPMS_ON) {
6323                 encoder->connectors_active = true;
6324
6325                 intel_crtc_update_dpms(encoder->base.crtc);
6326         } else {
6327                 encoder->connectors_active = false;
6328
6329                 intel_crtc_update_dpms(encoder->base.crtc);
6330         }
6331 }
6332
6333 /* Cross check the actual hw state with our own modeset state tracking (and it's
6334  * internal consistency). */
6335 static void intel_connector_check_state(struct intel_connector *connector)
6336 {
6337         if (connector->get_hw_state(connector)) {
6338                 struct intel_encoder *encoder = connector->encoder;
6339                 struct drm_crtc *crtc;
6340                 bool encoder_enabled;
6341                 enum pipe pipe;
6342
6343                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6344                               connector->base.base.id,
6345                               connector->base.name);
6346
6347                 /* there is no real hw state for MST connectors */
6348                 if (connector->mst_port)
6349                         return;
6350
6351                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6352                      "wrong connector dpms state\n");
6353                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6354                      "active connector not linked to encoder\n");
6355
6356                 if (encoder) {
6357                         I915_STATE_WARN(!encoder->connectors_active,
6358                              "encoder->connectors_active not set\n");
6359
6360                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6361                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6362                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
6363                                 return;
6364
6365                         crtc = encoder->base.crtc;
6366
6367                         I915_STATE_WARN(!crtc->state->enable,
6368                                         "crtc not enabled\n");
6369                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6370                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6371                              "encoder active on the wrong pipe\n");
6372                 }
6373         }
6374 }
6375
6376 int intel_connector_init(struct intel_connector *connector)
6377 {
6378         struct drm_connector_state *connector_state;
6379
6380         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6381         if (!connector_state)
6382                 return -ENOMEM;
6383
6384         connector->base.state = connector_state;
6385         return 0;
6386 }
6387
6388 struct intel_connector *intel_connector_alloc(void)
6389 {
6390         struct intel_connector *connector;
6391
6392         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6393         if (!connector)
6394                 return NULL;
6395
6396         if (intel_connector_init(connector) < 0) {
6397                 kfree(connector);
6398                 return NULL;
6399         }
6400
6401         return connector;
6402 }
6403
6404 /* Even simpler default implementation, if there's really no special case to
6405  * consider. */
6406 void intel_connector_dpms(struct drm_connector *connector, int mode)
6407 {
6408         /* All the simple cases only support two dpms states. */
6409         if (mode != DRM_MODE_DPMS_ON)
6410                 mode = DRM_MODE_DPMS_OFF;
6411
6412         if (mode == connector->dpms)
6413                 return;
6414
6415         connector->dpms = mode;
6416
6417         /* Only need to change hw state when actually enabled */
6418         if (connector->encoder)
6419                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6420
6421         intel_modeset_check_state(connector->dev);
6422 }
6423
6424 /* Simple connector->get_hw_state implementation for encoders that support only
6425  * one connector and no cloning and hence the encoder state determines the state
6426  * of the connector. */
6427 bool intel_connector_get_hw_state(struct intel_connector *connector)
6428 {
6429         enum pipe pipe = 0;
6430         struct intel_encoder *encoder = connector->encoder;
6431
6432         return encoder->get_hw_state(encoder, &pipe);
6433 }
6434
6435 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6436 {
6437         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6438                 return crtc_state->fdi_lanes;
6439
6440         return 0;
6441 }
6442
6443 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6444                                      struct intel_crtc_state *pipe_config)
6445 {
6446         struct drm_atomic_state *state = pipe_config->base.state;
6447         struct intel_crtc *other_crtc;
6448         struct intel_crtc_state *other_crtc_state;
6449
6450         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6451                       pipe_name(pipe), pipe_config->fdi_lanes);
6452         if (pipe_config->fdi_lanes > 4) {
6453                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6454                               pipe_name(pipe), pipe_config->fdi_lanes);
6455                 return -EINVAL;
6456         }
6457
6458         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6459                 if (pipe_config->fdi_lanes > 2) {
6460                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6461                                       pipe_config->fdi_lanes);
6462                         return -EINVAL;
6463                 } else {
6464                         return 0;
6465                 }
6466         }
6467
6468         if (INTEL_INFO(dev)->num_pipes == 2)
6469                 return 0;
6470
6471         /* Ivybridge 3 pipe is really complicated */
6472         switch (pipe) {
6473         case PIPE_A:
6474                 return 0;
6475         case PIPE_B:
6476                 if (pipe_config->fdi_lanes <= 2)
6477                         return 0;
6478
6479                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6480                 other_crtc_state =
6481                         intel_atomic_get_crtc_state(state, other_crtc);
6482                 if (IS_ERR(other_crtc_state))
6483                         return PTR_ERR(other_crtc_state);
6484
6485                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6486                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6487                                       pipe_name(pipe), pipe_config->fdi_lanes);
6488                         return -EINVAL;
6489                 }
6490                 return 0;
6491         case PIPE_C:
6492                 if (pipe_config->fdi_lanes > 2) {
6493                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6494                                       pipe_name(pipe), pipe_config->fdi_lanes);
6495                         return -EINVAL;
6496                 }
6497
6498                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6499                 other_crtc_state =
6500                         intel_atomic_get_crtc_state(state, other_crtc);
6501                 if (IS_ERR(other_crtc_state))
6502                         return PTR_ERR(other_crtc_state);
6503
6504                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6505                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6506                         return -EINVAL;
6507                 }
6508                 return 0;
6509         default:
6510                 BUG();
6511         }
6512 }
6513
6514 #define RETRY 1
6515 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6516                                        struct intel_crtc_state *pipe_config)
6517 {
6518         struct drm_device *dev = intel_crtc->base.dev;
6519         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6520         int lane, link_bw, fdi_dotclock, ret;
6521         bool needs_recompute = false;
6522
6523 retry:
6524         /* FDI is a binary signal running at ~2.7GHz, encoding
6525          * each output octet as 10 bits. The actual frequency
6526          * is stored as a divider into a 100MHz clock, and the
6527          * mode pixel clock is stored in units of 1KHz.
6528          * Hence the bw of each lane in terms of the mode signal
6529          * is:
6530          */
6531         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6532
6533         fdi_dotclock = adjusted_mode->crtc_clock;
6534
6535         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6536                                            pipe_config->pipe_bpp);
6537
6538         pipe_config->fdi_lanes = lane;
6539
6540         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6541                                link_bw, &pipe_config->fdi_m_n);
6542
6543         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6544                                        intel_crtc->pipe, pipe_config);
6545         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6546                 pipe_config->pipe_bpp -= 2*3;
6547                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6548                               pipe_config->pipe_bpp);
6549                 needs_recompute = true;
6550                 pipe_config->bw_constrained = true;
6551
6552                 goto retry;
6553         }
6554
6555         if (needs_recompute)
6556                 return RETRY;
6557
6558         return ret;
6559 }
6560
6561 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6562                                      struct intel_crtc_state *pipe_config)
6563 {
6564         if (pipe_config->pipe_bpp > 24)
6565                 return false;
6566
6567         /* HSW can handle pixel rate up to cdclk? */
6568         if (IS_HASWELL(dev_priv->dev))
6569                 return true;
6570
6571         /*
6572          * We compare against max which means we must take
6573          * the increased cdclk requirement into account when
6574          * calculating the new cdclk.
6575          *
6576          * Should measure whether using a lower cdclk w/o IPS
6577          */
6578         return ilk_pipe_pixel_rate(pipe_config) <=
6579                 dev_priv->max_cdclk_freq * 95 / 100;
6580 }
6581
6582 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6583                                    struct intel_crtc_state *pipe_config)
6584 {
6585         struct drm_device *dev = crtc->base.dev;
6586         struct drm_i915_private *dev_priv = dev->dev_private;
6587
6588         pipe_config->ips_enabled = i915.enable_ips &&
6589                 hsw_crtc_supports_ips(crtc) &&
6590                 pipe_config_supports_ips(dev_priv, pipe_config);
6591 }
6592
6593 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6594                                      struct intel_crtc_state *pipe_config)
6595 {
6596         struct drm_device *dev = crtc->base.dev;
6597         struct drm_i915_private *dev_priv = dev->dev_private;
6598         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6599         int ret;
6600
6601         /* FIXME should check pixel clock limits on all platforms */
6602         if (INTEL_INFO(dev)->gen < 4) {
6603                 int clock_limit = dev_priv->max_cdclk_freq;
6604
6605                 /*
6606                  * Enable pixel doubling when the dot clock
6607                  * is > 90% of the (display) core speed.
6608                  *
6609                  * GDG double wide on either pipe,
6610                  * otherwise pipe A only.
6611                  */
6612                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6613                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6614                         clock_limit *= 2;
6615                         pipe_config->double_wide = true;
6616                 }
6617
6618                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6619                         return -EINVAL;
6620         }
6621
6622         /*
6623          * Pipe horizontal size must be even in:
6624          * - DVO ganged mode
6625          * - LVDS dual channel mode
6626          * - Double wide pipe
6627          */
6628         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6629              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6630                 pipe_config->pipe_src_w &= ~1;
6631
6632         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6633          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6634          */
6635         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6636                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6637                 return -EINVAL;
6638
6639         if (HAS_IPS(dev))
6640                 hsw_compute_ips_config(crtc, pipe_config);
6641
6642         if (pipe_config->has_pch_encoder)
6643                 return ironlake_fdi_compute_config(crtc, pipe_config);
6644
6645         /* FIXME: remove below call once atomic mode set is place and all crtc
6646          * related checks called from atomic_crtc_check function */
6647         ret = 0;
6648         DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6649                 crtc, pipe_config->base.state);
6650         ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6651
6652         return ret;
6653 }
6654
6655 static int skylake_get_display_clock_speed(struct drm_device *dev)
6656 {
6657         struct drm_i915_private *dev_priv = to_i915(dev);
6658         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6659         uint32_t cdctl = I915_READ(CDCLK_CTL);
6660         uint32_t linkrate;
6661
6662         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6663                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6664
6665         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6666                 return 540000;
6667
6668         linkrate = (I915_READ(DPLL_CTRL1) &
6669                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6670
6671         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6672             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6673                 /* vco 8640 */
6674                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6675                 case CDCLK_FREQ_450_432:
6676                         return 432000;
6677                 case CDCLK_FREQ_337_308:
6678                         return 308570;
6679                 case CDCLK_FREQ_675_617:
6680                         return 617140;
6681                 default:
6682                         WARN(1, "Unknown cd freq selection\n");
6683                 }
6684         } else {
6685                 /* vco 8100 */
6686                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6687                 case CDCLK_FREQ_450_432:
6688                         return 450000;
6689                 case CDCLK_FREQ_337_308:
6690                         return 337500;
6691                 case CDCLK_FREQ_675_617:
6692                         return 675000;
6693                 default:
6694                         WARN(1, "Unknown cd freq selection\n");
6695                 }
6696         }
6697
6698         /* error case, do as if DPLL0 isn't enabled */
6699         return 24000;
6700 }
6701
6702 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6703 {
6704         struct drm_i915_private *dev_priv = dev->dev_private;
6705         uint32_t lcpll = I915_READ(LCPLL_CTL);
6706         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6707
6708         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6709                 return 800000;
6710         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6711                 return 450000;
6712         else if (freq == LCPLL_CLK_FREQ_450)
6713                 return 450000;
6714         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6715                 return 540000;
6716         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6717                 return 337500;
6718         else
6719                 return 675000;
6720 }
6721
6722 static int haswell_get_display_clock_speed(struct drm_device *dev)
6723 {
6724         struct drm_i915_private *dev_priv = dev->dev_private;
6725         uint32_t lcpll = I915_READ(LCPLL_CTL);
6726         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6727
6728         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6729                 return 800000;
6730         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6731                 return 450000;
6732         else if (freq == LCPLL_CLK_FREQ_450)
6733                 return 450000;
6734         else if (IS_HSW_ULT(dev))
6735                 return 337500;
6736         else
6737                 return 540000;
6738 }
6739
6740 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6741 {
6742         struct drm_i915_private *dev_priv = dev->dev_private;
6743         u32 val;
6744         int divider;
6745
6746         if (dev_priv->hpll_freq == 0)
6747                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6748
6749         mutex_lock(&dev_priv->sb_lock);
6750         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6751         mutex_unlock(&dev_priv->sb_lock);
6752
6753         divider = val & DISPLAY_FREQUENCY_VALUES;
6754
6755         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6756              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6757              "cdclk change in progress\n");
6758
6759         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6760 }
6761
6762 static int ilk_get_display_clock_speed(struct drm_device *dev)
6763 {
6764         return 450000;
6765 }
6766
6767 static int i945_get_display_clock_speed(struct drm_device *dev)
6768 {
6769         return 400000;
6770 }
6771
6772 static int i915_get_display_clock_speed(struct drm_device *dev)
6773 {
6774         return 333333;
6775 }
6776
6777 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6778 {
6779         return 200000;
6780 }
6781
6782 static int pnv_get_display_clock_speed(struct drm_device *dev)
6783 {
6784         u16 gcfgc = 0;
6785
6786         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6787
6788         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6789         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6790                 return 266667;
6791         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6792                 return 333333;
6793         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6794                 return 444444;
6795         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6796                 return 200000;
6797         default:
6798                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6799         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6800                 return 133333;
6801         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6802                 return 166667;
6803         }
6804 }
6805
6806 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6807 {
6808         u16 gcfgc = 0;
6809
6810         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6811
6812         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6813                 return 133333;
6814         else {
6815                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6816                 case GC_DISPLAY_CLOCK_333_MHZ:
6817                         return 333333;
6818                 default:
6819                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6820                         return 190000;
6821                 }
6822         }
6823 }
6824
6825 static int i865_get_display_clock_speed(struct drm_device *dev)
6826 {
6827         return 266667;
6828 }
6829
6830 static int i85x_get_display_clock_speed(struct drm_device *dev)
6831 {
6832         u16 hpllcc = 0;
6833
6834         /*
6835          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6836          * encoding is different :(
6837          * FIXME is this the right way to detect 852GM/852GMV?
6838          */
6839         if (dev->pdev->revision == 0x1)
6840                 return 133333;
6841
6842         pci_bus_read_config_word(dev->pdev->bus,
6843                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6844
6845         /* Assume that the hardware is in the high speed state.  This
6846          * should be the default.
6847          */
6848         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6849         case GC_CLOCK_133_200:
6850         case GC_CLOCK_133_200_2:
6851         case GC_CLOCK_100_200:
6852                 return 200000;
6853         case GC_CLOCK_166_250:
6854                 return 250000;
6855         case GC_CLOCK_100_133:
6856                 return 133333;
6857         case GC_CLOCK_133_266:
6858         case GC_CLOCK_133_266_2:
6859         case GC_CLOCK_166_266:
6860                 return 266667;
6861         }
6862
6863         /* Shouldn't happen */
6864         return 0;
6865 }
6866
6867 static int i830_get_display_clock_speed(struct drm_device *dev)
6868 {
6869         return 133333;
6870 }
6871
6872 static unsigned int intel_hpll_vco(struct drm_device *dev)
6873 {
6874         struct drm_i915_private *dev_priv = dev->dev_private;
6875         static const unsigned int blb_vco[8] = {
6876                 [0] = 3200000,
6877                 [1] = 4000000,
6878                 [2] = 5333333,
6879                 [3] = 4800000,
6880                 [4] = 6400000,
6881         };
6882         static const unsigned int pnv_vco[8] = {
6883                 [0] = 3200000,
6884                 [1] = 4000000,
6885                 [2] = 5333333,
6886                 [3] = 4800000,
6887                 [4] = 2666667,
6888         };
6889         static const unsigned int cl_vco[8] = {
6890                 [0] = 3200000,
6891                 [1] = 4000000,
6892                 [2] = 5333333,
6893                 [3] = 6400000,
6894                 [4] = 3333333,
6895                 [5] = 3566667,
6896                 [6] = 4266667,
6897         };
6898         static const unsigned int elk_vco[8] = {
6899                 [0] = 3200000,
6900                 [1] = 4000000,
6901                 [2] = 5333333,
6902                 [3] = 4800000,
6903         };
6904         static const unsigned int ctg_vco[8] = {
6905                 [0] = 3200000,
6906                 [1] = 4000000,
6907                 [2] = 5333333,
6908                 [3] = 6400000,
6909                 [4] = 2666667,
6910                 [5] = 4266667,
6911         };
6912         const unsigned int *vco_table;
6913         unsigned int vco;
6914         uint8_t tmp = 0;
6915
6916         /* FIXME other chipsets? */
6917         if (IS_GM45(dev))
6918                 vco_table = ctg_vco;
6919         else if (IS_G4X(dev))
6920                 vco_table = elk_vco;
6921         else if (IS_CRESTLINE(dev))
6922                 vco_table = cl_vco;
6923         else if (IS_PINEVIEW(dev))
6924                 vco_table = pnv_vco;
6925         else if (IS_G33(dev))
6926                 vco_table = blb_vco;
6927         else
6928                 return 0;
6929
6930         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6931
6932         vco = vco_table[tmp & 0x7];
6933         if (vco == 0)
6934                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6935         else
6936                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6937
6938         return vco;
6939 }
6940
6941 static int gm45_get_display_clock_speed(struct drm_device *dev)
6942 {
6943         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6944         uint16_t tmp = 0;
6945
6946         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6947
6948         cdclk_sel = (tmp >> 12) & 0x1;
6949
6950         switch (vco) {
6951         case 2666667:
6952         case 4000000:
6953         case 5333333:
6954                 return cdclk_sel ? 333333 : 222222;
6955         case 3200000:
6956                 return cdclk_sel ? 320000 : 228571;
6957         default:
6958                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6959                 return 222222;
6960         }
6961 }
6962
6963 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6964 {
6965         static const uint8_t div_3200[] = { 16, 10,  8 };
6966         static const uint8_t div_4000[] = { 20, 12, 10 };
6967         static const uint8_t div_5333[] = { 24, 16, 14 };
6968         const uint8_t *div_table;
6969         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6970         uint16_t tmp = 0;
6971
6972         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6973
6974         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6975
6976         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6977                 goto fail;
6978
6979         switch (vco) {
6980         case 3200000:
6981                 div_table = div_3200;
6982                 break;
6983         case 4000000:
6984                 div_table = div_4000;
6985                 break;
6986         case 5333333:
6987                 div_table = div_5333;
6988                 break;
6989         default:
6990                 goto fail;
6991         }
6992
6993         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6994
6995  fail:
6996         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6997         return 200000;
6998 }
6999
7000 static int g33_get_display_clock_speed(struct drm_device *dev)
7001 {
7002         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7003         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7004         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7005         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7006         const uint8_t *div_table;
7007         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7008         uint16_t tmp = 0;
7009
7010         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7011
7012         cdclk_sel = (tmp >> 4) & 0x7;
7013
7014         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7015                 goto fail;
7016
7017         switch (vco) {
7018         case 3200000:
7019                 div_table = div_3200;
7020                 break;
7021         case 4000000:
7022                 div_table = div_4000;
7023                 break;
7024         case 4800000:
7025                 div_table = div_4800;
7026                 break;
7027         case 5333333:
7028                 div_table = div_5333;
7029                 break;
7030         default:
7031                 goto fail;
7032         }
7033
7034         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7035
7036  fail:
7037         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7038         return 190476;
7039 }
7040
7041 static void
7042 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7043 {
7044         while (*num > DATA_LINK_M_N_MASK ||
7045                *den > DATA_LINK_M_N_MASK) {
7046                 *num >>= 1;
7047                 *den >>= 1;
7048         }
7049 }
7050
7051 static void compute_m_n(unsigned int m, unsigned int n,
7052                         uint32_t *ret_m, uint32_t *ret_n)
7053 {
7054         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7055         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7056         intel_reduce_m_n_ratio(ret_m, ret_n);
7057 }
7058
7059 void
7060 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7061                        int pixel_clock, int link_clock,
7062                        struct intel_link_m_n *m_n)
7063 {
7064         m_n->tu = 64;
7065
7066         compute_m_n(bits_per_pixel * pixel_clock,
7067                     link_clock * nlanes * 8,
7068                     &m_n->gmch_m, &m_n->gmch_n);
7069
7070         compute_m_n(pixel_clock, link_clock,
7071                     &m_n->link_m, &m_n->link_n);
7072 }
7073
7074 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7075 {
7076         if (i915.panel_use_ssc >= 0)
7077                 return i915.panel_use_ssc != 0;
7078         return dev_priv->vbt.lvds_use_ssc
7079                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7080 }
7081
7082 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7083                            int num_connectors)
7084 {
7085         struct drm_device *dev = crtc_state->base.crtc->dev;
7086         struct drm_i915_private *dev_priv = dev->dev_private;
7087         int refclk;
7088
7089         WARN_ON(!crtc_state->base.state);
7090
7091         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7092                 refclk = 100000;
7093         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7094             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7095                 refclk = dev_priv->vbt.lvds_ssc_freq;
7096                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7097         } else if (!IS_GEN2(dev)) {
7098                 refclk = 96000;
7099         } else {
7100                 refclk = 48000;
7101         }
7102
7103         return refclk;
7104 }
7105
7106 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7107 {
7108         return (1 << dpll->n) << 16 | dpll->m2;
7109 }
7110
7111 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7112 {
7113         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7114 }
7115
7116 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7117                                      struct intel_crtc_state *crtc_state,
7118                                      intel_clock_t *reduced_clock)
7119 {
7120         struct drm_device *dev = crtc->base.dev;
7121         u32 fp, fp2 = 0;
7122
7123         if (IS_PINEVIEW(dev)) {
7124                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7125                 if (reduced_clock)
7126                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7127         } else {
7128                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7129                 if (reduced_clock)
7130                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7131         }
7132
7133         crtc_state->dpll_hw_state.fp0 = fp;
7134
7135         crtc->lowfreq_avail = false;
7136         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7137             reduced_clock) {
7138                 crtc_state->dpll_hw_state.fp1 = fp2;
7139                 crtc->lowfreq_avail = true;
7140         } else {
7141                 crtc_state->dpll_hw_state.fp1 = fp;
7142         }
7143 }
7144
7145 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7146                 pipe)
7147 {
7148         u32 reg_val;
7149
7150         /*
7151          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7152          * and set it to a reasonable value instead.
7153          */
7154         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7155         reg_val &= 0xffffff00;
7156         reg_val |= 0x00000030;
7157         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7158
7159         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7160         reg_val &= 0x8cffffff;
7161         reg_val = 0x8c000000;
7162         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7163
7164         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7165         reg_val &= 0xffffff00;
7166         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7167
7168         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7169         reg_val &= 0x00ffffff;
7170         reg_val |= 0xb0000000;
7171         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7172 }
7173
7174 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7175                                          struct intel_link_m_n *m_n)
7176 {
7177         struct drm_device *dev = crtc->base.dev;
7178         struct drm_i915_private *dev_priv = dev->dev_private;
7179         int pipe = crtc->pipe;
7180
7181         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7182         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7183         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7184         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7185 }
7186
7187 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7188                                          struct intel_link_m_n *m_n,
7189                                          struct intel_link_m_n *m2_n2)
7190 {
7191         struct drm_device *dev = crtc->base.dev;
7192         struct drm_i915_private *dev_priv = dev->dev_private;
7193         int pipe = crtc->pipe;
7194         enum transcoder transcoder = crtc->config->cpu_transcoder;
7195
7196         if (INTEL_INFO(dev)->gen >= 5) {
7197                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7198                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7199                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7200                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7201                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7202                  * for gen < 8) and if DRRS is supported (to make sure the
7203                  * registers are not unnecessarily accessed).
7204                  */
7205                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7206                         crtc->config->has_drrs) {
7207                         I915_WRITE(PIPE_DATA_M2(transcoder),
7208                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7209                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7210                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7211                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7212                 }
7213         } else {
7214                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7215                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7216                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7217                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7218         }
7219 }
7220
7221 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7222 {
7223         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7224
7225         if (m_n == M1_N1) {
7226                 dp_m_n = &crtc->config->dp_m_n;
7227                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7228         } else if (m_n == M2_N2) {
7229
7230                 /*
7231                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7232                  * needs to be programmed into M1_N1.
7233                  */
7234                 dp_m_n = &crtc->config->dp_m2_n2;
7235         } else {
7236                 DRM_ERROR("Unsupported divider value\n");
7237                 return;
7238         }
7239
7240         if (crtc->config->has_pch_encoder)
7241                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7242         else
7243                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7244 }
7245
7246 static void vlv_update_pll(struct intel_crtc *crtc,
7247                            struct intel_crtc_state *pipe_config)
7248 {
7249         u32 dpll, dpll_md;
7250
7251         /*
7252          * Enable DPIO clock input. We should never disable the reference
7253          * clock for pipe B, since VGA hotplug / manual detection depends
7254          * on it.
7255          */
7256         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7257                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7258         /* We should never disable this, set it here for state tracking */
7259         if (crtc->pipe == PIPE_B)
7260                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7261         dpll |= DPLL_VCO_ENABLE;
7262         pipe_config->dpll_hw_state.dpll = dpll;
7263
7264         dpll_md = (pipe_config->pixel_multiplier - 1)
7265                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7266         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7267 }
7268
7269 static void vlv_prepare_pll(struct intel_crtc *crtc,
7270                             const struct intel_crtc_state *pipe_config)
7271 {
7272         struct drm_device *dev = crtc->base.dev;
7273         struct drm_i915_private *dev_priv = dev->dev_private;
7274         int pipe = crtc->pipe;
7275         u32 mdiv;
7276         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7277         u32 coreclk, reg_val;
7278
7279         mutex_lock(&dev_priv->sb_lock);
7280
7281         bestn = pipe_config->dpll.n;
7282         bestm1 = pipe_config->dpll.m1;
7283         bestm2 = pipe_config->dpll.m2;
7284         bestp1 = pipe_config->dpll.p1;
7285         bestp2 = pipe_config->dpll.p2;
7286
7287         /* See eDP HDMI DPIO driver vbios notes doc */
7288
7289         /* PLL B needs special handling */
7290         if (pipe == PIPE_B)
7291                 vlv_pllb_recal_opamp(dev_priv, pipe);
7292
7293         /* Set up Tx target for periodic Rcomp update */
7294         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7295
7296         /* Disable target IRef on PLL */
7297         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7298         reg_val &= 0x00ffffff;
7299         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7300
7301         /* Disable fast lock */
7302         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7303
7304         /* Set idtafcrecal before PLL is enabled */
7305         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7306         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7307         mdiv |= ((bestn << DPIO_N_SHIFT));
7308         mdiv |= (1 << DPIO_K_SHIFT);
7309
7310         /*
7311          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7312          * but we don't support that).
7313          * Note: don't use the DAC post divider as it seems unstable.
7314          */
7315         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7316         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7317
7318         mdiv |= DPIO_ENABLE_CALIBRATION;
7319         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7320
7321         /* Set HBR and RBR LPF coefficients */
7322         if (pipe_config->port_clock == 162000 ||
7323             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7324             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7325                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7326                                  0x009f0003);
7327         else
7328                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7329                                  0x00d0000f);
7330
7331         if (pipe_config->has_dp_encoder) {
7332                 /* Use SSC source */
7333                 if (pipe == PIPE_A)
7334                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7335                                          0x0df40000);
7336                 else
7337                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7338                                          0x0df70000);
7339         } else { /* HDMI or VGA */
7340                 /* Use bend source */
7341                 if (pipe == PIPE_A)
7342                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7343                                          0x0df70000);
7344                 else
7345                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7346                                          0x0df40000);
7347         }
7348
7349         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7350         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7351         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7352             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7353                 coreclk |= 0x01000000;
7354         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7355
7356         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7357         mutex_unlock(&dev_priv->sb_lock);
7358 }
7359
7360 static void chv_update_pll(struct intel_crtc *crtc,
7361                            struct intel_crtc_state *pipe_config)
7362 {
7363         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7364                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7365                 DPLL_VCO_ENABLE;
7366         if (crtc->pipe != PIPE_A)
7367                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7368
7369         pipe_config->dpll_hw_state.dpll_md =
7370                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7371 }
7372
7373 static void chv_prepare_pll(struct intel_crtc *crtc,
7374                             const struct intel_crtc_state *pipe_config)
7375 {
7376         struct drm_device *dev = crtc->base.dev;
7377         struct drm_i915_private *dev_priv = dev->dev_private;
7378         int pipe = crtc->pipe;
7379         int dpll_reg = DPLL(crtc->pipe);
7380         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7381         u32 loopfilter, tribuf_calcntr;
7382         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7383         u32 dpio_val;
7384         int vco;
7385
7386         bestn = pipe_config->dpll.n;
7387         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7388         bestm1 = pipe_config->dpll.m1;
7389         bestm2 = pipe_config->dpll.m2 >> 22;
7390         bestp1 = pipe_config->dpll.p1;
7391         bestp2 = pipe_config->dpll.p2;
7392         vco = pipe_config->dpll.vco;
7393         dpio_val = 0;
7394         loopfilter = 0;
7395
7396         /*
7397          * Enable Refclk and SSC
7398          */
7399         I915_WRITE(dpll_reg,
7400                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7401
7402         mutex_lock(&dev_priv->sb_lock);
7403
7404         /* p1 and p2 divider */
7405         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7406                         5 << DPIO_CHV_S1_DIV_SHIFT |
7407                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7408                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7409                         1 << DPIO_CHV_K_DIV_SHIFT);
7410
7411         /* Feedback post-divider - m2 */
7412         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7413
7414         /* Feedback refclk divider - n and m1 */
7415         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7416                         DPIO_CHV_M1_DIV_BY_2 |
7417                         1 << DPIO_CHV_N_DIV_SHIFT);
7418
7419         /* M2 fraction division */
7420         if (bestm2_frac)
7421                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7422
7423         /* M2 fraction division enable */
7424         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7425         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7426         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7427         if (bestm2_frac)
7428                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7429         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7430
7431         /* Program digital lock detect threshold */
7432         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7433         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7434                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7435         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7436         if (!bestm2_frac)
7437                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7438         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7439
7440         /* Loop filter */
7441         if (vco == 5400000) {
7442                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7443                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7444                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7445                 tribuf_calcntr = 0x9;
7446         } else if (vco <= 6200000) {
7447                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7448                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7449                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7450                 tribuf_calcntr = 0x9;
7451         } else if (vco <= 6480000) {
7452                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7453                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7454                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7455                 tribuf_calcntr = 0x8;
7456         } else {
7457                 /* Not supported. Apply the same limits as in the max case */
7458                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7459                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7460                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7461                 tribuf_calcntr = 0;
7462         }
7463         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7464
7465         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7466         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7467         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7468         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7469
7470         /* AFC Recal */
7471         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7472                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7473                         DPIO_AFC_RECAL);
7474
7475         mutex_unlock(&dev_priv->sb_lock);
7476 }
7477
7478 /**
7479  * vlv_force_pll_on - forcibly enable just the PLL
7480  * @dev_priv: i915 private structure
7481  * @pipe: pipe PLL to enable
7482  * @dpll: PLL configuration
7483  *
7484  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7485  * in cases where we need the PLL enabled even when @pipe is not going to
7486  * be enabled.
7487  */
7488 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7489                       const struct dpll *dpll)
7490 {
7491         struct intel_crtc *crtc =
7492                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7493         struct intel_crtc_state pipe_config = {
7494                 .base.crtc = &crtc->base,
7495                 .pixel_multiplier = 1,
7496                 .dpll = *dpll,
7497         };
7498
7499         if (IS_CHERRYVIEW(dev)) {
7500                 chv_update_pll(crtc, &pipe_config);
7501                 chv_prepare_pll(crtc, &pipe_config);
7502                 chv_enable_pll(crtc, &pipe_config);
7503         } else {
7504                 vlv_update_pll(crtc, &pipe_config);
7505                 vlv_prepare_pll(crtc, &pipe_config);
7506                 vlv_enable_pll(crtc, &pipe_config);
7507         }
7508 }
7509
7510 /**
7511  * vlv_force_pll_off - forcibly disable just the PLL
7512  * @dev_priv: i915 private structure
7513  * @pipe: pipe PLL to disable
7514  *
7515  * Disable the PLL for @pipe. To be used in cases where we need
7516  * the PLL enabled even when @pipe is not going to be enabled.
7517  */
7518 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7519 {
7520         if (IS_CHERRYVIEW(dev))
7521                 chv_disable_pll(to_i915(dev), pipe);
7522         else
7523                 vlv_disable_pll(to_i915(dev), pipe);
7524 }
7525
7526 static void i9xx_update_pll(struct intel_crtc *crtc,
7527                             struct intel_crtc_state *crtc_state,
7528                             intel_clock_t *reduced_clock,
7529                             int num_connectors)
7530 {
7531         struct drm_device *dev = crtc->base.dev;
7532         struct drm_i915_private *dev_priv = dev->dev_private;
7533         u32 dpll;
7534         bool is_sdvo;
7535         struct dpll *clock = &crtc_state->dpll;
7536
7537         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7538
7539         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7540                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7541
7542         dpll = DPLL_VGA_MODE_DIS;
7543
7544         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7545                 dpll |= DPLLB_MODE_LVDS;
7546         else
7547                 dpll |= DPLLB_MODE_DAC_SERIAL;
7548
7549         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7550                 dpll |= (crtc_state->pixel_multiplier - 1)
7551                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7552         }
7553
7554         if (is_sdvo)
7555                 dpll |= DPLL_SDVO_HIGH_SPEED;
7556
7557         if (crtc_state->has_dp_encoder)
7558                 dpll |= DPLL_SDVO_HIGH_SPEED;
7559
7560         /* compute bitmask from p1 value */
7561         if (IS_PINEVIEW(dev))
7562                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7563         else {
7564                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7565                 if (IS_G4X(dev) && reduced_clock)
7566                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7567         }
7568         switch (clock->p2) {
7569         case 5:
7570                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7571                 break;
7572         case 7:
7573                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7574                 break;
7575         case 10:
7576                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7577                 break;
7578         case 14:
7579                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7580                 break;
7581         }
7582         if (INTEL_INFO(dev)->gen >= 4)
7583                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7584
7585         if (crtc_state->sdvo_tv_clock)
7586                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7587         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7588                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7589                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7590         else
7591                 dpll |= PLL_REF_INPUT_DREFCLK;
7592
7593         dpll |= DPLL_VCO_ENABLE;
7594         crtc_state->dpll_hw_state.dpll = dpll;
7595
7596         if (INTEL_INFO(dev)->gen >= 4) {
7597                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7598                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7599                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7600         }
7601 }
7602
7603 static void i8xx_update_pll(struct intel_crtc *crtc,
7604                             struct intel_crtc_state *crtc_state,
7605                             intel_clock_t *reduced_clock,
7606                             int num_connectors)
7607 {
7608         struct drm_device *dev = crtc->base.dev;
7609         struct drm_i915_private *dev_priv = dev->dev_private;
7610         u32 dpll;
7611         struct dpll *clock = &crtc_state->dpll;
7612
7613         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7614
7615         dpll = DPLL_VGA_MODE_DIS;
7616
7617         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7618                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7619         } else {
7620                 if (clock->p1 == 2)
7621                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7622                 else
7623                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7624                 if (clock->p2 == 4)
7625                         dpll |= PLL_P2_DIVIDE_BY_4;
7626         }
7627
7628         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7629                 dpll |= DPLL_DVO_2X_MODE;
7630
7631         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7632                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7633                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7634         else
7635                 dpll |= PLL_REF_INPUT_DREFCLK;
7636
7637         dpll |= DPLL_VCO_ENABLE;
7638         crtc_state->dpll_hw_state.dpll = dpll;
7639 }
7640
7641 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7642 {
7643         struct drm_device *dev = intel_crtc->base.dev;
7644         struct drm_i915_private *dev_priv = dev->dev_private;
7645         enum pipe pipe = intel_crtc->pipe;
7646         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7647         struct drm_display_mode *adjusted_mode =
7648                 &intel_crtc->config->base.adjusted_mode;
7649         uint32_t crtc_vtotal, crtc_vblank_end;
7650         int vsyncshift = 0;
7651
7652         /* We need to be careful not to changed the adjusted mode, for otherwise
7653          * the hw state checker will get angry at the mismatch. */
7654         crtc_vtotal = adjusted_mode->crtc_vtotal;
7655         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7656
7657         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7658                 /* the chip adds 2 halflines automatically */
7659                 crtc_vtotal -= 1;
7660                 crtc_vblank_end -= 1;
7661
7662                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7663                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7664                 else
7665                         vsyncshift = adjusted_mode->crtc_hsync_start -
7666                                 adjusted_mode->crtc_htotal / 2;
7667                 if (vsyncshift < 0)
7668                         vsyncshift += adjusted_mode->crtc_htotal;
7669         }
7670
7671         if (INTEL_INFO(dev)->gen > 3)
7672                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7673
7674         I915_WRITE(HTOTAL(cpu_transcoder),
7675                    (adjusted_mode->crtc_hdisplay - 1) |
7676                    ((adjusted_mode->crtc_htotal - 1) << 16));
7677         I915_WRITE(HBLANK(cpu_transcoder),
7678                    (adjusted_mode->crtc_hblank_start - 1) |
7679                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7680         I915_WRITE(HSYNC(cpu_transcoder),
7681                    (adjusted_mode->crtc_hsync_start - 1) |
7682                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7683
7684         I915_WRITE(VTOTAL(cpu_transcoder),
7685                    (adjusted_mode->crtc_vdisplay - 1) |
7686                    ((crtc_vtotal - 1) << 16));
7687         I915_WRITE(VBLANK(cpu_transcoder),
7688                    (adjusted_mode->crtc_vblank_start - 1) |
7689                    ((crtc_vblank_end - 1) << 16));
7690         I915_WRITE(VSYNC(cpu_transcoder),
7691                    (adjusted_mode->crtc_vsync_start - 1) |
7692                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7693
7694         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7695          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7696          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7697          * bits. */
7698         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7699             (pipe == PIPE_B || pipe == PIPE_C))
7700                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7701
7702         /* pipesrc controls the size that is scaled from, which should
7703          * always be the user's requested size.
7704          */
7705         I915_WRITE(PIPESRC(pipe),
7706                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7707                    (intel_crtc->config->pipe_src_h - 1));
7708 }
7709
7710 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7711                                    struct intel_crtc_state *pipe_config)
7712 {
7713         struct drm_device *dev = crtc->base.dev;
7714         struct drm_i915_private *dev_priv = dev->dev_private;
7715         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7716         uint32_t tmp;
7717
7718         tmp = I915_READ(HTOTAL(cpu_transcoder));
7719         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7720         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7721         tmp = I915_READ(HBLANK(cpu_transcoder));
7722         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7723         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7724         tmp = I915_READ(HSYNC(cpu_transcoder));
7725         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7726         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7727
7728         tmp = I915_READ(VTOTAL(cpu_transcoder));
7729         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7730         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7731         tmp = I915_READ(VBLANK(cpu_transcoder));
7732         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7733         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7734         tmp = I915_READ(VSYNC(cpu_transcoder));
7735         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7736         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7737
7738         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7739                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7740                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7741                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7742         }
7743
7744         tmp = I915_READ(PIPESRC(crtc->pipe));
7745         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7746         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7747
7748         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7749         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7750 }
7751
7752 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7753                                  struct intel_crtc_state *pipe_config)
7754 {
7755         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7756         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7757         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7758         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7759
7760         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7761         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7762         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7763         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7764
7765         mode->flags = pipe_config->base.adjusted_mode.flags;
7766
7767         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7768         mode->flags |= pipe_config->base.adjusted_mode.flags;
7769 }
7770
7771 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7772 {
7773         struct drm_device *dev = intel_crtc->base.dev;
7774         struct drm_i915_private *dev_priv = dev->dev_private;
7775         uint32_t pipeconf;
7776
7777         pipeconf = 0;
7778
7779         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7780             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7781                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7782
7783         if (intel_crtc->config->double_wide)
7784                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7785
7786         /* only g4x and later have fancy bpc/dither controls */
7787         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7788                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7789                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7790                         pipeconf |= PIPECONF_DITHER_EN |
7791                                     PIPECONF_DITHER_TYPE_SP;
7792
7793                 switch (intel_crtc->config->pipe_bpp) {
7794                 case 18:
7795                         pipeconf |= PIPECONF_6BPC;
7796                         break;
7797                 case 24:
7798                         pipeconf |= PIPECONF_8BPC;
7799                         break;
7800                 case 30:
7801                         pipeconf |= PIPECONF_10BPC;
7802                         break;
7803                 default:
7804                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7805                         BUG();
7806                 }
7807         }
7808
7809         if (HAS_PIPE_CXSR(dev)) {
7810                 if (intel_crtc->lowfreq_avail) {
7811                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7812                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7813                 } else {
7814                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7815                 }
7816         }
7817
7818         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7819                 if (INTEL_INFO(dev)->gen < 4 ||
7820                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7821                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7822                 else
7823                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7824         } else
7825                 pipeconf |= PIPECONF_PROGRESSIVE;
7826
7827         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7828                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7829
7830         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7831         POSTING_READ(PIPECONF(intel_crtc->pipe));
7832 }
7833
7834 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7835                                    struct intel_crtc_state *crtc_state)
7836 {
7837         struct drm_device *dev = crtc->base.dev;
7838         struct drm_i915_private *dev_priv = dev->dev_private;
7839         int refclk, num_connectors = 0;
7840         intel_clock_t clock, reduced_clock;
7841         bool ok, has_reduced_clock = false;
7842         bool is_lvds = false, is_dsi = false;
7843         struct intel_encoder *encoder;
7844         const intel_limit_t *limit;
7845         struct drm_atomic_state *state = crtc_state->base.state;
7846         struct drm_connector *connector;
7847         struct drm_connector_state *connector_state;
7848         int i;
7849
7850         memset(&crtc_state->dpll_hw_state, 0,
7851                sizeof(crtc_state->dpll_hw_state));
7852
7853         for_each_connector_in_state(state, connector, connector_state, i) {
7854                 if (connector_state->crtc != &crtc->base)
7855                         continue;
7856
7857                 encoder = to_intel_encoder(connector_state->best_encoder);
7858
7859                 switch (encoder->type) {
7860                 case INTEL_OUTPUT_LVDS:
7861                         is_lvds = true;
7862                         break;
7863                 case INTEL_OUTPUT_DSI:
7864                         is_dsi = true;
7865                         break;
7866                 default:
7867                         break;
7868                 }
7869
7870                 num_connectors++;
7871         }
7872
7873         if (is_dsi)
7874                 return 0;
7875
7876         if (!crtc_state->clock_set) {
7877                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7878
7879                 /*
7880                  * Returns a set of divisors for the desired target clock with
7881                  * the given refclk, or FALSE.  The returned values represent
7882                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7883                  * 2) / p1 / p2.
7884                  */
7885                 limit = intel_limit(crtc_state, refclk);
7886                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7887                                                  crtc_state->port_clock,
7888                                                  refclk, NULL, &clock);
7889                 if (!ok) {
7890                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7891                         return -EINVAL;
7892                 }
7893
7894                 if (is_lvds && dev_priv->lvds_downclock_avail) {
7895                         /*
7896                          * Ensure we match the reduced clock's P to the target
7897                          * clock.  If the clocks don't match, we can't switch
7898                          * the display clock by using the FP0/FP1. In such case
7899                          * we will disable the LVDS downclock feature.
7900                          */
7901                         has_reduced_clock =
7902                                 dev_priv->display.find_dpll(limit, crtc_state,
7903                                                             dev_priv->lvds_downclock,
7904                                                             refclk, &clock,
7905                                                             &reduced_clock);
7906                 }
7907                 /* Compat-code for transition, will disappear. */
7908                 crtc_state->dpll.n = clock.n;
7909                 crtc_state->dpll.m1 = clock.m1;
7910                 crtc_state->dpll.m2 = clock.m2;
7911                 crtc_state->dpll.p1 = clock.p1;
7912                 crtc_state->dpll.p2 = clock.p2;
7913         }
7914
7915         if (IS_GEN2(dev)) {
7916                 i8xx_update_pll(crtc, crtc_state,
7917                                 has_reduced_clock ? &reduced_clock : NULL,
7918                                 num_connectors);
7919         } else if (IS_CHERRYVIEW(dev)) {
7920                 chv_update_pll(crtc, crtc_state);
7921         } else if (IS_VALLEYVIEW(dev)) {
7922                 vlv_update_pll(crtc, crtc_state);
7923         } else {
7924                 i9xx_update_pll(crtc, crtc_state,
7925                                 has_reduced_clock ? &reduced_clock : NULL,
7926                                 num_connectors);
7927         }
7928
7929         return 0;
7930 }
7931
7932 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7933                                  struct intel_crtc_state *pipe_config)
7934 {
7935         struct drm_device *dev = crtc->base.dev;
7936         struct drm_i915_private *dev_priv = dev->dev_private;
7937         uint32_t tmp;
7938
7939         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7940                 return;
7941
7942         tmp = I915_READ(PFIT_CONTROL);
7943         if (!(tmp & PFIT_ENABLE))
7944                 return;
7945
7946         /* Check whether the pfit is attached to our pipe. */
7947         if (INTEL_INFO(dev)->gen < 4) {
7948                 if (crtc->pipe != PIPE_B)
7949                         return;
7950         } else {
7951                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7952                         return;
7953         }
7954
7955         pipe_config->gmch_pfit.control = tmp;
7956         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7957         if (INTEL_INFO(dev)->gen < 5)
7958                 pipe_config->gmch_pfit.lvds_border_bits =
7959                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7960 }
7961
7962 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7963                                struct intel_crtc_state *pipe_config)
7964 {
7965         struct drm_device *dev = crtc->base.dev;
7966         struct drm_i915_private *dev_priv = dev->dev_private;
7967         int pipe = pipe_config->cpu_transcoder;
7968         intel_clock_t clock;
7969         u32 mdiv;
7970         int refclk = 100000;
7971
7972         /* In case of MIPI DPLL will not even be used */
7973         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7974                 return;
7975
7976         mutex_lock(&dev_priv->sb_lock);
7977         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7978         mutex_unlock(&dev_priv->sb_lock);
7979
7980         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7981         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7982         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7983         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7984         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7985
7986         vlv_clock(refclk, &clock);
7987
7988         /* clock.dot is the fast clock */
7989         pipe_config->port_clock = clock.dot / 5;
7990 }
7991
7992 static void
7993 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7994                               struct intel_initial_plane_config *plane_config)
7995 {
7996         struct drm_device *dev = crtc->base.dev;
7997         struct drm_i915_private *dev_priv = dev->dev_private;
7998         u32 val, base, offset;
7999         int pipe = crtc->pipe, plane = crtc->plane;
8000         int fourcc, pixel_format;
8001         unsigned int aligned_height;
8002         struct drm_framebuffer *fb;
8003         struct intel_framebuffer *intel_fb;
8004
8005         val = I915_READ(DSPCNTR(plane));
8006         if (!(val & DISPLAY_PLANE_ENABLE))
8007                 return;
8008
8009         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8010         if (!intel_fb) {
8011                 DRM_DEBUG_KMS("failed to alloc fb\n");
8012                 return;
8013         }
8014
8015         fb = &intel_fb->base;
8016
8017         if (INTEL_INFO(dev)->gen >= 4) {
8018                 if (val & DISPPLANE_TILED) {
8019                         plane_config->tiling = I915_TILING_X;
8020                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8021                 }
8022         }
8023
8024         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8025         fourcc = i9xx_format_to_fourcc(pixel_format);
8026         fb->pixel_format = fourcc;
8027         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8028
8029         if (INTEL_INFO(dev)->gen >= 4) {
8030                 if (plane_config->tiling)
8031                         offset = I915_READ(DSPTILEOFF(plane));
8032                 else
8033                         offset = I915_READ(DSPLINOFF(plane));
8034                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8035         } else {
8036                 base = I915_READ(DSPADDR(plane));
8037         }
8038         plane_config->base = base;
8039
8040         val = I915_READ(PIPESRC(pipe));
8041         fb->width = ((val >> 16) & 0xfff) + 1;
8042         fb->height = ((val >> 0) & 0xfff) + 1;
8043
8044         val = I915_READ(DSPSTRIDE(pipe));
8045         fb->pitches[0] = val & 0xffffffc0;
8046
8047         aligned_height = intel_fb_align_height(dev, fb->height,
8048                                                fb->pixel_format,
8049                                                fb->modifier[0]);
8050
8051         plane_config->size = fb->pitches[0] * aligned_height;
8052
8053         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8054                       pipe_name(pipe), plane, fb->width, fb->height,
8055                       fb->bits_per_pixel, base, fb->pitches[0],
8056                       plane_config->size);
8057
8058         plane_config->fb = intel_fb;
8059 }
8060
8061 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8062                                struct intel_crtc_state *pipe_config)
8063 {
8064         struct drm_device *dev = crtc->base.dev;
8065         struct drm_i915_private *dev_priv = dev->dev_private;
8066         int pipe = pipe_config->cpu_transcoder;
8067         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8068         intel_clock_t clock;
8069         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
8070         int refclk = 100000;
8071
8072         mutex_lock(&dev_priv->sb_lock);
8073         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8074         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8075         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8076         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8077         mutex_unlock(&dev_priv->sb_lock);
8078
8079         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8080         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
8081         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8082         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8083         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8084
8085         chv_clock(refclk, &clock);
8086
8087         /* clock.dot is the fast clock */
8088         pipe_config->port_clock = clock.dot / 5;
8089 }
8090
8091 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8092                                  struct intel_crtc_state *pipe_config)
8093 {
8094         struct drm_device *dev = crtc->base.dev;
8095         struct drm_i915_private *dev_priv = dev->dev_private;
8096         uint32_t tmp;
8097
8098         if (!intel_display_power_is_enabled(dev_priv,
8099                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8100                 return false;
8101
8102         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8103         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8104
8105         tmp = I915_READ(PIPECONF(crtc->pipe));
8106         if (!(tmp & PIPECONF_ENABLE))
8107                 return false;
8108
8109         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8110                 switch (tmp & PIPECONF_BPC_MASK) {
8111                 case PIPECONF_6BPC:
8112                         pipe_config->pipe_bpp = 18;
8113                         break;
8114                 case PIPECONF_8BPC:
8115                         pipe_config->pipe_bpp = 24;
8116                         break;
8117                 case PIPECONF_10BPC:
8118                         pipe_config->pipe_bpp = 30;
8119                         break;
8120                 default:
8121                         break;
8122                 }
8123         }
8124
8125         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8126                 pipe_config->limited_color_range = true;
8127
8128         if (INTEL_INFO(dev)->gen < 4)
8129                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8130
8131         intel_get_pipe_timings(crtc, pipe_config);
8132
8133         i9xx_get_pfit_config(crtc, pipe_config);
8134
8135         if (INTEL_INFO(dev)->gen >= 4) {
8136                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8137                 pipe_config->pixel_multiplier =
8138                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8139                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8140                 pipe_config->dpll_hw_state.dpll_md = tmp;
8141         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8142                 tmp = I915_READ(DPLL(crtc->pipe));
8143                 pipe_config->pixel_multiplier =
8144                         ((tmp & SDVO_MULTIPLIER_MASK)
8145                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8146         } else {
8147                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8148                  * port and will be fixed up in the encoder->get_config
8149                  * function. */
8150                 pipe_config->pixel_multiplier = 1;
8151         }
8152         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8153         if (!IS_VALLEYVIEW(dev)) {
8154                 /*
8155                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8156                  * on 830. Filter it out here so that we don't
8157                  * report errors due to that.
8158                  */
8159                 if (IS_I830(dev))
8160                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8161
8162                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8163                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8164         } else {
8165                 /* Mask out read-only status bits. */
8166                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8167                                                      DPLL_PORTC_READY_MASK |
8168                                                      DPLL_PORTB_READY_MASK);
8169         }
8170
8171         if (IS_CHERRYVIEW(dev))
8172                 chv_crtc_clock_get(crtc, pipe_config);
8173         else if (IS_VALLEYVIEW(dev))
8174                 vlv_crtc_clock_get(crtc, pipe_config);
8175         else
8176                 i9xx_crtc_clock_get(crtc, pipe_config);
8177
8178         return true;
8179 }
8180
8181 static void ironlake_init_pch_refclk(struct drm_device *dev)
8182 {
8183         struct drm_i915_private *dev_priv = dev->dev_private;
8184         struct intel_encoder *encoder;
8185         u32 val, final;
8186         bool has_lvds = false;
8187         bool has_cpu_edp = false;
8188         bool has_panel = false;
8189         bool has_ck505 = false;
8190         bool can_ssc = false;
8191
8192         /* We need to take the global config into account */
8193         for_each_intel_encoder(dev, encoder) {
8194                 switch (encoder->type) {
8195                 case INTEL_OUTPUT_LVDS:
8196                         has_panel = true;
8197                         has_lvds = true;
8198                         break;
8199                 case INTEL_OUTPUT_EDP:
8200                         has_panel = true;
8201                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8202                                 has_cpu_edp = true;
8203                         break;
8204                 default:
8205                         break;
8206                 }
8207         }
8208
8209         if (HAS_PCH_IBX(dev)) {
8210                 has_ck505 = dev_priv->vbt.display_clock_mode;
8211                 can_ssc = has_ck505;
8212         } else {
8213                 has_ck505 = false;
8214                 can_ssc = true;
8215         }
8216
8217         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8218                       has_panel, has_lvds, has_ck505);
8219
8220         /* Ironlake: try to setup display ref clock before DPLL
8221          * enabling. This is only under driver's control after
8222          * PCH B stepping, previous chipset stepping should be
8223          * ignoring this setting.
8224          */
8225         val = I915_READ(PCH_DREF_CONTROL);
8226
8227         /* As we must carefully and slowly disable/enable each source in turn,
8228          * compute the final state we want first and check if we need to
8229          * make any changes at all.
8230          */
8231         final = val;
8232         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8233         if (has_ck505)
8234                 final |= DREF_NONSPREAD_CK505_ENABLE;
8235         else
8236                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8237
8238         final &= ~DREF_SSC_SOURCE_MASK;
8239         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8240         final &= ~DREF_SSC1_ENABLE;
8241
8242         if (has_panel) {
8243                 final |= DREF_SSC_SOURCE_ENABLE;
8244
8245                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8246                         final |= DREF_SSC1_ENABLE;
8247
8248                 if (has_cpu_edp) {
8249                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8250                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8251                         else
8252                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8253                 } else
8254                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8255         } else {
8256                 final |= DREF_SSC_SOURCE_DISABLE;
8257                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8258         }
8259
8260         if (final == val)
8261                 return;
8262
8263         /* Always enable nonspread source */
8264         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8265
8266         if (has_ck505)
8267                 val |= DREF_NONSPREAD_CK505_ENABLE;
8268         else
8269                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8270
8271         if (has_panel) {
8272                 val &= ~DREF_SSC_SOURCE_MASK;
8273                 val |= DREF_SSC_SOURCE_ENABLE;
8274
8275                 /* SSC must be turned on before enabling the CPU output  */
8276                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8277                         DRM_DEBUG_KMS("Using SSC on panel\n");
8278                         val |= DREF_SSC1_ENABLE;
8279                 } else
8280                         val &= ~DREF_SSC1_ENABLE;
8281
8282                 /* Get SSC going before enabling the outputs */
8283                 I915_WRITE(PCH_DREF_CONTROL, val);
8284                 POSTING_READ(PCH_DREF_CONTROL);
8285                 udelay(200);
8286
8287                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8288
8289                 /* Enable CPU source on CPU attached eDP */
8290                 if (has_cpu_edp) {
8291                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8292                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8293                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8294                         } else
8295                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8296                 } else
8297                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8298
8299                 I915_WRITE(PCH_DREF_CONTROL, val);
8300                 POSTING_READ(PCH_DREF_CONTROL);
8301                 udelay(200);
8302         } else {
8303                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8304
8305                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8306
8307                 /* Turn off CPU output */
8308                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8309
8310                 I915_WRITE(PCH_DREF_CONTROL, val);
8311                 POSTING_READ(PCH_DREF_CONTROL);
8312                 udelay(200);
8313
8314                 /* Turn off the SSC source */
8315                 val &= ~DREF_SSC_SOURCE_MASK;
8316                 val |= DREF_SSC_SOURCE_DISABLE;
8317
8318                 /* Turn off SSC1 */
8319                 val &= ~DREF_SSC1_ENABLE;
8320
8321                 I915_WRITE(PCH_DREF_CONTROL, val);
8322                 POSTING_READ(PCH_DREF_CONTROL);
8323                 udelay(200);
8324         }
8325
8326         BUG_ON(val != final);
8327 }
8328
8329 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8330 {
8331         uint32_t tmp;
8332
8333         tmp = I915_READ(SOUTH_CHICKEN2);
8334         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8335         I915_WRITE(SOUTH_CHICKEN2, tmp);
8336
8337         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8338                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8339                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8340
8341         tmp = I915_READ(SOUTH_CHICKEN2);
8342         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8343         I915_WRITE(SOUTH_CHICKEN2, tmp);
8344
8345         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8346                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8347                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8348 }
8349
8350 /* WaMPhyProgramming:hsw */
8351 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8352 {
8353         uint32_t tmp;
8354
8355         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8356         tmp &= ~(0xFF << 24);
8357         tmp |= (0x12 << 24);
8358         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8359
8360         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8361         tmp |= (1 << 11);
8362         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8363
8364         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8365         tmp |= (1 << 11);
8366         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8367
8368         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8369         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8370         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8371
8372         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8373         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8374         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8375
8376         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8377         tmp &= ~(7 << 13);
8378         tmp |= (5 << 13);
8379         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8380
8381         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8382         tmp &= ~(7 << 13);
8383         tmp |= (5 << 13);
8384         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8385
8386         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8387         tmp &= ~0xFF;
8388         tmp |= 0x1C;
8389         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8390
8391         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8392         tmp &= ~0xFF;
8393         tmp |= 0x1C;
8394         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8395
8396         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8397         tmp &= ~(0xFF << 16);
8398         tmp |= (0x1C << 16);
8399         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8400
8401         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8402         tmp &= ~(0xFF << 16);
8403         tmp |= (0x1C << 16);
8404         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8405
8406         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8407         tmp |= (1 << 27);
8408         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8409
8410         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8411         tmp |= (1 << 27);
8412         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8413
8414         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8415         tmp &= ~(0xF << 28);
8416         tmp |= (4 << 28);
8417         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8418
8419         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8420         tmp &= ~(0xF << 28);
8421         tmp |= (4 << 28);
8422         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8423 }
8424
8425 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8426  * Programming" based on the parameters passed:
8427  * - Sequence to enable CLKOUT_DP
8428  * - Sequence to enable CLKOUT_DP without spread
8429  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8430  */
8431 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8432                                  bool with_fdi)
8433 {
8434         struct drm_i915_private *dev_priv = dev->dev_private;
8435         uint32_t reg, tmp;
8436
8437         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8438                 with_spread = true;
8439         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8440                  with_fdi, "LP PCH doesn't have FDI\n"))
8441                 with_fdi = false;
8442
8443         mutex_lock(&dev_priv->sb_lock);
8444
8445         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8446         tmp &= ~SBI_SSCCTL_DISABLE;
8447         tmp |= SBI_SSCCTL_PATHALT;
8448         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8449
8450         udelay(24);
8451
8452         if (with_spread) {
8453                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8454                 tmp &= ~SBI_SSCCTL_PATHALT;
8455                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8456
8457                 if (with_fdi) {
8458                         lpt_reset_fdi_mphy(dev_priv);
8459                         lpt_program_fdi_mphy(dev_priv);
8460                 }
8461         }
8462
8463         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8464                SBI_GEN0 : SBI_DBUFF0;
8465         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8466         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8467         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8468
8469         mutex_unlock(&dev_priv->sb_lock);
8470 }
8471
8472 /* Sequence to disable CLKOUT_DP */
8473 static void lpt_disable_clkout_dp(struct drm_device *dev)
8474 {
8475         struct drm_i915_private *dev_priv = dev->dev_private;
8476         uint32_t reg, tmp;
8477
8478         mutex_lock(&dev_priv->sb_lock);
8479
8480         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8481                SBI_GEN0 : SBI_DBUFF0;
8482         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8483         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8484         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8485
8486         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8487         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8488                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8489                         tmp |= SBI_SSCCTL_PATHALT;
8490                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8491                         udelay(32);
8492                 }
8493                 tmp |= SBI_SSCCTL_DISABLE;
8494                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8495         }
8496
8497         mutex_unlock(&dev_priv->sb_lock);
8498 }
8499
8500 static void lpt_init_pch_refclk(struct drm_device *dev)
8501 {
8502         struct intel_encoder *encoder;
8503         bool has_vga = false;
8504
8505         for_each_intel_encoder(dev, encoder) {
8506                 switch (encoder->type) {
8507                 case INTEL_OUTPUT_ANALOG:
8508                         has_vga = true;
8509                         break;
8510                 default:
8511                         break;
8512                 }
8513         }
8514
8515         if (has_vga)
8516                 lpt_enable_clkout_dp(dev, true, true);
8517         else
8518                 lpt_disable_clkout_dp(dev);
8519 }
8520
8521 /*
8522  * Initialize reference clocks when the driver loads
8523  */
8524 void intel_init_pch_refclk(struct drm_device *dev)
8525 {
8526         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8527                 ironlake_init_pch_refclk(dev);
8528         else if (HAS_PCH_LPT(dev))
8529                 lpt_init_pch_refclk(dev);
8530 }
8531
8532 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8533 {
8534         struct drm_device *dev = crtc_state->base.crtc->dev;
8535         struct drm_i915_private *dev_priv = dev->dev_private;
8536         struct drm_atomic_state *state = crtc_state->base.state;
8537         struct drm_connector *connector;
8538         struct drm_connector_state *connector_state;
8539         struct intel_encoder *encoder;
8540         int num_connectors = 0, i;
8541         bool is_lvds = false;
8542
8543         for_each_connector_in_state(state, connector, connector_state, i) {
8544                 if (connector_state->crtc != crtc_state->base.crtc)
8545                         continue;
8546
8547                 encoder = to_intel_encoder(connector_state->best_encoder);
8548
8549                 switch (encoder->type) {
8550                 case INTEL_OUTPUT_LVDS:
8551                         is_lvds = true;
8552                         break;
8553                 default:
8554                         break;
8555                 }
8556                 num_connectors++;
8557         }
8558
8559         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8560                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8561                               dev_priv->vbt.lvds_ssc_freq);
8562                 return dev_priv->vbt.lvds_ssc_freq;
8563         }
8564
8565         return 120000;
8566 }
8567
8568 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8569 {
8570         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8572         int pipe = intel_crtc->pipe;
8573         uint32_t val;
8574
8575         val = 0;
8576
8577         switch (intel_crtc->config->pipe_bpp) {
8578         case 18:
8579                 val |= PIPECONF_6BPC;
8580                 break;
8581         case 24:
8582                 val |= PIPECONF_8BPC;
8583                 break;
8584         case 30:
8585                 val |= PIPECONF_10BPC;
8586                 break;
8587         case 36:
8588                 val |= PIPECONF_12BPC;
8589                 break;
8590         default:
8591                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8592                 BUG();
8593         }
8594
8595         if (intel_crtc->config->dither)
8596                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8597
8598         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8599                 val |= PIPECONF_INTERLACED_ILK;
8600         else
8601                 val |= PIPECONF_PROGRESSIVE;
8602
8603         if (intel_crtc->config->limited_color_range)
8604                 val |= PIPECONF_COLOR_RANGE_SELECT;
8605
8606         I915_WRITE(PIPECONF(pipe), val);
8607         POSTING_READ(PIPECONF(pipe));
8608 }
8609
8610 /*
8611  * Set up the pipe CSC unit.
8612  *
8613  * Currently only full range RGB to limited range RGB conversion
8614  * is supported, but eventually this should handle various
8615  * RGB<->YCbCr scenarios as well.
8616  */
8617 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8618 {
8619         struct drm_device *dev = crtc->dev;
8620         struct drm_i915_private *dev_priv = dev->dev_private;
8621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8622         int pipe = intel_crtc->pipe;
8623         uint16_t coeff = 0x7800; /* 1.0 */
8624
8625         /*
8626          * TODO: Check what kind of values actually come out of the pipe
8627          * with these coeff/postoff values and adjust to get the best
8628          * accuracy. Perhaps we even need to take the bpc value into
8629          * consideration.
8630          */
8631
8632         if (intel_crtc->config->limited_color_range)
8633                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8634
8635         /*
8636          * GY/GU and RY/RU should be the other way around according
8637          * to BSpec, but reality doesn't agree. Just set them up in
8638          * a way that results in the correct picture.
8639          */
8640         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8641         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8642
8643         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8644         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8645
8646         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8647         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8648
8649         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8650         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8651         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8652
8653         if (INTEL_INFO(dev)->gen > 6) {
8654                 uint16_t postoff = 0;
8655
8656                 if (intel_crtc->config->limited_color_range)
8657                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8658
8659                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8660                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8661                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8662
8663                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8664         } else {
8665                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8666
8667                 if (intel_crtc->config->limited_color_range)
8668                         mode |= CSC_BLACK_SCREEN_OFFSET;
8669
8670                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8671         }
8672 }
8673
8674 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8675 {
8676         struct drm_device *dev = crtc->dev;
8677         struct drm_i915_private *dev_priv = dev->dev_private;
8678         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8679         enum pipe pipe = intel_crtc->pipe;
8680         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8681         uint32_t val;
8682
8683         val = 0;
8684
8685         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8686                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8687
8688         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8689                 val |= PIPECONF_INTERLACED_ILK;
8690         else
8691                 val |= PIPECONF_PROGRESSIVE;
8692
8693         I915_WRITE(PIPECONF(cpu_transcoder), val);
8694         POSTING_READ(PIPECONF(cpu_transcoder));
8695
8696         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8697         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8698
8699         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8700                 val = 0;
8701
8702                 switch (intel_crtc->config->pipe_bpp) {
8703                 case 18:
8704                         val |= PIPEMISC_DITHER_6_BPC;
8705                         break;
8706                 case 24:
8707                         val |= PIPEMISC_DITHER_8_BPC;
8708                         break;
8709                 case 30:
8710                         val |= PIPEMISC_DITHER_10_BPC;
8711                         break;
8712                 case 36:
8713                         val |= PIPEMISC_DITHER_12_BPC;
8714                         break;
8715                 default:
8716                         /* Case prevented by pipe_config_set_bpp. */
8717                         BUG();
8718                 }
8719
8720                 if (intel_crtc->config->dither)
8721                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8722
8723                 I915_WRITE(PIPEMISC(pipe), val);
8724         }
8725 }
8726
8727 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8728                                     struct intel_crtc_state *crtc_state,
8729                                     intel_clock_t *clock,
8730                                     bool *has_reduced_clock,
8731                                     intel_clock_t *reduced_clock)
8732 {
8733         struct drm_device *dev = crtc->dev;
8734         struct drm_i915_private *dev_priv = dev->dev_private;
8735         int refclk;
8736         const intel_limit_t *limit;
8737         bool ret, is_lvds = false;
8738
8739         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8740
8741         refclk = ironlake_get_refclk(crtc_state);
8742
8743         /*
8744          * Returns a set of divisors for the desired target clock with the given
8745          * refclk, or FALSE.  The returned values represent the clock equation:
8746          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8747          */
8748         limit = intel_limit(crtc_state, refclk);
8749         ret = dev_priv->display.find_dpll(limit, crtc_state,
8750                                           crtc_state->port_clock,
8751                                           refclk, NULL, clock);
8752         if (!ret)
8753                 return false;
8754
8755         if (is_lvds && dev_priv->lvds_downclock_avail) {
8756                 /*
8757                  * Ensure we match the reduced clock's P to the target clock.
8758                  * If the clocks don't match, we can't switch the display clock
8759                  * by using the FP0/FP1. In such case we will disable the LVDS
8760                  * downclock feature.
8761                 */
8762                 *has_reduced_clock =
8763                         dev_priv->display.find_dpll(limit, crtc_state,
8764                                                     dev_priv->lvds_downclock,
8765                                                     refclk, clock,
8766                                                     reduced_clock);
8767         }
8768
8769         return true;
8770 }
8771
8772 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8773 {
8774         /*
8775          * Account for spread spectrum to avoid
8776          * oversubscribing the link. Max center spread
8777          * is 2.5%; use 5% for safety's sake.
8778          */
8779         u32 bps = target_clock * bpp * 21 / 20;
8780         return DIV_ROUND_UP(bps, link_bw * 8);
8781 }
8782
8783 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8784 {
8785         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8786 }
8787
8788 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8789                                       struct intel_crtc_state *crtc_state,
8790                                       u32 *fp,
8791                                       intel_clock_t *reduced_clock, u32 *fp2)
8792 {
8793         struct drm_crtc *crtc = &intel_crtc->base;
8794         struct drm_device *dev = crtc->dev;
8795         struct drm_i915_private *dev_priv = dev->dev_private;
8796         struct drm_atomic_state *state = crtc_state->base.state;
8797         struct drm_connector *connector;
8798         struct drm_connector_state *connector_state;
8799         struct intel_encoder *encoder;
8800         uint32_t dpll;
8801         int factor, num_connectors = 0, i;
8802         bool is_lvds = false, is_sdvo = false;
8803
8804         for_each_connector_in_state(state, connector, connector_state, i) {
8805                 if (connector_state->crtc != crtc_state->base.crtc)
8806                         continue;
8807
8808                 encoder = to_intel_encoder(connector_state->best_encoder);
8809
8810                 switch (encoder->type) {
8811                 case INTEL_OUTPUT_LVDS:
8812                         is_lvds = true;
8813                         break;
8814                 case INTEL_OUTPUT_SDVO:
8815                 case INTEL_OUTPUT_HDMI:
8816                         is_sdvo = true;
8817                         break;
8818                 default:
8819                         break;
8820                 }
8821
8822                 num_connectors++;
8823         }
8824
8825         /* Enable autotuning of the PLL clock (if permissible) */
8826         factor = 21;
8827         if (is_lvds) {
8828                 if ((intel_panel_use_ssc(dev_priv) &&
8829                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8830                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8831                         factor = 25;
8832         } else if (crtc_state->sdvo_tv_clock)
8833                 factor = 20;
8834
8835         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8836                 *fp |= FP_CB_TUNE;
8837
8838         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8839                 *fp2 |= FP_CB_TUNE;
8840
8841         dpll = 0;
8842
8843         if (is_lvds)
8844                 dpll |= DPLLB_MODE_LVDS;
8845         else
8846                 dpll |= DPLLB_MODE_DAC_SERIAL;
8847
8848         dpll |= (crtc_state->pixel_multiplier - 1)
8849                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8850
8851         if (is_sdvo)
8852                 dpll |= DPLL_SDVO_HIGH_SPEED;
8853         if (crtc_state->has_dp_encoder)
8854                 dpll |= DPLL_SDVO_HIGH_SPEED;
8855
8856         /* compute bitmask from p1 value */
8857         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8858         /* also FPA1 */
8859         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8860
8861         switch (crtc_state->dpll.p2) {
8862         case 5:
8863                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8864                 break;
8865         case 7:
8866                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8867                 break;
8868         case 10:
8869                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8870                 break;
8871         case 14:
8872                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8873                 break;
8874         }
8875
8876         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8877                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8878         else
8879                 dpll |= PLL_REF_INPUT_DREFCLK;
8880
8881         return dpll | DPLL_VCO_ENABLE;
8882 }
8883
8884 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8885                                        struct intel_crtc_state *crtc_state)
8886 {
8887         struct drm_device *dev = crtc->base.dev;
8888         intel_clock_t clock, reduced_clock;
8889         u32 dpll = 0, fp = 0, fp2 = 0;
8890         bool ok, has_reduced_clock = false;
8891         bool is_lvds = false;
8892         struct intel_shared_dpll *pll;
8893
8894         memset(&crtc_state->dpll_hw_state, 0,
8895                sizeof(crtc_state->dpll_hw_state));
8896
8897         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8898
8899         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8900              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8901
8902         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8903                                      &has_reduced_clock, &reduced_clock);
8904         if (!ok && !crtc_state->clock_set) {
8905                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8906                 return -EINVAL;
8907         }
8908         /* Compat-code for transition, will disappear. */
8909         if (!crtc_state->clock_set) {
8910                 crtc_state->dpll.n = clock.n;
8911                 crtc_state->dpll.m1 = clock.m1;
8912                 crtc_state->dpll.m2 = clock.m2;
8913                 crtc_state->dpll.p1 = clock.p1;
8914                 crtc_state->dpll.p2 = clock.p2;
8915         }
8916
8917         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8918         if (crtc_state->has_pch_encoder) {
8919                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8920                 if (has_reduced_clock)
8921                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8922
8923                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8924                                              &fp, &reduced_clock,
8925                                              has_reduced_clock ? &fp2 : NULL);
8926
8927                 crtc_state->dpll_hw_state.dpll = dpll;
8928                 crtc_state->dpll_hw_state.fp0 = fp;
8929                 if (has_reduced_clock)
8930                         crtc_state->dpll_hw_state.fp1 = fp2;
8931                 else
8932                         crtc_state->dpll_hw_state.fp1 = fp;
8933
8934                 pll = intel_get_shared_dpll(crtc, crtc_state);
8935                 if (pll == NULL) {
8936                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8937                                          pipe_name(crtc->pipe));
8938                         return -EINVAL;
8939                 }
8940         }
8941
8942         if (is_lvds && has_reduced_clock)
8943                 crtc->lowfreq_avail = true;
8944         else
8945                 crtc->lowfreq_avail = false;
8946
8947         return 0;
8948 }
8949
8950 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8951                                          struct intel_link_m_n *m_n)
8952 {
8953         struct drm_device *dev = crtc->base.dev;
8954         struct drm_i915_private *dev_priv = dev->dev_private;
8955         enum pipe pipe = crtc->pipe;
8956
8957         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8958         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8959         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8960                 & ~TU_SIZE_MASK;
8961         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8962         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8963                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8964 }
8965
8966 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8967                                          enum transcoder transcoder,
8968                                          struct intel_link_m_n *m_n,
8969                                          struct intel_link_m_n *m2_n2)
8970 {
8971         struct drm_device *dev = crtc->base.dev;
8972         struct drm_i915_private *dev_priv = dev->dev_private;
8973         enum pipe pipe = crtc->pipe;
8974
8975         if (INTEL_INFO(dev)->gen >= 5) {
8976                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8977                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8978                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8979                         & ~TU_SIZE_MASK;
8980                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8981                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8982                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8983                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8984                  * gen < 8) and if DRRS is supported (to make sure the
8985                  * registers are not unnecessarily read).
8986                  */
8987                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8988                         crtc->config->has_drrs) {
8989                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8990                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8991                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8992                                         & ~TU_SIZE_MASK;
8993                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8994                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8995                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8996                 }
8997         } else {
8998                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8999                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9000                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9001                         & ~TU_SIZE_MASK;
9002                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9003                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9004                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9005         }
9006 }
9007
9008 void intel_dp_get_m_n(struct intel_crtc *crtc,
9009                       struct intel_crtc_state *pipe_config)
9010 {
9011         if (pipe_config->has_pch_encoder)
9012                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9013         else
9014                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9015                                              &pipe_config->dp_m_n,
9016                                              &pipe_config->dp_m2_n2);
9017 }
9018
9019 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9020                                         struct intel_crtc_state *pipe_config)
9021 {
9022         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9023                                      &pipe_config->fdi_m_n, NULL);
9024 }
9025
9026 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9027                                     struct intel_crtc_state *pipe_config)
9028 {
9029         struct drm_device *dev = crtc->base.dev;
9030         struct drm_i915_private *dev_priv = dev->dev_private;
9031         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9032         uint32_t ps_ctrl = 0;
9033         int id = -1;
9034         int i;
9035
9036         /* find scaler attached to this pipe */
9037         for (i = 0; i < crtc->num_scalers; i++) {
9038                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9039                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9040                         id = i;
9041                         pipe_config->pch_pfit.enabled = true;
9042                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9043                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9044                         break;
9045                 }
9046         }
9047
9048         scaler_state->scaler_id = id;
9049         if (id >= 0) {
9050                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9051         } else {
9052                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9053         }
9054 }
9055
9056 static void
9057 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9058                                  struct intel_initial_plane_config *plane_config)
9059 {
9060         struct drm_device *dev = crtc->base.dev;
9061         struct drm_i915_private *dev_priv = dev->dev_private;
9062         u32 val, base, offset, stride_mult, tiling;
9063         int pipe = crtc->pipe;
9064         int fourcc, pixel_format;
9065         unsigned int aligned_height;
9066         struct drm_framebuffer *fb;
9067         struct intel_framebuffer *intel_fb;
9068
9069         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9070         if (!intel_fb) {
9071                 DRM_DEBUG_KMS("failed to alloc fb\n");
9072                 return;
9073         }
9074
9075         fb = &intel_fb->base;
9076
9077         val = I915_READ(PLANE_CTL(pipe, 0));
9078         if (!(val & PLANE_CTL_ENABLE))
9079                 goto error;
9080
9081         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9082         fourcc = skl_format_to_fourcc(pixel_format,
9083                                       val & PLANE_CTL_ORDER_RGBX,
9084                                       val & PLANE_CTL_ALPHA_MASK);
9085         fb->pixel_format = fourcc;
9086         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9087
9088         tiling = val & PLANE_CTL_TILED_MASK;
9089         switch (tiling) {
9090         case PLANE_CTL_TILED_LINEAR:
9091                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9092                 break;
9093         case PLANE_CTL_TILED_X:
9094                 plane_config->tiling = I915_TILING_X;
9095                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9096                 break;
9097         case PLANE_CTL_TILED_Y:
9098                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9099                 break;
9100         case PLANE_CTL_TILED_YF:
9101                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9102                 break;
9103         default:
9104                 MISSING_CASE(tiling);
9105                 goto error;
9106         }
9107
9108         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9109         plane_config->base = base;
9110
9111         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9112
9113         val = I915_READ(PLANE_SIZE(pipe, 0));
9114         fb->height = ((val >> 16) & 0xfff) + 1;
9115         fb->width = ((val >> 0) & 0x1fff) + 1;
9116
9117         val = I915_READ(PLANE_STRIDE(pipe, 0));
9118         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9119                                                 fb->pixel_format);
9120         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9121
9122         aligned_height = intel_fb_align_height(dev, fb->height,
9123                                                fb->pixel_format,
9124                                                fb->modifier[0]);
9125
9126         plane_config->size = fb->pitches[0] * aligned_height;
9127
9128         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9129                       pipe_name(pipe), fb->width, fb->height,
9130                       fb->bits_per_pixel, base, fb->pitches[0],
9131                       plane_config->size);
9132
9133         plane_config->fb = intel_fb;
9134         return;
9135
9136 error:
9137         kfree(fb);
9138 }
9139
9140 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9141                                      struct intel_crtc_state *pipe_config)
9142 {
9143         struct drm_device *dev = crtc->base.dev;
9144         struct drm_i915_private *dev_priv = dev->dev_private;
9145         uint32_t tmp;
9146
9147         tmp = I915_READ(PF_CTL(crtc->pipe));
9148
9149         if (tmp & PF_ENABLE) {
9150                 pipe_config->pch_pfit.enabled = true;
9151                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9152                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9153
9154                 /* We currently do not free assignements of panel fitters on
9155                  * ivb/hsw (since we don't use the higher upscaling modes which
9156                  * differentiates them) so just WARN about this case for now. */
9157                 if (IS_GEN7(dev)) {
9158                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9159                                 PF_PIPE_SEL_IVB(crtc->pipe));
9160                 }
9161         }
9162 }
9163
9164 static void
9165 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9166                                   struct intel_initial_plane_config *plane_config)
9167 {
9168         struct drm_device *dev = crtc->base.dev;
9169         struct drm_i915_private *dev_priv = dev->dev_private;
9170         u32 val, base, offset;
9171         int pipe = crtc->pipe;
9172         int fourcc, pixel_format;
9173         unsigned int aligned_height;
9174         struct drm_framebuffer *fb;
9175         struct intel_framebuffer *intel_fb;
9176
9177         val = I915_READ(DSPCNTR(pipe));
9178         if (!(val & DISPLAY_PLANE_ENABLE))
9179                 return;
9180
9181         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9182         if (!intel_fb) {
9183                 DRM_DEBUG_KMS("failed to alloc fb\n");
9184                 return;
9185         }
9186
9187         fb = &intel_fb->base;
9188
9189         if (INTEL_INFO(dev)->gen >= 4) {
9190                 if (val & DISPPLANE_TILED) {
9191                         plane_config->tiling = I915_TILING_X;
9192                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9193                 }
9194         }
9195
9196         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9197         fourcc = i9xx_format_to_fourcc(pixel_format);
9198         fb->pixel_format = fourcc;
9199         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9200
9201         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9202         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9203                 offset = I915_READ(DSPOFFSET(pipe));
9204         } else {
9205                 if (plane_config->tiling)
9206                         offset = I915_READ(DSPTILEOFF(pipe));
9207                 else
9208                         offset = I915_READ(DSPLINOFF(pipe));
9209         }
9210         plane_config->base = base;
9211
9212         val = I915_READ(PIPESRC(pipe));
9213         fb->width = ((val >> 16) & 0xfff) + 1;
9214         fb->height = ((val >> 0) & 0xfff) + 1;
9215
9216         val = I915_READ(DSPSTRIDE(pipe));
9217         fb->pitches[0] = val & 0xffffffc0;
9218
9219         aligned_height = intel_fb_align_height(dev, fb->height,
9220                                                fb->pixel_format,
9221                                                fb->modifier[0]);
9222
9223         plane_config->size = fb->pitches[0] * aligned_height;
9224
9225         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9226                       pipe_name(pipe), fb->width, fb->height,
9227                       fb->bits_per_pixel, base, fb->pitches[0],
9228                       plane_config->size);
9229
9230         plane_config->fb = intel_fb;
9231 }
9232
9233 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9234                                      struct intel_crtc_state *pipe_config)
9235 {
9236         struct drm_device *dev = crtc->base.dev;
9237         struct drm_i915_private *dev_priv = dev->dev_private;
9238         uint32_t tmp;
9239
9240         if (!intel_display_power_is_enabled(dev_priv,
9241                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9242                 return false;
9243
9244         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9245         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9246
9247         tmp = I915_READ(PIPECONF(crtc->pipe));
9248         if (!(tmp & PIPECONF_ENABLE))
9249                 return false;
9250
9251         switch (tmp & PIPECONF_BPC_MASK) {
9252         case PIPECONF_6BPC:
9253                 pipe_config->pipe_bpp = 18;
9254                 break;
9255         case PIPECONF_8BPC:
9256                 pipe_config->pipe_bpp = 24;
9257                 break;
9258         case PIPECONF_10BPC:
9259                 pipe_config->pipe_bpp = 30;
9260                 break;
9261         case PIPECONF_12BPC:
9262                 pipe_config->pipe_bpp = 36;
9263                 break;
9264         default:
9265                 break;
9266         }
9267
9268         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9269                 pipe_config->limited_color_range = true;
9270
9271         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9272                 struct intel_shared_dpll *pll;
9273
9274                 pipe_config->has_pch_encoder = true;
9275
9276                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9277                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9278                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9279
9280                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9281
9282                 if (HAS_PCH_IBX(dev_priv->dev)) {
9283                         pipe_config->shared_dpll =
9284                                 (enum intel_dpll_id) crtc->pipe;
9285                 } else {
9286                         tmp = I915_READ(PCH_DPLL_SEL);
9287                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9288                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9289                         else
9290                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9291                 }
9292
9293                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9294
9295                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9296                                            &pipe_config->dpll_hw_state));
9297
9298                 tmp = pipe_config->dpll_hw_state.dpll;
9299                 pipe_config->pixel_multiplier =
9300                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9301                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9302
9303                 ironlake_pch_clock_get(crtc, pipe_config);
9304         } else {
9305                 pipe_config->pixel_multiplier = 1;
9306         }
9307
9308         intel_get_pipe_timings(crtc, pipe_config);
9309
9310         ironlake_get_pfit_config(crtc, pipe_config);
9311
9312         return true;
9313 }
9314
9315 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9316 {
9317         struct drm_device *dev = dev_priv->dev;
9318         struct intel_crtc *crtc;
9319
9320         for_each_intel_crtc(dev, crtc)
9321                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9322                      pipe_name(crtc->pipe));
9323
9324         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9325         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9326         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9327         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9328         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9329         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9330              "CPU PWM1 enabled\n");
9331         if (IS_HASWELL(dev))
9332                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9333                      "CPU PWM2 enabled\n");
9334         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9335              "PCH PWM1 enabled\n");
9336         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9337              "Utility pin enabled\n");
9338         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9339
9340         /*
9341          * In theory we can still leave IRQs enabled, as long as only the HPD
9342          * interrupts remain enabled. We used to check for that, but since it's
9343          * gen-specific and since we only disable LCPLL after we fully disable
9344          * the interrupts, the check below should be enough.
9345          */
9346         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9347 }
9348
9349 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9350 {
9351         struct drm_device *dev = dev_priv->dev;
9352
9353         if (IS_HASWELL(dev))
9354                 return I915_READ(D_COMP_HSW);
9355         else
9356                 return I915_READ(D_COMP_BDW);
9357 }
9358
9359 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9360 {
9361         struct drm_device *dev = dev_priv->dev;
9362
9363         if (IS_HASWELL(dev)) {
9364                 mutex_lock(&dev_priv->rps.hw_lock);
9365                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9366                                             val))
9367                         DRM_ERROR("Failed to write to D_COMP\n");
9368                 mutex_unlock(&dev_priv->rps.hw_lock);
9369         } else {
9370                 I915_WRITE(D_COMP_BDW, val);
9371                 POSTING_READ(D_COMP_BDW);
9372         }
9373 }
9374
9375 /*
9376  * This function implements pieces of two sequences from BSpec:
9377  * - Sequence for display software to disable LCPLL
9378  * - Sequence for display software to allow package C8+
9379  * The steps implemented here are just the steps that actually touch the LCPLL
9380  * register. Callers should take care of disabling all the display engine
9381  * functions, doing the mode unset, fixing interrupts, etc.
9382  */
9383 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9384                               bool switch_to_fclk, bool allow_power_down)
9385 {
9386         uint32_t val;
9387
9388         assert_can_disable_lcpll(dev_priv);
9389
9390         val = I915_READ(LCPLL_CTL);
9391
9392         if (switch_to_fclk) {
9393                 val |= LCPLL_CD_SOURCE_FCLK;
9394                 I915_WRITE(LCPLL_CTL, val);
9395
9396                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9397                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9398                         DRM_ERROR("Switching to FCLK failed\n");
9399
9400                 val = I915_READ(LCPLL_CTL);
9401         }
9402
9403         val |= LCPLL_PLL_DISABLE;
9404         I915_WRITE(LCPLL_CTL, val);
9405         POSTING_READ(LCPLL_CTL);
9406
9407         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9408                 DRM_ERROR("LCPLL still locked\n");
9409
9410         val = hsw_read_dcomp(dev_priv);
9411         val |= D_COMP_COMP_DISABLE;
9412         hsw_write_dcomp(dev_priv, val);
9413         ndelay(100);
9414
9415         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9416                      1))
9417                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9418
9419         if (allow_power_down) {
9420                 val = I915_READ(LCPLL_CTL);
9421                 val |= LCPLL_POWER_DOWN_ALLOW;
9422                 I915_WRITE(LCPLL_CTL, val);
9423                 POSTING_READ(LCPLL_CTL);
9424         }
9425 }
9426
9427 /*
9428  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9429  * source.
9430  */
9431 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9432 {
9433         uint32_t val;
9434
9435         val = I915_READ(LCPLL_CTL);
9436
9437         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9438                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9439                 return;
9440
9441         /*
9442          * Make sure we're not on PC8 state before disabling PC8, otherwise
9443          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9444          */
9445         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9446
9447         if (val & LCPLL_POWER_DOWN_ALLOW) {
9448                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9449                 I915_WRITE(LCPLL_CTL, val);
9450                 POSTING_READ(LCPLL_CTL);
9451         }
9452
9453         val = hsw_read_dcomp(dev_priv);
9454         val |= D_COMP_COMP_FORCE;
9455         val &= ~D_COMP_COMP_DISABLE;
9456         hsw_write_dcomp(dev_priv, val);
9457
9458         val = I915_READ(LCPLL_CTL);
9459         val &= ~LCPLL_PLL_DISABLE;
9460         I915_WRITE(LCPLL_CTL, val);
9461
9462         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9463                 DRM_ERROR("LCPLL not locked yet\n");
9464
9465         if (val & LCPLL_CD_SOURCE_FCLK) {
9466                 val = I915_READ(LCPLL_CTL);
9467                 val &= ~LCPLL_CD_SOURCE_FCLK;
9468                 I915_WRITE(LCPLL_CTL, val);
9469
9470                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9471                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9472                         DRM_ERROR("Switching back to LCPLL failed\n");
9473         }
9474
9475         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9476         intel_update_cdclk(dev_priv->dev);
9477 }
9478
9479 /*
9480  * Package states C8 and deeper are really deep PC states that can only be
9481  * reached when all the devices on the system allow it, so even if the graphics
9482  * device allows PC8+, it doesn't mean the system will actually get to these
9483  * states. Our driver only allows PC8+ when going into runtime PM.
9484  *
9485  * The requirements for PC8+ are that all the outputs are disabled, the power
9486  * well is disabled and most interrupts are disabled, and these are also
9487  * requirements for runtime PM. When these conditions are met, we manually do
9488  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9489  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9490  * hang the machine.
9491  *
9492  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9493  * the state of some registers, so when we come back from PC8+ we need to
9494  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9495  * need to take care of the registers kept by RC6. Notice that this happens even
9496  * if we don't put the device in PCI D3 state (which is what currently happens
9497  * because of the runtime PM support).
9498  *
9499  * For more, read "Display Sequences for Package C8" on the hardware
9500  * documentation.
9501  */
9502 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9503 {
9504         struct drm_device *dev = dev_priv->dev;
9505         uint32_t val;
9506
9507         DRM_DEBUG_KMS("Enabling package C8+\n");
9508
9509         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9510                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9511                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9512                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9513         }
9514
9515         lpt_disable_clkout_dp(dev);
9516         hsw_disable_lcpll(dev_priv, true, true);
9517 }
9518
9519 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9520 {
9521         struct drm_device *dev = dev_priv->dev;
9522         uint32_t val;
9523
9524         DRM_DEBUG_KMS("Disabling package C8+\n");
9525
9526         hsw_restore_lcpll(dev_priv);
9527         lpt_init_pch_refclk(dev);
9528
9529         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9530                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9531                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9532                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9533         }
9534
9535         intel_prepare_ddi(dev);
9536 }
9537
9538 static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9539 {
9540         struct drm_device *dev = old_state->dev;
9541         struct drm_i915_private *dev_priv = dev->dev_private;
9542         int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9543         int req_cdclk;
9544
9545         /* see the comment in valleyview_modeset_global_resources */
9546         if (WARN_ON(max_pixclk < 0))
9547                 return;
9548
9549         req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9550
9551         if (req_cdclk != dev_priv->cdclk_freq)
9552                 broxton_set_cdclk(dev, req_cdclk);
9553 }
9554
9555 /* compute the max rate for new configuration */
9556 static int ilk_max_pixel_rate(struct drm_i915_private *dev_priv)
9557 {
9558         struct drm_device *dev = dev_priv->dev;
9559         struct intel_crtc *intel_crtc;
9560         struct drm_crtc *crtc;
9561         int max_pixel_rate = 0;
9562         int pixel_rate;
9563
9564         for_each_crtc(dev, crtc) {
9565                 if (!crtc->state->enable)
9566                         continue;
9567
9568                 intel_crtc = to_intel_crtc(crtc);
9569                 pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
9570
9571                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9572                 if (IS_BROADWELL(dev) && intel_crtc->config->ips_enabled)
9573                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9574
9575                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9576         }
9577
9578         return max_pixel_rate;
9579 }
9580
9581 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9582 {
9583         struct drm_i915_private *dev_priv = dev->dev_private;
9584         uint32_t val, data;
9585         int ret;
9586
9587         if (WARN((I915_READ(LCPLL_CTL) &
9588                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9589                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9590                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9591                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9592                  "trying to change cdclk frequency with cdclk not enabled\n"))
9593                 return;
9594
9595         mutex_lock(&dev_priv->rps.hw_lock);
9596         ret = sandybridge_pcode_write(dev_priv,
9597                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9598         mutex_unlock(&dev_priv->rps.hw_lock);
9599         if (ret) {
9600                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9601                 return;
9602         }
9603
9604         val = I915_READ(LCPLL_CTL);
9605         val |= LCPLL_CD_SOURCE_FCLK;
9606         I915_WRITE(LCPLL_CTL, val);
9607
9608         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9609                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9610                 DRM_ERROR("Switching to FCLK failed\n");
9611
9612         val = I915_READ(LCPLL_CTL);
9613         val &= ~LCPLL_CLK_FREQ_MASK;
9614
9615         switch (cdclk) {
9616         case 450000:
9617                 val |= LCPLL_CLK_FREQ_450;
9618                 data = 0;
9619                 break;
9620         case 540000:
9621                 val |= LCPLL_CLK_FREQ_54O_BDW;
9622                 data = 1;
9623                 break;
9624         case 337500:
9625                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9626                 data = 2;
9627                 break;
9628         case 675000:
9629                 val |= LCPLL_CLK_FREQ_675_BDW;
9630                 data = 3;
9631                 break;
9632         default:
9633                 WARN(1, "invalid cdclk frequency\n");
9634                 return;
9635         }
9636
9637         I915_WRITE(LCPLL_CTL, val);
9638
9639         val = I915_READ(LCPLL_CTL);
9640         val &= ~LCPLL_CD_SOURCE_FCLK;
9641         I915_WRITE(LCPLL_CTL, val);
9642
9643         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9644                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9645                 DRM_ERROR("Switching back to LCPLL failed\n");
9646
9647         mutex_lock(&dev_priv->rps.hw_lock);
9648         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9649         mutex_unlock(&dev_priv->rps.hw_lock);
9650
9651         intel_update_cdclk(dev);
9652
9653         WARN(cdclk != dev_priv->cdclk_freq,
9654              "cdclk requested %d kHz but got %d kHz\n",
9655              cdclk, dev_priv->cdclk_freq);
9656 }
9657
9658 static int broadwell_calc_cdclk(struct drm_i915_private *dev_priv,
9659                               int max_pixel_rate)
9660 {
9661         int cdclk;
9662
9663         /*
9664          * FIXME should also account for plane ratio
9665          * once 64bpp pixel formats are supported.
9666          */
9667         if (max_pixel_rate > 540000)
9668                 cdclk = 675000;
9669         else if (max_pixel_rate > 450000)
9670                 cdclk = 540000;
9671         else if (max_pixel_rate > 337500)
9672                 cdclk = 450000;
9673         else
9674                 cdclk = 337500;
9675
9676         /*
9677          * FIXME move the cdclk caclulation to
9678          * compute_config() so we can fail gracegully.
9679          */
9680         if (cdclk > dev_priv->max_cdclk_freq) {
9681                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9682                           cdclk, dev_priv->max_cdclk_freq);
9683                 cdclk = dev_priv->max_cdclk_freq;
9684         }
9685
9686         return cdclk;
9687 }
9688
9689 static int broadwell_modeset_global_pipes(struct drm_atomic_state *state)
9690 {
9691         struct drm_i915_private *dev_priv = to_i915(state->dev);
9692         struct drm_crtc *crtc;
9693         struct drm_crtc_state *crtc_state;
9694         int max_pixclk = ilk_max_pixel_rate(dev_priv);
9695         int cdclk, i;
9696
9697         cdclk = broadwell_calc_cdclk(dev_priv, max_pixclk);
9698
9699         if (cdclk == dev_priv->cdclk_freq)
9700                 return 0;
9701
9702         /* add all active pipes to the state */
9703         for_each_crtc(state->dev, crtc) {
9704                 if (!crtc->state->enable)
9705                         continue;
9706
9707                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
9708                 if (IS_ERR(crtc_state))
9709                         return PTR_ERR(crtc_state);
9710         }
9711
9712         /* disable/enable all currently active pipes while we change cdclk */
9713         for_each_crtc_in_state(state, crtc, crtc_state, i)
9714                 if (crtc_state->enable)
9715                         crtc_state->mode_changed = true;
9716
9717         return 0;
9718 }
9719
9720 static void broadwell_modeset_global_resources(struct drm_atomic_state *state)
9721 {
9722         struct drm_device *dev = state->dev;
9723         struct drm_i915_private *dev_priv = dev->dev_private;
9724         int max_pixel_rate = ilk_max_pixel_rate(dev_priv);
9725         int req_cdclk = broadwell_calc_cdclk(dev_priv, max_pixel_rate);
9726
9727         if (req_cdclk != dev_priv->cdclk_freq)
9728                 broadwell_set_cdclk(dev, req_cdclk);
9729 }
9730
9731 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9732                                       struct intel_crtc_state *crtc_state)
9733 {
9734         if (!intel_ddi_pll_select(crtc, crtc_state))
9735                 return -EINVAL;
9736
9737         crtc->lowfreq_avail = false;
9738
9739         return 0;
9740 }
9741
9742 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9743                                 enum port port,
9744                                 struct intel_crtc_state *pipe_config)
9745 {
9746         switch (port) {
9747         case PORT_A:
9748                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9749                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9750                 break;
9751         case PORT_B:
9752                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9753                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9754                 break;
9755         case PORT_C:
9756                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9757                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9758                 break;
9759         default:
9760                 DRM_ERROR("Incorrect port type\n");
9761         }
9762 }
9763
9764 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9765                                 enum port port,
9766                                 struct intel_crtc_state *pipe_config)
9767 {
9768         u32 temp, dpll_ctl1;
9769
9770         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9771         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9772
9773         switch (pipe_config->ddi_pll_sel) {
9774         case SKL_DPLL0:
9775                 /*
9776                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9777                  * of the shared DPLL framework and thus needs to be read out
9778                  * separately
9779                  */
9780                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9781                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9782                 break;
9783         case SKL_DPLL1:
9784                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9785                 break;
9786         case SKL_DPLL2:
9787                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9788                 break;
9789         case SKL_DPLL3:
9790                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9791                 break;
9792         }
9793 }
9794
9795 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9796                                 enum port port,
9797                                 struct intel_crtc_state *pipe_config)
9798 {
9799         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9800
9801         switch (pipe_config->ddi_pll_sel) {
9802         case PORT_CLK_SEL_WRPLL1:
9803                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9804                 break;
9805         case PORT_CLK_SEL_WRPLL2:
9806                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9807                 break;
9808         }
9809 }
9810
9811 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9812                                        struct intel_crtc_state *pipe_config)
9813 {
9814         struct drm_device *dev = crtc->base.dev;
9815         struct drm_i915_private *dev_priv = dev->dev_private;
9816         struct intel_shared_dpll *pll;
9817         enum port port;
9818         uint32_t tmp;
9819
9820         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9821
9822         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9823
9824         if (IS_SKYLAKE(dev))
9825                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9826         else if (IS_BROXTON(dev))
9827                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9828         else
9829                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9830
9831         if (pipe_config->shared_dpll >= 0) {
9832                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9833
9834                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9835                                            &pipe_config->dpll_hw_state));
9836         }
9837
9838         /*
9839          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9840          * DDI E. So just check whether this pipe is wired to DDI E and whether
9841          * the PCH transcoder is on.
9842          */
9843         if (INTEL_INFO(dev)->gen < 9 &&
9844             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9845                 pipe_config->has_pch_encoder = true;
9846
9847                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9848                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9849                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9850
9851                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9852         }
9853 }
9854
9855 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9856                                     struct intel_crtc_state *pipe_config)
9857 {
9858         struct drm_device *dev = crtc->base.dev;
9859         struct drm_i915_private *dev_priv = dev->dev_private;
9860         enum intel_display_power_domain pfit_domain;
9861         uint32_t tmp;
9862
9863         if (!intel_display_power_is_enabled(dev_priv,
9864                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9865                 return false;
9866
9867         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9868         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9869
9870         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9871         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9872                 enum pipe trans_edp_pipe;
9873                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9874                 default:
9875                         WARN(1, "unknown pipe linked to edp transcoder\n");
9876                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9877                 case TRANS_DDI_EDP_INPUT_A_ON:
9878                         trans_edp_pipe = PIPE_A;
9879                         break;
9880                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9881                         trans_edp_pipe = PIPE_B;
9882                         break;
9883                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9884                         trans_edp_pipe = PIPE_C;
9885                         break;
9886                 }
9887
9888                 if (trans_edp_pipe == crtc->pipe)
9889                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9890         }
9891
9892         if (!intel_display_power_is_enabled(dev_priv,
9893                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9894                 return false;
9895
9896         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9897         if (!(tmp & PIPECONF_ENABLE))
9898                 return false;
9899
9900         haswell_get_ddi_port_state(crtc, pipe_config);
9901
9902         intel_get_pipe_timings(crtc, pipe_config);
9903
9904         if (INTEL_INFO(dev)->gen >= 9) {
9905                 skl_init_scalers(dev, crtc, pipe_config);
9906         }
9907
9908         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9909
9910         if (INTEL_INFO(dev)->gen >= 9) {
9911                 pipe_config->scaler_state.scaler_id = -1;
9912                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9913         }
9914
9915         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9916                 if (INTEL_INFO(dev)->gen == 9)
9917                         skylake_get_pfit_config(crtc, pipe_config);
9918                 else if (INTEL_INFO(dev)->gen < 9)
9919                         ironlake_get_pfit_config(crtc, pipe_config);
9920                 else
9921                         MISSING_CASE(INTEL_INFO(dev)->gen);
9922         }
9923
9924         if (IS_HASWELL(dev))
9925                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9926                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9927
9928         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9929                 pipe_config->pixel_multiplier =
9930                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9931         } else {
9932                 pipe_config->pixel_multiplier = 1;
9933         }
9934
9935         return true;
9936 }
9937
9938 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9939 {
9940         struct drm_device *dev = crtc->dev;
9941         struct drm_i915_private *dev_priv = dev->dev_private;
9942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9943         uint32_t cntl = 0, size = 0;
9944
9945         if (base) {
9946                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9947                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9948                 unsigned int stride = roundup_pow_of_two(width) * 4;
9949
9950                 switch (stride) {
9951                 default:
9952                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9953                                   width, stride);
9954                         stride = 256;
9955                         /* fallthrough */
9956                 case 256:
9957                 case 512:
9958                 case 1024:
9959                 case 2048:
9960                         break;
9961                 }
9962
9963                 cntl |= CURSOR_ENABLE |
9964                         CURSOR_GAMMA_ENABLE |
9965                         CURSOR_FORMAT_ARGB |
9966                         CURSOR_STRIDE(stride);
9967
9968                 size = (height << 12) | width;
9969         }
9970
9971         if (intel_crtc->cursor_cntl != 0 &&
9972             (intel_crtc->cursor_base != base ||
9973              intel_crtc->cursor_size != size ||
9974              intel_crtc->cursor_cntl != cntl)) {
9975                 /* On these chipsets we can only modify the base/size/stride
9976                  * whilst the cursor is disabled.
9977                  */
9978                 I915_WRITE(_CURACNTR, 0);
9979                 POSTING_READ(_CURACNTR);
9980                 intel_crtc->cursor_cntl = 0;
9981         }
9982
9983         if (intel_crtc->cursor_base != base) {
9984                 I915_WRITE(_CURABASE, base);
9985                 intel_crtc->cursor_base = base;
9986         }
9987
9988         if (intel_crtc->cursor_size != size) {
9989                 I915_WRITE(CURSIZE, size);
9990                 intel_crtc->cursor_size = size;
9991         }
9992
9993         if (intel_crtc->cursor_cntl != cntl) {
9994                 I915_WRITE(_CURACNTR, cntl);
9995                 POSTING_READ(_CURACNTR);
9996                 intel_crtc->cursor_cntl = cntl;
9997         }
9998 }
9999
10000 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
10001 {
10002         struct drm_device *dev = crtc->dev;
10003         struct drm_i915_private *dev_priv = dev->dev_private;
10004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10005         int pipe = intel_crtc->pipe;
10006         uint32_t cntl;
10007
10008         cntl = 0;
10009         if (base) {
10010                 cntl = MCURSOR_GAMMA_ENABLE;
10011                 switch (intel_crtc->base.cursor->state->crtc_w) {
10012                         case 64:
10013                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10014                                 break;
10015                         case 128:
10016                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10017                                 break;
10018                         case 256:
10019                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10020                                 break;
10021                         default:
10022                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10023                                 return;
10024                 }
10025                 cntl |= pipe << 28; /* Connect to correct pipe */
10026
10027                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10028                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10029         }
10030
10031         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10032                 cntl |= CURSOR_ROTATE_180;
10033
10034         if (intel_crtc->cursor_cntl != cntl) {
10035                 I915_WRITE(CURCNTR(pipe), cntl);
10036                 POSTING_READ(CURCNTR(pipe));
10037                 intel_crtc->cursor_cntl = cntl;
10038         }
10039
10040         /* and commit changes on next vblank */
10041         I915_WRITE(CURBASE(pipe), base);
10042         POSTING_READ(CURBASE(pipe));
10043
10044         intel_crtc->cursor_base = base;
10045 }
10046
10047 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10048 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10049                                      bool on)
10050 {
10051         struct drm_device *dev = crtc->dev;
10052         struct drm_i915_private *dev_priv = dev->dev_private;
10053         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10054         int pipe = intel_crtc->pipe;
10055         int x = crtc->cursor_x;
10056         int y = crtc->cursor_y;
10057         u32 base = 0, pos = 0;
10058
10059         if (on)
10060                 base = intel_crtc->cursor_addr;
10061
10062         if (x >= intel_crtc->config->pipe_src_w)
10063                 base = 0;
10064
10065         if (y >= intel_crtc->config->pipe_src_h)
10066                 base = 0;
10067
10068         if (x < 0) {
10069                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
10070                         base = 0;
10071
10072                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10073                 x = -x;
10074         }
10075         pos |= x << CURSOR_X_SHIFT;
10076
10077         if (y < 0) {
10078                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
10079                         base = 0;
10080
10081                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10082                 y = -y;
10083         }
10084         pos |= y << CURSOR_Y_SHIFT;
10085
10086         if (base == 0 && intel_crtc->cursor_base == 0)
10087                 return;
10088
10089         I915_WRITE(CURPOS(pipe), pos);
10090
10091         /* ILK+ do this automagically */
10092         if (HAS_GMCH_DISPLAY(dev) &&
10093             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10094                 base += (intel_crtc->base.cursor->state->crtc_h *
10095                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
10096         }
10097
10098         if (IS_845G(dev) || IS_I865G(dev))
10099                 i845_update_cursor(crtc, base);
10100         else
10101                 i9xx_update_cursor(crtc, base);
10102 }
10103
10104 static bool cursor_size_ok(struct drm_device *dev,
10105                            uint32_t width, uint32_t height)
10106 {
10107         if (width == 0 || height == 0)
10108                 return false;
10109
10110         /*
10111          * 845g/865g are special in that they are only limited by
10112          * the width of their cursors, the height is arbitrary up to
10113          * the precision of the register. Everything else requires
10114          * square cursors, limited to a few power-of-two sizes.
10115          */
10116         if (IS_845G(dev) || IS_I865G(dev)) {
10117                 if ((width & 63) != 0)
10118                         return false;
10119
10120                 if (width > (IS_845G(dev) ? 64 : 512))
10121                         return false;
10122
10123                 if (height > 1023)
10124                         return false;
10125         } else {
10126                 switch (width | height) {
10127                 case 256:
10128                 case 128:
10129                         if (IS_GEN2(dev))
10130                                 return false;
10131                 case 64:
10132                         break;
10133                 default:
10134                         return false;
10135                 }
10136         }
10137
10138         return true;
10139 }
10140
10141 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10142                                  u16 *blue, uint32_t start, uint32_t size)
10143 {
10144         int end = (start + size > 256) ? 256 : start + size, i;
10145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10146
10147         for (i = start; i < end; i++) {
10148                 intel_crtc->lut_r[i] = red[i] >> 8;
10149                 intel_crtc->lut_g[i] = green[i] >> 8;
10150                 intel_crtc->lut_b[i] = blue[i] >> 8;
10151         }
10152
10153         intel_crtc_load_lut(crtc);
10154 }
10155
10156 /* VESA 640x480x72Hz mode to set on the pipe */
10157 static struct drm_display_mode load_detect_mode = {
10158         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10159                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10160 };
10161
10162 struct drm_framebuffer *
10163 __intel_framebuffer_create(struct drm_device *dev,
10164                            struct drm_mode_fb_cmd2 *mode_cmd,
10165                            struct drm_i915_gem_object *obj)
10166 {
10167         struct intel_framebuffer *intel_fb;
10168         int ret;
10169
10170         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10171         if (!intel_fb) {
10172                 drm_gem_object_unreference(&obj->base);
10173                 return ERR_PTR(-ENOMEM);
10174         }
10175
10176         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10177         if (ret)
10178                 goto err;
10179
10180         return &intel_fb->base;
10181 err:
10182         drm_gem_object_unreference(&obj->base);
10183         kfree(intel_fb);
10184
10185         return ERR_PTR(ret);
10186 }
10187
10188 static struct drm_framebuffer *
10189 intel_framebuffer_create(struct drm_device *dev,
10190                          struct drm_mode_fb_cmd2 *mode_cmd,
10191                          struct drm_i915_gem_object *obj)
10192 {
10193         struct drm_framebuffer *fb;
10194         int ret;
10195
10196         ret = i915_mutex_lock_interruptible(dev);
10197         if (ret)
10198                 return ERR_PTR(ret);
10199         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10200         mutex_unlock(&dev->struct_mutex);
10201
10202         return fb;
10203 }
10204
10205 static u32
10206 intel_framebuffer_pitch_for_width(int width, int bpp)
10207 {
10208         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10209         return ALIGN(pitch, 64);
10210 }
10211
10212 static u32
10213 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10214 {
10215         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10216         return PAGE_ALIGN(pitch * mode->vdisplay);
10217 }
10218
10219 static struct drm_framebuffer *
10220 intel_framebuffer_create_for_mode(struct drm_device *dev,
10221                                   struct drm_display_mode *mode,
10222                                   int depth, int bpp)
10223 {
10224         struct drm_i915_gem_object *obj;
10225         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10226
10227         obj = i915_gem_alloc_object(dev,
10228                                     intel_framebuffer_size_for_mode(mode, bpp));
10229         if (obj == NULL)
10230                 return ERR_PTR(-ENOMEM);
10231
10232         mode_cmd.width = mode->hdisplay;
10233         mode_cmd.height = mode->vdisplay;
10234         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10235                                                                 bpp);
10236         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10237
10238         return intel_framebuffer_create(dev, &mode_cmd, obj);
10239 }
10240
10241 static struct drm_framebuffer *
10242 mode_fits_in_fbdev(struct drm_device *dev,
10243                    struct drm_display_mode *mode)
10244 {
10245 #ifdef CONFIG_DRM_I915_FBDEV
10246         struct drm_i915_private *dev_priv = dev->dev_private;
10247         struct drm_i915_gem_object *obj;
10248         struct drm_framebuffer *fb;
10249
10250         if (!dev_priv->fbdev)
10251                 return NULL;
10252
10253         if (!dev_priv->fbdev->fb)
10254                 return NULL;
10255
10256         obj = dev_priv->fbdev->fb->obj;
10257         BUG_ON(!obj);
10258
10259         fb = &dev_priv->fbdev->fb->base;
10260         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10261                                                                fb->bits_per_pixel))
10262                 return NULL;
10263
10264         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10265                 return NULL;
10266
10267         return fb;
10268 #else
10269         return NULL;
10270 #endif
10271 }
10272
10273 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10274                                            struct drm_crtc *crtc,
10275                                            struct drm_display_mode *mode,
10276                                            struct drm_framebuffer *fb,
10277                                            int x, int y)
10278 {
10279         struct drm_plane_state *plane_state;
10280         int hdisplay, vdisplay;
10281         int ret;
10282
10283         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10284         if (IS_ERR(plane_state))
10285                 return PTR_ERR(plane_state);
10286
10287         if (mode)
10288                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10289         else
10290                 hdisplay = vdisplay = 0;
10291
10292         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10293         if (ret)
10294                 return ret;
10295         drm_atomic_set_fb_for_plane(plane_state, fb);
10296         plane_state->crtc_x = 0;
10297         plane_state->crtc_y = 0;
10298         plane_state->crtc_w = hdisplay;
10299         plane_state->crtc_h = vdisplay;
10300         plane_state->src_x = x << 16;
10301         plane_state->src_y = y << 16;
10302         plane_state->src_w = hdisplay << 16;
10303         plane_state->src_h = vdisplay << 16;
10304
10305         return 0;
10306 }
10307
10308 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10309                                 struct drm_display_mode *mode,
10310                                 struct intel_load_detect_pipe *old,
10311                                 struct drm_modeset_acquire_ctx *ctx)
10312 {
10313         struct intel_crtc *intel_crtc;
10314         struct intel_encoder *intel_encoder =
10315                 intel_attached_encoder(connector);
10316         struct drm_crtc *possible_crtc;
10317         struct drm_encoder *encoder = &intel_encoder->base;
10318         struct drm_crtc *crtc = NULL;
10319         struct drm_device *dev = encoder->dev;
10320         struct drm_framebuffer *fb;
10321         struct drm_mode_config *config = &dev->mode_config;
10322         struct drm_atomic_state *state = NULL;
10323         struct drm_connector_state *connector_state;
10324         struct intel_crtc_state *crtc_state;
10325         int ret, i = -1;
10326
10327         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10328                       connector->base.id, connector->name,
10329                       encoder->base.id, encoder->name);
10330
10331 retry:
10332         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10333         if (ret)
10334                 goto fail;
10335
10336         /*
10337          * Algorithm gets a little messy:
10338          *
10339          *   - if the connector already has an assigned crtc, use it (but make
10340          *     sure it's on first)
10341          *
10342          *   - try to find the first unused crtc that can drive this connector,
10343          *     and use that if we find one
10344          */
10345
10346         /* See if we already have a CRTC for this connector */
10347         if (encoder->crtc) {
10348                 crtc = encoder->crtc;
10349
10350                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10351                 if (ret)
10352                         goto fail;
10353                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10354                 if (ret)
10355                         goto fail;
10356
10357                 old->dpms_mode = connector->dpms;
10358                 old->load_detect_temp = false;
10359
10360                 /* Make sure the crtc and connector are running */
10361                 if (connector->dpms != DRM_MODE_DPMS_ON)
10362                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10363
10364                 return true;
10365         }
10366
10367         /* Find an unused one (if possible) */
10368         for_each_crtc(dev, possible_crtc) {
10369                 i++;
10370                 if (!(encoder->possible_crtcs & (1 << i)))
10371                         continue;
10372                 if (possible_crtc->state->enable)
10373                         continue;
10374
10375                 crtc = possible_crtc;
10376                 break;
10377         }
10378
10379         /*
10380          * If we didn't find an unused CRTC, don't use any.
10381          */
10382         if (!crtc) {
10383                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10384                 goto fail;
10385         }
10386
10387         ret = drm_modeset_lock(&crtc->mutex, ctx);
10388         if (ret)
10389                 goto fail;
10390         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10391         if (ret)
10392                 goto fail;
10393
10394         intel_crtc = to_intel_crtc(crtc);
10395         old->dpms_mode = connector->dpms;
10396         old->load_detect_temp = true;
10397         old->release_fb = NULL;
10398
10399         state = drm_atomic_state_alloc(dev);
10400         if (!state)
10401                 return false;
10402
10403         state->acquire_ctx = ctx;
10404
10405         connector_state = drm_atomic_get_connector_state(state, connector);
10406         if (IS_ERR(connector_state)) {
10407                 ret = PTR_ERR(connector_state);
10408                 goto fail;
10409         }
10410
10411         connector_state->crtc = crtc;
10412         connector_state->best_encoder = &intel_encoder->base;
10413
10414         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10415         if (IS_ERR(crtc_state)) {
10416                 ret = PTR_ERR(crtc_state);
10417                 goto fail;
10418         }
10419
10420         crtc_state->base.active = crtc_state->base.enable = true;
10421
10422         if (!mode)
10423                 mode = &load_detect_mode;
10424
10425         /* We need a framebuffer large enough to accommodate all accesses
10426          * that the plane may generate whilst we perform load detection.
10427          * We can not rely on the fbcon either being present (we get called
10428          * during its initialisation to detect all boot displays, or it may
10429          * not even exist) or that it is large enough to satisfy the
10430          * requested mode.
10431          */
10432         fb = mode_fits_in_fbdev(dev, mode);
10433         if (fb == NULL) {
10434                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10435                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10436                 old->release_fb = fb;
10437         } else
10438                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10439         if (IS_ERR(fb)) {
10440                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10441                 goto fail;
10442         }
10443
10444         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10445         if (ret)
10446                 goto fail;
10447
10448         drm_mode_copy(&crtc_state->base.mode, mode);
10449
10450         if (intel_set_mode(state)) {
10451                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10452                 if (old->release_fb)
10453                         old->release_fb->funcs->destroy(old->release_fb);
10454                 goto fail;
10455         }
10456         crtc->primary->crtc = crtc;
10457
10458         /* let the connector get through one full cycle before testing */
10459         intel_wait_for_vblank(dev, intel_crtc->pipe);
10460         return true;
10461
10462 fail:
10463         drm_atomic_state_free(state);
10464         state = NULL;
10465
10466         if (ret == -EDEADLK) {
10467                 drm_modeset_backoff(ctx);
10468                 goto retry;
10469         }
10470
10471         return false;
10472 }
10473
10474 void intel_release_load_detect_pipe(struct drm_connector *connector,
10475                                     struct intel_load_detect_pipe *old,
10476                                     struct drm_modeset_acquire_ctx *ctx)
10477 {
10478         struct drm_device *dev = connector->dev;
10479         struct intel_encoder *intel_encoder =
10480                 intel_attached_encoder(connector);
10481         struct drm_encoder *encoder = &intel_encoder->base;
10482         struct drm_crtc *crtc = encoder->crtc;
10483         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10484         struct drm_atomic_state *state;
10485         struct drm_connector_state *connector_state;
10486         struct intel_crtc_state *crtc_state;
10487         int ret;
10488
10489         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10490                       connector->base.id, connector->name,
10491                       encoder->base.id, encoder->name);
10492
10493         if (old->load_detect_temp) {
10494                 state = drm_atomic_state_alloc(dev);
10495                 if (!state)
10496                         goto fail;
10497
10498                 state->acquire_ctx = ctx;
10499
10500                 connector_state = drm_atomic_get_connector_state(state, connector);
10501                 if (IS_ERR(connector_state))
10502                         goto fail;
10503
10504                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10505                 if (IS_ERR(crtc_state))
10506                         goto fail;
10507
10508                 connector_state->best_encoder = NULL;
10509                 connector_state->crtc = NULL;
10510
10511                 crtc_state->base.enable = crtc_state->base.active = false;
10512
10513                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10514                                                       0, 0);
10515                 if (ret)
10516                         goto fail;
10517
10518                 ret = intel_set_mode(state);
10519                 if (ret)
10520                         goto fail;
10521
10522                 if (old->release_fb) {
10523                         drm_framebuffer_unregister_private(old->release_fb);
10524                         drm_framebuffer_unreference(old->release_fb);
10525                 }
10526
10527                 return;
10528         }
10529
10530         /* Switch crtc and encoder back off if necessary */
10531         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10532                 connector->funcs->dpms(connector, old->dpms_mode);
10533
10534         return;
10535 fail:
10536         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10537         drm_atomic_state_free(state);
10538 }
10539
10540 static int i9xx_pll_refclk(struct drm_device *dev,
10541                            const struct intel_crtc_state *pipe_config)
10542 {
10543         struct drm_i915_private *dev_priv = dev->dev_private;
10544         u32 dpll = pipe_config->dpll_hw_state.dpll;
10545
10546         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10547                 return dev_priv->vbt.lvds_ssc_freq;
10548         else if (HAS_PCH_SPLIT(dev))
10549                 return 120000;
10550         else if (!IS_GEN2(dev))
10551                 return 96000;
10552         else
10553                 return 48000;
10554 }
10555
10556 /* Returns the clock of the currently programmed mode of the given pipe. */
10557 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10558                                 struct intel_crtc_state *pipe_config)
10559 {
10560         struct drm_device *dev = crtc->base.dev;
10561         struct drm_i915_private *dev_priv = dev->dev_private;
10562         int pipe = pipe_config->cpu_transcoder;
10563         u32 dpll = pipe_config->dpll_hw_state.dpll;
10564         u32 fp;
10565         intel_clock_t clock;
10566         int refclk = i9xx_pll_refclk(dev, pipe_config);
10567
10568         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10569                 fp = pipe_config->dpll_hw_state.fp0;
10570         else
10571                 fp = pipe_config->dpll_hw_state.fp1;
10572
10573         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10574         if (IS_PINEVIEW(dev)) {
10575                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10576                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10577         } else {
10578                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10579                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10580         }
10581
10582         if (!IS_GEN2(dev)) {
10583                 if (IS_PINEVIEW(dev))
10584                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10585                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10586                 else
10587                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10588                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10589
10590                 switch (dpll & DPLL_MODE_MASK) {
10591                 case DPLLB_MODE_DAC_SERIAL:
10592                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10593                                 5 : 10;
10594                         break;
10595                 case DPLLB_MODE_LVDS:
10596                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10597                                 7 : 14;
10598                         break;
10599                 default:
10600                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10601                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10602                         return;
10603                 }
10604
10605                 if (IS_PINEVIEW(dev))
10606                         pineview_clock(refclk, &clock);
10607                 else
10608                         i9xx_clock(refclk, &clock);
10609         } else {
10610                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10611                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10612
10613                 if (is_lvds) {
10614                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10615                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10616
10617                         if (lvds & LVDS_CLKB_POWER_UP)
10618                                 clock.p2 = 7;
10619                         else
10620                                 clock.p2 = 14;
10621                 } else {
10622                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10623                                 clock.p1 = 2;
10624                         else {
10625                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10626                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10627                         }
10628                         if (dpll & PLL_P2_DIVIDE_BY_4)
10629                                 clock.p2 = 4;
10630                         else
10631                                 clock.p2 = 2;
10632                 }
10633
10634                 i9xx_clock(refclk, &clock);
10635         }
10636
10637         /*
10638          * This value includes pixel_multiplier. We will use
10639          * port_clock to compute adjusted_mode.crtc_clock in the
10640          * encoder's get_config() function.
10641          */
10642         pipe_config->port_clock = clock.dot;
10643 }
10644
10645 int intel_dotclock_calculate(int link_freq,
10646                              const struct intel_link_m_n *m_n)
10647 {
10648         /*
10649          * The calculation for the data clock is:
10650          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10651          * But we want to avoid losing precison if possible, so:
10652          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10653          *
10654          * and the link clock is simpler:
10655          * link_clock = (m * link_clock) / n
10656          */
10657
10658         if (!m_n->link_n)
10659                 return 0;
10660
10661         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10662 }
10663
10664 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10665                                    struct intel_crtc_state *pipe_config)
10666 {
10667         struct drm_device *dev = crtc->base.dev;
10668
10669         /* read out port_clock from the DPLL */
10670         i9xx_crtc_clock_get(crtc, pipe_config);
10671
10672         /*
10673          * This value does not include pixel_multiplier.
10674          * We will check that port_clock and adjusted_mode.crtc_clock
10675          * agree once we know their relationship in the encoder's
10676          * get_config() function.
10677          */
10678         pipe_config->base.adjusted_mode.crtc_clock =
10679                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10680                                          &pipe_config->fdi_m_n);
10681 }
10682
10683 /** Returns the currently programmed mode of the given pipe. */
10684 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10685                                              struct drm_crtc *crtc)
10686 {
10687         struct drm_i915_private *dev_priv = dev->dev_private;
10688         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10689         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10690         struct drm_display_mode *mode;
10691         struct intel_crtc_state pipe_config;
10692         int htot = I915_READ(HTOTAL(cpu_transcoder));
10693         int hsync = I915_READ(HSYNC(cpu_transcoder));
10694         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10695         int vsync = I915_READ(VSYNC(cpu_transcoder));
10696         enum pipe pipe = intel_crtc->pipe;
10697
10698         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10699         if (!mode)
10700                 return NULL;
10701
10702         /*
10703          * Construct a pipe_config sufficient for getting the clock info
10704          * back out of crtc_clock_get.
10705          *
10706          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10707          * to use a real value here instead.
10708          */
10709         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10710         pipe_config.pixel_multiplier = 1;
10711         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10712         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10713         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10714         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10715
10716         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10717         mode->hdisplay = (htot & 0xffff) + 1;
10718         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10719         mode->hsync_start = (hsync & 0xffff) + 1;
10720         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10721         mode->vdisplay = (vtot & 0xffff) + 1;
10722         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10723         mode->vsync_start = (vsync & 0xffff) + 1;
10724         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10725
10726         drm_mode_set_name(mode);
10727
10728         return mode;
10729 }
10730
10731 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10732 {
10733         struct drm_device *dev = crtc->dev;
10734         struct drm_i915_private *dev_priv = dev->dev_private;
10735         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10736
10737         if (!HAS_GMCH_DISPLAY(dev))
10738                 return;
10739
10740         if (!dev_priv->lvds_downclock_avail)
10741                 return;
10742
10743         /*
10744          * Since this is called by a timer, we should never get here in
10745          * the manual case.
10746          */
10747         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10748                 int pipe = intel_crtc->pipe;
10749                 int dpll_reg = DPLL(pipe);
10750                 int dpll;
10751
10752                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10753
10754                 assert_panel_unlocked(dev_priv, pipe);
10755
10756                 dpll = I915_READ(dpll_reg);
10757                 dpll |= DISPLAY_RATE_SELECT_FPA1;
10758                 I915_WRITE(dpll_reg, dpll);
10759                 intel_wait_for_vblank(dev, pipe);
10760                 dpll = I915_READ(dpll_reg);
10761                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10762                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10763         }
10764
10765 }
10766
10767 void intel_mark_busy(struct drm_device *dev)
10768 {
10769         struct drm_i915_private *dev_priv = dev->dev_private;
10770
10771         if (dev_priv->mm.busy)
10772                 return;
10773
10774         intel_runtime_pm_get(dev_priv);
10775         i915_update_gfx_val(dev_priv);
10776         if (INTEL_INFO(dev)->gen >= 6)
10777                 gen6_rps_busy(dev_priv);
10778         dev_priv->mm.busy = true;
10779 }
10780
10781 void intel_mark_idle(struct drm_device *dev)
10782 {
10783         struct drm_i915_private *dev_priv = dev->dev_private;
10784         struct drm_crtc *crtc;
10785
10786         if (!dev_priv->mm.busy)
10787                 return;
10788
10789         dev_priv->mm.busy = false;
10790
10791         for_each_crtc(dev, crtc) {
10792                 if (!crtc->primary->fb)
10793                         continue;
10794
10795                 intel_decrease_pllclock(crtc);
10796         }
10797
10798         if (INTEL_INFO(dev)->gen >= 6)
10799                 gen6_rps_idle(dev->dev_private);
10800
10801         intel_runtime_pm_put(dev_priv);
10802 }
10803
10804 static void intel_crtc_destroy(struct drm_crtc *crtc)
10805 {
10806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10807         struct drm_device *dev = crtc->dev;
10808         struct intel_unpin_work *work;
10809
10810         spin_lock_irq(&dev->event_lock);
10811         work = intel_crtc->unpin_work;
10812         intel_crtc->unpin_work = NULL;
10813         spin_unlock_irq(&dev->event_lock);
10814
10815         if (work) {
10816                 cancel_work_sync(&work->work);
10817                 kfree(work);
10818         }
10819
10820         drm_crtc_cleanup(crtc);
10821
10822         kfree(intel_crtc);
10823 }
10824
10825 static void intel_unpin_work_fn(struct work_struct *__work)
10826 {
10827         struct intel_unpin_work *work =
10828                 container_of(__work, struct intel_unpin_work, work);
10829         struct drm_device *dev = work->crtc->dev;
10830         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10831
10832         mutex_lock(&dev->struct_mutex);
10833         intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10834         drm_gem_object_unreference(&work->pending_flip_obj->base);
10835
10836         intel_fbc_update(dev);
10837
10838         if (work->flip_queued_req)
10839                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10840         mutex_unlock(&dev->struct_mutex);
10841
10842         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10843         drm_framebuffer_unreference(work->old_fb);
10844
10845         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10846         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10847
10848         kfree(work);
10849 }
10850
10851 static void do_intel_finish_page_flip(struct drm_device *dev,
10852                                       struct drm_crtc *crtc)
10853 {
10854         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10855         struct intel_unpin_work *work;
10856         unsigned long flags;
10857
10858         /* Ignore early vblank irqs */
10859         if (intel_crtc == NULL)
10860                 return;
10861
10862         /*
10863          * This is called both by irq handlers and the reset code (to complete
10864          * lost pageflips) so needs the full irqsave spinlocks.
10865          */
10866         spin_lock_irqsave(&dev->event_lock, flags);
10867         work = intel_crtc->unpin_work;
10868
10869         /* Ensure we don't miss a work->pending update ... */
10870         smp_rmb();
10871
10872         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10873                 spin_unlock_irqrestore(&dev->event_lock, flags);
10874                 return;
10875         }
10876
10877         page_flip_completed(intel_crtc);
10878
10879         spin_unlock_irqrestore(&dev->event_lock, flags);
10880 }
10881
10882 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10883 {
10884         struct drm_i915_private *dev_priv = dev->dev_private;
10885         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10886
10887         do_intel_finish_page_flip(dev, crtc);
10888 }
10889
10890 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10891 {
10892         struct drm_i915_private *dev_priv = dev->dev_private;
10893         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10894
10895         do_intel_finish_page_flip(dev, crtc);
10896 }
10897
10898 /* Is 'a' after or equal to 'b'? */
10899 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10900 {
10901         return !((a - b) & 0x80000000);
10902 }
10903
10904 static bool page_flip_finished(struct intel_crtc *crtc)
10905 {
10906         struct drm_device *dev = crtc->base.dev;
10907         struct drm_i915_private *dev_priv = dev->dev_private;
10908
10909         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10910             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10911                 return true;
10912
10913         /*
10914          * The relevant registers doen't exist on pre-ctg.
10915          * As the flip done interrupt doesn't trigger for mmio
10916          * flips on gmch platforms, a flip count check isn't
10917          * really needed there. But since ctg has the registers,
10918          * include it in the check anyway.
10919          */
10920         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10921                 return true;
10922
10923         /*
10924          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10925          * used the same base address. In that case the mmio flip might
10926          * have completed, but the CS hasn't even executed the flip yet.
10927          *
10928          * A flip count check isn't enough as the CS might have updated
10929          * the base address just after start of vblank, but before we
10930          * managed to process the interrupt. This means we'd complete the
10931          * CS flip too soon.
10932          *
10933          * Combining both checks should get us a good enough result. It may
10934          * still happen that the CS flip has been executed, but has not
10935          * yet actually completed. But in case the base address is the same
10936          * anyway, we don't really care.
10937          */
10938         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10939                 crtc->unpin_work->gtt_offset &&
10940                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10941                                     crtc->unpin_work->flip_count);
10942 }
10943
10944 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10945 {
10946         struct drm_i915_private *dev_priv = dev->dev_private;
10947         struct intel_crtc *intel_crtc =
10948                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10949         unsigned long flags;
10950
10951
10952         /*
10953          * This is called both by irq handlers and the reset code (to complete
10954          * lost pageflips) so needs the full irqsave spinlocks.
10955          *
10956          * NB: An MMIO update of the plane base pointer will also
10957          * generate a page-flip completion irq, i.e. every modeset
10958          * is also accompanied by a spurious intel_prepare_page_flip().
10959          */
10960         spin_lock_irqsave(&dev->event_lock, flags);
10961         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10962                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10963         spin_unlock_irqrestore(&dev->event_lock, flags);
10964 }
10965
10966 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10967 {
10968         /* Ensure that the work item is consistent when activating it ... */
10969         smp_wmb();
10970         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10971         /* and that it is marked active as soon as the irq could fire. */
10972         smp_wmb();
10973 }
10974
10975 static int intel_gen2_queue_flip(struct drm_device *dev,
10976                                  struct drm_crtc *crtc,
10977                                  struct drm_framebuffer *fb,
10978                                  struct drm_i915_gem_object *obj,
10979                                  struct intel_engine_cs *ring,
10980                                  uint32_t flags)
10981 {
10982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10983         u32 flip_mask;
10984         int ret;
10985
10986         ret = intel_ring_begin(ring, 6);
10987         if (ret)
10988                 return ret;
10989
10990         /* Can't queue multiple flips, so wait for the previous
10991          * one to finish before executing the next.
10992          */
10993         if (intel_crtc->plane)
10994                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10995         else
10996                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10997         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10998         intel_ring_emit(ring, MI_NOOP);
10999         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11000                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11001         intel_ring_emit(ring, fb->pitches[0]);
11002         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11003         intel_ring_emit(ring, 0); /* aux display base address, unused */
11004
11005         intel_mark_page_flip_active(intel_crtc);
11006         __intel_ring_advance(ring);
11007         return 0;
11008 }
11009
11010 static int intel_gen3_queue_flip(struct drm_device *dev,
11011                                  struct drm_crtc *crtc,
11012                                  struct drm_framebuffer *fb,
11013                                  struct drm_i915_gem_object *obj,
11014                                  struct intel_engine_cs *ring,
11015                                  uint32_t flags)
11016 {
11017         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11018         u32 flip_mask;
11019         int ret;
11020
11021         ret = intel_ring_begin(ring, 6);
11022         if (ret)
11023                 return ret;
11024
11025         if (intel_crtc->plane)
11026                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11027         else
11028                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11029         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11030         intel_ring_emit(ring, MI_NOOP);
11031         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11032                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11033         intel_ring_emit(ring, fb->pitches[0]);
11034         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11035         intel_ring_emit(ring, MI_NOOP);
11036
11037         intel_mark_page_flip_active(intel_crtc);
11038         __intel_ring_advance(ring);
11039         return 0;
11040 }
11041
11042 static int intel_gen4_queue_flip(struct drm_device *dev,
11043                                  struct drm_crtc *crtc,
11044                                  struct drm_framebuffer *fb,
11045                                  struct drm_i915_gem_object *obj,
11046                                  struct intel_engine_cs *ring,
11047                                  uint32_t flags)
11048 {
11049         struct drm_i915_private *dev_priv = dev->dev_private;
11050         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11051         uint32_t pf, pipesrc;
11052         int ret;
11053
11054         ret = intel_ring_begin(ring, 4);
11055         if (ret)
11056                 return ret;
11057
11058         /* i965+ uses the linear or tiled offsets from the
11059          * Display Registers (which do not change across a page-flip)
11060          * so we need only reprogram the base address.
11061          */
11062         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11063                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11064         intel_ring_emit(ring, fb->pitches[0]);
11065         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11066                         obj->tiling_mode);
11067
11068         /* XXX Enabling the panel-fitter across page-flip is so far
11069          * untested on non-native modes, so ignore it for now.
11070          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11071          */
11072         pf = 0;
11073         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11074         intel_ring_emit(ring, pf | pipesrc);
11075
11076         intel_mark_page_flip_active(intel_crtc);
11077         __intel_ring_advance(ring);
11078         return 0;
11079 }
11080
11081 static int intel_gen6_queue_flip(struct drm_device *dev,
11082                                  struct drm_crtc *crtc,
11083                                  struct drm_framebuffer *fb,
11084                                  struct drm_i915_gem_object *obj,
11085                                  struct intel_engine_cs *ring,
11086                                  uint32_t flags)
11087 {
11088         struct drm_i915_private *dev_priv = dev->dev_private;
11089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11090         uint32_t pf, pipesrc;
11091         int ret;
11092
11093         ret = intel_ring_begin(ring, 4);
11094         if (ret)
11095                 return ret;
11096
11097         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11098                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11099         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11100         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11101
11102         /* Contrary to the suggestions in the documentation,
11103          * "Enable Panel Fitter" does not seem to be required when page
11104          * flipping with a non-native mode, and worse causes a normal
11105          * modeset to fail.
11106          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11107          */
11108         pf = 0;
11109         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11110         intel_ring_emit(ring, pf | pipesrc);
11111
11112         intel_mark_page_flip_active(intel_crtc);
11113         __intel_ring_advance(ring);
11114         return 0;
11115 }
11116
11117 static int intel_gen7_queue_flip(struct drm_device *dev,
11118                                  struct drm_crtc *crtc,
11119                                  struct drm_framebuffer *fb,
11120                                  struct drm_i915_gem_object *obj,
11121                                  struct intel_engine_cs *ring,
11122                                  uint32_t flags)
11123 {
11124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11125         uint32_t plane_bit = 0;
11126         int len, ret;
11127
11128         switch (intel_crtc->plane) {
11129         case PLANE_A:
11130                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11131                 break;
11132         case PLANE_B:
11133                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11134                 break;
11135         case PLANE_C:
11136                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11137                 break;
11138         default:
11139                 WARN_ONCE(1, "unknown plane in flip command\n");
11140                 return -ENODEV;
11141         }
11142
11143         len = 4;
11144         if (ring->id == RCS) {
11145                 len += 6;
11146                 /*
11147                  * On Gen 8, SRM is now taking an extra dword to accommodate
11148                  * 48bits addresses, and we need a NOOP for the batch size to
11149                  * stay even.
11150                  */
11151                 if (IS_GEN8(dev))
11152                         len += 2;
11153         }
11154
11155         /*
11156          * BSpec MI_DISPLAY_FLIP for IVB:
11157          * "The full packet must be contained within the same cache line."
11158          *
11159          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11160          * cacheline, if we ever start emitting more commands before
11161          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11162          * then do the cacheline alignment, and finally emit the
11163          * MI_DISPLAY_FLIP.
11164          */
11165         ret = intel_ring_cacheline_align(ring);
11166         if (ret)
11167                 return ret;
11168
11169         ret = intel_ring_begin(ring, len);
11170         if (ret)
11171                 return ret;
11172
11173         /* Unmask the flip-done completion message. Note that the bspec says that
11174          * we should do this for both the BCS and RCS, and that we must not unmask
11175          * more than one flip event at any time (or ensure that one flip message
11176          * can be sent by waiting for flip-done prior to queueing new flips).
11177          * Experimentation says that BCS works despite DERRMR masking all
11178          * flip-done completion events and that unmasking all planes at once
11179          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11180          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11181          */
11182         if (ring->id == RCS) {
11183                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11184                 intel_ring_emit(ring, DERRMR);
11185                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11186                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11187                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11188                 if (IS_GEN8(dev))
11189                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11190                                               MI_SRM_LRM_GLOBAL_GTT);
11191                 else
11192                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11193                                               MI_SRM_LRM_GLOBAL_GTT);
11194                 intel_ring_emit(ring, DERRMR);
11195                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11196                 if (IS_GEN8(dev)) {
11197                         intel_ring_emit(ring, 0);
11198                         intel_ring_emit(ring, MI_NOOP);
11199                 }
11200         }
11201
11202         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11203         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11204         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11205         intel_ring_emit(ring, (MI_NOOP));
11206
11207         intel_mark_page_flip_active(intel_crtc);
11208         __intel_ring_advance(ring);
11209         return 0;
11210 }
11211
11212 static bool use_mmio_flip(struct intel_engine_cs *ring,
11213                           struct drm_i915_gem_object *obj)
11214 {
11215         /*
11216          * This is not being used for older platforms, because
11217          * non-availability of flip done interrupt forces us to use
11218          * CS flips. Older platforms derive flip done using some clever
11219          * tricks involving the flip_pending status bits and vblank irqs.
11220          * So using MMIO flips there would disrupt this mechanism.
11221          */
11222
11223         if (ring == NULL)
11224                 return true;
11225
11226         if (INTEL_INFO(ring->dev)->gen < 5)
11227                 return false;
11228
11229         if (i915.use_mmio_flip < 0)
11230                 return false;
11231         else if (i915.use_mmio_flip > 0)
11232                 return true;
11233         else if (i915.enable_execlists)
11234                 return true;
11235         else
11236                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11237 }
11238
11239 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11240 {
11241         struct drm_device *dev = intel_crtc->base.dev;
11242         struct drm_i915_private *dev_priv = dev->dev_private;
11243         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11244         const enum pipe pipe = intel_crtc->pipe;
11245         u32 ctl, stride;
11246
11247         ctl = I915_READ(PLANE_CTL(pipe, 0));
11248         ctl &= ~PLANE_CTL_TILED_MASK;
11249         switch (fb->modifier[0]) {
11250         case DRM_FORMAT_MOD_NONE:
11251                 break;
11252         case I915_FORMAT_MOD_X_TILED:
11253                 ctl |= PLANE_CTL_TILED_X;
11254                 break;
11255         case I915_FORMAT_MOD_Y_TILED:
11256                 ctl |= PLANE_CTL_TILED_Y;
11257                 break;
11258         case I915_FORMAT_MOD_Yf_TILED:
11259                 ctl |= PLANE_CTL_TILED_YF;
11260                 break;
11261         default:
11262                 MISSING_CASE(fb->modifier[0]);
11263         }
11264
11265         /*
11266          * The stride is either expressed as a multiple of 64 bytes chunks for
11267          * linear buffers or in number of tiles for tiled buffers.
11268          */
11269         stride = fb->pitches[0] /
11270                  intel_fb_stride_alignment(dev, fb->modifier[0],
11271                                            fb->pixel_format);
11272
11273         /*
11274          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11275          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11276          */
11277         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11278         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11279
11280         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11281         POSTING_READ(PLANE_SURF(pipe, 0));
11282 }
11283
11284 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11285 {
11286         struct drm_device *dev = intel_crtc->base.dev;
11287         struct drm_i915_private *dev_priv = dev->dev_private;
11288         struct intel_framebuffer *intel_fb =
11289                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11290         struct drm_i915_gem_object *obj = intel_fb->obj;
11291         u32 dspcntr;
11292         u32 reg;
11293
11294         reg = DSPCNTR(intel_crtc->plane);
11295         dspcntr = I915_READ(reg);
11296
11297         if (obj->tiling_mode != I915_TILING_NONE)
11298                 dspcntr |= DISPPLANE_TILED;
11299         else
11300                 dspcntr &= ~DISPPLANE_TILED;
11301
11302         I915_WRITE(reg, dspcntr);
11303
11304         I915_WRITE(DSPSURF(intel_crtc->plane),
11305                    intel_crtc->unpin_work->gtt_offset);
11306         POSTING_READ(DSPSURF(intel_crtc->plane));
11307
11308 }
11309
11310 /*
11311  * XXX: This is the temporary way to update the plane registers until we get
11312  * around to using the usual plane update functions for MMIO flips
11313  */
11314 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11315 {
11316         struct drm_device *dev = intel_crtc->base.dev;
11317         bool atomic_update;
11318         u32 start_vbl_count;
11319
11320         intel_mark_page_flip_active(intel_crtc);
11321
11322         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
11323
11324         if (INTEL_INFO(dev)->gen >= 9)
11325                 skl_do_mmio_flip(intel_crtc);
11326         else
11327                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11328                 ilk_do_mmio_flip(intel_crtc);
11329
11330         if (atomic_update)
11331                 intel_pipe_update_end(intel_crtc, start_vbl_count);
11332 }
11333
11334 static void intel_mmio_flip_work_func(struct work_struct *work)
11335 {
11336         struct intel_mmio_flip *mmio_flip =
11337                 container_of(work, struct intel_mmio_flip, work);
11338
11339         if (mmio_flip->req)
11340                 WARN_ON(__i915_wait_request(mmio_flip->req,
11341                                             mmio_flip->crtc->reset_counter,
11342                                             false, NULL,
11343                                             &mmio_flip->i915->rps.mmioflips));
11344
11345         intel_do_mmio_flip(mmio_flip->crtc);
11346
11347         i915_gem_request_unreference__unlocked(mmio_flip->req);
11348         kfree(mmio_flip);
11349 }
11350
11351 static int intel_queue_mmio_flip(struct drm_device *dev,
11352                                  struct drm_crtc *crtc,
11353                                  struct drm_framebuffer *fb,
11354                                  struct drm_i915_gem_object *obj,
11355                                  struct intel_engine_cs *ring,
11356                                  uint32_t flags)
11357 {
11358         struct intel_mmio_flip *mmio_flip;
11359
11360         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11361         if (mmio_flip == NULL)
11362                 return -ENOMEM;
11363
11364         mmio_flip->i915 = to_i915(dev);
11365         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11366         mmio_flip->crtc = to_intel_crtc(crtc);
11367
11368         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11369         schedule_work(&mmio_flip->work);
11370
11371         return 0;
11372 }
11373
11374 static int intel_default_queue_flip(struct drm_device *dev,
11375                                     struct drm_crtc *crtc,
11376                                     struct drm_framebuffer *fb,
11377                                     struct drm_i915_gem_object *obj,
11378                                     struct intel_engine_cs *ring,
11379                                     uint32_t flags)
11380 {
11381         return -ENODEV;
11382 }
11383
11384 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11385                                          struct drm_crtc *crtc)
11386 {
11387         struct drm_i915_private *dev_priv = dev->dev_private;
11388         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11389         struct intel_unpin_work *work = intel_crtc->unpin_work;
11390         u32 addr;
11391
11392         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11393                 return true;
11394
11395         if (!work->enable_stall_check)
11396                 return false;
11397
11398         if (work->flip_ready_vblank == 0) {
11399                 if (work->flip_queued_req &&
11400                     !i915_gem_request_completed(work->flip_queued_req, true))
11401                         return false;
11402
11403                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11404         }
11405
11406         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11407                 return false;
11408
11409         /* Potential stall - if we see that the flip has happened,
11410          * assume a missed interrupt. */
11411         if (INTEL_INFO(dev)->gen >= 4)
11412                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11413         else
11414                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11415
11416         /* There is a potential issue here with a false positive after a flip
11417          * to the same address. We could address this by checking for a
11418          * non-incrementing frame counter.
11419          */
11420         return addr == work->gtt_offset;
11421 }
11422
11423 void intel_check_page_flip(struct drm_device *dev, int pipe)
11424 {
11425         struct drm_i915_private *dev_priv = dev->dev_private;
11426         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11428         struct intel_unpin_work *work;
11429
11430         WARN_ON(!in_interrupt());
11431
11432         if (crtc == NULL)
11433                 return;
11434
11435         spin_lock(&dev->event_lock);
11436         work = intel_crtc->unpin_work;
11437         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11438                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11439                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11440                 page_flip_completed(intel_crtc);
11441                 work = NULL;
11442         }
11443         if (work != NULL &&
11444             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11445                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11446         spin_unlock(&dev->event_lock);
11447 }
11448
11449 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11450                                 struct drm_framebuffer *fb,
11451                                 struct drm_pending_vblank_event *event,
11452                                 uint32_t page_flip_flags)
11453 {
11454         struct drm_device *dev = crtc->dev;
11455         struct drm_i915_private *dev_priv = dev->dev_private;
11456         struct drm_framebuffer *old_fb = crtc->primary->fb;
11457         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11459         struct drm_plane *primary = crtc->primary;
11460         enum pipe pipe = intel_crtc->pipe;
11461         struct intel_unpin_work *work;
11462         struct intel_engine_cs *ring;
11463         bool mmio_flip;
11464         int ret;
11465
11466         /*
11467          * drm_mode_page_flip_ioctl() should already catch this, but double
11468          * check to be safe.  In the future we may enable pageflipping from
11469          * a disabled primary plane.
11470          */
11471         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11472                 return -EBUSY;
11473
11474         /* Can't change pixel format via MI display flips. */
11475         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11476                 return -EINVAL;
11477
11478         /*
11479          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11480          * Note that pitch changes could also affect these register.
11481          */
11482         if (INTEL_INFO(dev)->gen > 3 &&
11483             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11484              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11485                 return -EINVAL;
11486
11487         if (i915_terminally_wedged(&dev_priv->gpu_error))
11488                 goto out_hang;
11489
11490         work = kzalloc(sizeof(*work), GFP_KERNEL);
11491         if (work == NULL)
11492                 return -ENOMEM;
11493
11494         work->event = event;
11495         work->crtc = crtc;
11496         work->old_fb = old_fb;
11497         INIT_WORK(&work->work, intel_unpin_work_fn);
11498
11499         ret = drm_crtc_vblank_get(crtc);
11500         if (ret)
11501                 goto free_work;
11502
11503         /* We borrow the event spin lock for protecting unpin_work */
11504         spin_lock_irq(&dev->event_lock);
11505         if (intel_crtc->unpin_work) {
11506                 /* Before declaring the flip queue wedged, check if
11507                  * the hardware completed the operation behind our backs.
11508                  */
11509                 if (__intel_pageflip_stall_check(dev, crtc)) {
11510                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11511                         page_flip_completed(intel_crtc);
11512                 } else {
11513                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11514                         spin_unlock_irq(&dev->event_lock);
11515
11516                         drm_crtc_vblank_put(crtc);
11517                         kfree(work);
11518                         return -EBUSY;
11519                 }
11520         }
11521         intel_crtc->unpin_work = work;
11522         spin_unlock_irq(&dev->event_lock);
11523
11524         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11525                 flush_workqueue(dev_priv->wq);
11526
11527         /* Reference the objects for the scheduled work. */
11528         drm_framebuffer_reference(work->old_fb);
11529         drm_gem_object_reference(&obj->base);
11530
11531         crtc->primary->fb = fb;
11532         update_state_fb(crtc->primary);
11533
11534         work->pending_flip_obj = obj;
11535
11536         ret = i915_mutex_lock_interruptible(dev);
11537         if (ret)
11538                 goto cleanup;
11539
11540         atomic_inc(&intel_crtc->unpin_work_count);
11541         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11542
11543         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11544                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11545
11546         if (IS_VALLEYVIEW(dev)) {
11547                 ring = &dev_priv->ring[BCS];
11548                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11549                         /* vlv: DISPLAY_FLIP fails to change tiling */
11550                         ring = NULL;
11551         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11552                 ring = &dev_priv->ring[BCS];
11553         } else if (INTEL_INFO(dev)->gen >= 7) {
11554                 ring = i915_gem_request_get_ring(obj->last_write_req);
11555                 if (ring == NULL || ring->id != RCS)
11556                         ring = &dev_priv->ring[BCS];
11557         } else {
11558                 ring = &dev_priv->ring[RCS];
11559         }
11560
11561         mmio_flip = use_mmio_flip(ring, obj);
11562
11563         /* When using CS flips, we want to emit semaphores between rings.
11564          * However, when using mmio flips we will create a task to do the
11565          * synchronisation, so all we want here is to pin the framebuffer
11566          * into the display plane and skip any waits.
11567          */
11568         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11569                                          crtc->primary->state,
11570                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
11571         if (ret)
11572                 goto cleanup_pending;
11573
11574         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11575                                                   + intel_crtc->dspaddr_offset;
11576
11577         if (mmio_flip) {
11578                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11579                                             page_flip_flags);
11580                 if (ret)
11581                         goto cleanup_unpin;
11582
11583                 i915_gem_request_assign(&work->flip_queued_req,
11584                                         obj->last_write_req);
11585         } else {
11586                 if (obj->last_write_req) {
11587                         ret = i915_gem_check_olr(obj->last_write_req);
11588                         if (ret)
11589                                 goto cleanup_unpin;
11590                 }
11591
11592                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11593                                                    page_flip_flags);
11594                 if (ret)
11595                         goto cleanup_unpin;
11596
11597                 i915_gem_request_assign(&work->flip_queued_req,
11598                                         intel_ring_get_request(ring));
11599         }
11600
11601         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11602         work->enable_stall_check = true;
11603
11604         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11605                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11606
11607         intel_fbc_disable(dev);
11608         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11609         mutex_unlock(&dev->struct_mutex);
11610
11611         trace_i915_flip_request(intel_crtc->plane, obj);
11612
11613         return 0;
11614
11615 cleanup_unpin:
11616         intel_unpin_fb_obj(fb, crtc->primary->state);
11617 cleanup_pending:
11618         atomic_dec(&intel_crtc->unpin_work_count);
11619         mutex_unlock(&dev->struct_mutex);
11620 cleanup:
11621         crtc->primary->fb = old_fb;
11622         update_state_fb(crtc->primary);
11623
11624         drm_gem_object_unreference_unlocked(&obj->base);
11625         drm_framebuffer_unreference(work->old_fb);
11626
11627         spin_lock_irq(&dev->event_lock);
11628         intel_crtc->unpin_work = NULL;
11629         spin_unlock_irq(&dev->event_lock);
11630
11631         drm_crtc_vblank_put(crtc);
11632 free_work:
11633         kfree(work);
11634
11635         if (ret == -EIO) {
11636 out_hang:
11637                 ret = intel_plane_restore(primary);
11638                 if (ret == 0 && event) {
11639                         spin_lock_irq(&dev->event_lock);
11640                         drm_send_vblank_event(dev, pipe, event);
11641                         spin_unlock_irq(&dev->event_lock);
11642                 }
11643         }
11644         return ret;
11645 }
11646
11647 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11648         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11649         .load_lut = intel_crtc_load_lut,
11650         .atomic_begin = intel_begin_crtc_commit,
11651         .atomic_flush = intel_finish_crtc_commit,
11652 };
11653
11654 /* Transitional helper to copy current connector/encoder state to
11655  * connector->state. This is needed so that code that is partially
11656  * converted to atomic does the right thing.
11657  */
11658 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11659 {
11660         struct intel_connector *connector;
11661
11662         for_each_intel_connector(dev, connector) {
11663                 if (connector->base.encoder) {
11664                         connector->base.state->best_encoder =
11665                                 connector->base.encoder;
11666                         connector->base.state->crtc =
11667                                 connector->base.encoder->crtc;
11668                 } else {
11669                         connector->base.state->best_encoder = NULL;
11670                         connector->base.state->crtc = NULL;
11671                 }
11672         }
11673 }
11674
11675 static void
11676 connected_sink_compute_bpp(struct intel_connector *connector,
11677                            struct intel_crtc_state *pipe_config)
11678 {
11679         int bpp = pipe_config->pipe_bpp;
11680
11681         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11682                 connector->base.base.id,
11683                 connector->base.name);
11684
11685         /* Don't use an invalid EDID bpc value */
11686         if (connector->base.display_info.bpc &&
11687             connector->base.display_info.bpc * 3 < bpp) {
11688                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11689                               bpp, connector->base.display_info.bpc*3);
11690                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11691         }
11692
11693         /* Clamp bpp to 8 on screens without EDID 1.4 */
11694         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11695                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11696                               bpp);
11697                 pipe_config->pipe_bpp = 24;
11698         }
11699 }
11700
11701 static int
11702 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11703                           struct intel_crtc_state *pipe_config)
11704 {
11705         struct drm_device *dev = crtc->base.dev;
11706         struct drm_atomic_state *state;
11707         struct drm_connector *connector;
11708         struct drm_connector_state *connector_state;
11709         int bpp, i;
11710
11711         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11712                 bpp = 10*3;
11713         else if (INTEL_INFO(dev)->gen >= 5)
11714                 bpp = 12*3;
11715         else
11716                 bpp = 8*3;
11717
11718
11719         pipe_config->pipe_bpp = bpp;
11720
11721         state = pipe_config->base.state;
11722
11723         /* Clamp display bpp to EDID value */
11724         for_each_connector_in_state(state, connector, connector_state, i) {
11725                 if (connector_state->crtc != &crtc->base)
11726                         continue;
11727
11728                 connected_sink_compute_bpp(to_intel_connector(connector),
11729                                            pipe_config);
11730         }
11731
11732         return bpp;
11733 }
11734
11735 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11736 {
11737         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11738                         "type: 0x%x flags: 0x%x\n",
11739                 mode->crtc_clock,
11740                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11741                 mode->crtc_hsync_end, mode->crtc_htotal,
11742                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11743                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11744 }
11745
11746 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11747                                    struct intel_crtc_state *pipe_config,
11748                                    const char *context)
11749 {
11750         struct drm_device *dev = crtc->base.dev;
11751         struct drm_plane *plane;
11752         struct intel_plane *intel_plane;
11753         struct intel_plane_state *state;
11754         struct drm_framebuffer *fb;
11755
11756         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11757                       context, pipe_config, pipe_name(crtc->pipe));
11758
11759         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11760         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11761                       pipe_config->pipe_bpp, pipe_config->dither);
11762         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11763                       pipe_config->has_pch_encoder,
11764                       pipe_config->fdi_lanes,
11765                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11766                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11767                       pipe_config->fdi_m_n.tu);
11768         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11769                       pipe_config->has_dp_encoder,
11770                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11771                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11772                       pipe_config->dp_m_n.tu);
11773
11774         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11775                       pipe_config->has_dp_encoder,
11776                       pipe_config->dp_m2_n2.gmch_m,
11777                       pipe_config->dp_m2_n2.gmch_n,
11778                       pipe_config->dp_m2_n2.link_m,
11779                       pipe_config->dp_m2_n2.link_n,
11780                       pipe_config->dp_m2_n2.tu);
11781
11782         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11783                       pipe_config->has_audio,
11784                       pipe_config->has_infoframe);
11785
11786         DRM_DEBUG_KMS("requested mode:\n");
11787         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11788         DRM_DEBUG_KMS("adjusted mode:\n");
11789         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11790         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11791         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11792         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11793                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11794         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11795                       crtc->num_scalers,
11796                       pipe_config->scaler_state.scaler_users,
11797                       pipe_config->scaler_state.scaler_id);
11798         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11799                       pipe_config->gmch_pfit.control,
11800                       pipe_config->gmch_pfit.pgm_ratios,
11801                       pipe_config->gmch_pfit.lvds_border_bits);
11802         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11803                       pipe_config->pch_pfit.pos,
11804                       pipe_config->pch_pfit.size,
11805                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11806         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11807         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11808
11809         if (IS_BROXTON(dev)) {
11810                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11811                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11812                               "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11813                               pipe_config->ddi_pll_sel,
11814                               pipe_config->dpll_hw_state.ebb0,
11815                               pipe_config->dpll_hw_state.pll0,
11816                               pipe_config->dpll_hw_state.pll1,
11817                               pipe_config->dpll_hw_state.pll2,
11818                               pipe_config->dpll_hw_state.pll3,
11819                               pipe_config->dpll_hw_state.pll6,
11820                               pipe_config->dpll_hw_state.pll8,
11821                               pipe_config->dpll_hw_state.pcsdw12);
11822         } else if (IS_SKYLAKE(dev)) {
11823                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11824                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11825                               pipe_config->ddi_pll_sel,
11826                               pipe_config->dpll_hw_state.ctrl1,
11827                               pipe_config->dpll_hw_state.cfgcr1,
11828                               pipe_config->dpll_hw_state.cfgcr2);
11829         } else if (HAS_DDI(dev)) {
11830                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11831                               pipe_config->ddi_pll_sel,
11832                               pipe_config->dpll_hw_state.wrpll);
11833         } else {
11834                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11835                               "fp0: 0x%x, fp1: 0x%x\n",
11836                               pipe_config->dpll_hw_state.dpll,
11837                               pipe_config->dpll_hw_state.dpll_md,
11838                               pipe_config->dpll_hw_state.fp0,
11839                               pipe_config->dpll_hw_state.fp1);
11840         }
11841
11842         DRM_DEBUG_KMS("planes on this crtc\n");
11843         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11844                 intel_plane = to_intel_plane(plane);
11845                 if (intel_plane->pipe != crtc->pipe)
11846                         continue;
11847
11848                 state = to_intel_plane_state(plane->state);
11849                 fb = state->base.fb;
11850                 if (!fb) {
11851                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11852                                 "disabled, scaler_id = %d\n",
11853                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11854                                 plane->base.id, intel_plane->pipe,
11855                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11856                                 drm_plane_index(plane), state->scaler_id);
11857                         continue;
11858                 }
11859
11860                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11861                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11862                         plane->base.id, intel_plane->pipe,
11863                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11864                         drm_plane_index(plane));
11865                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11866                         fb->base.id, fb->width, fb->height, fb->pixel_format);
11867                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11868                         state->scaler_id,
11869                         state->src.x1 >> 16, state->src.y1 >> 16,
11870                         drm_rect_width(&state->src) >> 16,
11871                         drm_rect_height(&state->src) >> 16,
11872                         state->dst.x1, state->dst.y1,
11873                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11874         }
11875 }
11876
11877 static bool encoders_cloneable(const struct intel_encoder *a,
11878                                const struct intel_encoder *b)
11879 {
11880         /* masks could be asymmetric, so check both ways */
11881         return a == b || (a->cloneable & (1 << b->type) &&
11882                           b->cloneable & (1 << a->type));
11883 }
11884
11885 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11886                                          struct intel_crtc *crtc,
11887                                          struct intel_encoder *encoder)
11888 {
11889         struct intel_encoder *source_encoder;
11890         struct drm_connector *connector;
11891         struct drm_connector_state *connector_state;
11892         int i;
11893
11894         for_each_connector_in_state(state, connector, connector_state, i) {
11895                 if (connector_state->crtc != &crtc->base)
11896                         continue;
11897
11898                 source_encoder =
11899                         to_intel_encoder(connector_state->best_encoder);
11900                 if (!encoders_cloneable(encoder, source_encoder))
11901                         return false;
11902         }
11903
11904         return true;
11905 }
11906
11907 static bool check_encoder_cloning(struct drm_atomic_state *state,
11908                                   struct intel_crtc *crtc)
11909 {
11910         struct intel_encoder *encoder;
11911         struct drm_connector *connector;
11912         struct drm_connector_state *connector_state;
11913         int i;
11914
11915         for_each_connector_in_state(state, connector, connector_state, i) {
11916                 if (connector_state->crtc != &crtc->base)
11917                         continue;
11918
11919                 encoder = to_intel_encoder(connector_state->best_encoder);
11920                 if (!check_single_encoder_cloning(state, crtc, encoder))
11921                         return false;
11922         }
11923
11924         return true;
11925 }
11926
11927 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11928 {
11929         struct drm_device *dev = state->dev;
11930         struct intel_encoder *encoder;
11931         struct drm_connector *connector;
11932         struct drm_connector_state *connector_state;
11933         unsigned int used_ports = 0;
11934         int i;
11935
11936         /*
11937          * Walk the connector list instead of the encoder
11938          * list to detect the problem on ddi platforms
11939          * where there's just one encoder per digital port.
11940          */
11941         for_each_connector_in_state(state, connector, connector_state, i) {
11942                 if (!connector_state->best_encoder)
11943                         continue;
11944
11945                 encoder = to_intel_encoder(connector_state->best_encoder);
11946
11947                 WARN_ON(!connector_state->crtc);
11948
11949                 switch (encoder->type) {
11950                         unsigned int port_mask;
11951                 case INTEL_OUTPUT_UNKNOWN:
11952                         if (WARN_ON(!HAS_DDI(dev)))
11953                                 break;
11954                 case INTEL_OUTPUT_DISPLAYPORT:
11955                 case INTEL_OUTPUT_HDMI:
11956                 case INTEL_OUTPUT_EDP:
11957                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11958
11959                         /* the same port mustn't appear more than once */
11960                         if (used_ports & port_mask)
11961                                 return false;
11962
11963                         used_ports |= port_mask;
11964                 default:
11965                         break;
11966                 }
11967         }
11968
11969         return true;
11970 }
11971
11972 static void
11973 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11974 {
11975         struct drm_crtc_state tmp_state;
11976         struct intel_crtc_scaler_state scaler_state;
11977         struct intel_dpll_hw_state dpll_hw_state;
11978         enum intel_dpll_id shared_dpll;
11979         uint32_t ddi_pll_sel;
11980
11981         /* FIXME: before the switch to atomic started, a new pipe_config was
11982          * kzalloc'd. Code that depends on any field being zero should be
11983          * fixed, so that the crtc_state can be safely duplicated. For now,
11984          * only fields that are know to not cause problems are preserved. */
11985
11986         tmp_state = crtc_state->base;
11987         scaler_state = crtc_state->scaler_state;
11988         shared_dpll = crtc_state->shared_dpll;
11989         dpll_hw_state = crtc_state->dpll_hw_state;
11990         ddi_pll_sel = crtc_state->ddi_pll_sel;
11991
11992         memset(crtc_state, 0, sizeof *crtc_state);
11993
11994         crtc_state->base = tmp_state;
11995         crtc_state->scaler_state = scaler_state;
11996         crtc_state->shared_dpll = shared_dpll;
11997         crtc_state->dpll_hw_state = dpll_hw_state;
11998         crtc_state->ddi_pll_sel = ddi_pll_sel;
11999 }
12000
12001 static int
12002 intel_modeset_pipe_config(struct drm_crtc *crtc,
12003                           struct drm_atomic_state *state)
12004 {
12005         struct drm_crtc_state *crtc_state;
12006         struct intel_crtc_state *pipe_config;
12007         struct intel_encoder *encoder;
12008         struct drm_connector *connector;
12009         struct drm_connector_state *connector_state;
12010         int base_bpp, ret = -EINVAL;
12011         int i;
12012         bool retry = true;
12013
12014         if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
12015                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12016                 return -EINVAL;
12017         }
12018
12019         if (!check_digital_port_conflicts(state)) {
12020                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12021                 return -EINVAL;
12022         }
12023
12024         crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12025         if (WARN_ON(!crtc_state))
12026                 return -EINVAL;
12027
12028         pipe_config = to_intel_crtc_state(crtc_state);
12029
12030         /*
12031          * XXX: Add all connectors to make the crtc state match the encoders.
12032          */
12033         if (!needs_modeset(&pipe_config->base)) {
12034                 ret = drm_atomic_add_affected_connectors(state, crtc);
12035                 if (ret)
12036                         return ret;
12037         }
12038
12039         clear_intel_crtc_state(pipe_config);
12040
12041         pipe_config->cpu_transcoder =
12042                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12043
12044         /*
12045          * Sanitize sync polarity flags based on requested ones. If neither
12046          * positive or negative polarity is requested, treat this as meaning
12047          * negative polarity.
12048          */
12049         if (!(pipe_config->base.adjusted_mode.flags &
12050               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12051                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12052
12053         if (!(pipe_config->base.adjusted_mode.flags &
12054               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12055                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12056
12057         /* Compute a starting value for pipe_config->pipe_bpp taking the source
12058          * plane pixel format and any sink constraints into account. Returns the
12059          * source plane bpp so that dithering can be selected on mismatches
12060          * after encoders and crtc also have had their say. */
12061         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12062                                              pipe_config);
12063         if (base_bpp < 0)
12064                 goto fail;
12065
12066         /*
12067          * Determine the real pipe dimensions. Note that stereo modes can
12068          * increase the actual pipe size due to the frame doubling and
12069          * insertion of additional space for blanks between the frame. This
12070          * is stored in the crtc timings. We use the requested mode to do this
12071          * computation to clearly distinguish it from the adjusted mode, which
12072          * can be changed by the connectors in the below retry loop.
12073          */
12074         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12075                                &pipe_config->pipe_src_w,
12076                                &pipe_config->pipe_src_h);
12077
12078 encoder_retry:
12079         /* Ensure the port clock defaults are reset when retrying. */
12080         pipe_config->port_clock = 0;
12081         pipe_config->pixel_multiplier = 1;
12082
12083         /* Fill in default crtc timings, allow encoders to overwrite them. */
12084         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12085                               CRTC_STEREO_DOUBLE);
12086
12087         /* Pass our mode to the connectors and the CRTC to give them a chance to
12088          * adjust it according to limitations or connector properties, and also
12089          * a chance to reject the mode entirely.
12090          */
12091         for_each_connector_in_state(state, connector, connector_state, i) {
12092                 if (connector_state->crtc != crtc)
12093                         continue;
12094
12095                 encoder = to_intel_encoder(connector_state->best_encoder);
12096
12097                 if (!(encoder->compute_config(encoder, pipe_config))) {
12098                         DRM_DEBUG_KMS("Encoder config failure\n");
12099                         goto fail;
12100                 }
12101         }
12102
12103         /* Set default port clock if not overwritten by the encoder. Needs to be
12104          * done afterwards in case the encoder adjusts the mode. */
12105         if (!pipe_config->port_clock)
12106                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12107                         * pipe_config->pixel_multiplier;
12108
12109         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12110         if (ret < 0) {
12111                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12112                 goto fail;
12113         }
12114
12115         if (ret == RETRY) {
12116                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12117                         ret = -EINVAL;
12118                         goto fail;
12119                 }
12120
12121                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12122                 retry = false;
12123                 goto encoder_retry;
12124         }
12125
12126         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12127         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12128                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12129
12130         /* Check if we need to force a modeset */
12131         if (pipe_config->has_audio !=
12132             to_intel_crtc_state(crtc->state)->has_audio) {
12133                 pipe_config->base.mode_changed = true;
12134                 ret = drm_atomic_add_affected_planes(state, crtc);
12135         }
12136
12137         /*
12138          * Note we have an issue here with infoframes: current code
12139          * only updates them on the full mode set path per hw
12140          * requirements.  So here we should be checking for any
12141          * required changes and forcing a mode set.
12142          */
12143 fail:
12144         return ret;
12145 }
12146
12147 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12148 {
12149         struct drm_encoder *encoder;
12150         struct drm_device *dev = crtc->dev;
12151
12152         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12153                 if (encoder->crtc == crtc)
12154                         return true;
12155
12156         return false;
12157 }
12158
12159 static void
12160 intel_modeset_update_state(struct drm_atomic_state *state)
12161 {
12162         struct drm_device *dev = state->dev;
12163         struct intel_encoder *intel_encoder;
12164         struct drm_crtc *crtc;
12165         struct drm_crtc_state *crtc_state;
12166         struct drm_connector *connector;
12167
12168         intel_shared_dpll_commit(state);
12169
12170         for_each_intel_encoder(dev, intel_encoder) {
12171                 if (!intel_encoder->base.crtc)
12172                         continue;
12173
12174                 crtc = intel_encoder->base.crtc;
12175                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12176                 if (!crtc_state || !needs_modeset(crtc->state))
12177                         continue;
12178
12179                 intel_encoder->connectors_active = false;
12180         }
12181
12182         drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12183
12184         /* Double check state. */
12185         for_each_crtc(dev, crtc) {
12186                 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12187
12188                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12189
12190                 /* Update hwmode for vblank functions */
12191                 if (crtc->state->active)
12192                         crtc->hwmode = crtc->state->adjusted_mode;
12193                 else
12194                         crtc->hwmode.crtc_clock = 0;
12195         }
12196
12197         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12198                 if (!connector->encoder || !connector->encoder->crtc)
12199                         continue;
12200
12201                 crtc = connector->encoder->crtc;
12202                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12203                 if (!crtc_state || !needs_modeset(crtc->state))
12204                         continue;
12205
12206                 if (crtc->state->active) {
12207                         struct drm_property *dpms_property =
12208                                 dev->mode_config.dpms_property;
12209
12210                         connector->dpms = DRM_MODE_DPMS_ON;
12211                         drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON);
12212
12213                         intel_encoder = to_intel_encoder(connector->encoder);
12214                         intel_encoder->connectors_active = true;
12215                 } else
12216                         connector->dpms = DRM_MODE_DPMS_OFF;
12217         }
12218 }
12219
12220 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12221 {
12222         int diff;
12223
12224         if (clock1 == clock2)
12225                 return true;
12226
12227         if (!clock1 || !clock2)
12228                 return false;
12229
12230         diff = abs(clock1 - clock2);
12231
12232         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12233                 return true;
12234
12235         return false;
12236 }
12237
12238 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12239         list_for_each_entry((intel_crtc), \
12240                             &(dev)->mode_config.crtc_list, \
12241                             base.head) \
12242                 if (mask & (1 <<(intel_crtc)->pipe))
12243
12244 static bool
12245 intel_pipe_config_compare(struct drm_device *dev,
12246                           struct intel_crtc_state *current_config,
12247                           struct intel_crtc_state *pipe_config)
12248 {
12249 #define PIPE_CONF_CHECK_X(name) \
12250         if (current_config->name != pipe_config->name) { \
12251                 DRM_ERROR("mismatch in " #name " " \
12252                           "(expected 0x%08x, found 0x%08x)\n", \
12253                           current_config->name, \
12254                           pipe_config->name); \
12255                 return false; \
12256         }
12257
12258 #define PIPE_CONF_CHECK_I(name) \
12259         if (current_config->name != pipe_config->name) { \
12260                 DRM_ERROR("mismatch in " #name " " \
12261                           "(expected %i, found %i)\n", \
12262                           current_config->name, \
12263                           pipe_config->name); \
12264                 return false; \
12265         }
12266
12267 /* This is required for BDW+ where there is only one set of registers for
12268  * switching between high and low RR.
12269  * This macro can be used whenever a comparison has to be made between one
12270  * hw state and multiple sw state variables.
12271  */
12272 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12273         if ((current_config->name != pipe_config->name) && \
12274                 (current_config->alt_name != pipe_config->name)) { \
12275                         DRM_ERROR("mismatch in " #name " " \
12276                                   "(expected %i or %i, found %i)\n", \
12277                                   current_config->name, \
12278                                   current_config->alt_name, \
12279                                   pipe_config->name); \
12280                         return false; \
12281         }
12282
12283 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12284         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12285                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
12286                           "(expected %i, found %i)\n", \
12287                           current_config->name & (mask), \
12288                           pipe_config->name & (mask)); \
12289                 return false; \
12290         }
12291
12292 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12293         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12294                 DRM_ERROR("mismatch in " #name " " \
12295                           "(expected %i, found %i)\n", \
12296                           current_config->name, \
12297                           pipe_config->name); \
12298                 return false; \
12299         }
12300
12301 #define PIPE_CONF_QUIRK(quirk)  \
12302         ((current_config->quirks | pipe_config->quirks) & (quirk))
12303
12304         PIPE_CONF_CHECK_I(cpu_transcoder);
12305
12306         PIPE_CONF_CHECK_I(has_pch_encoder);
12307         PIPE_CONF_CHECK_I(fdi_lanes);
12308         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12309         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12310         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12311         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12312         PIPE_CONF_CHECK_I(fdi_m_n.tu);
12313
12314         PIPE_CONF_CHECK_I(has_dp_encoder);
12315
12316         if (INTEL_INFO(dev)->gen < 8) {
12317                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12318                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12319                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12320                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12321                 PIPE_CONF_CHECK_I(dp_m_n.tu);
12322
12323                 if (current_config->has_drrs) {
12324                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12325                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12326                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12327                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12328                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12329                 }
12330         } else {
12331                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12332                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12333                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12334                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12335                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12336         }
12337
12338         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12339         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12340         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12341         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12342         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12343         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12344
12345         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12346         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12347         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12348         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12349         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12350         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12351
12352         PIPE_CONF_CHECK_I(pixel_multiplier);
12353         PIPE_CONF_CHECK_I(has_hdmi_sink);
12354         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12355             IS_VALLEYVIEW(dev))
12356                 PIPE_CONF_CHECK_I(limited_color_range);
12357         PIPE_CONF_CHECK_I(has_infoframe);
12358
12359         PIPE_CONF_CHECK_I(has_audio);
12360
12361         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12362                               DRM_MODE_FLAG_INTERLACE);
12363
12364         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12365                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12366                                       DRM_MODE_FLAG_PHSYNC);
12367                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12368                                       DRM_MODE_FLAG_NHSYNC);
12369                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12370                                       DRM_MODE_FLAG_PVSYNC);
12371                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12372                                       DRM_MODE_FLAG_NVSYNC);
12373         }
12374
12375         PIPE_CONF_CHECK_I(pipe_src_w);
12376         PIPE_CONF_CHECK_I(pipe_src_h);
12377
12378         /*
12379          * FIXME: BIOS likes to set up a cloned config with lvds+external
12380          * screen. Since we don't yet re-compute the pipe config when moving
12381          * just the lvds port away to another pipe the sw tracking won't match.
12382          *
12383          * Proper atomic modesets with recomputed global state will fix this.
12384          * Until then just don't check gmch state for inherited modes.
12385          */
12386         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12387                 PIPE_CONF_CHECK_I(gmch_pfit.control);
12388                 /* pfit ratios are autocomputed by the hw on gen4+ */
12389                 if (INTEL_INFO(dev)->gen < 4)
12390                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12391                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12392         }
12393
12394         PIPE_CONF_CHECK_I(pch_pfit.enabled);
12395         if (current_config->pch_pfit.enabled) {
12396                 PIPE_CONF_CHECK_I(pch_pfit.pos);
12397                 PIPE_CONF_CHECK_I(pch_pfit.size);
12398         }
12399
12400         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12401
12402         /* BDW+ don't expose a synchronous way to read the state */
12403         if (IS_HASWELL(dev))
12404                 PIPE_CONF_CHECK_I(ips_enabled);
12405
12406         PIPE_CONF_CHECK_I(double_wide);
12407
12408         PIPE_CONF_CHECK_X(ddi_pll_sel);
12409
12410         PIPE_CONF_CHECK_I(shared_dpll);
12411         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12412         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12413         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12414         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12415         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12416         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12417         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12418         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12419
12420         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12421                 PIPE_CONF_CHECK_I(pipe_bpp);
12422
12423         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12424         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12425
12426 #undef PIPE_CONF_CHECK_X
12427 #undef PIPE_CONF_CHECK_I
12428 #undef PIPE_CONF_CHECK_I_ALT
12429 #undef PIPE_CONF_CHECK_FLAGS
12430 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12431 #undef PIPE_CONF_QUIRK
12432
12433         return true;
12434 }
12435
12436 static void check_wm_state(struct drm_device *dev)
12437 {
12438         struct drm_i915_private *dev_priv = dev->dev_private;
12439         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12440         struct intel_crtc *intel_crtc;
12441         int plane;
12442
12443         if (INTEL_INFO(dev)->gen < 9)
12444                 return;
12445
12446         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12447         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12448
12449         for_each_intel_crtc(dev, intel_crtc) {
12450                 struct skl_ddb_entry *hw_entry, *sw_entry;
12451                 const enum pipe pipe = intel_crtc->pipe;
12452
12453                 if (!intel_crtc->active)
12454                         continue;
12455
12456                 /* planes */
12457                 for_each_plane(dev_priv, pipe, plane) {
12458                         hw_entry = &hw_ddb.plane[pipe][plane];
12459                         sw_entry = &sw_ddb->plane[pipe][plane];
12460
12461                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12462                                 continue;
12463
12464                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12465                                   "(expected (%u,%u), found (%u,%u))\n",
12466                                   pipe_name(pipe), plane + 1,
12467                                   sw_entry->start, sw_entry->end,
12468                                   hw_entry->start, hw_entry->end);
12469                 }
12470
12471                 /* cursor */
12472                 hw_entry = &hw_ddb.cursor[pipe];
12473                 sw_entry = &sw_ddb->cursor[pipe];
12474
12475                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12476                         continue;
12477
12478                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12479                           "(expected (%u,%u), found (%u,%u))\n",
12480                           pipe_name(pipe),
12481                           sw_entry->start, sw_entry->end,
12482                           hw_entry->start, hw_entry->end);
12483         }
12484 }
12485
12486 static void
12487 check_connector_state(struct drm_device *dev)
12488 {
12489         struct intel_connector *connector;
12490
12491         for_each_intel_connector(dev, connector) {
12492                 struct drm_encoder *encoder = connector->base.encoder;
12493                 struct drm_connector_state *state = connector->base.state;
12494
12495                 /* This also checks the encoder/connector hw state with the
12496                  * ->get_hw_state callbacks. */
12497                 intel_connector_check_state(connector);
12498
12499                 I915_STATE_WARN(state->best_encoder != encoder,
12500                      "connector's staged encoder doesn't match current encoder\n");
12501         }
12502 }
12503
12504 static void
12505 check_encoder_state(struct drm_device *dev)
12506 {
12507         struct intel_encoder *encoder;
12508         struct intel_connector *connector;
12509
12510         for_each_intel_encoder(dev, encoder) {
12511                 bool enabled = false;
12512                 bool active = false;
12513                 enum pipe pipe, tracked_pipe;
12514
12515                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12516                               encoder->base.base.id,
12517                               encoder->base.name);
12518
12519                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12520                      "encoder's active_connectors set, but no crtc\n");
12521
12522                 for_each_intel_connector(dev, connector) {
12523                         if (connector->base.encoder != &encoder->base)
12524                                 continue;
12525                         enabled = true;
12526                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12527                                 active = true;
12528
12529                         I915_STATE_WARN(connector->base.state->crtc != encoder->base.crtc,
12530                              "encoder's stage crtc doesn't match current crtc\n");
12531                 }
12532                 /*
12533                  * for MST connectors if we unplug the connector is gone
12534                  * away but the encoder is still connected to a crtc
12535                  * until a modeset happens in response to the hotplug.
12536                  */
12537                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12538                         continue;
12539
12540                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12541                      "encoder's enabled state mismatch "
12542                      "(expected %i, found %i)\n",
12543                      !!encoder->base.crtc, enabled);
12544                 I915_STATE_WARN(active && !encoder->base.crtc,
12545                      "active encoder with no crtc\n");
12546
12547                 I915_STATE_WARN(encoder->connectors_active != active,
12548                      "encoder's computed active state doesn't match tracked active state "
12549                      "(expected %i, found %i)\n", active, encoder->connectors_active);
12550
12551                 active = encoder->get_hw_state(encoder, &pipe);
12552                 I915_STATE_WARN(active != encoder->connectors_active,
12553                      "encoder's hw state doesn't match sw tracking "
12554                      "(expected %i, found %i)\n",
12555                      encoder->connectors_active, active);
12556
12557                 if (!encoder->base.crtc)
12558                         continue;
12559
12560                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12561                 I915_STATE_WARN(active && pipe != tracked_pipe,
12562                      "active encoder's pipe doesn't match"
12563                      "(expected %i, found %i)\n",
12564                      tracked_pipe, pipe);
12565
12566         }
12567 }
12568
12569 static void
12570 check_crtc_state(struct drm_device *dev)
12571 {
12572         struct drm_i915_private *dev_priv = dev->dev_private;
12573         struct intel_crtc *crtc;
12574         struct intel_encoder *encoder;
12575         struct intel_crtc_state pipe_config;
12576
12577         for_each_intel_crtc(dev, crtc) {
12578                 bool enabled = false;
12579                 bool active = false;
12580
12581                 memset(&pipe_config, 0, sizeof(pipe_config));
12582
12583                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12584                               crtc->base.base.id);
12585
12586                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12587                      "active crtc, but not enabled in sw tracking\n");
12588
12589                 for_each_intel_encoder(dev, encoder) {
12590                         if (encoder->base.crtc != &crtc->base)
12591                                 continue;
12592                         enabled = true;
12593                         if (encoder->connectors_active)
12594                                 active = true;
12595                 }
12596
12597                 I915_STATE_WARN(active != crtc->active,
12598                      "crtc's computed active state doesn't match tracked active state "
12599                      "(expected %i, found %i)\n", active, crtc->active);
12600                 I915_STATE_WARN(enabled != crtc->base.state->enable,
12601                      "crtc's computed enabled state doesn't match tracked enabled state "
12602                      "(expected %i, found %i)\n", enabled,
12603                                 crtc->base.state->enable);
12604
12605                 active = dev_priv->display.get_pipe_config(crtc,
12606                                                            &pipe_config);
12607
12608                 /* hw state is inconsistent with the pipe quirk */
12609                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12610                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12611                         active = crtc->active;
12612
12613                 for_each_intel_encoder(dev, encoder) {
12614                         enum pipe pipe;
12615                         if (encoder->base.crtc != &crtc->base)
12616                                 continue;
12617                         if (encoder->get_hw_state(encoder, &pipe))
12618                                 encoder->get_config(encoder, &pipe_config);
12619                 }
12620
12621                 I915_STATE_WARN(crtc->active != active,
12622                      "crtc active state doesn't match with hw state "
12623                      "(expected %i, found %i)\n", crtc->active, active);
12624
12625                 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12626                      "transitional active state does not match atomic hw state "
12627                      "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12628
12629                 if (active &&
12630                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12631                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12632                         intel_dump_pipe_config(crtc, &pipe_config,
12633                                                "[hw state]");
12634                         intel_dump_pipe_config(crtc, crtc->config,
12635                                                "[sw state]");
12636                 }
12637         }
12638 }
12639
12640 static void
12641 check_shared_dpll_state(struct drm_device *dev)
12642 {
12643         struct drm_i915_private *dev_priv = dev->dev_private;
12644         struct intel_crtc *crtc;
12645         struct intel_dpll_hw_state dpll_hw_state;
12646         int i;
12647
12648         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12649                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12650                 int enabled_crtcs = 0, active_crtcs = 0;
12651                 bool active;
12652
12653                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12654
12655                 DRM_DEBUG_KMS("%s\n", pll->name);
12656
12657                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12658
12659                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12660                      "more active pll users than references: %i vs %i\n",
12661                      pll->active, hweight32(pll->config.crtc_mask));
12662                 I915_STATE_WARN(pll->active && !pll->on,
12663                      "pll in active use but not on in sw tracking\n");
12664                 I915_STATE_WARN(pll->on && !pll->active,
12665                      "pll in on but not on in use in sw tracking\n");
12666                 I915_STATE_WARN(pll->on != active,
12667                      "pll on state mismatch (expected %i, found %i)\n",
12668                      pll->on, active);
12669
12670                 for_each_intel_crtc(dev, crtc) {
12671                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12672                                 enabled_crtcs++;
12673                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12674                                 active_crtcs++;
12675                 }
12676                 I915_STATE_WARN(pll->active != active_crtcs,
12677                      "pll active crtcs mismatch (expected %i, found %i)\n",
12678                      pll->active, active_crtcs);
12679                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12680                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12681                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12682
12683                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12684                                        sizeof(dpll_hw_state)),
12685                      "pll hw state mismatch\n");
12686         }
12687 }
12688
12689 void
12690 intel_modeset_check_state(struct drm_device *dev)
12691 {
12692         check_wm_state(dev);
12693         check_connector_state(dev);
12694         check_encoder_state(dev);
12695         check_crtc_state(dev);
12696         check_shared_dpll_state(dev);
12697 }
12698
12699 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12700                                      int dotclock)
12701 {
12702         /*
12703          * FDI already provided one idea for the dotclock.
12704          * Yell if the encoder disagrees.
12705          */
12706         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12707              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12708              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12709 }
12710
12711 static void update_scanline_offset(struct intel_crtc *crtc)
12712 {
12713         struct drm_device *dev = crtc->base.dev;
12714
12715         /*
12716          * The scanline counter increments at the leading edge of hsync.
12717          *
12718          * On most platforms it starts counting from vtotal-1 on the
12719          * first active line. That means the scanline counter value is
12720          * always one less than what we would expect. Ie. just after
12721          * start of vblank, which also occurs at start of hsync (on the
12722          * last active line), the scanline counter will read vblank_start-1.
12723          *
12724          * On gen2 the scanline counter starts counting from 1 instead
12725          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12726          * to keep the value positive), instead of adding one.
12727          *
12728          * On HSW+ the behaviour of the scanline counter depends on the output
12729          * type. For DP ports it behaves like most other platforms, but on HDMI
12730          * there's an extra 1 line difference. So we need to add two instead of
12731          * one to the value.
12732          */
12733         if (IS_GEN2(dev)) {
12734                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12735                 int vtotal;
12736
12737                 vtotal = mode->crtc_vtotal;
12738                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12739                         vtotal /= 2;
12740
12741                 crtc->scanline_offset = vtotal - 1;
12742         } else if (HAS_DDI(dev) &&
12743                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12744                 crtc->scanline_offset = 2;
12745         } else
12746                 crtc->scanline_offset = 1;
12747 }
12748
12749 static int intel_modeset_setup_plls(struct drm_atomic_state *state)
12750 {
12751         struct drm_device *dev = state->dev;
12752         struct drm_i915_private *dev_priv = to_i915(dev);
12753         unsigned clear_pipes = 0;
12754         struct intel_crtc *intel_crtc;
12755         struct intel_crtc_state *intel_crtc_state;
12756         struct drm_crtc *crtc;
12757         struct drm_crtc_state *crtc_state;
12758         int ret = 0;
12759         int i;
12760
12761         if (!dev_priv->display.crtc_compute_clock)
12762                 return 0;
12763
12764         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12765                 intel_crtc = to_intel_crtc(crtc);
12766                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12767
12768                 if (needs_modeset(crtc_state)) {
12769                         clear_pipes |= 1 << intel_crtc->pipe;
12770                         intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12771                 }
12772         }
12773
12774         if (clear_pipes) {
12775                 struct intel_shared_dpll_config *shared_dpll =
12776                         intel_atomic_get_shared_dpll_state(state);
12777
12778                 for (i = 0; i < dev_priv->num_shared_dpll; i++)
12779                         shared_dpll[i].crtc_mask &= ~clear_pipes;
12780         }
12781
12782         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12783                 if (!needs_modeset(crtc_state) || !crtc_state->enable)
12784                         continue;
12785
12786                 intel_crtc = to_intel_crtc(crtc);
12787                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12788
12789                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12790                                                            intel_crtc_state);
12791                 if (ret)
12792                         return ret;
12793         }
12794
12795         return ret;
12796 }
12797
12798 /*
12799  * This implements the workaround described in the "notes" section of the mode
12800  * set sequence documentation. When going from no pipes or single pipe to
12801  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12802  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12803  */
12804 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12805 {
12806         struct drm_crtc_state *crtc_state;
12807         struct intel_crtc *intel_crtc;
12808         struct drm_crtc *crtc;
12809         struct intel_crtc_state *first_crtc_state = NULL;
12810         struct intel_crtc_state *other_crtc_state = NULL;
12811         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12812         int i;
12813
12814         /* look at all crtc's that are going to be enabled in during modeset */
12815         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12816                 intel_crtc = to_intel_crtc(crtc);
12817
12818                 if (!crtc_state->active || !needs_modeset(crtc_state))
12819                         continue;
12820
12821                 if (first_crtc_state) {
12822                         other_crtc_state = to_intel_crtc_state(crtc_state);
12823                         break;
12824                 } else {
12825                         first_crtc_state = to_intel_crtc_state(crtc_state);
12826                         first_pipe = intel_crtc->pipe;
12827                 }
12828         }
12829
12830         /* No workaround needed? */
12831         if (!first_crtc_state)
12832                 return 0;
12833
12834         /* w/a possibly needed, check how many crtc's are already enabled. */
12835         for_each_intel_crtc(state->dev, intel_crtc) {
12836                 struct intel_crtc_state *pipe_config;
12837
12838                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12839                 if (IS_ERR(pipe_config))
12840                         return PTR_ERR(pipe_config);
12841
12842                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12843
12844                 if (!pipe_config->base.active ||
12845                     needs_modeset(&pipe_config->base))
12846                         continue;
12847
12848                 /* 2 or more enabled crtcs means no need for w/a */
12849                 if (enabled_pipe != INVALID_PIPE)
12850                         return 0;
12851
12852                 enabled_pipe = intel_crtc->pipe;
12853         }
12854
12855         if (enabled_pipe != INVALID_PIPE)
12856                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12857         else if (other_crtc_state)
12858                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12859
12860         return 0;
12861 }
12862
12863 /* Code that should eventually be part of atomic_check() */
12864 static int intel_modeset_checks(struct drm_atomic_state *state)
12865 {
12866         struct drm_device *dev = state->dev;
12867         int ret;
12868
12869         /*
12870          * See if the config requires any additional preparation, e.g.
12871          * to adjust global state with pipes off.  We need to do this
12872          * here so we can get the modeset_pipe updated config for the new
12873          * mode set on this crtc.  For other crtcs we need to use the
12874          * adjusted_mode bits in the crtc directly.
12875          */
12876         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev) || IS_BROADWELL(dev)) {
12877                 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev))
12878                         ret = valleyview_modeset_global_pipes(state);
12879                 else
12880                         ret = broadwell_modeset_global_pipes(state);
12881
12882                 if (ret)
12883                         return ret;
12884         }
12885
12886         ret = intel_modeset_setup_plls(state);
12887         if (ret)
12888                 return ret;
12889
12890         if (IS_HASWELL(dev))
12891                 ret = haswell_mode_set_planes_workaround(state);
12892
12893         return ret;
12894 }
12895
12896 static int
12897 intel_modeset_compute_config(struct drm_atomic_state *state)
12898 {
12899         struct drm_crtc *crtc;
12900         struct drm_crtc_state *crtc_state;
12901         int ret, i;
12902
12903         ret = drm_atomic_helper_check_modeset(state->dev, state);
12904         if (ret)
12905                 return ret;
12906
12907         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12908                 if (!crtc_state->enable &&
12909                     WARN_ON(crtc_state->active))
12910                         crtc_state->active = false;
12911
12912                 if (!crtc_state->enable)
12913                         continue;
12914
12915                 ret = intel_modeset_pipe_config(crtc, state);
12916                 if (ret)
12917                         return ret;
12918
12919                 intel_dump_pipe_config(to_intel_crtc(crtc),
12920                                        to_intel_crtc_state(crtc_state),
12921                                        "[modeset]");
12922         }
12923
12924         ret = intel_modeset_checks(state);
12925         if (ret)
12926                 return ret;
12927
12928         return drm_atomic_helper_check_planes(state->dev, state);
12929 }
12930
12931 static int __intel_set_mode(struct drm_atomic_state *state)
12932 {
12933         struct drm_device *dev = state->dev;
12934         struct drm_i915_private *dev_priv = dev->dev_private;
12935         struct drm_crtc *crtc;
12936         struct drm_crtc_state *crtc_state;
12937         int ret = 0;
12938         int i;
12939
12940         ret = drm_atomic_helper_prepare_planes(dev, state);
12941         if (ret)
12942                 return ret;
12943
12944         drm_atomic_helper_swap_state(dev, state);
12945
12946         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12947                 if (!needs_modeset(crtc->state) || !crtc_state->active)
12948                         continue;
12949
12950                 intel_crtc_disable_planes(crtc);
12951                 dev_priv->display.crtc_disable(crtc);
12952         }
12953
12954         /* Only after disabling all output pipelines that will be changed can we
12955          * update the the output configuration. */
12956         intel_modeset_update_state(state);
12957
12958         /* The state has been swaped above, so state actually contains the
12959          * old state now. */
12960
12961         modeset_update_crtc_power_domains(state);
12962
12963         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12964         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12965                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
12966
12967                 if (!needs_modeset(crtc->state) || !crtc->state->active)
12968                         continue;
12969
12970                 update_scanline_offset(to_intel_crtc(crtc));
12971
12972                 dev_priv->display.crtc_enable(crtc);
12973                 intel_crtc_enable_planes(crtc);
12974         }
12975
12976         /* FIXME: add subpixel order */
12977
12978         drm_atomic_helper_cleanup_planes(dev, state);
12979
12980         drm_atomic_state_free(state);
12981
12982         return 0;
12983 }
12984
12985 static int intel_set_mode_checked(struct drm_atomic_state *state)
12986 {
12987         struct drm_device *dev = state->dev;
12988         int ret;
12989
12990         ret = __intel_set_mode(state);
12991         if (ret == 0)
12992                 intel_modeset_check_state(dev);
12993
12994         return ret;
12995 }
12996
12997 static int intel_set_mode(struct drm_atomic_state *state)
12998 {
12999         int ret;
13000
13001         ret = intel_modeset_compute_config(state);
13002         if (ret)
13003                 return ret;
13004
13005         return intel_set_mode_checked(state);
13006 }
13007
13008 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13009 {
13010         struct drm_device *dev = crtc->dev;
13011         struct drm_atomic_state *state;
13012         struct intel_crtc *intel_crtc;
13013         struct intel_encoder *encoder;
13014         struct intel_connector *connector;
13015         struct drm_connector_state *connector_state;
13016         struct intel_crtc_state *crtc_state;
13017         int ret;
13018
13019         state = drm_atomic_state_alloc(dev);
13020         if (!state) {
13021                 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
13022                               crtc->base.id);
13023                 return;
13024         }
13025
13026         state->acquire_ctx = dev->mode_config.acquire_ctx;
13027
13028         /* The force restore path in the HW readout code relies on the staged
13029          * config still keeping the user requested config while the actual
13030          * state has been overwritten by the configuration read from HW. We
13031          * need to copy the staged config to the atomic state, otherwise the
13032          * mode set will just reapply the state the HW is already in. */
13033         for_each_intel_encoder(dev, encoder) {
13034                 if (encoder->base.crtc != crtc)
13035                         continue;
13036
13037                 for_each_intel_connector(dev, connector) {
13038                         if (connector->base.state->best_encoder != &encoder->base)
13039                                 continue;
13040
13041                         connector_state = drm_atomic_get_connector_state(state, &connector->base);
13042                         if (IS_ERR(connector_state)) {
13043                                 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
13044                                               connector->base.base.id,
13045                                               connector->base.name,
13046                                               PTR_ERR(connector_state));
13047                                 continue;
13048                         }
13049
13050                         connector_state->crtc = crtc;
13051                 }
13052         }
13053
13054         for_each_intel_crtc(dev, intel_crtc) {
13055                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
13056                 if (IS_ERR(crtc_state)) {
13057                         DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
13058                                       intel_crtc->base.base.id,
13059                                       PTR_ERR(crtc_state));
13060                         continue;
13061                 }
13062
13063                 if (&intel_crtc->base == crtc)
13064                         drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
13065         }
13066
13067         intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
13068                                         crtc->primary->fb, crtc->x, crtc->y);
13069
13070         ret = intel_set_mode(state);
13071         if (ret)
13072                 drm_atomic_state_free(state);
13073 }
13074
13075 #undef for_each_intel_crtc_masked
13076
13077 static bool intel_connector_in_mode_set(struct intel_connector *connector,
13078                                         struct drm_mode_set *set)
13079 {
13080         int ro;
13081
13082         for (ro = 0; ro < set->num_connectors; ro++)
13083                 if (set->connectors[ro] == &connector->base)
13084                         return true;
13085
13086         return false;
13087 }
13088
13089 static int
13090 intel_modeset_stage_output_state(struct drm_device *dev,
13091                                  struct drm_mode_set *set,
13092                                  struct drm_atomic_state *state)
13093 {
13094         struct intel_connector *connector;
13095         struct drm_connector *drm_connector;
13096         struct drm_connector_state *connector_state;
13097         struct drm_crtc *crtc;
13098         struct drm_crtc_state *crtc_state;
13099         int i, ret;
13100
13101         /* The upper layers ensure that we either disable a crtc or have a list
13102          * of connectors. For paranoia, double-check this. */
13103         WARN_ON(!set->fb && (set->num_connectors != 0));
13104         WARN_ON(set->fb && (set->num_connectors == 0));
13105
13106         for_each_intel_connector(dev, connector) {
13107                 bool in_mode_set = intel_connector_in_mode_set(connector, set);
13108
13109                 if (!in_mode_set && connector->base.state->crtc != set->crtc)
13110                         continue;
13111
13112                 connector_state =
13113                         drm_atomic_get_connector_state(state, &connector->base);
13114                 if (IS_ERR(connector_state))
13115                         return PTR_ERR(connector_state);
13116
13117                 if (in_mode_set) {
13118                         int pipe = to_intel_crtc(set->crtc)->pipe;
13119                         connector_state->best_encoder =
13120                                 &intel_find_encoder(connector, pipe)->base;
13121                 }
13122
13123                 if (connector->base.state->crtc != set->crtc)
13124                         continue;
13125
13126                 /* If we disable the crtc, disable all its connectors. Also, if
13127                  * the connector is on the changing crtc but not on the new
13128                  * connector list, disable it. */
13129                 if (!set->fb || !in_mode_set) {
13130                         connector_state->best_encoder = NULL;
13131
13132                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
13133                                 connector->base.base.id,
13134                                 connector->base.name);
13135                 }
13136         }
13137         /* connector->new_encoder is now updated for all connectors. */
13138
13139         for_each_connector_in_state(state, drm_connector, connector_state, i) {
13140                 connector = to_intel_connector(drm_connector);
13141
13142                 if (!connector_state->best_encoder) {
13143                         ret = drm_atomic_set_crtc_for_connector(connector_state,
13144                                                                 NULL);
13145                         if (ret)
13146                                 return ret;
13147
13148                         continue;
13149                 }
13150
13151                 if (intel_connector_in_mode_set(connector, set)) {
13152                         struct drm_crtc *crtc = connector->base.state->crtc;
13153
13154                         /* If this connector was in a previous crtc, add it
13155                          * to the state. We might need to disable it. */
13156                         if (crtc) {
13157                                 crtc_state =
13158                                         drm_atomic_get_crtc_state(state, crtc);
13159                                 if (IS_ERR(crtc_state))
13160                                         return PTR_ERR(crtc_state);
13161                         }
13162
13163                         ret = drm_atomic_set_crtc_for_connector(connector_state,
13164                                                                 set->crtc);
13165                         if (ret)
13166                                 return ret;
13167                 }
13168
13169                 /* Make sure the new CRTC will work with the encoder */
13170                 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
13171                                          connector_state->crtc)) {
13172                         return -EINVAL;
13173                 }
13174
13175                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
13176                         connector->base.base.id,
13177                         connector->base.name,
13178                         connector_state->crtc->base.id);
13179
13180                 if (connector_state->best_encoder != &connector->encoder->base)
13181                         connector->encoder =
13182                                 to_intel_encoder(connector_state->best_encoder);
13183         }
13184
13185         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13186                 bool has_connectors;
13187
13188                 ret = drm_atomic_add_affected_connectors(state, crtc);
13189                 if (ret)
13190                         return ret;
13191
13192                 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
13193                 if (has_connectors != crtc_state->enable)
13194                         crtc_state->enable =
13195                         crtc_state->active = has_connectors;
13196         }
13197
13198         ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
13199                                               set->fb, set->x, set->y);
13200         if (ret)
13201                 return ret;
13202
13203         crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
13204         if (IS_ERR(crtc_state))
13205                 return PTR_ERR(crtc_state);
13206
13207         if (set->mode)
13208                 drm_mode_copy(&crtc_state->mode, set->mode);
13209
13210         if (set->num_connectors)
13211                 crtc_state->active = true;
13212
13213         return 0;
13214 }
13215
13216 static int intel_crtc_set_config(struct drm_mode_set *set)
13217 {
13218         struct drm_device *dev;
13219         struct drm_atomic_state *state = NULL;
13220         int ret;
13221
13222         BUG_ON(!set);
13223         BUG_ON(!set->crtc);
13224         BUG_ON(!set->crtc->helper_private);
13225
13226         /* Enforce sane interface api - has been abused by the fb helper. */
13227         BUG_ON(!set->mode && set->fb);
13228         BUG_ON(set->fb && set->num_connectors == 0);
13229
13230         if (set->fb) {
13231                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
13232                                 set->crtc->base.id, set->fb->base.id,
13233                                 (int)set->num_connectors, set->x, set->y);
13234         } else {
13235                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
13236         }
13237
13238         dev = set->crtc->dev;
13239
13240         state = drm_atomic_state_alloc(dev);
13241         if (!state)
13242                 return -ENOMEM;
13243
13244         state->acquire_ctx = dev->mode_config.acquire_ctx;
13245
13246         ret = intel_modeset_stage_output_state(dev, set, state);
13247         if (ret)
13248                 goto out;
13249
13250         ret = intel_modeset_compute_config(state);
13251         if (ret)
13252                 goto out;
13253
13254         intel_update_pipe_size(to_intel_crtc(set->crtc));
13255
13256         ret = intel_set_mode_checked(state);
13257         if (ret) {
13258                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
13259                               set->crtc->base.id, ret);
13260         }
13261
13262 out:
13263         if (ret)
13264                 drm_atomic_state_free(state);
13265         return ret;
13266 }
13267
13268 static const struct drm_crtc_funcs intel_crtc_funcs = {
13269         .gamma_set = intel_crtc_gamma_set,
13270         .set_config = intel_crtc_set_config,
13271         .destroy = intel_crtc_destroy,
13272         .page_flip = intel_crtc_page_flip,
13273         .atomic_duplicate_state = intel_crtc_duplicate_state,
13274         .atomic_destroy_state = intel_crtc_destroy_state,
13275 };
13276
13277 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13278                                       struct intel_shared_dpll *pll,
13279                                       struct intel_dpll_hw_state *hw_state)
13280 {
13281         uint32_t val;
13282
13283         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13284                 return false;
13285
13286         val = I915_READ(PCH_DPLL(pll->id));
13287         hw_state->dpll = val;
13288         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13289         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13290
13291         return val & DPLL_VCO_ENABLE;
13292 }
13293
13294 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13295                                   struct intel_shared_dpll *pll)
13296 {
13297         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13298         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13299 }
13300
13301 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13302                                 struct intel_shared_dpll *pll)
13303 {
13304         /* PCH refclock must be enabled first */
13305         ibx_assert_pch_refclk_enabled(dev_priv);
13306
13307         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13308
13309         /* Wait for the clocks to stabilize. */
13310         POSTING_READ(PCH_DPLL(pll->id));
13311         udelay(150);
13312
13313         /* The pixel multiplier can only be updated once the
13314          * DPLL is enabled and the clocks are stable.
13315          *
13316          * So write it again.
13317          */
13318         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13319         POSTING_READ(PCH_DPLL(pll->id));
13320         udelay(200);
13321 }
13322
13323 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13324                                  struct intel_shared_dpll *pll)
13325 {
13326         struct drm_device *dev = dev_priv->dev;
13327         struct intel_crtc *crtc;
13328
13329         /* Make sure no transcoder isn't still depending on us. */
13330         for_each_intel_crtc(dev, crtc) {
13331                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13332                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13333         }
13334
13335         I915_WRITE(PCH_DPLL(pll->id), 0);
13336         POSTING_READ(PCH_DPLL(pll->id));
13337         udelay(200);
13338 }
13339
13340 static char *ibx_pch_dpll_names[] = {
13341         "PCH DPLL A",
13342         "PCH DPLL B",
13343 };
13344
13345 static void ibx_pch_dpll_init(struct drm_device *dev)
13346 {
13347         struct drm_i915_private *dev_priv = dev->dev_private;
13348         int i;
13349
13350         dev_priv->num_shared_dpll = 2;
13351
13352         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13353                 dev_priv->shared_dplls[i].id = i;
13354                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13355                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13356                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13357                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13358                 dev_priv->shared_dplls[i].get_hw_state =
13359                         ibx_pch_dpll_get_hw_state;
13360         }
13361 }
13362
13363 static void intel_shared_dpll_init(struct drm_device *dev)
13364 {
13365         struct drm_i915_private *dev_priv = dev->dev_private;
13366
13367         intel_update_cdclk(dev);
13368
13369         if (HAS_DDI(dev))
13370                 intel_ddi_pll_init(dev);
13371         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13372                 ibx_pch_dpll_init(dev);
13373         else
13374                 dev_priv->num_shared_dpll = 0;
13375
13376         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13377 }
13378
13379 /**
13380  * intel_wm_need_update - Check whether watermarks need updating
13381  * @plane: drm plane
13382  * @state: new plane state
13383  *
13384  * Check current plane state versus the new one to determine whether
13385  * watermarks need to be recalculated.
13386  *
13387  * Returns true or false.
13388  */
13389 bool intel_wm_need_update(struct drm_plane *plane,
13390                           struct drm_plane_state *state)
13391 {
13392         /* Update watermarks on tiling changes. */
13393         if (!plane->state->fb || !state->fb ||
13394             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13395             plane->state->rotation != state->rotation)
13396                 return true;
13397
13398         return false;
13399 }
13400
13401 /**
13402  * intel_prepare_plane_fb - Prepare fb for usage on plane
13403  * @plane: drm plane to prepare for
13404  * @fb: framebuffer to prepare for presentation
13405  *
13406  * Prepares a framebuffer for usage on a display plane.  Generally this
13407  * involves pinning the underlying object and updating the frontbuffer tracking
13408  * bits.  Some older platforms need special physical address handling for
13409  * cursor planes.
13410  *
13411  * Returns 0 on success, negative error code on failure.
13412  */
13413 int
13414 intel_prepare_plane_fb(struct drm_plane *plane,
13415                        struct drm_framebuffer *fb,
13416                        const struct drm_plane_state *new_state)
13417 {
13418         struct drm_device *dev = plane->dev;
13419         struct intel_plane *intel_plane = to_intel_plane(plane);
13420         enum pipe pipe = intel_plane->pipe;
13421         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13422         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13423         unsigned frontbuffer_bits = 0;
13424         int ret = 0;
13425
13426         if (!obj)
13427                 return 0;
13428
13429         switch (plane->type) {
13430         case DRM_PLANE_TYPE_PRIMARY:
13431                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13432                 break;
13433         case DRM_PLANE_TYPE_CURSOR:
13434                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13435                 break;
13436         case DRM_PLANE_TYPE_OVERLAY:
13437                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13438                 break;
13439         }
13440
13441         mutex_lock(&dev->struct_mutex);
13442
13443         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13444             INTEL_INFO(dev)->cursor_needs_physical) {
13445                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13446                 ret = i915_gem_object_attach_phys(obj, align);
13447                 if (ret)
13448                         DRM_DEBUG_KMS("failed to attach phys object\n");
13449         } else {
13450                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13451         }
13452
13453         if (ret == 0)
13454                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13455
13456         mutex_unlock(&dev->struct_mutex);
13457
13458         return ret;
13459 }
13460
13461 /**
13462  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13463  * @plane: drm plane to clean up for
13464  * @fb: old framebuffer that was on plane
13465  *
13466  * Cleans up a framebuffer that has just been removed from a plane.
13467  */
13468 void
13469 intel_cleanup_plane_fb(struct drm_plane *plane,
13470                        struct drm_framebuffer *fb,
13471                        const struct drm_plane_state *old_state)
13472 {
13473         struct drm_device *dev = plane->dev;
13474         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13475
13476         if (WARN_ON(!obj))
13477                 return;
13478
13479         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13480             !INTEL_INFO(dev)->cursor_needs_physical) {
13481                 mutex_lock(&dev->struct_mutex);
13482                 intel_unpin_fb_obj(fb, old_state);
13483                 mutex_unlock(&dev->struct_mutex);
13484         }
13485 }
13486
13487 int
13488 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13489 {
13490         int max_scale;
13491         struct drm_device *dev;
13492         struct drm_i915_private *dev_priv;
13493         int crtc_clock, cdclk;
13494
13495         if (!intel_crtc || !crtc_state)
13496                 return DRM_PLANE_HELPER_NO_SCALING;
13497
13498         dev = intel_crtc->base.dev;
13499         dev_priv = dev->dev_private;
13500         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13501         cdclk = dev_priv->display.get_display_clock_speed(dev);
13502
13503         if (!crtc_clock || !cdclk)
13504                 return DRM_PLANE_HELPER_NO_SCALING;
13505
13506         /*
13507          * skl max scale is lower of:
13508          *    close to 3 but not 3, -1 is for that purpose
13509          *            or
13510          *    cdclk/crtc_clock
13511          */
13512         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13513
13514         return max_scale;
13515 }
13516
13517 static int
13518 intel_check_primary_plane(struct drm_plane *plane,
13519                           struct intel_plane_state *state)
13520 {
13521         struct drm_device *dev = plane->dev;
13522         struct drm_i915_private *dev_priv = dev->dev_private;
13523         struct drm_crtc *crtc = state->base.crtc;
13524         struct intel_crtc *intel_crtc;
13525         struct intel_crtc_state *crtc_state;
13526         struct drm_framebuffer *fb = state->base.fb;
13527         struct drm_rect *dest = &state->dst;
13528         struct drm_rect *src = &state->src;
13529         const struct drm_rect *clip = &state->clip;
13530         bool can_position = false;
13531         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13532         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13533         int ret;
13534
13535         crtc = crtc ? crtc : plane->crtc;
13536         intel_crtc = to_intel_crtc(crtc);
13537         crtc_state = state->base.state ?
13538                 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13539
13540         if (INTEL_INFO(dev)->gen >= 9) {
13541                 /* use scaler when colorkey is not required */
13542                 if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13543                         min_scale = 1;
13544                         max_scale = skl_max_scale(intel_crtc, crtc_state);
13545                 }
13546                 can_position = true;
13547         }
13548
13549         ret = drm_plane_helper_check_update(plane, crtc, fb,
13550                                             src, dest, clip,
13551                                             min_scale,
13552                                             max_scale,
13553                                             can_position, true,
13554                                             &state->visible);
13555         if (ret)
13556                 return ret;
13557
13558         if (intel_crtc->active) {
13559                 struct intel_plane_state *old_state =
13560                         to_intel_plane_state(plane->state);
13561
13562                 intel_crtc->atomic.wait_for_flips = true;
13563
13564                 /*
13565                  * FBC does not work on some platforms for rotated
13566                  * planes, so disable it when rotation is not 0 and
13567                  * update it when rotation is set back to 0.
13568                  *
13569                  * FIXME: This is redundant with the fbc update done in
13570                  * the primary plane enable function except that that
13571                  * one is done too late. We eventually need to unify
13572                  * this.
13573                  */
13574                 if (state->visible &&
13575                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13576                     dev_priv->fbc.crtc == intel_crtc &&
13577                     state->base.rotation != BIT(DRM_ROTATE_0)) {
13578                         intel_crtc->atomic.disable_fbc = true;
13579                 }
13580
13581                 if (state->visible && !old_state->visible) {
13582                         /*
13583                          * BDW signals flip done immediately if the plane
13584                          * is disabled, even if the plane enable is already
13585                          * armed to occur at the next vblank :(
13586                          */
13587                         if (IS_BROADWELL(dev))
13588                                 intel_crtc->atomic.wait_vblank = true;
13589
13590                         if (crtc_state && !needs_modeset(&crtc_state->base))
13591                                 intel_crtc->atomic.post_enable_primary = true;
13592                 }
13593
13594                 if (!state->visible && old_state->visible &&
13595                     crtc_state && !needs_modeset(&crtc_state->base))
13596                         intel_crtc->atomic.pre_disable_primary = true;
13597
13598                 intel_crtc->atomic.fb_bits |=
13599                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13600
13601                 intel_crtc->atomic.update_fbc = true;
13602
13603                 if (intel_wm_need_update(plane, &state->base))
13604                         intel_crtc->atomic.update_wm = true;
13605         }
13606
13607         if (INTEL_INFO(dev)->gen >= 9) {
13608                 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13609                         to_intel_plane(plane), state, 0);
13610                 if (ret)
13611                         return ret;
13612         }
13613
13614         return 0;
13615 }
13616
13617 static void
13618 intel_commit_primary_plane(struct drm_plane *plane,
13619                            struct intel_plane_state *state)
13620 {
13621         struct drm_crtc *crtc = state->base.crtc;
13622         struct drm_framebuffer *fb = state->base.fb;
13623         struct drm_device *dev = plane->dev;
13624         struct drm_i915_private *dev_priv = dev->dev_private;
13625         struct intel_crtc *intel_crtc;
13626         struct drm_rect *src = &state->src;
13627
13628         crtc = crtc ? crtc : plane->crtc;
13629         intel_crtc = to_intel_crtc(crtc);
13630
13631         plane->fb = fb;
13632         crtc->x = src->x1 >> 16;
13633         crtc->y = src->y1 >> 16;
13634
13635         if (intel_crtc->active) {
13636                 if (state->visible)
13637                         /* FIXME: kill this fastboot hack */
13638                         intel_update_pipe_size(intel_crtc);
13639
13640                 dev_priv->display.update_primary_plane(crtc, plane->fb,
13641                                                        crtc->x, crtc->y);
13642         }
13643 }
13644
13645 static void
13646 intel_disable_primary_plane(struct drm_plane *plane,
13647                             struct drm_crtc *crtc,
13648                             bool force)
13649 {
13650         struct drm_device *dev = plane->dev;
13651         struct drm_i915_private *dev_priv = dev->dev_private;
13652
13653         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13654 }
13655
13656 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13657 {
13658         struct drm_device *dev = crtc->dev;
13659         struct drm_i915_private *dev_priv = dev->dev_private;
13660         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13661         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
13662         struct intel_plane *intel_plane;
13663         struct drm_plane *p;
13664         unsigned fb_bits = 0;
13665
13666         /* Track fb's for any planes being disabled */
13667         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13668                 intel_plane = to_intel_plane(p);
13669
13670                 if (intel_crtc->atomic.disabled_planes &
13671                     (1 << drm_plane_index(p))) {
13672                         switch (p->type) {
13673                         case DRM_PLANE_TYPE_PRIMARY:
13674                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13675                                 break;
13676                         case DRM_PLANE_TYPE_CURSOR:
13677                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13678                                 break;
13679                         case DRM_PLANE_TYPE_OVERLAY:
13680                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13681                                 break;
13682                         }
13683
13684                         mutex_lock(&dev->struct_mutex);
13685                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13686                         mutex_unlock(&dev->struct_mutex);
13687                 }
13688         }
13689
13690         if (intel_crtc->atomic.wait_for_flips)
13691                 intel_crtc_wait_for_pending_flips(crtc);
13692
13693         if (intel_crtc->atomic.disable_fbc)
13694                 intel_fbc_disable(dev);
13695
13696         if (intel_crtc->atomic.pre_disable_primary)
13697                 intel_pre_disable_primary(crtc);
13698
13699         if (intel_crtc->atomic.update_wm)
13700                 intel_update_watermarks(crtc);
13701
13702         intel_runtime_pm_get(dev_priv);
13703
13704         /* Perform vblank evasion around commit operation */
13705         if (crtc_state->active && !needs_modeset(crtc_state))
13706                 intel_crtc->atomic.evade =
13707                         intel_pipe_update_start(intel_crtc,
13708                                                 &intel_crtc->atomic.start_vbl_count);
13709 }
13710
13711 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13712 {
13713         struct drm_device *dev = crtc->dev;
13714         struct drm_i915_private *dev_priv = dev->dev_private;
13715         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13716         struct drm_plane *p;
13717
13718         if (intel_crtc->atomic.evade)
13719                 intel_pipe_update_end(intel_crtc,
13720                                       intel_crtc->atomic.start_vbl_count);
13721
13722         intel_runtime_pm_put(dev_priv);
13723
13724         if (intel_crtc->atomic.wait_vblank && intel_crtc->active)
13725                 intel_wait_for_vblank(dev, intel_crtc->pipe);
13726
13727         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13728
13729         if (intel_crtc->atomic.update_fbc) {
13730                 mutex_lock(&dev->struct_mutex);
13731                 intel_fbc_update(dev);
13732                 mutex_unlock(&dev->struct_mutex);
13733         }
13734
13735         if (intel_crtc->atomic.post_enable_primary)
13736                 intel_post_enable_primary(crtc);
13737
13738         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13739                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13740                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13741                                                        false, false);
13742
13743         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13744 }
13745
13746 /**
13747  * intel_plane_destroy - destroy a plane
13748  * @plane: plane to destroy
13749  *
13750  * Common destruction function for all types of planes (primary, cursor,
13751  * sprite).
13752  */
13753 void intel_plane_destroy(struct drm_plane *plane)
13754 {
13755         struct intel_plane *intel_plane = to_intel_plane(plane);
13756         drm_plane_cleanup(plane);
13757         kfree(intel_plane);
13758 }
13759
13760 const struct drm_plane_funcs intel_plane_funcs = {
13761         .update_plane = drm_atomic_helper_update_plane,
13762         .disable_plane = drm_atomic_helper_disable_plane,
13763         .destroy = intel_plane_destroy,
13764         .set_property = drm_atomic_helper_plane_set_property,
13765         .atomic_get_property = intel_plane_atomic_get_property,
13766         .atomic_set_property = intel_plane_atomic_set_property,
13767         .atomic_duplicate_state = intel_plane_duplicate_state,
13768         .atomic_destroy_state = intel_plane_destroy_state,
13769
13770 };
13771
13772 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13773                                                     int pipe)
13774 {
13775         struct intel_plane *primary;
13776         struct intel_plane_state *state;
13777         const uint32_t *intel_primary_formats;
13778         int num_formats;
13779
13780         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13781         if (primary == NULL)
13782                 return NULL;
13783
13784         state = intel_create_plane_state(&primary->base);
13785         if (!state) {
13786                 kfree(primary);
13787                 return NULL;
13788         }
13789         primary->base.state = &state->base;
13790
13791         primary->can_scale = false;
13792         primary->max_downscale = 1;
13793         if (INTEL_INFO(dev)->gen >= 9) {
13794                 primary->can_scale = true;
13795                 state->scaler_id = -1;
13796         }
13797         primary->pipe = pipe;
13798         primary->plane = pipe;
13799         primary->check_plane = intel_check_primary_plane;
13800         primary->commit_plane = intel_commit_primary_plane;
13801         primary->disable_plane = intel_disable_primary_plane;
13802         primary->ckey.flags = I915_SET_COLORKEY_NONE;
13803         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13804                 primary->plane = !pipe;
13805
13806         if (INTEL_INFO(dev)->gen >= 9) {
13807                 intel_primary_formats = skl_primary_formats;
13808                 num_formats = ARRAY_SIZE(skl_primary_formats);
13809         } else if (INTEL_INFO(dev)->gen >= 4) {
13810                 intel_primary_formats = i965_primary_formats;
13811                 num_formats = ARRAY_SIZE(i965_primary_formats);
13812         } else {
13813                 intel_primary_formats = i8xx_primary_formats;
13814                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13815         }
13816
13817         drm_universal_plane_init(dev, &primary->base, 0,
13818                                  &intel_plane_funcs,
13819                                  intel_primary_formats, num_formats,
13820                                  DRM_PLANE_TYPE_PRIMARY);
13821
13822         if (INTEL_INFO(dev)->gen >= 4)
13823                 intel_create_rotation_property(dev, primary);
13824
13825         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13826
13827         return &primary->base;
13828 }
13829
13830 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13831 {
13832         if (!dev->mode_config.rotation_property) {
13833                 unsigned long flags = BIT(DRM_ROTATE_0) |
13834                         BIT(DRM_ROTATE_180);
13835
13836                 if (INTEL_INFO(dev)->gen >= 9)
13837                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13838
13839                 dev->mode_config.rotation_property =
13840                         drm_mode_create_rotation_property(dev, flags);
13841         }
13842         if (dev->mode_config.rotation_property)
13843                 drm_object_attach_property(&plane->base.base,
13844                                 dev->mode_config.rotation_property,
13845                                 plane->base.state->rotation);
13846 }
13847
13848 static int
13849 intel_check_cursor_plane(struct drm_plane *plane,
13850                          struct intel_plane_state *state)
13851 {
13852         struct drm_crtc *crtc = state->base.crtc;
13853         struct drm_device *dev = plane->dev;
13854         struct drm_framebuffer *fb = state->base.fb;
13855         struct drm_rect *dest = &state->dst;
13856         struct drm_rect *src = &state->src;
13857         const struct drm_rect *clip = &state->clip;
13858         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13859         struct intel_crtc *intel_crtc;
13860         unsigned stride;
13861         int ret;
13862
13863         crtc = crtc ? crtc : plane->crtc;
13864         intel_crtc = to_intel_crtc(crtc);
13865
13866         ret = drm_plane_helper_check_update(plane, crtc, fb,
13867                                             src, dest, clip,
13868                                             DRM_PLANE_HELPER_NO_SCALING,
13869                                             DRM_PLANE_HELPER_NO_SCALING,
13870                                             true, true, &state->visible);
13871         if (ret)
13872                 return ret;
13873
13874
13875         /* if we want to turn off the cursor ignore width and height */
13876         if (!obj)
13877                 goto finish;
13878
13879         /* Check for which cursor types we support */
13880         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13881                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13882                           state->base.crtc_w, state->base.crtc_h);
13883                 return -EINVAL;
13884         }
13885
13886         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13887         if (obj->base.size < stride * state->base.crtc_h) {
13888                 DRM_DEBUG_KMS("buffer is too small\n");
13889                 return -ENOMEM;
13890         }
13891
13892         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13893                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13894                 ret = -EINVAL;
13895         }
13896
13897 finish:
13898         if (intel_crtc->active) {
13899                 if (plane->state->crtc_w != state->base.crtc_w)
13900                         intel_crtc->atomic.update_wm = true;
13901
13902                 intel_crtc->atomic.fb_bits |=
13903                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13904         }
13905
13906         return ret;
13907 }
13908
13909 static void
13910 intel_disable_cursor_plane(struct drm_plane *plane,
13911                            struct drm_crtc *crtc,
13912                            bool force)
13913 {
13914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13915
13916         if (!force) {
13917                 plane->fb = NULL;
13918                 intel_crtc->cursor_bo = NULL;
13919                 intel_crtc->cursor_addr = 0;
13920         }
13921
13922         intel_crtc_update_cursor(crtc, false);
13923 }
13924
13925 static void
13926 intel_commit_cursor_plane(struct drm_plane *plane,
13927                           struct intel_plane_state *state)
13928 {
13929         struct drm_crtc *crtc = state->base.crtc;
13930         struct drm_device *dev = plane->dev;
13931         struct intel_crtc *intel_crtc;
13932         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13933         uint32_t addr;
13934
13935         crtc = crtc ? crtc : plane->crtc;
13936         intel_crtc = to_intel_crtc(crtc);
13937
13938         plane->fb = state->base.fb;
13939         crtc->cursor_x = state->base.crtc_x;
13940         crtc->cursor_y = state->base.crtc_y;
13941
13942         if (intel_crtc->cursor_bo == obj)
13943                 goto update;
13944
13945         if (!obj)
13946                 addr = 0;
13947         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13948                 addr = i915_gem_obj_ggtt_offset(obj);
13949         else
13950                 addr = obj->phys_handle->busaddr;
13951
13952         intel_crtc->cursor_addr = addr;
13953         intel_crtc->cursor_bo = obj;
13954 update:
13955
13956         if (intel_crtc->active)
13957                 intel_crtc_update_cursor(crtc, state->visible);
13958 }
13959
13960 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13961                                                    int pipe)
13962 {
13963         struct intel_plane *cursor;
13964         struct intel_plane_state *state;
13965
13966         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13967         if (cursor == NULL)
13968                 return NULL;
13969
13970         state = intel_create_plane_state(&cursor->base);
13971         if (!state) {
13972                 kfree(cursor);
13973                 return NULL;
13974         }
13975         cursor->base.state = &state->base;
13976
13977         cursor->can_scale = false;
13978         cursor->max_downscale = 1;
13979         cursor->pipe = pipe;
13980         cursor->plane = pipe;
13981         cursor->check_plane = intel_check_cursor_plane;
13982         cursor->commit_plane = intel_commit_cursor_plane;
13983         cursor->disable_plane = intel_disable_cursor_plane;
13984
13985         drm_universal_plane_init(dev, &cursor->base, 0,
13986                                  &intel_plane_funcs,
13987                                  intel_cursor_formats,
13988                                  ARRAY_SIZE(intel_cursor_formats),
13989                                  DRM_PLANE_TYPE_CURSOR);
13990
13991         if (INTEL_INFO(dev)->gen >= 4) {
13992                 if (!dev->mode_config.rotation_property)
13993                         dev->mode_config.rotation_property =
13994                                 drm_mode_create_rotation_property(dev,
13995                                                         BIT(DRM_ROTATE_0) |
13996                                                         BIT(DRM_ROTATE_180));
13997                 if (dev->mode_config.rotation_property)
13998                         drm_object_attach_property(&cursor->base.base,
13999                                 dev->mode_config.rotation_property,
14000                                 state->base.rotation);
14001         }
14002
14003         if (INTEL_INFO(dev)->gen >=9)
14004                 state->scaler_id = -1;
14005
14006         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14007
14008         return &cursor->base;
14009 }
14010
14011 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14012         struct intel_crtc_state *crtc_state)
14013 {
14014         int i;
14015         struct intel_scaler *intel_scaler;
14016         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14017
14018         for (i = 0; i < intel_crtc->num_scalers; i++) {
14019                 intel_scaler = &scaler_state->scalers[i];
14020                 intel_scaler->in_use = 0;
14021                 intel_scaler->id = i;
14022
14023                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14024         }
14025
14026         scaler_state->scaler_id = -1;
14027 }
14028
14029 static void intel_crtc_init(struct drm_device *dev, int pipe)
14030 {
14031         struct drm_i915_private *dev_priv = dev->dev_private;
14032         struct intel_crtc *intel_crtc;
14033         struct intel_crtc_state *crtc_state = NULL;
14034         struct drm_plane *primary = NULL;
14035         struct drm_plane *cursor = NULL;
14036         int i, ret;
14037
14038         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14039         if (intel_crtc == NULL)
14040                 return;
14041
14042         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14043         if (!crtc_state)
14044                 goto fail;
14045         intel_crtc->config = crtc_state;
14046         intel_crtc->base.state = &crtc_state->base;
14047         crtc_state->base.crtc = &intel_crtc->base;
14048
14049         /* initialize shared scalers */
14050         if (INTEL_INFO(dev)->gen >= 9) {
14051                 if (pipe == PIPE_C)
14052                         intel_crtc->num_scalers = 1;
14053                 else
14054                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14055
14056                 skl_init_scalers(dev, intel_crtc, crtc_state);
14057         }
14058
14059         primary = intel_primary_plane_create(dev, pipe);
14060         if (!primary)
14061                 goto fail;
14062
14063         cursor = intel_cursor_plane_create(dev, pipe);
14064         if (!cursor)
14065                 goto fail;
14066
14067         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14068                                         cursor, &intel_crtc_funcs);
14069         if (ret)
14070                 goto fail;
14071
14072         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14073         for (i = 0; i < 256; i++) {
14074                 intel_crtc->lut_r[i] = i;
14075                 intel_crtc->lut_g[i] = i;
14076                 intel_crtc->lut_b[i] = i;
14077         }
14078
14079         /*
14080          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14081          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14082          */
14083         intel_crtc->pipe = pipe;
14084         intel_crtc->plane = pipe;
14085         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14086                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14087                 intel_crtc->plane = !pipe;
14088         }
14089
14090         intel_crtc->cursor_base = ~0;
14091         intel_crtc->cursor_cntl = ~0;
14092         intel_crtc->cursor_size = ~0;
14093
14094         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14095                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14096         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14097         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14098
14099         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14100
14101         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14102         return;
14103
14104 fail:
14105         if (primary)
14106                 drm_plane_cleanup(primary);
14107         if (cursor)
14108                 drm_plane_cleanup(cursor);
14109         kfree(crtc_state);
14110         kfree(intel_crtc);
14111 }
14112
14113 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14114 {
14115         struct drm_encoder *encoder = connector->base.encoder;
14116         struct drm_device *dev = connector->base.dev;
14117
14118         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14119
14120         if (!encoder || WARN_ON(!encoder->crtc))
14121                 return INVALID_PIPE;
14122
14123         return to_intel_crtc(encoder->crtc)->pipe;
14124 }
14125
14126 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14127                                 struct drm_file *file)
14128 {
14129         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14130         struct drm_crtc *drmmode_crtc;
14131         struct intel_crtc *crtc;
14132
14133         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14134
14135         if (!drmmode_crtc) {
14136                 DRM_ERROR("no such CRTC id\n");
14137                 return -ENOENT;
14138         }
14139
14140         crtc = to_intel_crtc(drmmode_crtc);
14141         pipe_from_crtc_id->pipe = crtc->pipe;
14142
14143         return 0;
14144 }
14145
14146 static int intel_encoder_clones(struct intel_encoder *encoder)
14147 {
14148         struct drm_device *dev = encoder->base.dev;
14149         struct intel_encoder *source_encoder;
14150         int index_mask = 0;
14151         int entry = 0;
14152
14153         for_each_intel_encoder(dev, source_encoder) {
14154                 if (encoders_cloneable(encoder, source_encoder))
14155                         index_mask |= (1 << entry);
14156
14157                 entry++;
14158         }
14159
14160         return index_mask;
14161 }
14162
14163 static bool has_edp_a(struct drm_device *dev)
14164 {
14165         struct drm_i915_private *dev_priv = dev->dev_private;
14166
14167         if (!IS_MOBILE(dev))
14168                 return false;
14169
14170         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14171                 return false;
14172
14173         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14174                 return false;
14175
14176         return true;
14177 }
14178
14179 static bool intel_crt_present(struct drm_device *dev)
14180 {
14181         struct drm_i915_private *dev_priv = dev->dev_private;
14182
14183         if (INTEL_INFO(dev)->gen >= 9)
14184                 return false;
14185
14186         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14187                 return false;
14188
14189         if (IS_CHERRYVIEW(dev))
14190                 return false;
14191
14192         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14193                 return false;
14194
14195         return true;
14196 }
14197
14198 static void intel_setup_outputs(struct drm_device *dev)
14199 {
14200         struct drm_i915_private *dev_priv = dev->dev_private;
14201         struct intel_encoder *encoder;
14202         bool dpd_is_edp = false;
14203
14204         intel_lvds_init(dev);
14205
14206         if (intel_crt_present(dev))
14207                 intel_crt_init(dev);
14208
14209         if (IS_BROXTON(dev)) {
14210                 /*
14211                  * FIXME: Broxton doesn't support port detection via the
14212                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14213                  * detect the ports.
14214                  */
14215                 intel_ddi_init(dev, PORT_A);
14216                 intel_ddi_init(dev, PORT_B);
14217                 intel_ddi_init(dev, PORT_C);
14218         } else if (HAS_DDI(dev)) {
14219                 int found;
14220
14221                 /*
14222                  * Haswell uses DDI functions to detect digital outputs.
14223                  * On SKL pre-D0 the strap isn't connected, so we assume
14224                  * it's there.
14225                  */
14226                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14227                 /* WaIgnoreDDIAStrap: skl */
14228                 if (found ||
14229                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14230                         intel_ddi_init(dev, PORT_A);
14231
14232                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14233                  * register */
14234                 found = I915_READ(SFUSE_STRAP);
14235
14236                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14237                         intel_ddi_init(dev, PORT_B);
14238                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14239                         intel_ddi_init(dev, PORT_C);
14240                 if (found & SFUSE_STRAP_DDID_DETECTED)
14241                         intel_ddi_init(dev, PORT_D);
14242         } else if (HAS_PCH_SPLIT(dev)) {
14243                 int found;
14244                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14245
14246                 if (has_edp_a(dev))
14247                         intel_dp_init(dev, DP_A, PORT_A);
14248
14249                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14250                         /* PCH SDVOB multiplex with HDMIB */
14251                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14252                         if (!found)
14253                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14254                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14255                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14256                 }
14257
14258                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14259                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14260
14261                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14262                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14263
14264                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14265                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14266
14267                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14268                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14269         } else if (IS_VALLEYVIEW(dev)) {
14270                 /*
14271                  * The DP_DETECTED bit is the latched state of the DDC
14272                  * SDA pin at boot. However since eDP doesn't require DDC
14273                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14274                  * eDP ports may have been muxed to an alternate function.
14275                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14276                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14277                  * detect eDP ports.
14278                  */
14279                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14280                     !intel_dp_is_edp(dev, PORT_B))
14281                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14282                                         PORT_B);
14283                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14284                     intel_dp_is_edp(dev, PORT_B))
14285                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14286
14287                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14288                     !intel_dp_is_edp(dev, PORT_C))
14289                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14290                                         PORT_C);
14291                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14292                     intel_dp_is_edp(dev, PORT_C))
14293                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14294
14295                 if (IS_CHERRYVIEW(dev)) {
14296                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14297                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14298                                                 PORT_D);
14299                         /* eDP not supported on port D, so don't check VBT */
14300                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14301                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14302                 }
14303
14304                 intel_dsi_init(dev);
14305         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14306                 bool found = false;
14307
14308                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14309                         DRM_DEBUG_KMS("probing SDVOB\n");
14310                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14311                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14312                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14313                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14314                         }
14315
14316                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
14317                                 intel_dp_init(dev, DP_B, PORT_B);
14318                 }
14319
14320                 /* Before G4X SDVOC doesn't have its own detect register */
14321
14322                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14323                         DRM_DEBUG_KMS("probing SDVOC\n");
14324                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14325                 }
14326
14327                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14328
14329                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14330                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14331                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14332                         }
14333                         if (SUPPORTS_INTEGRATED_DP(dev))
14334                                 intel_dp_init(dev, DP_C, PORT_C);
14335                 }
14336
14337                 if (SUPPORTS_INTEGRATED_DP(dev) &&
14338                     (I915_READ(DP_D) & DP_DETECTED))
14339                         intel_dp_init(dev, DP_D, PORT_D);
14340         } else if (IS_GEN2(dev))
14341                 intel_dvo_init(dev);
14342
14343         if (SUPPORTS_TV(dev))
14344                 intel_tv_init(dev);
14345
14346         intel_psr_init(dev);
14347
14348         for_each_intel_encoder(dev, encoder) {
14349                 encoder->base.possible_crtcs = encoder->crtc_mask;
14350                 encoder->base.possible_clones =
14351                         intel_encoder_clones(encoder);
14352         }
14353
14354         intel_init_pch_refclk(dev);
14355
14356         drm_helper_move_panel_connectors_to_head(dev);
14357 }
14358
14359 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14360 {
14361         struct drm_device *dev = fb->dev;
14362         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14363
14364         drm_framebuffer_cleanup(fb);
14365         mutex_lock(&dev->struct_mutex);
14366         WARN_ON(!intel_fb->obj->framebuffer_references--);
14367         drm_gem_object_unreference(&intel_fb->obj->base);
14368         mutex_unlock(&dev->struct_mutex);
14369         kfree(intel_fb);
14370 }
14371
14372 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14373                                                 struct drm_file *file,
14374                                                 unsigned int *handle)
14375 {
14376         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14377         struct drm_i915_gem_object *obj = intel_fb->obj;
14378
14379         return drm_gem_handle_create(file, &obj->base, handle);
14380 }
14381
14382 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14383         .destroy = intel_user_framebuffer_destroy,
14384         .create_handle = intel_user_framebuffer_create_handle,
14385 };
14386
14387 static
14388 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14389                          uint32_t pixel_format)
14390 {
14391         u32 gen = INTEL_INFO(dev)->gen;
14392
14393         if (gen >= 9) {
14394                 /* "The stride in bytes must not exceed the of the size of 8K
14395                  *  pixels and 32K bytes."
14396                  */
14397                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14398         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14399                 return 32*1024;
14400         } else if (gen >= 4) {
14401                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14402                         return 16*1024;
14403                 else
14404                         return 32*1024;
14405         } else if (gen >= 3) {
14406                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14407                         return 8*1024;
14408                 else
14409                         return 16*1024;
14410         } else {
14411                 /* XXX DSPC is limited to 4k tiled */
14412                 return 8*1024;
14413         }
14414 }
14415
14416 static int intel_framebuffer_init(struct drm_device *dev,
14417                                   struct intel_framebuffer *intel_fb,
14418                                   struct drm_mode_fb_cmd2 *mode_cmd,
14419                                   struct drm_i915_gem_object *obj)
14420 {
14421         unsigned int aligned_height;
14422         int ret;
14423         u32 pitch_limit, stride_alignment;
14424
14425         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14426
14427         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14428                 /* Enforce that fb modifier and tiling mode match, but only for
14429                  * X-tiled. This is needed for FBC. */
14430                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14431                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14432                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14433                         return -EINVAL;
14434                 }
14435         } else {
14436                 if (obj->tiling_mode == I915_TILING_X)
14437                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14438                 else if (obj->tiling_mode == I915_TILING_Y) {
14439                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14440                         return -EINVAL;
14441                 }
14442         }
14443
14444         /* Passed in modifier sanity checking. */
14445         switch (mode_cmd->modifier[0]) {
14446         case I915_FORMAT_MOD_Y_TILED:
14447         case I915_FORMAT_MOD_Yf_TILED:
14448                 if (INTEL_INFO(dev)->gen < 9) {
14449                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14450                                   mode_cmd->modifier[0]);
14451                         return -EINVAL;
14452                 }
14453         case DRM_FORMAT_MOD_NONE:
14454         case I915_FORMAT_MOD_X_TILED:
14455                 break;
14456         default:
14457                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14458                           mode_cmd->modifier[0]);
14459                 return -EINVAL;
14460         }
14461
14462         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14463                                                      mode_cmd->pixel_format);
14464         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14465                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14466                           mode_cmd->pitches[0], stride_alignment);
14467                 return -EINVAL;
14468         }
14469
14470         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14471                                            mode_cmd->pixel_format);
14472         if (mode_cmd->pitches[0] > pitch_limit) {
14473                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14474                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14475                           "tiled" : "linear",
14476                           mode_cmd->pitches[0], pitch_limit);
14477                 return -EINVAL;
14478         }
14479
14480         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14481             mode_cmd->pitches[0] != obj->stride) {
14482                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14483                           mode_cmd->pitches[0], obj->stride);
14484                 return -EINVAL;
14485         }
14486
14487         /* Reject formats not supported by any plane early. */
14488         switch (mode_cmd->pixel_format) {
14489         case DRM_FORMAT_C8:
14490         case DRM_FORMAT_RGB565:
14491         case DRM_FORMAT_XRGB8888:
14492         case DRM_FORMAT_ARGB8888:
14493                 break;
14494         case DRM_FORMAT_XRGB1555:
14495                 if (INTEL_INFO(dev)->gen > 3) {
14496                         DRM_DEBUG("unsupported pixel format: %s\n",
14497                                   drm_get_format_name(mode_cmd->pixel_format));
14498                         return -EINVAL;
14499                 }
14500                 break;
14501         case DRM_FORMAT_ABGR8888:
14502                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14503                         DRM_DEBUG("unsupported pixel format: %s\n",
14504                                   drm_get_format_name(mode_cmd->pixel_format));
14505                         return -EINVAL;
14506                 }
14507                 break;
14508         case DRM_FORMAT_XBGR8888:
14509         case DRM_FORMAT_XRGB2101010:
14510         case DRM_FORMAT_XBGR2101010:
14511                 if (INTEL_INFO(dev)->gen < 4) {
14512                         DRM_DEBUG("unsupported pixel format: %s\n",
14513                                   drm_get_format_name(mode_cmd->pixel_format));
14514                         return -EINVAL;
14515                 }
14516                 break;
14517         case DRM_FORMAT_ABGR2101010:
14518                 if (!IS_VALLEYVIEW(dev)) {
14519                         DRM_DEBUG("unsupported pixel format: %s\n",
14520                                   drm_get_format_name(mode_cmd->pixel_format));
14521                         return -EINVAL;
14522                 }
14523                 break;
14524         case DRM_FORMAT_YUYV:
14525         case DRM_FORMAT_UYVY:
14526         case DRM_FORMAT_YVYU:
14527         case DRM_FORMAT_VYUY:
14528                 if (INTEL_INFO(dev)->gen < 5) {
14529                         DRM_DEBUG("unsupported pixel format: %s\n",
14530                                   drm_get_format_name(mode_cmd->pixel_format));
14531                         return -EINVAL;
14532                 }
14533                 break;
14534         default:
14535                 DRM_DEBUG("unsupported pixel format: %s\n",
14536                           drm_get_format_name(mode_cmd->pixel_format));
14537                 return -EINVAL;
14538         }
14539
14540         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14541         if (mode_cmd->offsets[0] != 0)
14542                 return -EINVAL;
14543
14544         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14545                                                mode_cmd->pixel_format,
14546                                                mode_cmd->modifier[0]);
14547         /* FIXME drm helper for size checks (especially planar formats)? */
14548         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14549                 return -EINVAL;
14550
14551         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14552         intel_fb->obj = obj;
14553         intel_fb->obj->framebuffer_references++;
14554
14555         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14556         if (ret) {
14557                 DRM_ERROR("framebuffer init failed %d\n", ret);
14558                 return ret;
14559         }
14560
14561         return 0;
14562 }
14563
14564 static struct drm_framebuffer *
14565 intel_user_framebuffer_create(struct drm_device *dev,
14566                               struct drm_file *filp,
14567                               struct drm_mode_fb_cmd2 *mode_cmd)
14568 {
14569         struct drm_i915_gem_object *obj;
14570
14571         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14572                                                 mode_cmd->handles[0]));
14573         if (&obj->base == NULL)
14574                 return ERR_PTR(-ENOENT);
14575
14576         return intel_framebuffer_create(dev, mode_cmd, obj);
14577 }
14578
14579 #ifndef CONFIG_DRM_I915_FBDEV
14580 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14581 {
14582 }
14583 #endif
14584
14585 static const struct drm_mode_config_funcs intel_mode_funcs = {
14586         .fb_create = intel_user_framebuffer_create,
14587         .output_poll_changed = intel_fbdev_output_poll_changed,
14588         .atomic_check = intel_atomic_check,
14589         .atomic_commit = intel_atomic_commit,
14590         .atomic_state_alloc = intel_atomic_state_alloc,
14591         .atomic_state_clear = intel_atomic_state_clear,
14592 };
14593
14594 /* Set up chip specific display functions */
14595 static void intel_init_display(struct drm_device *dev)
14596 {
14597         struct drm_i915_private *dev_priv = dev->dev_private;
14598
14599         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14600                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14601         else if (IS_CHERRYVIEW(dev))
14602                 dev_priv->display.find_dpll = chv_find_best_dpll;
14603         else if (IS_VALLEYVIEW(dev))
14604                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14605         else if (IS_PINEVIEW(dev))
14606                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14607         else
14608                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14609
14610         if (INTEL_INFO(dev)->gen >= 9) {
14611                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14612                 dev_priv->display.get_initial_plane_config =
14613                         skylake_get_initial_plane_config;
14614                 dev_priv->display.crtc_compute_clock =
14615                         haswell_crtc_compute_clock;
14616                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14617                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14618                 dev_priv->display.update_primary_plane =
14619                         skylake_update_primary_plane;
14620         } else if (HAS_DDI(dev)) {
14621                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14622                 dev_priv->display.get_initial_plane_config =
14623                         ironlake_get_initial_plane_config;
14624                 dev_priv->display.crtc_compute_clock =
14625                         haswell_crtc_compute_clock;
14626                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14627                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14628                 dev_priv->display.update_primary_plane =
14629                         ironlake_update_primary_plane;
14630         } else if (HAS_PCH_SPLIT(dev)) {
14631                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14632                 dev_priv->display.get_initial_plane_config =
14633                         ironlake_get_initial_plane_config;
14634                 dev_priv->display.crtc_compute_clock =
14635                         ironlake_crtc_compute_clock;
14636                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14637                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14638                 dev_priv->display.update_primary_plane =
14639                         ironlake_update_primary_plane;
14640         } else if (IS_VALLEYVIEW(dev)) {
14641                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14642                 dev_priv->display.get_initial_plane_config =
14643                         i9xx_get_initial_plane_config;
14644                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14645                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14646                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14647                 dev_priv->display.update_primary_plane =
14648                         i9xx_update_primary_plane;
14649         } else {
14650                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14651                 dev_priv->display.get_initial_plane_config =
14652                         i9xx_get_initial_plane_config;
14653                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14654                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14655                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14656                 dev_priv->display.update_primary_plane =
14657                         i9xx_update_primary_plane;
14658         }
14659
14660         /* Returns the core display clock speed */
14661         if (IS_SKYLAKE(dev))
14662                 dev_priv->display.get_display_clock_speed =
14663                         skylake_get_display_clock_speed;
14664         else if (IS_BROADWELL(dev))
14665                 dev_priv->display.get_display_clock_speed =
14666                         broadwell_get_display_clock_speed;
14667         else if (IS_HASWELL(dev))
14668                 dev_priv->display.get_display_clock_speed =
14669                         haswell_get_display_clock_speed;
14670         else if (IS_VALLEYVIEW(dev))
14671                 dev_priv->display.get_display_clock_speed =
14672                         valleyview_get_display_clock_speed;
14673         else if (IS_GEN5(dev))
14674                 dev_priv->display.get_display_clock_speed =
14675                         ilk_get_display_clock_speed;
14676         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14677                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14678                 dev_priv->display.get_display_clock_speed =
14679                         i945_get_display_clock_speed;
14680         else if (IS_GM45(dev))
14681                 dev_priv->display.get_display_clock_speed =
14682                         gm45_get_display_clock_speed;
14683         else if (IS_CRESTLINE(dev))
14684                 dev_priv->display.get_display_clock_speed =
14685                         i965gm_get_display_clock_speed;
14686         else if (IS_PINEVIEW(dev))
14687                 dev_priv->display.get_display_clock_speed =
14688                         pnv_get_display_clock_speed;
14689         else if (IS_G33(dev) || IS_G4X(dev))
14690                 dev_priv->display.get_display_clock_speed =
14691                         g33_get_display_clock_speed;
14692         else if (IS_I915G(dev))
14693                 dev_priv->display.get_display_clock_speed =
14694                         i915_get_display_clock_speed;
14695         else if (IS_I945GM(dev) || IS_845G(dev))
14696                 dev_priv->display.get_display_clock_speed =
14697                         i9xx_misc_get_display_clock_speed;
14698         else if (IS_PINEVIEW(dev))
14699                 dev_priv->display.get_display_clock_speed =
14700                         pnv_get_display_clock_speed;
14701         else if (IS_I915GM(dev))
14702                 dev_priv->display.get_display_clock_speed =
14703                         i915gm_get_display_clock_speed;
14704         else if (IS_I865G(dev))
14705                 dev_priv->display.get_display_clock_speed =
14706                         i865_get_display_clock_speed;
14707         else if (IS_I85X(dev))
14708                 dev_priv->display.get_display_clock_speed =
14709                         i85x_get_display_clock_speed;
14710         else { /* 830 */
14711                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14712                 dev_priv->display.get_display_clock_speed =
14713                         i830_get_display_clock_speed;
14714         }
14715
14716         if (IS_GEN5(dev)) {
14717                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14718         } else if (IS_GEN6(dev)) {
14719                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14720         } else if (IS_IVYBRIDGE(dev)) {
14721                 /* FIXME: detect B0+ stepping and use auto training */
14722                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14723         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14724                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14725                 if (IS_BROADWELL(dev))
14726                         dev_priv->display.modeset_global_resources =
14727                                 broadwell_modeset_global_resources;
14728         } else if (IS_VALLEYVIEW(dev)) {
14729                 dev_priv->display.modeset_global_resources =
14730                         valleyview_modeset_global_resources;
14731         } else if (IS_BROXTON(dev)) {
14732                 dev_priv->display.modeset_global_resources =
14733                         broxton_modeset_global_resources;
14734         }
14735
14736         switch (INTEL_INFO(dev)->gen) {
14737         case 2:
14738                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14739                 break;
14740
14741         case 3:
14742                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14743                 break;
14744
14745         case 4:
14746         case 5:
14747                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14748                 break;
14749
14750         case 6:
14751                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14752                 break;
14753         case 7:
14754         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14755                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14756                 break;
14757         case 9:
14758                 /* Drop through - unsupported since execlist only. */
14759         default:
14760                 /* Default just returns -ENODEV to indicate unsupported */
14761                 dev_priv->display.queue_flip = intel_default_queue_flip;
14762         }
14763
14764         intel_panel_init_backlight_funcs(dev);
14765
14766         mutex_init(&dev_priv->pps_mutex);
14767 }
14768
14769 /*
14770  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14771  * resume, or other times.  This quirk makes sure that's the case for
14772  * affected systems.
14773  */
14774 static void quirk_pipea_force(struct drm_device *dev)
14775 {
14776         struct drm_i915_private *dev_priv = dev->dev_private;
14777
14778         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14779         DRM_INFO("applying pipe a force quirk\n");
14780 }
14781
14782 static void quirk_pipeb_force(struct drm_device *dev)
14783 {
14784         struct drm_i915_private *dev_priv = dev->dev_private;
14785
14786         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14787         DRM_INFO("applying pipe b force quirk\n");
14788 }
14789
14790 /*
14791  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14792  */
14793 static void quirk_ssc_force_disable(struct drm_device *dev)
14794 {
14795         struct drm_i915_private *dev_priv = dev->dev_private;
14796         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14797         DRM_INFO("applying lvds SSC disable quirk\n");
14798 }
14799
14800 /*
14801  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14802  * brightness value
14803  */
14804 static void quirk_invert_brightness(struct drm_device *dev)
14805 {
14806         struct drm_i915_private *dev_priv = dev->dev_private;
14807         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14808         DRM_INFO("applying inverted panel brightness quirk\n");
14809 }
14810
14811 /* Some VBT's incorrectly indicate no backlight is present */
14812 static void quirk_backlight_present(struct drm_device *dev)
14813 {
14814         struct drm_i915_private *dev_priv = dev->dev_private;
14815         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14816         DRM_INFO("applying backlight present quirk\n");
14817 }
14818
14819 struct intel_quirk {
14820         int device;
14821         int subsystem_vendor;
14822         int subsystem_device;
14823         void (*hook)(struct drm_device *dev);
14824 };
14825
14826 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14827 struct intel_dmi_quirk {
14828         void (*hook)(struct drm_device *dev);
14829         const struct dmi_system_id (*dmi_id_list)[];
14830 };
14831
14832 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14833 {
14834         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14835         return 1;
14836 }
14837
14838 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14839         {
14840                 .dmi_id_list = &(const struct dmi_system_id[]) {
14841                         {
14842                                 .callback = intel_dmi_reverse_brightness,
14843                                 .ident = "NCR Corporation",
14844                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14845                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14846                                 },
14847                         },
14848                         { }  /* terminating entry */
14849                 },
14850                 .hook = quirk_invert_brightness,
14851         },
14852 };
14853
14854 static struct intel_quirk intel_quirks[] = {
14855         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14856         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14857
14858         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14859         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14860
14861         /* 830 needs to leave pipe A & dpll A up */
14862         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14863
14864         /* 830 needs to leave pipe B & dpll B up */
14865         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14866
14867         /* Lenovo U160 cannot use SSC on LVDS */
14868         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14869
14870         /* Sony Vaio Y cannot use SSC on LVDS */
14871         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14872
14873         /* Acer Aspire 5734Z must invert backlight brightness */
14874         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14875
14876         /* Acer/eMachines G725 */
14877         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14878
14879         /* Acer/eMachines e725 */
14880         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14881
14882         /* Acer/Packard Bell NCL20 */
14883         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14884
14885         /* Acer Aspire 4736Z */
14886         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14887
14888         /* Acer Aspire 5336 */
14889         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14890
14891         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14892         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14893
14894         /* Acer C720 Chromebook (Core i3 4005U) */
14895         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14896
14897         /* Apple Macbook 2,1 (Core 2 T7400) */
14898         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14899
14900         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14901         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14902
14903         /* HP Chromebook 14 (Celeron 2955U) */
14904         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14905
14906         /* Dell Chromebook 11 */
14907         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14908 };
14909
14910 static void intel_init_quirks(struct drm_device *dev)
14911 {
14912         struct pci_dev *d = dev->pdev;
14913         int i;
14914
14915         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14916                 struct intel_quirk *q = &intel_quirks[i];
14917
14918                 if (d->device == q->device &&
14919                     (d->subsystem_vendor == q->subsystem_vendor ||
14920                      q->subsystem_vendor == PCI_ANY_ID) &&
14921                     (d->subsystem_device == q->subsystem_device ||
14922                      q->subsystem_device == PCI_ANY_ID))
14923                         q->hook(dev);
14924         }
14925         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14926                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14927                         intel_dmi_quirks[i].hook(dev);
14928         }
14929 }
14930
14931 /* Disable the VGA plane that we never use */
14932 static void i915_disable_vga(struct drm_device *dev)
14933 {
14934         struct drm_i915_private *dev_priv = dev->dev_private;
14935         u8 sr1;
14936         u32 vga_reg = i915_vgacntrl_reg(dev);
14937
14938         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14939         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14940         outb(SR01, VGA_SR_INDEX);
14941         sr1 = inb(VGA_SR_DATA);
14942         outb(sr1 | 1<<5, VGA_SR_DATA);
14943         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14944         udelay(300);
14945
14946         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14947         POSTING_READ(vga_reg);
14948 }
14949
14950 void intel_modeset_init_hw(struct drm_device *dev)
14951 {
14952         intel_update_cdclk(dev);
14953         intel_prepare_ddi(dev);
14954         intel_init_clock_gating(dev);
14955         intel_enable_gt_powersave(dev);
14956 }
14957
14958 void intel_modeset_init(struct drm_device *dev)
14959 {
14960         struct drm_i915_private *dev_priv = dev->dev_private;
14961         int sprite, ret;
14962         enum pipe pipe;
14963         struct intel_crtc *crtc;
14964
14965         drm_mode_config_init(dev);
14966
14967         dev->mode_config.min_width = 0;
14968         dev->mode_config.min_height = 0;
14969
14970         dev->mode_config.preferred_depth = 24;
14971         dev->mode_config.prefer_shadow = 1;
14972
14973         dev->mode_config.allow_fb_modifiers = true;
14974
14975         dev->mode_config.funcs = &intel_mode_funcs;
14976
14977         intel_init_quirks(dev);
14978
14979         intel_init_pm(dev);
14980
14981         if (INTEL_INFO(dev)->num_pipes == 0)
14982                 return;
14983
14984         intel_init_display(dev);
14985         intel_init_audio(dev);
14986
14987         if (IS_GEN2(dev)) {
14988                 dev->mode_config.max_width = 2048;
14989                 dev->mode_config.max_height = 2048;
14990         } else if (IS_GEN3(dev)) {
14991                 dev->mode_config.max_width = 4096;
14992                 dev->mode_config.max_height = 4096;
14993         } else {
14994                 dev->mode_config.max_width = 8192;
14995                 dev->mode_config.max_height = 8192;
14996         }
14997
14998         if (IS_845G(dev) || IS_I865G(dev)) {
14999                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15000                 dev->mode_config.cursor_height = 1023;
15001         } else if (IS_GEN2(dev)) {
15002                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15003                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15004         } else {
15005                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15006                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15007         }
15008
15009         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15010
15011         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15012                       INTEL_INFO(dev)->num_pipes,
15013                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15014
15015         for_each_pipe(dev_priv, pipe) {
15016                 intel_crtc_init(dev, pipe);
15017                 for_each_sprite(dev_priv, pipe, sprite) {
15018                         ret = intel_plane_init(dev, pipe, sprite);
15019                         if (ret)
15020                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15021                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15022                 }
15023         }
15024
15025         intel_init_dpio(dev);
15026
15027         intel_shared_dpll_init(dev);
15028
15029         /* Just disable it once at startup */
15030         i915_disable_vga(dev);
15031         intel_setup_outputs(dev);
15032
15033         /* Just in case the BIOS is doing something questionable. */
15034         intel_fbc_disable(dev);
15035
15036         drm_modeset_lock_all(dev);
15037         intel_modeset_setup_hw_state(dev, false);
15038         drm_modeset_unlock_all(dev);
15039
15040         for_each_intel_crtc(dev, crtc) {
15041                 if (!crtc->active)
15042                         continue;
15043
15044                 /*
15045                  * Note that reserving the BIOS fb up front prevents us
15046                  * from stuffing other stolen allocations like the ring
15047                  * on top.  This prevents some ugliness at boot time, and
15048                  * can even allow for smooth boot transitions if the BIOS
15049                  * fb is large enough for the active pipe configuration.
15050                  */
15051                 if (dev_priv->display.get_initial_plane_config) {
15052                         dev_priv->display.get_initial_plane_config(crtc,
15053                                                            &crtc->plane_config);
15054                         /*
15055                          * If the fb is shared between multiple heads, we'll
15056                          * just get the first one.
15057                          */
15058                         intel_find_initial_plane_obj(crtc, &crtc->plane_config);
15059                 }
15060         }
15061 }
15062
15063 static void intel_enable_pipe_a(struct drm_device *dev)
15064 {
15065         struct intel_connector *connector;
15066         struct drm_connector *crt = NULL;
15067         struct intel_load_detect_pipe load_detect_temp;
15068         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15069
15070         /* We can't just switch on the pipe A, we need to set things up with a
15071          * proper mode and output configuration. As a gross hack, enable pipe A
15072          * by enabling the load detect pipe once. */
15073         for_each_intel_connector(dev, connector) {
15074                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15075                         crt = &connector->base;
15076                         break;
15077                 }
15078         }
15079
15080         if (!crt)
15081                 return;
15082
15083         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15084                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15085 }
15086
15087 static bool
15088 intel_check_plane_mapping(struct intel_crtc *crtc)
15089 {
15090         struct drm_device *dev = crtc->base.dev;
15091         struct drm_i915_private *dev_priv = dev->dev_private;
15092         u32 reg, val;
15093
15094         if (INTEL_INFO(dev)->num_pipes == 1)
15095                 return true;
15096
15097         reg = DSPCNTR(!crtc->plane);
15098         val = I915_READ(reg);
15099
15100         if ((val & DISPLAY_PLANE_ENABLE) &&
15101             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15102                 return false;
15103
15104         return true;
15105 }
15106
15107 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15108 {
15109         struct drm_device *dev = crtc->base.dev;
15110         struct drm_i915_private *dev_priv = dev->dev_private;
15111         u32 reg;
15112
15113         /* Clear any frame start delays used for debugging left by the BIOS */
15114         reg = PIPECONF(crtc->config->cpu_transcoder);
15115         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15116
15117         /* restore vblank interrupts to correct state */
15118         drm_crtc_vblank_reset(&crtc->base);
15119         if (crtc->active) {
15120                 update_scanline_offset(crtc);
15121                 drm_crtc_vblank_on(&crtc->base);
15122         }
15123
15124         /* We need to sanitize the plane -> pipe mapping first because this will
15125          * disable the crtc (and hence change the state) if it is wrong. Note
15126          * that gen4+ has a fixed plane -> pipe mapping.  */
15127         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15128                 struct intel_connector *connector;
15129                 bool plane;
15130
15131                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15132                               crtc->base.base.id);
15133
15134                 /* Pipe has the wrong plane attached and the plane is active.
15135                  * Temporarily change the plane mapping and disable everything
15136                  * ...  */
15137                 plane = crtc->plane;
15138                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15139                 crtc->base.primary->crtc = &crtc->base;
15140                 crtc->plane = !plane;
15141                 intel_crtc_control(&crtc->base, false);
15142                 crtc->plane = plane;
15143
15144                 /* ... and break all links. */
15145                 for_each_intel_connector(dev, connector) {
15146                         if (connector->encoder->base.crtc != &crtc->base)
15147                                 continue;
15148
15149                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15150                         connector->base.encoder = NULL;
15151                 }
15152                 /* multiple connectors may have the same encoder:
15153                  *  handle them and break crtc link separately */
15154                 for_each_intel_connector(dev, connector)
15155                         if (connector->encoder->base.crtc == &crtc->base) {
15156                                 connector->encoder->base.crtc = NULL;
15157                                 connector->encoder->connectors_active = false;
15158                         }
15159
15160                 WARN_ON(crtc->active);
15161                 crtc->base.state->enable = false;
15162                 crtc->base.state->active = false;
15163                 crtc->base.enabled = false;
15164         }
15165
15166         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15167             crtc->pipe == PIPE_A && !crtc->active) {
15168                 /* BIOS forgot to enable pipe A, this mostly happens after
15169                  * resume. Force-enable the pipe to fix this, the update_dpms
15170                  * call below we restore the pipe to the right state, but leave
15171                  * the required bits on. */
15172                 intel_enable_pipe_a(dev);
15173         }
15174
15175         /* Adjust the state of the output pipe according to whether we
15176          * have active connectors/encoders. */
15177         intel_crtc_update_dpms(&crtc->base);
15178
15179         if (crtc->active != crtc->base.state->active) {
15180                 struct intel_encoder *encoder;
15181
15182                 /* This can happen either due to bugs in the get_hw_state
15183                  * functions or because the pipe is force-enabled due to the
15184                  * pipe A quirk. */
15185                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15186                               crtc->base.base.id,
15187                               crtc->base.state->enable ? "enabled" : "disabled",
15188                               crtc->active ? "enabled" : "disabled");
15189
15190                 crtc->base.state->enable = crtc->active;
15191                 crtc->base.state->active = crtc->active;
15192                 crtc->base.enabled = crtc->active;
15193
15194                 /* Because we only establish the connector -> encoder ->
15195                  * crtc links if something is active, this means the
15196                  * crtc is now deactivated. Break the links. connector
15197                  * -> encoder links are only establish when things are
15198                  *  actually up, hence no need to break them. */
15199                 WARN_ON(crtc->active);
15200
15201                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15202                         WARN_ON(encoder->connectors_active);
15203                         encoder->base.crtc = NULL;
15204                 }
15205         }
15206
15207         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15208                 /*
15209                  * We start out with underrun reporting disabled to avoid races.
15210                  * For correct bookkeeping mark this on active crtcs.
15211                  *
15212                  * Also on gmch platforms we dont have any hardware bits to
15213                  * disable the underrun reporting. Which means we need to start
15214                  * out with underrun reporting disabled also on inactive pipes,
15215                  * since otherwise we'll complain about the garbage we read when
15216                  * e.g. coming up after runtime pm.
15217                  *
15218                  * No protection against concurrent access is required - at
15219                  * worst a fifo underrun happens which also sets this to false.
15220                  */
15221                 crtc->cpu_fifo_underrun_disabled = true;
15222                 crtc->pch_fifo_underrun_disabled = true;
15223         }
15224 }
15225
15226 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15227 {
15228         struct intel_connector *connector;
15229         struct drm_device *dev = encoder->base.dev;
15230
15231         /* We need to check both for a crtc link (meaning that the
15232          * encoder is active and trying to read from a pipe) and the
15233          * pipe itself being active. */
15234         bool has_active_crtc = encoder->base.crtc &&
15235                 to_intel_crtc(encoder->base.crtc)->active;
15236
15237         if (encoder->connectors_active && !has_active_crtc) {
15238                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15239                               encoder->base.base.id,
15240                               encoder->base.name);
15241
15242                 /* Connector is active, but has no active pipe. This is
15243                  * fallout from our resume register restoring. Disable
15244                  * the encoder manually again. */
15245                 if (encoder->base.crtc) {
15246                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15247                                       encoder->base.base.id,
15248                                       encoder->base.name);
15249                         encoder->disable(encoder);
15250                         if (encoder->post_disable)
15251                                 encoder->post_disable(encoder);
15252                 }
15253                 encoder->base.crtc = NULL;
15254                 encoder->connectors_active = false;
15255
15256                 /* Inconsistent output/port/pipe state happens presumably due to
15257                  * a bug in one of the get_hw_state functions. Or someplace else
15258                  * in our code, like the register restore mess on resume. Clamp
15259                  * things to off as a safer default. */
15260                 for_each_intel_connector(dev, connector) {
15261                         if (connector->encoder != encoder)
15262                                 continue;
15263                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15264                         connector->base.encoder = NULL;
15265                 }
15266         }
15267         /* Enabled encoders without active connectors will be fixed in
15268          * the crtc fixup. */
15269 }
15270
15271 void i915_redisable_vga_power_on(struct drm_device *dev)
15272 {
15273         struct drm_i915_private *dev_priv = dev->dev_private;
15274         u32 vga_reg = i915_vgacntrl_reg(dev);
15275
15276         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15277                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15278                 i915_disable_vga(dev);
15279         }
15280 }
15281
15282 void i915_redisable_vga(struct drm_device *dev)
15283 {
15284         struct drm_i915_private *dev_priv = dev->dev_private;
15285
15286         /* This function can be called both from intel_modeset_setup_hw_state or
15287          * at a very early point in our resume sequence, where the power well
15288          * structures are not yet restored. Since this function is at a very
15289          * paranoid "someone might have enabled VGA while we were not looking"
15290          * level, just check if the power well is enabled instead of trying to
15291          * follow the "don't touch the power well if we don't need it" policy
15292          * the rest of the driver uses. */
15293         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15294                 return;
15295
15296         i915_redisable_vga_power_on(dev);
15297 }
15298
15299 static bool primary_get_hw_state(struct intel_crtc *crtc)
15300 {
15301         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15302
15303         if (!crtc->base.enabled)
15304                 return false;
15305
15306         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
15307 }
15308
15309 static int readout_hw_crtc_state(struct drm_atomic_state *state,
15310                                  struct intel_crtc *crtc)
15311 {
15312         struct drm_i915_private *dev_priv = to_i915(state->dev);
15313         struct intel_crtc_state *crtc_state;
15314         struct drm_plane *primary = crtc->base.primary;
15315         struct drm_plane_state *drm_plane_state;
15316         struct intel_plane_state *plane_state;
15317         int ret;
15318
15319         crtc_state = intel_atomic_get_crtc_state(state, crtc);
15320         if (IS_ERR(crtc_state))
15321                 return PTR_ERR(crtc_state);
15322
15323         ret = drm_atomic_add_affected_planes(state, &crtc->base);
15324         if (ret)
15325                 return ret;
15326
15327         memset(crtc_state, 0, sizeof(*crtc_state));
15328         crtc_state->base.crtc = &crtc->base;
15329         crtc_state->base.state = state;
15330
15331         crtc_state->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15332
15333         crtc_state->base.enable = crtc_state->base.active =
15334         crtc->base.enabled = dev_priv->display.get_pipe_config(crtc, crtc_state);
15335
15336         /* update transitional state */
15337         crtc->active = crtc_state->base.active;
15338         crtc->config = crtc_state;
15339
15340         drm_plane_state = drm_atomic_get_plane_state(state, primary);
15341         if (IS_ERR(drm_plane_state))
15342                 return PTR_ERR(drm_plane_state);
15343
15344         plane_state = to_intel_plane_state(drm_plane_state);
15345         plane_state->visible = primary_get_hw_state(crtc);
15346
15347         if (plane_state->visible) {
15348                 primary->crtc = &crtc->base;
15349                 crtc_state->base.plane_mask |= 1 << drm_plane_index(primary);
15350         } else
15351                 crtc_state->base.plane_mask &= ~(1 << drm_plane_index(primary));
15352
15353         DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15354                       crtc->base.base.id,
15355                       crtc_state->base.active ? "enabled" : "disabled");
15356
15357         return 0;
15358 }
15359
15360 static int readout_hw_pll_state(struct drm_atomic_state *state)
15361 {
15362         struct drm_i915_private *dev_priv = to_i915(state->dev);
15363         struct intel_shared_dpll_config *shared_dpll;
15364         struct intel_crtc *crtc;
15365         struct intel_crtc_state *crtc_state;
15366         int i;
15367
15368         shared_dpll = intel_atomic_get_shared_dpll_state(state);
15369         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15370                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15371
15372                 pll->on = pll->get_hw_state(dev_priv, pll,
15373                                             &shared_dpll[i].hw_state);
15374
15375                 pll->active = 0;
15376                 shared_dpll[i].crtc_mask = 0;
15377
15378                 for_each_intel_crtc(state->dev, crtc) {
15379                         crtc_state = intel_atomic_get_crtc_state(state, crtc);
15380                         if (IS_ERR(crtc_state))
15381                                 return PTR_ERR(crtc_state);
15382
15383                         if (crtc_state->base.active &&
15384                             crtc_state->shared_dpll == i) {
15385                                 pll->active++;
15386                                 shared_dpll[i].crtc_mask |=
15387                                         1 << crtc->pipe;
15388                         }
15389                 }
15390
15391                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15392                               pll->name, shared_dpll[i].crtc_mask,
15393                               pll->on);
15394
15395                 if (shared_dpll[i].crtc_mask)
15396                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15397         }
15398
15399         return 0;
15400 }
15401
15402 static struct drm_connector_state *
15403 get_connector_state_for_encoder(struct drm_atomic_state *state,
15404                                 struct intel_encoder *encoder)
15405 {
15406         struct drm_connector *connector;
15407         struct drm_connector_state *connector_state;
15408         int i;
15409
15410         for_each_connector_in_state(state, connector, connector_state, i)
15411                 if (connector_state->best_encoder == &encoder->base)
15412                         return connector_state;
15413
15414         return NULL;
15415 }
15416
15417 static int readout_hw_connector_encoder_state(struct drm_atomic_state *state)
15418 {
15419         struct drm_device *dev = state->dev;
15420         struct drm_i915_private *dev_priv = to_i915(state->dev);
15421         struct intel_crtc *crtc;
15422         struct drm_crtc_state *drm_crtc_state;
15423         struct intel_crtc_state *crtc_state;
15424         struct intel_encoder *encoder;
15425         struct intel_connector *connector;
15426         struct drm_connector_state *connector_state;
15427         enum pipe pipe;
15428
15429         for_each_intel_connector(dev, connector) {
15430                 connector_state =
15431                         drm_atomic_get_connector_state(state, &connector->base);
15432                 if (IS_ERR(connector_state))
15433                         return PTR_ERR(connector_state);
15434
15435                 if (connector->get_hw_state(connector)) {
15436                         connector->base.dpms = DRM_MODE_DPMS_ON;
15437                         connector->base.encoder = &connector->encoder->base;
15438                 } else {
15439                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15440                         connector->base.encoder = NULL;
15441                 }
15442
15443                 /* We'll update the crtc field when reading encoder state */
15444                 connector_state->crtc = NULL;
15445
15446                 connector_state->best_encoder = connector->base.encoder;
15447
15448                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15449                               connector->base.base.id,
15450                               connector->base.name,
15451                               connector->base.encoder ? "enabled" : "disabled");
15452         }
15453
15454         for_each_intel_encoder(dev, encoder) {
15455                 pipe = 0;
15456
15457                 connector_state =
15458                         get_connector_state_for_encoder(state, encoder);
15459
15460                 encoder->connectors_active = !!connector_state;
15461
15462                 if (encoder->get_hw_state(encoder, &pipe)) {
15463                         encoder->base.crtc =
15464                                 dev_priv->pipe_to_crtc_mapping[pipe];
15465                         crtc = to_intel_crtc(encoder->base.crtc);
15466
15467                         drm_crtc_state =
15468                                 state->crtc_states[drm_crtc_index(&crtc->base)];
15469                         crtc_state = to_intel_crtc_state(drm_crtc_state);
15470
15471                         encoder->get_config(encoder, crtc_state);
15472
15473                         if (connector_state)
15474                                 connector_state->crtc = &crtc->base;
15475                 } else {
15476                         encoder->base.crtc = NULL;
15477                 }
15478
15479                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15480                               encoder->base.base.id,
15481                               encoder->base.name,
15482                               encoder->base.crtc ? "enabled" : "disabled",
15483                               pipe_name(pipe));
15484         }
15485
15486         return 0;
15487 }
15488
15489 static struct drm_atomic_state *
15490 intel_modeset_readout_hw_state(struct drm_device *dev)
15491 {
15492         struct intel_crtc *crtc;
15493         int ret = 0;
15494
15495         struct drm_atomic_state *state;
15496
15497         state = drm_atomic_state_alloc(dev);
15498         if (!state)
15499                 return ERR_PTR(-ENOMEM);
15500
15501         state->acquire_ctx = dev->mode_config.acquire_ctx;
15502
15503         for_each_intel_crtc(dev, crtc) {
15504                 ret = readout_hw_crtc_state(state, crtc);
15505                 if (ret)
15506                         goto err_free;
15507         }
15508
15509         ret = readout_hw_pll_state(state);
15510         if (ret)
15511                 goto err_free;
15512
15513         ret = readout_hw_connector_encoder_state(state);
15514         if (ret)
15515                 goto err_free;
15516
15517         return state;
15518
15519 err_free:
15520         drm_atomic_state_free(state);
15521         return ERR_PTR(ret);
15522 }
15523
15524 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15525  * and i915 state tracking structures. */
15526 void intel_modeset_setup_hw_state(struct drm_device *dev,
15527                                   bool force_restore)
15528 {
15529         struct drm_i915_private *dev_priv = dev->dev_private;
15530         struct drm_crtc *crtc;
15531         struct drm_crtc_state *crtc_state;
15532         struct intel_encoder *encoder;
15533         struct drm_atomic_state *state;
15534         struct intel_shared_dpll_config shared_dplls[I915_NUM_PLLS];
15535         int i;
15536
15537         state = intel_modeset_readout_hw_state(dev);
15538         if (IS_ERR(state)) {
15539                 DRM_ERROR("Failed to read out hw state\n");
15540                 return;
15541         }
15542
15543         drm_atomic_helper_swap_state(dev, state);
15544
15545         /* swap sw/hw dpll state */
15546         intel_atomic_duplicate_dpll_state(dev_priv, shared_dplls);
15547         intel_shared_dpll_commit(state);
15548         memcpy(to_intel_atomic_state(state)->shared_dpll,
15549                shared_dplls, sizeof(*shared_dplls) * dev_priv->num_shared_dpll);
15550
15551         /* HW state is read out, now we need to sanitize this mess. */
15552         for_each_intel_encoder(dev, encoder) {
15553                 intel_sanitize_encoder(encoder);
15554         }
15555
15556         for_each_crtc_in_state(state, crtc, crtc_state, i) {
15557                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15558
15559                 /* prevent unnneeded restores with force_restore */
15560                 crtc_state->active_changed =
15561                 crtc_state->mode_changed =
15562                 crtc_state->planes_changed = false;
15563
15564                 if (crtc->enabled) {
15565                         intel_mode_from_pipe_config(&crtc->state->mode,
15566                                 to_intel_crtc_state(crtc->state));
15567
15568                         drm_mode_copy(&crtc->mode, &crtc->state->mode);
15569                         drm_mode_copy(&crtc->hwmode,
15570                                       &crtc->state->adjusted_mode);
15571                 }
15572
15573                 intel_sanitize_crtc(intel_crtc);
15574
15575                 /*
15576                  * sanitize_crtc may have forced an update of crtc->state,
15577                  * so reload in intel_dump_pipe_config
15578                  */
15579                 intel_dump_pipe_config(intel_crtc,
15580                                        to_intel_crtc_state(crtc->state),
15581                                        "[setup_hw_state]");
15582         }
15583
15584         intel_modeset_update_connector_atomic_state(dev);
15585
15586         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15587                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15588
15589                 if (!pll->on || pll->active)
15590                         continue;
15591
15592                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15593
15594                 pll->disable(dev_priv, pll);
15595                 pll->on = false;
15596         }
15597
15598         if (IS_GEN9(dev))
15599                 skl_wm_get_hw_state(dev);
15600         else if (HAS_PCH_SPLIT(dev))
15601                 ilk_wm_get_hw_state(dev);
15602
15603         if (force_restore) {
15604                 int ret;
15605
15606                 i915_redisable_vga(dev);
15607
15608                 ret = intel_set_mode(state);
15609                 if (ret) {
15610                         DRM_ERROR("Failed to restore previous mode\n");
15611                         drm_atomic_state_free(state);
15612                 }
15613         } else {
15614                 drm_atomic_state_free(state);
15615         }
15616
15617         intel_modeset_check_state(dev);
15618 }
15619
15620 void intel_modeset_gem_init(struct drm_device *dev)
15621 {
15622         struct drm_i915_private *dev_priv = dev->dev_private;
15623         struct drm_crtc *c;
15624         struct drm_i915_gem_object *obj;
15625         int ret;
15626
15627         mutex_lock(&dev->struct_mutex);
15628         intel_init_gt_powersave(dev);
15629         mutex_unlock(&dev->struct_mutex);
15630
15631         /*
15632          * There may be no VBT; and if the BIOS enabled SSC we can
15633          * just keep using it to avoid unnecessary flicker.  Whereas if the
15634          * BIOS isn't using it, don't assume it will work even if the VBT
15635          * indicates as much.
15636          */
15637         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15638                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15639                                                 DREF_SSC1_ENABLE);
15640
15641         intel_modeset_init_hw(dev);
15642
15643         intel_setup_overlay(dev);
15644
15645         /*
15646          * Make sure any fbs we allocated at startup are properly
15647          * pinned & fenced.  When we do the allocation it's too early
15648          * for this.
15649          */
15650         for_each_crtc(dev, c) {
15651                 obj = intel_fb_obj(c->primary->fb);
15652                 if (obj == NULL)
15653                         continue;
15654
15655                 mutex_lock(&dev->struct_mutex);
15656                 ret = intel_pin_and_fence_fb_obj(c->primary,
15657                                                  c->primary->fb,
15658                                                  c->primary->state,
15659                                                  NULL);
15660                 mutex_unlock(&dev->struct_mutex);
15661                 if (ret) {
15662                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15663                                   to_intel_crtc(c)->pipe);
15664                         drm_framebuffer_unreference(c->primary->fb);
15665                         c->primary->fb = NULL;
15666                         c->primary->crtc = c->primary->state->crtc = NULL;
15667                         update_state_fb(c->primary);
15668                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15669                 }
15670         }
15671
15672         intel_backlight_register(dev);
15673 }
15674
15675 void intel_connector_unregister(struct intel_connector *intel_connector)
15676 {
15677         struct drm_connector *connector = &intel_connector->base;
15678
15679         intel_panel_destroy_backlight(connector);
15680         drm_connector_unregister(connector);
15681 }
15682
15683 void intel_modeset_cleanup(struct drm_device *dev)
15684 {
15685         struct drm_i915_private *dev_priv = dev->dev_private;
15686         struct drm_connector *connector;
15687
15688         intel_disable_gt_powersave(dev);
15689
15690         intel_backlight_unregister(dev);
15691
15692         /*
15693          * Interrupts and polling as the first thing to avoid creating havoc.
15694          * Too much stuff here (turning of connectors, ...) would
15695          * experience fancy races otherwise.
15696          */
15697         intel_irq_uninstall(dev_priv);
15698
15699         /*
15700          * Due to the hpd irq storm handling the hotplug work can re-arm the
15701          * poll handlers. Hence disable polling after hpd handling is shut down.
15702          */
15703         drm_kms_helper_poll_fini(dev);
15704
15705         mutex_lock(&dev->struct_mutex);
15706
15707         intel_unregister_dsm_handler();
15708
15709         intel_fbc_disable(dev);
15710
15711         mutex_unlock(&dev->struct_mutex);
15712
15713         /* flush any delayed tasks or pending work */
15714         flush_scheduled_work();
15715
15716         /* destroy the backlight and sysfs files before encoders/connectors */
15717         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15718                 struct intel_connector *intel_connector;
15719
15720                 intel_connector = to_intel_connector(connector);
15721                 intel_connector->unregister(intel_connector);
15722         }
15723
15724         drm_mode_config_cleanup(dev);
15725
15726         intel_cleanup_overlay(dev);
15727
15728         mutex_lock(&dev->struct_mutex);
15729         intel_cleanup_gt_powersave(dev);
15730         mutex_unlock(&dev->struct_mutex);
15731 }
15732
15733 /*
15734  * Return which encoder is currently attached for connector.
15735  */
15736 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15737 {
15738         return &intel_attached_encoder(connector)->base;
15739 }
15740
15741 void intel_connector_attach_encoder(struct intel_connector *connector,
15742                                     struct intel_encoder *encoder)
15743 {
15744         connector->encoder = encoder;
15745         drm_mode_connector_attach_encoder(&connector->base,
15746                                           &encoder->base);
15747 }
15748
15749 /*
15750  * set vga decode state - true == enable VGA decode
15751  */
15752 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15753 {
15754         struct drm_i915_private *dev_priv = dev->dev_private;
15755         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15756         u16 gmch_ctrl;
15757
15758         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15759                 DRM_ERROR("failed to read control word\n");
15760                 return -EIO;
15761         }
15762
15763         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15764                 return 0;
15765
15766         if (state)
15767                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15768         else
15769                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15770
15771         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15772                 DRM_ERROR("failed to write control word\n");
15773                 return -EIO;
15774         }
15775
15776         return 0;
15777 }
15778
15779 struct intel_display_error_state {
15780
15781         u32 power_well_driver;
15782
15783         int num_transcoders;
15784
15785         struct intel_cursor_error_state {
15786                 u32 control;
15787                 u32 position;
15788                 u32 base;
15789                 u32 size;
15790         } cursor[I915_MAX_PIPES];
15791
15792         struct intel_pipe_error_state {
15793                 bool power_domain_on;
15794                 u32 source;
15795                 u32 stat;
15796         } pipe[I915_MAX_PIPES];
15797
15798         struct intel_plane_error_state {
15799                 u32 control;
15800                 u32 stride;
15801                 u32 size;
15802                 u32 pos;
15803                 u32 addr;
15804                 u32 surface;
15805                 u32 tile_offset;
15806         } plane[I915_MAX_PIPES];
15807
15808         struct intel_transcoder_error_state {
15809                 bool power_domain_on;
15810                 enum transcoder cpu_transcoder;
15811
15812                 u32 conf;
15813
15814                 u32 htotal;
15815                 u32 hblank;
15816                 u32 hsync;
15817                 u32 vtotal;
15818                 u32 vblank;
15819                 u32 vsync;
15820         } transcoder[4];
15821 };
15822
15823 struct intel_display_error_state *
15824 intel_display_capture_error_state(struct drm_device *dev)
15825 {
15826         struct drm_i915_private *dev_priv = dev->dev_private;
15827         struct intel_display_error_state *error;
15828         int transcoders[] = {
15829                 TRANSCODER_A,
15830                 TRANSCODER_B,
15831                 TRANSCODER_C,
15832                 TRANSCODER_EDP,
15833         };
15834         int i;
15835
15836         if (INTEL_INFO(dev)->num_pipes == 0)
15837                 return NULL;
15838
15839         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15840         if (error == NULL)
15841                 return NULL;
15842
15843         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15844                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15845
15846         for_each_pipe(dev_priv, i) {
15847                 error->pipe[i].power_domain_on =
15848                         __intel_display_power_is_enabled(dev_priv,
15849                                                          POWER_DOMAIN_PIPE(i));
15850                 if (!error->pipe[i].power_domain_on)
15851                         continue;
15852
15853                 error->cursor[i].control = I915_READ(CURCNTR(i));
15854                 error->cursor[i].position = I915_READ(CURPOS(i));
15855                 error->cursor[i].base = I915_READ(CURBASE(i));
15856
15857                 error->plane[i].control = I915_READ(DSPCNTR(i));
15858                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15859                 if (INTEL_INFO(dev)->gen <= 3) {
15860                         error->plane[i].size = I915_READ(DSPSIZE(i));
15861                         error->plane[i].pos = I915_READ(DSPPOS(i));
15862                 }
15863                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15864                         error->plane[i].addr = I915_READ(DSPADDR(i));
15865                 if (INTEL_INFO(dev)->gen >= 4) {
15866                         error->plane[i].surface = I915_READ(DSPSURF(i));
15867                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15868                 }
15869
15870                 error->pipe[i].source = I915_READ(PIPESRC(i));
15871
15872                 if (HAS_GMCH_DISPLAY(dev))
15873                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15874         }
15875
15876         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15877         if (HAS_DDI(dev_priv->dev))
15878                 error->num_transcoders++; /* Account for eDP. */
15879
15880         for (i = 0; i < error->num_transcoders; i++) {
15881                 enum transcoder cpu_transcoder = transcoders[i];
15882
15883                 error->transcoder[i].power_domain_on =
15884                         __intel_display_power_is_enabled(dev_priv,
15885                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15886                 if (!error->transcoder[i].power_domain_on)
15887                         continue;
15888
15889                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15890
15891                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15892                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15893                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15894                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15895                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15896                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15897                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15898         }
15899
15900         return error;
15901 }
15902
15903 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15904
15905 void
15906 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15907                                 struct drm_device *dev,
15908                                 struct intel_display_error_state *error)
15909 {
15910         struct drm_i915_private *dev_priv = dev->dev_private;
15911         int i;
15912
15913         if (!error)
15914                 return;
15915
15916         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15917         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15918                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15919                            error->power_well_driver);
15920         for_each_pipe(dev_priv, i) {
15921                 err_printf(m, "Pipe [%d]:\n", i);
15922                 err_printf(m, "  Power: %s\n",
15923                            error->pipe[i].power_domain_on ? "on" : "off");
15924                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15925                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15926
15927                 err_printf(m, "Plane [%d]:\n", i);
15928                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15929                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15930                 if (INTEL_INFO(dev)->gen <= 3) {
15931                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15932                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15933                 }
15934                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15935                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15936                 if (INTEL_INFO(dev)->gen >= 4) {
15937                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15938                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15939                 }
15940
15941                 err_printf(m, "Cursor [%d]:\n", i);
15942                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15943                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15944                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15945         }
15946
15947         for (i = 0; i < error->num_transcoders; i++) {
15948                 err_printf(m, "CPU transcoder: %c\n",
15949                            transcoder_name(error->transcoder[i].cpu_transcoder));
15950                 err_printf(m, "  Power: %s\n",
15951                            error->transcoder[i].power_domain_on ? "on" : "off");
15952                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15953                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15954                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15955                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15956                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15957                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15958                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15959         }
15960 }
15961
15962 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15963 {
15964         struct intel_crtc *crtc;
15965
15966         for_each_intel_crtc(dev, crtc) {
15967                 struct intel_unpin_work *work;
15968
15969                 spin_lock_irq(&dev->event_lock);
15970
15971                 work = crtc->unpin_work;
15972
15973                 if (work && work->event &&
15974                     work->event->base.file_priv == file) {
15975                         kfree(work->event);
15976                         work->event = NULL;
15977                 }
15978
15979                 spin_unlock_irq(&dev->event_lock);
15980         }
15981 }