drm/i915: simplify intel_encoder_commit
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *match_clock,
86                     intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *match_clock,
90                         intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                       int target, int refclk, intel_clock_t *match_clock,
95                       intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                            int target, int refclk, intel_clock_t *match_clock,
99                            intel_clock_t *best_clock);
100
101 static inline u32 /* units of 100MHz */
102 intel_fdi_link_freq(struct drm_device *dev)
103 {
104         if (IS_GEN5(dev)) {
105                 struct drm_i915_private *dev_priv = dev->dev_private;
106                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
107         } else
108                 return 27;
109 }
110
111 static const intel_limit_t intel_limits_i8xx_dvo = {
112         .dot = { .min = 25000, .max = 350000 },
113         .vco = { .min = 930000, .max = 1400000 },
114         .n = { .min = 3, .max = 16 },
115         .m = { .min = 96, .max = 140 },
116         .m1 = { .min = 18, .max = 26 },
117         .m2 = { .min = 6, .max = 16 },
118         .p = { .min = 4, .max = 128 },
119         .p1 = { .min = 2, .max = 33 },
120         .p2 = { .dot_limit = 165000,
121                 .p2_slow = 4, .p2_fast = 2 },
122         .find_pll = intel_find_best_PLL,
123 };
124
125 static const intel_limit_t intel_limits_i8xx_lvds = {
126         .dot = { .min = 25000, .max = 350000 },
127         .vco = { .min = 930000, .max = 1400000 },
128         .n = { .min = 3, .max = 16 },
129         .m = { .min = 96, .max = 140 },
130         .m1 = { .min = 18, .max = 26 },
131         .m2 = { .min = 6, .max = 16 },
132         .p = { .min = 4, .max = 128 },
133         .p1 = { .min = 1, .max = 6 },
134         .p2 = { .dot_limit = 165000,
135                 .p2_slow = 14, .p2_fast = 7 },
136         .find_pll = intel_find_best_PLL,
137 };
138
139 static const intel_limit_t intel_limits_i9xx_sdvo = {
140         .dot = { .min = 20000, .max = 400000 },
141         .vco = { .min = 1400000, .max = 2800000 },
142         .n = { .min = 1, .max = 6 },
143         .m = { .min = 70, .max = 120 },
144         .m1 = { .min = 10, .max = 22 },
145         .m2 = { .min = 5, .max = 9 },
146         .p = { .min = 5, .max = 80 },
147         .p1 = { .min = 1, .max = 8 },
148         .p2 = { .dot_limit = 200000,
149                 .p2_slow = 10, .p2_fast = 5 },
150         .find_pll = intel_find_best_PLL,
151 };
152
153 static const intel_limit_t intel_limits_i9xx_lvds = {
154         .dot = { .min = 20000, .max = 400000 },
155         .vco = { .min = 1400000, .max = 2800000 },
156         .n = { .min = 1, .max = 6 },
157         .m = { .min = 70, .max = 120 },
158         .m1 = { .min = 10, .max = 22 },
159         .m2 = { .min = 5, .max = 9 },
160         .p = { .min = 7, .max = 98 },
161         .p1 = { .min = 1, .max = 8 },
162         .p2 = { .dot_limit = 112000,
163                 .p2_slow = 14, .p2_fast = 7 },
164         .find_pll = intel_find_best_PLL,
165 };
166
167
168 static const intel_limit_t intel_limits_g4x_sdvo = {
169         .dot = { .min = 25000, .max = 270000 },
170         .vco = { .min = 1750000, .max = 3500000},
171         .n = { .min = 1, .max = 4 },
172         .m = { .min = 104, .max = 138 },
173         .m1 = { .min = 17, .max = 23 },
174         .m2 = { .min = 5, .max = 11 },
175         .p = { .min = 10, .max = 30 },
176         .p1 = { .min = 1, .max = 3},
177         .p2 = { .dot_limit = 270000,
178                 .p2_slow = 10,
179                 .p2_fast = 10
180         },
181         .find_pll = intel_g4x_find_best_PLL,
182 };
183
184 static const intel_limit_t intel_limits_g4x_hdmi = {
185         .dot = { .min = 22000, .max = 400000 },
186         .vco = { .min = 1750000, .max = 3500000},
187         .n = { .min = 1, .max = 4 },
188         .m = { .min = 104, .max = 138 },
189         .m1 = { .min = 16, .max = 23 },
190         .m2 = { .min = 5, .max = 11 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8},
193         .p2 = { .dot_limit = 165000,
194                 .p2_slow = 10, .p2_fast = 5 },
195         .find_pll = intel_g4x_find_best_PLL,
196 };
197
198 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
199         .dot = { .min = 20000, .max = 115000 },
200         .vco = { .min = 1750000, .max = 3500000 },
201         .n = { .min = 1, .max = 3 },
202         .m = { .min = 104, .max = 138 },
203         .m1 = { .min = 17, .max = 23 },
204         .m2 = { .min = 5, .max = 11 },
205         .p = { .min = 28, .max = 112 },
206         .p1 = { .min = 2, .max = 8 },
207         .p2 = { .dot_limit = 0,
208                 .p2_slow = 14, .p2_fast = 14
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
214         .dot = { .min = 80000, .max = 224000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 14, .max = 42 },
221         .p1 = { .min = 2, .max = 6 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 7, .p2_fast = 7
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_display_port = {
229         .dot = { .min = 161670, .max = 227000 },
230         .vco = { .min = 1750000, .max = 3500000},
231         .n = { .min = 1, .max = 2 },
232         .m = { .min = 97, .max = 108 },
233         .m1 = { .min = 0x10, .max = 0x12 },
234         .m2 = { .min = 0x05, .max = 0x06 },
235         .p = { .min = 10, .max = 20 },
236         .p1 = { .min = 1, .max = 2},
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 10, .p2_fast = 10 },
239         .find_pll = intel_find_pll_g4x_dp,
240 };
241
242 static const intel_limit_t intel_limits_pineview_sdvo = {
243         .dot = { .min = 20000, .max = 400000},
244         .vco = { .min = 1700000, .max = 3500000 },
245         /* Pineview's Ncounter is a ring counter */
246         .n = { .min = 3, .max = 6 },
247         .m = { .min = 2, .max = 256 },
248         /* Pineview only has one combined m divider, which we treat as m2. */
249         .m1 = { .min = 0, .max = 0 },
250         .m2 = { .min = 0, .max = 254 },
251         .p = { .min = 5, .max = 80 },
252         .p1 = { .min = 1, .max = 8 },
253         .p2 = { .dot_limit = 200000,
254                 .p2_slow = 10, .p2_fast = 5 },
255         .find_pll = intel_find_best_PLL,
256 };
257
258 static const intel_limit_t intel_limits_pineview_lvds = {
259         .dot = { .min = 20000, .max = 400000 },
260         .vco = { .min = 1700000, .max = 3500000 },
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         .m1 = { .min = 0, .max = 0 },
264         .m2 = { .min = 0, .max = 254 },
265         .p = { .min = 7, .max = 112 },
266         .p1 = { .min = 1, .max = 8 },
267         .p2 = { .dot_limit = 112000,
268                 .p2_slow = 14, .p2_fast = 14 },
269         .find_pll = intel_find_best_PLL,
270 };
271
272 /* Ironlake / Sandybridge
273  *
274  * We calculate clock using (register_value + 2) for N/M1/M2, so here
275  * the range value for them is (actual_value - 2).
276  */
277 static const intel_limit_t intel_limits_ironlake_dac = {
278         .dot = { .min = 25000, .max = 350000 },
279         .vco = { .min = 1760000, .max = 3510000 },
280         .n = { .min = 1, .max = 5 },
281         .m = { .min = 79, .max = 127 },
282         .m1 = { .min = 12, .max = 22 },
283         .m2 = { .min = 5, .max = 9 },
284         .p = { .min = 5, .max = 80 },
285         .p1 = { .min = 1, .max = 8 },
286         .p2 = { .dot_limit = 225000,
287                 .p2_slow = 10, .p2_fast = 5 },
288         .find_pll = intel_g4x_find_best_PLL,
289 };
290
291 static const intel_limit_t intel_limits_ironlake_single_lvds = {
292         .dot = { .min = 25000, .max = 350000 },
293         .vco = { .min = 1760000, .max = 3510000 },
294         .n = { .min = 1, .max = 3 },
295         .m = { .min = 79, .max = 118 },
296         .m1 = { .min = 12, .max = 22 },
297         .m2 = { .min = 5, .max = 9 },
298         .p = { .min = 28, .max = 112 },
299         .p1 = { .min = 2, .max = 8 },
300         .p2 = { .dot_limit = 225000,
301                 .p2_slow = 14, .p2_fast = 14 },
302         .find_pll = intel_g4x_find_best_PLL,
303 };
304
305 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
306         .dot = { .min = 25000, .max = 350000 },
307         .vco = { .min = 1760000, .max = 3510000 },
308         .n = { .min = 1, .max = 3 },
309         .m = { .min = 79, .max = 127 },
310         .m1 = { .min = 12, .max = 22 },
311         .m2 = { .min = 5, .max = 9 },
312         .p = { .min = 14, .max = 56 },
313         .p1 = { .min = 2, .max = 8 },
314         .p2 = { .dot_limit = 225000,
315                 .p2_slow = 7, .p2_fast = 7 },
316         .find_pll = intel_g4x_find_best_PLL,
317 };
318
319 /* LVDS 100mhz refclk limits. */
320 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 2 },
324         .m = { .min = 79, .max = 126 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 126 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 42 },
342         .p1 = { .min = 2, .max = 6 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 static const intel_limit_t intel_limits_ironlake_display_port = {
349         .dot = { .min = 25000, .max = 350000 },
350         .vco = { .min = 1760000, .max = 3510000},
351         .n = { .min = 1, .max = 2 },
352         .m = { .min = 81, .max = 90 },
353         .m1 = { .min = 12, .max = 22 },
354         .m2 = { .min = 5, .max = 9 },
355         .p = { .min = 10, .max = 20 },
356         .p1 = { .min = 1, .max = 2},
357         .p2 = { .dot_limit = 0,
358                 .p2_slow = 10, .p2_fast = 10 },
359         .find_pll = intel_find_pll_ironlake_dp,
360 };
361
362 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
363 {
364         unsigned long flags;
365         u32 val = 0;
366
367         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
368         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
369                 DRM_ERROR("DPIO idle wait timed out\n");
370                 goto out_unlock;
371         }
372
373         I915_WRITE(DPIO_REG, reg);
374         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
375                    DPIO_BYTE);
376         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
377                 DRM_ERROR("DPIO read wait timed out\n");
378                 goto out_unlock;
379         }
380         val = I915_READ(DPIO_DATA);
381
382 out_unlock:
383         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
384         return val;
385 }
386
387 static void vlv_init_dpio(struct drm_device *dev)
388 {
389         struct drm_i915_private *dev_priv = dev->dev_private;
390
391         /* Reset the DPIO config */
392         I915_WRITE(DPIO_CTL, 0);
393         POSTING_READ(DPIO_CTL);
394         I915_WRITE(DPIO_CTL, 1);
395         POSTING_READ(DPIO_CTL);
396 }
397
398 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
399 {
400         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
401         return 1;
402 }
403
404 static const struct dmi_system_id intel_dual_link_lvds[] = {
405         {
406                 .callback = intel_dual_link_lvds_callback,
407                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
408                 .matches = {
409                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
410                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
411                 },
412         },
413         { }     /* terminating entry */
414 };
415
416 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
417                               unsigned int reg)
418 {
419         unsigned int val;
420
421         /* use the module option value if specified */
422         if (i915_lvds_channel_mode > 0)
423                 return i915_lvds_channel_mode == 2;
424
425         if (dmi_check_system(intel_dual_link_lvds))
426                 return true;
427
428         if (dev_priv->lvds_val)
429                 val = dev_priv->lvds_val;
430         else {
431                 /* BIOS should set the proper LVDS register value at boot, but
432                  * in reality, it doesn't set the value when the lid is closed;
433                  * we need to check "the value to be set" in VBT when LVDS
434                  * register is uninitialized.
435                  */
436                 val = I915_READ(reg);
437                 if (!(val & ~LVDS_DETECTED))
438                         val = dev_priv->bios_lvds_val;
439                 dev_priv->lvds_val = val;
440         }
441         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
442 }
443
444 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
445                                                 int refclk)
446 {
447         struct drm_device *dev = crtc->dev;
448         struct drm_i915_private *dev_priv = dev->dev_private;
449         const intel_limit_t *limit;
450
451         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
452                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
453                         /* LVDS dual channel */
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_dual_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_dual_lvds;
458                 } else {
459                         if (refclk == 100000)
460                                 limit = &intel_limits_ironlake_single_lvds_100m;
461                         else
462                                 limit = &intel_limits_ironlake_single_lvds;
463                 }
464         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
465                         HAS_eDP)
466                 limit = &intel_limits_ironlake_display_port;
467         else
468                 limit = &intel_limits_ironlake_dac;
469
470         return limit;
471 }
472
473 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
474 {
475         struct drm_device *dev = crtc->dev;
476         struct drm_i915_private *dev_priv = dev->dev_private;
477         const intel_limit_t *limit;
478
479         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
480                 if (is_dual_link_lvds(dev_priv, LVDS))
481                         /* LVDS with dual channel */
482                         limit = &intel_limits_g4x_dual_channel_lvds;
483                 else
484                         /* LVDS with dual channel */
485                         limit = &intel_limits_g4x_single_channel_lvds;
486         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
487                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
488                 limit = &intel_limits_g4x_hdmi;
489         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
490                 limit = &intel_limits_g4x_sdvo;
491         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
492                 limit = &intel_limits_g4x_display_port;
493         } else /* The option is for other outputs */
494                 limit = &intel_limits_i9xx_sdvo;
495
496         return limit;
497 }
498
499 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
500 {
501         struct drm_device *dev = crtc->dev;
502         const intel_limit_t *limit;
503
504         if (HAS_PCH_SPLIT(dev))
505                 limit = intel_ironlake_limit(crtc, refclk);
506         else if (IS_G4X(dev)) {
507                 limit = intel_g4x_limit(crtc);
508         } else if (IS_PINEVIEW(dev)) {
509                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
510                         limit = &intel_limits_pineview_lvds;
511                 else
512                         limit = &intel_limits_pineview_sdvo;
513         } else if (!IS_GEN2(dev)) {
514                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
515                         limit = &intel_limits_i9xx_lvds;
516                 else
517                         limit = &intel_limits_i9xx_sdvo;
518         } else {
519                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
520                         limit = &intel_limits_i8xx_lvds;
521                 else
522                         limit = &intel_limits_i8xx_dvo;
523         }
524         return limit;
525 }
526
527 /* m1 is reserved as 0 in Pineview, n is a ring counter */
528 static void pineview_clock(int refclk, intel_clock_t *clock)
529 {
530         clock->m = clock->m2 + 2;
531         clock->p = clock->p1 * clock->p2;
532         clock->vco = refclk * clock->m / clock->n;
533         clock->dot = clock->vco / clock->p;
534 }
535
536 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
537 {
538         if (IS_PINEVIEW(dev)) {
539                 pineview_clock(refclk, clock);
540                 return;
541         }
542         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
543         clock->p = clock->p1 * clock->p2;
544         clock->vco = refclk * clock->m / (clock->n + 2);
545         clock->dot = clock->vco / clock->p;
546 }
547
548 /**
549  * Returns whether any output on the specified pipe is of the specified type
550  */
551 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
552 {
553         struct drm_device *dev = crtc->dev;
554         struct drm_mode_config *mode_config = &dev->mode_config;
555         struct intel_encoder *encoder;
556
557         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
558                 if (encoder->base.crtc == crtc && encoder->type == type)
559                         return true;
560
561         return false;
562 }
563
564 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
565 /**
566  * Returns whether the given set of divisors are valid for a given refclk with
567  * the given connectors.
568  */
569
570 static bool intel_PLL_is_valid(struct drm_device *dev,
571                                const intel_limit_t *limit,
572                                const intel_clock_t *clock)
573 {
574         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
575                 INTELPllInvalid("p1 out of range\n");
576         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
577                 INTELPllInvalid("p out of range\n");
578         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
579                 INTELPllInvalid("m2 out of range\n");
580         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
581                 INTELPllInvalid("m1 out of range\n");
582         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
583                 INTELPllInvalid("m1 <= m2\n");
584         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
585                 INTELPllInvalid("m out of range\n");
586         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
587                 INTELPllInvalid("n out of range\n");
588         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
589                 INTELPllInvalid("vco out of range\n");
590         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
591          * connector, etc., rather than just a single range.
592          */
593         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
594                 INTELPllInvalid("dot out of range\n");
595
596         return true;
597 }
598
599 static bool
600 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
601                     int target, int refclk, intel_clock_t *match_clock,
602                     intel_clock_t *best_clock)
603
604 {
605         struct drm_device *dev = crtc->dev;
606         struct drm_i915_private *dev_priv = dev->dev_private;
607         intel_clock_t clock;
608         int err = target;
609
610         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
611             (I915_READ(LVDS)) != 0) {
612                 /*
613                  * For LVDS, if the panel is on, just rely on its current
614                  * settings for dual-channel.  We haven't figured out how to
615                  * reliably set up different single/dual channel state, if we
616                  * even can.
617                  */
618                 if (is_dual_link_lvds(dev_priv, LVDS))
619                         clock.p2 = limit->p2.p2_fast;
620                 else
621                         clock.p2 = limit->p2.p2_slow;
622         } else {
623                 if (target < limit->p2.dot_limit)
624                         clock.p2 = limit->p2.p2_slow;
625                 else
626                         clock.p2 = limit->p2.p2_fast;
627         }
628
629         memset(best_clock, 0, sizeof(*best_clock));
630
631         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
632              clock.m1++) {
633                 for (clock.m2 = limit->m2.min;
634                      clock.m2 <= limit->m2.max; clock.m2++) {
635                         /* m1 is always 0 in Pineview */
636                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
637                                 break;
638                         for (clock.n = limit->n.min;
639                              clock.n <= limit->n.max; clock.n++) {
640                                 for (clock.p1 = limit->p1.min;
641                                         clock.p1 <= limit->p1.max; clock.p1++) {
642                                         int this_err;
643
644                                         intel_clock(dev, refclk, &clock);
645                                         if (!intel_PLL_is_valid(dev, limit,
646                                                                 &clock))
647                                                 continue;
648                                         if (match_clock &&
649                                             clock.p != match_clock->p)
650                                                 continue;
651
652                                         this_err = abs(clock.dot - target);
653                                         if (this_err < err) {
654                                                 *best_clock = clock;
655                                                 err = this_err;
656                                         }
657                                 }
658                         }
659                 }
660         }
661
662         return (err != target);
663 }
664
665 static bool
666 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
667                         int target, int refclk, intel_clock_t *match_clock,
668                         intel_clock_t *best_clock)
669 {
670         struct drm_device *dev = crtc->dev;
671         struct drm_i915_private *dev_priv = dev->dev_private;
672         intel_clock_t clock;
673         int max_n;
674         bool found;
675         /* approximately equals target * 0.00585 */
676         int err_most = (target >> 8) + (target >> 9);
677         found = false;
678
679         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
680                 int lvds_reg;
681
682                 if (HAS_PCH_SPLIT(dev))
683                         lvds_reg = PCH_LVDS;
684                 else
685                         lvds_reg = LVDS;
686                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
687                     LVDS_CLKB_POWER_UP)
688                         clock.p2 = limit->p2.p2_fast;
689                 else
690                         clock.p2 = limit->p2.p2_slow;
691         } else {
692                 if (target < limit->p2.dot_limit)
693                         clock.p2 = limit->p2.p2_slow;
694                 else
695                         clock.p2 = limit->p2.p2_fast;
696         }
697
698         memset(best_clock, 0, sizeof(*best_clock));
699         max_n = limit->n.max;
700         /* based on hardware requirement, prefer smaller n to precision */
701         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
702                 /* based on hardware requirement, prefere larger m1,m2 */
703                 for (clock.m1 = limit->m1.max;
704                      clock.m1 >= limit->m1.min; clock.m1--) {
705                         for (clock.m2 = limit->m2.max;
706                              clock.m2 >= limit->m2.min; clock.m2--) {
707                                 for (clock.p1 = limit->p1.max;
708                                      clock.p1 >= limit->p1.min; clock.p1--) {
709                                         int this_err;
710
711                                         intel_clock(dev, refclk, &clock);
712                                         if (!intel_PLL_is_valid(dev, limit,
713                                                                 &clock))
714                                                 continue;
715                                         if (match_clock &&
716                                             clock.p != match_clock->p)
717                                                 continue;
718
719                                         this_err = abs(clock.dot - target);
720                                         if (this_err < err_most) {
721                                                 *best_clock = clock;
722                                                 err_most = this_err;
723                                                 max_n = clock.n;
724                                                 found = true;
725                                         }
726                                 }
727                         }
728                 }
729         }
730         return found;
731 }
732
733 static bool
734 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
735                            int target, int refclk, intel_clock_t *match_clock,
736                            intel_clock_t *best_clock)
737 {
738         struct drm_device *dev = crtc->dev;
739         intel_clock_t clock;
740
741         if (target < 200000) {
742                 clock.n = 1;
743                 clock.p1 = 2;
744                 clock.p2 = 10;
745                 clock.m1 = 12;
746                 clock.m2 = 9;
747         } else {
748                 clock.n = 2;
749                 clock.p1 = 1;
750                 clock.p2 = 10;
751                 clock.m1 = 14;
752                 clock.m2 = 8;
753         }
754         intel_clock(dev, refclk, &clock);
755         memcpy(best_clock, &clock, sizeof(intel_clock_t));
756         return true;
757 }
758
759 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
760 static bool
761 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
762                       int target, int refclk, intel_clock_t *match_clock,
763                       intel_clock_t *best_clock)
764 {
765         intel_clock_t clock;
766         if (target < 200000) {
767                 clock.p1 = 2;
768                 clock.p2 = 10;
769                 clock.n = 2;
770                 clock.m1 = 23;
771                 clock.m2 = 8;
772         } else {
773                 clock.p1 = 1;
774                 clock.p2 = 10;
775                 clock.n = 1;
776                 clock.m1 = 14;
777                 clock.m2 = 2;
778         }
779         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
780         clock.p = (clock.p1 * clock.p2);
781         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
782         clock.vco = 0;
783         memcpy(best_clock, &clock, sizeof(intel_clock_t));
784         return true;
785 }
786
787 /**
788  * intel_wait_for_vblank - wait for vblank on a given pipe
789  * @dev: drm device
790  * @pipe: pipe to wait for
791  *
792  * Wait for vblank to occur on a given pipe.  Needed for various bits of
793  * mode setting code.
794  */
795 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
796 {
797         struct drm_i915_private *dev_priv = dev->dev_private;
798         int pipestat_reg = PIPESTAT(pipe);
799
800         /* Clear existing vblank status. Note this will clear any other
801          * sticky status fields as well.
802          *
803          * This races with i915_driver_irq_handler() with the result
804          * that either function could miss a vblank event.  Here it is not
805          * fatal, as we will either wait upon the next vblank interrupt or
806          * timeout.  Generally speaking intel_wait_for_vblank() is only
807          * called during modeset at which time the GPU should be idle and
808          * should *not* be performing page flips and thus not waiting on
809          * vblanks...
810          * Currently, the result of us stealing a vblank from the irq
811          * handler is that a single frame will be skipped during swapbuffers.
812          */
813         I915_WRITE(pipestat_reg,
814                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
815
816         /* Wait for vblank interrupt bit to set */
817         if (wait_for(I915_READ(pipestat_reg) &
818                      PIPE_VBLANK_INTERRUPT_STATUS,
819                      50))
820                 DRM_DEBUG_KMS("vblank wait timed out\n");
821 }
822
823 /*
824  * intel_wait_for_pipe_off - wait for pipe to turn off
825  * @dev: drm device
826  * @pipe: pipe to wait for
827  *
828  * After disabling a pipe, we can't wait for vblank in the usual way,
829  * spinning on the vblank interrupt status bit, since we won't actually
830  * see an interrupt when the pipe is disabled.
831  *
832  * On Gen4 and above:
833  *   wait for the pipe register state bit to turn off
834  *
835  * Otherwise:
836  *   wait for the display line value to settle (it usually
837  *   ends up stopping at the start of the next frame).
838  *
839  */
840 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
841 {
842         struct drm_i915_private *dev_priv = dev->dev_private;
843
844         if (INTEL_INFO(dev)->gen >= 4) {
845                 int reg = PIPECONF(pipe);
846
847                 /* Wait for the Pipe State to go off */
848                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
849                              100))
850                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
851         } else {
852                 u32 last_line, line_mask;
853                 int reg = PIPEDSL(pipe);
854                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
855
856                 if (IS_GEN2(dev))
857                         line_mask = DSL_LINEMASK_GEN2;
858                 else
859                         line_mask = DSL_LINEMASK_GEN3;
860
861                 /* Wait for the display line to settle */
862                 do {
863                         last_line = I915_READ(reg) & line_mask;
864                         mdelay(5);
865                 } while (((I915_READ(reg) & line_mask) != last_line) &&
866                          time_after(timeout, jiffies));
867                 if (time_after(jiffies, timeout))
868                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
869         }
870 }
871
872 static const char *state_string(bool enabled)
873 {
874         return enabled ? "on" : "off";
875 }
876
877 /* Only for pre-ILK configs */
878 static void assert_pll(struct drm_i915_private *dev_priv,
879                        enum pipe pipe, bool state)
880 {
881         int reg;
882         u32 val;
883         bool cur_state;
884
885         reg = DPLL(pipe);
886         val = I915_READ(reg);
887         cur_state = !!(val & DPLL_VCO_ENABLE);
888         WARN(cur_state != state,
889              "PLL state assertion failure (expected %s, current %s)\n",
890              state_string(state), state_string(cur_state));
891 }
892 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
893 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
894
895 /* For ILK+ */
896 static void assert_pch_pll(struct drm_i915_private *dev_priv,
897                            struct intel_crtc *intel_crtc, bool state)
898 {
899         int reg;
900         u32 val;
901         bool cur_state;
902
903         if (!intel_crtc->pch_pll) {
904                 WARN(1, "asserting PCH PLL enabled with no PLL\n");
905                 return;
906         }
907
908         if (HAS_PCH_CPT(dev_priv->dev)) {
909                 u32 pch_dpll;
910
911                 pch_dpll = I915_READ(PCH_DPLL_SEL);
912
913                 /* Make sure the selected PLL is enabled to the transcoder */
914                 WARN(!((pch_dpll >> (4 * intel_crtc->pipe)) & 8),
915                      "transcoder %d PLL not enabled\n", intel_crtc->pipe);
916         }
917
918         reg = intel_crtc->pch_pll->pll_reg;
919         val = I915_READ(reg);
920         cur_state = !!(val & DPLL_VCO_ENABLE);
921         WARN(cur_state != state,
922              "PCH PLL state assertion failure (expected %s, current %s)\n",
923              state_string(state), state_string(cur_state));
924 }
925 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
926 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
927
928 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
929                           enum pipe pipe, bool state)
930 {
931         int reg;
932         u32 val;
933         bool cur_state;
934
935         reg = FDI_TX_CTL(pipe);
936         val = I915_READ(reg);
937         cur_state = !!(val & FDI_TX_ENABLE);
938         WARN(cur_state != state,
939              "FDI TX state assertion failure (expected %s, current %s)\n",
940              state_string(state), state_string(cur_state));
941 }
942 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
943 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
944
945 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
946                           enum pipe pipe, bool state)
947 {
948         int reg;
949         u32 val;
950         bool cur_state;
951
952         reg = FDI_RX_CTL(pipe);
953         val = I915_READ(reg);
954         cur_state = !!(val & FDI_RX_ENABLE);
955         WARN(cur_state != state,
956              "FDI RX state assertion failure (expected %s, current %s)\n",
957              state_string(state), state_string(cur_state));
958 }
959 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
960 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
961
962 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
963                                       enum pipe pipe)
964 {
965         int reg;
966         u32 val;
967
968         /* ILK FDI PLL is always enabled */
969         if (dev_priv->info->gen == 5)
970                 return;
971
972         reg = FDI_TX_CTL(pipe);
973         val = I915_READ(reg);
974         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
975 }
976
977 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
978                                       enum pipe pipe)
979 {
980         int reg;
981         u32 val;
982
983         reg = FDI_RX_CTL(pipe);
984         val = I915_READ(reg);
985         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
986 }
987
988 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
989                                   enum pipe pipe)
990 {
991         int pp_reg, lvds_reg;
992         u32 val;
993         enum pipe panel_pipe = PIPE_A;
994         bool locked = true;
995
996         if (HAS_PCH_SPLIT(dev_priv->dev)) {
997                 pp_reg = PCH_PP_CONTROL;
998                 lvds_reg = PCH_LVDS;
999         } else {
1000                 pp_reg = PP_CONTROL;
1001                 lvds_reg = LVDS;
1002         }
1003
1004         val = I915_READ(pp_reg);
1005         if (!(val & PANEL_POWER_ON) ||
1006             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1007                 locked = false;
1008
1009         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1010                 panel_pipe = PIPE_B;
1011
1012         WARN(panel_pipe == pipe && locked,
1013              "panel assertion failure, pipe %c regs locked\n",
1014              pipe_name(pipe));
1015 }
1016
1017 void assert_pipe(struct drm_i915_private *dev_priv,
1018                  enum pipe pipe, bool state)
1019 {
1020         int reg;
1021         u32 val;
1022         bool cur_state;
1023
1024         /* if we need the pipe A quirk it must be always on */
1025         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1026                 state = true;
1027
1028         reg = PIPECONF(pipe);
1029         val = I915_READ(reg);
1030         cur_state = !!(val & PIPECONF_ENABLE);
1031         WARN(cur_state != state,
1032              "pipe %c assertion failure (expected %s, current %s)\n",
1033              pipe_name(pipe), state_string(state), state_string(cur_state));
1034 }
1035
1036 static void assert_plane(struct drm_i915_private *dev_priv,
1037                          enum plane plane, bool state)
1038 {
1039         int reg;
1040         u32 val;
1041         bool cur_state;
1042
1043         reg = DSPCNTR(plane);
1044         val = I915_READ(reg);
1045         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1046         WARN(cur_state != state,
1047              "plane %c assertion failure (expected %s, current %s)\n",
1048              plane_name(plane), state_string(state), state_string(cur_state));
1049 }
1050
1051 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1052 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1053
1054 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1055                                    enum pipe pipe)
1056 {
1057         int reg, i;
1058         u32 val;
1059         int cur_pipe;
1060
1061         /* Planes are fixed to pipes on ILK+ */
1062         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1063                 reg = DSPCNTR(pipe);
1064                 val = I915_READ(reg);
1065                 WARN((val & DISPLAY_PLANE_ENABLE),
1066                      "plane %c assertion failure, should be disabled but not\n",
1067                      plane_name(pipe));
1068                 return;
1069         }
1070
1071         /* Need to check both planes against the pipe */
1072         for (i = 0; i < 2; i++) {
1073                 reg = DSPCNTR(i);
1074                 val = I915_READ(reg);
1075                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1076                         DISPPLANE_SEL_PIPE_SHIFT;
1077                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1078                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1079                      plane_name(i), pipe_name(pipe));
1080         }
1081 }
1082
1083 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1084 {
1085         u32 val;
1086         bool enabled;
1087
1088         val = I915_READ(PCH_DREF_CONTROL);
1089         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1090                             DREF_SUPERSPREAD_SOURCE_MASK));
1091         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1092 }
1093
1094 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1095                                        enum pipe pipe)
1096 {
1097         int reg;
1098         u32 val;
1099         bool enabled;
1100
1101         reg = TRANSCONF(pipe);
1102         val = I915_READ(reg);
1103         enabled = !!(val & TRANS_ENABLE);
1104         WARN(enabled,
1105              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1106              pipe_name(pipe));
1107 }
1108
1109 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1110                             enum pipe pipe, u32 port_sel, u32 val)
1111 {
1112         if ((val & DP_PORT_EN) == 0)
1113                 return false;
1114
1115         if (HAS_PCH_CPT(dev_priv->dev)) {
1116                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1117                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1118                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1119                         return false;
1120         } else {
1121                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1122                         return false;
1123         }
1124         return true;
1125 }
1126
1127 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1128                               enum pipe pipe, u32 val)
1129 {
1130         if ((val & PORT_ENABLE) == 0)
1131                 return false;
1132
1133         if (HAS_PCH_CPT(dev_priv->dev)) {
1134                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1135                         return false;
1136         } else {
1137                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1138                         return false;
1139         }
1140         return true;
1141 }
1142
1143 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1144                               enum pipe pipe, u32 val)
1145 {
1146         if ((val & LVDS_PORT_EN) == 0)
1147                 return false;
1148
1149         if (HAS_PCH_CPT(dev_priv->dev)) {
1150                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1151                         return false;
1152         } else {
1153                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1154                         return false;
1155         }
1156         return true;
1157 }
1158
1159 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1160                               enum pipe pipe, u32 val)
1161 {
1162         if ((val & ADPA_DAC_ENABLE) == 0)
1163                 return false;
1164         if (HAS_PCH_CPT(dev_priv->dev)) {
1165                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1166                         return false;
1167         } else {
1168                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1169                         return false;
1170         }
1171         return true;
1172 }
1173
1174 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1175                                    enum pipe pipe, int reg, u32 port_sel)
1176 {
1177         u32 val = I915_READ(reg);
1178         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1179              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1180              reg, pipe_name(pipe));
1181 }
1182
1183 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1184                                      enum pipe pipe, int reg)
1185 {
1186         u32 val = I915_READ(reg);
1187         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1188              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1189              reg, pipe_name(pipe));
1190 }
1191
1192 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1193                                       enum pipe pipe)
1194 {
1195         int reg;
1196         u32 val;
1197
1198         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1199         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1200         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1201
1202         reg = PCH_ADPA;
1203         val = I915_READ(reg);
1204         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1205              "PCH VGA enabled on transcoder %c, should be disabled\n",
1206              pipe_name(pipe));
1207
1208         reg = PCH_LVDS;
1209         val = I915_READ(reg);
1210         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1211              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1212              pipe_name(pipe));
1213
1214         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1215         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1216         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1217 }
1218
1219 /**
1220  * intel_enable_pll - enable a PLL
1221  * @dev_priv: i915 private structure
1222  * @pipe: pipe PLL to enable
1223  *
1224  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1225  * make sure the PLL reg is writable first though, since the panel write
1226  * protect mechanism may be enabled.
1227  *
1228  * Note!  This is for pre-ILK only.
1229  */
1230 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1231 {
1232         int reg;
1233         u32 val;
1234
1235         /* No really, not for ILK+ */
1236         BUG_ON(dev_priv->info->gen >= 5);
1237
1238         /* PLL is protected by panel, make sure we can write it */
1239         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1240                 assert_panel_unlocked(dev_priv, pipe);
1241
1242         reg = DPLL(pipe);
1243         val = I915_READ(reg);
1244         val |= DPLL_VCO_ENABLE;
1245
1246         /* We do this three times for luck */
1247         I915_WRITE(reg, val);
1248         POSTING_READ(reg);
1249         udelay(150); /* wait for warmup */
1250         I915_WRITE(reg, val);
1251         POSTING_READ(reg);
1252         udelay(150); /* wait for warmup */
1253         I915_WRITE(reg, val);
1254         POSTING_READ(reg);
1255         udelay(150); /* wait for warmup */
1256 }
1257
1258 /**
1259  * intel_disable_pll - disable a PLL
1260  * @dev_priv: i915 private structure
1261  * @pipe: pipe PLL to disable
1262  *
1263  * Disable the PLL for @pipe, making sure the pipe is off first.
1264  *
1265  * Note!  This is for pre-ILK only.
1266  */
1267 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1268 {
1269         int reg;
1270         u32 val;
1271
1272         /* Don't disable pipe A or pipe A PLLs if needed */
1273         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1274                 return;
1275
1276         /* Make sure the pipe isn't still relying on us */
1277         assert_pipe_disabled(dev_priv, pipe);
1278
1279         reg = DPLL(pipe);
1280         val = I915_READ(reg);
1281         val &= ~DPLL_VCO_ENABLE;
1282         I915_WRITE(reg, val);
1283         POSTING_READ(reg);
1284 }
1285
1286 /**
1287  * intel_enable_pch_pll - enable PCH PLL
1288  * @dev_priv: i915 private structure
1289  * @pipe: pipe PLL to enable
1290  *
1291  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1292  * drives the transcoder clock.
1293  */
1294 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1295 {
1296         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1297         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1298         int reg;
1299         u32 val;
1300
1301         /* PCH only available on ILK+ */
1302         BUG_ON(dev_priv->info->gen < 5);
1303         BUG_ON(pll == NULL);
1304         BUG_ON(pll->refcount == 0);
1305
1306         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1307                       pll->pll_reg, pll->active, pll->on,
1308                       intel_crtc->base.base.id);
1309
1310         /* PCH refclock must be enabled first */
1311         assert_pch_refclk_enabled(dev_priv);
1312
1313         if (pll->active++ && pll->on) {
1314                 assert_pch_pll_enabled(dev_priv, intel_crtc);
1315                 return;
1316         }
1317
1318         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1319
1320         reg = pll->pll_reg;
1321         val = I915_READ(reg);
1322         val |= DPLL_VCO_ENABLE;
1323         I915_WRITE(reg, val);
1324         POSTING_READ(reg);
1325         udelay(200);
1326
1327         pll->on = true;
1328 }
1329
1330 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1331 {
1332         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1333         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1334         int reg;
1335         u32 val;
1336
1337         /* PCH only available on ILK+ */
1338         BUG_ON(dev_priv->info->gen < 5);
1339         if (pll == NULL)
1340                return;
1341
1342         BUG_ON(pll->refcount == 0);
1343
1344         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1345                       pll->pll_reg, pll->active, pll->on,
1346                       intel_crtc->base.base.id);
1347
1348         BUG_ON(pll->active == 0);
1349         if (--pll->active) {
1350                 assert_pch_pll_enabled(dev_priv, intel_crtc);
1351                 return;
1352         }
1353
1354         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1355
1356         /* Make sure transcoder isn't still depending on us */
1357         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1358
1359         reg = pll->pll_reg;
1360         val = I915_READ(reg);
1361         val &= ~DPLL_VCO_ENABLE;
1362         I915_WRITE(reg, val);
1363         POSTING_READ(reg);
1364         udelay(200);
1365
1366         pll->on = false;
1367 }
1368
1369 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1370                                     enum pipe pipe)
1371 {
1372         int reg;
1373         u32 val, pipeconf_val;
1374         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1375
1376         /* PCH only available on ILK+ */
1377         BUG_ON(dev_priv->info->gen < 5);
1378
1379         /* Make sure PCH DPLL is enabled */
1380         assert_pch_pll_enabled(dev_priv, to_intel_crtc(crtc));
1381
1382         /* FDI must be feeding us bits for PCH ports */
1383         assert_fdi_tx_enabled(dev_priv, pipe);
1384         assert_fdi_rx_enabled(dev_priv, pipe);
1385
1386         reg = TRANSCONF(pipe);
1387         val = I915_READ(reg);
1388         pipeconf_val = I915_READ(PIPECONF(pipe));
1389
1390         if (HAS_PCH_IBX(dev_priv->dev)) {
1391                 /*
1392                  * make the BPC in transcoder be consistent with
1393                  * that in pipeconf reg.
1394                  */
1395                 val &= ~PIPE_BPC_MASK;
1396                 val |= pipeconf_val & PIPE_BPC_MASK;
1397         }
1398
1399         val &= ~TRANS_INTERLACE_MASK;
1400         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1401                 if (HAS_PCH_IBX(dev_priv->dev) &&
1402                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1403                         val |= TRANS_LEGACY_INTERLACED_ILK;
1404                 else
1405                         val |= TRANS_INTERLACED;
1406         else
1407                 val |= TRANS_PROGRESSIVE;
1408
1409         I915_WRITE(reg, val | TRANS_ENABLE);
1410         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1411                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1412 }
1413
1414 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1415                                      enum pipe pipe)
1416 {
1417         int reg;
1418         u32 val;
1419
1420         /* FDI relies on the transcoder */
1421         assert_fdi_tx_disabled(dev_priv, pipe);
1422         assert_fdi_rx_disabled(dev_priv, pipe);
1423
1424         /* Ports must be off as well */
1425         assert_pch_ports_disabled(dev_priv, pipe);
1426
1427         reg = TRANSCONF(pipe);
1428         val = I915_READ(reg);
1429         val &= ~TRANS_ENABLE;
1430         I915_WRITE(reg, val);
1431         /* wait for PCH transcoder off, transcoder state */
1432         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1433                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1434 }
1435
1436 /**
1437  * intel_enable_pipe - enable a pipe, asserting requirements
1438  * @dev_priv: i915 private structure
1439  * @pipe: pipe to enable
1440  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1441  *
1442  * Enable @pipe, making sure that various hardware specific requirements
1443  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1444  *
1445  * @pipe should be %PIPE_A or %PIPE_B.
1446  *
1447  * Will wait until the pipe is actually running (i.e. first vblank) before
1448  * returning.
1449  */
1450 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1451                               bool pch_port)
1452 {
1453         int reg;
1454         u32 val;
1455
1456         /*
1457          * A pipe without a PLL won't actually be able to drive bits from
1458          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1459          * need the check.
1460          */
1461         if (!HAS_PCH_SPLIT(dev_priv->dev))
1462                 assert_pll_enabled(dev_priv, pipe);
1463         else {
1464                 if (pch_port) {
1465                         /* if driving the PCH, we need FDI enabled */
1466                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1467                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1468                 }
1469                 /* FIXME: assert CPU port conditions for SNB+ */
1470         }
1471
1472         reg = PIPECONF(pipe);
1473         val = I915_READ(reg);
1474         if (val & PIPECONF_ENABLE)
1475                 return;
1476
1477         I915_WRITE(reg, val | PIPECONF_ENABLE);
1478         intel_wait_for_vblank(dev_priv->dev, pipe);
1479 }
1480
1481 /**
1482  * intel_disable_pipe - disable a pipe, asserting requirements
1483  * @dev_priv: i915 private structure
1484  * @pipe: pipe to disable
1485  *
1486  * Disable @pipe, making sure that various hardware specific requirements
1487  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1488  *
1489  * @pipe should be %PIPE_A or %PIPE_B.
1490  *
1491  * Will wait until the pipe has shut down before returning.
1492  */
1493 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1494                                enum pipe pipe)
1495 {
1496         int reg;
1497         u32 val;
1498
1499         /*
1500          * Make sure planes won't keep trying to pump pixels to us,
1501          * or we might hang the display.
1502          */
1503         assert_planes_disabled(dev_priv, pipe);
1504
1505         /* Don't disable pipe A or pipe A PLLs if needed */
1506         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1507                 return;
1508
1509         reg = PIPECONF(pipe);
1510         val = I915_READ(reg);
1511         if ((val & PIPECONF_ENABLE) == 0)
1512                 return;
1513
1514         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1515         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1516 }
1517
1518 /*
1519  * Plane regs are double buffered, going from enabled->disabled needs a
1520  * trigger in order to latch.  The display address reg provides this.
1521  */
1522 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1523                                       enum plane plane)
1524 {
1525         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1526         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1527 }
1528
1529 /**
1530  * intel_enable_plane - enable a display plane on a given pipe
1531  * @dev_priv: i915 private structure
1532  * @plane: plane to enable
1533  * @pipe: pipe being fed
1534  *
1535  * Enable @plane on @pipe, making sure that @pipe is running first.
1536  */
1537 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1538                                enum plane plane, enum pipe pipe)
1539 {
1540         int reg;
1541         u32 val;
1542
1543         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1544         assert_pipe_enabled(dev_priv, pipe);
1545
1546         reg = DSPCNTR(plane);
1547         val = I915_READ(reg);
1548         if (val & DISPLAY_PLANE_ENABLE)
1549                 return;
1550
1551         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1552         intel_flush_display_plane(dev_priv, plane);
1553         intel_wait_for_vblank(dev_priv->dev, pipe);
1554 }
1555
1556 /**
1557  * intel_disable_plane - disable a display plane
1558  * @dev_priv: i915 private structure
1559  * @plane: plane to disable
1560  * @pipe: pipe consuming the data
1561  *
1562  * Disable @plane; should be an independent operation.
1563  */
1564 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1565                                 enum plane plane, enum pipe pipe)
1566 {
1567         int reg;
1568         u32 val;
1569
1570         reg = DSPCNTR(plane);
1571         val = I915_READ(reg);
1572         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1573                 return;
1574
1575         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1576         intel_flush_display_plane(dev_priv, plane);
1577         intel_wait_for_vblank(dev_priv->dev, pipe);
1578 }
1579
1580 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1581                            enum pipe pipe, int reg, u32 port_sel)
1582 {
1583         u32 val = I915_READ(reg);
1584         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1585                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1586                 I915_WRITE(reg, val & ~DP_PORT_EN);
1587         }
1588 }
1589
1590 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1591                              enum pipe pipe, int reg)
1592 {
1593         u32 val = I915_READ(reg);
1594         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1595                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1596                               reg, pipe);
1597                 I915_WRITE(reg, val & ~PORT_ENABLE);
1598         }
1599 }
1600
1601 /* Disable any ports connected to this transcoder */
1602 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1603                                     enum pipe pipe)
1604 {
1605         u32 reg, val;
1606
1607         val = I915_READ(PCH_PP_CONTROL);
1608         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1609
1610         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1611         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1612         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1613
1614         reg = PCH_ADPA;
1615         val = I915_READ(reg);
1616         if (adpa_pipe_enabled(dev_priv, val, pipe))
1617                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1618
1619         reg = PCH_LVDS;
1620         val = I915_READ(reg);
1621         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1622                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1623                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1624                 POSTING_READ(reg);
1625                 udelay(100);
1626         }
1627
1628         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1629         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1630         disable_pch_hdmi(dev_priv, pipe, HDMID);
1631 }
1632
1633 int
1634 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1635                            struct drm_i915_gem_object *obj,
1636                            struct intel_ring_buffer *pipelined)
1637 {
1638         struct drm_i915_private *dev_priv = dev->dev_private;
1639         u32 alignment;
1640         int ret;
1641
1642         switch (obj->tiling_mode) {
1643         case I915_TILING_NONE:
1644                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1645                         alignment = 128 * 1024;
1646                 else if (INTEL_INFO(dev)->gen >= 4)
1647                         alignment = 4 * 1024;
1648                 else
1649                         alignment = 64 * 1024;
1650                 break;
1651         case I915_TILING_X:
1652                 /* pin() will align the object as required by fence */
1653                 alignment = 0;
1654                 break;
1655         case I915_TILING_Y:
1656                 /* FIXME: Is this true? */
1657                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1658                 return -EINVAL;
1659         default:
1660                 BUG();
1661         }
1662
1663         dev_priv->mm.interruptible = false;
1664         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1665         if (ret)
1666                 goto err_interruptible;
1667
1668         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1669          * fence, whereas 965+ only requires a fence if using
1670          * framebuffer compression.  For simplicity, we always install
1671          * a fence as the cost is not that onerous.
1672          */
1673         ret = i915_gem_object_get_fence(obj);
1674         if (ret)
1675                 goto err_unpin;
1676
1677         i915_gem_object_pin_fence(obj);
1678
1679         dev_priv->mm.interruptible = true;
1680         return 0;
1681
1682 err_unpin:
1683         i915_gem_object_unpin(obj);
1684 err_interruptible:
1685         dev_priv->mm.interruptible = true;
1686         return ret;
1687 }
1688
1689 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1690 {
1691         i915_gem_object_unpin_fence(obj);
1692         i915_gem_object_unpin(obj);
1693 }
1694
1695 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1696                              int x, int y)
1697 {
1698         struct drm_device *dev = crtc->dev;
1699         struct drm_i915_private *dev_priv = dev->dev_private;
1700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1701         struct intel_framebuffer *intel_fb;
1702         struct drm_i915_gem_object *obj;
1703         int plane = intel_crtc->plane;
1704         unsigned long Start, Offset;
1705         u32 dspcntr;
1706         u32 reg;
1707
1708         switch (plane) {
1709         case 0:
1710         case 1:
1711                 break;
1712         default:
1713                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1714                 return -EINVAL;
1715         }
1716
1717         intel_fb = to_intel_framebuffer(fb);
1718         obj = intel_fb->obj;
1719
1720         reg = DSPCNTR(plane);
1721         dspcntr = I915_READ(reg);
1722         /* Mask out pixel format bits in case we change it */
1723         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1724         switch (fb->bits_per_pixel) {
1725         case 8:
1726                 dspcntr |= DISPPLANE_8BPP;
1727                 break;
1728         case 16:
1729                 if (fb->depth == 15)
1730                         dspcntr |= DISPPLANE_15_16BPP;
1731                 else
1732                         dspcntr |= DISPPLANE_16BPP;
1733                 break;
1734         case 24:
1735         case 32:
1736                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1737                 break;
1738         default:
1739                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1740                 return -EINVAL;
1741         }
1742         if (INTEL_INFO(dev)->gen >= 4) {
1743                 if (obj->tiling_mode != I915_TILING_NONE)
1744                         dspcntr |= DISPPLANE_TILED;
1745                 else
1746                         dspcntr &= ~DISPPLANE_TILED;
1747         }
1748
1749         I915_WRITE(reg, dspcntr);
1750
1751         Start = obj->gtt_offset;
1752         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1753
1754         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1755                       Start, Offset, x, y, fb->pitches[0]);
1756         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1757         if (INTEL_INFO(dev)->gen >= 4) {
1758                 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1759                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1760                 I915_WRITE(DSPADDR(plane), Offset);
1761         } else
1762                 I915_WRITE(DSPADDR(plane), Start + Offset);
1763         POSTING_READ(reg);
1764
1765         return 0;
1766 }
1767
1768 static int ironlake_update_plane(struct drm_crtc *crtc,
1769                                  struct drm_framebuffer *fb, int x, int y)
1770 {
1771         struct drm_device *dev = crtc->dev;
1772         struct drm_i915_private *dev_priv = dev->dev_private;
1773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1774         struct intel_framebuffer *intel_fb;
1775         struct drm_i915_gem_object *obj;
1776         int plane = intel_crtc->plane;
1777         unsigned long Start, Offset;
1778         u32 dspcntr;
1779         u32 reg;
1780
1781         switch (plane) {
1782         case 0:
1783         case 1:
1784         case 2:
1785                 break;
1786         default:
1787                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1788                 return -EINVAL;
1789         }
1790
1791         intel_fb = to_intel_framebuffer(fb);
1792         obj = intel_fb->obj;
1793
1794         reg = DSPCNTR(plane);
1795         dspcntr = I915_READ(reg);
1796         /* Mask out pixel format bits in case we change it */
1797         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1798         switch (fb->bits_per_pixel) {
1799         case 8:
1800                 dspcntr |= DISPPLANE_8BPP;
1801                 break;
1802         case 16:
1803                 if (fb->depth != 16)
1804                         return -EINVAL;
1805
1806                 dspcntr |= DISPPLANE_16BPP;
1807                 break;
1808         case 24:
1809         case 32:
1810                 if (fb->depth == 24)
1811                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1812                 else if (fb->depth == 30)
1813                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1814                 else
1815                         return -EINVAL;
1816                 break;
1817         default:
1818                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1819                 return -EINVAL;
1820         }
1821
1822         if (obj->tiling_mode != I915_TILING_NONE)
1823                 dspcntr |= DISPPLANE_TILED;
1824         else
1825                 dspcntr &= ~DISPPLANE_TILED;
1826
1827         /* must disable */
1828         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1829
1830         I915_WRITE(reg, dspcntr);
1831
1832         Start = obj->gtt_offset;
1833         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1834
1835         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1836                       Start, Offset, x, y, fb->pitches[0]);
1837         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1838         I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1839         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1840         I915_WRITE(DSPADDR(plane), Offset);
1841         POSTING_READ(reg);
1842
1843         return 0;
1844 }
1845
1846 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1847 static int
1848 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1849                            int x, int y, enum mode_set_atomic state)
1850 {
1851         struct drm_device *dev = crtc->dev;
1852         struct drm_i915_private *dev_priv = dev->dev_private;
1853
1854         if (dev_priv->display.disable_fbc)
1855                 dev_priv->display.disable_fbc(dev);
1856         intel_increase_pllclock(crtc);
1857
1858         return dev_priv->display.update_plane(crtc, fb, x, y);
1859 }
1860
1861 static int
1862 intel_finish_fb(struct drm_framebuffer *old_fb)
1863 {
1864         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1865         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1866         bool was_interruptible = dev_priv->mm.interruptible;
1867         int ret;
1868
1869         wait_event(dev_priv->pending_flip_queue,
1870                    atomic_read(&dev_priv->mm.wedged) ||
1871                    atomic_read(&obj->pending_flip) == 0);
1872
1873         /* Big Hammer, we also need to ensure that any pending
1874          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1875          * current scanout is retired before unpinning the old
1876          * framebuffer.
1877          *
1878          * This should only fail upon a hung GPU, in which case we
1879          * can safely continue.
1880          */
1881         dev_priv->mm.interruptible = false;
1882         ret = i915_gem_object_finish_gpu(obj);
1883         dev_priv->mm.interruptible = was_interruptible;
1884
1885         return ret;
1886 }
1887
1888 static int
1889 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1890                     struct drm_framebuffer *old_fb)
1891 {
1892         struct drm_device *dev = crtc->dev;
1893         struct drm_i915_private *dev_priv = dev->dev_private;
1894         struct drm_i915_master_private *master_priv;
1895         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1896         int ret;
1897
1898         /* no fb bound */
1899         if (!crtc->fb) {
1900                 DRM_ERROR("No FB bound\n");
1901                 return 0;
1902         }
1903
1904         switch (intel_crtc->plane) {
1905         case 0:
1906         case 1:
1907                 break;
1908         case 2:
1909                 if (IS_IVYBRIDGE(dev))
1910                         break;
1911                 /* fall through otherwise */
1912         default:
1913                 DRM_ERROR("no plane for crtc\n");
1914                 return -EINVAL;
1915         }
1916
1917         mutex_lock(&dev->struct_mutex);
1918         ret = intel_pin_and_fence_fb_obj(dev,
1919                                          to_intel_framebuffer(crtc->fb)->obj,
1920                                          NULL);
1921         if (ret != 0) {
1922                 mutex_unlock(&dev->struct_mutex);
1923                 DRM_ERROR("pin & fence failed\n");
1924                 return ret;
1925         }
1926
1927         if (old_fb)
1928                 intel_finish_fb(old_fb);
1929
1930         ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
1931         if (ret) {
1932                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
1933                 mutex_unlock(&dev->struct_mutex);
1934                 DRM_ERROR("failed to update base address\n");
1935                 return ret;
1936         }
1937
1938         if (old_fb) {
1939                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1940                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
1941         }
1942
1943         intel_update_fbc(dev);
1944         mutex_unlock(&dev->struct_mutex);
1945
1946         if (!dev->primary->master)
1947                 return 0;
1948
1949         master_priv = dev->primary->master->driver_priv;
1950         if (!master_priv->sarea_priv)
1951                 return 0;
1952
1953         if (intel_crtc->pipe) {
1954                 master_priv->sarea_priv->pipeB_x = x;
1955                 master_priv->sarea_priv->pipeB_y = y;
1956         } else {
1957                 master_priv->sarea_priv->pipeA_x = x;
1958                 master_priv->sarea_priv->pipeA_y = y;
1959         }
1960
1961         return 0;
1962 }
1963
1964 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1965 {
1966         struct drm_device *dev = crtc->dev;
1967         struct drm_i915_private *dev_priv = dev->dev_private;
1968         u32 dpa_ctl;
1969
1970         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1971         dpa_ctl = I915_READ(DP_A);
1972         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1973
1974         if (clock < 200000) {
1975                 u32 temp;
1976                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1977                 /* workaround for 160Mhz:
1978                    1) program 0x4600c bits 15:0 = 0x8124
1979                    2) program 0x46010 bit 0 = 1
1980                    3) program 0x46034 bit 24 = 1
1981                    4) program 0x64000 bit 14 = 1
1982                    */
1983                 temp = I915_READ(0x4600c);
1984                 temp &= 0xffff0000;
1985                 I915_WRITE(0x4600c, temp | 0x8124);
1986
1987                 temp = I915_READ(0x46010);
1988                 I915_WRITE(0x46010, temp | 1);
1989
1990                 temp = I915_READ(0x46034);
1991                 I915_WRITE(0x46034, temp | (1 << 24));
1992         } else {
1993                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1994         }
1995         I915_WRITE(DP_A, dpa_ctl);
1996
1997         POSTING_READ(DP_A);
1998         udelay(500);
1999 }
2000
2001 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2002 {
2003         struct drm_device *dev = crtc->dev;
2004         struct drm_i915_private *dev_priv = dev->dev_private;
2005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2006         int pipe = intel_crtc->pipe;
2007         u32 reg, temp;
2008
2009         /* enable normal train */
2010         reg = FDI_TX_CTL(pipe);
2011         temp = I915_READ(reg);
2012         if (IS_IVYBRIDGE(dev)) {
2013                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2014                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2015         } else {
2016                 temp &= ~FDI_LINK_TRAIN_NONE;
2017                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2018         }
2019         I915_WRITE(reg, temp);
2020
2021         reg = FDI_RX_CTL(pipe);
2022         temp = I915_READ(reg);
2023         if (HAS_PCH_CPT(dev)) {
2024                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2025                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2026         } else {
2027                 temp &= ~FDI_LINK_TRAIN_NONE;
2028                 temp |= FDI_LINK_TRAIN_NONE;
2029         }
2030         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2031
2032         /* wait one idle pattern time */
2033         POSTING_READ(reg);
2034         udelay(1000);
2035
2036         /* IVB wants error correction enabled */
2037         if (IS_IVYBRIDGE(dev))
2038                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2039                            FDI_FE_ERRC_ENABLE);
2040 }
2041
2042 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2043 {
2044         struct drm_i915_private *dev_priv = dev->dev_private;
2045         u32 flags = I915_READ(SOUTH_CHICKEN1);
2046
2047         flags |= FDI_PHASE_SYNC_OVR(pipe);
2048         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2049         flags |= FDI_PHASE_SYNC_EN(pipe);
2050         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2051         POSTING_READ(SOUTH_CHICKEN1);
2052 }
2053
2054 /* The FDI link training functions for ILK/Ibexpeak. */
2055 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2056 {
2057         struct drm_device *dev = crtc->dev;
2058         struct drm_i915_private *dev_priv = dev->dev_private;
2059         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2060         int pipe = intel_crtc->pipe;
2061         int plane = intel_crtc->plane;
2062         u32 reg, temp, tries;
2063
2064         /* FDI needs bits from pipe & plane first */
2065         assert_pipe_enabled(dev_priv, pipe);
2066         assert_plane_enabled(dev_priv, plane);
2067
2068         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2069            for train result */
2070         reg = FDI_RX_IMR(pipe);
2071         temp = I915_READ(reg);
2072         temp &= ~FDI_RX_SYMBOL_LOCK;
2073         temp &= ~FDI_RX_BIT_LOCK;
2074         I915_WRITE(reg, temp);
2075         I915_READ(reg);
2076         udelay(150);
2077
2078         /* enable CPU FDI TX and PCH FDI RX */
2079         reg = FDI_TX_CTL(pipe);
2080         temp = I915_READ(reg);
2081         temp &= ~(7 << 19);
2082         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2083         temp &= ~FDI_LINK_TRAIN_NONE;
2084         temp |= FDI_LINK_TRAIN_PATTERN_1;
2085         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2086
2087         reg = FDI_RX_CTL(pipe);
2088         temp = I915_READ(reg);
2089         temp &= ~FDI_LINK_TRAIN_NONE;
2090         temp |= FDI_LINK_TRAIN_PATTERN_1;
2091         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2092
2093         POSTING_READ(reg);
2094         udelay(150);
2095
2096         /* Ironlake workaround, enable clock pointer after FDI enable*/
2097         if (HAS_PCH_IBX(dev)) {
2098                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2099                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2100                            FDI_RX_PHASE_SYNC_POINTER_EN);
2101         }
2102
2103         reg = FDI_RX_IIR(pipe);
2104         for (tries = 0; tries < 5; tries++) {
2105                 temp = I915_READ(reg);
2106                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2107
2108                 if ((temp & FDI_RX_BIT_LOCK)) {
2109                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2110                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2111                         break;
2112                 }
2113         }
2114         if (tries == 5)
2115                 DRM_ERROR("FDI train 1 fail!\n");
2116
2117         /* Train 2 */
2118         reg = FDI_TX_CTL(pipe);
2119         temp = I915_READ(reg);
2120         temp &= ~FDI_LINK_TRAIN_NONE;
2121         temp |= FDI_LINK_TRAIN_PATTERN_2;
2122         I915_WRITE(reg, temp);
2123
2124         reg = FDI_RX_CTL(pipe);
2125         temp = I915_READ(reg);
2126         temp &= ~FDI_LINK_TRAIN_NONE;
2127         temp |= FDI_LINK_TRAIN_PATTERN_2;
2128         I915_WRITE(reg, temp);
2129
2130         POSTING_READ(reg);
2131         udelay(150);
2132
2133         reg = FDI_RX_IIR(pipe);
2134         for (tries = 0; tries < 5; tries++) {
2135                 temp = I915_READ(reg);
2136                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2137
2138                 if (temp & FDI_RX_SYMBOL_LOCK) {
2139                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2140                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2141                         break;
2142                 }
2143         }
2144         if (tries == 5)
2145                 DRM_ERROR("FDI train 2 fail!\n");
2146
2147         DRM_DEBUG_KMS("FDI train done\n");
2148
2149 }
2150
2151 static const int snb_b_fdi_train_param[] = {
2152         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2153         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2154         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2155         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2156 };
2157
2158 /* The FDI link training functions for SNB/Cougarpoint. */
2159 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2160 {
2161         struct drm_device *dev = crtc->dev;
2162         struct drm_i915_private *dev_priv = dev->dev_private;
2163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2164         int pipe = intel_crtc->pipe;
2165         u32 reg, temp, i, retry;
2166
2167         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2168            for train result */
2169         reg = FDI_RX_IMR(pipe);
2170         temp = I915_READ(reg);
2171         temp &= ~FDI_RX_SYMBOL_LOCK;
2172         temp &= ~FDI_RX_BIT_LOCK;
2173         I915_WRITE(reg, temp);
2174
2175         POSTING_READ(reg);
2176         udelay(150);
2177
2178         /* enable CPU FDI TX and PCH FDI RX */
2179         reg = FDI_TX_CTL(pipe);
2180         temp = I915_READ(reg);
2181         temp &= ~(7 << 19);
2182         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2183         temp &= ~FDI_LINK_TRAIN_NONE;
2184         temp |= FDI_LINK_TRAIN_PATTERN_1;
2185         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2186         /* SNB-B */
2187         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2188         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2189
2190         reg = FDI_RX_CTL(pipe);
2191         temp = I915_READ(reg);
2192         if (HAS_PCH_CPT(dev)) {
2193                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2194                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2195         } else {
2196                 temp &= ~FDI_LINK_TRAIN_NONE;
2197                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2198         }
2199         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2200
2201         POSTING_READ(reg);
2202         udelay(150);
2203
2204         if (HAS_PCH_CPT(dev))
2205                 cpt_phase_pointer_enable(dev, pipe);
2206
2207         for (i = 0; i < 4; i++) {
2208                 reg = FDI_TX_CTL(pipe);
2209                 temp = I915_READ(reg);
2210                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2211                 temp |= snb_b_fdi_train_param[i];
2212                 I915_WRITE(reg, temp);
2213
2214                 POSTING_READ(reg);
2215                 udelay(500);
2216
2217                 for (retry = 0; retry < 5; retry++) {
2218                         reg = FDI_RX_IIR(pipe);
2219                         temp = I915_READ(reg);
2220                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2221                         if (temp & FDI_RX_BIT_LOCK) {
2222                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2223                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2224                                 break;
2225                         }
2226                         udelay(50);
2227                 }
2228                 if (retry < 5)
2229                         break;
2230         }
2231         if (i == 4)
2232                 DRM_ERROR("FDI train 1 fail!\n");
2233
2234         /* Train 2 */
2235         reg = FDI_TX_CTL(pipe);
2236         temp = I915_READ(reg);
2237         temp &= ~FDI_LINK_TRAIN_NONE;
2238         temp |= FDI_LINK_TRAIN_PATTERN_2;
2239         if (IS_GEN6(dev)) {
2240                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2241                 /* SNB-B */
2242                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2243         }
2244         I915_WRITE(reg, temp);
2245
2246         reg = FDI_RX_CTL(pipe);
2247         temp = I915_READ(reg);
2248         if (HAS_PCH_CPT(dev)) {
2249                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2250                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2251         } else {
2252                 temp &= ~FDI_LINK_TRAIN_NONE;
2253                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2254         }
2255         I915_WRITE(reg, temp);
2256
2257         POSTING_READ(reg);
2258         udelay(150);
2259
2260         for (i = 0; i < 4; i++) {
2261                 reg = FDI_TX_CTL(pipe);
2262                 temp = I915_READ(reg);
2263                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2264                 temp |= snb_b_fdi_train_param[i];
2265                 I915_WRITE(reg, temp);
2266
2267                 POSTING_READ(reg);
2268                 udelay(500);
2269
2270                 for (retry = 0; retry < 5; retry++) {
2271                         reg = FDI_RX_IIR(pipe);
2272                         temp = I915_READ(reg);
2273                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2274                         if (temp & FDI_RX_SYMBOL_LOCK) {
2275                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2276                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2277                                 break;
2278                         }
2279                         udelay(50);
2280                 }
2281                 if (retry < 5)
2282                         break;
2283         }
2284         if (i == 4)
2285                 DRM_ERROR("FDI train 2 fail!\n");
2286
2287         DRM_DEBUG_KMS("FDI train done.\n");
2288 }
2289
2290 /* Manual link training for Ivy Bridge A0 parts */
2291 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2292 {
2293         struct drm_device *dev = crtc->dev;
2294         struct drm_i915_private *dev_priv = dev->dev_private;
2295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2296         int pipe = intel_crtc->pipe;
2297         u32 reg, temp, i;
2298
2299         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2300            for train result */
2301         reg = FDI_RX_IMR(pipe);
2302         temp = I915_READ(reg);
2303         temp &= ~FDI_RX_SYMBOL_LOCK;
2304         temp &= ~FDI_RX_BIT_LOCK;
2305         I915_WRITE(reg, temp);
2306
2307         POSTING_READ(reg);
2308         udelay(150);
2309
2310         /* enable CPU FDI TX and PCH FDI RX */
2311         reg = FDI_TX_CTL(pipe);
2312         temp = I915_READ(reg);
2313         temp &= ~(7 << 19);
2314         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2315         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2316         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2317         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2318         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2319         temp |= FDI_COMPOSITE_SYNC;
2320         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2321
2322         reg = FDI_RX_CTL(pipe);
2323         temp = I915_READ(reg);
2324         temp &= ~FDI_LINK_TRAIN_AUTO;
2325         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2326         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2327         temp |= FDI_COMPOSITE_SYNC;
2328         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2329
2330         POSTING_READ(reg);
2331         udelay(150);
2332
2333         if (HAS_PCH_CPT(dev))
2334                 cpt_phase_pointer_enable(dev, pipe);
2335
2336         for (i = 0; i < 4; i++) {
2337                 reg = FDI_TX_CTL(pipe);
2338                 temp = I915_READ(reg);
2339                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2340                 temp |= snb_b_fdi_train_param[i];
2341                 I915_WRITE(reg, temp);
2342
2343                 POSTING_READ(reg);
2344                 udelay(500);
2345
2346                 reg = FDI_RX_IIR(pipe);
2347                 temp = I915_READ(reg);
2348                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2349
2350                 if (temp & FDI_RX_BIT_LOCK ||
2351                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2352                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2353                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2354                         break;
2355                 }
2356         }
2357         if (i == 4)
2358                 DRM_ERROR("FDI train 1 fail!\n");
2359
2360         /* Train 2 */
2361         reg = FDI_TX_CTL(pipe);
2362         temp = I915_READ(reg);
2363         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2364         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2365         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2366         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2367         I915_WRITE(reg, temp);
2368
2369         reg = FDI_RX_CTL(pipe);
2370         temp = I915_READ(reg);
2371         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2372         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2373         I915_WRITE(reg, temp);
2374
2375         POSTING_READ(reg);
2376         udelay(150);
2377
2378         for (i = 0; i < 4; i++) {
2379                 reg = FDI_TX_CTL(pipe);
2380                 temp = I915_READ(reg);
2381                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2382                 temp |= snb_b_fdi_train_param[i];
2383                 I915_WRITE(reg, temp);
2384
2385                 POSTING_READ(reg);
2386                 udelay(500);
2387
2388                 reg = FDI_RX_IIR(pipe);
2389                 temp = I915_READ(reg);
2390                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2391
2392                 if (temp & FDI_RX_SYMBOL_LOCK) {
2393                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2394                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2395                         break;
2396                 }
2397         }
2398         if (i == 4)
2399                 DRM_ERROR("FDI train 2 fail!\n");
2400
2401         DRM_DEBUG_KMS("FDI train done.\n");
2402 }
2403
2404 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2405 {
2406         struct drm_device *dev = crtc->dev;
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2409         int pipe = intel_crtc->pipe;
2410         u32 reg, temp;
2411
2412         /* Write the TU size bits so error detection works */
2413         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2414                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2415
2416         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2417         reg = FDI_RX_CTL(pipe);
2418         temp = I915_READ(reg);
2419         temp &= ~((0x7 << 19) | (0x7 << 16));
2420         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2421         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2422         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2423
2424         POSTING_READ(reg);
2425         udelay(200);
2426
2427         /* Switch from Rawclk to PCDclk */
2428         temp = I915_READ(reg);
2429         I915_WRITE(reg, temp | FDI_PCDCLK);
2430
2431         POSTING_READ(reg);
2432         udelay(200);
2433
2434         /* Enable CPU FDI TX PLL, always on for Ironlake */
2435         reg = FDI_TX_CTL(pipe);
2436         temp = I915_READ(reg);
2437         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2438                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2439
2440                 POSTING_READ(reg);
2441                 udelay(100);
2442         }
2443 }
2444
2445 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2446 {
2447         struct drm_i915_private *dev_priv = dev->dev_private;
2448         u32 flags = I915_READ(SOUTH_CHICKEN1);
2449
2450         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2451         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2452         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2453         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2454         POSTING_READ(SOUTH_CHICKEN1);
2455 }
2456 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2457 {
2458         struct drm_device *dev = crtc->dev;
2459         struct drm_i915_private *dev_priv = dev->dev_private;
2460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2461         int pipe = intel_crtc->pipe;
2462         u32 reg, temp;
2463
2464         /* disable CPU FDI tx and PCH FDI rx */
2465         reg = FDI_TX_CTL(pipe);
2466         temp = I915_READ(reg);
2467         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2468         POSTING_READ(reg);
2469
2470         reg = FDI_RX_CTL(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~(0x7 << 16);
2473         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2474         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2475
2476         POSTING_READ(reg);
2477         udelay(100);
2478
2479         /* Ironlake workaround, disable clock pointer after downing FDI */
2480         if (HAS_PCH_IBX(dev)) {
2481                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2482                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2483                            I915_READ(FDI_RX_CHICKEN(pipe) &
2484                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2485         } else if (HAS_PCH_CPT(dev)) {
2486                 cpt_phase_pointer_disable(dev, pipe);
2487         }
2488
2489         /* still set train pattern 1 */
2490         reg = FDI_TX_CTL(pipe);
2491         temp = I915_READ(reg);
2492         temp &= ~FDI_LINK_TRAIN_NONE;
2493         temp |= FDI_LINK_TRAIN_PATTERN_1;
2494         I915_WRITE(reg, temp);
2495
2496         reg = FDI_RX_CTL(pipe);
2497         temp = I915_READ(reg);
2498         if (HAS_PCH_CPT(dev)) {
2499                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2500                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2501         } else {
2502                 temp &= ~FDI_LINK_TRAIN_NONE;
2503                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2504         }
2505         /* BPC in FDI rx is consistent with that in PIPECONF */
2506         temp &= ~(0x07 << 16);
2507         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2508         I915_WRITE(reg, temp);
2509
2510         POSTING_READ(reg);
2511         udelay(100);
2512 }
2513
2514 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2515 {
2516         struct drm_device *dev = crtc->dev;
2517
2518         if (crtc->fb == NULL)
2519                 return;
2520
2521         mutex_lock(&dev->struct_mutex);
2522         intel_finish_fb(crtc->fb);
2523         mutex_unlock(&dev->struct_mutex);
2524 }
2525
2526 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2527 {
2528         struct drm_device *dev = crtc->dev;
2529         struct drm_mode_config *mode_config = &dev->mode_config;
2530         struct intel_encoder *encoder;
2531
2532         /*
2533          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2534          * must be driven by its own crtc; no sharing is possible.
2535          */
2536         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2537                 if (encoder->base.crtc != crtc)
2538                         continue;
2539
2540                 switch (encoder->type) {
2541                 case INTEL_OUTPUT_EDP:
2542                         if (!intel_encoder_is_pch_edp(&encoder->base))
2543                                 return false;
2544                         continue;
2545                 }
2546         }
2547
2548         return true;
2549 }
2550
2551 /*
2552  * Enable PCH resources required for PCH ports:
2553  *   - PCH PLLs
2554  *   - FDI training & RX/TX
2555  *   - update transcoder timings
2556  *   - DP transcoding bits
2557  *   - transcoder
2558  */
2559 static void ironlake_pch_enable(struct drm_crtc *crtc)
2560 {
2561         struct drm_device *dev = crtc->dev;
2562         struct drm_i915_private *dev_priv = dev->dev_private;
2563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2564         int pipe = intel_crtc->pipe;
2565         u32 reg, temp;
2566
2567         /* For PCH output, training FDI link */
2568         dev_priv->display.fdi_link_train(crtc);
2569
2570         intel_enable_pch_pll(intel_crtc);
2571
2572         if (HAS_PCH_CPT(dev)) {
2573                 u32 sel;
2574
2575                 temp = I915_READ(PCH_DPLL_SEL);
2576                 switch (pipe) {
2577                 default:
2578                 case 0:
2579                         temp |= TRANSA_DPLL_ENABLE;
2580                         sel = TRANSA_DPLLB_SEL;
2581                         break;
2582                 case 1:
2583                         temp |= TRANSB_DPLL_ENABLE;
2584                         sel = TRANSB_DPLLB_SEL;
2585                         break;
2586                 case 2:
2587                         temp |= TRANSC_DPLL_ENABLE;
2588                         sel = TRANSC_DPLLB_SEL;
2589                         break;
2590                 }
2591                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2592                         temp |= sel;
2593                 else
2594                         temp &= ~sel;
2595                 I915_WRITE(PCH_DPLL_SEL, temp);
2596         }
2597
2598         /* set transcoder timing, panel must allow it */
2599         assert_panel_unlocked(dev_priv, pipe);
2600         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2601         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2602         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2603
2604         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2605         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2606         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2607         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
2608
2609         intel_fdi_normal_train(crtc);
2610
2611         /* For PCH DP, enable TRANS_DP_CTL */
2612         if (HAS_PCH_CPT(dev) &&
2613             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2614              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2615                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2616                 reg = TRANS_DP_CTL(pipe);
2617                 temp = I915_READ(reg);
2618                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2619                           TRANS_DP_SYNC_MASK |
2620                           TRANS_DP_BPC_MASK);
2621                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2622                          TRANS_DP_ENH_FRAMING);
2623                 temp |= bpc << 9; /* same format but at 11:9 */
2624
2625                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2626                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2627                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2628                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2629
2630                 switch (intel_trans_dp_port_sel(crtc)) {
2631                 case PCH_DP_B:
2632                         temp |= TRANS_DP_PORT_SEL_B;
2633                         break;
2634                 case PCH_DP_C:
2635                         temp |= TRANS_DP_PORT_SEL_C;
2636                         break;
2637                 case PCH_DP_D:
2638                         temp |= TRANS_DP_PORT_SEL_D;
2639                         break;
2640                 default:
2641                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2642                         temp |= TRANS_DP_PORT_SEL_B;
2643                         break;
2644                 }
2645
2646                 I915_WRITE(reg, temp);
2647         }
2648
2649         intel_enable_transcoder(dev_priv, pipe);
2650 }
2651
2652 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
2653 {
2654         struct intel_pch_pll *pll = intel_crtc->pch_pll;
2655
2656         if (pll == NULL)
2657                 return;
2658
2659         if (pll->refcount == 0) {
2660                 WARN(1, "bad PCH PLL refcount\n");
2661                 return;
2662         }
2663
2664         --pll->refcount;
2665         intel_crtc->pch_pll = NULL;
2666 }
2667
2668 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
2669 {
2670         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2671         struct intel_pch_pll *pll;
2672         int i;
2673
2674         pll = intel_crtc->pch_pll;
2675         if (pll) {
2676                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
2677                               intel_crtc->base.base.id, pll->pll_reg);
2678                 goto prepare;
2679         }
2680
2681         for (i = 0; i < dev_priv->num_pch_pll; i++) {
2682                 pll = &dev_priv->pch_plls[i];
2683
2684                 /* Only want to check enabled timings first */
2685                 if (pll->refcount == 0)
2686                         continue;
2687
2688                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
2689                     fp == I915_READ(pll->fp0_reg)) {
2690                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
2691                                       intel_crtc->base.base.id,
2692                                       pll->pll_reg, pll->refcount, pll->active);
2693
2694                         goto found;
2695                 }
2696         }
2697
2698         /* Ok no matching timings, maybe there's a free one? */
2699         for (i = 0; i < dev_priv->num_pch_pll; i++) {
2700                 pll = &dev_priv->pch_plls[i];
2701                 if (pll->refcount == 0) {
2702                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
2703                                       intel_crtc->base.base.id, pll->pll_reg);
2704                         goto found;
2705                 }
2706         }
2707
2708         return NULL;
2709
2710 found:
2711         intel_crtc->pch_pll = pll;
2712         pll->refcount++;
2713         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
2714 prepare: /* separate function? */
2715         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
2716
2717         /* Wait for the clocks to stabilize before rewriting the regs */
2718         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
2719         POSTING_READ(pll->pll_reg);
2720         udelay(150);
2721
2722         I915_WRITE(pll->fp0_reg, fp);
2723         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
2724         pll->on = false;
2725         return pll;
2726 }
2727
2728 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2729 {
2730         struct drm_i915_private *dev_priv = dev->dev_private;
2731         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2732         u32 temp;
2733
2734         temp = I915_READ(dslreg);
2735         udelay(500);
2736         if (wait_for(I915_READ(dslreg) != temp, 5)) {
2737                 /* Without this, mode sets may fail silently on FDI */
2738                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2739                 udelay(250);
2740                 I915_WRITE(tc2reg, 0);
2741                 if (wait_for(I915_READ(dslreg) != temp, 5))
2742                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2743         }
2744 }
2745
2746 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2747 {
2748         struct drm_device *dev = crtc->dev;
2749         struct drm_i915_private *dev_priv = dev->dev_private;
2750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2751         int pipe = intel_crtc->pipe;
2752         int plane = intel_crtc->plane;
2753         u32 temp;
2754         bool is_pch_port;
2755
2756         if (intel_crtc->active)
2757                 return;
2758
2759         intel_crtc->active = true;
2760         intel_update_watermarks(dev);
2761
2762         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2763                 temp = I915_READ(PCH_LVDS);
2764                 if ((temp & LVDS_PORT_EN) == 0)
2765                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2766         }
2767
2768         is_pch_port = intel_crtc_driving_pch(crtc);
2769
2770         if (is_pch_port)
2771                 ironlake_fdi_pll_enable(crtc);
2772         else
2773                 ironlake_fdi_disable(crtc);
2774
2775         /* Enable panel fitting for LVDS */
2776         if (dev_priv->pch_pf_size &&
2777             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2778                 /* Force use of hard-coded filter coefficients
2779                  * as some pre-programmed values are broken,
2780                  * e.g. x201.
2781                  */
2782                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2783                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2784                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2785         }
2786
2787         /*
2788          * On ILK+ LUT must be loaded before the pipe is running but with
2789          * clocks enabled
2790          */
2791         intel_crtc_load_lut(crtc);
2792
2793         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2794         intel_enable_plane(dev_priv, plane, pipe);
2795
2796         if (is_pch_port)
2797                 ironlake_pch_enable(crtc);
2798
2799         mutex_lock(&dev->struct_mutex);
2800         intel_update_fbc(dev);
2801         mutex_unlock(&dev->struct_mutex);
2802
2803         intel_crtc_update_cursor(crtc, true);
2804 }
2805
2806 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2807 {
2808         struct drm_device *dev = crtc->dev;
2809         struct drm_i915_private *dev_priv = dev->dev_private;
2810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2811         int pipe = intel_crtc->pipe;
2812         int plane = intel_crtc->plane;
2813         u32 reg, temp;
2814
2815         if (!intel_crtc->active)
2816                 return;
2817
2818         intel_crtc_wait_for_pending_flips(crtc);
2819         drm_vblank_off(dev, pipe);
2820         intel_crtc_update_cursor(crtc, false);
2821
2822         intel_disable_plane(dev_priv, plane, pipe);
2823
2824         if (dev_priv->cfb_plane == plane)
2825                 intel_disable_fbc(dev);
2826
2827         intel_disable_pipe(dev_priv, pipe);
2828
2829         /* Disable PF */
2830         I915_WRITE(PF_CTL(pipe), 0);
2831         I915_WRITE(PF_WIN_SZ(pipe), 0);
2832
2833         ironlake_fdi_disable(crtc);
2834
2835         /* This is a horrible layering violation; we should be doing this in
2836          * the connector/encoder ->prepare instead, but we don't always have
2837          * enough information there about the config to know whether it will
2838          * actually be necessary or just cause undesired flicker.
2839          */
2840         intel_disable_pch_ports(dev_priv, pipe);
2841
2842         intel_disable_transcoder(dev_priv, pipe);
2843
2844         if (HAS_PCH_CPT(dev)) {
2845                 /* disable TRANS_DP_CTL */
2846                 reg = TRANS_DP_CTL(pipe);
2847                 temp = I915_READ(reg);
2848                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2849                 temp |= TRANS_DP_PORT_SEL_NONE;
2850                 I915_WRITE(reg, temp);
2851
2852                 /* disable DPLL_SEL */
2853                 temp = I915_READ(PCH_DPLL_SEL);
2854                 switch (pipe) {
2855                 case 0:
2856                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2857                         break;
2858                 case 1:
2859                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2860                         break;
2861                 case 2:
2862                         /* C shares PLL A or B */
2863                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2864                         break;
2865                 default:
2866                         BUG(); /* wtf */
2867                 }
2868                 I915_WRITE(PCH_DPLL_SEL, temp);
2869         }
2870
2871         /* disable PCH DPLL */
2872         intel_disable_pch_pll(intel_crtc);
2873
2874         /* Switch from PCDclk to Rawclk */
2875         reg = FDI_RX_CTL(pipe);
2876         temp = I915_READ(reg);
2877         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2878
2879         /* Disable CPU FDI TX PLL */
2880         reg = FDI_TX_CTL(pipe);
2881         temp = I915_READ(reg);
2882         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2883
2884         POSTING_READ(reg);
2885         udelay(100);
2886
2887         reg = FDI_RX_CTL(pipe);
2888         temp = I915_READ(reg);
2889         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2890
2891         /* Wait for the clocks to turn off. */
2892         POSTING_READ(reg);
2893         udelay(100);
2894
2895         intel_crtc->active = false;
2896         intel_update_watermarks(dev);
2897
2898         mutex_lock(&dev->struct_mutex);
2899         intel_update_fbc(dev);
2900         mutex_unlock(&dev->struct_mutex);
2901 }
2902
2903 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2904 {
2905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2906         int pipe = intel_crtc->pipe;
2907         int plane = intel_crtc->plane;
2908
2909         /* XXX: When our outputs are all unaware of DPMS modes other than off
2910          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2911          */
2912         switch (mode) {
2913         case DRM_MODE_DPMS_ON:
2914         case DRM_MODE_DPMS_STANDBY:
2915         case DRM_MODE_DPMS_SUSPEND:
2916                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2917                 ironlake_crtc_enable(crtc);
2918                 break;
2919
2920         case DRM_MODE_DPMS_OFF:
2921                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2922                 ironlake_crtc_disable(crtc);
2923                 break;
2924         }
2925 }
2926
2927 static void ironlake_crtc_off(struct drm_crtc *crtc)
2928 {
2929         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2930         intel_put_pch_pll(intel_crtc);
2931 }
2932
2933 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2934 {
2935         if (!enable && intel_crtc->overlay) {
2936                 struct drm_device *dev = intel_crtc->base.dev;
2937                 struct drm_i915_private *dev_priv = dev->dev_private;
2938
2939                 mutex_lock(&dev->struct_mutex);
2940                 dev_priv->mm.interruptible = false;
2941                 (void) intel_overlay_switch_off(intel_crtc->overlay);
2942                 dev_priv->mm.interruptible = true;
2943                 mutex_unlock(&dev->struct_mutex);
2944         }
2945
2946         /* Let userspace switch the overlay on again. In most cases userspace
2947          * has to recompute where to put it anyway.
2948          */
2949 }
2950
2951 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2952 {
2953         struct drm_device *dev = crtc->dev;
2954         struct drm_i915_private *dev_priv = dev->dev_private;
2955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2956         int pipe = intel_crtc->pipe;
2957         int plane = intel_crtc->plane;
2958
2959         if (intel_crtc->active)
2960                 return;
2961
2962         intel_crtc->active = true;
2963         intel_update_watermarks(dev);
2964
2965         intel_enable_pll(dev_priv, pipe);
2966         intel_enable_pipe(dev_priv, pipe, false);
2967         intel_enable_plane(dev_priv, plane, pipe);
2968
2969         intel_crtc_load_lut(crtc);
2970         intel_update_fbc(dev);
2971
2972         /* Give the overlay scaler a chance to enable if it's on this pipe */
2973         intel_crtc_dpms_overlay(intel_crtc, true);
2974         intel_crtc_update_cursor(crtc, true);
2975 }
2976
2977 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2978 {
2979         struct drm_device *dev = crtc->dev;
2980         struct drm_i915_private *dev_priv = dev->dev_private;
2981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2982         int pipe = intel_crtc->pipe;
2983         int plane = intel_crtc->plane;
2984
2985         if (!intel_crtc->active)
2986                 return;
2987
2988         /* Give the overlay scaler a chance to disable if it's on this pipe */
2989         intel_crtc_wait_for_pending_flips(crtc);
2990         drm_vblank_off(dev, pipe);
2991         intel_crtc_dpms_overlay(intel_crtc, false);
2992         intel_crtc_update_cursor(crtc, false);
2993
2994         if (dev_priv->cfb_plane == plane)
2995                 intel_disable_fbc(dev);
2996
2997         intel_disable_plane(dev_priv, plane, pipe);
2998         intel_disable_pipe(dev_priv, pipe);
2999         intel_disable_pll(dev_priv, pipe);
3000
3001         intel_crtc->active = false;
3002         intel_update_fbc(dev);
3003         intel_update_watermarks(dev);
3004 }
3005
3006 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3007 {
3008         /* XXX: When our outputs are all unaware of DPMS modes other than off
3009          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3010          */
3011         switch (mode) {
3012         case DRM_MODE_DPMS_ON:
3013         case DRM_MODE_DPMS_STANDBY:
3014         case DRM_MODE_DPMS_SUSPEND:
3015                 i9xx_crtc_enable(crtc);
3016                 break;
3017         case DRM_MODE_DPMS_OFF:
3018                 i9xx_crtc_disable(crtc);
3019                 break;
3020         }
3021 }
3022
3023 static void i9xx_crtc_off(struct drm_crtc *crtc)
3024 {
3025 }
3026
3027 /**
3028  * Sets the power management mode of the pipe and plane.
3029  */
3030 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3031 {
3032         struct drm_device *dev = crtc->dev;
3033         struct drm_i915_private *dev_priv = dev->dev_private;
3034         struct drm_i915_master_private *master_priv;
3035         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3036         int pipe = intel_crtc->pipe;
3037         bool enabled;
3038
3039         if (intel_crtc->dpms_mode == mode)
3040                 return;
3041
3042         intel_crtc->dpms_mode = mode;
3043
3044         dev_priv->display.dpms(crtc, mode);
3045
3046         if (!dev->primary->master)
3047                 return;
3048
3049         master_priv = dev->primary->master->driver_priv;
3050         if (!master_priv->sarea_priv)
3051                 return;
3052
3053         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3054
3055         switch (pipe) {
3056         case 0:
3057                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3058                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3059                 break;
3060         case 1:
3061                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3062                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3063                 break;
3064         default:
3065                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3066                 break;
3067         }
3068 }
3069
3070 static void intel_crtc_disable(struct drm_crtc *crtc)
3071 {
3072         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3073         struct drm_device *dev = crtc->dev;
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075
3076         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3077         dev_priv->display.off(crtc);
3078
3079         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3080         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3081
3082         if (crtc->fb) {
3083                 mutex_lock(&dev->struct_mutex);
3084                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3085                 mutex_unlock(&dev->struct_mutex);
3086         }
3087 }
3088
3089 /* Prepare for a mode set.
3090  *
3091  * Note we could be a lot smarter here.  We need to figure out which outputs
3092  * will be enabled, which disabled (in short, how the config will changes)
3093  * and perform the minimum necessary steps to accomplish that, e.g. updating
3094  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3095  * panel fitting is in the proper state, etc.
3096  */
3097 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3098 {
3099         i9xx_crtc_disable(crtc);
3100 }
3101
3102 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3103 {
3104         i9xx_crtc_enable(crtc);
3105 }
3106
3107 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3108 {
3109         ironlake_crtc_disable(crtc);
3110 }
3111
3112 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3113 {
3114         ironlake_crtc_enable(crtc);
3115 }
3116
3117 void intel_encoder_prepare(struct drm_encoder *encoder)
3118 {
3119         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3120         /* lvds has its own version of prepare see intel_lvds_prepare */
3121         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3122 }
3123
3124 void intel_encoder_commit(struct drm_encoder *encoder)
3125 {
3126         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3127         struct drm_device *dev = encoder->dev;
3128         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
3129
3130         /* lvds has its own version of commit see intel_lvds_commit */
3131         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3132
3133         if (HAS_PCH_CPT(dev))
3134                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3135 }
3136
3137 void intel_encoder_destroy(struct drm_encoder *encoder)
3138 {
3139         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3140
3141         drm_encoder_cleanup(encoder);
3142         kfree(intel_encoder);
3143 }
3144
3145 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3146                                   struct drm_display_mode *mode,
3147                                   struct drm_display_mode *adjusted_mode)
3148 {
3149         struct drm_device *dev = crtc->dev;
3150
3151         if (HAS_PCH_SPLIT(dev)) {
3152                 /* FDI link clock is fixed at 2.7G */
3153                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3154                         return false;
3155         }
3156
3157         /* All interlaced capable intel hw wants timings in frames. Note though
3158          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3159          * timings, so we need to be careful not to clobber these.*/
3160         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3161                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3162
3163         return true;
3164 }
3165
3166 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3167 {
3168         return 400000; /* FIXME */
3169 }
3170
3171 static int i945_get_display_clock_speed(struct drm_device *dev)
3172 {
3173         return 400000;
3174 }
3175
3176 static int i915_get_display_clock_speed(struct drm_device *dev)
3177 {
3178         return 333000;
3179 }
3180
3181 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3182 {
3183         return 200000;
3184 }
3185
3186 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3187 {
3188         u16 gcfgc = 0;
3189
3190         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3191
3192         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3193                 return 133000;
3194         else {
3195                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3196                 case GC_DISPLAY_CLOCK_333_MHZ:
3197                         return 333000;
3198                 default:
3199                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3200                         return 190000;
3201                 }
3202         }
3203 }
3204
3205 static int i865_get_display_clock_speed(struct drm_device *dev)
3206 {
3207         return 266000;
3208 }
3209
3210 static int i855_get_display_clock_speed(struct drm_device *dev)
3211 {
3212         u16 hpllcc = 0;
3213         /* Assume that the hardware is in the high speed state.  This
3214          * should be the default.
3215          */
3216         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3217         case GC_CLOCK_133_200:
3218         case GC_CLOCK_100_200:
3219                 return 200000;
3220         case GC_CLOCK_166_250:
3221                 return 250000;
3222         case GC_CLOCK_100_133:
3223                 return 133000;
3224         }
3225
3226         /* Shouldn't happen */
3227         return 0;
3228 }
3229
3230 static int i830_get_display_clock_speed(struct drm_device *dev)
3231 {
3232         return 133000;
3233 }
3234
3235 struct fdi_m_n {
3236         u32        tu;
3237         u32        gmch_m;
3238         u32        gmch_n;
3239         u32        link_m;
3240         u32        link_n;
3241 };
3242
3243 static void
3244 fdi_reduce_ratio(u32 *num, u32 *den)
3245 {
3246         while (*num > 0xffffff || *den > 0xffffff) {
3247                 *num >>= 1;
3248                 *den >>= 1;
3249         }
3250 }
3251
3252 static void
3253 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3254                      int link_clock, struct fdi_m_n *m_n)
3255 {
3256         m_n->tu = 64; /* default size */
3257
3258         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3259         m_n->gmch_m = bits_per_pixel * pixel_clock;
3260         m_n->gmch_n = link_clock * nlanes * 8;
3261         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3262
3263         m_n->link_m = pixel_clock;
3264         m_n->link_n = link_clock;
3265         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3266 }
3267
3268 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3269 {
3270         if (i915_panel_use_ssc >= 0)
3271                 return i915_panel_use_ssc != 0;
3272         return dev_priv->lvds_use_ssc
3273                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3274 }
3275
3276 /**
3277  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3278  * @crtc: CRTC structure
3279  * @mode: requested mode
3280  *
3281  * A pipe may be connected to one or more outputs.  Based on the depth of the
3282  * attached framebuffer, choose a good color depth to use on the pipe.
3283  *
3284  * If possible, match the pipe depth to the fb depth.  In some cases, this
3285  * isn't ideal, because the connected output supports a lesser or restricted
3286  * set of depths.  Resolve that here:
3287  *    LVDS typically supports only 6bpc, so clamp down in that case
3288  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3289  *    Displays may support a restricted set as well, check EDID and clamp as
3290  *      appropriate.
3291  *    DP may want to dither down to 6bpc to fit larger modes
3292  *
3293  * RETURNS:
3294  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3295  * true if they don't match).
3296  */
3297 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3298                                          unsigned int *pipe_bpp,
3299                                          struct drm_display_mode *mode)
3300 {
3301         struct drm_device *dev = crtc->dev;
3302         struct drm_i915_private *dev_priv = dev->dev_private;
3303         struct drm_encoder *encoder;
3304         struct drm_connector *connector;
3305         unsigned int display_bpc = UINT_MAX, bpc;
3306
3307         /* Walk the encoders & connectors on this crtc, get min bpc */
3308         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3309                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3310
3311                 if (encoder->crtc != crtc)
3312                         continue;
3313
3314                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3315                         unsigned int lvds_bpc;
3316
3317                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3318                             LVDS_A3_POWER_UP)
3319                                 lvds_bpc = 8;
3320                         else
3321                                 lvds_bpc = 6;
3322
3323                         if (lvds_bpc < display_bpc) {
3324                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3325                                 display_bpc = lvds_bpc;
3326                         }
3327                         continue;
3328                 }
3329
3330                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3331                         /* Use VBT settings if we have an eDP panel */
3332                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3333
3334                         if (edp_bpc < display_bpc) {
3335                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3336                                 display_bpc = edp_bpc;
3337                         }
3338                         continue;
3339                 }
3340
3341                 /* Not one of the known troublemakers, check the EDID */
3342                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3343                                     head) {
3344                         if (connector->encoder != encoder)
3345                                 continue;
3346
3347                         /* Don't use an invalid EDID bpc value */
3348                         if (connector->display_info.bpc &&
3349                             connector->display_info.bpc < display_bpc) {
3350                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3351                                 display_bpc = connector->display_info.bpc;
3352                         }
3353                 }
3354
3355                 /*
3356                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3357                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3358                  */
3359                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3360                         if (display_bpc > 8 && display_bpc < 12) {
3361                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3362                                 display_bpc = 12;
3363                         } else {
3364                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3365                                 display_bpc = 8;
3366                         }
3367                 }
3368         }
3369
3370         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3371                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3372                 display_bpc = 6;
3373         }
3374
3375         /*
3376          * We could just drive the pipe at the highest bpc all the time and
3377          * enable dithering as needed, but that costs bandwidth.  So choose
3378          * the minimum value that expresses the full color range of the fb but
3379          * also stays within the max display bpc discovered above.
3380          */
3381
3382         switch (crtc->fb->depth) {
3383         case 8:
3384                 bpc = 8; /* since we go through a colormap */
3385                 break;
3386         case 15:
3387         case 16:
3388                 bpc = 6; /* min is 18bpp */
3389                 break;
3390         case 24:
3391                 bpc = 8;
3392                 break;
3393         case 30:
3394                 bpc = 10;
3395                 break;
3396         case 48:
3397                 bpc = 12;
3398                 break;
3399         default:
3400                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3401                 bpc = min((unsigned int)8, display_bpc);
3402                 break;
3403         }
3404
3405         display_bpc = min(display_bpc, bpc);
3406
3407         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3408                       bpc, display_bpc);
3409
3410         *pipe_bpp = display_bpc * 3;
3411
3412         return display_bpc != bpc;
3413 }
3414
3415 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3416 {
3417         struct drm_device *dev = crtc->dev;
3418         struct drm_i915_private *dev_priv = dev->dev_private;
3419         int refclk;
3420
3421         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3422             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3423                 refclk = dev_priv->lvds_ssc_freq * 1000;
3424                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3425                               refclk / 1000);
3426         } else if (!IS_GEN2(dev)) {
3427                 refclk = 96000;
3428         } else {
3429                 refclk = 48000;
3430         }
3431
3432         return refclk;
3433 }
3434
3435 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3436                                       intel_clock_t *clock)
3437 {
3438         /* SDVO TV has fixed PLL values depend on its clock range,
3439            this mirrors vbios setting. */
3440         if (adjusted_mode->clock >= 100000
3441             && adjusted_mode->clock < 140500) {
3442                 clock->p1 = 2;
3443                 clock->p2 = 10;
3444                 clock->n = 3;
3445                 clock->m1 = 16;
3446                 clock->m2 = 8;
3447         } else if (adjusted_mode->clock >= 140500
3448                    && adjusted_mode->clock <= 200000) {
3449                 clock->p1 = 1;
3450                 clock->p2 = 10;
3451                 clock->n = 6;
3452                 clock->m1 = 12;
3453                 clock->m2 = 8;
3454         }
3455 }
3456
3457 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3458                                      intel_clock_t *clock,
3459                                      intel_clock_t *reduced_clock)
3460 {
3461         struct drm_device *dev = crtc->dev;
3462         struct drm_i915_private *dev_priv = dev->dev_private;
3463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3464         int pipe = intel_crtc->pipe;
3465         u32 fp, fp2 = 0;
3466
3467         if (IS_PINEVIEW(dev)) {
3468                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3469                 if (reduced_clock)
3470                         fp2 = (1 << reduced_clock->n) << 16 |
3471                                 reduced_clock->m1 << 8 | reduced_clock->m2;
3472         } else {
3473                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3474                 if (reduced_clock)
3475                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3476                                 reduced_clock->m2;
3477         }
3478
3479         I915_WRITE(FP0(pipe), fp);
3480
3481         intel_crtc->lowfreq_avail = false;
3482         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3483             reduced_clock && i915_powersave) {
3484                 I915_WRITE(FP1(pipe), fp2);
3485                 intel_crtc->lowfreq_avail = true;
3486         } else {
3487                 I915_WRITE(FP1(pipe), fp);
3488         }
3489 }
3490
3491 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3492                               struct drm_display_mode *adjusted_mode)
3493 {
3494         struct drm_device *dev = crtc->dev;
3495         struct drm_i915_private *dev_priv = dev->dev_private;
3496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497         int pipe = intel_crtc->pipe;
3498         u32 temp;
3499
3500         temp = I915_READ(LVDS);
3501         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3502         if (pipe == 1) {
3503                 temp |= LVDS_PIPEB_SELECT;
3504         } else {
3505                 temp &= ~LVDS_PIPEB_SELECT;
3506         }
3507         /* set the corresponsding LVDS_BORDER bit */
3508         temp |= dev_priv->lvds_border_bits;
3509         /* Set the B0-B3 data pairs corresponding to whether we're going to
3510          * set the DPLLs for dual-channel mode or not.
3511          */
3512         if (clock->p2 == 7)
3513                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3514         else
3515                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3516
3517         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3518          * appropriately here, but we need to look more thoroughly into how
3519          * panels behave in the two modes.
3520          */
3521         /* set the dithering flag on LVDS as needed */
3522         if (INTEL_INFO(dev)->gen >= 4) {
3523                 if (dev_priv->lvds_dither)
3524                         temp |= LVDS_ENABLE_DITHER;
3525                 else
3526                         temp &= ~LVDS_ENABLE_DITHER;
3527         }
3528         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3529         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3530                 temp |= LVDS_HSYNC_POLARITY;
3531         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3532                 temp |= LVDS_VSYNC_POLARITY;
3533         I915_WRITE(LVDS, temp);
3534 }
3535
3536 static void i9xx_update_pll(struct drm_crtc *crtc,
3537                             struct drm_display_mode *mode,
3538                             struct drm_display_mode *adjusted_mode,
3539                             intel_clock_t *clock, intel_clock_t *reduced_clock,
3540                             int num_connectors)
3541 {
3542         struct drm_device *dev = crtc->dev;
3543         struct drm_i915_private *dev_priv = dev->dev_private;
3544         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3545         int pipe = intel_crtc->pipe;
3546         u32 dpll;
3547         bool is_sdvo;
3548
3549         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
3550                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
3551
3552         dpll = DPLL_VGA_MODE_DIS;
3553
3554         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3555                 dpll |= DPLLB_MODE_LVDS;
3556         else
3557                 dpll |= DPLLB_MODE_DAC_SERIAL;
3558         if (is_sdvo) {
3559                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3560                 if (pixel_multiplier > 1) {
3561                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3562                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3563                 }
3564                 dpll |= DPLL_DVO_HIGH_SPEED;
3565         }
3566         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3567                 dpll |= DPLL_DVO_HIGH_SPEED;
3568
3569         /* compute bitmask from p1 value */
3570         if (IS_PINEVIEW(dev))
3571                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3572         else {
3573                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3574                 if (IS_G4X(dev) && reduced_clock)
3575                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3576         }
3577         switch (clock->p2) {
3578         case 5:
3579                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3580                 break;
3581         case 7:
3582                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3583                 break;
3584         case 10:
3585                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3586                 break;
3587         case 14:
3588                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3589                 break;
3590         }
3591         if (INTEL_INFO(dev)->gen >= 4)
3592                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3593
3594         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3595                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3596         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3597                 /* XXX: just matching BIOS for now */
3598                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3599                 dpll |= 3;
3600         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3601                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3602                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3603         else
3604                 dpll |= PLL_REF_INPUT_DREFCLK;
3605
3606         dpll |= DPLL_VCO_ENABLE;
3607         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3608         POSTING_READ(DPLL(pipe));
3609         udelay(150);
3610
3611         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3612          * This is an exception to the general rule that mode_set doesn't turn
3613          * things on.
3614          */
3615         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3616                 intel_update_lvds(crtc, clock, adjusted_mode);
3617
3618         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3619                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3620
3621         I915_WRITE(DPLL(pipe), dpll);
3622
3623         /* Wait for the clocks to stabilize. */
3624         POSTING_READ(DPLL(pipe));
3625         udelay(150);
3626
3627         if (INTEL_INFO(dev)->gen >= 4) {
3628                 u32 temp = 0;
3629                 if (is_sdvo) {
3630                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3631                         if (temp > 1)
3632                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
3633                         else
3634                                 temp = 0;
3635                 }
3636                 I915_WRITE(DPLL_MD(pipe), temp);
3637         } else {
3638                 /* The pixel multiplier can only be updated once the
3639                  * DPLL is enabled and the clocks are stable.
3640                  *
3641                  * So write it again.
3642                  */
3643                 I915_WRITE(DPLL(pipe), dpll);
3644         }
3645 }
3646
3647 static void i8xx_update_pll(struct drm_crtc *crtc,
3648                             struct drm_display_mode *adjusted_mode,
3649                             intel_clock_t *clock,
3650                             int num_connectors)
3651 {
3652         struct drm_device *dev = crtc->dev;
3653         struct drm_i915_private *dev_priv = dev->dev_private;
3654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3655         int pipe = intel_crtc->pipe;
3656         u32 dpll;
3657
3658         dpll = DPLL_VGA_MODE_DIS;
3659
3660         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3661                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3662         } else {
3663                 if (clock->p1 == 2)
3664                         dpll |= PLL_P1_DIVIDE_BY_TWO;
3665                 else
3666                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3667                 if (clock->p2 == 4)
3668                         dpll |= PLL_P2_DIVIDE_BY_4;
3669         }
3670
3671         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3672                 /* XXX: just matching BIOS for now */
3673                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3674                 dpll |= 3;
3675         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3676                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3677                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3678         else
3679                 dpll |= PLL_REF_INPUT_DREFCLK;
3680
3681         dpll |= DPLL_VCO_ENABLE;
3682         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3683         POSTING_READ(DPLL(pipe));
3684         udelay(150);
3685
3686         I915_WRITE(DPLL(pipe), dpll);
3687
3688         /* Wait for the clocks to stabilize. */
3689         POSTING_READ(DPLL(pipe));
3690         udelay(150);
3691
3692         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3693          * This is an exception to the general rule that mode_set doesn't turn
3694          * things on.
3695          */
3696         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3697                 intel_update_lvds(crtc, clock, adjusted_mode);
3698
3699         /* The pixel multiplier can only be updated once the
3700          * DPLL is enabled and the clocks are stable.
3701          *
3702          * So write it again.
3703          */
3704         I915_WRITE(DPLL(pipe), dpll);
3705 }
3706
3707 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
3708                               struct drm_display_mode *mode,
3709                               struct drm_display_mode *adjusted_mode,
3710                               int x, int y,
3711                               struct drm_framebuffer *old_fb)
3712 {
3713         struct drm_device *dev = crtc->dev;
3714         struct drm_i915_private *dev_priv = dev->dev_private;
3715         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3716         int pipe = intel_crtc->pipe;
3717         int plane = intel_crtc->plane;
3718         int refclk, num_connectors = 0;
3719         intel_clock_t clock, reduced_clock;
3720         u32 dspcntr, pipeconf, vsyncshift;
3721         bool ok, has_reduced_clock = false, is_sdvo = false;
3722         bool is_lvds = false, is_tv = false, is_dp = false;
3723         struct drm_mode_config *mode_config = &dev->mode_config;
3724         struct intel_encoder *encoder;
3725         const intel_limit_t *limit;
3726         int ret;
3727
3728         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3729                 if (encoder->base.crtc != crtc)
3730                         continue;
3731
3732                 switch (encoder->type) {
3733                 case INTEL_OUTPUT_LVDS:
3734                         is_lvds = true;
3735                         break;
3736                 case INTEL_OUTPUT_SDVO:
3737                 case INTEL_OUTPUT_HDMI:
3738                         is_sdvo = true;
3739                         if (encoder->needs_tv_clock)
3740                                 is_tv = true;
3741                         break;
3742                 case INTEL_OUTPUT_TVOUT:
3743                         is_tv = true;
3744                         break;
3745                 case INTEL_OUTPUT_DISPLAYPORT:
3746                         is_dp = true;
3747                         break;
3748                 }
3749
3750                 num_connectors++;
3751         }
3752
3753         refclk = i9xx_get_refclk(crtc, num_connectors);
3754
3755         /*
3756          * Returns a set of divisors for the desired target clock with the given
3757          * refclk, or FALSE.  The returned values represent the clock equation:
3758          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3759          */
3760         limit = intel_limit(crtc, refclk);
3761         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
3762                              &clock);
3763         if (!ok) {
3764                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3765                 return -EINVAL;
3766         }
3767
3768         /* Ensure that the cursor is valid for the new mode before changing... */
3769         intel_crtc_update_cursor(crtc, true);
3770
3771         if (is_lvds && dev_priv->lvds_downclock_avail) {
3772                 /*
3773                  * Ensure we match the reduced clock's P to the target clock.
3774                  * If the clocks don't match, we can't switch the display clock
3775                  * by using the FP0/FP1. In such case we will disable the LVDS
3776                  * downclock feature.
3777                 */
3778                 has_reduced_clock = limit->find_pll(limit, crtc,
3779                                                     dev_priv->lvds_downclock,
3780                                                     refclk,
3781                                                     &clock,
3782                                                     &reduced_clock);
3783         }
3784
3785         if (is_sdvo && is_tv)
3786                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
3787
3788         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
3789                                  &reduced_clock : NULL);
3790
3791         if (IS_GEN2(dev))
3792                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
3793         else
3794                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
3795                                 has_reduced_clock ? &reduced_clock : NULL,
3796                                 num_connectors);
3797
3798         /* setup pipeconf */
3799         pipeconf = I915_READ(PIPECONF(pipe));
3800
3801         /* Set up the display plane register */
3802         dspcntr = DISPPLANE_GAMMA_ENABLE;
3803
3804         if (pipe == 0)
3805                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3806         else
3807                 dspcntr |= DISPPLANE_SEL_PIPE_B;
3808
3809         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3810                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3811                  * core speed.
3812                  *
3813                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3814                  * pipe == 0 check?
3815                  */
3816                 if (mode->clock >
3817                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3818                         pipeconf |= PIPECONF_DOUBLE_WIDE;
3819                 else
3820                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3821         }
3822
3823         /* default to 8bpc */
3824         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
3825         if (is_dp) {
3826                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3827                         pipeconf |= PIPECONF_BPP_6 |
3828                                     PIPECONF_DITHER_EN |
3829                                     PIPECONF_DITHER_TYPE_SP;
3830                 }
3831         }
3832
3833         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3834         drm_mode_debug_printmodeline(mode);
3835
3836         if (HAS_PIPE_CXSR(dev)) {
3837                 if (intel_crtc->lowfreq_avail) {
3838                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3839                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3840                 } else {
3841                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3842                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3843                 }
3844         }
3845
3846         pipeconf &= ~PIPECONF_INTERLACE_MASK;
3847         if (!IS_GEN2(dev) &&
3848             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3849                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3850                 /* the chip adds 2 halflines automatically */
3851                 adjusted_mode->crtc_vtotal -= 1;
3852                 adjusted_mode->crtc_vblank_end -= 1;
3853                 vsyncshift = adjusted_mode->crtc_hsync_start
3854                              - adjusted_mode->crtc_htotal/2;
3855         } else {
3856                 pipeconf |= PIPECONF_PROGRESSIVE;
3857                 vsyncshift = 0;
3858         }
3859
3860         if (!IS_GEN3(dev))
3861                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
3862
3863         I915_WRITE(HTOTAL(pipe),
3864                    (adjusted_mode->crtc_hdisplay - 1) |
3865                    ((adjusted_mode->crtc_htotal - 1) << 16));
3866         I915_WRITE(HBLANK(pipe),
3867                    (adjusted_mode->crtc_hblank_start - 1) |
3868                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3869         I915_WRITE(HSYNC(pipe),
3870                    (adjusted_mode->crtc_hsync_start - 1) |
3871                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3872
3873         I915_WRITE(VTOTAL(pipe),
3874                    (adjusted_mode->crtc_vdisplay - 1) |
3875                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3876         I915_WRITE(VBLANK(pipe),
3877                    (adjusted_mode->crtc_vblank_start - 1) |
3878                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3879         I915_WRITE(VSYNC(pipe),
3880                    (adjusted_mode->crtc_vsync_start - 1) |
3881                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3882
3883         /* pipesrc and dspsize control the size that is scaled from,
3884          * which should always be the user's requested size.
3885          */
3886         I915_WRITE(DSPSIZE(plane),
3887                    ((mode->vdisplay - 1) << 16) |
3888                    (mode->hdisplay - 1));
3889         I915_WRITE(DSPPOS(plane), 0);
3890         I915_WRITE(PIPESRC(pipe),
3891                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3892
3893         I915_WRITE(PIPECONF(pipe), pipeconf);
3894         POSTING_READ(PIPECONF(pipe));
3895         intel_enable_pipe(dev_priv, pipe, false);
3896
3897         intel_wait_for_vblank(dev, pipe);
3898
3899         I915_WRITE(DSPCNTR(plane), dspcntr);
3900         POSTING_READ(DSPCNTR(plane));
3901
3902         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3903
3904         intel_update_watermarks(dev);
3905
3906         return ret;
3907 }
3908
3909 /*
3910  * Initialize reference clocks when the driver loads
3911  */
3912 void ironlake_init_pch_refclk(struct drm_device *dev)
3913 {
3914         struct drm_i915_private *dev_priv = dev->dev_private;
3915         struct drm_mode_config *mode_config = &dev->mode_config;
3916         struct intel_encoder *encoder;
3917         u32 temp;
3918         bool has_lvds = false;
3919         bool has_cpu_edp = false;
3920         bool has_pch_edp = false;
3921         bool has_panel = false;
3922         bool has_ck505 = false;
3923         bool can_ssc = false;
3924
3925         /* We need to take the global config into account */
3926         list_for_each_entry(encoder, &mode_config->encoder_list,
3927                             base.head) {
3928                 switch (encoder->type) {
3929                 case INTEL_OUTPUT_LVDS:
3930                         has_panel = true;
3931                         has_lvds = true;
3932                         break;
3933                 case INTEL_OUTPUT_EDP:
3934                         has_panel = true;
3935                         if (intel_encoder_is_pch_edp(&encoder->base))
3936                                 has_pch_edp = true;
3937                         else
3938                                 has_cpu_edp = true;
3939                         break;
3940                 }
3941         }
3942
3943         if (HAS_PCH_IBX(dev)) {
3944                 has_ck505 = dev_priv->display_clock_mode;
3945                 can_ssc = has_ck505;
3946         } else {
3947                 has_ck505 = false;
3948                 can_ssc = true;
3949         }
3950
3951         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
3952                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
3953                       has_ck505);
3954
3955         /* Ironlake: try to setup display ref clock before DPLL
3956          * enabling. This is only under driver's control after
3957          * PCH B stepping, previous chipset stepping should be
3958          * ignoring this setting.
3959          */
3960         temp = I915_READ(PCH_DREF_CONTROL);
3961         /* Always enable nonspread source */
3962         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3963
3964         if (has_ck505)
3965                 temp |= DREF_NONSPREAD_CK505_ENABLE;
3966         else
3967                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3968
3969         if (has_panel) {
3970                 temp &= ~DREF_SSC_SOURCE_MASK;
3971                 temp |= DREF_SSC_SOURCE_ENABLE;
3972
3973                 /* SSC must be turned on before enabling the CPU output  */
3974                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
3975                         DRM_DEBUG_KMS("Using SSC on panel\n");
3976                         temp |= DREF_SSC1_ENABLE;
3977                 } else
3978                         temp &= ~DREF_SSC1_ENABLE;
3979
3980                 /* Get SSC going before enabling the outputs */
3981                 I915_WRITE(PCH_DREF_CONTROL, temp);
3982                 POSTING_READ(PCH_DREF_CONTROL);
3983                 udelay(200);
3984
3985                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3986
3987                 /* Enable CPU source on CPU attached eDP */
3988                 if (has_cpu_edp) {
3989                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
3990                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
3991                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3992                         }
3993                         else
3994                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3995                 } else
3996                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
3997
3998                 I915_WRITE(PCH_DREF_CONTROL, temp);
3999                 POSTING_READ(PCH_DREF_CONTROL);
4000                 udelay(200);
4001         } else {
4002                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4003
4004                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4005
4006                 /* Turn off CPU output */
4007                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4008
4009                 I915_WRITE(PCH_DREF_CONTROL, temp);
4010                 POSTING_READ(PCH_DREF_CONTROL);
4011                 udelay(200);
4012
4013                 /* Turn off the SSC source */
4014                 temp &= ~DREF_SSC_SOURCE_MASK;
4015                 temp |= DREF_SSC_SOURCE_DISABLE;
4016
4017                 /* Turn off SSC1 */
4018                 temp &= ~ DREF_SSC1_ENABLE;
4019
4020                 I915_WRITE(PCH_DREF_CONTROL, temp);
4021                 POSTING_READ(PCH_DREF_CONTROL);
4022                 udelay(200);
4023         }
4024 }
4025
4026 static int ironlake_get_refclk(struct drm_crtc *crtc)
4027 {
4028         struct drm_device *dev = crtc->dev;
4029         struct drm_i915_private *dev_priv = dev->dev_private;
4030         struct intel_encoder *encoder;
4031         struct drm_mode_config *mode_config = &dev->mode_config;
4032         struct intel_encoder *edp_encoder = NULL;
4033         int num_connectors = 0;
4034         bool is_lvds = false;
4035
4036         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4037                 if (encoder->base.crtc != crtc)
4038                         continue;
4039
4040                 switch (encoder->type) {
4041                 case INTEL_OUTPUT_LVDS:
4042                         is_lvds = true;
4043                         break;
4044                 case INTEL_OUTPUT_EDP:
4045                         edp_encoder = encoder;
4046                         break;
4047                 }
4048                 num_connectors++;
4049         }
4050
4051         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4052                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4053                               dev_priv->lvds_ssc_freq);
4054                 return dev_priv->lvds_ssc_freq * 1000;
4055         }
4056
4057         return 120000;
4058 }
4059
4060 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4061                                   struct drm_display_mode *mode,
4062                                   struct drm_display_mode *adjusted_mode,
4063                                   int x, int y,
4064                                   struct drm_framebuffer *old_fb)
4065 {
4066         struct drm_device *dev = crtc->dev;
4067         struct drm_i915_private *dev_priv = dev->dev_private;
4068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4069         int pipe = intel_crtc->pipe;
4070         int plane = intel_crtc->plane;
4071         int refclk, num_connectors = 0;
4072         intel_clock_t clock, reduced_clock;
4073         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4074         bool ok, has_reduced_clock = false, is_sdvo = false;
4075         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4076         struct drm_mode_config *mode_config = &dev->mode_config;
4077         struct intel_encoder *encoder, *edp_encoder = NULL;
4078         const intel_limit_t *limit;
4079         int ret;
4080         struct fdi_m_n m_n = {0};
4081         u32 temp;
4082         int target_clock, pixel_multiplier, lane, link_bw, factor;
4083         unsigned int pipe_bpp;
4084         bool dither;
4085         bool is_cpu_edp = false, is_pch_edp = false;
4086
4087         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4088                 if (encoder->base.crtc != crtc)
4089                         continue;
4090
4091                 switch (encoder->type) {
4092                 case INTEL_OUTPUT_LVDS:
4093                         is_lvds = true;
4094                         break;
4095                 case INTEL_OUTPUT_SDVO:
4096                 case INTEL_OUTPUT_HDMI:
4097                         is_sdvo = true;
4098                         if (encoder->needs_tv_clock)
4099                                 is_tv = true;
4100                         break;
4101                 case INTEL_OUTPUT_TVOUT:
4102                         is_tv = true;
4103                         break;
4104                 case INTEL_OUTPUT_ANALOG:
4105                         is_crt = true;
4106                         break;
4107                 case INTEL_OUTPUT_DISPLAYPORT:
4108                         is_dp = true;
4109                         break;
4110                 case INTEL_OUTPUT_EDP:
4111                         is_dp = true;
4112                         if (intel_encoder_is_pch_edp(&encoder->base))
4113                                 is_pch_edp = true;
4114                         else
4115                                 is_cpu_edp = true;
4116                         edp_encoder = encoder;
4117                         break;
4118                 }
4119
4120                 num_connectors++;
4121         }
4122
4123         refclk = ironlake_get_refclk(crtc);
4124
4125         /*
4126          * Returns a set of divisors for the desired target clock with the given
4127          * refclk, or FALSE.  The returned values represent the clock equation:
4128          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4129          */
4130         limit = intel_limit(crtc, refclk);
4131         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4132                              &clock);
4133         if (!ok) {
4134                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4135                 return -EINVAL;
4136         }
4137
4138         /* Ensure that the cursor is valid for the new mode before changing... */
4139         intel_crtc_update_cursor(crtc, true);
4140
4141         if (is_lvds && dev_priv->lvds_downclock_avail) {
4142                 /*
4143                  * Ensure we match the reduced clock's P to the target clock.
4144                  * If the clocks don't match, we can't switch the display clock
4145                  * by using the FP0/FP1. In such case we will disable the LVDS
4146                  * downclock feature.
4147                 */
4148                 has_reduced_clock = limit->find_pll(limit, crtc,
4149                                                     dev_priv->lvds_downclock,
4150                                                     refclk,
4151                                                     &clock,
4152                                                     &reduced_clock);
4153         }
4154         /* SDVO TV has fixed PLL values depend on its clock range,
4155            this mirrors vbios setting. */
4156         if (is_sdvo && is_tv) {
4157                 if (adjusted_mode->clock >= 100000
4158                     && adjusted_mode->clock < 140500) {
4159                         clock.p1 = 2;
4160                         clock.p2 = 10;
4161                         clock.n = 3;
4162                         clock.m1 = 16;
4163                         clock.m2 = 8;
4164                 } else if (adjusted_mode->clock >= 140500
4165                            && adjusted_mode->clock <= 200000) {
4166                         clock.p1 = 1;
4167                         clock.p2 = 10;
4168                         clock.n = 6;
4169                         clock.m1 = 12;
4170                         clock.m2 = 8;
4171                 }
4172         }
4173
4174         /* FDI link */
4175         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4176         lane = 0;
4177         /* CPU eDP doesn't require FDI link, so just set DP M/N
4178            according to current link config */
4179         if (is_cpu_edp) {
4180                 target_clock = mode->clock;
4181                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4182         } else {
4183                 /* [e]DP over FDI requires target mode clock
4184                    instead of link clock */
4185                 if (is_dp)
4186                         target_clock = mode->clock;
4187                 else
4188                         target_clock = adjusted_mode->clock;
4189
4190                 /* FDI is a binary signal running at ~2.7GHz, encoding
4191                  * each output octet as 10 bits. The actual frequency
4192                  * is stored as a divider into a 100MHz clock, and the
4193                  * mode pixel clock is stored in units of 1KHz.
4194                  * Hence the bw of each lane in terms of the mode signal
4195                  * is:
4196                  */
4197                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4198         }
4199
4200         /* determine panel color depth */
4201         temp = I915_READ(PIPECONF(pipe));
4202         temp &= ~PIPE_BPC_MASK;
4203         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4204         switch (pipe_bpp) {
4205         case 18:
4206                 temp |= PIPE_6BPC;
4207                 break;
4208         case 24:
4209                 temp |= PIPE_8BPC;
4210                 break;
4211         case 30:
4212                 temp |= PIPE_10BPC;
4213                 break;
4214         case 36:
4215                 temp |= PIPE_12BPC;
4216                 break;
4217         default:
4218                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4219                         pipe_bpp);
4220                 temp |= PIPE_8BPC;
4221                 pipe_bpp = 24;
4222                 break;
4223         }
4224
4225         intel_crtc->bpp = pipe_bpp;
4226         I915_WRITE(PIPECONF(pipe), temp);
4227
4228         if (!lane) {
4229                 /*
4230                  * Account for spread spectrum to avoid
4231                  * oversubscribing the link. Max center spread
4232                  * is 2.5%; use 5% for safety's sake.
4233                  */
4234                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4235                 lane = bps / (link_bw * 8) + 1;
4236         }
4237
4238         intel_crtc->fdi_lanes = lane;
4239
4240         if (pixel_multiplier > 1)
4241                 link_bw *= pixel_multiplier;
4242         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4243                              &m_n);
4244
4245         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4246         if (has_reduced_clock)
4247                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4248                         reduced_clock.m2;
4249
4250         /* Enable autotuning of the PLL clock (if permissible) */
4251         factor = 21;
4252         if (is_lvds) {
4253                 if ((intel_panel_use_ssc(dev_priv) &&
4254                      dev_priv->lvds_ssc_freq == 100) ||
4255                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4256                         factor = 25;
4257         } else if (is_sdvo && is_tv)
4258                 factor = 20;
4259
4260         if (clock.m < factor * clock.n)
4261                 fp |= FP_CB_TUNE;
4262
4263         dpll = 0;
4264
4265         if (is_lvds)
4266                 dpll |= DPLLB_MODE_LVDS;
4267         else
4268                 dpll |= DPLLB_MODE_DAC_SERIAL;
4269         if (is_sdvo) {
4270                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4271                 if (pixel_multiplier > 1) {
4272                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4273                 }
4274                 dpll |= DPLL_DVO_HIGH_SPEED;
4275         }
4276         if (is_dp && !is_cpu_edp)
4277                 dpll |= DPLL_DVO_HIGH_SPEED;
4278
4279         /* compute bitmask from p1 value */
4280         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4281         /* also FPA1 */
4282         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4283
4284         switch (clock.p2) {
4285         case 5:
4286                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4287                 break;
4288         case 7:
4289                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4290                 break;
4291         case 10:
4292                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4293                 break;
4294         case 14:
4295                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4296                 break;
4297         }
4298
4299         if (is_sdvo && is_tv)
4300                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4301         else if (is_tv)
4302                 /* XXX: just matching BIOS for now */
4303                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4304                 dpll |= 3;
4305         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4306                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4307         else
4308                 dpll |= PLL_REF_INPUT_DREFCLK;
4309
4310         /* setup pipeconf */
4311         pipeconf = I915_READ(PIPECONF(pipe));
4312
4313         /* Set up the display plane register */
4314         dspcntr = DISPPLANE_GAMMA_ENABLE;
4315
4316         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4317         drm_mode_debug_printmodeline(mode);
4318
4319         /* CPU eDP is the only output that doesn't need a PCH PLL of its own */
4320         if (!is_cpu_edp) {
4321                 struct intel_pch_pll *pll;
4322
4323                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4324                 if (pll == NULL) {
4325                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4326                                          pipe);
4327                         return -EINVAL;
4328                 }
4329         } else
4330                 intel_put_pch_pll(intel_crtc);
4331
4332         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4333          * This is an exception to the general rule that mode_set doesn't turn
4334          * things on.
4335          */
4336         if (is_lvds) {
4337                 temp = I915_READ(PCH_LVDS);
4338                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4339                 if (HAS_PCH_CPT(dev)) {
4340                         temp &= ~PORT_TRANS_SEL_MASK;
4341                         temp |= PORT_TRANS_SEL_CPT(pipe);
4342                 } else {
4343                         if (pipe == 1)
4344                                 temp |= LVDS_PIPEB_SELECT;
4345                         else
4346                                 temp &= ~LVDS_PIPEB_SELECT;
4347                 }
4348
4349                 /* set the corresponsding LVDS_BORDER bit */
4350                 temp |= dev_priv->lvds_border_bits;
4351                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4352                  * set the DPLLs for dual-channel mode or not.
4353                  */
4354                 if (clock.p2 == 7)
4355                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4356                 else
4357                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4358
4359                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4360                  * appropriately here, but we need to look more thoroughly into how
4361                  * panels behave in the two modes.
4362                  */
4363                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4364                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4365                         temp |= LVDS_HSYNC_POLARITY;
4366                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4367                         temp |= LVDS_VSYNC_POLARITY;
4368                 I915_WRITE(PCH_LVDS, temp);
4369         }
4370
4371         pipeconf &= ~PIPECONF_DITHER_EN;
4372         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4373         if ((is_lvds && dev_priv->lvds_dither) || dither) {
4374                 pipeconf |= PIPECONF_DITHER_EN;
4375                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4376         }
4377         if (is_dp && !is_cpu_edp) {
4378                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4379         } else {
4380                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4381                 I915_WRITE(TRANSDATA_M1(pipe), 0);
4382                 I915_WRITE(TRANSDATA_N1(pipe), 0);
4383                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4384                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4385         }
4386
4387         if (intel_crtc->pch_pll) {
4388                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4389
4390                 /* Wait for the clocks to stabilize. */
4391                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4392                 udelay(150);
4393
4394                 /* The pixel multiplier can only be updated once the
4395                  * DPLL is enabled and the clocks are stable.
4396                  *
4397                  * So write it again.
4398                  */
4399                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4400         }
4401
4402         intel_crtc->lowfreq_avail = false;
4403         if (intel_crtc->pch_pll) {
4404                 if (is_lvds && has_reduced_clock && i915_powersave) {
4405                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4406                         intel_crtc->lowfreq_avail = true;
4407                         if (HAS_PIPE_CXSR(dev)) {
4408                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4409                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4410                         }
4411                 } else {
4412                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4413                         if (HAS_PIPE_CXSR(dev)) {
4414                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4415                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4416                         }
4417                 }
4418         }
4419
4420         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4421         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4422                 pipeconf |= PIPECONF_INTERLACED_ILK;
4423                 /* the chip adds 2 halflines automatically */
4424                 adjusted_mode->crtc_vtotal -= 1;
4425                 adjusted_mode->crtc_vblank_end -= 1;
4426                 I915_WRITE(VSYNCSHIFT(pipe),
4427                            adjusted_mode->crtc_hsync_start
4428                            - adjusted_mode->crtc_htotal/2);
4429         } else {
4430                 pipeconf |= PIPECONF_PROGRESSIVE;
4431                 I915_WRITE(VSYNCSHIFT(pipe), 0);
4432         }
4433
4434         I915_WRITE(HTOTAL(pipe),
4435                    (adjusted_mode->crtc_hdisplay - 1) |
4436                    ((adjusted_mode->crtc_htotal - 1) << 16));
4437         I915_WRITE(HBLANK(pipe),
4438                    (adjusted_mode->crtc_hblank_start - 1) |
4439                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4440         I915_WRITE(HSYNC(pipe),
4441                    (adjusted_mode->crtc_hsync_start - 1) |
4442                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4443
4444         I915_WRITE(VTOTAL(pipe),
4445                    (adjusted_mode->crtc_vdisplay - 1) |
4446                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4447         I915_WRITE(VBLANK(pipe),
4448                    (adjusted_mode->crtc_vblank_start - 1) |
4449                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4450         I915_WRITE(VSYNC(pipe),
4451                    (adjusted_mode->crtc_vsync_start - 1) |
4452                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4453
4454         /* pipesrc controls the size that is scaled from, which should
4455          * always be the user's requested size.
4456          */
4457         I915_WRITE(PIPESRC(pipe),
4458                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4459
4460         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4461         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4462         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4463         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4464
4465         if (is_cpu_edp)
4466                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4467
4468         I915_WRITE(PIPECONF(pipe), pipeconf);
4469         POSTING_READ(PIPECONF(pipe));
4470
4471         intel_wait_for_vblank(dev, pipe);
4472
4473         I915_WRITE(DSPCNTR(plane), dspcntr);
4474         POSTING_READ(DSPCNTR(plane));
4475
4476         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4477
4478         intel_update_watermarks(dev);
4479
4480         return ret;
4481 }
4482
4483 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4484                                struct drm_display_mode *mode,
4485                                struct drm_display_mode *adjusted_mode,
4486                                int x, int y,
4487                                struct drm_framebuffer *old_fb)
4488 {
4489         struct drm_device *dev = crtc->dev;
4490         struct drm_i915_private *dev_priv = dev->dev_private;
4491         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4492         int pipe = intel_crtc->pipe;
4493         int ret;
4494
4495         drm_vblank_pre_modeset(dev, pipe);
4496
4497         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4498                                               x, y, old_fb);
4499         drm_vblank_post_modeset(dev, pipe);
4500
4501         if (ret)
4502                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4503         else
4504                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4505
4506         return ret;
4507 }
4508
4509 static bool intel_eld_uptodate(struct drm_connector *connector,
4510                                int reg_eldv, uint32_t bits_eldv,
4511                                int reg_elda, uint32_t bits_elda,
4512                                int reg_edid)
4513 {
4514         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4515         uint8_t *eld = connector->eld;
4516         uint32_t i;
4517
4518         i = I915_READ(reg_eldv);
4519         i &= bits_eldv;
4520
4521         if (!eld[0])
4522                 return !i;
4523
4524         if (!i)
4525                 return false;
4526
4527         i = I915_READ(reg_elda);
4528         i &= ~bits_elda;
4529         I915_WRITE(reg_elda, i);
4530
4531         for (i = 0; i < eld[2]; i++)
4532                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
4533                         return false;
4534
4535         return true;
4536 }
4537
4538 static void g4x_write_eld(struct drm_connector *connector,
4539                           struct drm_crtc *crtc)
4540 {
4541         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4542         uint8_t *eld = connector->eld;
4543         uint32_t eldv;
4544         uint32_t len;
4545         uint32_t i;
4546
4547         i = I915_READ(G4X_AUD_VID_DID);
4548
4549         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
4550                 eldv = G4X_ELDV_DEVCL_DEVBLC;
4551         else
4552                 eldv = G4X_ELDV_DEVCTG;
4553
4554         if (intel_eld_uptodate(connector,
4555                                G4X_AUD_CNTL_ST, eldv,
4556                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
4557                                G4X_HDMIW_HDMIEDID))
4558                 return;
4559
4560         i = I915_READ(G4X_AUD_CNTL_ST);
4561         i &= ~(eldv | G4X_ELD_ADDR);
4562         len = (i >> 9) & 0x1f;          /* ELD buffer size */
4563         I915_WRITE(G4X_AUD_CNTL_ST, i);
4564
4565         if (!eld[0])
4566                 return;
4567
4568         len = min_t(uint8_t, eld[2], len);
4569         DRM_DEBUG_DRIVER("ELD size %d\n", len);
4570         for (i = 0; i < len; i++)
4571                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
4572
4573         i = I915_READ(G4X_AUD_CNTL_ST);
4574         i |= eldv;
4575         I915_WRITE(G4X_AUD_CNTL_ST, i);
4576 }
4577
4578 static void ironlake_write_eld(struct drm_connector *connector,
4579                                      struct drm_crtc *crtc)
4580 {
4581         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4582         uint8_t *eld = connector->eld;
4583         uint32_t eldv;
4584         uint32_t i;
4585         int len;
4586         int hdmiw_hdmiedid;
4587         int aud_config;
4588         int aud_cntl_st;
4589         int aud_cntrl_st2;
4590
4591         if (HAS_PCH_IBX(connector->dev)) {
4592                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
4593                 aud_config = IBX_AUD_CONFIG_A;
4594                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
4595                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
4596         } else {
4597                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
4598                 aud_config = CPT_AUD_CONFIG_A;
4599                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
4600                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
4601         }
4602
4603         i = to_intel_crtc(crtc)->pipe;
4604         hdmiw_hdmiedid += i * 0x100;
4605         aud_cntl_st += i * 0x100;
4606         aud_config += i * 0x100;
4607
4608         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
4609
4610         i = I915_READ(aud_cntl_st);
4611         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
4612         if (!i) {
4613                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
4614                 /* operate blindly on all ports */
4615                 eldv = IBX_ELD_VALIDB;
4616                 eldv |= IBX_ELD_VALIDB << 4;
4617                 eldv |= IBX_ELD_VALIDB << 8;
4618         } else {
4619                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
4620                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
4621         }
4622
4623         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
4624                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
4625                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
4626                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4627         } else
4628                 I915_WRITE(aud_config, 0);
4629
4630         if (intel_eld_uptodate(connector,
4631                                aud_cntrl_st2, eldv,
4632                                aud_cntl_st, IBX_ELD_ADDRESS,
4633                                hdmiw_hdmiedid))
4634                 return;
4635
4636         i = I915_READ(aud_cntrl_st2);
4637         i &= ~eldv;
4638         I915_WRITE(aud_cntrl_st2, i);
4639
4640         if (!eld[0])
4641                 return;
4642
4643         i = I915_READ(aud_cntl_st);
4644         i &= ~IBX_ELD_ADDRESS;
4645         I915_WRITE(aud_cntl_st, i);
4646
4647         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
4648         DRM_DEBUG_DRIVER("ELD size %d\n", len);
4649         for (i = 0; i < len; i++)
4650                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
4651
4652         i = I915_READ(aud_cntrl_st2);
4653         i |= eldv;
4654         I915_WRITE(aud_cntrl_st2, i);
4655 }
4656
4657 void intel_write_eld(struct drm_encoder *encoder,
4658                      struct drm_display_mode *mode)
4659 {
4660         struct drm_crtc *crtc = encoder->crtc;
4661         struct drm_connector *connector;
4662         struct drm_device *dev = encoder->dev;
4663         struct drm_i915_private *dev_priv = dev->dev_private;
4664
4665         connector = drm_select_eld(encoder, mode);
4666         if (!connector)
4667                 return;
4668
4669         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
4670                          connector->base.id,
4671                          drm_get_connector_name(connector),
4672                          connector->encoder->base.id,
4673                          drm_get_encoder_name(connector->encoder));
4674
4675         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
4676
4677         if (dev_priv->display.write_eld)
4678                 dev_priv->display.write_eld(connector, crtc);
4679 }
4680
4681 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4682 void intel_crtc_load_lut(struct drm_crtc *crtc)
4683 {
4684         struct drm_device *dev = crtc->dev;
4685         struct drm_i915_private *dev_priv = dev->dev_private;
4686         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4687         int palreg = PALETTE(intel_crtc->pipe);
4688         int i;
4689
4690         /* The clocks have to be on to load the palette. */
4691         if (!crtc->enabled || !intel_crtc->active)
4692                 return;
4693
4694         /* use legacy palette for Ironlake */
4695         if (HAS_PCH_SPLIT(dev))
4696                 palreg = LGC_PALETTE(intel_crtc->pipe);
4697
4698         for (i = 0; i < 256; i++) {
4699                 I915_WRITE(palreg + 4 * i,
4700                            (intel_crtc->lut_r[i] << 16) |
4701                            (intel_crtc->lut_g[i] << 8) |
4702                            intel_crtc->lut_b[i]);
4703         }
4704 }
4705
4706 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4707 {
4708         struct drm_device *dev = crtc->dev;
4709         struct drm_i915_private *dev_priv = dev->dev_private;
4710         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4711         bool visible = base != 0;
4712         u32 cntl;
4713
4714         if (intel_crtc->cursor_visible == visible)
4715                 return;
4716
4717         cntl = I915_READ(_CURACNTR);
4718         if (visible) {
4719                 /* On these chipsets we can only modify the base whilst
4720                  * the cursor is disabled.
4721                  */
4722                 I915_WRITE(_CURABASE, base);
4723
4724                 cntl &= ~(CURSOR_FORMAT_MASK);
4725                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4726                 cntl |= CURSOR_ENABLE |
4727                         CURSOR_GAMMA_ENABLE |
4728                         CURSOR_FORMAT_ARGB;
4729         } else
4730                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4731         I915_WRITE(_CURACNTR, cntl);
4732
4733         intel_crtc->cursor_visible = visible;
4734 }
4735
4736 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4737 {
4738         struct drm_device *dev = crtc->dev;
4739         struct drm_i915_private *dev_priv = dev->dev_private;
4740         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4741         int pipe = intel_crtc->pipe;
4742         bool visible = base != 0;
4743
4744         if (intel_crtc->cursor_visible != visible) {
4745                 uint32_t cntl = I915_READ(CURCNTR(pipe));
4746                 if (base) {
4747                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4748                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4749                         cntl |= pipe << 28; /* Connect to correct pipe */
4750                 } else {
4751                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4752                         cntl |= CURSOR_MODE_DISABLE;
4753                 }
4754                 I915_WRITE(CURCNTR(pipe), cntl);
4755
4756                 intel_crtc->cursor_visible = visible;
4757         }
4758         /* and commit changes on next vblank */
4759         I915_WRITE(CURBASE(pipe), base);
4760 }
4761
4762 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
4763 {
4764         struct drm_device *dev = crtc->dev;
4765         struct drm_i915_private *dev_priv = dev->dev_private;
4766         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4767         int pipe = intel_crtc->pipe;
4768         bool visible = base != 0;
4769
4770         if (intel_crtc->cursor_visible != visible) {
4771                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
4772                 if (base) {
4773                         cntl &= ~CURSOR_MODE;
4774                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4775                 } else {
4776                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4777                         cntl |= CURSOR_MODE_DISABLE;
4778                 }
4779                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
4780
4781                 intel_crtc->cursor_visible = visible;
4782         }
4783         /* and commit changes on next vblank */
4784         I915_WRITE(CURBASE_IVB(pipe), base);
4785 }
4786
4787 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4788 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4789                                      bool on)
4790 {
4791         struct drm_device *dev = crtc->dev;
4792         struct drm_i915_private *dev_priv = dev->dev_private;
4793         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4794         int pipe = intel_crtc->pipe;
4795         int x = intel_crtc->cursor_x;
4796         int y = intel_crtc->cursor_y;
4797         u32 base, pos;
4798         bool visible;
4799
4800         pos = 0;
4801
4802         if (on && crtc->enabled && crtc->fb) {
4803                 base = intel_crtc->cursor_addr;
4804                 if (x > (int) crtc->fb->width)
4805                         base = 0;
4806
4807                 if (y > (int) crtc->fb->height)
4808                         base = 0;
4809         } else
4810                 base = 0;
4811
4812         if (x < 0) {
4813                 if (x + intel_crtc->cursor_width < 0)
4814                         base = 0;
4815
4816                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4817                 x = -x;
4818         }
4819         pos |= x << CURSOR_X_SHIFT;
4820
4821         if (y < 0) {
4822                 if (y + intel_crtc->cursor_height < 0)
4823                         base = 0;
4824
4825                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4826                 y = -y;
4827         }
4828         pos |= y << CURSOR_Y_SHIFT;
4829
4830         visible = base != 0;
4831         if (!visible && !intel_crtc->cursor_visible)
4832                 return;
4833
4834         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4835                 I915_WRITE(CURPOS_IVB(pipe), pos);
4836                 ivb_update_cursor(crtc, base);
4837         } else {
4838                 I915_WRITE(CURPOS(pipe), pos);
4839                 if (IS_845G(dev) || IS_I865G(dev))
4840                         i845_update_cursor(crtc, base);
4841                 else
4842                         i9xx_update_cursor(crtc, base);
4843         }
4844 }
4845
4846 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4847                                  struct drm_file *file,
4848                                  uint32_t handle,
4849                                  uint32_t width, uint32_t height)
4850 {
4851         struct drm_device *dev = crtc->dev;
4852         struct drm_i915_private *dev_priv = dev->dev_private;
4853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854         struct drm_i915_gem_object *obj;
4855         uint32_t addr;
4856         int ret;
4857
4858         DRM_DEBUG_KMS("\n");
4859
4860         /* if we want to turn off the cursor ignore width and height */
4861         if (!handle) {
4862                 DRM_DEBUG_KMS("cursor off\n");
4863                 addr = 0;
4864                 obj = NULL;
4865                 mutex_lock(&dev->struct_mutex);
4866                 goto finish;
4867         }
4868
4869         /* Currently we only support 64x64 cursors */
4870         if (width != 64 || height != 64) {
4871                 DRM_ERROR("we currently only support 64x64 cursors\n");
4872                 return -EINVAL;
4873         }
4874
4875         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4876         if (&obj->base == NULL)
4877                 return -ENOENT;
4878
4879         if (obj->base.size < width * height * 4) {
4880                 DRM_ERROR("buffer is to small\n");
4881                 ret = -ENOMEM;
4882                 goto fail;
4883         }
4884
4885         /* we only need to pin inside GTT if cursor is non-phy */
4886         mutex_lock(&dev->struct_mutex);
4887         if (!dev_priv->info->cursor_needs_physical) {
4888                 if (obj->tiling_mode) {
4889                         DRM_ERROR("cursor cannot be tiled\n");
4890                         ret = -EINVAL;
4891                         goto fail_locked;
4892                 }
4893
4894                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
4895                 if (ret) {
4896                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4897                         goto fail_locked;
4898                 }
4899
4900                 ret = i915_gem_object_put_fence(obj);
4901                 if (ret) {
4902                         DRM_ERROR("failed to release fence for cursor");
4903                         goto fail_unpin;
4904                 }
4905
4906                 addr = obj->gtt_offset;
4907         } else {
4908                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4909                 ret = i915_gem_attach_phys_object(dev, obj,
4910                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4911                                                   align);
4912                 if (ret) {
4913                         DRM_ERROR("failed to attach phys object\n");
4914                         goto fail_locked;
4915                 }
4916                 addr = obj->phys_obj->handle->busaddr;
4917         }
4918
4919         if (IS_GEN2(dev))
4920                 I915_WRITE(CURSIZE, (height << 12) | width);
4921
4922  finish:
4923         if (intel_crtc->cursor_bo) {
4924                 if (dev_priv->info->cursor_needs_physical) {
4925                         if (intel_crtc->cursor_bo != obj)
4926                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4927                 } else
4928                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4929                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
4930         }
4931
4932         mutex_unlock(&dev->struct_mutex);
4933
4934         intel_crtc->cursor_addr = addr;
4935         intel_crtc->cursor_bo = obj;
4936         intel_crtc->cursor_width = width;
4937         intel_crtc->cursor_height = height;
4938
4939         intel_crtc_update_cursor(crtc, true);
4940
4941         return 0;
4942 fail_unpin:
4943         i915_gem_object_unpin(obj);
4944 fail_locked:
4945         mutex_unlock(&dev->struct_mutex);
4946 fail:
4947         drm_gem_object_unreference_unlocked(&obj->base);
4948         return ret;
4949 }
4950
4951 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4952 {
4953         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4954
4955         intel_crtc->cursor_x = x;
4956         intel_crtc->cursor_y = y;
4957
4958         intel_crtc_update_cursor(crtc, true);
4959
4960         return 0;
4961 }
4962
4963 /** Sets the color ramps on behalf of RandR */
4964 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4965                                  u16 blue, int regno)
4966 {
4967         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4968
4969         intel_crtc->lut_r[regno] = red >> 8;
4970         intel_crtc->lut_g[regno] = green >> 8;
4971         intel_crtc->lut_b[regno] = blue >> 8;
4972 }
4973
4974 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4975                              u16 *blue, int regno)
4976 {
4977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4978
4979         *red = intel_crtc->lut_r[regno] << 8;
4980         *green = intel_crtc->lut_g[regno] << 8;
4981         *blue = intel_crtc->lut_b[regno] << 8;
4982 }
4983
4984 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4985                                  u16 *blue, uint32_t start, uint32_t size)
4986 {
4987         int end = (start + size > 256) ? 256 : start + size, i;
4988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4989
4990         for (i = start; i < end; i++) {
4991                 intel_crtc->lut_r[i] = red[i] >> 8;
4992                 intel_crtc->lut_g[i] = green[i] >> 8;
4993                 intel_crtc->lut_b[i] = blue[i] >> 8;
4994         }
4995
4996         intel_crtc_load_lut(crtc);
4997 }
4998
4999 /**
5000  * Get a pipe with a simple mode set on it for doing load-based monitor
5001  * detection.
5002  *
5003  * It will be up to the load-detect code to adjust the pipe as appropriate for
5004  * its requirements.  The pipe will be connected to no other encoders.
5005  *
5006  * Currently this code will only succeed if there is a pipe with no encoders
5007  * configured for it.  In the future, it could choose to temporarily disable
5008  * some outputs to free up a pipe for its use.
5009  *
5010  * \return crtc, or NULL if no pipes are available.
5011  */
5012
5013 /* VESA 640x480x72Hz mode to set on the pipe */
5014 static struct drm_display_mode load_detect_mode = {
5015         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5016                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5017 };
5018
5019 static struct drm_framebuffer *
5020 intel_framebuffer_create(struct drm_device *dev,
5021                          struct drm_mode_fb_cmd2 *mode_cmd,
5022                          struct drm_i915_gem_object *obj)
5023 {
5024         struct intel_framebuffer *intel_fb;
5025         int ret;
5026
5027         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5028         if (!intel_fb) {
5029                 drm_gem_object_unreference_unlocked(&obj->base);
5030                 return ERR_PTR(-ENOMEM);
5031         }
5032
5033         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5034         if (ret) {
5035                 drm_gem_object_unreference_unlocked(&obj->base);
5036                 kfree(intel_fb);
5037                 return ERR_PTR(ret);
5038         }
5039
5040         return &intel_fb->base;
5041 }
5042
5043 static u32
5044 intel_framebuffer_pitch_for_width(int width, int bpp)
5045 {
5046         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5047         return ALIGN(pitch, 64);
5048 }
5049
5050 static u32
5051 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5052 {
5053         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5054         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5055 }
5056
5057 static struct drm_framebuffer *
5058 intel_framebuffer_create_for_mode(struct drm_device *dev,
5059                                   struct drm_display_mode *mode,
5060                                   int depth, int bpp)
5061 {
5062         struct drm_i915_gem_object *obj;
5063         struct drm_mode_fb_cmd2 mode_cmd;
5064
5065         obj = i915_gem_alloc_object(dev,
5066                                     intel_framebuffer_size_for_mode(mode, bpp));
5067         if (obj == NULL)
5068                 return ERR_PTR(-ENOMEM);
5069
5070         mode_cmd.width = mode->hdisplay;
5071         mode_cmd.height = mode->vdisplay;
5072         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5073                                                                 bpp);
5074         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5075
5076         return intel_framebuffer_create(dev, &mode_cmd, obj);
5077 }
5078
5079 static struct drm_framebuffer *
5080 mode_fits_in_fbdev(struct drm_device *dev,
5081                    struct drm_display_mode *mode)
5082 {
5083         struct drm_i915_private *dev_priv = dev->dev_private;
5084         struct drm_i915_gem_object *obj;
5085         struct drm_framebuffer *fb;
5086
5087         if (dev_priv->fbdev == NULL)
5088                 return NULL;
5089
5090         obj = dev_priv->fbdev->ifb.obj;
5091         if (obj == NULL)
5092                 return NULL;
5093
5094         fb = &dev_priv->fbdev->ifb.base;
5095         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5096                                                                fb->bits_per_pixel))
5097                 return NULL;
5098
5099         if (obj->base.size < mode->vdisplay * fb->pitches[0])
5100                 return NULL;
5101
5102         return fb;
5103 }
5104
5105 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5106                                 struct drm_connector *connector,
5107                                 struct drm_display_mode *mode,
5108                                 struct intel_load_detect_pipe *old)
5109 {
5110         struct intel_crtc *intel_crtc;
5111         struct drm_crtc *possible_crtc;
5112         struct drm_encoder *encoder = &intel_encoder->base;
5113         struct drm_crtc *crtc = NULL;
5114         struct drm_device *dev = encoder->dev;
5115         struct drm_framebuffer *old_fb;
5116         int i = -1;
5117
5118         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5119                       connector->base.id, drm_get_connector_name(connector),
5120                       encoder->base.id, drm_get_encoder_name(encoder));
5121
5122         /*
5123          * Algorithm gets a little messy:
5124          *
5125          *   - if the connector already has an assigned crtc, use it (but make
5126          *     sure it's on first)
5127          *
5128          *   - try to find the first unused crtc that can drive this connector,
5129          *     and use that if we find one
5130          */
5131
5132         /* See if we already have a CRTC for this connector */
5133         if (encoder->crtc) {
5134                 crtc = encoder->crtc;
5135
5136                 intel_crtc = to_intel_crtc(crtc);
5137                 old->dpms_mode = intel_crtc->dpms_mode;
5138                 old->load_detect_temp = false;
5139
5140                 /* Make sure the crtc and connector are running */
5141                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5142                         struct drm_encoder_helper_funcs *encoder_funcs;
5143                         struct drm_crtc_helper_funcs *crtc_funcs;
5144
5145                         crtc_funcs = crtc->helper_private;
5146                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5147
5148                         encoder_funcs = encoder->helper_private;
5149                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5150                 }
5151
5152                 return true;
5153         }
5154
5155         /* Find an unused one (if possible) */
5156         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5157                 i++;
5158                 if (!(encoder->possible_crtcs & (1 << i)))
5159                         continue;
5160                 if (!possible_crtc->enabled) {
5161                         crtc = possible_crtc;
5162                         break;
5163                 }
5164         }
5165
5166         /*
5167          * If we didn't find an unused CRTC, don't use any.
5168          */
5169         if (!crtc) {
5170                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5171                 return false;
5172         }
5173
5174         encoder->crtc = crtc;
5175         connector->encoder = encoder;
5176
5177         intel_crtc = to_intel_crtc(crtc);
5178         old->dpms_mode = intel_crtc->dpms_mode;
5179         old->load_detect_temp = true;
5180         old->release_fb = NULL;
5181
5182         if (!mode)
5183                 mode = &load_detect_mode;
5184
5185         old_fb = crtc->fb;
5186
5187         /* We need a framebuffer large enough to accommodate all accesses
5188          * that the plane may generate whilst we perform load detection.
5189          * We can not rely on the fbcon either being present (we get called
5190          * during its initialisation to detect all boot displays, or it may
5191          * not even exist) or that it is large enough to satisfy the
5192          * requested mode.
5193          */
5194         crtc->fb = mode_fits_in_fbdev(dev, mode);
5195         if (crtc->fb == NULL) {
5196                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5197                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5198                 old->release_fb = crtc->fb;
5199         } else
5200                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5201         if (IS_ERR(crtc->fb)) {
5202                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5203                 crtc->fb = old_fb;
5204                 return false;
5205         }
5206
5207         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5208                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5209                 if (old->release_fb)
5210                         old->release_fb->funcs->destroy(old->release_fb);
5211                 crtc->fb = old_fb;
5212                 return false;
5213         }
5214
5215         /* let the connector get through one full cycle before testing */
5216         intel_wait_for_vblank(dev, intel_crtc->pipe);
5217
5218         return true;
5219 }
5220
5221 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5222                                     struct drm_connector *connector,
5223                                     struct intel_load_detect_pipe *old)
5224 {
5225         struct drm_encoder *encoder = &intel_encoder->base;
5226         struct drm_device *dev = encoder->dev;
5227         struct drm_crtc *crtc = encoder->crtc;
5228         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5229         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5230
5231         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5232                       connector->base.id, drm_get_connector_name(connector),
5233                       encoder->base.id, drm_get_encoder_name(encoder));
5234
5235         if (old->load_detect_temp) {
5236                 connector->encoder = NULL;
5237                 drm_helper_disable_unused_functions(dev);
5238
5239                 if (old->release_fb)
5240                         old->release_fb->funcs->destroy(old->release_fb);
5241
5242                 return;
5243         }
5244
5245         /* Switch crtc and encoder back off if necessary */
5246         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5247                 encoder_funcs->dpms(encoder, old->dpms_mode);
5248                 crtc_funcs->dpms(crtc, old->dpms_mode);
5249         }
5250 }
5251
5252 /* Returns the clock of the currently programmed mode of the given pipe. */
5253 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5254 {
5255         struct drm_i915_private *dev_priv = dev->dev_private;
5256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5257         int pipe = intel_crtc->pipe;
5258         u32 dpll = I915_READ(DPLL(pipe));
5259         u32 fp;
5260         intel_clock_t clock;
5261
5262         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5263                 fp = I915_READ(FP0(pipe));
5264         else
5265                 fp = I915_READ(FP1(pipe));
5266
5267         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5268         if (IS_PINEVIEW(dev)) {
5269                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5270                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5271         } else {
5272                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5273                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5274         }
5275
5276         if (!IS_GEN2(dev)) {
5277                 if (IS_PINEVIEW(dev))
5278                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5279                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5280                 else
5281                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5282                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5283
5284                 switch (dpll & DPLL_MODE_MASK) {
5285                 case DPLLB_MODE_DAC_SERIAL:
5286                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5287                                 5 : 10;
5288                         break;
5289                 case DPLLB_MODE_LVDS:
5290                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5291                                 7 : 14;
5292                         break;
5293                 default:
5294                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5295                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5296                         return 0;
5297                 }
5298
5299                 /* XXX: Handle the 100Mhz refclk */
5300                 intel_clock(dev, 96000, &clock);
5301         } else {
5302                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5303
5304                 if (is_lvds) {
5305                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5306                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5307                         clock.p2 = 14;
5308
5309                         if ((dpll & PLL_REF_INPUT_MASK) ==
5310                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5311                                 /* XXX: might not be 66MHz */
5312                                 intel_clock(dev, 66000, &clock);
5313                         } else
5314                                 intel_clock(dev, 48000, &clock);
5315                 } else {
5316                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5317                                 clock.p1 = 2;
5318                         else {
5319                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5320                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5321                         }
5322                         if (dpll & PLL_P2_DIVIDE_BY_4)
5323                                 clock.p2 = 4;
5324                         else
5325                                 clock.p2 = 2;
5326
5327                         intel_clock(dev, 48000, &clock);
5328                 }
5329         }
5330
5331         /* XXX: It would be nice to validate the clocks, but we can't reuse
5332          * i830PllIsValid() because it relies on the xf86_config connector
5333          * configuration being accurate, which it isn't necessarily.
5334          */
5335
5336         return clock.dot;
5337 }
5338
5339 /** Returns the currently programmed mode of the given pipe. */
5340 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5341                                              struct drm_crtc *crtc)
5342 {
5343         struct drm_i915_private *dev_priv = dev->dev_private;
5344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5345         int pipe = intel_crtc->pipe;
5346         struct drm_display_mode *mode;
5347         int htot = I915_READ(HTOTAL(pipe));
5348         int hsync = I915_READ(HSYNC(pipe));
5349         int vtot = I915_READ(VTOTAL(pipe));
5350         int vsync = I915_READ(VSYNC(pipe));
5351
5352         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5353         if (!mode)
5354                 return NULL;
5355
5356         mode->clock = intel_crtc_clock_get(dev, crtc);
5357         mode->hdisplay = (htot & 0xffff) + 1;
5358         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5359         mode->hsync_start = (hsync & 0xffff) + 1;
5360         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5361         mode->vdisplay = (vtot & 0xffff) + 1;
5362         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5363         mode->vsync_start = (vsync & 0xffff) + 1;
5364         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5365
5366         drm_mode_set_name(mode);
5367
5368         return mode;
5369 }
5370
5371 #define GPU_IDLE_TIMEOUT 500 /* ms */
5372
5373 /* When this timer fires, we've been idle for awhile */
5374 static void intel_gpu_idle_timer(unsigned long arg)
5375 {
5376         struct drm_device *dev = (struct drm_device *)arg;
5377         drm_i915_private_t *dev_priv = dev->dev_private;
5378
5379         if (!list_empty(&dev_priv->mm.active_list)) {
5380                 /* Still processing requests, so just re-arm the timer. */
5381                 mod_timer(&dev_priv->idle_timer, jiffies +
5382                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5383                 return;
5384         }
5385
5386         dev_priv->busy = false;
5387         queue_work(dev_priv->wq, &dev_priv->idle_work);
5388 }
5389
5390 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5391
5392 static void intel_crtc_idle_timer(unsigned long arg)
5393 {
5394         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5395         struct drm_crtc *crtc = &intel_crtc->base;
5396         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5397         struct intel_framebuffer *intel_fb;
5398
5399         intel_fb = to_intel_framebuffer(crtc->fb);
5400         if (intel_fb && intel_fb->obj->active) {
5401                 /* The framebuffer is still being accessed by the GPU. */
5402                 mod_timer(&intel_crtc->idle_timer, jiffies +
5403                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5404                 return;
5405         }
5406
5407         intel_crtc->busy = false;
5408         queue_work(dev_priv->wq, &dev_priv->idle_work);
5409 }
5410
5411 static void intel_increase_pllclock(struct drm_crtc *crtc)
5412 {
5413         struct drm_device *dev = crtc->dev;
5414         drm_i915_private_t *dev_priv = dev->dev_private;
5415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5416         int pipe = intel_crtc->pipe;
5417         int dpll_reg = DPLL(pipe);
5418         int dpll;
5419
5420         if (HAS_PCH_SPLIT(dev))
5421                 return;
5422
5423         if (!dev_priv->lvds_downclock_avail)
5424                 return;
5425
5426         dpll = I915_READ(dpll_reg);
5427         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5428                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5429
5430                 assert_panel_unlocked(dev_priv, pipe);
5431
5432                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5433                 I915_WRITE(dpll_reg, dpll);
5434                 intel_wait_for_vblank(dev, pipe);
5435
5436                 dpll = I915_READ(dpll_reg);
5437                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5438                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5439         }
5440
5441         /* Schedule downclock */
5442         mod_timer(&intel_crtc->idle_timer, jiffies +
5443                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5444 }
5445
5446 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5447 {
5448         struct drm_device *dev = crtc->dev;
5449         drm_i915_private_t *dev_priv = dev->dev_private;
5450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5451
5452         if (HAS_PCH_SPLIT(dev))
5453                 return;
5454
5455         if (!dev_priv->lvds_downclock_avail)
5456                 return;
5457
5458         /*
5459          * Since this is called by a timer, we should never get here in
5460          * the manual case.
5461          */
5462         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5463                 int pipe = intel_crtc->pipe;
5464                 int dpll_reg = DPLL(pipe);
5465                 int dpll;
5466
5467                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5468
5469                 assert_panel_unlocked(dev_priv, pipe);
5470
5471                 dpll = I915_READ(dpll_reg);
5472                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5473                 I915_WRITE(dpll_reg, dpll);
5474                 intel_wait_for_vblank(dev, pipe);
5475                 dpll = I915_READ(dpll_reg);
5476                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5477                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5478         }
5479
5480 }
5481
5482 /**
5483  * intel_idle_update - adjust clocks for idleness
5484  * @work: work struct
5485  *
5486  * Either the GPU or display (or both) went idle.  Check the busy status
5487  * here and adjust the CRTC and GPU clocks as necessary.
5488  */
5489 static void intel_idle_update(struct work_struct *work)
5490 {
5491         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5492                                                     idle_work);
5493         struct drm_device *dev = dev_priv->dev;
5494         struct drm_crtc *crtc;
5495         struct intel_crtc *intel_crtc;
5496
5497         if (!i915_powersave)
5498                 return;
5499
5500         mutex_lock(&dev->struct_mutex);
5501
5502         i915_update_gfx_val(dev_priv);
5503
5504         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5505                 /* Skip inactive CRTCs */
5506                 if (!crtc->fb)
5507                         continue;
5508
5509                 intel_crtc = to_intel_crtc(crtc);
5510                 if (!intel_crtc->busy)
5511                         intel_decrease_pllclock(crtc);
5512         }
5513
5514
5515         mutex_unlock(&dev->struct_mutex);
5516 }
5517
5518 /**
5519  * intel_mark_busy - mark the GPU and possibly the display busy
5520  * @dev: drm device
5521  * @obj: object we're operating on
5522  *
5523  * Callers can use this function to indicate that the GPU is busy processing
5524  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
5525  * buffer), we'll also mark the display as busy, so we know to increase its
5526  * clock frequency.
5527  */
5528 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5529 {
5530         drm_i915_private_t *dev_priv = dev->dev_private;
5531         struct drm_crtc *crtc = NULL;
5532         struct intel_framebuffer *intel_fb;
5533         struct intel_crtc *intel_crtc;
5534
5535         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5536                 return;
5537
5538         if (!dev_priv->busy) {
5539                 intel_sanitize_pm(dev);
5540                 dev_priv->busy = true;
5541         } else
5542                 mod_timer(&dev_priv->idle_timer, jiffies +
5543                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5544
5545         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5546                 if (!crtc->fb)
5547                         continue;
5548
5549                 intel_crtc = to_intel_crtc(crtc);
5550                 intel_fb = to_intel_framebuffer(crtc->fb);
5551                 if (intel_fb->obj == obj) {
5552                         if (!intel_crtc->busy) {
5553                                 /* Non-busy -> busy, upclock */
5554                                 intel_increase_pllclock(crtc);
5555                                 intel_crtc->busy = true;
5556                         } else {
5557                                 /* Busy -> busy, put off timer */
5558                                 mod_timer(&intel_crtc->idle_timer, jiffies +
5559                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5560                         }
5561                 }
5562         }
5563 }
5564
5565 static void intel_crtc_destroy(struct drm_crtc *crtc)
5566 {
5567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5568         struct drm_device *dev = crtc->dev;
5569         struct intel_unpin_work *work;
5570         unsigned long flags;
5571
5572         spin_lock_irqsave(&dev->event_lock, flags);
5573         work = intel_crtc->unpin_work;
5574         intel_crtc->unpin_work = NULL;
5575         spin_unlock_irqrestore(&dev->event_lock, flags);
5576
5577         if (work) {
5578                 cancel_work_sync(&work->work);
5579                 kfree(work);
5580         }
5581
5582         drm_crtc_cleanup(crtc);
5583
5584         kfree(intel_crtc);
5585 }
5586
5587 static void intel_unpin_work_fn(struct work_struct *__work)
5588 {
5589         struct intel_unpin_work *work =
5590                 container_of(__work, struct intel_unpin_work, work);
5591
5592         mutex_lock(&work->dev->struct_mutex);
5593         intel_unpin_fb_obj(work->old_fb_obj);
5594         drm_gem_object_unreference(&work->pending_flip_obj->base);
5595         drm_gem_object_unreference(&work->old_fb_obj->base);
5596
5597         intel_update_fbc(work->dev);
5598         mutex_unlock(&work->dev->struct_mutex);
5599         kfree(work);
5600 }
5601
5602 static void do_intel_finish_page_flip(struct drm_device *dev,
5603                                       struct drm_crtc *crtc)
5604 {
5605         drm_i915_private_t *dev_priv = dev->dev_private;
5606         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5607         struct intel_unpin_work *work;
5608         struct drm_i915_gem_object *obj;
5609         struct drm_pending_vblank_event *e;
5610         struct timeval tnow, tvbl;
5611         unsigned long flags;
5612
5613         /* Ignore early vblank irqs */
5614         if (intel_crtc == NULL)
5615                 return;
5616
5617         do_gettimeofday(&tnow);
5618
5619         spin_lock_irqsave(&dev->event_lock, flags);
5620         work = intel_crtc->unpin_work;
5621         if (work == NULL || !work->pending) {
5622                 spin_unlock_irqrestore(&dev->event_lock, flags);
5623                 return;
5624         }
5625
5626         intel_crtc->unpin_work = NULL;
5627
5628         if (work->event) {
5629                 e = work->event;
5630                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5631
5632                 /* Called before vblank count and timestamps have
5633                  * been updated for the vblank interval of flip
5634                  * completion? Need to increment vblank count and
5635                  * add one videorefresh duration to returned timestamp
5636                  * to account for this. We assume this happened if we
5637                  * get called over 0.9 frame durations after the last
5638                  * timestamped vblank.
5639                  *
5640                  * This calculation can not be used with vrefresh rates
5641                  * below 5Hz (10Hz to be on the safe side) without
5642                  * promoting to 64 integers.
5643                  */
5644                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5645                     9 * crtc->framedur_ns) {
5646                         e->event.sequence++;
5647                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5648                                              crtc->framedur_ns);
5649                 }
5650
5651                 e->event.tv_sec = tvbl.tv_sec;
5652                 e->event.tv_usec = tvbl.tv_usec;
5653
5654                 list_add_tail(&e->base.link,
5655                               &e->base.file_priv->event_list);
5656                 wake_up_interruptible(&e->base.file_priv->event_wait);
5657         }
5658
5659         drm_vblank_put(dev, intel_crtc->pipe);
5660
5661         spin_unlock_irqrestore(&dev->event_lock, flags);
5662
5663         obj = work->old_fb_obj;
5664
5665         atomic_clear_mask(1 << intel_crtc->plane,
5666                           &obj->pending_flip.counter);
5667         if (atomic_read(&obj->pending_flip) == 0)
5668                 wake_up(&dev_priv->pending_flip_queue);
5669
5670         schedule_work(&work->work);
5671
5672         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5673 }
5674
5675 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5676 {
5677         drm_i915_private_t *dev_priv = dev->dev_private;
5678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5679
5680         do_intel_finish_page_flip(dev, crtc);
5681 }
5682
5683 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5684 {
5685         drm_i915_private_t *dev_priv = dev->dev_private;
5686         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5687
5688         do_intel_finish_page_flip(dev, crtc);
5689 }
5690
5691 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5692 {
5693         drm_i915_private_t *dev_priv = dev->dev_private;
5694         struct intel_crtc *intel_crtc =
5695                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5696         unsigned long flags;
5697
5698         spin_lock_irqsave(&dev->event_lock, flags);
5699         if (intel_crtc->unpin_work) {
5700                 if ((++intel_crtc->unpin_work->pending) > 1)
5701                         DRM_ERROR("Prepared flip multiple times\n");
5702         } else {
5703                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5704         }
5705         spin_unlock_irqrestore(&dev->event_lock, flags);
5706 }
5707
5708 static int intel_gen2_queue_flip(struct drm_device *dev,
5709                                  struct drm_crtc *crtc,
5710                                  struct drm_framebuffer *fb,
5711                                  struct drm_i915_gem_object *obj)
5712 {
5713         struct drm_i915_private *dev_priv = dev->dev_private;
5714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5715         unsigned long offset;
5716         u32 flip_mask;
5717         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5718         int ret;
5719
5720         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5721         if (ret)
5722                 goto err;
5723
5724         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5725         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5726
5727         ret = intel_ring_begin(ring, 6);
5728         if (ret)
5729                 goto err_unpin;
5730
5731         /* Can't queue multiple flips, so wait for the previous
5732          * one to finish before executing the next.
5733          */
5734         if (intel_crtc->plane)
5735                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5736         else
5737                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5738         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
5739         intel_ring_emit(ring, MI_NOOP);
5740         intel_ring_emit(ring, MI_DISPLAY_FLIP |
5741                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5742         intel_ring_emit(ring, fb->pitches[0]);
5743         intel_ring_emit(ring, obj->gtt_offset + offset);
5744         intel_ring_emit(ring, 0); /* aux display base address, unused */
5745         intel_ring_advance(ring);
5746         return 0;
5747
5748 err_unpin:
5749         intel_unpin_fb_obj(obj);
5750 err:
5751         return ret;
5752 }
5753
5754 static int intel_gen3_queue_flip(struct drm_device *dev,
5755                                  struct drm_crtc *crtc,
5756                                  struct drm_framebuffer *fb,
5757                                  struct drm_i915_gem_object *obj)
5758 {
5759         struct drm_i915_private *dev_priv = dev->dev_private;
5760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5761         unsigned long offset;
5762         u32 flip_mask;
5763         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5764         int ret;
5765
5766         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5767         if (ret)
5768                 goto err;
5769
5770         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5771         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5772
5773         ret = intel_ring_begin(ring, 6);
5774         if (ret)
5775                 goto err_unpin;
5776
5777         if (intel_crtc->plane)
5778                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5779         else
5780                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5781         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
5782         intel_ring_emit(ring, MI_NOOP);
5783         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
5784                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5785         intel_ring_emit(ring, fb->pitches[0]);
5786         intel_ring_emit(ring, obj->gtt_offset + offset);
5787         intel_ring_emit(ring, MI_NOOP);
5788
5789         intel_ring_advance(ring);
5790         return 0;
5791
5792 err_unpin:
5793         intel_unpin_fb_obj(obj);
5794 err:
5795         return ret;
5796 }
5797
5798 static int intel_gen4_queue_flip(struct drm_device *dev,
5799                                  struct drm_crtc *crtc,
5800                                  struct drm_framebuffer *fb,
5801                                  struct drm_i915_gem_object *obj)
5802 {
5803         struct drm_i915_private *dev_priv = dev->dev_private;
5804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5805         uint32_t pf, pipesrc;
5806         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5807         int ret;
5808
5809         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5810         if (ret)
5811                 goto err;
5812
5813         ret = intel_ring_begin(ring, 4);
5814         if (ret)
5815                 goto err_unpin;
5816
5817         /* i965+ uses the linear or tiled offsets from the
5818          * Display Registers (which do not change across a page-flip)
5819          * so we need only reprogram the base address.
5820          */
5821         intel_ring_emit(ring, MI_DISPLAY_FLIP |
5822                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5823         intel_ring_emit(ring, fb->pitches[0]);
5824         intel_ring_emit(ring, obj->gtt_offset | obj->tiling_mode);
5825
5826         /* XXX Enabling the panel-fitter across page-flip is so far
5827          * untested on non-native modes, so ignore it for now.
5828          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5829          */
5830         pf = 0;
5831         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5832         intel_ring_emit(ring, pf | pipesrc);
5833         intel_ring_advance(ring);
5834         return 0;
5835
5836 err_unpin:
5837         intel_unpin_fb_obj(obj);
5838 err:
5839         return ret;
5840 }
5841
5842 static int intel_gen6_queue_flip(struct drm_device *dev,
5843                                  struct drm_crtc *crtc,
5844                                  struct drm_framebuffer *fb,
5845                                  struct drm_i915_gem_object *obj)
5846 {
5847         struct drm_i915_private *dev_priv = dev->dev_private;
5848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5849         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
5850         uint32_t pf, pipesrc;
5851         int ret;
5852
5853         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5854         if (ret)
5855                 goto err;
5856
5857         ret = intel_ring_begin(ring, 4);
5858         if (ret)
5859                 goto err_unpin;
5860
5861         intel_ring_emit(ring, MI_DISPLAY_FLIP |
5862                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5863         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
5864         intel_ring_emit(ring, obj->gtt_offset);
5865
5866         /* Contrary to the suggestions in the documentation,
5867          * "Enable Panel Fitter" does not seem to be required when page
5868          * flipping with a non-native mode, and worse causes a normal
5869          * modeset to fail.
5870          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
5871          */
5872         pf = 0;
5873         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5874         intel_ring_emit(ring, pf | pipesrc);
5875         intel_ring_advance(ring);
5876         return 0;
5877
5878 err_unpin:
5879         intel_unpin_fb_obj(obj);
5880 err:
5881         return ret;
5882 }
5883
5884 /*
5885  * On gen7 we currently use the blit ring because (in early silicon at least)
5886  * the render ring doesn't give us interrpts for page flip completion, which
5887  * means clients will hang after the first flip is queued.  Fortunately the
5888  * blit ring generates interrupts properly, so use it instead.
5889  */
5890 static int intel_gen7_queue_flip(struct drm_device *dev,
5891                                  struct drm_crtc *crtc,
5892                                  struct drm_framebuffer *fb,
5893                                  struct drm_i915_gem_object *obj)
5894 {
5895         struct drm_i915_private *dev_priv = dev->dev_private;
5896         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5897         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
5898         int ret;
5899
5900         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5901         if (ret)
5902                 goto err;
5903
5904         ret = intel_ring_begin(ring, 4);
5905         if (ret)
5906                 goto err_unpin;
5907
5908         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
5909         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
5910         intel_ring_emit(ring, (obj->gtt_offset));
5911         intel_ring_emit(ring, (MI_NOOP));
5912         intel_ring_advance(ring);
5913         return 0;
5914
5915 err_unpin:
5916         intel_unpin_fb_obj(obj);
5917 err:
5918         return ret;
5919 }
5920
5921 static int intel_default_queue_flip(struct drm_device *dev,
5922                                     struct drm_crtc *crtc,
5923                                     struct drm_framebuffer *fb,
5924                                     struct drm_i915_gem_object *obj)
5925 {
5926         return -ENODEV;
5927 }
5928
5929 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5930                                 struct drm_framebuffer *fb,
5931                                 struct drm_pending_vblank_event *event)
5932 {
5933         struct drm_device *dev = crtc->dev;
5934         struct drm_i915_private *dev_priv = dev->dev_private;
5935         struct intel_framebuffer *intel_fb;
5936         struct drm_i915_gem_object *obj;
5937         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5938         struct intel_unpin_work *work;
5939         unsigned long flags;
5940         int ret;
5941
5942         work = kzalloc(sizeof *work, GFP_KERNEL);
5943         if (work == NULL)
5944                 return -ENOMEM;
5945
5946         work->event = event;
5947         work->dev = crtc->dev;
5948         intel_fb = to_intel_framebuffer(crtc->fb);
5949         work->old_fb_obj = intel_fb->obj;
5950         INIT_WORK(&work->work, intel_unpin_work_fn);
5951
5952         ret = drm_vblank_get(dev, intel_crtc->pipe);
5953         if (ret)
5954                 goto free_work;
5955
5956         /* We borrow the event spin lock for protecting unpin_work */
5957         spin_lock_irqsave(&dev->event_lock, flags);
5958         if (intel_crtc->unpin_work) {
5959                 spin_unlock_irqrestore(&dev->event_lock, flags);
5960                 kfree(work);
5961                 drm_vblank_put(dev, intel_crtc->pipe);
5962
5963                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5964                 return -EBUSY;
5965         }
5966         intel_crtc->unpin_work = work;
5967         spin_unlock_irqrestore(&dev->event_lock, flags);
5968
5969         intel_fb = to_intel_framebuffer(fb);
5970         obj = intel_fb->obj;
5971
5972         mutex_lock(&dev->struct_mutex);
5973
5974         /* Reference the objects for the scheduled work. */
5975         drm_gem_object_reference(&work->old_fb_obj->base);
5976         drm_gem_object_reference(&obj->base);
5977
5978         crtc->fb = fb;
5979
5980         work->pending_flip_obj = obj;
5981
5982         work->enable_stall_check = true;
5983
5984         /* Block clients from rendering to the new back buffer until
5985          * the flip occurs and the object is no longer visible.
5986          */
5987         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5988
5989         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
5990         if (ret)
5991                 goto cleanup_pending;
5992
5993         intel_disable_fbc(dev);
5994         mutex_unlock(&dev->struct_mutex);
5995
5996         trace_i915_flip_request(intel_crtc->plane, obj);
5997
5998         return 0;
5999
6000 cleanup_pending:
6001         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6002         drm_gem_object_unreference(&work->old_fb_obj->base);
6003         drm_gem_object_unreference(&obj->base);
6004         mutex_unlock(&dev->struct_mutex);
6005
6006         spin_lock_irqsave(&dev->event_lock, flags);
6007         intel_crtc->unpin_work = NULL;
6008         spin_unlock_irqrestore(&dev->event_lock, flags);
6009
6010         drm_vblank_put(dev, intel_crtc->pipe);
6011 free_work:
6012         kfree(work);
6013
6014         return ret;
6015 }
6016
6017 static void intel_sanitize_modesetting(struct drm_device *dev,
6018                                        int pipe, int plane)
6019 {
6020         struct drm_i915_private *dev_priv = dev->dev_private;
6021         u32 reg, val;
6022
6023         /* Clear any frame start delays used for debugging left by the BIOS */
6024         for_each_pipe(pipe) {
6025                 reg = PIPECONF(pipe);
6026                 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6027         }
6028
6029         if (HAS_PCH_SPLIT(dev))
6030                 return;
6031
6032         /* Who knows what state these registers were left in by the BIOS or
6033          * grub?
6034          *
6035          * If we leave the registers in a conflicting state (e.g. with the
6036          * display plane reading from the other pipe than the one we intend
6037          * to use) then when we attempt to teardown the active mode, we will
6038          * not disable the pipes and planes in the correct order -- leaving
6039          * a plane reading from a disabled pipe and possibly leading to
6040          * undefined behaviour.
6041          */
6042
6043         reg = DSPCNTR(plane);
6044         val = I915_READ(reg);
6045
6046         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6047                 return;
6048         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6049                 return;
6050
6051         /* This display plane is active and attached to the other CPU pipe. */
6052         pipe = !pipe;
6053
6054         /* Disable the plane and wait for it to stop reading from the pipe. */
6055         intel_disable_plane(dev_priv, plane, pipe);
6056         intel_disable_pipe(dev_priv, pipe);
6057 }
6058
6059 static void intel_crtc_reset(struct drm_crtc *crtc)
6060 {
6061         struct drm_device *dev = crtc->dev;
6062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6063
6064         /* Reset flags back to the 'unknown' status so that they
6065          * will be correctly set on the initial modeset.
6066          */
6067         intel_crtc->dpms_mode = -1;
6068
6069         /* We need to fix up any BIOS configuration that conflicts with
6070          * our expectations.
6071          */
6072         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6073 }
6074
6075 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6076         .dpms = intel_crtc_dpms,
6077         .mode_fixup = intel_crtc_mode_fixup,
6078         .mode_set = intel_crtc_mode_set,
6079         .mode_set_base = intel_pipe_set_base,
6080         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6081         .load_lut = intel_crtc_load_lut,
6082         .disable = intel_crtc_disable,
6083 };
6084
6085 static const struct drm_crtc_funcs intel_crtc_funcs = {
6086         .reset = intel_crtc_reset,
6087         .cursor_set = intel_crtc_cursor_set,
6088         .cursor_move = intel_crtc_cursor_move,
6089         .gamma_set = intel_crtc_gamma_set,
6090         .set_config = drm_crtc_helper_set_config,
6091         .destroy = intel_crtc_destroy,
6092         .page_flip = intel_crtc_page_flip,
6093 };
6094
6095 static void intel_pch_pll_init(struct drm_device *dev)
6096 {
6097         drm_i915_private_t *dev_priv = dev->dev_private;
6098         int i;
6099
6100         if (dev_priv->num_pch_pll == 0) {
6101                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6102                 return;
6103         }
6104
6105         for (i = 0; i < dev_priv->num_pch_pll; i++) {
6106                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6107                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6108                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6109         }
6110 }
6111
6112 static void intel_crtc_init(struct drm_device *dev, int pipe)
6113 {
6114         drm_i915_private_t *dev_priv = dev->dev_private;
6115         struct intel_crtc *intel_crtc;
6116         int i;
6117
6118         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6119         if (intel_crtc == NULL)
6120                 return;
6121
6122         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6123
6124         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6125         for (i = 0; i < 256; i++) {
6126                 intel_crtc->lut_r[i] = i;
6127                 intel_crtc->lut_g[i] = i;
6128                 intel_crtc->lut_b[i] = i;
6129         }
6130
6131         /* Swap pipes & planes for FBC on pre-965 */
6132         intel_crtc->pipe = pipe;
6133         intel_crtc->plane = pipe;
6134         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6135                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6136                 intel_crtc->plane = !pipe;
6137         }
6138
6139         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6140                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6141         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6142         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6143
6144         intel_crtc_reset(&intel_crtc->base);
6145         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6146         intel_crtc->bpp = 24; /* default for pre-Ironlake */
6147
6148         if (HAS_PCH_SPLIT(dev)) {
6149                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6150                 intel_helper_funcs.commit = ironlake_crtc_commit;
6151         } else {
6152                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6153                 intel_helper_funcs.commit = i9xx_crtc_commit;
6154         }
6155
6156         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6157
6158         intel_crtc->busy = false;
6159
6160         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6161                     (unsigned long)intel_crtc);
6162 }
6163
6164 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6165                                 struct drm_file *file)
6166 {
6167         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6168         struct drm_mode_object *drmmode_obj;
6169         struct intel_crtc *crtc;
6170
6171         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6172                 return -ENODEV;
6173
6174         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6175                         DRM_MODE_OBJECT_CRTC);
6176
6177         if (!drmmode_obj) {
6178                 DRM_ERROR("no such CRTC id\n");
6179                 return -EINVAL;
6180         }
6181
6182         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6183         pipe_from_crtc_id->pipe = crtc->pipe;
6184
6185         return 0;
6186 }
6187
6188 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6189 {
6190         struct intel_encoder *encoder;
6191         int index_mask = 0;
6192         int entry = 0;
6193
6194         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6195                 if (type_mask & encoder->clone_mask)
6196                         index_mask |= (1 << entry);
6197                 entry++;
6198         }
6199
6200         return index_mask;
6201 }
6202
6203 static bool has_edp_a(struct drm_device *dev)
6204 {
6205         struct drm_i915_private *dev_priv = dev->dev_private;
6206
6207         if (!IS_MOBILE(dev))
6208                 return false;
6209
6210         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6211                 return false;
6212
6213         if (IS_GEN5(dev) &&
6214             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6215                 return false;
6216
6217         return true;
6218 }
6219
6220 static void intel_setup_outputs(struct drm_device *dev)
6221 {
6222         struct drm_i915_private *dev_priv = dev->dev_private;
6223         struct intel_encoder *encoder;
6224         bool dpd_is_edp = false;
6225         bool has_lvds;
6226
6227         has_lvds = intel_lvds_init(dev);
6228         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6229                 /* disable the panel fitter on everything but LVDS */
6230                 I915_WRITE(PFIT_CONTROL, 0);
6231         }
6232
6233         if (HAS_PCH_SPLIT(dev)) {
6234                 dpd_is_edp = intel_dpd_is_edp(dev);
6235
6236                 if (has_edp_a(dev))
6237                         intel_dp_init(dev, DP_A);
6238
6239                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6240                         intel_dp_init(dev, PCH_DP_D);
6241         }
6242
6243         intel_crt_init(dev);
6244
6245         if (HAS_PCH_SPLIT(dev)) {
6246                 int found;
6247
6248                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6249                         /* PCH SDVOB multiplex with HDMIB */
6250                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
6251                         if (!found)
6252                                 intel_hdmi_init(dev, HDMIB);
6253                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6254                                 intel_dp_init(dev, PCH_DP_B);
6255                 }
6256
6257                 if (I915_READ(HDMIC) & PORT_DETECTED)
6258                         intel_hdmi_init(dev, HDMIC);
6259
6260                 if (I915_READ(HDMID) & PORT_DETECTED)
6261                         intel_hdmi_init(dev, HDMID);
6262
6263                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6264                         intel_dp_init(dev, PCH_DP_C);
6265
6266                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6267                         intel_dp_init(dev, PCH_DP_D);
6268
6269         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6270                 bool found = false;
6271
6272                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6273                         DRM_DEBUG_KMS("probing SDVOB\n");
6274                         found = intel_sdvo_init(dev, SDVOB, true);
6275                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6276                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6277                                 intel_hdmi_init(dev, SDVOB);
6278                         }
6279
6280                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6281                                 DRM_DEBUG_KMS("probing DP_B\n");
6282                                 intel_dp_init(dev, DP_B);
6283                         }
6284                 }
6285
6286                 /* Before G4X SDVOC doesn't have its own detect register */
6287
6288                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6289                         DRM_DEBUG_KMS("probing SDVOC\n");
6290                         found = intel_sdvo_init(dev, SDVOC, false);
6291                 }
6292
6293                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6294
6295                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6296                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6297                                 intel_hdmi_init(dev, SDVOC);
6298                         }
6299                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6300                                 DRM_DEBUG_KMS("probing DP_C\n");
6301                                 intel_dp_init(dev, DP_C);
6302                         }
6303                 }
6304
6305                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6306                     (I915_READ(DP_D) & DP_DETECTED)) {
6307                         DRM_DEBUG_KMS("probing DP_D\n");
6308                         intel_dp_init(dev, DP_D);
6309                 }
6310         } else if (IS_GEN2(dev))
6311                 intel_dvo_init(dev);
6312
6313         if (SUPPORTS_TV(dev))
6314                 intel_tv_init(dev);
6315
6316         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6317                 encoder->base.possible_crtcs = encoder->crtc_mask;
6318                 encoder->base.possible_clones =
6319                         intel_encoder_clones(dev, encoder->clone_mask);
6320         }
6321
6322         /* disable all the possible outputs/crtcs before entering KMS mode */
6323         drm_helper_disable_unused_functions(dev);
6324
6325         if (HAS_PCH_SPLIT(dev))
6326                 ironlake_init_pch_refclk(dev);
6327 }
6328
6329 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6330 {
6331         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6332
6333         drm_framebuffer_cleanup(fb);
6334         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6335
6336         kfree(intel_fb);
6337 }
6338
6339 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6340                                                 struct drm_file *file,
6341                                                 unsigned int *handle)
6342 {
6343         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6344         struct drm_i915_gem_object *obj = intel_fb->obj;
6345
6346         return drm_gem_handle_create(file, &obj->base, handle);
6347 }
6348
6349 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6350         .destroy = intel_user_framebuffer_destroy,
6351         .create_handle = intel_user_framebuffer_create_handle,
6352 };
6353
6354 int intel_framebuffer_init(struct drm_device *dev,
6355                            struct intel_framebuffer *intel_fb,
6356                            struct drm_mode_fb_cmd2 *mode_cmd,
6357                            struct drm_i915_gem_object *obj)
6358 {
6359         int ret;
6360
6361         if (obj->tiling_mode == I915_TILING_Y)
6362                 return -EINVAL;
6363
6364         if (mode_cmd->pitches[0] & 63)
6365                 return -EINVAL;
6366
6367         switch (mode_cmd->pixel_format) {
6368         case DRM_FORMAT_RGB332:
6369         case DRM_FORMAT_RGB565:
6370         case DRM_FORMAT_XRGB8888:
6371         case DRM_FORMAT_XBGR8888:
6372         case DRM_FORMAT_ARGB8888:
6373         case DRM_FORMAT_XRGB2101010:
6374         case DRM_FORMAT_ARGB2101010:
6375                 /* RGB formats are common across chipsets */
6376                 break;
6377         case DRM_FORMAT_YUYV:
6378         case DRM_FORMAT_UYVY:
6379         case DRM_FORMAT_YVYU:
6380         case DRM_FORMAT_VYUY:
6381                 break;
6382         default:
6383                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6384                                 mode_cmd->pixel_format);
6385                 return -EINVAL;
6386         }
6387
6388         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6389         if (ret) {
6390                 DRM_ERROR("framebuffer init failed %d\n", ret);
6391                 return ret;
6392         }
6393
6394         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6395         intel_fb->obj = obj;
6396         return 0;
6397 }
6398
6399 static struct drm_framebuffer *
6400 intel_user_framebuffer_create(struct drm_device *dev,
6401                               struct drm_file *filp,
6402                               struct drm_mode_fb_cmd2 *mode_cmd)
6403 {
6404         struct drm_i915_gem_object *obj;
6405
6406         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6407                                                 mode_cmd->handles[0]));
6408         if (&obj->base == NULL)
6409                 return ERR_PTR(-ENOENT);
6410
6411         return intel_framebuffer_create(dev, mode_cmd, obj);
6412 }
6413
6414 static const struct drm_mode_config_funcs intel_mode_funcs = {
6415         .fb_create = intel_user_framebuffer_create,
6416         .output_poll_changed = intel_fb_output_poll_changed,
6417 };
6418
6419 /* Set up chip specific display functions */
6420 static void intel_init_display(struct drm_device *dev)
6421 {
6422         struct drm_i915_private *dev_priv = dev->dev_private;
6423
6424         /* We always want a DPMS function */
6425         if (HAS_PCH_SPLIT(dev)) {
6426                 dev_priv->display.dpms = ironlake_crtc_dpms;
6427                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6428                 dev_priv->display.off = ironlake_crtc_off;
6429                 dev_priv->display.update_plane = ironlake_update_plane;
6430         } else {
6431                 dev_priv->display.dpms = i9xx_crtc_dpms;
6432                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6433                 dev_priv->display.off = i9xx_crtc_off;
6434                 dev_priv->display.update_plane = i9xx_update_plane;
6435         }
6436
6437         /* Returns the core display clock speed */
6438         if (IS_VALLEYVIEW(dev))
6439                 dev_priv->display.get_display_clock_speed =
6440                         valleyview_get_display_clock_speed;
6441         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6442                 dev_priv->display.get_display_clock_speed =
6443                         i945_get_display_clock_speed;
6444         else if (IS_I915G(dev))
6445                 dev_priv->display.get_display_clock_speed =
6446                         i915_get_display_clock_speed;
6447         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6448                 dev_priv->display.get_display_clock_speed =
6449                         i9xx_misc_get_display_clock_speed;
6450         else if (IS_I915GM(dev))
6451                 dev_priv->display.get_display_clock_speed =
6452                         i915gm_get_display_clock_speed;
6453         else if (IS_I865G(dev))
6454                 dev_priv->display.get_display_clock_speed =
6455                         i865_get_display_clock_speed;
6456         else if (IS_I85X(dev))
6457                 dev_priv->display.get_display_clock_speed =
6458                         i855_get_display_clock_speed;
6459         else /* 852, 830 */
6460                 dev_priv->display.get_display_clock_speed =
6461                         i830_get_display_clock_speed;
6462
6463         if (HAS_PCH_SPLIT(dev)) {
6464                 if (IS_GEN5(dev)) {
6465                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6466                         dev_priv->display.write_eld = ironlake_write_eld;
6467                 } else if (IS_GEN6(dev)) {
6468                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6469                         dev_priv->display.write_eld = ironlake_write_eld;
6470                 } else if (IS_IVYBRIDGE(dev)) {
6471                         /* FIXME: detect B0+ stepping and use auto training */
6472                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
6473                         dev_priv->display.write_eld = ironlake_write_eld;
6474                 } else
6475                         dev_priv->display.update_wm = NULL;
6476         } else if (IS_VALLEYVIEW(dev)) {
6477                 dev_priv->display.force_wake_get = vlv_force_wake_get;
6478                 dev_priv->display.force_wake_put = vlv_force_wake_put;
6479         } else if (IS_G4X(dev)) {
6480                 dev_priv->display.write_eld = g4x_write_eld;
6481         }
6482
6483         /* Default just returns -ENODEV to indicate unsupported */
6484         dev_priv->display.queue_flip = intel_default_queue_flip;
6485
6486         switch (INTEL_INFO(dev)->gen) {
6487         case 2:
6488                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
6489                 break;
6490
6491         case 3:
6492                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
6493                 break;
6494
6495         case 4:
6496         case 5:
6497                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
6498                 break;
6499
6500         case 6:
6501                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
6502                 break;
6503         case 7:
6504                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
6505                 break;
6506         }
6507 }
6508
6509 /*
6510  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6511  * resume, or other times.  This quirk makes sure that's the case for
6512  * affected systems.
6513  */
6514 static void quirk_pipea_force(struct drm_device *dev)
6515 {
6516         struct drm_i915_private *dev_priv = dev->dev_private;
6517
6518         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6519         DRM_INFO("applying pipe a force quirk\n");
6520 }
6521
6522 /*
6523  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
6524  */
6525 static void quirk_ssc_force_disable(struct drm_device *dev)
6526 {
6527         struct drm_i915_private *dev_priv = dev->dev_private;
6528         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
6529         DRM_INFO("applying lvds SSC disable quirk\n");
6530 }
6531
6532 /*
6533  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
6534  * brightness value
6535  */
6536 static void quirk_invert_brightness(struct drm_device *dev)
6537 {
6538         struct drm_i915_private *dev_priv = dev->dev_private;
6539         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
6540         DRM_INFO("applying inverted panel brightness quirk\n");
6541 }
6542
6543 struct intel_quirk {
6544         int device;
6545         int subsystem_vendor;
6546         int subsystem_device;
6547         void (*hook)(struct drm_device *dev);
6548 };
6549
6550 static struct intel_quirk intel_quirks[] = {
6551         /* HP Mini needs pipe A force quirk (LP: #322104) */
6552         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
6553
6554         /* Thinkpad R31 needs pipe A force quirk */
6555         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6556         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6557         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6558
6559         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6560         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6561         /* ThinkPad X40 needs pipe A force quirk */
6562
6563         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6564         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6565
6566         /* 855 & before need to leave pipe A & dpll A up */
6567         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6568         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6569
6570         /* Lenovo U160 cannot use SSC on LVDS */
6571         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
6572
6573         /* Sony Vaio Y cannot use SSC on LVDS */
6574         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
6575
6576         /* Acer Aspire 5734Z must invert backlight brightness */
6577         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
6578 };
6579
6580 static void intel_init_quirks(struct drm_device *dev)
6581 {
6582         struct pci_dev *d = dev->pdev;
6583         int i;
6584
6585         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6586                 struct intel_quirk *q = &intel_quirks[i];
6587
6588                 if (d->device == q->device &&
6589                     (d->subsystem_vendor == q->subsystem_vendor ||
6590                      q->subsystem_vendor == PCI_ANY_ID) &&
6591                     (d->subsystem_device == q->subsystem_device ||
6592                      q->subsystem_device == PCI_ANY_ID))
6593                         q->hook(dev);
6594         }
6595 }
6596
6597 /* Disable the VGA plane that we never use */
6598 static void i915_disable_vga(struct drm_device *dev)
6599 {
6600         struct drm_i915_private *dev_priv = dev->dev_private;
6601         u8 sr1;
6602         u32 vga_reg;
6603
6604         if (HAS_PCH_SPLIT(dev))
6605                 vga_reg = CPU_VGACNTRL;
6606         else
6607                 vga_reg = VGACNTRL;
6608
6609         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6610         outb(SR01, VGA_SR_INDEX);
6611         sr1 = inb(VGA_SR_DATA);
6612         outb(sr1 | 1<<5, VGA_SR_DATA);
6613         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6614         udelay(300);
6615
6616         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6617         POSTING_READ(vga_reg);
6618 }
6619
6620 static void ivb_pch_pwm_override(struct drm_device *dev)
6621 {
6622         struct drm_i915_private *dev_priv = dev->dev_private;
6623
6624         /*
6625          * IVB has CPU eDP backlight regs too, set things up to let the
6626          * PCH regs control the backlight
6627          */
6628         I915_WRITE(BLC_PWM_CPU_CTL2, PWM_ENABLE);
6629         I915_WRITE(BLC_PWM_CPU_CTL, 0);
6630         I915_WRITE(BLC_PWM_PCH_CTL1, PWM_ENABLE | (1<<30));
6631 }
6632
6633 void intel_modeset_init_hw(struct drm_device *dev)
6634 {
6635         struct drm_i915_private *dev_priv = dev->dev_private;
6636
6637         intel_init_clock_gating(dev);
6638
6639         if (IS_IRONLAKE_M(dev)) {
6640                 ironlake_enable_drps(dev);
6641                 intel_init_emon(dev);
6642         }
6643
6644         if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
6645                 gen6_enable_rps(dev_priv);
6646                 gen6_update_ring_freq(dev_priv);
6647         }
6648
6649         if (IS_IVYBRIDGE(dev))
6650                 ivb_pch_pwm_override(dev);
6651 }
6652
6653 void intel_modeset_init(struct drm_device *dev)
6654 {
6655         struct drm_i915_private *dev_priv = dev->dev_private;
6656         int i, ret;
6657
6658         drm_mode_config_init(dev);
6659
6660         dev->mode_config.min_width = 0;
6661         dev->mode_config.min_height = 0;
6662
6663         dev->mode_config.preferred_depth = 24;
6664         dev->mode_config.prefer_shadow = 1;
6665
6666         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6667
6668         intel_init_quirks(dev);
6669
6670         intel_init_pm(dev);
6671
6672         intel_init_display(dev);
6673
6674         if (IS_GEN2(dev)) {
6675                 dev->mode_config.max_width = 2048;
6676                 dev->mode_config.max_height = 2048;
6677         } else if (IS_GEN3(dev)) {
6678                 dev->mode_config.max_width = 4096;
6679                 dev->mode_config.max_height = 4096;
6680         } else {
6681                 dev->mode_config.max_width = 8192;
6682                 dev->mode_config.max_height = 8192;
6683         }
6684         dev->mode_config.fb_base = dev->agp->base;
6685
6686         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6687                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6688
6689         for (i = 0; i < dev_priv->num_pipe; i++) {
6690                 intel_crtc_init(dev, i);
6691                 ret = intel_plane_init(dev, i);
6692                 if (ret)
6693                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
6694         }
6695
6696         intel_pch_pll_init(dev);
6697
6698         /* Just disable it once at startup */
6699         i915_disable_vga(dev);
6700         intel_setup_outputs(dev);
6701
6702         intel_modeset_init_hw(dev);
6703
6704         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6705         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6706                     (unsigned long)dev);
6707 }
6708
6709 void intel_modeset_gem_init(struct drm_device *dev)
6710 {
6711         if (IS_IRONLAKE_M(dev))
6712                 ironlake_enable_rc6(dev);
6713
6714         intel_setup_overlay(dev);
6715 }
6716
6717 void intel_modeset_cleanup(struct drm_device *dev)
6718 {
6719         struct drm_i915_private *dev_priv = dev->dev_private;
6720         struct drm_crtc *crtc;
6721         struct intel_crtc *intel_crtc;
6722
6723         drm_kms_helper_poll_fini(dev);
6724         mutex_lock(&dev->struct_mutex);
6725
6726         intel_unregister_dsm_handler();
6727
6728
6729         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6730                 /* Skip inactive CRTCs */
6731                 if (!crtc->fb)
6732                         continue;
6733
6734                 intel_crtc = to_intel_crtc(crtc);
6735                 intel_increase_pllclock(crtc);
6736         }
6737
6738         intel_disable_fbc(dev);
6739
6740         if (IS_IRONLAKE_M(dev))
6741                 ironlake_disable_drps(dev);
6742         if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
6743                 gen6_disable_rps(dev);
6744
6745         if (IS_IRONLAKE_M(dev))
6746                 ironlake_disable_rc6(dev);
6747
6748         if (IS_VALLEYVIEW(dev))
6749                 vlv_init_dpio(dev);
6750
6751         mutex_unlock(&dev->struct_mutex);
6752
6753         /* Disable the irq before mode object teardown, for the irq might
6754          * enqueue unpin/hotplug work. */
6755         drm_irq_uninstall(dev);
6756         cancel_work_sync(&dev_priv->hotplug_work);
6757         cancel_work_sync(&dev_priv->rps_work);
6758
6759         /* flush any delayed tasks or pending work */
6760         flush_scheduled_work();
6761
6762         /* Shut off idle work before the crtcs get freed. */
6763         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6764                 intel_crtc = to_intel_crtc(crtc);
6765                 del_timer_sync(&intel_crtc->idle_timer);
6766         }
6767         del_timer_sync(&dev_priv->idle_timer);
6768         cancel_work_sync(&dev_priv->idle_work);
6769
6770         drm_mode_config_cleanup(dev);
6771 }
6772
6773 /*
6774  * Return which encoder is currently attached for connector.
6775  */
6776 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6777 {
6778         return &intel_attached_encoder(connector)->base;
6779 }
6780
6781 void intel_connector_attach_encoder(struct intel_connector *connector,
6782                                     struct intel_encoder *encoder)
6783 {
6784         connector->encoder = encoder;
6785         drm_mode_connector_attach_encoder(&connector->base,
6786                                           &encoder->base);
6787 }
6788
6789 /*
6790  * set vga decode state - true == enable VGA decode
6791  */
6792 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6793 {
6794         struct drm_i915_private *dev_priv = dev->dev_private;
6795         u16 gmch_ctrl;
6796
6797         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6798         if (state)
6799                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6800         else
6801                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6802         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6803         return 0;
6804 }
6805
6806 #ifdef CONFIG_DEBUG_FS
6807 #include <linux/seq_file.h>
6808
6809 struct intel_display_error_state {
6810         struct intel_cursor_error_state {
6811                 u32 control;
6812                 u32 position;
6813                 u32 base;
6814                 u32 size;
6815         } cursor[2];
6816
6817         struct intel_pipe_error_state {
6818                 u32 conf;
6819                 u32 source;
6820
6821                 u32 htotal;
6822                 u32 hblank;
6823                 u32 hsync;
6824                 u32 vtotal;
6825                 u32 vblank;
6826                 u32 vsync;
6827         } pipe[2];
6828
6829         struct intel_plane_error_state {
6830                 u32 control;
6831                 u32 stride;
6832                 u32 size;
6833                 u32 pos;
6834                 u32 addr;
6835                 u32 surface;
6836                 u32 tile_offset;
6837         } plane[2];
6838 };
6839
6840 struct intel_display_error_state *
6841 intel_display_capture_error_state(struct drm_device *dev)
6842 {
6843         drm_i915_private_t *dev_priv = dev->dev_private;
6844         struct intel_display_error_state *error;
6845         int i;
6846
6847         error = kmalloc(sizeof(*error), GFP_ATOMIC);
6848         if (error == NULL)
6849                 return NULL;
6850
6851         for (i = 0; i < 2; i++) {
6852                 error->cursor[i].control = I915_READ(CURCNTR(i));
6853                 error->cursor[i].position = I915_READ(CURPOS(i));
6854                 error->cursor[i].base = I915_READ(CURBASE(i));
6855
6856                 error->plane[i].control = I915_READ(DSPCNTR(i));
6857                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6858                 error->plane[i].size = I915_READ(DSPSIZE(i));
6859                 error->plane[i].pos = I915_READ(DSPPOS(i));
6860                 error->plane[i].addr = I915_READ(DSPADDR(i));
6861                 if (INTEL_INFO(dev)->gen >= 4) {
6862                         error->plane[i].surface = I915_READ(DSPSURF(i));
6863                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6864                 }
6865
6866                 error->pipe[i].conf = I915_READ(PIPECONF(i));
6867                 error->pipe[i].source = I915_READ(PIPESRC(i));
6868                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
6869                 error->pipe[i].hblank = I915_READ(HBLANK(i));
6870                 error->pipe[i].hsync = I915_READ(HSYNC(i));
6871                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6872                 error->pipe[i].vblank = I915_READ(VBLANK(i));
6873                 error->pipe[i].vsync = I915_READ(VSYNC(i));
6874         }
6875
6876         return error;
6877 }
6878
6879 void
6880 intel_display_print_error_state(struct seq_file *m,
6881                                 struct drm_device *dev,
6882                                 struct intel_display_error_state *error)
6883 {
6884         int i;
6885
6886         for (i = 0; i < 2; i++) {
6887                 seq_printf(m, "Pipe [%d]:\n", i);
6888                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
6889                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
6890                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
6891                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
6892                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
6893                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
6894                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
6895                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
6896
6897                 seq_printf(m, "Plane [%d]:\n", i);
6898                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
6899                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
6900                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
6901                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
6902                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
6903                 if (INTEL_INFO(dev)->gen >= 4) {
6904                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
6905                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
6906                 }
6907
6908                 seq_printf(m, "Cursor [%d]:\n", i);
6909                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
6910                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
6911                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
6912         }
6913 }
6914 #endif